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Abstract

We describe an adaptive, mid-level approach to the wireless device power manage-
ment problem. Our approach is based on reinforcement learning, a machine learning
framework for autonomous agents. We describe how our framework can be applied to
the power management problem in both infrastructure and ad hoc wireless networks.
From this thesis we conclude that mid-level power management policies can outper-
form low-level policies and are more convenient to implement than high-level policies.
We also conclude that power management policies need to adapt to the user and
network, and that a mid-level power management framework based on reinforcement
learning fulfills these requirements.
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Chapter 1

Introduction

In the past decade, trends in hardware miniaturization have resulted in the intro-

duction and widespread acceptance of laptops and, more recently, in a burgeoning

market for hand-held computing devices. While these devices match their desktop

counterparts in computational power, a major drawback is their reliance on battery

power. Whereas processor speeds have improved at an exponential rate for the past

three decades, battery capacity has only increased by a factor of two to four over

the same period. With no reason to expect major advances in battery technology

in the near future, current attempts to solve this problem have focused on designing

portable devices that consume less energy.

1.1 The Wireless Problem

Most people involved in the hand-held computer industry agree that the major ap-

plication of these devices will be as mobile email, text messaging, and web browsing

platforms. Unfortunately, according to Stemm and Katz [1] the network interface

is typically the single largest consumer of power in a hand-held system. Interest in

designing low power components for hand-held devices has led to the introduction in

the past decade of dynamic voltage scaling (DVS) processors, as well as the popular-

ization of new fabrication techniques which result in more efficient chip components.

However, attempts to improve the energy efficiency of wireless network interfaces is
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constrained by the poor power consumption characteristics of radio transmitters and

receivers. There is no obvious way of making the radio more power efficient since

there is a direct relationship between transmit power and the range of the trans-

mitted signal. Consequently, attempts to save power at the network interface have

focused on power management (PM) techniques for switching the radio off during idle

periods.

1.2 Current Solutions

To date most research in this area has focused on doing PM either at the hardware-

level (low-level) or at the application level (high-level). Hardware-level approaches

typically build power management into the medium access control (MAC) layer [2}

of the network protocol. For example, the IEEE 802.11 Wireless LAN Standard [3]

stipulates MAC layer support for power management in both infrastructure and ad

hoc modes. This support is provided through traffic indication map (TIM) fields

contained in broadcast messages sent by the base station, and a polling mechanism

that allows mobile hosts to request packets buffered by the base station while they

were asleep.

The major drawback of power management schemes that operate at the MAC layer

is that they can only view the data contained within frames as opaque objects. For

example, the network interface is unable to tell whether a frame it receives contains

data corresponding to a UDP packet or a TCP packet, nor can it differentiate between

frames which contain different types of application-layer packets such as Secure Shell

Protocol (SSH) or Hypertext Transfer Protocol (HTTP) packets.

Proponents of application level power management strategies are currently a mi-

nority, but their arguments are important to consider. Kravets and Krishnan [4

describe a transport-level protocol for managing the sleep/active cycle of a mobile

host's wireless interface that exposes power management to applications. Applica-

tion programs that access the network are required to convey their communication

needs to the transport-layer power management policy, which in turn decides whether

14



it is advisable to transition the network interface to the sleep or awake mode.

An argument in favor of this strategy is that application programs necessarily have

the most information on which to base predictions about their communication needs.

For example, a web browser that has just requested a page from a server but that has

not yet received a response can direct the power manager to stay awake. Similarly,

applications that receive streaming data over the wireless network can tell the power

manager to keep the interface in active mode until the application terminates or the

stream is closed.

However, it seems unlikely that the software industry will embrace a PM technique

that places more work on the application programmer, making it even harder to port

applications from desktop to mobile platforms. Furthermore, it remains to be seen

whether adding this functionality is as trivial an operation as its proponents assert.

1.3 Our Approach: Adaptive Mid-level Power Man-

agement

This thesis proposes a new approach to power management in wireless network in-

terfaces based on an adaptive power manager with access to application-layer and

transport-layer information. It operates at a lower level than the technique described

by Kravets and Krishnan [4], since it does not require application programs to pass

it information, and it operates at a higher level than the MAC layer methods de-

scribed earlier. This means that it has access to transport-layer and application-layer

information, which it can use to make more informed predictions about near term

communication needs.

The power manager is based on a machine-learning framework for autonomous

agents called reinforcement learning (RL) [5]. Reinforcement learning models an

agent's sequential decision-making task as a Markov Decision Process (MDP) [6]

with unknown parameters. The goal of an agent is to learn a policy that maximizes

the agent's performance at the task. The policy that the agent learns is a function
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mapping states to actions, and an agent's performance is quantified by a reward

function. In this case the reward function is inversely related to the amount of energy

consumed by the network interface.

We believe that an adapative mid-level approach to power management will be

able to outperform PMs built into the MAC layer. In most cases, the packets that are

transmited and received over a mobile host's wireless interface are the direct result

of the user's actions, or are sent in response to the user's actions. We believe we can

build a more complete model of this cause-and-effect behavior by placing the agent

closer to its source. An accurate model of these high-level processes and their effect

on network activity will allow us to make better predictions about when the network

interface's services will be needed. We also note that our approach is supported by

the widely accepted end-to-end argument [7], which holds that system functions such

as power management, implemented at a low level, are likely to be of little value when

compared to those same functions implemented at a higher level.

In comparing our mid-level PM scheme to the high-level approaches of Kravets and

Krishnan [4], Ellis [8], and Flinn and Satyanarayanan [9], we note that our method

does not place any requirements on the applications. Furthermore, since our method

is adaptive it can learn to support the vast array of software that is already in use on

mobile computers.

1.4 Contributions

The main contribution of this thesis is its illustration of an adaptive mid-level ap-

proach to wireless device power management that avoids the drawbacks associated

with hardware level and application level solutions to the problem.

1.4.1 Thesis Outline

Chapter 2 of this thesis describes wireless networks in general with particular atten-

tion paid to hardware power consumption issues. Chapter 2 also discusses the 802.11

wireless LAN standard. Chapter 3 gives an overview of reinforcement learning and a
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detailed description of Q-learning, and then discusses the mid-level power manage-

ment strategy in detail. Finally, chapter 4 concludes with a discussion of related and

future work.
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Chapter 2

Wireless Mobile Networks

2.1 Overview

A wireless mobile network is a local area network (LAN) where the individual stations

are mobile computers that communicate with the rest of the network via radio or

infrared signals. The stations are most likely laptop or hand-held computers outfitted

with a wireless radio network interface. Current wireless LAN standards specify data

transfer rates equivalent to those of Ethernet, placing wireless LANs in the same

league as their wired counterparts.

While wireless LANs provide a software interface virtually indistinguishable from

that provided by wired LANs, there are many differences between the two technologies

at the link and MAC layers. The following sections discuss the characteristics that

make wireless LANs different from their wired counterparts.

Before we begin, it is important to point out that 802.11 is a wireless LAN stan-

dard. While it is currently the dominant wireless standard it does not define wireless

LANs, and other standards which would accomplish the same task in different ways

are possible. Consequently, the first part of this chapters focuses on the characteris-

tics of wireless LANs in general, and in the later part we consider the 802.11 standard

in particular.
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Figure 2-1: A schematic overview of a Lucent wireless network interface designed to
fit in a mobile computer's PCMCIA slot.

2.2 Hardware

The basic building block of a wireless LAN is a wireless network interface card. These

devices typically come in ISA or PCMCIA form factors.

Figure 2-1 is a block diagram of a Lucent 802.11 wireless network interface de-

signed to fit in a mobile computer's PCMCIA slot. Wireless network interfaces built

for other standards would likely look the same. The components shown in the dia-

gram include a radio (RF IC), intermediate frequency chip (IF IC), a digital signal

processor (DSP) application-specific integrated circuit (ASIC), a wireless medium

access controller (WMAC) ASIC, and RAM and ROM chips.

The modular nature of the device provides manufacturers with two distinct ad-

vantages. First, a manufacturer of wireless network interfaces (WNICs) typically

purchases the components from third party manufacturers. Many of these compo-

nents are not specific to any wireless network protocol in particular, so manufacturers

can market a general purpose chip with multiple applications. Second, the modular

construction of the device makes it possible for the network interface to selectively

power down on a component basis. For example, the interface's logic might want to

turn the radio off but maintain the supply of power to clocks.

Figure 2-2 shows the canonical WNIC state diagram. In the transmit and

receive states the radio is fully powered and the WNIC is actively transmitting

20
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Figure 2-2: A state machine showing the wireless network interface states and the
transitions between them. In 802.11 devices the receive, transmit, idle and sleep
states are not individually visible to the operating system, which views these states
collectively as the on state.

and receiving data. In the idle state the radio is powered, and the device is listen-

ing to the communications medium, but the device does not pass any of the data it

receives while in this mode up to the software layer. In the sleep state the radio

is powered down while other subsystems, such as hardware clocks, remain powered.

Finally, in the off state the device is completely powered down.

Most of the states illustrated in figure 2-2 are hidden from the software that

controls the WNIC. For example, in 802.11 WNICs the receive, transmit, idle

and sleep states are only visible to the operating system as the on state. Another

point to note is that the sleep state typically has several sub-states. Each substate

corresponds to a different power-saving mode. We discuss these modes in detail in

the next section.

2.2.1 The Radio

The WNIC's radio deserves special consideration as it is both central to the device's

purpose and also its single largest consumer of energy. Several efforts to measure the

power consumption of popular WNICs [1, 10] have resulted in the conclusion that

21
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Mode Recovery Time Current

TX Current (continuous) N/A 488mA
RX Current (continuous N/A 287mA
Average Current w/o PSM N/A 290mA
Average Current w/ PSM N/A 50mA
Power Saving Mode 1 1ps 190mA
Power Saving Mode 2 25ps 70mA
Power Saving Mode 3 2ms 60mA
Power Saving Mode 4 5ms 30mA

Table 2.1: PRISM chipset power consumption by mode.

the WNIC, and the radio in particular, is responsible for a significant portion of the

energy requirements of portable computers. Consequently, the goal of WNIC power

management policies is to keep the WNIC's radio in a low power mode (or off) most

of the time without adversely affecting the performance of the WNIC.

To illustrate the different power saving modes available at a device level we now

consider the PRISM radio chipset manufactured by the Intersil Corporation. The

PRISM chipset has been incorporated into a large number of commodity 802.11 de-

vices, and is just as applicable to other WNIC designs since it is not protocol specific.

The chipset includes a radio, modem, baseband processor, dual synthesizer, and MAC

module. Andren et al. [11] describe the different device-level power saving modes sup-

ported by the chipset, which are summarized in table 2.1. Of particular interest are

the tradeoffs between power consumption and recovery time. Deeper sleep modes

consume less energy but require more time transition back to an active state. This is

due to the fact that the deeper sleep modes allow capacitors to discharge, and con-

siderable time is required to re-charge these analog components. Similarly, deep sleep

modes also shut down the oscillators used in the radio, and when power is reapplied,

time is required for them to settle.
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2.3 Infrastructure vs. Ad Hoc Networks

Wireless LANs can be broadly divided into two separate categories: infrastructure

networks and ad hoc networks. Infrastructure networks consist of some number of

wireless stations and a wired base station. The base station (or access point in 802.11

terminology) is responsible for mediating communication between individual stations

in the wireless LAN as well as providing an up-link service over the wire to the rest

of the network. In many designs the base station also provides power management

support to the mobile stations by offering to temporarily buffer packets bound for

sleeping stations.

Ad hoc networks are also composed of individual stations, except that there is no

base station. Instead, stations talk directly to each other without the aid of a base

station. Ad hoc networks are a convenient alternative to infrastructure networks in

environments where it is impossible to install fixed base stations.

Infrastructure and ad hoc wireless networks face very different power management

issues, which we discuss in detail in chapter 4.

2.4 Protocols

One of the major differences between wired and wireless networks is that collision

detection in wired networks is easy to implement, while reliable collision detection

(CD) in wireless networks is impossible to implement. This is a consequence of the

fact that situations where stations A and C are both in range of station B but out of

range of each other are common. Hence, if A and C begin transmitting at the same

time B will be unable to read the data due to a collision which neither A nor C can

detect. Because of this physical limitation, wireless protocols are based on collision

avoidance (CA) rather than collision detection.

One of the first wireless protocols to use collision avoidance was the Multiple

Access with Collision Avoidance (MACA) protocol. The 802.11 standard is a direct

descendant of MACA. Collision avoidance was implemented by requiring each station
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to observe a random discrete-time backoff interval from the time the medium becomes

clear until the station begins transmitting. This, along with the use of an RTS/CTS

(request to send/clear to send) mechanism between the transmitting station and

receiving station eliminates collisions which would otherwise cause problems.

2.5 Current Standards

The current wireless LAN standards that have industry support are the IEEE 802.11

standard [3] and Bluetooth [12]. Of these two standards, 802.11 has a large, well-

established user base. Bluetooth, in contrast, is still struggling to gain market share.

In the following section we give a brief overview of the 802.11 standard.

2.6 The IEEE 802.11 Standard

The 802.11 (WaveLAN)[3] standard was developed by the IEEE 802 LAN/MAN

Standards Committee for wireless local area networks (LAN). The standard describes

operation in both ad hoc and infrastructure networks with data rates ranging from

1 to 11 Mbits/s. It is currently the dominant wireless LAN standard.

The 802.11 standard shares many similarities with the 802.3 Ethernet standard

including media access control (MAC) of the data link layer and the physical layer

(PHY) provided through a 48 bit address, and the use of the carrier sense multiple

access (CSMA) protocol for data transmission at the physical layer.

2.6.1 Ad Hoc and Infrastructure Modes

As mentioned earlier, the 802.11 standard specifies operation in ad hoc and infras-

tructure modes. In infrastructure mode 802.11 stations communicate with a fixed

802.11 access point (AP). All data is routed through the AP, including packets sent

between wireless stations. In many cases the AP provides a gateway between the

wireless network and other 802.x networks (Ethernet, Token Ring, etc). In ad hoc
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mode there is no centralized authority. Rather, the task of organizing and running

the network is shared by each of the stations.

2.6.2 Beacon Mechanism

The beacon mechanism is central to the operation of 802.11 networks in both infras-

tructure and ad hoc modes. It provides for the periodic communication of system

parameters that are required in order for the network to function. Each beacon frame

includes a timestamp field and a beacon interval field which can be used by 802.11

stations to compute when the next beacon frame will arrive.

2.6.3 Power Management

The 802.11 standard defines two different power states: awake state and doze state.

In the awake state the device is fully powered, whereas in the doze state the device is

not able to transmit or receive data and energy consumption is minimized. WNICs

in the doze state are allowed to transition into the sleep state illustrated figure 2-2,

whereas WNICs in the awake state must remain in the idle, transmit, or receive

states. Wireless devices can conserve energy by switching from active state to power-

save mode. In power-save mode the device spends most of its time in the doze state,

and transitions periodically to the active mode in order to check for packets.

Power Management in Infrastructure Networks

In infrastructure networks, the access point is responsible for buffering packets that

are addressed to dozing stations. A field with an entry for each station is included in

the beacon frames transmitted by the AP. If the AP has buffered data for a station,

the corresponding entry in this field is set accordingly. Stations in power-save mode

are required to transition from the doze state to the awake state at each beacon

interval. If the beacon indicates that the AP has buffered data for a station, the

station sends a special frame to the AP which causes the AP to transmit the buffered

data. Otherwise, the station transitions back to the doze state pending the next
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beacon frame.

Power Management in Ad Hoc Mode

In ad hoc networks there is no AP that can buffer data destined for a dozing sta-

tion. Rather, the stations themselves are responsible for buffering packets that are

addressed to dozing stations. While the 802.11 standard does specify how stations

can announce that they have buffered data destined for other stations, it does not

describe how stations should determine the power-saving mode of other stations, and

hence does not explain how a station would decide to buffer data. In later chapters

we discuss some of the algorithms that have been developed to solve this problem.
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Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) [5, 13] is a machine-learning framework for autonomous

agents. Agents are trained to accomplish a task through the application of rewards

and punishments. The major difference between reinforcement learning and other

machine learning techniques is that in reinforcement learning there is no need to

specify how the task is to be accomplished. Instead, the agent learns how perform

the task through experience.

3.1 The Reinforcement Learning Model

In this thesis we limit our discussion to techniques for solving the reinforcement

learning problem using statistical and dynamic programming techniques to estimate

the value of state-action pairs in the world.

The standard reinforcement-learning model consists of an agent that interacts with

the environment through observations and actions. On each step of interaction with

the environment, the agent receives an input from the environment that describes

the current state of the environment. This forms the agent's observation of the

environment and is used by the agent to determine its internal state. After observing

the environment, the agent issues an action as output, which changes the state of

the environment, and receives a scalar-valued reward from the environment, which

indicates the value of the state transition. Formally, a reinforcement learning model
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consists of

* a set S of environment states,

" a set A of agent actions, and

" a reward function R : S x A -+ R.

The goal of the agent is to learn a policy ir, mapping states to actions, such that some

measure of the long-term reward collected by the agent through interactions with the

environment is maximized.

3.1.1 Markov Decision Processes

Reinforcement learning systems model the world as Markov Decision Processes (MDPs)

[6]. Formally, an MDP consists of

" a set S of states,

" a set A of actions,

" a reward function R: S x A -+ R, and

" a state transition function T : S x A -+ H(S), where each element of H(S) is a

probability distribution over S.

T(s, a, s') is the probability of ending up in state s' when taking action a in state s.

Similarly, R(s, a) is the reward for taking action a in state s.

3.1.2 The Markov Property

A model expressed as an MDP is said to satisfy the Markov property and to be Markov

if the state transition function is independent of the agent's history of environment

states and actions given the current state. This is equivalent to saying that the agent

has a perfect ability to observe the state of its environment. If a model satisfies the

Markov property then it is possible to determine the next state and expected next
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reward based only on the current state and action. MDP models which have hidden

states are called partially observable Markov decision processes (POMDPs) [6].

Most of the algorithms used for solving reinforcement learning problems require

the existence of an MDP that models the problem, satisfies the Markov property, and

is fully observable.

3.2 Value Functions

A value function is a function of states, or state-action pairs, that estimates the utility

of an agent being in a particular state, or the utility of an agent taking a specific action

out of a particular state. Here "utility" is defined in terms of the future rewards that

the agent can expect to receive. Earlier we explained that a policy 7 is a mapping

from each state-action pair (s, a) E S x A to the probability 7r(s, a) of choosing action

a when in state s. We now define V"(s), the state-value function for policy 7r to be

the expected return when starting in state s and following policy ir thereafter. We

can express V (s) formally as

VT(s) =E,{Rt | st = s} = E, {Z t+k+1 St = s}
k=0

E,{} is used to signify the expected return given that the agent follows policy r.

Similarly, we can define QT(s, a), the action-value function for policy ir, to be the

expected return from starting in state s, taking action a, and thereafter following

policy 7r. We can express Qr formally as

Q'(s, a) = E7, {RtIst = s, at = a} = Er { rt+k+l1st = s, at - a}.
k=O

We use Q* and V* respectively to symbolize the state-value and action-value functions

for the optimal policy 7r*.
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3.3 Measures of Reward

We previously stated that the goal of an agent is to maximize over some period of

time a measure of the reward that it collects. Here we describe two frequently used

reward models and explain their differences.

First we consider the receding-horizon reward model that, on every step causes

an agent to think it only has h steps left, and to choose the action that will result

in the largest expected reward over the next h steps. Formally, we say that on every

step the the agent is trying to maximize the expression

h

E (E rt).
t=o

In the receding-horizon model an agent is not concerned about the rewards it will

collect that are more than h time steps in the future. Rather, on each step the agent

will select what it thinks is the best action given that it has h steps remaining in

which to act and gain rewards. The receding-horizon model is most appropriate in

cases where the agent should try to maximize its short term expected reward.

In contrast, the infinite-horizon reward model causes the agent to optimize its

long-term reward. However, rewards in the future are geometrically discounted by a

constant factor -y:
00

E(E itrt).
t=o

This causes the agent to emphasize rewards in the near future over those in the far

future, but does not require selection of a hard horizon.

3.4 Q-learning

Q-learning [14] is one of several algorithms available for solving reinforcement learning

problems. It is a model-free algorithm, meaning that, in contrast to model-based

algorithms, there is no need to know the transition probability function T(s, a, s') and

reward function R(s, a) in order to learn a policy. Q-learning derives its name from
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the optimal action-value function Q*(s, a). The Q-learning algorithm is guaranteed

to converge to optimal Q* values for each state action pair in S x A.

The Q-learning algorithm is based on the observation that since V* (s) = maxa Q* (s, a),

one can express the optimal action-value function recursively as

Q*(s, a) = R(s, a) +y E T(s, a, s') max Q*(s', a').
s'ES a

This leads to the Q-learning rule:

Q(s, a) +- Q(s, a) + a' r + -y max Q(s', a') - Q(s, a)]

The Q-learning algorithm repeatedly applies the Q-learning rule to the set of Q
values corresponding to the states in the environment. Starting with a state s, the

algorithm chooses an action a using the policy derived from Q, takes action a and

observes the next state s' and the reward r. The value of Q(s, a) is then updated

using the Q-learning rule, s is set to s', and the process repeats.

Many states will never be visited if the algorithm always selects an action a cor-

responding to the maximum Q value for a given state. Clearly, without visiting all

of the actions in A the algorithm can not guarantee an optimal result. In order to

fix this problem we have the algorithm use an e-greedy policy for selecting actions.

Given a small e such that 0 < c < 1, the algorithm selects an action corresponding to

the maximum Q values with a probabily of 1 - c, and selects a random action with

probability c.

The f value determines the balance the algorithm makes between exploration and

exploitation. Low c values cause the algorithm to neglect exploration and select the

greedy action most of the time. This will cause the algorithm to take a longer time to

converge to optimal Q values. Similarly, large E values cause the algorithm to spend

all of its time exploring. In this case the policy converges very rapidly to optimal Q
values, but the agent fails to follow its own policy and performs poorly.
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Chapter 4

A Reinforcement-Learning

Approach to Power Management

This chapter describes our framework for casting the wireless device power manage-

ment problem as a reinforcement learning task. In section 1 we discuss an earlier

MDP-based approach to power management that inspired our work in this area, and

explain why we think an RL approach is superior. In section 2 we introduce a simple

RL framework for considering the power management problem and discuss our results.

In section 3 we discuss a variety of proposed extensions to the simple model discussed

in section 2. Most of these extensions involve extending the action and state spaces

to better reflect the actual dynamics of the WNIC. Finally, in section 4 we discuss the

various ways that these models could be applied to the WNIC power-management

problem in a realistic setting.

4.1 The MDP Approach to Power Management

Our interest in a reinforcement-learning approach to wireless device power manage-

ment was directly inspired by the work of Simunid, Benini, Qui et al. [15, 16, 17, 18,

19] on the related topic of using stochastic processes, and Markov decision processes

in particular, to solve the power management problem.

People using this approach generally model each component with a separate prob-
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ability distribution. For example, user behavior is modeled with a request inter-arrival

distribution, the behavior of the device is modeled with a service time distribution,

and the time taken by the device to transition between its power states is modeled

with a transition distribution. Typically these distributions are estimated during ac-

tual user interaction with the system, but in some cases artificial distributions such

as the Pareto distribution are substituted. A linear-programming algorithm is then

used to find an optimal policy based on the distributions and an MDP modeling the

dynamics of the system. Simunid [19] reports that these methods can be used to

realize a factor of 5 power savings in WNIC operation if the user is willing to accept

a small performance penalty.

While these methods can be used to realize impressive power savings in a lab-

oratory setting, their wider applicability is questionable when you stop to consider

one of the assumptions made by these models. Specifically, these power management

models guarantee optimal results only when the actual usage patterns match those of

the distributions that were used to compute the policy. It is extremely unlikely that

a policy that came with your laptop, designed for the "average" user, will provide

a useful approximation of your usage patterns. Consequently, we are left with the

option of either devising a system that adapts the policy to the user, or a system

that recomputes the policy using probability distributions obtained by monitoring

the user.

Chung, Benini, et al. [17] devised a non-stationary, MDP-based power manage-

ment system that uses sliding windows. Each window is composed of a set number of

slots, and records the recent packet arrival and departure history for the WNIC. This

data is used to form a variable that ranges between 0 and 1 and which reflects the

average packet arrival rate over the period of time monitored by the window. This

variable is then used to select a policy from a policy table. However, while the overall

policy that results is non-stationary, it is not really adaptive in a general sense. To

see why, consider that the policies in the policy table were all computed based on

sample distributions which need to match the actual user patterns in order to yield

good results. Furthermore, even if the distributions used to compute the policies do
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match the patterns of the user, the system will still not guarantee optimal results,

since it uses a heuristic algorithm to select policies.

The other MDP-based power-management algorithms provide no mechanism for

fine or even medium-grained adaptability. Rather, to construct a useful policy, a

power manager would need to collect data on a user's usage patterns over the period

of a day, a week, or a month, and then use the resulting distributions to recompute

the policy. Note that the distributions collected on one day will not generally match

distributions collected the next day. Hence, finding an optimal or near-optimal policy

with these methods is very unlikely.

It is precisely these considerations that have motivated us to pursue a reinforcement-

learning approach to the power-management problem. Reinforcement-learning al-

gorithms have the great advantage of continuously adapting to the usage patterns

exhibited by the user and network.

4.2 A Simple RL Framework

This section gives a detailed description of our initial attempts at formulating an adap-

tive reinforcement-learning framework for solving the wireless-device power-management

problem. Our approach is based on a simple model of the system dynamics of the

wireless network interface card (WNIC). We present initial results obtained using

this model and investigate the model's shortcomings. In the next section, we propose

strategies for constructing more realistic models. We begin with a discussion of how

the agent views and interacts with the WNIC.

4.2.1 The Problem

Our goal is to construct an agent capable of power-managing the WNIC so that some

long-term measure of the WNIC's energy consumption is minimized without creating

a degradation in network performance that is unacceptable to the user. The agent

is supposed to accomplish this task by switching the WNIC either on or off. When

the WNIC is on it can receive and transmit packets and communicate with the AP,
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but it also consumes power. When the WNIC is off it cannot transmit or receive

traffic and it consumes no power, but users requesting network service will experience

latency or service interruption.

4.2.2 The Agent's Environment

The agent's ability to perceive the world is defined by the state space S, the elements

of which are ordered tuples of the form (mode, time). The mode state variable rep-

resents the current state of the WNIC and is an element from the set {on, off }. In

our model the transmit, receive, idle, and sleep states are all lumped into the

on state.

Our model divides time into discrete time intervals, each of which is a second

long. Ideally, the time state variable would represent the number of time intervals

that have elapsed since the last packet was transmitted or received by the WNIC.

However, since the WNIC can neither transmit nor receive packets while in the off

state, this definition becomes impractical. Consequently, we make the assumption

that when the WNIC is in the off state, packets that would have been received or

transmitted had the WNIC been in the on state are time-stamped with the current

time, and either buffered on the AP or on the WNIC itself. We then use the following

rule for setting the time variable. As long as the WNIC is in the off state, the

time variable increments one unit per time interval. If the WNIC transitions from

the off state to the on state, the WNIC checks for time-stamped packets buffered

in its queue or on the AP. If any packets are found, the time variable is set equal to

the difference of the current time and the most recent time found on the collection

of buffered packets. If no packets are outstanding, then the time variable is simply

incremented by a unit.

The agent's action space, A, is {on, off }: on each step of interaction with the

WNIC, the agent can either turn the WNIC on or off. If the card is already in the

on state, the on action has no effect on the mode. Similarly, issuing the off action

when the WNIC is in the off state has no effect on the mode. Figure 4-1 summarizes

these transition rules.
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Figure 4-1: Agent actions and their effect on the mode state variable.

4.2.3 The Reward Signal

On each step of interaction with the WNIC, the agent receives a reward signal. Over

the long term, the agent tries to maximize some measure of the incremental reward

signals. Ideally, the WNIC's hardware interface would provide a means for measuring

the device's power consumption. However, since it does not, we base our estimates of

power consumption on data collected by Stemm and Katz [1] and Feeney and Nilsson

[10].

If the reward signal reflected only the amount of energy consumed by the WNIC,

and if the agent wanted to minimize this quantity, the simple solution would be to

stay in the off state all the time. In order to avoid this trap, we also include a

latency parameter in the function used to calculate the reward signal. Consequently,

the reward signal takes into account the amount of energy consumed in the last time

step, as well as the time that packets spent buffered in the WNIC's output queue if

the card was in the of f state. The introduction of a scalar variable a with values in

the range [0, 1] allows us to express the reward function as

r = -(a * energy) - ((1 - a) * latency).

The variable a expresses the tradeoff between the importance of conserving energy

and avoiding latency, and is set by the user. High a values make the reward function

insensitive to latency penalties, and will result in an agent that spends most of its

time asleep. Similarly, small a values will cause the agent to spend most of its time

awake in an effort to avoid packet latency penalties.
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4.2.4 The Learning Algorithm

Our initial attempts at solving the WNIC power-management problem with rein-

forcement learning have focused on offline, trace-based training using the Q-learning

algorithm. We used the tcpdump [20] packet-sniffing utility to collect our live traces,

and have supplemented this collection with a variety of artificially generated traces in

an effort to make program verification easier. Each entry in a raw trace corresponds to

a packet, and indicates whether the packet was transmitted or received, at what time

it was handled by the WNIC, the application-level protocol the packet was associated

with, and the size of the packet. Currently we ignore packet fragmentation, instead

creating only one entry for each fragmented packet. This means that our packet size

records are often incorrect, and we plan to fix this error in the near future.

Each raw trace is filtered by protocol in order to create separate traces composed

of SSH packets, HTTP packets, etc. The separate traces are then used to train

individual agents with the hope that they will learn policies tailored to the unique

patterns of the protocol. We plan to eventually integrate the individual agents using

an arbitration mechanism similar to the one illustrated in figure 4-2. At each time

step the protocol-specific agents illustrated in the figure-JrSSH, WHTTP, etc.-submit

an action to the arbitration mechanism. The arbiter will turn the WNIC of f if all of

the agents submit off actions. However, the arbiter will turn the WNIC on if any of

the agents submits an on action.

We based our decision to learn a separate policy for each protocol on several

observations. First, we realized that we would have to add multiple state variables to

the simple model in order to get the same effect, and that this change would make the

state space much larger and cause the agent to take more time to learn an optimal

policy. We also realized that our separate policy approach makes it easier to learn

new policies for new protocols.
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ssh mms

Arbiter

WNIC

Figure 4-2: An arbitration mechanism for integrating actions from multiple, protocol
specific power management agents. The three agents represented as 7Fssh, 7Fhttp, and

7mms were respectively trained to manage Secure Shell Protocol, Hypertext Transfer
Protocol, and the Microsoft Media Server Protocol.

4.2.5 Assumptions

The model we have presented above makes three fundamental assumptions that are

questionable in this domain. We list each of these assumptions below along with

an example that illustrates why our model violates the assumption. All of the as-

sumptions are based on conditions that must be true in order for the Q-learning

algorithm to guarantee convergence to optimal results. It is important to note that

these conditions are sufficient but not necessary. Hence, while our model does not

satisfy any of these conditions completely, it is not right to conclude that this will

make it impossible to obtain useful, or even optimal results using these techniques.

Assumption 1: The environment is Markov

The Q-learning algorithm is guaranteed to eventually converge to optimal Q values

only if the environment satisfies the Markov property. Hence, we either need to

demonstrate that the environment is Markov, or that it is close enough to being

Markov that its non-Markovianity will not noticeably affect the results of the Q-

39



learning algorithm.

As explained earlier, the environment is Markov if the probability of being in state

s' and receiving reward r at time t +1 is dependent only on the state the environment

was in at time t and the action the agent took at time t. This is expressed formally

as

Pr{st+1 = s', rt+1 = r st, at, rt, st_ 1 , at_1 , ... , r1, so, ao} = Pr{st+ = s', t+ = r s, at}.

Unfortunately, we know that this condition does not hold for the system model de-

scribed above. To see this, consider what happens when the WNIC is in state (on, t)

and selects action off. If the WNIC transmitted or received a packet in the period

between t and t +1 then the next state will be (on, 1). However, if the WNIC did not

transmit or receive a packet between t and t+ 1, then the next state will be (on, t+ 1).

Our model does not include a state variable to describe packet transmission, so to

the agent this state transition will appear to be nondeterministic.

In the reinforcement learning framework, each action of the agent is answered by

the environment with a reward signal and a state signal. The degree to which the

state signal accurately and completely reflects the current state of the environment

determines an environment's observability. An environment is fully observable if the

state signal uniquely distinguishes the current state from all other states.

In our model, the state signal consists of two state variables: mode and time. The

mode is either on or off. In the previous chapter we explained that the WNIC at

a minimum has 5 states (transmit, receive, idle, sleep, and off), and in many

cases has even more if we include the different radio power-saving modes. Earlier we

mentioned that the transmit, receive, idle, and sleep states are all lumped into

the on state. We can reduce the set of unobservable states to transmit, receive, and

idle by disabling the WNIC's power saving mode. At this point, our main concern

is that our inability to differentiate between the transmit, receive, and idle states

will compromise our ability to accurately gauge the amount of power consumed per

time unit. However, we argue that we can closely estimate the amount of time the
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WNIC spends in transmit and receive modes by observing the size of the packets

that are transmitted and received.

The state signal also fails to account for the state of the network as a whole. For

example, whether or not the WNIC receives a packet at time t + 1 is dependent on

whether another WNIC sent a packet to it at time t. Packets in transit as well as

the state of other WNICs on the network are not included in the state signal since

acquiring such information is impossible. We believe that we can ignore this hidden

state, since mobile computers rarely receive packets that are not in some way related

to an earlier request made by the mobile computer.

Assumption 3: Offline Learning is Legal

Our initial tests have been based on an offline, trace-based approach to learning. In

an experimental setting, this is advantageous since it allows us to quickly reproduce

results as well as to subject our algorithm to traces modeling a wide range of different

user behaviors. However, there is one major pitfall involved in learning from traces,

illustrated with the following example. If, during an offline training epoch, the Q-
learning algorithm turns the simulated WNIC off at time t and then on again at time

t + n, what happened to the packets that the trace indicates were transmitted and

received by the real WNIC during that period? In our offline learning setup, we chose

to assume that these packets were buffered either at the AP or within the WNIC,

and that these buffers were cleared and the packets sent during the next time slice

when the WNIC was in the on state.

The problem with this approach is that the behavior documented by the trace after

time t + n was affected by what the trace recorded happening before time t + n. Con-

sequently, when we let our offline learning algorithm ignore what actually happened

between time t and t + n, we end up invalidating the rest of the trace. Furthermore, it

seems likely that the errors introduced by each one of these disconnects between the

trace record and simulator are cumulative, such that after a handful of these episodes

the trace is probably useless as a document describing what is going to happen next.

We defend our actions by noting two points. First, using traces offline is a better
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State On Off
Action Off On Off On
1 -1.211 -1.795 -0.756 -1.119
2 -1.216 -1.819 -0.567 -1.189
3 -1.326 -1.952 -0.630 -1.250
4 -1.394 -2.019 -0.699 -1.320
5 -1.471 -2.097 -0.777 -1.402
6 -1.562 -2.181 -0.864 -1.486
7 -1.656 -2.279 -0.961 -1.582
8 -1.765 -2.381 -1.069 -1.682
9 -1.949 -1.875 -1.250 -1.188
10 -1.315 -1.787 -1.634 -1.391
11 -1.213 -1.797 -1.570 -1.483
12 -1.259 -2.134 -1.440 -2.764

Table 4.1: Q values obtained using the simple model.

starting point than trying to learn online from real data. Second, we believe that

since the agent's decision period is quite large (100 msec to 1sec) in comparison to

the amount of time it takes to transmit a TCP packet (0.5 to lmsec at 11Mbps) our

argument that buffered packets can be cleared within the first on interval is probably

accurate.

4.2.6 Results

In an effort to verify our simple framework we have tested the model described above

and the Q-learning algorithm using artificially generated trace data. Our artificial

trace, composed of 10 records, describes a situation in which a packet arrives every 10

seconds. Using -y = 0.9 and E = 0.1, and reward factor a = 0.7 we have demonstrated

reliable convergence to an optimal policy within 1000 training epochs. The optimal

policy in this case, described by the Q values in table 4.1, is for the WNIC to enter

the on state once every 10 seconds in order to handle the packet arrival, and then

spend the next 9 seconds in the off state. With this policy the WNIC minimizes

power consumption and avoids latency penalties.
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4.3 Extensions and Improvements to the Simple

Framework

In this section we discuss several important extensions to the model described above

that attempt to make it a more realistic representation of the WNIC's dynamics. We

believe that by applying these modifications in the future we will be able to realize

improved power management performance from the system.

4.3.1 Extensions to the State and Action Spaces

In our discussion of wireless networking hardware in chapter 2 we explained that

many of the internal WNIC power states are hidden from the software interface. For

example, based on the 802.11 WNIC hardware interface, software is only able to

differentiate between the on and off WNIC states, despite the fact that the device

actually has at least five major modes (transmit, receive, idle, sleep, off) not

including the various reduced-power radio modes. We believe that it is important

to investigate the consequences of including these hidden states in our model's state

space, and then determining through simulation if power management software agents

could devise improve policies for managing the transitions between these states.

4.3.2 Multiple Window Sizes

The state space of the simple model described above makes no attempt to record or

take into account the recent packet transmission and receipt history of the WNIC.

Since the current service load is a good predictor of future near-term service load

we expect to be able to improve the performance of our power management policies

through the introduction of history state variables similar to those described by Chung

et al [17]. For example, we plan to add state variables that record the average packet

arrival/departure rate over the past 100 milliseconds, 1 second, and 10 seconds.
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4.3.3 Better Learning Algorithms

We have based our initial experiments on Watkins' Q-learning algorithm since its

properties are well understood and the algorithm itself is easy to implement. However,

the Q-learning algorithm has several drawbacks notable drawbacks including a noted

sensitivity to models that have hidden states. Consequently, we are interested in

experimenting with other reinforcement learning algorithms. A natural first step

would be to experiment with the Sarsa algorithm [5], an on-policy temporal-difference

learning algorithm that is less sensitive to partially observable models than the Q-

learning algorithm. Furthermore, modifying our learning algorithm to use the Sarsa

algorithm instead of the Q-learning algorithm is simple since the Sarsa algorithm

differs from the Q-learning algorithm by only one line of code. We might also improve

our results by testing the Sarsa(A) algorithm. Finally, if all of these algorithms prove

to be too sensitive to the hidden states in our state model we will try experimenting

with POMDP methods.

4.4 Specific Applications of the RL Power Man-

agement Model

In the preceding sections we have described an abstract model that, without modifi-

cation, is not directly applicable to the problem of WNIC power management. Here

we discuss how one would adapt this abstract framework to the task of power man-

agement in infrastructure and ad hoc networks.

4.4.1 Power Management in Infrastructure Networks

A WNIC operating in an infrastructure LAN can enter low-power modes and turn

its radio off as long as it first notifies the AP. Subsequently, if the AP receives a

packet bound for the sleeping WNIC it will buffer the packet and alert the WNIC in

the next beacon frame. The 802.11 standard defines the beacon period as a variable

controlled by the AP. Despite this fact, the vast majority of access points rely on a 100

44



millisecond beacon period. This allows WNICs that are based on the PRISM chipset

described in chapter 2 to enter the lowest power-saving mode during the inter-beacon

periods and still have time to awaken and receive the beacon frame. It is important

to recognize that awakening from a low power state requires a significant amount of

energy, since capacitors have to be charged and oscillators stabilized. Consequently,

it is advisable to awaken and listen for a beacon frame only if the WNIC knows with

high probability that there are packets addressed to it that are buffered on the AP.

Krashinsky [21] notes this problem and proposes an extension to the hardware-

level 802.11 power management algorithm that would allow WNICs to change their

ListenInterval (the period between listening for a beacon frame) dynamically. He

refers to this mechanism as "ListenInterval-backoff" as a way of comparing it to the

familiar exponential-backoff contention algorithms that are used at the physical layer

in the Ethernet and 802.11 standards. In Krashinsky's heuristic algorithm, the WNIC

starts with a ListenInterval equal to the beacon period, but gradually increases this

variable in beacon period increments as long as the WNIC does not detect packets

buffered at the WNIC.

We believe that we can improve on Krashinsky's heuristic approach by using a re-

inforcement learning agent to control changes in the ListenInterval variable. Whereas

Krashinsky's algorithm is implemented at the hardware level and can see only physical

layer frame information, our mid-level RL algorithm would have access to transport-

layer and application-layer packet data, which would allow it to select a ListenInterval

suited to the needs of the applications running on the WNIC's host.

4.4.2 Power Management in Ad Hoc Networks

In chapter 2 we explained that ad hoc wireless LANs do not have a permanent, wired

access point to coordinate traffic and buffer packets for sleeping WNICs. Instead, in

ad hoc LANs the duties of the AP are shared by the stations participating in the

network. The most common model is for stations to volunteer or be elected to the

temporary role of coordinator. A station operating as the coordinator functions as

the AP for the ad hoc network. It buffers traffic for sleeping nodes and routes traffic
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to coordinators in other subnetworks. While the 802.11 standard provides MAC layer

support for ad hoc networks, it does not define a policy for how coordinators are to

be chosen.

The problem of how to choose coordinators has been a popular topic in the net-

working community for the past several years. Most people believe that the primary

application of ad hoc networks will be for battlefield communication or as the com-

munication layer in mobile sensor networks. Consequently, people have focused their

efforts on designing power-aware algorithms. Span [22] described by Chen et al.,

and the Power Aware Multi-Access protocol with Signaling for Ad Hoc Networks

(PAMAS) [23], described by Singh and Raghavendra, are two of the better known

protocols for organizing ad hoc networks in a power-aware manner. Readers interested

in an overview of power-aware ad hoc networks should consult Jones et al. [24].

The Span protocol is built on top of the 802.11 standard. In a Span network,

stations volunteer to become coordinators using an algorithm that takes into account

the station's battery state. Specifically, at regular intervals the current coordinator

clears a block of time during which other stations are to volunteer for coordinator

duty. This period is divided into slots. Each station measures its current battery level

and uses this reading to determine during which slot it will volunteer for coordinator

duty. For example, a station whose batteries are fully charged will volunteer during an

earlier slot, whereas a station whose batteries are nearly empty will volunteer during

one of the later slots. Each station listens to the channel as its slot approaches.

The first station to volunteer typically has the most fully charged batteries, and is

consequently elected as the next coordinator. Clearly this algorithm is designed to

prolong the life of the network as a whole, as it effectively prevents stations with

relatively little battery power from serving as coordinators.

We believe it is possible to improve on the Span algorithm using our RL-based

power-management policies. Our motivating example is the case of a station which

is receiving or transmitting streaming data. Since such a station is going to stay

awake anyway, it makes sense that the station should volunteer to be selected as the

coordinator in the network. We believe our mid-level approach stands a better chance
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than Span of being able to predict near and long-term traffic patterns that affect the

selection of coordinators.
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Chapter 5

Conclusions

In this thesis we have presented an adaptive mid-level framework for wireless device

power management based on reinforcement learning. We have shown some initial

results that demonstrate the potential of this technique. We have described several

ways of extending our framework and we have also illustrated specific ways in which

this framework can be applied to the task of power management in infrastructure and

ad hoc wireless networks.

Key Conclusions

* We conclude that a mid-level approach to power management is superior to low-

level techniques implemented at the MAC layer, and that a mid-level approach

is more convenient for programmers than adding power management directly

to applications.

" We conclude that a power manager needs to adapt to the patterns of the user

and the network in order to guarentee good performance and demonstrated

that techniques based on reinforcement learning are capable of adapting on a

continuous basis.

" Finally, we conclude that adaptive, reinforcement learning based power manage-

ment techniques have applications in ad hoc networks as well as in infrastructure

networks.
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5.1 Future Work

In chapter 5 we gave an extensive description of possible future directions for this

work. We briefly summarize these points below:

" Extend the state space to better reflect the actual internal states of the WNIC.

" Experiment with different reinforcement learning algorithms such as Sarsa as

Sarsa(A) with goal of finding an algorithm that is insensitive to the WNIC's

hidden states.

" Include a history state variable in the model so that the policy can predict the

future based on the past.

* Use the ns network simulator to estimate the performance of our techniques in

ad hoc and infrastructure networks.
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