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Abstract

Experimental measurement of the RMS timing jitter in an actively, harmonically mod-
elocked, sigma-configuration fiber laser using optical correlations are presented, along
with complete theoretical treatment. These results are compared to the theoretical
treatment and experimental results of timing noise spectral density measurements.
These measurements were obtained with a residual phase noise demodulation tech-

nique. The experimental results for the RMS timing jitter were sufficiently similar
and support the theory describing and relating the two measurement techniques.

Experimental results measuring the timing jitter and pulse correlations in a P-
APM fiber laser, passively modelocked at 10.378MHz are presented. The timing jitter
was measured using a frequency discrimination technique. Attempts to extract pulse
correlation values and timing jitter values/bounds are made with inconclusive, limited
quantitative success. Opportunity for further optimization and improvement exists
and may lead to significantly better quantitative results.
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Title: Elihu Thomson Professor of Electrical Engineering, Professor of Physics
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Chapter 1

Introduction

1.1 Motivation

Considerable interest in short duration, high repetition rate optical pulse sources

exists. Many applications that require sources with these characteristics also require

low timing jitter; that is to say low uncertainty in the timing of the output pulses. The

timing jitter of pulse sources used in these applications is often a limiting factor, thus

understanding and reducing timing jitter in mode-locked lasers is of great practical

interest.

One application that requires low timing jitter is high-speed optical telecommu-

nications transmitters. Specifically, timing jitter in high-speed optical telecommuni-

cations transmitters can cause pulses to deviate from their timing "slot", leading to

bit errors, as well as further problems such as pulse interactions.

High-speed optical sampling units for analog-to-digital conversion (ADC) can also

benefit from reduced timing jitter. The current goals in effective bit resolution and

sampling frequency are beyond the performance of all-electronic ADC systems. Typ-

ical goals in effective bit resolution and sampling frequency are 12+ bits and multi-

gigahertz frequencies, respectively [1].

A promising approach is to execute some ADC processes in the optical domain

instead of the electrical domain. One can conceive of methods to both optically

sample (discretize in time) and optically quantize (discretize in magnitude) a signal.

19
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Figure 1-1: Example of an ADC that samples optically and quantizes electronically

[ll.

We will concentrate on schemes that optically sample and electronically quantize, an

example of which is shown in Figure 1-1.

In this diagram, a high-speed, short-pulse, low timing jitter optical source is fed

into a sampling transducer, such as an amplitude modulator. The electronic analog

input to be sampled drives the transducer, modulating the optical pulse train and

thus creating a pulse train where each pulse has sampled the analog signal. Because

electronic quantizers are much slower than optical samplers, the sampled signal is de-

multiplexed into N separate streams, each at a frequency of yL of the optical sampling

frequency. Each of the lower frequency demultiplexed optical streams is then fed to

an electronic quantizer. The output of each of the quantizers is then multiplexed and

signal processed, resulting in a digital sampling of the analog input.

A recent compilation of the performance of both experimental and commercial

ADC systems in terms of effective bit resolution and sampling rate is shown in Figure

1-2. One will notice the constant upper limit in resolution as a function of sampling

rate up to around 1 MHz. At sampling rates higher than I MHz, the maximum

effective bit resolution falls off by around one bit per octave. Analysis shows that

the effective bit resolution above 1MHz is limited by aperture jitter [2]. Aperture

jitter refers to the fluctuation of the time at which samples are taken. For an optical

sampling system, this aperture jitter is synonymous with timing jitter.

20
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Figure 1-2: Performance survey of current ADC systems [2].

System performance and the limitations timing jitter places on it can be estimated

using the following approximation [5]:

T
(-7<-- (1.1)

2N

where T is the repetition rate, N is the effective bit resolution, and sigma is the timing

jitter.

Figure 1-3 expresses the same relationship. In this plot, aperture jitter is assumed

to be the only noise source. For a given sampling rate and effective bit resolution,

one can find a maximum tolerable aperture jitter. The aperture jitter performance

for modern electronic and optical sources are shown in the hatched region. One can

see that superior ADC performance can be achieved with optical sampling [1].

One should note that the aperture time also effects the performance of these

systems. Aperture time refers to the fact that sources put out pulses that are not

instantaneous, and thus the values sampled are actually a weighted average of the

analog signal over the shape of the sampling pulse. Clearly, shorter, 6 function-like

pulses are preferable. However, aperture time error is not as significant as aperture

21



10 Eloctronic
Sampling Jitter

0.01
Optiol Sampling Jitter

0.1 1 10
Sampling Rate (GS/s)

Figure 1-3: Dependence of ADC performance on aperture jitter, when aperture jitter

is the only sources of noise. [1]

jitter error, and can be thought of as being included in the aperture jitter [2].

To produce the best optical sampling performance, the ideal optical source should

output high frequency pulse trains consisting of short pulses with low timing jitter.

Optical sources that hold promise for achieving these goals are semiconductor lasers,

solid state lasers., and fiber lasers. This work focuses on efforts on fiber lasers.

To create short pulses in fiber laser systems, fast saturable absorber mechanisms

such as polarization additive-pulse modelocking (P-APM) are used. Typically, the

fast saturable absorber opens a low-loss window in time, that allow the pulses to build

up in this window. The low-loss windows are created by the pulses themselves, using

nonlinear effects such as the Kerr effect. Soliton effects further narrow the pulse and

limit its duration, while filtering limits the spectrum. The final pulse width reflects

the balance of these limiting effects [6].

Generally, high repetition rates can be achieved in two ways. The first is simply to

make a short cavity. In this approach, one intracavity pulse exists in the cavity (i.e.

the cavity is fundamentally modelocked), and the length of the cavity is reduced, thus

increasing the output repetition rate. As an example, to make a 10 GHz laser in a ring

configuration, the geometric circumference of the ring will be on the order of 2 mm.

This presents problems for many artificial saturable absorber schemes that require

22



nonlinear effects to accumulate in a roundtrip. Also, fitting the necessary optical

components (bandpass filter, waveplates, isolators, etc.) into the cavity becomes

difficult.

The second approach is to increase the number of intracavity pulses in the laser;

this is known as harmonic modelocking. Harmonic modelocking circumvents many of

the problems mentioned above that one encounters in short cavity laser designs, and

shows potential for producing low timing jitter pulse trains [4].

1.2 Thesis Organization

This thesis covers two distinct sets of experiments concerned with fiber laser timing

jitter. Background for analyzing and understanding the data from these experiments

is presented in Chapter 2 through Chapter 4, which covers optical correlations, spec-

tral noise density measurements, and modelocked laser noise. Chapter 5 covers the

first set of experiments, which compare and relate two methods of measuring RMS

timing jitter. Chapter 6 covers the second set of experiments, where the timing jitter

of a 10 MHz passively modelocked P-APM fiber laser is measured using frequency

discrimination. Chapter 7 discusses final results, conclusions, and future work. Ap-

pendicies follow for reference.
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Chapter 2

Optical Correlations and Timing

Jitter

This section explores the effect of timing jitter on optical correlation measurements.

Results that allow the extraction of the RMS timing jitter using optical correlation

measurement results are derived.

2.1 Optical Correlations Involving Timing Jitter

Optical correlations of two pulses are essentially a measure of the convolution of

those pulses. Typically, a pulse train is split into two paths, where the length of

one path is varied to create a relative delay between the pulse trains. The paths

are then crossed, typically inside a nonlinear crystal that generates second harmonic

frequencies (SHG) 1 . The intensity of the SHG is proportional to the overlap of the

fundamental frequency beam's intensities. The proportionality of the SHG to the

intensity of the fundamental frequency can be seen in the semi-classical equation for

SHG [8]2:

'There are methods to measure the pulse overlap other than using SHG crystals, including using

two-photon absorption in diodes or periodically-poled lithium niobate waveguides [7].
2Equation (2.1) is, in general, only one of two coupled equations for sum frequency generation,

and is valid for SHG in the undepleted pump approximation. Regardless, an illustration of the

intensity dependence of SHG is all that is sought here.
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4- Double-Arm SHG
Single- and

Double-Arm SHG minmimm+-Filter

Fundamental and SHG -

SHG Crystals --

Fundamental
Beams

Non-collinear Collinear

Figure 2-1: Illustration of collinear and non-collinear optical correlator setups. The

non-collinear setup allows for easy blocking of the unwanted single-arm SHG. The

collinear geometry does not allow for this, but has other advantages, such as the

ability to make interferometric optical correlations.

dA 2 _ 47rjw 2dAleikz
2 A 2 i~kz(2.1)

dz ~ k2c 2  1

where A1 is the electric field amplitude of the fundamental frequency, and A2 is the

electric field amplitude of the second harmonic frequency. The second harmonic is

measured as a function of the path delay, and the optical correlation trace is created.

All SHG photons originate from two fundamental frequency photons. These SHG

photons can be differentiated based on the origin of the fundamental photons from

which it came. "Single-arm" SHG is generated from two photons that originated

from the same beam. These SHG photons travel in the same direction as the photons

from which they originate. "Double-arm" SHG is generated by one photon from each

beam. These SHG photons travel in the direction of the average momentum of the

two incident photons, and comprise the second harmonic signal that is proportional

to the pulse overlap. For non-collinear geometries, where the two incident beam paths

do not spatially coincide, the double-arm photons of interest will be spatially separate
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from the single-arm photons, and can thus be isolated. This results in a background

free optical correlation. Figure 2-1 illustrates this difference between collinear and

non-collinear geometries.

The "sliding" overlap integral that will comprise the correlation, will logically

look like a convolution function. An expression for the auto-correlation3 and cross-

correlation 4, respectively, where timing jitter is assumed to be absent, can be written:

Cm,m(td) - dtIm(t)Im(t - td) (2.2)

Cm,n(td) = J dtIm(t)In(t + td) (2.3)

where Cm,n (td) is the expression for the noiseless optical correlation of pulse m and

pulse n. Im(t) is the intensity of pulse m as a function of time, t. td represents the

time delay between the two pulse streams, modulo the temporal pulse spacing (i.e.

the inverse repetition rate).

At this point, noise5 must be incorporated in the auto-correlation expression.

Optical correlation data points are measured on time scales that are much longer

than the temporal pulse spacing (i.e. the inverse repetition rate). As such, the

optical correlation is the average of the correlation of successive pairs of pulses, where

each pulse's nominal timing deviation is random from pair to pair. This suggests

that the optical correlation of pulses with timing jitter will be the expectation of

the convolution, where now random delays due to timing jitter are included as an

argument of the pulse intensity function. Using the basic definition of an expectation,

an expression for the optical correlation of two pulses with non-zero timing jitter can

be written. For the auto-correlation, this is the expectation of Equation (2.2) with

timing noise added:

3The auto-correlation is the optical correlation of a pulse with an exact copy of itself.
4The cross-correlation is the optical correlation of two pulses in general. The auto-correlation is

the special case where the pulses being correlated are identical.
5The discussions of noise will require substantial use of probability. A review of probability

concepts are included in Section B.1 as a reference for the reader.
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E[Cm,m(td, p(ATm, ATm))] J dAtm dtlm(t - Atm)Im(t + td - Atm) fATm (Atm)

(2.4)

where fATm (Atm) is the PDF of the noise ATm, and p(ATm, AT,) is the correlation

coefficient for the random variables ATm and AT.

Notice that this integral only depends on the relative positions in time of the

pulses; any constant time can be added to the argument of both pulses without chang-

ing the expression's result. Thus for the optical auto-correlation, since p(ATm, ATm) =

+1 always, and assuming the noise variables are identically distributed, Atm is added

to the argument of each pulse in Equation (2.4):

E[Cm,m(td, p(ATm, ATm))] = dAtm dtlm(t)Im(t + td)1 fAT.(Atm)

E[Cm,m(td, p(ATm, ATm))] = J dtIm(t)Im(t + td) (2.5)

Thus the auto-correlation does not change due to the presence of timing jitter.

An expression for the cross-correlation with noise can also be found. The cross-

correlation for two pulses, m and n, with timing jitter, results in the general expression

for an optical correlation in the presence of timing jitter:

E[Cm,n(td, p(ATm, AT))] = J dAtm J dAta

[J dtIm(t - Atm)In(t + td - Atn)1 fATm,ATn (Atm, Atn) (2.6)

where fATm,ATn (Atm, At,) is the joint PDF of ATm and AT., and the definition of

the expectation of functions of two random variables was used.

As a special case, it is seen that if pulse m and n are correlated such that

p(ATm, ATn) = +1, and ATm and ATn are identically distributed, then ATm = ATn.

We can therefore add ATm to the argument of both pulses in Equation (2.6):

E[Cm,n(td, p(ATm, ATn) =+1)] = J dAtm[J dtIn(t)Im(t + td)] fATm(Atm)

28



E[Cm,m(td, p(ATm, ATn) = +1)] = j dtIm(t)Im(t + td) (2.7)

which is equivalent to the cross-correlation without timing jitter, and becomes the

expression for the auto-correlation when m = n.

Finally, an alternate general expression for Equation (2.6) can be written. Again,

nothing is assumed about the timing jitter. By taking advantage once more of the

fact that a constant can be added to the argument of both pulses, Atm is added to

the arguments of both pulses. This results in an alternate general expression for the

optical correlation in the presence of timing jitter:

E[Cm,n(td, p(ATm, ATn))] =

j dAtM dAtn[J dtIm(t)In(t + td + Atm - Atn)] fATm,ATn(Atm, Atn)

E[Cm,n(td, p(AtM, Atn))] = j dAt[f dtIm(t)In(t + td - At)]fAT(At) (2.8)

where the definition AT = ATn - ATm is made. AT is a random variable that

describes the difference in the instantaneous timing jitter of the two pulses, and has

a PDF, fAT(At).

Note that Equation (2.6) and Equation (2.8) express the optical correlation for

two pulses, where the intensity profile of each pulse and the PDFs of the timing jitter

need only be of a well-behaved functional6 form. Each pulse and each jitter PDF

need not be the same, respectively.

6 By well-behaved, it is meant that the functional forms are such that the interpretations in the

derivation are valid. Functions that do not integrate to finite values (i.e. they are not localized) are

an example of functions that are not well-behaved. For virtually any real system, these functions

will be well-behaved.
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2.2 Pulse Width and Timing Jitter Variance Re-

lationships

The integrals in Equation (2.6) or Equation (2.8) can only be done analytically with

PDFs and pulse shapes of a very specific form. In general, these equations require

numerical calculation. However, results can be derived that will make the numerical

work much easier that direct numerical integration. Using analogies with probability,

the pulse functions may be treated as PDFs. The pulse widths and optical correlation

trace widths may be expressed as the variance width7 . Finding the variance width

will generally require numerical calculation. The calculation results can then be used

to calculate the RMS timing jitter using algebraic expressions.

The RMS timing jitter can be easily calculated from the variance width of the

timing jitter PDF. The variance width of any function depends on the first and second

moment of that function. Only the first and second moments of the functions in the

optical correlation expression are needed to calculate the first and second moments

of the timing jitter. By working only with these moments, and not the complete

functions, the math is simplified considerably.

Beginning with the Equation (2.8) for the general optical correlation of two noisy

pulses, Im(t) and I(t) are treated as PDFs. The PDFs must integrate to unity, so

the pulse functions are written as follows:

Im(t) = Emfm(t) (2.9)

where Em is the pulse energy, and fm(t) is the pulse shape, normalized so that it's

integral is unity.

Now assume fm(t) is the PDF of a random variable, Pm. The var(Pm), or equiv-

alently, varW(Im) for the variance width of pulse m, can be found.

This substitution modifies Equation (2.8), as follows:

7The variance width, and other related notation, are defined in Section B.2.1
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E[Cm,,(td, p(ATm, AT))]

EmEn dAt [ dtfm(t)fn(td - At + t) fAT (At) (2.10)

Notice that the integral over t of the two pulse functions resembles a convolution. If

fm(t) is symmetric, the sign of t in fm(t) can be reversed, the substitution t -+ -t

can be made, giving a form that is exactly a convolution.

When the pulse functions are treated as PDFs of Pm and Pn, this convolution

results in the PDF of Pm + Pn = AC, where AC is a new random variable, and Pm

and Pn are independent variables. Thus, the result of this integral is:

fAc(td - At) = J dt fm(t)fn(td - At - t) (2.11)

which is just the auto-correlation function. Using the probability rules for sums of

independent random variables, the variance width is simply given by:

varW(fAc) = varW(I) + varW(In) (2.12)

The equation now reads:

E[Cm,n(td, p(ATm, ATn))] =EmEn [J dAtfAc(td - At)fAT(At) (2.13)

This integral is exactly a convolution. This integral will result in the PDF of a new

random variable XC = AC + AT.

fxc(td) = j dtfAc(td - At)fAT(At) (2.14)

and its variance width is given as

varW(fxc) = varW(fAc) + var(AT) (2.15)
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Now, AT is defined as the sum of two random variables, -ATm and AT. To

remain general, no particular correlation of these variables will be assumed. Using

Equation (B.8), the variances of these distributions can be related as follows:

varW(AT) = var(ATs) + var(ATm) - 2cov(ATm, AT,) (2.16)

Combining Equation (2.15) and Equation (2.16), the final, general result relating

the timing jitter and the auto- and cross-correlation variance widths is found:

varW(fxc) = varW(fAc)+var(AT)+var(ATm) -2 var(ATm)var(AT)p(ATm, AT,)

(2.17)

If it is assumed that the timing jitter of each pulse is identically distributed and

averages to zero, Equation (2.17) can be solved for the variance of the timing jitter,

equivalent to the square of the RMS timing jitter:

< AT2 >= var(A Tm) = varW(fxc) - varW(fAc) (2.18)
2 - p(ATm, AT,)

Thus, to find the RMS timing jitter from data, only the variance widths of trace

data need be taken, the correlation of the pulse noise determined either by measure-

ment or assumption, and the values placed in Equation (2.17) or Equation (2.18), as

appropriate.

2.3 Timing Jitter Probability Density Function

The timing jitter that a pulse experiences is the result of many effects, including

quantum mechanical noise (vacuum fluctuations and spontaneous emission) added

during each pass through the amplifier, thermal noise, and acoustic noise. Often

these noise perturbations can be considered independent, and thus, via the Central

Limit Theorem, it is reasonable to expect the marginal PDF of the timing jitter of

pulse m to be well-approximated by a Gaussian:
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A -

fATm(Atm) 1 e 2a (2.19)
oAtm v'At

where the mean-squared timing jitter equals the variance (i.e. < At2 >= 02m)l-

Additionally, the timing jitter can be assumed to be stationary, thus each pulse

has the same PDF that is constant in time, the timing jitter PDF can be assumed to

be identical from pulse to pulse. As such, oatm = UAtn = oAt.

2.4 Timing Jitter Variance for Specific Pulse Forms

Specific functional forms for the pulse shapes will now be explored, and expressions

for the RMS timing jitter will be found. All pulses are assumed to be identical - pulse

shapes do not vary from pulse to pulse or with time, for times on the order of the

time it takes to complete an optical correlation. Relationships between varW and the

pulse width parameter, T, for gaussian and secant hyperbolic pulses are used. These

are given in Section B.2.3.

2.4.1 Gaussian Pulses

First, the simplest case of a gaussian pulse shape is considered. For such pulses, one

could analytically solve the integrals for the optical correlation functions, and find

the RMS timing jitter. However, the general result, Equation (2.18), is used instead.

Consider pulses that are gaussian in shape:

t
2

Im(t) = Ae 2rp (2.20)

where rp is the pulse width parameter.

If the gaussian pulse shape is normalized, and treated like a PDF, the resulting

variance width is given as

varW(Im) = T (2.21)

8See Section B.1
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Using Equation (2.18) and Equation(2.12), the RMS timing jitter is found to be:

varW (fxc) - 2-r2
ATRMS var(ATm) 2arW(fxc -Tn (2.22)

\2 -p(ATm, ATE)

2.4.2 Secant Hyperbolic Pulses

The nonlinear Schrodinger Equation that describes soliton systems has solutions that

are secant hyperbolic. As such, it comes as no surprise that the pulses dealt with in

soliton fiber lasers are typically secant hyperbolic in shape.

Consider pulses with a secant hyperbolic shape:

Im(t) = Asech - (2.23)

where r is the pulse width parameter.

Using the result for the timing jitter in terms of variance widths, Equation (2.18),

and the numerical results found in Section B.2.3, the following equation for the RMS

timing jitter of two secant hyperbolic pulses is found to be:

var W(fxc) - 4.922 2ATRMS = }var( ATm) r~x)-4 (2.24)
\ 2 - p(ATm, ATn)

These results will be used to calculate the timing jitter from optical correlation

data.

2.5 Optical Cross Correlation Delay Line and Dis-

persion

In practice, when doing an optical cross-correlation, achieving a large range of delays

can be difficult. A fiber delay line in one path of the optical correlator is one way to

implement this. A nice feature of this approach is the ease with which the delay length

may be changed. Group Velocity Dispersion (GVD), however, presents a problem,

as the pulses in the delayed optical fiber path will be broadened before they are

overlapped with pulses in the other path [4].
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The error due to GVD can be calculated and accounted for, assuming higher-order

dispersion is negligible. When a dispersive fiber delay is placed in one path of the

optical correlator, it will cause pulses in that path to be dispersed when they arrive

at the nonlinear crystal. Thus, when the two pulse trains interact in the crystal, one

train of pulses will be undispersed and the other will be dispersed. This will change

varW(fAc), according to Equation (2.12). Thus, the cross-correlation measurement

can be corrected given the variance width of the dispersed pulse and the undispersed

pulse.

The dispersed and undispersed pulse variance widths can be found by making two

auto-correlation measurements, one made with no optical delays anywhere, in order

to determine the undispersed pulse width, and one made with the optical delay placed

before the pulse train is split into two paths in order to determine the dispersed pulse

width. The new expression for the RMS jitter, using a dispersive delay line is then:

< AT2 >= var(ATm)= varW(fxc) - varW(Innd) - varW(Ii.,) (2.25)
2 - p(ATm, AT)

where und is the pulse shape function for the undispersed pulse, and Idisp is the pulse

shape function for the dispersed pulse.

2.6 Summary

In this chapter the mathematical treatment of optical correlations including the effects

of timing jitter was reviewed. Results relating the pulse width, via the auto- and cross-

correlation widths, to the timing jitter variance were derived. The special cases of

gaussian and secant hyperbolic pulse shapes were explored. Finally, an expression for

the variance of the timing jitter, corrected for the dispersion of a delay line used in

cross-correlations, was presented.
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Chapter 3

Spectral Noise Density and Timing

Jitter

In this chapter I explore the spectral noise density expression for timing jitter, and

derive the necessary results for calculating the RMS timing jitter. I then review

specific demodulation techniques for measuring the spectral noise density.

3.1 General Derivation of the Spectral Noise Den-

sity

The timing jitter of a modelocked laser may be described and understood in the

frequency domain. In this section, expressions will be presented for the spectral noise

density function for timing jitter. The noise spectral density will be related to the

correlation function of the noise of two pulses1 . This exposition follows [9].

I start by writing the (ensemble) average intensity of an optical pulse train, (Ip(t)),

as:

'For purposes of connecting this Chapter to Chapter 2, one should note that when the expec-

tation of one of the noise variables is zero, the noise correlation function and the covariance are

interchangeable. In fact, throughout this work, it will be assumed that the expectation of the noise

variables are zero, thus this equivalence holds.
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(Ip(t)) = EEpf(t - mTR) (3.1)

where Ep is the average energy of the pulses, f(t - mT) is the normalized time-

dependent pulse shape, m is an integer indicating the pulse number, and TR is the

inverse repetition rate. Note that I assumed all pulses to have the same shape.

Now, allow the pulse energy and timing to fluctuate from pulse to pulse with

random noise variables AEm and ATm, respectively. We can then write an expression

for the pulse intensity, expand the resulting expression in a Taylor Series, and keep

only first order terms in ATm and AEm2 :

I(t) = (Ep + AEm)f(t - mTR - ATm)
m

I(t) = Z(Ep + AEm)f(t - mTR) - Ep ATmd f(t - mTR) + ... (3.2)

Assuming that each pulse's timing noise is identically distributed and stationary,

(ATm2) can be found, given ((ATo - ATm) 2 ), and (ATOATm), according to Equation

(B.8).

Taking the discrete Fourier transform of (AaoAi3m), where variables are general-

ized to a and 0 (which can independently be either be T or E), the noise spectral

density follows:

00 010

SAaO,Am(Q) E (ACeOOm)e6 j1MTR = R 2(AaoA3m) cos(-jQmT) (3.3)
m=-o m=O

where it is seen that the noise spectral density will alias every q.

To find the (AaoAQm) in terms of the noise spectral density, the inverse Fourier

transform is taken:

/T dQ f/TR dQ
(AOZA3m) = TR] 'SaOAfT(Q eijmTR = 2TR (SQ0 ApiQ) cos( jQmTR)

-W/TR 2r Jo 27r
(3.4)

2This effectively neglects distortions in the pulse shape.
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where one should note that integral should only be over "one alias" of the spectral

noise density.

Using these expressions, the mean-squared timing jitter between two pulses, given

the timing jitter spectral density, is:

2/A T2 Tf' df

(AT = - SATO,"N T() (3.5)
- irITR 27

where the expectation of the timing jitter is taken to be zero. Using this expression,

the RMS timing jitter is calculated from the timing jitter spectral density.

3.2 General Demodulation Measurement

Two ways3 to measure the timing jitter of a modelocked laser are direct detection

and demodulation. In direct detection, proposed by von der Linde [11], the laser

output intensity is detected. The amplitude noise and timing jitter of the laser output

produces noise in the generated photocurrent. This photocurrent is then viewed on

an RF signal analyzer, where the amplitude and timing jitter appear as sidebands

about the carrier. By looking at several harmonics, one can estimate the timing

jitter value, using the fact that sidebands due to timing jitter go as the square of the

harmonic number, and the amplitude sidebands are constant. While this method is

simple and quick, quantitative results are fairly inaccurate. Much better quantitative

results may be obtained using a demodulation technique.

A general demodulation scheme mixes two signals, both of which may contain

noise. The mixing products are a baseband set of the noise sidebands with the carrier

removed, and a second harmonic signal with noise sidebands. The second harmonic

is filtered out, and the baseband noise is observed.

Demodulation has several advantages over direct detection. Direct detection the

carrier consumes more of the RF spectrum analyzer's dynamic range, whereas demod-

ulation removes the carrier at baseband, allowing one to view the sidebands using the

full dynamic range. Thus one can observe much greater detail in the noise spectrum
3 Other methods may be used, such as Phase-Encoded Optical Sampling [10].

39



LO Phase Delay

AE, AT Amplifier

Mixer - IF Signal
Low-Pass

RF Amplifier Filter

AE, AT

Figure 3-1: Example of a general demodulation scheme for amplitude and timing

noise measurement.

and extract more accurate quantitative results. Also, demodulation allows one to

bias the measurement system to either suppress amplitude noise or the timing noise,

as will be described.

Figure 3-1 illustrates a general demodulation scheme. Two RF signals of the same

frequency, both containing amplitude and phase noise, are amplified to appropriate

levels, are adjusted in relative phase, and are combined in a mixer. The second

harmonic frequency generated by the mixing is filtered with a low-pass filter, and the

resulting mixing products are the noise sidebands at baseband.

Note that nothing was said thus far about the origin of the RF signals. The origin

of the RF signals is specific to the measurement scheme, and will be covered in Section

3.3.

In this section, the demodulation of two signals with amplitude and timing noise

will be derived. Subsequently, two specific demodulation measurements will be ex-

amined.

3.2.1 Mixing Products

I begin with the expressions for the time-dependent voltages that are the RF and LO

inputs of the mixer. They can be written as:
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VRF(t) = (VRF + AVRF(t - td)) sin (21rfo (t - td) + ADRF (t - td))

VLo(t) = (VLO + AVLo(t)) cos (27rfot + A4LO(t)) (3.7)

where V are the voltage amplitudes with i = RF, LO; fo is the nominal frequency of

the signals; td accounts for any time delay between the RF and LO signals; and AV(t)

and A'i(t) are the random variables for the voltage amplitude noise and phase noise,

respectively.

Notice that Equation (3.6) and Equation (3.7) are written to be in quadrature

when the phase adjustments due to the phase noise variables and delay are the same

for both input signals. By mixing the signals in quadrature, the voltage output of the

mixers is biased to be most sensitive to phase noise and to suppress the amplitude

noise. Figure 3-2 illustrates this. With quadrature biasing, the zero crossing of the

LO sinusoid is aligned with the peak of the RF sinusoid. Amplitude fluctuations in

the RF signal, being multiplied by the small amplitude of the LO signal in the mixer,

are damped out. Phase deviations in the RF sinusoid, however, are multiplied by the

peak of the LO signal, resulting in large changes in the mixer output.

To maintain quadrature, it is clear that the time delay in the RF port signal must

be discrete such that:

t Pd (3.8)
2 fo

where Pd = 0, 1, 2.... The mixing products of Equation (3.6) and Equation (3.7), after

a little algebra, are given as:

AV(t) = a(VRF + AVRF(t - s)) (vLO +AVLO(t))

sin (27r(2fo)t - Pd7 + A'IRF(t - Ld ) + ALot))

+ sin (A4RF(t - )d - A'LO(t) - Pd7r) (3.9)
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Figure 3-2: An illustration of how quadrature mixing makes the detection system

sensitive to phase fluctuations and insensitive to amplitude fluctuations. Fluctuating

signals are shown as dashed lines.

where a is the mixing coefficient. The DC and second harmonic results appear clearly.

The low-pass filter next strips out the second harmonic component, giving:

AV(t)
cPd P A= kyVRFVLO + AVRF(t - )VLO + VRFAVLO(t) + AVRF(t - Pd)VLO2 2f 2 fo

sin (AJRF(t - Pd A (3.10)2fo

where the sign in front is positive for even Pd and negative for odd Pd.

At this point, all amplitude noise terms are second order or higher. Taking the

noise variables to be small, all second and higher order terms are ignored:

AV(t) = k aVRFVLO sin A RF(t - Pd) - A 'LO(t)
2 2 fo

AV(t) = ±Ko sin A4RF ( - P A2f LOM

where Ko = VRFVLO

(3-11)
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Assuming that the phase deviations are small compared to a radian, /MN << 1,

sin(x) can be approximated as x, resulting in:

AV(t) ~ ±K, (ARF(t ~ Pd APdLO(t) (3.12)2 fo LO,

Finally, the mean-squared values of Equation (3.12) are found, Equation (3.4) is

substituted in, and common integrals and factors are removed, resulting in the phase

noise spectral density expression:

SAvAv (fm) = K2 (SAm RF,ADRFfM) + SAILOAILO fM) -
2 SADRFALO (fm) Cos(QMTR

(3.13)

3.2.2 Phase Noise and Timing Jitter

The phase noise quantities, Abi, can be written in terms of the timing jitter quanti-

ties, AT. This can be simply done using:

A5i(t) = 27rfoAT(t) (3.14)

where i = LO, RF. By taking the mean-squared value of this equation, using Equa-

tion (3.4), and removing the common integrals and factors, the timing noise and phase

noise spectral densities can be related:

SAciA4(fm) = (27rfo) 2 SAT,AT(fm) (3.15)

The mixing products can then be cast in terms of the timing noise variables:

AV(t) ~27rfoK, ATRF(t - d- ATLO(t) (3.16)

sv,v (fm) = (2,rfoKO)2 ( SATRF,ATRF (fin) + SATLO,ATLO (i)

-
2

SATRF,ATLO fM) COS(QmTR)) (3.17)
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3.2.3 Single Sideband Noise and Phase Noise Spectral Den-

sity Relationship

The conventional way to express the phase noise of a signal is to display the single

sideband (SSB) noise, L(f m ). This is often taken to be a plot of the noise sidebands

that are generated when the carrier is modulated with the noise spectral density, nor-

malized by the total signal power. Assuming that the noise power is small compared

to the signal power, L(f m ) is often approximated as the SSB plot normalized by the

carrier power alone. The units of L(fm) are dBc/Hz, the power normalized to the

carrier power in a 1 Hz bandwidth at fm offset frequency from the carrier.

For each specific demodulation measurement technique, a relationship between

L (f m ) and the phase noise spectral density, SAAp (fm), is desirable. This relationship

will be established. Again, the assumption that the noise power is small compared to

the carrier power is used. When a carrier is phase modulated, sidebands are generated,

and their magnitudes are Bessel functions of the peak phase deviation of modulation,

J, (O), where 3 is the peak phase deviation. If the phase deviations are taken to be

small enough, the Bessel functions can be approximated as 3, and the mean-squared

phase deviations become . Looking at the ratio of the single sideband power to the

carrier power, L(f m ), 02 is arrived at, giving:

L(f m ) = SA-b,A.(fm) (3.18)
2

This expression can be rewritten in terms of the timing noise spectral density,

using Equation(3.14):

L(f m ) = 2(7rfo) 2 SAT,AT(fm) (3.19)

The reader is referred to [12] and [13] for more details.
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Figure 3-3: A diagram of a residual phase noise setup for laser timing jitter measure-

ment.

3.3 Specific Demodulation Techniques

Using the previous results, two specific demodulation techniques for measuring phase

noise will be examined: residual phase noise measurement and frequency discrimina-

tion.

3.3.1 Residual Phase Noise Measurement Technique

In this section, the Residual Phase Noise (RPN) demodulation technique for measur-

ing phase noise is outlined. An expression relating the measurement results with the

noise spectral density will be derived. This section draws on references [12] and [3].

Figure 3-3 shows a typical RPN setup, and illustrates how the two RF signals

analyzed above are derived. The optical pulse train output of the laser is detected,

generating a time dependent photocurrent at the fundamental and harmonic repeti-

tion rates and of the laser. The harmonic frequencies are filtered out, either by the

bandwidth of the detector or explicitly with filters, leaving a single RF frequency at

the cavity repetition rate. This signal serves as the RF port input to the mixer:

The signal against which the detected laser output is mixed, the LO port signal,

comes from a source where the phase noise as compared to that of the laser pulse

train is considered negligible. Typically, for actively modelocked lasers, one derives
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the reference signal from the local oscillator that is driving the modelocking element

in the laser.

As stated, this technique assumes that the phase noise of the reference signal is

negligible, i.e. A4LO = 0, compared to that of the laser system under test. In essence,

the LO signal is assumed to be a perfect sinusoid. Starting off with Equation (3.11),

these assumptions are used, giving:

AV(t)~ KOA(DRF(t)

The resulting voltage is linearly proportional to the phase deviations created by the

timing jitter. Note that A4(t) is a random quantity, and thus AV(t) will also be

random. However, for constant phase delays the above equations are still valid, which

gives a way to measure KI, as will be seen in Section 6.1.3.

This expression is solved for the phase noise variable, and then rewritten in terms

of the timing jitter, using Equation (3.14):

ADRF(t) fAV(t) (3.20)
KO

ATRF (t) eAV(t) (3.21)
27rfoKo

Using Equation (3.4), the phase noise spectral density, SA(RFA4RF (i) , can easily

be written as a function of the voltage noise spectral density, SAvAv(fm). To do this,

the mean-squared values of both sides of the Equation (3.20) are taken, are written

as integrals of the spectral noise densities, and common integrals are removed:

SA(RF,A4RF UM) K f2 (3.22)

which, doing the same for Equation (3.21), the analogous expression for the timing

noise spectral density is found:

SATRF,,TRF UM) 1_0 fzKi(fM) (3.23)
(2irfoK ) 2

Finally, using Equation (3.18), the single sideband expression for RPN is derived:
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Figure 3-4: A diagram of a frequency discriminator setup to measure laser timing

jitter.

SAVV( fm ()
LRPN(fm 2K2 (3.24)

3.3.2 Frequency Discriminator Technique

In this section, the Frequency Discrimination (FD) demodulation technique for mea-

suring phase noise is outlined. An expression relating the measurement results with

the noise spectral density will be derived. This section draws on references [12] and

[13].

Figure 3-4 shows a typical FD setup, and illustrates the origins of the RF and LO

signals. The optical pulse train is split into two essentially identical pulse trains. One

pulse train is detected and filtered leaving one harmonic, at frequency fo as given in

Equation (3.7), of the detected signal - this serves as the LO signal. The other pulse

train is delayed by some amount of time, td = P, according to Equation (3.8), is

then detected, and filtered for one harmonic - this serves as the RF signal. Again,

the timing noise of the pulse trains manifest as phase noise in the detected sinusoidal

signal, and amplitude fluctuations appear.

The general results of Equation (3.12) and Equation (3.13) are easily specified to

this case. The phase noise variables for both the RF and LO signal as a function of

time are clearly the same, as they originate from the same pulse train, thus A<DRF(t) ~
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A~Lo(t) = A4(t). This gives:

AV(t) ±K, A(D(t - )fo A1(t) (3.25)

SA VAV UM) Pd (.6
SA1(t),'A(t)(fm) ~ K ) + SAD(t)',(t-_ Pd fm) COS j27rfm (3.26)

Using Equation (3.14), these two expressions can be written in terms of the timing

noise:

AV(t) ±27rfoKo ATRF(t - Pf - ATLO(t) (3.27)

SAVAV(fm) e Pd
SAT(t),AT(t) (fM) 2(27K)2+ SATt),ATt_ y() (3.28)

and from these the single sideband measurement is found using Equation (3.18):

L(fm) = SAV2NYM) + 2(7rfo) 2 SAT(t),T(t-d) cos 27rfm (3.29)

where the noise spectral densities are for positive frequencies. Notice that the mea-

surement is of SAy(fin), and an assumption must be made about the correlation of

the noise variables.

Sensitivity

The phase modulation of a signal can also be described as a frequency modulation.

A signal that undergoes a frequency change will have, after propagating a distance,

a resulting phase change as compared to the phase of the signal at the end of the

propagation distance before the frequency change occurred. In this way, the delay

line converts the frequency deviations associated with the timing jitter into phase

deviations proportional to the delay length at the mixer. By analyzing the frequency
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discriminator in terms of frequency noise, the frequency discriminator sensitivity can

be derived.

The relationship between the phase, timing, and frequency must first be estab-

lished.

Of = (3.30)
27r at

The Fourier decomposition of the phase fluctuations can be written and compared to

the Fourier decomposition of the frequency fluctuations in order to write the Fourier

amplitudes of the phase fluctuations in terms of the Fourier amplitudes of the fre-

quency fluctuations. For a particular frequency of phase modulation, fn, the phase

variable can be written as:

A4D(t, fm) = A(bo(fm) sin(27rfmt) (3.31)

where AdIo(fm) is the amplitude of the Fourier component of the phase deviations

at fm. Using Equation (3.30), the fm component of the corresponding frequency

modulation, AF(t, fm), can be found:

AF(t, fm) = A4bo(fm)fm cos(27rfmt) (3.32)

Thus, the amplitude of the Fourier component of the frequency modulation, call it

AFo(fm), is given as:

AFo(fm) = A o(fm) fm (3.33)

Solving for A<Do(fm), Equation (3.31) can be substituted:

AFo(fm)
A4D(t, fm) = sin(27rfmt) (3.34)

fin

Notice that the integrals of Equation (3.31) and Equation (3.32) over (positive) fm

result in the time dependent phase and frequency changes, respectively.

Equation (3.34) is substituted in for the noise variables in Equation (3.25) resulting

in the output voltage as a function of time and modulation frequency:
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rVt fA Fo(fm) P A Fo (fm)AV(t, fm) iKO f sin(27fmt - 7rfm-) - f si(27rft))

AV(t, fm) ~ ±Ko2AFo(fm) sin(7rfm Pd )cos(27rfmt - Prfm ) (3.35)
fm 2fo 2fo

The cosine term describes the time dependent output of the mixer. The coeffi-

cient of this cosine, KFD, describes the sensitivity of the system. This coefficient is

rewritten as:

pasin(7r fm 2
KFD = iK27rAFo(fm)2 P rf ") (3.36)

The sensitivity has a si7x) dependence, with nulls at:

= 1 2fo (337)
m,nu (3td Pd

Around these nulls, the sensitivity is extremely poor.

Ideally, the frequencies of interest will be well below the first null. A generally

accepted criterion is that, if the maximum frequency of interest, fmax, is such that:

fmax < = f (3.38)2 7rtd 7rPd

then the sensitivity can be taken as constant.

For frequencies closer to the null, a correction for the sin(x) dependence can be

incorporated. However, it must be realized that the sensitivity still degrades closer to

the null, and measurements are virtually useless at the null. The generally accepted

criterion for valid measurements using a correction for the !") dependence is:
X

fmax < - fo (3.39)2 td Pd

Looking back at Equation (3.36), it can be seen that, to improve the sensitivity, the

value of the time delay can be increased, via Pd. While this increases the sensitivity,
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it decreases the first null frequency, and increasingly limits the range of frequencies

at which measurements can be effectively made.

One must also account for, when increasing the delay time, the loss of the delay

line. This loss will reduce VRF, and thus reduce K0. This leads to the existence of

an optimal delay length for a particular range of frequencies. For microwave systems,

this issue has practical significance. Due to the extremely low loss of optical fiber

delay lines, on the order of 0.2 dB/km, however, it is much less of an issue of concern.

Choice of Harmonic Frequency for Phase Detection

One feature of the derived results that should be explored regards the frequency, fo,

that is filtered out and used after the optical pulse train is detected. For a laser

system at repetition rate ffnd, the fundamental frequency need not be chosen; any

higher harmonic in which there is sufficient power can be used. To account for this

possibility, the fundamental frequency is rewritten as:

fo = Nffnd (3.40)

where N is the harmonic number of the harmonic that is chosen.

Unfortunately, it turns out that the change of variables from A1b to AT brings

a factor of 27rNffnd according to Equation (3.14), and the relationship between fre-

quency and timing incurs a factor of 2rNf according to Equation (3.30), resulting

in the same sensitivity to timing fluctuations. Equation (3.40) is used to rewrite

Equation (3.36) as:

sin(7rf, Pd
KFD = kK07r2AFo Pd (2ffld) (3.41)

2Nff,,d 7~rn ,,P
2Nff nd

Changing the chosen harmonic, in effect, has the same effect on the sensitivity as

changing the delay length.

Changing the harmonic has other implications. In looking at the assumptions

made in deriving these results, it is seen that by increasing the operation frequency,

the assumption that the phase noise is much less than one radian becomes more
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restrictive. Higher harmonics can be used to increase the sensitivity and reduce the

need for long delay lines, but only to the extent that the phase noise is still less than

one radian at the harmonic frequency.

The Delay Line

The delay line, as shown, has a significant impact on the operation of the frequency

discriminator. As such, there are other issues of practical nature regarding the delay

line that should be considered and addressed.

The first issues concerns the effect of thermal variations on the delay line. Ther-

mal variation will effect both the physical length of the delay line, and the index of

refraction. The latter effect on the index of refraction is much more significant, so

physical length variations will be ignored in this discussion.

Typically, the thermal dependence of the index of refraction on temperature is

on the order of nT 10-9. The time delay of the delay line is given, in terms of

refractive index, n, and physical length, Ld, as:

td = nLd (3.42)
C

where c is the speed of light. Thus, for temperature variation, AT, the delay time

variation is:

nT AT Ld
Atd(AT) = (3.43)

These thermal variation will need to be small enough that quadrature is not deviated

from significantly.

The thermal time delay variations can be rewritten as thermal phase variations in

the detected signal. Using Equation (3.14) of the detected signal, the thermal phase

variations are found:

Aqpd(AT) = 2 7rNffndnTATLd (3.44)
C
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As the harmonic frequency of operation is increased, the thermal phase deviation for

given temperature change is increased. This means that higher operating frequencies

will be more susceptible to thermal variations in the delay line - the delay line becomes

more sensitive to both signal variations and thermal variations.

The second question regards the effect that the dispersion in the optical delay line

will have on the measurement. Fortunately, the pulse broadening due to dispersion

will have no effect on the measurement. The optical pulse train can be written as

the sum of Fourier components that comprise the combined RF and optical spectrum

of the pulse. Because the detection and filtering only leave a single frequency of the

Fourier composition of the pulse train, the dependence of the propagation constant

on frequency.

3.4 Summary

In this Chapter, a frequency-domain picture of phase (timing) noise was developed.

General demodulation techniques for measuring phase noise were then reviewed. Two

specific techniques, residual phase noise and frequency discrimination, were reviewed

in detail, sensitivities were derived, and other considerations were discussed.
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Chapter 4

Modelocked Laser Noise

4.1 Soliton Theory

In this section, relevant results of soliton theory are briefly summarized. This section

follows [14].

The existence of optical soliton solutions in waveguides was first predicted by

Hasagawa and Tappert [15]. The Nonlinear Schrodinger Equation is the fundamental

equation that governs the formation of solitons, and is given as:

da F1 d2

j = 1"d2 + 11a12 a (4.1)

where a is the field, /" is the group velocity dispersion (GVD) 1 , and q is the nonlinear

Kerr coefficient. In cases of anomalous dispersion (0" < 0), solutions to the NLSE

exist, and these are solitons.

The fundamental soliton solution 2 is of the form:

a(z, t) = Psech(!)ej'!2 (4.2)

where T is the pulse width, and Ps, related to the peak power of the soliton, is given

by:

'See Section A.1
2The fundamental, or N = 1 solution, is the only solution of concern to us, as higher order soliton

solutions are unstable.
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PS = 2 (4.3)
r/Tr

As such, a relationship between the pulse width and peak power, or energy, is set

by the system parameters, the dispersion and nonlinear coefficient. This relationship

is called the Area Theorem:

E, = 2PT (4.4)
TT

where E, is the pulse energy.

4.2 The Master Equation

In a soliton laser, effects such as gain, loss, spectral filtering, noise, and active mod-

ulation effect the development of the soliton. These effects result in the addition of

terms to the NLSE. In addition, the Kerr nonlinearity can, in general, lead to self-

phase modulation (SPM) and/or self-amplitude modulation (SAM). Thus, the Kerr

nonlinearity term is rewritten where SAM and SPM are separated.

It is also convenient to cast the NLSE in terms of two timescales, t and T. The

first time scale, t, is on the order of the pulse duration. The second timescale, T, is

on the order of a cavity roundtrip, TR. Making this change, the NLSE is modified

and recast as the Master Equation:

d [Q2
TR da - D at2 + Q 6) a|2 a =

,1,82 MAM _- jMPM CSg - 1 2 (1- cos mt)1 a + TRS (t, T) (4.5)
Q2 at 2  2

where the parameter, D, now expresses the average dispersion in one roundtrip of

length d.3 The Kerr coefficient, rj, has been replaced with -y - j6, where Y is the

effective SAM coefficient and 6 is the effective SPM coefficient. Both are averages

3Here, D = .1"d. This is different than the alternate notation for dispersion, given in Appendix

A.1.
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over a roundtrip, and thus are proportional to rd. The spectral filtering is expressed

by the filter bandwidth, Qf, where the filter shape was Taylor expanded about the

peak transmission and includes only terms to second order. The active amplitude

and phase modulation depths are expressed by MAM and MPM, respectively, where

wm is the modulation frequency.4 Finally, the stochastic variable, S(t, T) drives the

noise in the laser. General analytic solutions for this equation have not been found.

One should be careful when comparing the notation here with that of Chapter

3. The driving noise term, S(t, T) is not the representation of the noise spectral

densities, Si (fin). Section 4.3.4 provides information that will further clarify the

notation.

It is clear that solutions to the Master Equation are not strictly solitons. However,

assuming that the effects that were added to the NLSE to arrive at the Master

Equation are small per roundtrip, it is reasonable to think that solution to the Master

Equation are soliton-like solutions, or solitary pulses.

4.3 Soliton Perturbation Theory

The noise term in Equation (4.5) will be treated in this section. The noise is handled

using perturbation theory; as such, the noise perturbation to the NLSE must be

assumed small. This section draws on [3] [4] [16].

4.3.1 Linear Perturbation of NLSE Solution and Equation

One starts by writing our solution as the solution to the NLSE, modified by a small

linear perturbation:

{ 2Ta(t, T) = [a.(t) + Aa(t, T)] e- o (4.6)

where a,(t, T) is the soliton solution to the NLSE using the notation of the Master

Equation as given here:

4 It was assumed that the active amplitude and phase modulation are in phase at the same

frequency. Such a situation would occur using a dual-drive amplitude-phase modulator.
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ao(t, T) = Aosech ( exp A T(4.7)

and thus:

a,(t) = Aosech ( (4.8)

The linearly expanded solution to the NLSE is substituted into the Master Equa-

tion, and terms beyond first order in Aa(t, T) are ignored. More information on this

substitution can be found in [16]. The resulting equation will be used to project out

the equations of motion for the pulse parameters.

4.3.2 Expansion of Linear Perturbation in Pulse Parameters

One expands the perturbation, Aa(t, T), to first order in a Taylor Series about the

exact soliton solution in the four pulse parameters: energy, phase, frequency, and

timing:

0a8 (t) Oa(t) ____)

Aa(t, T) = |W=WO(w(T) - wo) + | Ioo0 (0(T) - Oo) + |a(t) =PO(p(T) - po)

+at It=to(t(T) - to) + ac(t, T)

Aa(t, T) = fw(t)Aw(T) + fo(t)AO(T) + fp(t)Ap(T) + ft(t)At(T) + ac(t, T) (4.9)

where Ai are the noise variables of the respective pulse parameter, and ac(t, T) is the

coupling of the pulse to the continuum.

One can then find the equations of fi(t, T) functions:

fw(t, T) = I - Atanh (A) a8 (t) (4.10)

fo(t, T) = ja,(t) (4.11)

ft(t, T) = -tanh (t) a.(t) (4.12)

2
fp(t, T) = j-ta(t) (4.13)

WO
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One would like to project a particular noise variable out of the Master Equation

to arrive at the equation of motion for that variable. To do this, an orthogonal set of

adjoint functions is defined:

f-w(t, T) = 2a,(t) (4.14)
1 -

f..o(t, T) = 2j- [I - -tanh (t)] a,(t) (4.15)

f-t(t, T) = -ta 8 (t) (4.16)

f-p(t,T) = j ( 2 tanh (- a,(t) (4.17)
(WOT 7

where, by orthogonality:

- Re [Jdt'f* (t')fj (t') =6, (4.18)

4.3.3 Projecting Out The Noise Variable Equations of Mo-

tion

Equation (4.9) can be substituted into the linearly perturbed Master Equation. The

orthogonality of the functions and adjoint functions can then be used to project the

pulse parameter noise variables. Doing so leads to the following equations of motion

(as a function of T) for the projected noise variables:

TR-Aw [-2g8s + 2-yA] ± T RSw(T) (4.19)
OT

TRT AO = -6A Aw +TRSo(T) (4.20)
OT 0W

T aR-T = g Ap + MPMWAT ± TRSp(T) (4.21)TROT AP 3 2T2 A PW

2 ' 2MAM22
TR AT = -2DIAp - 2 WmT 2AT+ TRSt(T) (4.22)

where g. is the saturated gain, and is defined in terms of other pulse and system

parameters. The reader is referred to [16] for details of the manipulation.
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In the context of this work, Equation (4.22) and the coupling of the other pulse

parameter noise variables is of interest.

4.3.4 Deriving the Noise Spectral Density Equations

Using the equations of motion, the noise spectral density equations in terms of the

noise source variables, Si(T), can be derived. This is most conveniently done in the

frequency domain. Thus the following Fourier Transform pair is used:

f( f(T)e~50T dQ (4.23)

f (T) = f (Q)eilTdT (4.24)

where Q is the angular frequency variable, and the factor of To in front is a normal-

ization time that prevents divergence of the spectrum.

The noise spectral densities in this Chapter will be written as ( IAi(Q) 2), where

Ai is the noise variable. Given the To factors that appear in the Fourier Transform

pairs, (IAi(Q)12 ) is the noise spectral density. This change of notation is done to

remain consistent with the source literature.

Specific cases can now be observed, and the equations for the timing noise spectral

densities can be derived.

4.4 Specific Cases of the Master Equation

The terms that appear in the Master Equation, Equation (4.5), will vary depending

on the nature of the system being described. In the following sections active and

passive modelocking equations are briefly reviewed, and expressions for the timing

noise spectral densities are found.
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4.4.1 Active Modelocking

For an actively modelocked soliton laser with amplitude and phase modulation, the

Master Equation becomes:

D 2 _j a1
- JDo2 -iSo~aI

+ TRS (t, T)
Ia+ Eg

- 1 +
1 92 MAM - jMPM -COSWmt)1 a

2 (.2)

(4.25)

where the SAM coefficient is set to zero. The resulting equations of motion are:

a
TR a w

aT

TR-a P
OT

TRa AT
5T

S-2gsAw + TRSw(T)

= -6AO + TRSo(T)
wo

4 g_2A+ RpT
3 Q2 g2 AP + MPMWZT+TRS(T)

= 2 MAM 2 2
-- 2IDIAp - 2 WrMT AT+±TRSt (T)

(4.26)

(4.27)

(4.28)

(4.29)

Transforming to the frequency domain, solving for the mean-squared spectrum of

the timing noise, and ignoring cross-coupling terms, one finds the expression for the

noise spectral density for active modulation:

(IAT( )12)
(jSP(Q) 2) 42 + (I(Q)12)

~fQ) ( ±P2 ) +QPM

where the following parameters are defined as:

QPM 2ID|MPMw 2

1 7 r2 MAM 221
TAM 3  2 TR

1 4 1

Tr 3Q2r 2 T
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+Q2)

(4.30)
+ 2Q2M(AT -Q2 )

(4.31)

(4.32)

(4.33)



Figure 4-1 and Figure 4-2 shows three plots of the phase noise spectrum using

realistic values for the equation parameters. One plot is of the phase noise spectrum

with pure amplitude modulation (QPM = 0) and the other two are with pure phase

modulation (rAM --+ oo).

4.4.2 Passive Modelocking

In the case of a passively modelocked laser, the Master Equation will take on the

following form:

d a2 1 1921
TR-a = [D + ( - -3)la a + -1+ a + TRS (t, T) (4.34)

where effective values for -y, and 6 will be specific to the passive modelocking mech-

anism. All active modulation depth parameters have been set to zero. The resulting

equations of motion are:

a
TRa Aw = [-2g, + 2-yA2]Aw + TRSW(T) (4.35)

OT

TRaAO = -6A2AW +TRSo(T) (4-36)
aT 0WO

TRaT Ap = 4 2 Ap + TRS(T ) (4.37)
aT 3 Q 2 2

aT

Solving for the mean-squared spectrum of the timing noise, and ignoring cross-

coupling terms, one finds:

I 41D 12 (1 S (Q) 12) _ IS Q 2

(IAT(Q))2 T +2 +(St(2)I2) (4.39)

Notice the 1 dependence. Because there are no damping terms in the equation of

motion for the timing noise, as expected, the timing jitter experiences a random walk.

Figure 4-3 shows a plot of this spectrum in which realistic values for the parameters

were used. Experimental analysis in Chapter 6 will make use of Equation (4.39) that

generated this plot.

62



0.

-10-

-20
-30-
-40 . . -........................... ....... . . ..............

-60
-70.

-80
-90' .. .....

-100

E

C)

E

0

z IM 1

E

C

-

E

-o-

0M 0

10.
0 . -........ .... .........

-10-
-20-

-30- . ...

-40 -.. . . ... .................. . . .... _ _

-50

-60-
-70 ..- -........ ... ....... ........ ---
-801
90'

10 100 1k 10k 100k

Offset Frequency (Hz)
IM 10M

Figure 4-1: Examples of theoretical noise spectral densities for an overdamped (left)

and underdamped (right) phase modulation [3].
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Figure 4-2: Example of the theoretical noise spectral density for amplitude modula-

tion [3].
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Figure 4-3: Example of the theoretical noise spectral density for passive modelocking.

4.5 Summary

In this chapter, soliton theory was briefly reviewed. The Master Equation and it's

solutions were discussed, and perturbation theory was used to treat noise. From this,

equations of motion for the mean-squared noise variables were derived. The cases of

active and passive modulation were then explored.
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Chapter 5

Experiments Comparing Optical

Correlation and Spectral Density

Timing Jitter Measurements

The first set of experiments performed compares the measurement of the timing jitter

of an harmonically modelocked fiber laser using two techniques. One technique uses

optical correlations and the fact that the timing jitter effects the cross-correlation

width but not the auto-correlation width. The other technique, the residual phase

noise technique (RPN), beats in quadrature the detected RF harmonics against a

"noiseless" reference signal at the same frequency, and examines the spectrum of the

resulting baseband.

5.1 Experimental Setup

I set out to demonstrate experimentally that either a set of optical correlation mea-

surements or a set of noise spectral density measurements would give equivalent re-

sults for the RMS timing jitter. This work was done in collaboration with Matthew E.

Grein. This section describes the details of the experiments as they were completed.
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Figure 5-1: Optical Correlator Setup [4].

5.1.1 Optical Correlation Measurement Setup

For the optical correlation measurement, a non-collinear optical correlator with a

nonlinear second-harmonic generating POM crystal was used. Figure 5-1 illustrates

the design. The delay of one arm is implemented with a motorized translation stage,

which is scanned during a correlation. The correlator was built with the option to

use a fiber delay to create long delays. In these measurements, the fiber delay was

not used. This system was built by Leaf A. Jiang.

5.1.2 Spectral Noise Density Measurement Setup

A residual phase noise measurement system was used to measure the phase noise spec-

tral density. This system is shown in Figure 5-2. The optical pulse train is detected

using a Discovery Semiconductor photodiode (Model DSC40S, 16 GHz bandwidth).

This signal is amplified with a JSA Technologies Amplifier (Model: JCA812-600,
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Figure 5-2: Residual Phase Noise Measurement Setup used to measure the timing

noise spectral density of the Sigma Laser.

+60dB gain) and beat in quadrature with the output of the Poseidon Shoe-Box Os-

cillator (9 GHz) that drives the laser modelocker. The DC component of the mixing

product is the detected by an Agilent 89410A Vector Signal Analyzer, and the fre-

quency spectral density of this DC voltage is recorded.

5.1.3 Laser System

The laser system (shown in Figure 5-3) used in these experiments is a sigma-configuration

actively modelocked fiber laser, built by Matthew E. Grein [3] [17]. The ring section of

the cavity is made with polarization maintaining components to avoid problems due

to polarization rotations caused by random birefringence. The linear section contains

an optical filter and a Faraday rotator at the end, so that light propagating in one

direction down the linear section returns in the orthogonal polarization. This effec-

tively undoes the random birefringence, which changes on time scales much longer

than the round-trip transit times in the linear section. The linear section allows the

use of more inexpensive, non-polarization maintaining components.

The round-trip cavity length is 500m. A modulator was used to modelock the laser

'Results presented are using a 20nm bandwidth filter. A 10nm bandwidth filter was tried,

resulting in greatly reduced timing jitter. Because the aim is to show equivalent timing jitter results

for the two measurement techniques, and not show low timing jitter, the 20nm filter was chosen.
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Figure 5-3: Sigma Laser Setup. [3]

at 9GHz. With this length and repetition rate, the harmonic number, the number of

intracavity pulses, is calculated to be 22,500.

The modulator was a dual-drive amplitude/phase modulator (Lucent Technolo-

gies, Model x2623C, 18GHz bandwidth). This modulator has two RF inputs which

allow the LiNbO3 waveguides in each path of the Mach-Zender interferometer to be

driven independently, thus allowing both phase and amplitude modulation. Our driv-

ing signal, derived from a local oscillator Poseidon Oscillator was split into two paths.

An attenuator and phase delay were placed in one path to allow us to modulate the

laser as desired.

Because of the long cavity length, thermal drifting of the cavity modes was signif-

icant. In order to stabilize the modulation frequency relative to the cavity repetition

rate harmonics, a phase-locked loop is used. A piezo cylinder, around which some of

the linear section was wrapped, served as the actuator. The feedback from the phase

locked loop circuit was then used to stretch the cavity so as to keep its optical length

locked to the oscillator. It was found that the modulation could be locked with the

cavity length on the order of minutes, and sometimes hours.

The laser output typically consisted of 1.2ps pulses (FWHM), with average power
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Figure 5-4: Typical optical spectrum of the sigma laser output.

around 7mW. The short pulse duration shows that nonlinear pulse shaping occurs, as

such durations would not be achievable otherwise with active modelocking. As such,

the pulses are secant hyperbolic.

5.2 Results and Conclusions

The data obtained from the laser diagnostic, optical correlation and noise spectral

density measurements will now be examined. From these the RMS timing jitter will

be calculated and compared.

Figure 5-4 shows a typical optical spectrum from the laser.
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Figure 5-5: Trace of the auto-correlation and cross-correlation of neighboring pulse.

5.2.1 Optical Correlation Measurement Results

The optical auto-correlation and cross-correlations of neighboring pulses are shown in

Figure 5-5. The numerically calculated variance widths, using the data that generated

these traces, are found to be varW(XC) = 3.31ps2 and varW(AC) = 1.97ps2 .

When calculating the timing jitter, it is assumed that neighboring pulses are

uncorrelated. Given that the output pulses originate from different intracavity pulses,

this assumption is expected to be valid.

Using Equation (2.18) and assuming that the pulses are uncorrelated, an RMS

timing jitter calculation results in 819fs. To place conservative bounds on the cal-

culated timing jitter, a p(AT, AT) = +1 correlation assumption results in an RMS

timing jitter of 1158fs, and a p(AT, AT) = -1 correlation assumption results in
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Figure 5-6: Single Sideband measurement of the phase noise spectral density of the

sigma laser.

668fs.

5.2.2 Residual Phase Noise Measurement Results

The Residual Phase Noise Measurement trace for the sigma laser is shown in Figure

5-6. The noise floor is plotted to show that the measurement is of noise from the

laser and not the measurement device.

From Section 3.1, one must integrate from 0 to -- to calculate the mean-squared

value of the timing jitter. For the sigma laser, this corresponds to integrating out to

7, or 4.5GHz, the Nyquist frequency. Unfortunately, the SSB data only extends to

10MHz.

71



Sigma Laser - Harmonic Noise Peaks
*1

-105-

-110-

-115-

-120-

-125 -

-130-

-135 -

-140-
I I I'I. -I

-20k

9.35 MHz
5.53 MHz
2.13 MHz

A~

IN~

-10k 0 10k

Harmonic Peak Offset Frequency (Hz)
20k

Figure 5-7: An overlay of three noise harmonics taken using an Agilent 8565EC RF

Spectrum Analyzer (9kHz - 50GHz). The plots have been offset slightly, to allow

for better viewing. They are ordered lowest to highest harmonic, left to right. As

expected, the noise harmonics alias.

If it is assumed that the timing jitter of each pulse is identically distributed and

uncorrelated, as was done with the optical correlations in Section 5.2.1, then the

harmonic noise peaks will alias [9]. Figure 5-7 shows an overlay of the specified

harmonic noise peaks, and supports the aliasing claim. Using this assumption, the

timing jitter can be calculated by integrating out to 10MHz and multiplying the result

by 450 to account for the remaining noise peaks out to the Nyquist frequency. Using

this process, an RMS timing jitter of 2619fs is calculated.
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5.2.3 Conclusions

The results from each type of measurement are roughly on the same order. A number

of factors are likely to have contributed to the disparity.

The optical correlation measurement is limited in its resolution. For many systems

with low jitter, including the sigma laser using a 10nm bandwidth optical filter (data

not presented), the fractional width change in the cross-correlation is rather small.

This can make it difficult to resolve, and lead to error.

In the residual phase noise measurement, the assumption that the oscillator timing

noise and the laser output noise are uncorrelated may not be accurate. The laser

modelocker is driven by the oscillator, and thus the laser and modelocking oscillator

cannot be totally independent. The assumption that the noise contribution of the

local oscillator is zero is also not exact. It is expected that this source of error,

however, is not very large, considering the specifications of the Poseidon oscillator

(-112 dBc/Hz © 100Hz, -141 dBc/Hz © 1kHz, -161 dBc/Hz C 10kHz, -172 dBc/Hz

L 100kHz). A third source of error is through the coupling of amplitude noise to

phase noise. While the bias was set to suppress amplitude noise, this suppression is

far from perfect, on the order of -15dB [3]. Thus, amplitude noise bleed-through is

expected to contribute to error.

Given the sources of error in this measurement, the experimental results reason-

ably illustrate the relationship between both measurement techniques.
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Chapter 6

Experiments Measuring Timing

Jitter of a Passively Modelocked

Fiber Laser Using Frequency

Discrimination

In this chapter, experiments which use frequency discriminator techniques to measure

timing jitter in a 10MHz fundamentally modelocked P-APM laser are described. The

performance of the frequency discriminator system is observed. The timing jitter of

the system is calculated, based on the measurements made and their limitations.

6.1 Experimental Setup

6.1.1 Passively Modelocked P-APM Fiber Laser System

Figure 6-1 shows the laser system used. Most of the length of the laser consists of

Erbium-Doped Fiber and Dispersion Shifted Fiber (DSF) sections. In these section,

nonlinear polarization rotation via the Kerr Effect occurs1 . This results in higher

'Nonlinear polarization rotation due to the Kerr Effect occurs in the Single-Mode Fiber (SMF)

fiber also. Most of the length of this laser cavity is made up of the Erbium and DSF sections, and
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Figure 6-1: The P-APM 10MHz laser.

intensities emerging from the fiber in one state of polarization, and lower intensities

in a different polarization state. Subsequently, the polarizing isolator is reached, and

different loss is experienced depending on the polarization state, i.e. the intensity.

When the waveplates and polarization paddles are properly biased so that higher

intensities pass through the polarizing isolator with less loss, modelocked operation

is favored [18].

It should be noted that other bias points exist. Very often, near the modelocked

bias points there lies a bias point that causes Q-switching. Additionally, there are

very stable continuous wave (CW) states, where CW modes of operation are favored,

resulting from biasing that suppresses modelocking.

The discrete nature of soliton pulse energies, as shown in Section 4.1 by the Area

Theorem, can also be seen in this system. At sufficient pump energies, on the order

of 80mW and above, the cavity can support multiple pulses per round trip. How the

energy is distributed, i.e. what pulse configurations are over a round-trip period, is

fairly random and extremely hysteretic, as seen by oscilloscope traces. The multiple-

pulse operation is eliminated by reducing the pump power while in a modelocked state

until one pulse per round trip operation (fundamental modelocking) is achieved.

thus we treat nonlinear polarization rotations elsewhere as negligible.

76



The laser was pumped with an SDL MOPA Laser (Model 5762) at 978nm. The

pump beam is coupled into Flexcore fiber and forward pumps the Erbium using a

Gould 980/1550 WDM fiber coupler. The typical pump power level that supported

single-pulse operation was 35mW ± 10mW, depending on the polarization paddle

and waveplate settings. In many cases, the laser would fall out of modelocking as the

pump power was reduced before single-pulse operation could be reached.

Typical average optical output power from the laser in this state was 150iW at

the 10% output port. The pulse parameter width, T, of the output pulses was 520fs

as shown in Figure 6-3.

A typical optical spectrum is shown in Figure 6-2. One may initially assume that

the two lobes on the side are Kelly sidebands [19][20]. However, this may not be

the case. The optical filter being used has a 7.5nm bandwidth, and falls off sharply.

When CW lasing, the spectrum clearly shows where the edges of the filter lie. Those

edges correspond exactly with the dips between the main peak and side peaks of the

modelocked spectrum. Thus it seems that the filter causes this feature.

Given the Fourier transform of a square function, one expects this square filter

shape to cause lobes to appear in the time domain, on either side of the pulse. (The

Fourier transform of a square is a function of the form si"C.)) The auto-correlationX

of the pulse is shown in Figure 6-3, and indeed, the lobes do appear.

Traces for various ranges over the RF spectrum are given in Figure 6-5. The even

distribution of the energy into the harmonics shown in the 0Hz to 2GHz trace gives

indication that there is one pulse, not multiple pulses, per round-trip time. The roll off

of this plot is due to the bandwidth of the RF amplifiers (0-1GHz) used in detection.

The trace from 0Hz to 200MHz shows the uniformity of the harmonic peaks. The

final trace is a close-up of the fundamental repetition rate peak, and shows that this

frequency is 10.378MHz.

6.1.2 Frequency Discriminator Setup

A frequency discriminator measurement system, shown in Figure 6-6 was constructed

to measure the timing jitter. The P-APM laser output was split using a 20%-80%
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Figure 6-2: Typical modelocked spectrum of the P-APM fiber laser. Overlayed on

this is the laser output when not in a modelocked state. One can clearly see the filter

edges coinciding with the dips in the modelocked spectrum.
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train.
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coupler. The 20% path was split again with a 1%/99% coupler, where the 1% port

went to the optical spectrum analyzer and the 99% port went to the optical correlator.

The 80% port served as the input to the frequency discriminator setup. This port was

split with a 50%/50% coupler. One output was fed to the LO detector. The other

port is delayed by a changeable fiber delay line, and then fed to the RF detector.

Both the RF and LO detector are Discovery Semiconductor DSC40S detectors with

a 16GHz bandwidth, chosen to match each other as closely as was possible in their

responsivity. The delay lines were made of Corning LEAF fiber, with a dispersion of

5 ps/nm/km.

The detected signals were then filtered by a Mini-Circuits bandpass filter (Model

SBP-10.7, 10MHz CWL, 3.7MHz BW), and then by a low-pass filter (Mini-Circuits,

Model SLP-750, 750MHz). The resulting signal was then amplified by two cascaded

low noise amplifiers (Mini-Circuits, ZFL-1000LN, +20dB gain, NF 2), attenuated

to appropriate levels to avoid amplifier compression, amplified by another amplifier

(Mini-Circuits, Model ZKL-2, +29dB gain, NF 5), DC blocked (Arra, 1-9572E), phase

delayed in the RF arm (two Arra delays, Model 3448B, 27r 0 1GHz range each), and

fed into the mixer (Mini-Circuits, Model ZFM-4, Level +7dBm) ports. Immediately

before the mixer port, a -20dB tap (Mini-Circuits, Model ZFDC-20-5) was placed to

monitor the power into the mixer to ensure optimal mixing. The mixer output was

filtered with another low-pass filter (Mini-Circuits, Model SBP-3, 3MHz) leave a DC

signal.

6.1.3 Determining K0

By measuring the spectral noise density of the voltage, one can calculate the timing

jitter spectral density. This calculation requires the conversion from voltage noise

spectral density to phase noise spectral density, and thus a measurement of the con-

version constant, K0, is needed, as shown in Equation (3.28).

This is done by adjusting the RF path length until an average of zero voltage at the

output is seen. This average was viewed using an averaging function on a Tektronix

digital oscilloscope (Model: TDS 380, 400MHz BW). Once this zero average voltage
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Figure 6-6: The frequency discriminator system used for these measurements.

is found, the RF path length was adjusted small amounts using the phase delay, and

the delay amount (in radians) and voltage recorded. The slope of a linear fit to these

data points provided the slope of the voltage vs. phase, which is precisely K0.

This process was performed out before each spectrum is taken. Each set of cali-

bration data consisted of at least four data points.

6.2 Results and Conclusions

Using the frequency discriminator, voltage noise spectral densities were taken for de-

lay lengths of Om (noise floor), 500m, 1000m, 2000m, 4000m, 5000m, and 6000m. The

complete set of data is shown in Section C.1 in terms of the voltage noise spectral

density. Figure 6-7 presents two single sideband spectra, assuming no pulse corre-

lation. Because the pulse correlation is not known, single sideband measurements,

C(fm), can not be plotted with quantitative accuracy, but can provide qualitative

information.

6.2.1 Sensitivity

One will immediately notice the oscillations that begin to appear at higher frequencies.

In Section 3.3.2, the sensitivity for a frequency discriminator system was derived,

concluding that the sensitivity has a siIx) dependence. The oscillations that appear

82



Single Sideband Plot Assuming Zero Correlation
-80,

10 100

-1000m Delay
Noise Floor

1k 10k

.. . . . . . .. . . .

100k 1M

Frequency (Hz)
Single Sideband Plot Assuming Zero Correlation

-80I

5000m Delay
-- Noise Floor

I
10 100 1k 10k 100k

Frequency (Hz)

Figure 6-7: Frequency discriminator single sideband plot of timing jitter, assuming

no correlation. Delay length is 1000m / 5.Ops (top), and 5000m / 25.Ois (bottom).
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in the data match up extremely well with the theoretically predicted sensitivity.

6.2.2 Extracting the Correlation as a Function of Delay

Equation (3.28) shows the correlation function in the expression for the voltage fluc-

tuations. It has been shown in [9] that for a fundamentally modelocked laser, the

mean-squared jitter, i.e. the correlation function, should be:

D D
(AT(O)A T(nTR)) = (1 - D)_e-2TR I (6.1)

2'1TR 2SYTR

where the approximation holds when -yTR << 1.

Because this exponential decay of the correlation affects the noise spectral den-

sity, an attempt can be made to extract this correlation from the data. One may

integrate the timing noise spectral densities for each delay length, and observe the

resulting dependence of the timing jitter on delay length. Ideally, this will result in

a measurement of -yTR. Considering the si"Cx) sensitivity limitations of the frequencyX

discriminator measurement, a portion of the spectrum must be chosen where, for ev-

ery delay length, the system is sensitive enough to take valid data. Figure 6-8 shows

the sensitivity plots for the time delays used in this experiment. From this, it is

concluded that the frequency range from 175kHz to 191.7kHz is most appropriate.

The resulting calculated RMS timing jitter values over this bandwidth are plotted

in Figure 6-9 as a function of delay length. As expected, the integrated timing noise

increases as the correlation decreases. However, the expected 1 - e Rt dependence is

not seen.

The extraction of the correlation coefficient would benefit from careful choice of

delay lengths to maximize the overlap range. High-resolution plots of the overlapping

frequency band to be integrated would also greatly improve the accuracy.

6.2.3 Timing Jitter Results

Although the noise spectral density results do not allow the extraction of a number for

the timing jitter, attempts were made to extract limits for the timing jitter, making
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Figure 6-8: Plot of the sensitivity of the frequency discriminator as a function of

frequency for various delay lengths. The first null frequency decreases as the delay

length is increased.
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certain assumptions.

The first calculation made was to plot the timing noise spectral density noise

floor, and integrate out to the Nyquist frequency. This result will give some idea of

the minimum amount of RMS timing jitter one can measure. Of course, the actual

minimum is dependent on the spectral distribution of the timing jitter. Either way,

an integral of the noise floor, using Equation (3.5), results in a timing jitter of 168ps.

A similar calculation for the 6000m delay length, executed without " correction

or regard to the noise floor, yields an RMS timing jitter of 248ps.

Given the lack in the data of any spectral characteristics predicted by the theory,

as well as many other uncertainties, it is not believed that these numbers are valid.

6.2.4 Conclusions

This set of experiments produced inconclusive results.

It seems that the data is masked by the noise floor at low, rising out at higher

frequencies. This seems strange, considering that the frequency discriminator should

show maximal sensitivity at low frequencies, and that a passively modelocked laser

should exhibit a timing noise spectral density that is greatest at lower frequencies.

Also, it appears that the noise spectrum first "rises out" of the noise floor at in-

creasingly higher frequencies as the delay is lengthened. One would expect that longer

delays would increase the sensitivity a lower frequencies and cause the "rising out"

frequency to decrease as the delay is lengthened. This leads to the conclusion that

data that appears to be above the noise floor, while clearly related to the sensitivity

of the frequency discriminator, is not timing jitter in the optical pulse train.

More specifically, it is believed that the spectral densities are dominated by extra-

neous noise. This conclusion is based on several observations. In attempts leading up

to acquiring the data presented, the filters in the frequency discriminator arms were

place after the amplifiers. In those preliminary data sets, the sensitivity oscillations

in the noise spectral density were not as clearly seen.

The filters were moved before the amplifiers in order to increase the average power

at the mixing to necessary levels for the mixer to operate correctly. However, by
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moving the filters before the amplifiers, all of the unwanted noise from the amplifiers

is now allowed to reach the mixer, and thus the mixing products of the amplifier noise

shows up in the data. Additionally, large integrated spectral density numbers were

seen. Therefore, it is believed that the timing jitter is below the noise floor. Filtering

earlier in the frequency discriminator should improve performance.

The noise floor also seems to show oscillatory behavior in the MHz range. This

behavior seems to appear around 2-3MHz, and is attributed to the 3 MHz bandwidth

of the 3MHz band-pass filter after the mixer and the 3MHz bandwidth of the 10.7MHz

bandpass filters. Obviously, the filters interfere with results at these frequencies.

Ideally, filters should be used that flatly pass out to the Nyquist frequency.

If indeed it is laser timing noise that is rising out of the noise floor, the shape of

the optical filter may be partly responsible for the disparity between the experimental

and theoretical characteristics of the noise spectral density. The filter drops off very

quickly, so the expansion of the filter shape to second order in the timing noise spectral

density derivation in Section 4.2 may neglect significant higher-order contributions.

In Section 5.1.3 it was observed that the filter greatly effecting the timing jitter, so

it seems plausible that the filter may play a significant role here.

At this point, the only fundamental limitation of the frequency discriminator

seems to be the bandwidth limitations.

6.2.5 Future Work

Several future experiments can be pursued as extensions of this work.

The simplest is to further optimize the current setup. The laser system would

benefit greatly from a more appropriate optical filter. Much room for optimization

of the frequency discriminator to decrease the noise floor also exists. Although this

thesis showed that, theoretically, using laser output harmonics will not improve the

system's sensitivity 3.3.2, this should be verified experimentally.

Another question arose during this work: One detects the optical pulse train, and

looks at the phase noise as an indication of the optical pulse train noise. When one

observes a higher harmonic of the pulse train, how does one interpret the phase noise

88



at a position in time corresponding to a position between pulses in the optical pulse

train? Future work may pursue this and similar questions.

Ultimately, the interesting application of the frequency discriminator is to measure

the timing jitter of quiet passively modelocked laser systems. The current P-APM

laser, modified for regenerative phase modulation [21] qualifies as one of these systems,

and measurements of this laser's noise will be pursued.
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Chapter 7

Summary

In this work, optical correlation, residual phase noise, and frequency discriminator

techniques for measuring the timing jitter of an optical pulse train were reviewed.

Experiments comparing the results of an optical correlation and residual phase noise

measurement were compared, and reasonably close results were found.

Soliton perturbation theory was also reviewed, and observed for the case of active

and passive modelocking. Experiments using the frequency discriminator technique to

measure the timing jitter of a polarization additive-pulse modelocked fiber laser were

carried out. The current experimental results allowed for few concrete conclusions;

however, there are many avenues left to explore to improve the performance of the

system and the results of experiments.
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Appendix A

Physical Derivations Reference

A.1 Dispersion

The combined effect of material and waveguide dispersion are important in consider-

ing fiber laser operation, and are vital to the existence of solitons. The relationship

between two parameters used to express the group velocity dispersion (GVD) of a

particular dielectric waveguide is sought here. This section is based on [14].

For a wave with frequency w travelling down a waveguide there is an associate

wavevector, 3(w). We expand # in a Taylor Series about zero frequency in order to

express the wavevector's dependence on frequency as a sum of polynomials:

O(W) = O(W = 0) + W + - W2 +..
.9 .W=0 .a2. W=0

1
13(w) = /o + /'w + -"w 2 + ... (A.1)

2

)3" is the GVD, which describes the curvature of the wavevector's dependence on

frequency, and is most commonly given in units of ps 2/km.

The D parameter is another expression of the GVD, and is related to #" in the

following way:

2irc
D = 27r" (A.2)
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D is normally given in units of ps/nm/km. Normal dispersion, where longer

(red) wavelengths propagate faster than shorter (blue) wavelengths, corresponds to

/ > 0, D < 0. Anomalous dispersion, where short (blue) wavelength propagate faster

than longer (red) wavelengths, corresponds to / < 0, D > 0.
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Appendix B

Mathematical Review

B.1 Review of Basic Probabilistic Quantities and

Concepts

This section is primarily intended as a reference to the reader. Most of the information

for this section is taken from [22]. We follow this source's notation, where we write

random variables with capitalized variables, and nominal values of that variable with

lowercase variables.

B.1.1 Probability Density Function

The Probability Density Function (PDF) describes how likely a particular random

variable is to take on a value that falls within a given range. Thus, if we consider

random variable X, which has a PDF called fx(x), then the probability that X will

take on a value between x and x + 6 is given by:

P(x < X < x +J) = j dxfx(x) (B.1)

For two random variables, X and Y, we can define the joint PDF, describing how

X and Y vary with respect to each other. We write this as fxy(x, y). From this,

we can find the PDFs of each variable alone, the marginal PDFs. For example, the

marginal PDF of X is found as follows:
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fx(x) = fxy(x, y)dy (B.2)

B.1.2 Expectation

The expectation, or first moment, of a random variable describes the mean, or average

value that a random variable will take on. The expectation of random variable, X,

is written as E[X] or as (X).

One can also take expectations of functions of random variables. For a function

of continuous random variable, X, the expectation is given as:

E[g(X)] = (g(X)) = J g(x)fx(x)dx (B.3)

For functions of continuous random variables, X and Y, the expectation is given

as:

E[g(X, Y)] = (g(X, Y)) = J J g(x, y)fxy (x, y)dxdy (B.4)

B.1.3 Variance and Mean-Squared Value

The variance of a random variable describes how spread out the probability distribu-

tion is - how it "varies". The variance of random variable, X, is written as varX and

is defined as:

var(X) = E[(X - E[X])2 ] = E[X2 ] - (E[X])2 = (X 2 ) - (X)2  (B.5)

which we see is a function of the first and second moment. Notice that, when the

expectation is zero, the variance equals the mean-squared value, (X 2).

One can take variances of functions of random variables, in an analogous way to

that shown in Equation (B.3) and Equation (B.4).
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B.1.4 Moments

Generally, one can talk about the moments of a PDF, where the nth moment is given

as E[X"]. Knowledge of the value of every moment of a given PDF will uniquely

specify the PDF.

B.1.5 Covariance and Correlation Function

As the variance describes how a random variable varies, the covariance describes how

two random variables vary relative to each other. The covariance of random variables,

X and Y, is given by:

cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y] = (XY) - (X)(Y)

(B.6)

Notice that when either the expectation of X or Y are zero, the covariance is equal

to the correlation function for X and Y, (XY).

B.1.6 Correlation Coefficient

The correlation coefficient, p(X, Y), is a normalized version of the covariance. jp(X, Y) I
expresses the degree of correlation and ranges from 0 to 1, and the sign of p(X, Y)

expresses the sign of the correlation (whether X and Y tend to have the same or

opposite signs). The correlation coefficient is given as:

(X'Y) cov(X, Y)

var(X)var(Y)

Note that perfect correlation does not imply that the random variables have the

same PDFs. Also note that the correlation coefficient and the correlation function

are related, but are not the same thing.

B.1.7 Variance of the Sum of Two Random Variables

For the general random variables, X and Y, the variance of their sum is given as:
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var(X + Y) = var(X) + var(Y) + 2cov(X,Y) (

or in terms of mean-squared values and correlation functions, we see the expectation

cancel and find:

((X + Y) 2 ) = (X 2) + (Y 2) + 2(XY) (B.9)

B.1.8 Independent Random Variables

Two random variables, X and Y, are said to be independent when the probability

distribution of one is not effected by knowledge of the other variable. Independence

is formally defined when the joint PDF of X and Y are related to the marginal PDFs

of X and Y by the following:

fx~y (x + y) = fx(x)fy (y) (B.10)

B.1.9 A Few Consequences of Independence

Independence leads to the following consequences:

1. The cov(X, Y) = 0. X and Y are uncorrelated.

2. The PDF of the sum of X and Y, call it Z, is the convolution of the PDF of X

and the PDF of Y:

(B.11)fz(z) J fx(x)fy (z - x) = J dyfy(y)dxfx(z - y)

3. The variance of Z equals the sum of the variances of X and Y:

var(X + Y) = var(X) + var(Y)

98

(B.8)

(B. 12)



and thus:

((X + Y) 2 ) = (X 2) + (Y 2 ) (B.13)

B.1.10 Central Limit Theorem

The central limit theorem, an expression of the strong law of large numbers, states

that the sum of a large number of independent random variables tends to have a

distribution that is Gaussian, regardless of the probability distribution of each inde-

pendent random variable.

B.2 Pulse Width Measures

In this section, we summarize the analytic and numerical relationship between various

measures of pulse width.

B.2.1 Definition of Widths

One can indicate the width of a pulse in different ways. Here we classify some of

those ways as the pulse width, the full-width half-maximum, and the variance width.

Pulse Width

The definition of pulse width varies from pulse shape to pulse shape. The pulse width

is consistently labelled as T or ri.

Full-Width Half-Maximum

The full-width half-maximum takes the usual definition, which is the width of the

pulse at one half of its maximum height. For pulse Ii(t), We notate the full-width

half-maximum as FWHM(I).
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Variance Width

The variance width is defined using an analogy with probability calculations. We

normalize the pulse shape, and treat it as though it were a PDF for a random variable.

We then calculate the variance of that PDF.

Notationally, for pulse Ii(t), we denote the variance width as varW(Ij), where we

suppress the unnecessary argument of the function.

Notice that in our notation, the argument of varW() can be written normalized,

but we do not require it. In calculating varWO, however, we must be sure to take

the variance of the normalized argument of the function. Failing to do so will lead to

factors, specifically, inverse normalization constants, that we do not want.

B.2.2 Gaussian Widths

For gaussian pulses, we consider the form:

t2

f (t) = . 2- (B.14)

where T we call the pulse width.

We find that the FWHM scales linearly with the pulse width, as expected, and

that the variance scales with the square of the pulse width. We can solve these

relationship analytically, and we find:

FWHM(f) = 2lrn(2) (v'2r) (B.15)

varW(f) = 2T 2  (B.16)

B.2.3 Secant Hyperbolic Widths

For secant hyperbolic pulses, we consider the form:

f(t) = sech ) (B.17)
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where r we call the pulse width.

We find that the FWHM also scales linearly with the pulse width, and that the

variance scales with the square of the pulse width. The coefficients resulting from

numerical calculations are included in the following equations:

FWHM(f) = 2 .80 00T (B.18)

varW(f) = 2.461T 2 (B.19)
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Appendix C

Data

C.1 Frequency Discriminator Data

In this section, the raw data as taken for the experiments in Chapter 6 is presented.

Each plot contains the single sideband voltage noise spectral density for a specific

delay, along with the noise floor and theoretical sensitivity curve.
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Data for 500m Delay
-80 -

-go
-90 -

-100-

-110-

-120-

500mF
Noise Floor0

C)

0

10

-90 -

-100-

-110-

-120- A

'ILi
~~J~iIIi1JRIII I

~"~r r

100

ml

1'

ik 10k 100k iM

Frequency (Hz)
Data for 1 000m Delay

ise Floor

I
10 100

W'~P1 1

Ik 10k 100k

Frequency (Hz)

Figure C-1: Voltage noise spectral density and sensitivity plots for 500m (2.5pts) and

1000m (5.0ps) delay.
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Data for 2000m Delay
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Figure C-2: Voltage noise spectral density and sensitivity plots for 2000m (10.0p-s)

and 4000m (20.Ops) delay.
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Data for 5000m Delay
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Figure C-3: Voltage noise spectral density and sensitivity plots for 5000m (25.0ps)

and 6000m (30.Ops) delay.
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