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Peter Gottlieb

Submitted to the Department of Physics on 18 May 1959 in partial ful-
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ABSTRACT

This thesis is concerned with two types of problems in-
volving moving fluids and sound. The first problem is to determine
the qualitative conditions necessary for instability due to infinitesimal
acoustic disturbances. The particular technique used here is to as-
sume that the disturbances are fixed in space while the fluid flows
past them. This viewpoint is applied to the questions of turbulence
onset and resonator excitation.

The second problem is to examine some of the quantita-
tive properties of an interface between two media in relative motion.
In particular, the sound field due to a source near such an interface
is calculated. It is shown that the sound field can be approximated
in a closed form by a saddle point integration, and this will be a valid
approximation for distances from the source which are large as com-
pared to the wave length of the emitted sound. This situation is gen-
eralized to the study of the characteristics of a channel formed by
two parallel velocity discontinuity interfaces. Then, it is further
generalized to include the possibility of a plate or membrane along
the interface separating the two media in relative motion. The sta-
bility of the interface is discussed as each of the various cases arises.

Thesis Supervisor: Uno Ingard

Title: Associate Professor of Physics
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INTRODUCTION

The main problem to be discussed here is the determination

of the far field sound due to point and line sources in moving media near

various types of velocity discontinuities. The main motivation for this

research is the study of jet noise. The sound sources are inside the jet,

and it is most practical to make the measurements outside the jet. Thus,

it is necessary to know the effect of the jet boundary on the directionality

of the source. If this boundary is idealized to a sharp velocity discontin-

uity, then the far field can be calculated. A comparison of the experi-

mental and theoretical results is found in the conclusion at the end of this

thesis.

This problem of valocity discontinuities raises the question of

stability, which, properly, should (and will) be taken up first. As an in-

troduction to the valocity discontinuity instability, it is interesting to ex-

amine a few well-known examples of instability from a unified physical

point of view. The particular examples of turbulence onset and resonator

excitation are discussed in Chapter 1, and the remainder of the thesis is

devoted to the velocity discontinuities mentioned above.

The turbulence problem has been treated in detail by a num-

ber of authors, but K. Schuster(2 ) has recently suggested a different

concept of the problem that leads to some interesting physical insight. In

viii



particular, this concept leads to a natural explanation of some recent

data(3) on resonator excitation by steady flow. A discussion of the va-

lidity and possible extension of this concept is presented in the conclusion.

ix



WAVE EQUATION AND INSTABILITIES

I. Derivation of Wave Equation in Moving Media

The wave equation for sound in a nonuniform moving medium

has been derived in many places, so it would hardly seem necessary to

give another derivation here. However, there are two reasons for reviv-

ing old memories at this time. In the first place, the wave equation is

the basis for all of the work presented in this thesis. The other reason

is that it is interesting to see how some of the terms which cause instabil-

ity arise.

We start with the Navier - Stokes equation for a compressible

fluid, neglecting viscosity (for the time being) and heat conduction, and

considering the sound to be isentropic.

(ai/at) + (iii -1 )di P/P

(where u is the total velocity vector). In addition, we must use the con-

tinuity equation

(ap/at) + V (p-u) = 0.

The usual procedure is to eliminate the linear terms in u. This gives

(a2 P/t2 _ 2p = [ + )

1



The pressure can be expressed in terms of the density (or vice versa) to

any desired degree of accuracy, but it is still difficult to disentangle the

nonlinear term on the right-hand side of Eq. (1.1). One procedure is to

divide the total velocity into the steady flow V and the fluctuating, or

sound, velocity V. Then, the wave equation is linearized in the sound

variables.

One example of frequently encountered steady velocity distri-

bution is a two-dimensional flow with the velocity vector along the x-axis

and the magnitude of the velocity depending only upon y. This is the case

for flow in channels and many similar situations. Since the steady flow

is incompressible, p and p are constant except for sound fluctuations.

2
Thus, to first order in acoustic variables, p = c p, and the left-hand

side of Eq. (1.1) becomes a scalar wave equation. If V << c, the right-

hand side of Eq. (1.1) can be treated as a perturbation, and the scalar

wave solutions can be substituted in it to get

POV-0 2 v x/8x2 ) + p0 V( 2 v /8xay) + p0 (aV/ay) (8vy/ax) (l.la)

for the perturbing terms. All of the terms in V2 have been omitted since

they are of higher order in this approximation. We return to them later

when considering higher-order approximations and homogeneous flow dis-

tributions.

The question of stability of steady flows can be considered as

the question of growth of small disturbances. With this concept in mind,

we can consider the terms of (1.la) as driving terms for the scalar wave

equations. As shown in Eq. (1.1), the scalar wave equation has no damp-

2
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ing. But a phenomenological damping term can always be introduced.

Then, the sound wave will grow exponentially (and the flow will be un-

stable) whenever the driving terms are larger than the damping term.

In addition, it is necessary for the driving terms to be in phase with the

damping term.

II. Instability due to Inhomogeneous Terms

To clarify this reasoning with an example, we consider or-

dinary parabolic flow in a two-dimensional channel. In keeping with the

above restriction of flow in the x-direction varying in the y-direction,

the width of the channel is taken from y = - (d/2) to y = (d/2). Then,

the steady flow can be written as

V = V0 (1 - 4y /d2 ).

Considering the fundamental mode of the channel as a wave guide, the

sound variables can be written as

p = Asink y i(t - kxx) k 2+ k 2= ( 2 /c2
In y kx +k0

vx = [ Ak sin kyyei(ot - kxx)] /0 = 0 + a

v = - [Ak cos k y ei(t - kxx)] ip0 O k = Tr/d
y y y y

p = (A/ c2) sink y yei(wt - kxx) (1.2)

a is a frequency shift (real or imaginary) caused by the damping and

3



driving (perturbation) terms. Equation (1.1) can be written as [using

the terms of (1.1a) for the right-hand side and using the damping term

R(ap/at)]

(02p/at2) + R(Op/Ot) - c 2 p 2 0 V(2v /ax2 + P 0 V 2v/axay) +

y

2(If the viscosity had been included in Eq. (1.1), we would have R = - V

as is explained later. ) With the substitution of all of the appropriate pre-

viously defined quantities, this becomes

[- (2wa /c ) + (iwR/c 2)] sin kyy = (k xV 0 /c2 1 - (4Y2/d2)] sin kyy -

(8k k y/d2) cos k y . (1.3)
x y y

[ That we are not concerned that the -terms of (1.3) do not have the same

y dependence is shown later. ] It is now apparent why the perturbation

terms on the right-hand side of (1.3) must have the same phase as the

damping term in order to produce instability. This will cause a to be

imaginary, and, if the perturbation terms are larger than the damping

term, a will be negative imaginary which gives an exponential increasing

in time. Of course, this derivation has been sloppy, and all of the terms

in Eq. (1.3) do not have the same dependence on y, so the equation im-

plies that the perturbation excites higher modes. At this point, the most

convenient procedure is to make the approximation that both sides have

the same y dependence. Once y is eliminated, we can take the usual

lumped parameter form for R = w/Q. Then, we can obtain a crude ap-

4



proximation from Eq. (1.3):

- 2wa C/c 2 _ _ 2 /c 2 Q) + (V k W/c (1.4)

The approximation used thus far may seem outrageous, but it is shown

later that there is a sufficiently rigorous, but intuitively obscure, method

for obtaining a remarkably similar result. At the present point, it must

be noted that k must be imaginary to produce instability. This means

that the mode is below cut off for the guide. If we make the substitutions

E = Wd/wc; M = Vo/c; and y = kinematic viscosity with Q = 3/2rE

and r = lTy/cd for damping due to viscosity, then, for the onset of in-

stability, a = 0 in Eq. (1.4), which gives

M/r = 2E 2/3f-7 2 = R /2i (1.5)

(where R? is the critical Reynolds number with a sound wave, of frequen-k

cy given by E, below cut off). If the channel is considered as a resonator

(standing wave across the width), R can be averaged over that pert of

the frequency spectrum which has E -< 1 (or frequency below cut off) to

obtain the critical Reynolds number for the flow

Rk= R t4 (,e) de = (41T/3) NF_ O (Q0 = 3/2r) (1.6)

In keeping with the crudeness of this derivation, the frequency distribution

has been approximated by

0( E ) = 0 for 0 < E < 1 - 2/Q 0

5



4(E) = QO for 1- (2/Q 0 )<E <1

The above result agrees reasonably well with experiment.

The method is similar to that used by K. Schuster(2) and the compari-

son with experimental results is given in his paper. After Eq. (1.4),

the present treatment is identical with that of Schuster, but the deriva-

tion of Eq. (1.4) is rather novel in its direct approach showing the par-

ticular terms in the wave equation which are responsible for the amplifi-

cation and instability.

III. Solution of Wave Equation for Channels

The derivation of Eq. (1.4) by Schuster is more rigorous than

is mine, but it is possible to give a much more rigorous treatment than

Schuster did by solving the wave equation for parabolic steady flow. For

this treatment, the y dependence of p is left unspecified, and the density

fluctuation is taken to be of the form

p = Fy) ei(wt - kxx)p = F(y) ei(tkx (1.7)

Now, the two components of the Navier - Stokes equation can be written as

(avx/at) + V(avx/8x) + v (aV/ay) = - (c2/p) ax)y

(Ov /at) + V(av /ax) = - (c 2/p0 ) (ap/8y) , (1.8a)
y y

and the continuity equation can be written as

(Op/at) + V(ap/ax) + pO(avx/ax) + p0 (v y/ay) = 0. (1.8b)

6
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Since v and vy must have the same form as p ['given in Eq. (1.7)],

they can be eliminated from Eq. (1.8a) and Eq. (1.8b) to give

(8 2F/y2) + (2k (2V/ay) (8F/ay))/(w - k V)] + [(o - k V)2 (1/c2

2
k ] F = 0.

In order to solve this equation, we must make the approximation o >>

k V.x Then, using the explicit V(y),

FN - (6k V 0 /od2) yF + [2 /c2)

Eq. (1. 9a) becomes

2 (2ck V /c 2) + (8wok V 0 y 2

c 2d 2)]F = 0

(where the prime denotes differentiation with respect to y). If the first

derivative term is removed by the substitution

F = (y) e( 4 kxV0 /od 2 )y 2

then Eq. (1.9b) becomes

4i' +[(W2/c) - k 2 (2wk V /c2
x xO0

+ (8k V 0 /od 2 ) + (8k V0 Z 2 /d 2 ) (( 2 /c 2 )

(1.10)(8kV 0 /c 2 d 2 )) x V = 0

This can be put in a standard form by the substitution

= K 1 y

which gives,

(d2 /d 2) +

K = - (32k V 0/d
2) [ 2 /c2) + (8k V /W2 d2 )

in place of Eq. (1.10)

K /1/412 - k2x - (2ok V0 /c
2 ) + (8k V0 /od 2 - 2 /4)]4 = 0.

(I.IOa)

7
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This equation is the same as the Schroedinger equation for the harmonic

oscillator, and the solutions 4 are called parabolic cylinder functions or

Weber - Hermite functions. The eigen values which satisfy the boundary

conditions

(80/ a)= 0 at = +_ (rd/2)

have been approximated by F. C. Auluck 4 ) for the lowest few orders in

the parameter k V/W. If W = W0 + a + iw/Q, then the eigen value equa-

tion is

- (2wa /c2) _(ic /Qc2) + (k V /W) [ (W 2/c )(4/3 + 4/T) - 8/d2]

This is seen to be similar to Eq. (1.4), except that the amplifying term

will only have the proper sign if

E > 2/(1 + Tr2 /3)

Since only values of E close to 1 were used in the calculation of critical

Reynolds number, the instability calculation is still valid, and the intuitive

approach leading to Eq. (1.4) is seen to give fairly accurate results.

It should be noted that the treatment of Sections II and III differs

radically from the conventional stability analysis, as has been mentioned

in the Introduction. Usually, the stability of the propagating modes of the

channel is examined. The present discussion considered only the nonprop-

agating mode stability.

8
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IV. Resonator Excitation

The instability of nonpropagating disturbances leads to the

instability of systems like resonators which create stationary disturbances

while a fluid flows past them. Such a situation for a closed pipe resonator

is shown in Fig. 1. The fluid has a constant velocity in the x direction as

shown, and, for resonance, there is a standing wave, with variation along

the y-axis, in the resonator. Since the velocity is constant in the moving

fluid, the wave equation (including viscosity) can be written quite simply

as

(82p/t2) _ (p/Ot) - c2 (8 p/y2) = c2 ( / ) - 2V(8p/8xot) -

V 2 (a 2 p/ax 2 2 (/8) (1.12)

As shown in Fig. 1, the moving fluid moves a short distance into the mouth

of the pipe; beyond that, there is no x variation in the pipe for the funda-

mental mode, so all terms on the right-hand side of Eq. (1.12) are zero.

Furthermore, the LLeft-hand side of Eq. (1.12) can be written in lumped

parameter form as a resonator equation, and set equal to sero for the low-

est order solution,

(8 2p/8t ) + (o 0 /Q) (ap/at) + W = 0 (1.13)

(where w0 = ctr/2d for the pipe fundamental). The value of Q is found

from the viscous and radiation damping, but left unspecified for the moment.

The solutions satisfying E2. (1.13) are of the form

pI = (p0 A 1/c)sin(rry/2d) (sinw0 t + -coso 0 t) . (1.14)
Q

9
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We next consider the terms on the right-hand side of Eq. (1.12)

in the moving fluid (in particular, that part of the fluid which extends

slightly into the resonator, as shown in Fig. 1). These terms can cause

instability if they have the same time phase as the damping term on the

left of Eq. (1.12). We find their phase just inside the resonator mouth by

using the p1 time dependence from Eq. (1.14). The first term on the

right-hand side of (1.12) is not of interest, since it is not multiplied by

the velocity, and so does not contribute to the excitation. The next term

2 2 2
V(82p/8x8t) has the required time phase. The term V (82p/ax ) has the

reactive time phase for the large term of p1 . (This merely produces the

well-known frequency shift.) The small term of p1 gives the damping

phase for this term. The last term is a viscosity term which has the re-

active time phase for the large term of p1 , and the damping time depen-

dence for the small term. If the viscous effects are small, this term

can be neglected. The terms of interest are now the second and the small

part of the third term on the right-hand side of Eq. (1.12). To put these

terms in a lumped parameter form such as Eq. (1.13) would require a

knowledge of the exact wave field over the interaction volume. Therefore,

it is most convenient to leave the parameters of these terms unspecified,

except for sign. A look at Fig. 1 reveals that the interaction volume will

be greatest on the x > 0 side of the pipe (where the moving fluid comes

the furthest into the pipe). At this side, (p/ax) e' - (p/1), since the

field is expected to be a maximum at the center and fall off for large x.

Thus, Eq. (1.12) becomes (considering only terms with damping time phase)

(W0/Q) - (2Vg/1) - (V 2 h/I 2 QwO)

11
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(where g and h are unspecified positive parameters).

Just as in the previous example, it is the disturbance which

is exponentially damped in space which causes the unstable, exponentially

increasing disturbance in time. In Fig. 2, Q is plotted as a function of

V, with g and h adjusted to make the minimum of the theoretical and ex-

perimental curves coincide. The experimental data are due to L. W. Dean.(3)

13



GENERAL DISCUSSION OF A TANGENTIAL VELOCITY DISCONTINUITY

I. Boundary Conditions for the Reflection and Refraction of Sound

The remainder of this thesis is devoted to fluids with constant

velocity in each of two regions, but with a different velocity in each region.

In addition, the boundary between the two regions will be taken parallel to

the flow direction, which is taken to be the same in the two regions. The

problem of reflection and refraction of a plane sound wave from such an in-

(5) (6)terface has been considered recently in papers by Miles and by Ribner,

but it is of interest to repeat the derivation here in a slightly different

manner.

The geometry is pictured in Fig. 3. Medium 1 is at rest, and

medium 2 is identical with medium 1 in all properties (for the sake of sim-

plicity) but has velocity V in the positive y direction as shown. In medium

1, the solution of the wave equation for the acoustic velocity potential can

be written quite simply. For the wave incident at the angle as shown,

0= e t - iky - yx _ eiCt - (iW/c)(y cos 1  + x sinO) (2.1)

(withy 1 = Jk- ( 2/c2) , k = (w/cw)cosO .

By the same reasoning, the reflected wave can be written as

= eiwt - iky+yx Aeit - (i/ c)y cos 0 + (iw/ c)>x sin 1 . (2.2)

14
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A must be determined fuom the boundary conditions at x = 0.

Thus far, the coordinate system has been considered at rest

relative to medium 1. If the coordinate system is transformed to mo-

tion with velocity V, then, the potential in medium 2 can be written

just as simply as Eq. (2.1). Then, the transmitted wave with frequency

W2 can be written as

2 = Be1o2t - (iW2 / c)y2 cos 02 - (iw2/ c) x2 sin 02 (2.3)

(with 0., x2 , y 2 being coordinates at rest with respect to medium 2,

x2 ~x y 2 = y - Vt). Since all values of y and t must give the same

phase for "1 and 02 at the boundary x = 0,

W = 2 (1 + M Cos 02) (coefficient of t)

Wcos0 = W2 cos 0 2  (coefficient of y) (2.4)

(where M = V/c). These equations were first given by Rayleigh(7) to

determine the angle of refraction as a function of incidence angle. Using

the relations of Eq. (2.4), it is evident that k2 may be written as

2= Bi -ytY2x (2.5)

22
[Y 2 =k 2 - ( 2 /c2) W 2 = o-kV]

This is the form most convenient for the application of the boundary con-

ditions.

The pressure in a stationary medium is given by

16



p= P (0/at),

but in a moving medium

p = p(ao4/8t) + pV(aO/ay),

from the linearized Bernouli equation. Thus, the continuity of pressure

boundary condition is

w(O+ 01) = w20 (2.6)

If we call the boundary displacement ! in the coordinate system at rest,

then the velocity of the boundary in a coordinate system fixed to medium

2 is (ar/8t) + V (8/8y). Now, 11 must have the same exponent as 00

0 , 02 for x = 0, and the x component of velocity in medium 2 is

given by 8t2/ax, so the definition of r gives

i(w - kV)r -j 2

iWr1 =Y y(401 -0

We can eliminate il from these equations to obtain the second boundary

equation

(-Y / w) 0 1 2/Z 2 (2.7)

Now, Eqs. (2.6) and (2.7) may be solved simultaneously to give

2 2 2 2
A = (y1& 2 - 'Y2' )/(y1Y 2 + y 2 w ) and

=(2 w )/(Y1 2 2 2 (2.8)B = 2'Y2 1 12 + Y 2w 28

17



II. Helmholz Instability

If the denominator in Eq. (2.8) becomes zero, we have the

well-known Helmholz instability. This denominator can be factored to

(k2 - yly 2)( 1 + y 2 ), so that the Helmholz instability is given by

2
k = y 2'

The roots of this equation are

(kc)/ =[(M/2) + i 1 + M2 - 1 - (M/4) ] / [ 1 + M - 1] (2.9)

These will be complex for M < 2N12, which means that the interface is

unstable. This instability has been discussed by a number of writers,

and the most recent and most thorough discussion was given by J. Miles.

He showed that the complex frequency given by Eq. (2.9), with the ima-

ginary part both positive and negative, causes an initial disturbance of

the interface to grow exponentially, in time. This leads one to question

the meaning of the reflection and transmission coefficients calculated

above. However, we can get physically sensible results by ignoring the

poles entirely. This is shown in the next section. The effect upon the

Helmholz instability, of a plate or membrane separating medium 1 and

medium 2, is discussed in Section II of Chapter 6.

III. Transmission through Many Layers

It is interesting to use Eq. (2.8) in an experimentally known

situation, and to check the results by an analytic calculation. One possi-

18
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bility is shown in Fig. 4. For x > 0, the fluid has a velocity in the

positive y direction given by M = bx (with b constant). If we have

nearly normal incidence (cos 0 < 1), and, if M < 1 for the region

under consideration, we can take a plane wave solution of the form

p = e iot - (iW cos 0/ c)F(x), (2.10)

and cos 0 will be approximately constant. The wave equation becomes

(neglecting terms of order M2 cos2 0)

(d2F/dx2) + 2b cos 0 (dF/dx) + (w2 /c ) (sin 2 - 2bx cos 0) F = 0. (2.11)

The exact solution of Eq.

F (x) = NUl1/2 Z1/ 2 U3/2 ) e- bx cos 6
1/3 3

[ where N is a normalizing factor,

(2.11) is well-known as

is an appropriate Bessel or

Hankel function of 113 order, and where

U = (sin2 0 - 2bx cos 0)/[ (2bc cos 0)/w ]2/3]

Now, if the approximation cos 0 << 1 is made again,

form of the Hankel function may be used to obtain

the asymptotic

H 1/3 2 [ (2/3)u3f2]

If the pressure is given at x = 0 and a specified value of 0, then the

normalizing factors are determined, and Eq. (2.10) becomes

p(x, O)/p(0, 0) - [1 - (Mcos 0/2)] et - (ioycos /c) - (iwx/c)

20
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Now, Eq. (2.8) can be applied to this same problem. First,

the continuous flow distribution must be broken into layers of constant

velocity, as shown in Fig. 4. Then the sound field in layer n is found

by taking the product of all of the transmission coefficients for the inter-

faces between the layers preceding n. With the use of B from Eq. (2.8),

the pressure transmission coefficient at an interface can be written, to

first approximation in M co s 0, as

pl/po 1 - (MicosO/2) (2.13)

Now, we cannot match solutions at the interfaces in Fig. 4 in the manner

used for the interface of Fig. 3 to derive Eq. (2.8). This is because there

must be waves travelling in both x directions for each layer. In other

words, the amplitude in the second layer is not found simply from the

product of the transmission coefficients of the first and second layers,

but must also be found from the transmission coefficients after each of

the multiple reflections shown in Fig. 4. However, since M cos 0 << 1

throughout the region under consideration, it is seen that the reflection

coefficient at the n- layer is of the order of magnitude M ncos 0. Since

any fraction of the wave which is reflected once must be reflected a

second time before it can contribute to the transmitted fraction, the con-

tribution, to the transmitted wave, due to multiple reflections will be of

2
order of magnitude (M cos 0) . Since the present approximation is only

to the order Mcos 0, these multiple reflections can be neglected entirely,

and the amplitude can be calculated from the product of transmission co-

efficients, as was suggested to begin with. To the same approximation as

21



Eq. (2.13), the transmission coefficient from the (n - 1) to the n layer

can be written as

(Pn n - I) -~ 1 - [ (Mn - M 1 ) cos 0/2],

and the product of the transmission coefficients up to the n--h layer can

be approximated by

(pn ) ~ 1 - (Mncoso/2) . (2. 14)

This is seen to agree with the amplitude factor in Eq. (2.12), so the two

different methods give the same result.

In physical situations, viscosity makes a flow like that shown

in Fig. 4 stable, for low enough Reynolds numbers. Thus, the results

of Section I have physical meaning, in spite of the Helmholz instability.

In most of the following, we neglect this instability entirely.
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LINE SOURCE

I. Formal Integral Solutions

The geometrical situation for a line source located near a

velocity discontinuity is shown in Fig. 5. The coordinate system is fixed

with respect to the source and the two media have Mach numbers M1 =

(V,/c), M2 = (V 2 /c) with respect to this fixed system. The plane wave

expansion of a line source in a medium with velocity V1 relative to a

coordinate system fixed in that source is

i.t +OO

0 e [eiky-yx+hi /y]dk (3.1)

[where y1 = Vk 2l - M 1 ) - (W /c ) + (2kM c/c) ].

The total field will be made up of 40 plus the reflected wave in medium

1. In medium 2, the field will be simply the transmitted wave. The

reflected wave can be written as

=ieLt A(k) e-iky+ ylx dk. (3.2)

And the transmitted wave is

e iot B(k) e-iky -Y2x dk (3.3)
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[(with y= k21 M2 ) - (W 2/c ) + (2kM 2o/c) ].

If we make the simplification of notation

= - kMIc
W2 = W - kM2 c

then, the continuity of pressure boundary condition becomes

( 1 e Ylh/y) + ,,A = 2B,

and the continuity of the velocity normal to the interface gives

- (eY 1 /wj) + (yA/a) = - (y2 B/ 2 ).

Solving the boundary equations for A and B gives

2 2 2 2 -ylhA = (,y 2 -yj 2 ) Yi(1 w2 + Y2 w] e

B = [2w W2A 1 2 + y2 2IeY1h

This result is seen to be similar to Eq. (2.8), and the derivation leading

to it is also similar to the derivation of Eq. (2.8).

II. Evaluation of Integral for Transmitted Wave

The next step is to evaluate the integrals of (3.21 and (3.3).

The integral for 02 can be written as

+00T0 g(k) ef(k) dk

-00

f(k) = iky + y2 x .

25
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Since this integral is incapable of an exact analytic evaluation, the

natural thing is to try the asymptotic approximation for the far field.

For the saddle point method,

f(k) = f(k 0 ) + (k - k 0 ) ft(k0 ) + [ (k - k 0 )2 /2] fU(k).

And we solve for k0 given by f t (k0 ) = 0. If we substitute x = r sin 0,

y = rcosO,

k= [w/c(l - Mf)] [- M2 + (cos 0/41 - Msin20)] (3.5)

(where the positive square root is always understood). It is noted that

k0 has a branch point at 0 = -r/2, and the proper branch is chosen as

the positive sign to satisfy the subsonic radiation conditions for y >>

c/w. We can then calculate

f0(k = -i(c/w)[(l - M 2 sin 20)3/sin20] r

0 2

The path of integration must be chosen so that the phase of (k - k0 ) is

i. The two possible paths are shown in Fig. 6. The appropriate path

goes in the positive real k direction, since the integral is over real

values of k from -oo to +o. We must be careful about crossing branch

points of the integrand. (Poles are neglected entirely in this analysis,

as was suggested in Section II, Chapter 2. ) If we assume an infinitesimal

amount of damping, the branch points are as shown in Fig. 7. When the

saddle point is to the left of -(W c), we will have to cross the -(I/c)branch

point in order to distort the real axis path into the saddle path. Thus, the
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sound field will have an extra term coming from an integration over a

cut surrounding the -(wl/c) branch point. (This is explained in detail

in Section V of this chapter.) This will be found to correspond to the

Vrefraction arrivalm (also explained in Section V), and will have a

straight wave fron: with a fall off of r-3/2 so that it makes no contribu-

tion to the far field. The integral of Eq. (3.4) can now be approximated

by the integration over the saddle point to give

f (k )+ ist
2= s[(2rr/f"(k0 )] g (k0 ) e~ f +(3.6)

h, 2 2with g(k) = [2 1 (2 e 2 2

= isin0/N - M sin 0

I 2 - 22 2 2 2
cy2/o = [(- M 1)/(1- M 2 ) 2 [M 2 - (2M 2 cos O/ 1 - 2 sin 2) +

2 2 2
(cos 0/[ - 2 sin 0]) 3 - 1 - (2MM 2 /[ - 2 + [ 2Mcos /

2 2 2 ~ 1/2
(-M 2 ) 1 - Msin2 /

Note: In most of the remaining work, we use the terminology

A = (1 - M 2 2 )1

It should be noted that y is real for k0 to the left of -(w,/c) in Fig. 7.

This means that all waves in this region are reduced by a factor e~Ylh

The physical reason for this is that for the Bleast time! path k0  >

c, so the wave is attenuated in medium 1. The expression for 02
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is rather complicated, but two cases permit straightforward interpreta-

tion. First, consider M = 0.
2

= [Zeit+(ir/4) - hcosZ -(1-M cos)2 - (i/c)ycosO - (ifc)x sin

(I - Micos ) (isinO + cosO - (1 - M cosO)2 /( - McosO) \ro/r .

(3.7)

This equation is plotted in Figs. 8 and 9 for constant r. The factor multi-

plying h in the exponential is real for cos 0 > 1/(l + Mi)] which gives

the Ozone of silences at cos 0 = (l/(l ± M1 )] and 02 has a maximum.

However, the saddle point integration is a poor approximation in the neigh-

borhood of this point, since it is here that yj(k 0 ) = 0 (branch point).

This expression is valid for all values of Mi. Equation (3.7) is the lead-

1/2ing term of the far field approximation, so the r~ dependence is as ex-

pected. The next order terms have an r3/2 dependence. In all of these

cases, we have assumed r >> h, c/o.

The other straightforward situation is for M = 0. In this

case,

= [Z'A3 - MAsin0) e it -(ir/4)- hNf (A cos-M) /(-M -

[2iy/(l-M2  MA sinco) )/

[y/( -M )A cos 0 - M) -ixA sin 0 (1 -M2) Asin0+ I - MA Cos 0)/

(1- M)2 2  1 - M-A cos 0)/(1 - M2  ) NFrJ c ) (3.8)

(Where no ambiguity is likely, the subscripts denoting the medium will be

30
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w

omitted. ) This rather forbidding expression can be simplified by appli-

cation of a transformation to retarded coordinates. This is done by tak-

ing a coordinate system fixed in medium 2 so that medium 1 is moving

with velocity -M 2 in the new coordinate system, and fixing the x-axis

at the point where the source was when the sound was emitted which is

received at time t. Denoting the coordinates in this system by 0R and

R, we find, by means of well-known transformations, that

r = R4l + M + 2M cos R2 2 R

sinO = (sin R)/1I + M? + 2M 2cosR

cosO = (cos R + M2)/il + M + 2M Cos .R 2 csR

With these substitutions, Eq. (3.8) becomes

L2 = [2^,r eiw[ t - (R/c)] -h/c' !cos 2 OR - (1+ M cos R) /(l + M cos 0 R) - (iTr/4

w R/ c) (l + M cosR3/2 (sin 0R + 4(1+ M cos OR)2 -cos2 0

(1+McosR)2) . (3.9)

Equation (3.9) is plotted in Figs. 10 - 12. Eqs. (3.8) and (3.9) are only

valid for M < 1 thus far, but the slight modification shown in Section

IV does not affect the amplitude factor. Again, we see that there is a

ozone of silence" for Eq. (3.7).
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III. Evaluation of Integral for Reflected Waves

The procedure for calculating the reflected wave is

quite similar. First, the saddle point for the integral of Eq. (3.2) is

found to be

k= [(o/c(l - M )](-M + [(cos 0)/(1 - M sin 0)] ) . (3.10)

This is the same as Eq. (3.5) with MI replacing M 2 . fn(k 0 ) is the

same as calculated previously with MI again replacing M 2 . The same

is true for y and y.; we simply interchange all 1 and 2 subscripts,

with the extra replacement of sin 0 by -sin 0 (since sin 0 is negative for

the reflected wave). Again, the general expression for the asymptotic

expansion of the integral is quite complex, so the same simplifications

will be made as for the transmitted field. For M= 0, the solution

is quite simple.

- [42~I/(rw/c)1/2 ( - MCos 0) - cos 2 0 + sin0(1 - M 2 cos0)2 ]/

[A1 - M2cos) - cosZ0 - sin 0(1 - M2cos) 2  ) - (ieo/c)[ycos0+

(x -h)sin 0] - (iTr/4) (3.11)

The factor multiplying the exponential becomes complex for cos 0 >

l/(l + M 2 ). This is the angle for total reflection, and beyond this

angle, the absolute value of the amplitude factor becomes equal to
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27, which is the source strength as can be seen from Eq. (3.14). Thus,

the only reduction in amplitude for these totally reflected rays is the cylin-

drical spreading r-1/2 .as would be expected. In this region, there is

also a refraction arrival wave; the mathematical reason for this is again

the distortion of a saddle path around a branch point. The case M2 = 0

is more complicated. Then, 01 can be written as

-4 A=1/2 A sin 0 + [(1 - MA cos O)/(l - M2 )] 1 - [A cos O - M)

(1 - M)(i/ C) Cos ) - M)/ M)] + (x - h)A sin 0- (in/4

1 22) e___I/__

(rw/c)1/2 AsinO + [(1 - MAcosO)/(l - M 2 2 1 - [(A cos _ _- M)/

( - M2 2] . (3.12)

This is plotted in Fig. 13. This result is simpler in the retarded coordi-

nate system at rest with respect to medium 1. Using the same transfor-

mations as previously,

= 21r [ sin 6R + + Mcose R) - cos ZR/(I + McosO R)2

iw[t - (R/c)] + ((iwh sin 0 R)/[ c(l+ Mcos 0 R) - (i-r/4)

F( + Mcos )R1/2 R 1/c)l/2 [(1 + Mcos OR) 2  2 2
1[ CS R -Rw c Al+Mor R) Cos 0 R M(l + Mcos O

sin R) . (3.13)

We notice that for total reflection the amplitude factor is
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/(s - M 2 ) 1/4r1/2 1/(0 + Mcoso R)1/2Rl/2

which is just the expression for a point source in a moving medium (or

moving source) in each of the coordinate systems, as would be expected

from simple ray analysis.

cos 0R

t1 +M ?-M/( + M)] I
The total field in medium 1

The angle for total reflection is given by

or cos 0 < t 1/(l + M)] + M}/

is the sum of the source term and the re-

flected wave 4. The asymptotic form for 00 is

- [y/(l - M )] (A cos 0 - M1 ) - (h+ x)A1 sin 0

(M / c)/P

Equation (3. 1) can also be evaluated exactly to give

ieWt+ iM Wy/[ c(1 -Mi)] HM(2) [/cJ Y- MP)/

I _ M 2
1

provided M < 1.

IV. Modification Necessary for the Supersonic Case

(3.13a)

[y 2 /(1 - M-)] + (x+h)

(3.14)

For the supersonic case M > 1, the exact source function

is

40
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= iot - (iM Wy)/[ c(M - )] 0 [/(ciM 2 L/(M - 1)]- (x+h)

(3.14a)

M 2

for 0 < arcsinl/Mi, and

00 = 0

for 0 > ar csin l/M 1

This solution can be obtained asymptotically, by an extension

of the previous saddle point technique, from Eq. (3.1). It is first neces-

sary to note, from Eqs. (3.5) or (3.10), that supersonic speeds imply an

additional branch point in k0 as a function of 0 at the Mach angle. The

proper branch is determined from the physical requirement that the field

be zero outside the Mach cone. Inside the Mach cone, we can obtain out-

going waves at infinity when the radical of Eq. (3.5) or of Eq. (3.10) has

either positive or negative sign. This implies that there are two saddle

points on the same Riemann surface. These saddle points tend to + and

- oo as 0 approaches the Mach angle (sin 0 = I/ M). Thus, the branch

point in k0 is at k + oo, and an appropriate cut is a large semicircle

in the lower half of the k plane, as shown in Fig. 14. This cut excludes

the values of k 0 corresponding to 0 outside the Mach cone.

Thus, the supersonic evaluation of Eq. (3.1) gives two terms,

corresponding to the two saddle points shown in Fig. 14. It is easily seen

that the new saddle point has ft(k0 ) the opposite sign from the old saddle

point; this means that the saddle path is shifted 900 as shown in Fig. 14.
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This means that the supersonic evaluation of Eq. (3.1) is the sum of Eq.

(3.13a) and a term identical with Eq. (3.13a) except for the sign of A 1

changed wherever it appears and a phase factor of +in/4 instead of - iir/4.

This analysis indicates that there is an extra term added to

Eqs. (3.8), (3.9), (3.12), (3.13) for supersonic flow in the medium which

the particular equation applies to. Equations (3.9) and (3.13) are written

in retarded coordinates, so the second term is identical in form with the

term already given. But, since there are two retarded source points for

the supersonic case, the second term refers to a coordinate system with

the origin at the new second retarded source point. For Eqs. (3.8) and

(3.12), the second term is obtained by taking the negative square root

for A. (In addition, the phase must be shifted as is described above.)

Both terms become equal (except for phase) at the Mach angle which is

a branch point for the expressions in the instantaneous coordinate system.

Beyond this point, the saddle point k0 obviously becomes complex, and

the causality condition requires that there be no sound field. This will

be the case for the cut shown in Fig. 14.

V. Some Additional Terms for the Near Field

It was mentioned earlier that it is sometimes necessary to

cross a branch point while moving the real k-axis to the saddle path in-

dicated in Figs. 6 or 14. Examples of the proper distortion of the sad-

dle path are given in Figs. 15 and 16. These examples are taken for the

evaluation of 02, but the situation for 0, is similar. It is evident

from these figures that the effect of the distortion around the branch
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point can be accounted for by the addition of the integral around the

branch cut.

As a simple example, we set M= 0 and solve the integral

for q2. The necessity for the extra integral arises when ko is to the

left of the branch point for y = 0. Such a situation is shown in Fig. 15.

It is convenient to integrate along both sides of the cut Reyl = 0. To do

the integration for 02, it is convenient to make the change of variable

k2 = 2/C2 -u2 (which means ,= iu)

and approximate the integrand for small values of u. This assumes that

the major contribution to the integral comes from the vicinity of the branch

point u = 0. To this approximation,

k = -(w/c) + (u 2c/2w) and

= (i/ c) q M 2 (2 + M + [icu2 1 - M - M 2+

With these substitutions, the integral becomes

S = 2 e(it+ (iy/c) - (icx/ c) N/ M(2 TM) -[(ic/2w) y+ [x( - M 2 -)
2c

Nf(23M1u AZ 7U[T/]] [-iuh/[ iu 2 / 2)]

eiuh 2 2 udu

(where M = M 2 has been understood). Since it is assumed that the
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major contribution to the integral comes from u << w/c, the integrand

can be further simplified by neglecting u whereever it occurs in the de-

nominator. Then, the integral may be evaluated in a straightforward

manner to yield

= 8Nri 1h(l + M) eit+(y/c) [ x4M(2+YM)/c] + h 2 /2c([x(l-M 2 - M)/

N/ M(2+ M)] + y)

[wM(2+M)/C] ([x(1-M 2 -M)/'JM(2+M)] +y) 3/2 . (3.15)

It is evident that 02 becomes infinilefor

tan 0 = - 41M2 (2 + M 2 )/(I - M - M2 ) *

This corresponds to the branch point k = w/c, being the same point as

the saddle point k0 . For larger angles, the saddle point will be to the

left of the branch point as depicted in Fig. 15, and 0 is added to the

saddle point integration 02 to obtain the more complete solution. For

smaller angles, the branch point is to the left of the saddle point, and

k gives no contribution. This wave 0 is just in the zone of silence"

as was predicted earlier. At the angle of the boundary of the Rzone of

silence,'t given by (3.15a), q2 becomes a poor approximation just as

the saddle point integration becomes a poor first-order approximation.

This is to be expected, since the two integrations overlap as this criti-

cal angle is approached. k2 is a wave that travels most of the distance
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in medium 1, as can be easily seen from the exponential. Consequently,

this wave has a shorter travel time than a wave travelling most of the dis-

tance in medium 2, and so 0 violates causality, for medium 2. Thus,

it is expected that the amplitude of 0 should vanish as h-.. 0, and

should fall off as r-3/2 so that the wave can carry no energy to r = oo.

A somewhat different solution for the higher-order approxi-

mation can be found for 41. For simplicity, we set M 2 = 0, and find

that the saddle path and branch points are the same as in the previous

case with M 2 replaced by M 1 . Thus, a term arising from the branch

cut must beadded to Eqs. (3.12) and (3.13). The cut is similar to that

shown in Fig. 15, but M 2 is replaced by MI and the cut is for Rey. = 0.

Thus, we use the same type of approximations as were used to derive

Eqi (3.15). The integral can be evaluated in a straightforward manner

to yield

= 2 2 i (1 + M )2  it + (i y/ c)+ [ i (x - h)/c (

M -(2+ M ) 3/2 [x(I - M - M )/NM (2+M y )3/21 (3.16)

(where y < [x(l-M1 - M)/ M(2+M1 )] , and x is negative).

Equation (3.16) for Olt becomes infinite for M = 0, but this is to be

expected since we assumed that u could be neglected compared with

M (cw/c). The result also becomes a poor approximation and blows up

when the inequality given after Eq. (3.16) becomes an equality. There

is no zone of silencet for medium 1 since the integrand for 4 does
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not contain y. in the exponential. The region in which Olt exists also

contains the direct and reflected cylindrical waves, so that the disting-

uishing feature of Olt is the shorter travel time. Since has an

r -3/2 fall off, just like q2 , it does not actually carry energy to r = O.

This is to be expected, since the wave travels most of the distance in

medium 2 which is at rest. This phenomenon is well-known experi-

mentally with the modification of two different media with different

sound velocities, rather than the present method of having differing

sound velocities caused by relative motion of the two media. With two

different media, this wave is known as the 'rrefraction arrival, 2 and a

thorough discussion of this has been given by Ewing, Jardetzky, and

(9)Press. For supersonic flows, the calculation proceeds in the same

manner as the derivation of Eq. (3.15) and Eq. (3.16), with the saddle

path similar to that shown in Fig. 16.

There are additional higher-order terms obtained by the

second term of the asymptotic expansion in the saddle point integration.

These also have a fall off of r 3 /, but they have a cylindrical wave front

with the same phase dependence as already given for the leading term of

the asymptotic expansion. Their calculation is straightforward, but

complex, and there is no need to note them here.
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POINT SOURCE

I. Formal Integral Solutions

The geometrical situation is similar to that shown in Fig. 5

(page 24), except that a z-axis extends out from the page. The integral

expansion of the source can be written in a manner similar to the two-

dimensional case. Thus,

+00

0 eit ff -i(y+ Lz)- y I x+ hQd / ] (4.1)

(where w = - XV, and y1 = V2 + p2 - ( /c2

This integral is the Fourier transform of

i = Zr ei t+[ iWM jy/(1 - M )] - [i I/c 1 -M ] [y2/(1 -M )] +

z2+(x+h)2)

1 M [y2 1-M 2)] +'22 + (X + h) .(4. 1a)

This can be found by exact evaluation or by the saddle point approxima-

tion to be used on the integrals for the reflected and transmitted wave.

The reflected wave is written as
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=-00
A(k, ) e-i(Xy + F z)+ Yl x dXd (4.2)

and the transmitted wave in medium 2 is written as

+e0

e2 iot f-0
B(X, ±) e-i(Xy + z) - -Y2 dXd,, (4.3)

(where y 2 = - 2 /c ), and 2 - XV 2 ).

Matching boundary conditions is exactly the same as in the two-

dimensional case. Thus, the results are given by

2 2 2 2] -e 'hA = [(y 2 - 1)/(Y 2 + -Y2 e

and

S[ 2 1 2 . - h

II. Evaluation of Integrals for Transmitted Wave

We can now proceed with the saddle point approximations

in a manner similar to that of the two-dimensional case. It is found

to be much simpler to perform the L integration first. Considering

we can write the integral as

f +00-00

f(X, L) = Thy + it z + y 2 x
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The saddle point for the p integration is found from

[ af(X, p)/ ] p. = 0 .

This gives a value for L with X remaining unspecified.

spherical coordinates with

x = r cos 0 y = rsinOcosy z = r sin 0siny ,,

and let

u = tan 0 sin

then,

= + (iu/Nf 1 +u) X2 (1 .- M2) - (o /c ) + (2XM 2 /c) .

If the positive square root is taken, then only the negative

sign need be used. Thus,

S= (u/4Y+u ) I/C -2

It is useful to calculate the saddle point for the X integra-

tion. This is given by

[(af(k, L0) /ax]
X = X 0

= 0

Making the substitution

v = tan 0cos I

the solution is
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X' = [1/(1 - M)] ( - (M 2 W/c) + [vw/civ + (1 - M1)(1 + u')]) (4.5)

This has a branch point at v = 0, but only the branch given by the +

sign in Eq. (4.5) is necessary for the subsonic case (as it was in two

dimensions). Before the saddle point integrations are performed, the

integrals are over real paths for X and L. (The saddle point integra-

tions require distortions of these paths. ) Thus, there is some insight

to be gained by examining Fig. 17 which shows the positions of the

branch points in the real X, p. plane. Points inside the closed curve

Y = 0 give imaginary values of yl, whereas the points outside give

real values of y .

The correct way to perform the p. integration first is to

leave the value of X unspecified, since the X integration is over all

real X. However, if X is outside the range of values for X shown in

Fig. 17, then p.,, as given in Eq. (4.4), becomes imaginary. In order

to simplify the calculation, X will be assumed in the range of X0 . This

procedure appears valid when it is noted that this range contains the

saddle point and the branch point for y = 0 (which sometimes must be

used as in the two-dimensional case), and the main contribution to the

integration comes from the vicinity of these points. To continue with

the p. integration, we calculate

(a2 f/a.2) _. = = - [iucosO(1 + u2 )/ 0 ]r

Since p.0 and u always have the same sign, this indicates that the dis-

torted path crosses the Rep-axis at 450 at the saddle point, as indicated
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P

in Fig. 18. Also shown in Fig. 18 are the branch points for y = 0

and the cut required for < -l(4/c 2 ) - or y0 > 4(W,/c 2 _

If we draw a line parallel to the 1 -axis of Fig. 17, through a given

point on the X-axis, the two intersections with the closed curve give the

branch points shown in Fig. 1.. As X approaches -[o/c(l - M )J, these

branch points approach the origin, and for - [ w/c(l - M 2  < X <

- [ W/c( - M 1 ) ], the branch points lie on the imaginary axis of Fig. 18.

Thus, the origin of the !L plane is a branch point of the curve y = 0 as

a function of the parameter X, and the sheet of the Rieman surface which

this curve moves onto is determined by the physical condition that there

be no infinitely growing waves. Since j' is imaginary, this means that

the waves given by the branch cut must decay exponentially in y. The

integration along the branch cut for the case in Fig. 18 will give a higher-

order term, and are neglected for the present.

The re sult of integration over the p. saddle point is

+00

=2 f [g( 0) e- f ( 0)d\/ d ] a2 2 . (4.5)

The saddle point for the X integration was given in Eq. (4.5). The branch

points are given by y1 (X, pLo) = 0, which has the solution

c/= - [(1 + u 2 )M - M 2 u 2 + 1 +u(1 + u)(M - M

22 2 2

[1 + u - M (1 + u . (4.6)I1 =

If u = 0, it is seen that these reduce to the yj= 0 branch points of the
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SADDLE PATH, BRANCH POINTS, AND BRANCH CUT

FOR THE p. INTEGRATION
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0

two-dimensional case. Since these branch points are always real (with

small imaginary parts to be precise), the integration procedure for X is

the same as used previously. For the saddle point integration, we cal-

culate

(a 2 00) = -[icosOu 3/(1 + u2 ) 3 2/c2 )r

(o2/)= ['/(I - M )](1 - [vM 2/ 2v+(l-M )(1 + u ) ,21

(Wl/-) = 1 - M + M M 2 - [ M v/lv+ (1 - M )(1 + u2)] (1 M )~I

=1= [u 2/(1 + u2 )](2 /c2) + [X ?/(I + uZ)] - ( j/c )

so that

2 = -2-rriw IW 2  t - +XOY -]-0 -~Y2x ~ Y I1

os O[ v2 + (1 - M 2)( + u2 1 2 2 r . (4.7)

As in the two-dimensional case, this expression can be greatly simpli-

fied by changing to retarded coordinates. If we make the substitutions

v = tanRcsR + Msec R y ~ YR + M 2R

u = tan ORsinPR r = Rl1 + M2 + MsinO c2 2 Rcos LR

Then, Eq. (4.7) can be written as
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r

2= 2rr cos [ 1 + (M 2 - Ml)sin Ocosy] eio t - (R/ c)] -

hNsin2 O- [ 1+(M2 - MI)sin Ocos ] /(l+ M2 sin 0 cos

Rw/c)(0 + M 2sinOcosy) (J[ 1+(M2 1)sin 0 cosy] - sin 2 +

cos O [1 + (M2 M )sinOcos] (4.7a)

(where 0 and y are measured in the retarded coordinate system).

For $R = 0 or Tr, Eq. (4.7a) reduces to the two-dimensional case with

an additional factor NJ[ R w(1 + M 2 sin 0R) /c ] in the denominator. This

is to be expected; if the field for a moving point and line source are com-

pared, the same factor is obtained. If we set = w/2, all de-

pendence cancels out of the amplitude, and the field is unchanged by the

velocity, except for the phase factor multiplying h in the exponential.

The calculation for the reflected wave is made by the same

method as was used to derive Eq. (4.7a). The extension to supersonic

flows is exactly the same as for the two-dimensional case. One simply

uses both saddle points given by Eq. (4.5) for the X integration, which

results in an extra term being added to Eq. (4.7) with the sign of v re-

versed, but otherwise the same as the original term in Eq. (4.7.

We not that, whenever y is real, the amplitude is reduced

proportional to h. This is similar to the 'zone of silence" discussed

in the two-dimensional case. 'Jn terms of Fig. 17, it means X = 1'

=0 lies outside the closed curve of y, = 0. This implies that there

is a contribution from the branch cut integral of jL or X in the form of an
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extra wave, with plane wave front, decaying daster than I/r. The

calculation of these waves is much more complicated than in the two-

dimensional case.



r

LINE SOURCE IN A VELOCITY DISCONTINUITY CHANNEL

I. Formal Integral Solutions

The solution for a line source near a velocity discintinuity

can be generalized to the case of two discontinuities. Such a situation

is shown in Fig. 19, with M I M2 . We must satisfy boundary con-

ditions at x = + a and x = - a. The field of the source is written as

(5.1)

+{h

400 iwt f -0 eiky - yj~x - hi / yl) dk

[withy = k2- ( /c2), and = W - Mkc]

It should be noted that h would be a negative number for the situation

which is shown in Fig. 19, as distinct from the positive h shown in

Fig. 5 (page 24). The rest of the field must be determined from the

boundary conditions.

+00

e eiwt A(k) e- iky - Ylxdk
-00

(f or x > a)

[with = - ( /c2) , and 2 W- M 2 kc]

+ee

e eiwt [B(k) e~ 'y X+C(k) e '] e-iky dk

f- 0

(a > x > - a)
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Figure 19. CHANNEL FORMED BY 2 VELOCITY DISCONTINUITIES
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D(k) eY2x -iky dk

-00

The continuity of pressure at x = a gives

w2Ae y 2 a = A+Be-yja + Ce yla + [ e y(a -

The continuity of velocity normal to the interface at x = a gives

-(y 2 A e y2a/) = (y1 / 1)(- B e ya + C e ya [e-y(a+ h)/yA)

Applying the same boundary conditions at x =-a results in

o 2D e y2a = W I I Beyla + C e ya + [ e y(a+h)/y1 I)

= (Y 1/) (- Be yla + Ce ya +

These four equations can be solved simultaneously to yield

,ya 2.
e wvy1co s h(a +h) +

1 2L~l
- 2(0 sin h y 1(a + h)]

2 2 2 2
Y wcosh y a + Y sinbh y1a] [y2w, coshy a + Y w sin hy a]

(y w2 -Y2  )e-ya[ 2 ycoshy (a- h) + y2e sinhy (a-h)]
12 2. 2 2.~w

2y[ yw 2 coshya+ y2 2sinhy a][y 2o coshy a+w 2 sinhy a]

2 2 2 yw

(Y w2 -Y2 )e-ya 2 coshy,(a+h)+ y2w sinhy,(ath)]
12 2 12.~o 2 1

2y Q(y -cl 2coshyja+y 2& sinhy a][y 2o coshy a+y 2 sinhy a]
1 2 yw 2w2

1 w2eY
2a 2 Ycos h -y, (a - h) + w 2 sin h y,(a - h)

[ yj 2 cos h y a+ yw sin h y 1 a] [y 2w cos h yia+ y 2 sin h y a]
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(5.5)

(5.6)
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II. Discussion of Characteristic Equation

The poles of the denominator of these expressions corres-

pond to the propagation modes of the channel. For h = 0, the denomi-

nator becomes

2 2
y 2 w1 coshy a + y 1 w 2 sinhyla

Thus, the condition

2 2
y 2 1 cosh yia + yw 2 sinh y a = 0 (5.9a)

gives the symetric modes, and

2 2
yW 2 coshyya + y2 1 sinhyva = 0 (5.9b)

gives the antisymetric modes. The lowest symetric mode corresponds to

a modification of a plane wave, since it exists for arbitrarily small values

of (wa/c). The solutions, k, for this lowest mode are shown in Fig. 20.

To simplify the result, we have used M = 0. These modes only exist

for waves travelling in the same direction as M . This is expected since

this is the only direction which can give total reflection. It is noted, in

Figs. 20 and 21, that when M > 2 the modes split and have a high

frequency cut off. This can be explained by examining the geometrical

conditions for propagating modes, as shown in Fig. 22, if a plane wave

is incident along AB, with perpendicular wave front AD, then a propa-

gating mode requires that the phase change along the path ABCD be a

multiple of 2Tr. The phase shift E at each total reflection is given by the
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amplitude factor of Eq. (3.11), and the rest of the phase change of

ABCD is due to the path lengths AB + BC + CD. This gives the

equation

(4aw/c)sina + 2E + 2nir = 0. (5.9c)

For n = 0, this gives Eq. (5.9a), and, for n = 1, this gives Eq.

(5.9b). If M < 2, then it is only necessary for a to be less than

the critical angle for total reflection given by cos a = 1/(G + M2),

and the above discussion applies. However, if M > 2, then d

must satisfy the additional requirement cos a < 1/(M 2 - 1) in order

to have total reflection. Now, as aw/c increases, sina must de-

crease to satisfy Eq. (5.9c) for any given mode, so if M > 2, large

enough aw/c will not allow a solution of Eq. (5.9c), hence the high

frequency cut off. Furthermore, the phase shift E now hs the same

value for two different values of a, and thus the total phase shift from

A to D can be the same for two different values of a, and the modes

will be split.

The lowest antisymetric mode [,solution of Eq. (5.9b)] is

shown in Fig. 21. This corresponds to the fundamental mode of an or-

dinary guide, with the usual low frequency cut off at (wa/c) = 1T/2.

This mode also exhibits the splitting and high frequency cut off of the

previous case, and, for the same reasons as the previous case. The

cut offs for typical modes are plotted in Fig. 23. It is seen that there

are low frequency cut offs for all of the modes except the lowest symetric

mode already discussed.
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There is no general process for finding the complex roots

of a transcendental equation such as Eq. (5.9). The equations can be

solved approximately for very large or for very small relative veloci-

ties, but these solutions are not very illuminating.

III. Evaluation of Integrals

The asymptotic expansions of the integrals of 02 and 03

can be done in exactly the same manner as was used for the transmitted

waves due to a line source near a single interface. There is no con-

venient asymptotic approximation for 1 if we try to include all of the

waves due to the poles of the integrand. But, if we neglect the con-

tribution of the poles, the calculation can be done just as for 02 and

03. We simply take the values yw, y2' w1' 2, and k0 from the two-

dimensional saddle point calculation and substitute into the saddle point

formula. Thus, the leading term of the asymptotic expansion can be

expressed in closed, but rather complicated, form. If we use the

polar coordinates x = r sin 0, y = cos 0, then the sound field can be

written as

(Nr2= f 27 sin 0 eit Y2x - ik0 y (rc/) - 2 23/4) (5.10)
(lM2 sin?0 / Akk10

e,= (NVrisin oeiwt--iko / (rc/) (I-Mj2sinO)3 J(e Y2x Bk-k±

ey2x C kk) (5.11)
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I3 2Tri sin 0 eiot+ y2x - ik0y 4 (rc/o) (I - 2 2sin23/4- (5 .12)
= s/ c 2 sin 0  Dk = k0

It must be remembered that the values of y1 , y 2 ' cl' c2, k0

used in Eq. (5.11) are not the same as those used in Eq. (5.10) and in

Eq. (5.12). Although these expressions appear formidable, it is poss-

ible to obtain some simple physical insight from them. Since cos h z =

sin h z = (/2) ez for z >> 1, we see that when -y is real and when

yya, y 1 h >> 1 [in Eq. (5.10)], then the amplitude factor of 0 2 is

reduced by the factor e l(h - a) This corresponds to the 'zone of

silencer in the one interface case. This is to be expected since, if

the source is near one wall of the channel, the opposite wall has little

effect if it is many wave lengths away. Under such conditions, we are

essentially back to the one-interface problem.

The extension to supersonic flows proceeds exactly as for

the one-interface problem. We can also calculate the higher-order

plane wave front terms which turn out to be similar to those done pre-

viously.

IV. Cylindrical Channel

The above treatment can be extended to a point source located in

a cylindrically symetric channel or jet. Such a geometrical situation is

shown in Fig. 24. The point source is located at r = r 0 , z = 0, and

= 0, with r 0 < a (the radius of the jet). The field of a point source

can be written in cylindrical coordinates as
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[(Zie1~~t (icJ~/c)NIT7 7 Y~)/~VT7T] =

+00( +ikzH (2) rk)d
-00

1 = ( c )-k

where r1 is the distance from the source to the point of observation.

By the well-known wave expansion,

Hc(2)(X r) = J+000H(2 r ' (for r > r 0 )*

The source term may be written, in terms of the appropriate coordi-

nates for the jet, as

+00

eimY{-ikzJm( r)H (2)(\ )dr (for r > r0) . (5.13)

This is seen to reduce to cylindrical symetry when =0 0,

since only J0 f 0. For r 0 f 0, the reflected wave in medium 1 is

written

m = -00

f 0 A (k)&eikzH (rdk
-om

(for r <K a) . (5.14)

The transmitted wave in medium 2 is written as

e Bmk -iz 2 2r)dk
o -00

(for r > a,

and with =2 2 w/c 2 ) - k

m = +oC

=0 III
m= -oc

+00

#2= 1~I
m = -
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The boundary conditions become a set of pairs of equations

W I[ Jm(X I r +)H (2) A H (1) a)] = 2BmH (2)(a)m (1a) () +2)H 2I(_ a)

(k 1 /w) JmI 1r 0)Hm 1 a) + AmHm ( 1a)] = (k 2 /w 2 )BMH (2)1 a)

These give the solution

J (r x 2 H (2) k a)H (2) (a) - X 2 H (2) k a)H (2) (a)

A - (5.16)

B = i Hi2 (mXir )H 2 )Xa) -(l)? H (2 )H 2)

2  ( )(2) ( 2) (1) ()
2 m )H m (a) 2m wa) Hm ( a)Hm ( )

M xw 2H (2) (Xa) H (X~( a) - H (2)1( 2a) H ( ( a) X2W 2

(5.17)

The vanishing of the denominator gives the propagation modes of the

channel, just as in Eqs. (5.9a) and (5.9b) for the plane two-dimensional

case. This characteristic equation is much more complicated than Eq.

(5.9a) and Eq. (5.9b) because the derivatives of Hankel functions are not

simply Hankel functions of the same order, while sin and cos go into

each other upon differentiation.

If we use the asymptotic form of H (2) for large X2 r, inm

Eq. (5.15), the integrand assumes the familiar form which is directly

capable of a saddle point integration. If we let iA = y, we can use the

saddle point calculation of the quantities y y2' wl, w2 ko, fR(k ), just

as was done to obtain Eqs. (5.10), (5.11), and (5.12). Thus, we can

write

73



S-~ -~-~----~-- - -~

2m (Zi sin /[R Nf ,c/7 (1 - M sin2)3/4 ei(t - ik0 z - ix2rB

(5.18)

+ 00

m=o

2im '

(To retain the unity of presentation, we have made the substitution

r = RsinO, z = RcosO. The sound field has the dimensions of i/R

since that is how the source was defined. )
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FLOW DISCONTINUITY WITH PLATE OR MEMBRANE SEPARATION

I. Formal Integral Solutions

Most of the preceding results concerning a velocity discontinuity

interface can be generalized to include a plate or membrane at the inter-

face. Such a situation is the same as that shown in Fig. 5 (page 24)

with the plate or membrane at the interface between medium 1 and med-

ium 2. Only the two-dimensional case (line source) is discussed here

since the extension to three dimensions follows the same pattern as the

simple interface discussed in Chapter 4. The integral expressions for

the sound field can be written in the same manner as before:

+00

00 e it (eiky - yjIx+hl/y) dk x < 0 , (6.1)
000

+00

5 eit iky+ yx dk x < 0 , (6.2)

-00

In addition, the displacement of the plate can be written as

+00

W = eiwt D(k)eiky dk x= 0 . (6.4)

-07
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A plate may have thickness 7, but we assume that t is much smaller

than any other length in the problem. Consequently, if a is used for

the mass per unit area, the quantity T need not appear in the equations

(a = P p T for the plates). The equation of motion for the plate can be

written as

(8 2w/8t) = - [ET 3/12(1 - S2 )V 4w + p1 - P2 (6.5)

(where E Young t s modulus and S = Poisson's ration for the plate

P1 =W i 1 (0 0 + 'k1 )p P2 = iW 2 )2 Pif

[ET2 /12p (1 - S 2 )] = (VI/w2

then Eq. (6.5) can be written as

(a2w/at2 (V4 W2)V 4 w + (ip/a)[wo 0+(f w/W)O + +1) - W221

and this equation can be Fourier transformed to

D2 [-1 + (k4/k 4)] = (ip/a) (c[A + (e-'/y )] - w2 B) (6.5a)

(where kf = p/Vf). This equation replaces the continuity of pressure

boundary condition in the simple interface case. The displacement on

each side of the plate must be equal to the displacement of the plate w.

Since w does not vary through the negligible thickness of the plate, the

remaining boundary conditions become

D = (1 2 B/iw2 ) (6.6)
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and

D = (e yIh/i W ) - (Ay /i 

The case of the membrane is quite similar. Instead of Eq. (6.5),

have

(6.7)

we

2 2+2o(8 w/at ) = TVw + +,

If we write c

DwA [(k 2 /k) -

- p2
(T = tension of membrane).

T/a, then Eq. (6.8) becomes

1] = (ip/C)(Wj[A + (e-ylh/Y,) w2 B)

The remaining two boundary conditions for the membrane are Eqs.

(6.6) and (6.7), the same as for a plate. The case of no plate or mem-

brane, but with surface tension, is simply obtained from Eq.

letting a -. 0. This leads to

Dk 2 T = (ip/u)( U [A + (eYlh /y)1

If (6.5a),

-W
2 B )

(6.8a) by

(6.8b)

(6.6), and (6.7) are solved simultaneously, one obtains

W 2 -Y2'l + (ayy 2 wf/p)[ 1 (k /kf

Y + 2 1 1 y 2
2 /p)[ 1 - k 4 /k4)]

(e Ilh/Y)

B 2w -Ylh / (2 + Y2 + (y y2w2/p)[ 1 - k/k

For the membrane [Eq. (6.8a) instead of (6.5a)], the solutions are

4/4 2 2identical except that k /k f is replaced by k /k m
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(6.8a)

A , (6.9)

(6.10)



II. Discussion of Characteristic Equation

Before evaluating the integrals for and 02 asymptoti-

cally, we must examine the poles of A and B. These are given by

2 2 2 4 4
1i2 + Y2-1 + y2 /p)[l - (k /k)] = 0. (6.11)

If the plate is very light and flexible, the first two terms of (6.11) will

dominate, and the roots will be close to those of the Helmholtz instabil-

ity. From intuitive reasoning, we expect that a plate or membrane

would tend to inhibit this instability. To check this, we make the ap-

proximation

w/kc = P = P0 + E

and assume E << P0, so that a perturbation calculation can be made

with powers of uw/pc. Using

PO = (M/2) + i[1+ M2l- 1 -IM,2l1/2 M = M2, M =0,

the first-order perturbation for the membrane gives

E = (qcw/pc)[+ (iM/2) - 1+ M - 1 - (M 2/4)][ c4(c2 m f7I+ - 1) -l_

2 2N + - (M 2 /2) 1+ M2 - - (M2/4) '11 + M

(6.12)

Thus, the imaginary part of E is opposite in sign from Imp0 and the

instability is inhibited provided

2 / 2 T Mcc'2 (01l + M' - I7 > 1
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This means that the membrane must be more springlike than mass-

like. For the surface tension case [ Eq. (6.8b)], this inequality is

always satisfied, since the right-hand side is zero, so that the surface

tension will always inhibit the instability.-

If the same perturbation is made for a plate, one obtains

E ( (iuw/ pc)[ (V /c 4  3~0 - ]/( 2~ 1 +I + M2 - M 2 /2)

INJ l+M - 1 - (M2/4)N1+M . (6.13)

Since

Am ±v 3vi + i~vIT (M 2+1 I 77
-3 + _ZM ( I -+ M) ~i 1+ M - 1 -+ lM2

-3-32- + _ZM(G - $ + M + ( 1 +M2- - 1 - )(21 1+M )

it is evident that Re(p 0 3) is negative. Thus, Eq. (6.13) implies that

the imaginary part of E is the same sign as the imaginary part of PI.
This, in turn, seems to imply the paradoxical result that the plate en-

hances the Helmholtz instability. This, however, is not so surprising

when we realize that the force which restores a plate to equilibrium is of

a fundamentally different nature from the membrane. The plate has a

stiffness which hends a displacement back into equilibrium while the

membrane has a tension which pulls the displacement back to equilibrium.

Thus, a cusp-shaped disturbance (as could be obtained by poking the

membrane with a needle) is pulled back to equilibrium by the membrane,

but such a disturbance can only be obtained by breaking a plate, and can-
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not be inhibited unless the plate strength is so large that the above ap-

proximation does not apply. Now, the Helmholtz instability is not

cusp-shaped, but the increasing amplitude of a given wave length makes

it tend toward that shape. Thus, the plate cannot slow down the Helm-

holtz instability, but it can suppress it entirely, if the plate strength is

large enough.

In the opposite limit from that considered above, we can

consider the surrounding fluid as a perturbation on the plate or membrane.

In this case, the perturbation parameter is just the inverse of the one

used previously, namely, pc/aw. We naturally start the perturbation

from the zeroes of the last term of Eq. (6.11). These are the plate

zeroes

k = k , - k, ik f - ikf (for the membrane only the first two roots ap-

ply), and the familiar branch points for yl = 0, y 2 = 0

k = (/(c + VI), c/V - c), c/(V2 + c), c/(V2 - c)

These branch points become poles when V = V 2 so that they coalesce

in pairs to give two poles from four branch points. These poles corres-

pond to waves travelling along the plate with the same wave length and

phase velocity as sound waves in the fluid travelling parallel to the plate.

To calculate the perturbation of these poles, let

k = W/(V+c) + E = k 0 + E - 2 Ni+2&1/c (6.14)

then
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m -

E + 2c 5 k kp /2 5 (k - k )2

If we use the same perturbation for the membrane, then

5+4C442 2 5 2 22 (.52 = + ck 0k m9 P (k m- k 0)2 (6. 15)

In the limit V = 0, Eq. (6.14) becomes the solution given by George

Lamb in his thesis.(10) It should also be noted, in passing, that when

V1  V2 this solution is replaced by the straight wave-front waves

with faster than cylindrical fall off, which we discussed previously.

Physically speaking, the wave of Eqs. (6.14) or (6.15) cantt exist for

V + V2 , since it would have to radiate all of its energy into the

slower moving medium.

If we follow the above perturbation procedure starting with

k = + km, then, we get

k = + k I + p[ 1 T (V k /)Q (2uk - (-V km/c)2 +

p[ 1 ~ (V 2 km/c)] 2ac k Z - (W - V km/c)2 (6.16)

for the membrane, and if we use k = + kf, we get

k = + kf1+ p[ 1 (V kf/W)] 4u4k - (W- Vk /c)2

,p[ 1 T (V 2 kf/)] /(40 k 2 
- V kf/c)2 (6.17)

for the plate. In the case of the plate, we can also start from
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k =+ ik to get the same thing as Eq. (6.17), but with kf replaced by

ik . Equation (6.17) goes over into the expression given by George

Lamb for the case V1 = V2 = 0. From Eqs. (6.16) and (6.17), we

can observe the conditions necessary for k to be real (propagating wave).

This is just the requirement that vy and y2 be real. This means that

(for the membrane)

km > c/c(l+M 1 ) or km < w/c(Mi - 1) (yl real)

(6.18)

and

km > W/c(1+M 2 ) or km < w/c(M 2 - 1) (Y2 real)

(The conditions for the plate are exactly the same; merely change

km to k. ) These results are in agreement with the well-known fact

that the phase velocity in a plate must be less than the sound velocity

in the surrounding medium in order for the flexural wave to propagate

unattenuated. When flow is present, the critical phase velocity is in-

creased in the direction of flow and decreased in the opposite direction,

as shown by the conditions (6.18). This change in critical phase velo-

city agrees, quantitatively, with the change in sound velocity relative

to the stationary plate, as would be expected. The position of the poles

given by Eq. (6.17) is shown in Fig. 25, along with the position of the

branch points. The perturbation term of Eq. (6.17) has been denoted

by a, and the perturbation term for the poles near the imaginary axis

has been denoted by a t. The figure is drawn for the case that the in-
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equalities of Eq. (6.18) are not satisfied and a is imaginary so that the

poles are displaced from the real axis as shown. We also note, in pass-

ing, that the pairs of branch points on each side of the imaginary axis

coalesce into poles when VI = V2, as was mentioned earlier.

III. Evaluation of Transmitted Field

The integration to obtain the sound field now proceeds in a

method similar to that used for the simple interface problem. The

saddle point is found for the exponential of Eqs. (6.2) or (6.3). This

k0 is the same function of M,, M2 , and the space coordinates as was

obtained previously for the line source without the plate. Then, the

path of integration is distorted from the real axis so that it crosses the

saddle point in the proper direction. A typical situation is shown in Fig.

25, which is the same as previous saddle paths for the simple interface

case. The only additional feature is that, to distort the path from the

real axis to that shown in the figure, we must cross the two poles shown

circled in the upper half plane. This will happen whenever k < Re(kf + a),

and a similar situation will occur in the lower half plane when ko is

positive and k > Re(kf+ a). Recalling that [w/(V2 - c)] < k <

[/(V 2+ c)] for the transmitted field, it is evident that the poles must

always be between these branch points to satisfy this condition. Thus,

a is complex with imaginary part displacing the poles from the real

axis as shown. For R e(-kf-a) > 4(V - c), a will be totally imagi-

nary, but even if this pole is between the two branch points of the left
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half plane, the real part of a is quite small as compared with kf.

Thus, the condition for the poles to contribute to the transmitted field

is

k < -k or k > k .0 - f 0 - f

To obtain this relation in terms of spatial coordinates, we change to

x = r sin 0, y = r cos 0. Then, the previously calculated value of k0

is used to obtain

(o/[c(1 - M )])(-M 2 + A 2 cos 0) < - kf or

kf < (Wo/[ c( - M )])(-M 2 + A 2 cos 0) (6.19)

(where A was defined on page 29). The angles which do not satisfy this

relation are called the Ushadow zone 2 in Fig. 26. Of course, if the

poles are not between the branch points, there will be no angles which

satisfy the necessary conditions so that the Ishadow zones of Fig. 26

will expand to cover all of medium 2. This is because the flexural waves

in the plate or membrane will not radiate since their phase velocity will

always be less than the velocity of sound. The tilting of the shadow zone

away from symetry is in accord with a generalization of Eq. (6.18).

Inside the Ushadow zoneO the field is simply that due to the

saddle point integration at k0 and the branch cut around w/(V 1 - c).

Outside the shadow zone we must also add the residue from the poles in

the upper half plane. If the saddle point integration is performed exactly
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RADIATE (The boundaries of this shadow zone are

given by the equalities of equation(6. 19). )
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as before, we obtain the contribution

4 js) 2^T2o A3/2W0iwt - ikoy -OY2 x Ylh
1 12 2

r/ + 2 + (yy 2/p)[ 1 - (k 4/k) 4 . (6.20)

y 1 , y2' l"' w2 are evaluated at

0= w [c( -M2 + A 2 cos 0)

which makes Eq. (6.20) quite complicated when written out in detail.

We can see that the denominator will have a minimum when yl = 0

just as in the simple interface case; this will also be the boundary

of the Ozone of silence,M since the exponential in Eq. (6.20) is the same

as for the simple interface case. In addition, the denominator of Eq.

(6.20) will have another minimum at k0  k f (the boundary of the

2shadow zonem described previously). These minima will give peaks

in the angular distribution of 0 (s) and the relative strength of these

peaks will be determined by the size of the parameter uw/pc which de-

termines the dominance of the plate or the surrounding medium. For

the case of a membrane, we replace k 4/k 4 by k 2/k in Eq. (6.20),

as is explained following Eq. (6.10).

In the lowest order, the presence of the plate or membrane

does not effect the integral along the branch cut. This can be seen by

recalling the calculation of 02 in the simple interface case. The

branch cut was along Rey, = 0, so y, = + iu, and all terms multi-
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plied by u in the denominator of the integrand were neglected. But, it

is seen in Eq. (6.10) that, if terms mbltiplied by yl in the denominator

are neglected, all of the effect of the plate of membrane is also neglec-

ted. Thus, the field inside the 5 shadow zone3 is just the sum of

(S) + 2r , where 2 was calculated for the line source near a velo-

city discontinuity without plate or membrane.

The contribution of the poles is simply Zri times the sum of

the residues. From the pole close to the real axis, we get

S = 27r iw Weiwt - iky y2 lh/ (aF/8k)k kf (6.21)

in which

(aF/8k)k -k [k (1 - M ) + (WM1 /c)/y 0  2 + y101 2u2 +

(WM ) - kf(l - M )]/v2) w2 + u 0y2 1 + (4c-u y 72/pk)

k =-k 1+(p/4a-)[ (w /.)+ (W2 /y0k~ f (1 + 1p4j 0+2

0 0 2 0 2 0 2
y= yI + (pkf /4y 1 ) (W1 /y ) + (2 P2 )][kf(l - M1 ) - (Mi/c)]

0 pf a 0 2 /-, +0 2 A0 )[G 2)-(N2k/40- / + ( 2 12)][k ( - M 2 ) - (M 2 /c)]

0 0
and wI, 2' Y1, y. are to be evaluated at k = - kf. In case we wish to

consider the region outside the 3 shadow zones in the right half plane of

Fig. 26, the saddle point must move over to the right half plane of Fig.

25, and the two poles below the real axis are used, so we simply change
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the sign of kf wherever it appears in Eq. (6.21). Equation (6.21) is

also valid for a membrane if we use km instead of k , and replace

p/4a by p/2a, as is. evident upon comparison of Eqs. (6.16) and (6.17).

Since y2 is imaginary (or else medium 2 would be all 9shadow

zone), y2 has a real part and k has an imaginary part, and these cause

the exponential to have a real part,

(iykfp/4r)[ (o 2/y 0 ) + (W2 /-2)] - (xkfp/4u) [( 2/y ) + 2 0

(kf [ 1 - M2] - (M 2 W/c))

in case 0 is left out of the parentheses in each term.incae yis real, w11y

This real part must always be less than zero to avoid the absurdity of

an exponentially growing wave. It will equal zero for

iy = (x/Y0 )[ kG - M) - (M 2 /c)]

which is the same as -kf = k0. Thus, (6.21) will always have a de-

caying exponential outside the t shadow zone.r Inside the Ushadow zone, I

the wave does not exist, so there is no problem with the growing exponen-

tial. This seems to imply that the wave is propagated unattenuated, and

with no spreading, along the boundary of the shadow zone. However, the

pole and saddle point are too close together for this calculation to give an

accurate answer near the Ishadow zone1 boundary. The basic result of

performing the more exact calculation in this neighborhood is that the am-

plitude of the pole contribution is reduced as the pole approaches the
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saddle path. For the limiting value with the pole precisely on the saddle

point, the Cauchy principle value is used, which means the limiting re-

duction is one-half. This is shown by H. Ot4 ) in his calculation of a

saddle point integral in the neighborhood of a pole.

The contribution from the pole near the imaginary axis has

the same form as 0 () of Eq. (6.21), but kf is replaced by - ikfj so

the wave is strongly damped in all directions.
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SUMMARY AND CONCLUSION

It seems rather unsatisfactory to end the thesis at this

point, because it has raised more questions than it has answered.

The theory of instabilities developed in Chapter 1 must be extended

to more-general resonator frequency distributions than that used for

Eq. (1.6). Then, one can experiment with the effect of various types

of noise spectra upon the onset of instability. Equation (1.6) indicates

that the critical Reynolds number is proportional to the square root of

the channel thickness. I am not aware of any experimental results

which check this dependence directly, and the conventional stability theory

gives a result which is independent of thickness, so Eq. (1.6) may

prove to be invalid as it stands. However, this would only imply that

the nonpropagating disturbances are not primarily responsible for tur-

bulence onset; the nonpropagating disturbance viewpoint is still a

natural one for resonator excitation, as is explained in Section IV of

Chapter 1.

The results of Chapters 3, 4, and 5 cannot be accurately

compared with the jet noise experimental data because the jet does not

have a sharp boundary. The present data on the angular dependence

of the far field sound pressure is consistent with my results for a source

and observer at rest while the medium, which the source is in, is mov-
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ing, and it is also consistent with the result for the source at rest with

respect to the medium it is in which is moving with respect to the ob-

server, provided the retarded position of the source is taken at the

mouth of the jet. This is to be expected when one notes the similarity

of Figs. 8 and 10 (pages 31 and 34). (Actually, one should use the

much more complicated results of Chapter 5 for comparison with the

jet data, but the previously mentioned simplification, using a sharp

boundary, makes the results of Chapter 4 inaccurate for a real jet to the

extent that the simple interface results of Chapter 3 are probably not

much worse. ) It would be of great interest to check these results experi-

mentally with the more ideal condition of a sharp boundary.

The theoretical and experimental problems suggested by the

results of Chapter 6 are also of great interest. The effect of the Helmholtz

instability should be observable by the breaking of weak membranes or

plates in flows. The theoretical work should also be extended to semi-

infinite or finite plates or membra.nes, since it is the finite cases which

are of practical importance. The problem of a semi-infinite plate is

currently under study.
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