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Abstract

Can airline Yield Management strategies be used to generate additional revenue from spare capacity
in telecom networks? Pundits believe “yes”, based on several analogies between the industries such
as, for instance, perishable inventory and negligible marginal cost of usage. However, no one has yet
described how, one of the chief difficulties being the vastly different nature of airlines products and
telecom services.

Motivated to show how Operations Research can play a role in structuring this area, we: (i)
argue that telecom Yield Management should be based on 'innovative’ services explicitly designed
to use only spare capacity, (ii) propose, borrowing from airlines, a framework to simplify related
decision modeling, and (iii) demonstrate both our argument and the framework by articulating
several 'innovative’ telecom services and modeling them to varying degrees of depth.

This thesis focuses only on the decision-making that will be required within a large infrastructure
for operating new ’Yield Management’ services. For each service, several decision variables can be
considered to maximize revenue from available capacity, e.g. pricing, capacity limits and admission
control, among others. Incorporating all such decisions in a single model usually leads to complicated
formulations. A framework that decouples the decisions from each other to obtain simpler, more
insightful models is therefore immensely helpful.

We propose using the airlines modeling framework to separate the decisions involved in the
operation of each new service. This framework classifies models into forecasting, over-booking, seat-
inventory control, pricing and market segmentation to reduce the complexity of the system-wide
problem. To make this framework useful for telecom, we provide a detailed interpretation of each
category in the telecom context.

Finally, the majority of this thesis is the six service ideas that illustrate our argument and the
models that demonstrate how the framework might be used. For each service we propose, we discuss
possible markets and practical issues. We then formulate a model for one of the decisions resulting
from the framework. These models are analyzed to varying depths to demonstrate the operating
rules one can discover for revenue maximization.

The contributions of this work are at multiple levels. In addition to our argument and examples of
services proposed for telecom Yield Management, it structures the modeling questions in a coherent
manner, exploiting more than only the high-level connections between airlines and telecom. Finally,
the models themselves are useful and their contributions are at the analytical level. This thesis
makes clear several connections between airline and telecom Yield Management that people have
found difficult to establish in the past.

Thesis Supervisor: Richard C. Larson
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Motivated by the success of Yield Management (YM), later called Revenue Management in airlines
and other industries, we ask how similar ideas might apply to telecom networks. It has been widely
recognized that airline YM can have a strong impact in telecom (c.f. section 1.6), but no clear case
has been demonstrated yet. The chief difficulty here is the stark difference between an airline seat
and a telecom service, both in terms of the price sensitivities and the market structure.

The first contribution of this thesis is the argument that telecom YM should be based on inno-
vative services offered explicitly to segment the market and only use spare capacity. The reasons
motivating this approach are discussed in section 1.3. Our argument, which sounds rather simple
in hindsight, once one has seen examples of the services that can be created, is not yet a common
practice in telecom.

Offering and operating the services we envisage requires an infrastructure of software agents and
other network modifications. Of the many involved issues, the focus of our work is the decision-
making that can be pre-programmed into such agents to maximize revenue from the service op-
erations. Because many decisions such as pricing, capacity determination, admission control etc.
are relevant, and because incorporating all of them into a single model is usually too complicated,
a framework that decouples the decisions to obtain simpler, more insightful models is immensely
useful.

The second contribution of this thesis is the modeling framework it proposes for decomposing
the decision models. We borrow the YM framework from airlines, of forecasting, over-booking,
seat-inventory control, pricing and market segmentation to separate the decisions involved in the
operation of each service. Even though this framework is intended for decision problems related to
airlines operations, the abstract versions of the problems are very relevant for telecom. Chapter 2
outlines how this framework can be interpreted in the telecom context. This allows us to use not
only the high-level intuition about YM from airlines but also the modeling lessons learnt from their
successes.

The final contribution of this thesis, and the majority of the work herein, are the services and
models that illustrate how our argument can be realized and our modeling framework can be used.
We propose several services, articulate possible modes for their operations, outline their target
markets and discuss practical issues. For each service, we then model one of the decisions resulting
from the framework. These models are analyzed to differing depths to (i) illustrate the decision rules
one might discover for revenue maximizing operation of the services and (ii) demonstrate how these
rules parallel many of the airline YM rules. We hope to highlight the connections between airline
and telecom YM at this level, even though the telecom services are seemingly far-removed from the
airlines context.

This first chapter introduces our argument for telecom YM, which is original, but mainly provides
the background and the context for our work. All other chapters present completely original work,



including the translation of the airlines YM framework to telecom, the ideas for services that will
facilitate telecom YM, and the model formulations. Chapter 2, which details our modeling framework
is particularly useful as it also presents an overview of the services and the models considered in
this thesis. Each subsequent chapter addresses a model for a particular service. Several other issues
which are not explored in this thesis but will arise in offering YM services are considered only briefly
in section 1.3.2, such as marketing, software design, protocol design and information technology.

Ideally, this thesis should excite three groups of people. Researchers and developers in telecom
who will encounter new challenges in implementation of innovative services for revenue management,
operations researchers interested in modeling new applications, and the management in telecom
companies, who might discover a new competitive tool in a fast changing environment. In a less
than ideal world, however, our least hope is that the models explored in this paper are interesting
in themselves, and relevant to some context even if not immediately to revenue management in
telecom.

The rest of this chapter is organized as follows. Section 1.1 is a primer on airline YM practices, the
underlying intuition and the perspective it brings to telecom. Section 1.2 presents our motivation,
which stems from more than the revenue potential of YM, a perspective on our contributions and
the limitations of this work. We present and discuss our argument for using innovative services for
telecom YM in section 1.3. This section also places our modeling effort in context, discusses several
practical considerations and how a similar approach might apply to other networks. Section 1.4
presents the outline of the thesis chapters. The rest of the chapter contains the background for
this work. Section 1.5 is short history of airline YM and section 1.6 presents relevant telecom
background, such as the industry trends motivating telecom YM and analogies as well as differences
between airlines and telecom. Section 1.7 presents a literature review of airline and telecom YM.
Section 1.8 is the summary of this chapter.

1.1 A Yield Management Primer

To understand the motivation, consider YM as invented by the deregulated U.S. airlines in the
1980’s. American Airlines claims that intelligent revenue management brings annually an additional
$500,000,000 to their bottom line [SLD92]. The concepts brought to the airlines include optimal
over-booking policies, nested discount-seat allocation rules for flight cabins, demand forecasting,
dynamic adjustments of discount capacities in each flight, multi-hop pricing structures and frequent-
flyer programs that minimally interfere with revenue producing passengers, among many others.

Airline YM capitalizes on the simple intuition that one can provide service for as low as the
marginal cost when one is certain of excess capacity which will not be utilized. The canonical
example is of an empty seat on a flight that yields no revenue after the plane takes off. If one
knew for certain that a seat will fly empty otherwise, one would be willing to sell it for as low
as the price of a lunch or dinner - the marginal cost of serving an extra customer. Among other
factors, the complexity in the process stems from the following: (i) it is not known for certain if
a seat will go empty and (ii) since tickets are not negotiated on an individual basis, making seats
available at a discount price always increases the chance that people who would otherwise be willing
to pay more would probably pay lower prices, thus decreasing overall revenue for the flight. Airlines
therefore seek to intelligently control the availability of discount fares on individual flights given
demand forecasts, using a combination of the following activities: forecasting demand, over-booking
flights in anticipation of cancellations and no-shows, using sophisticated seat-inventory control rules
to prevent revenue cannibalization across multiple fare-classes and pricing to increase revenue from
the network.

This last decade has also seen the application of YM to other industries such as hotel/resort
management and car rental agencies, among others. Telecommunications and utility industries are
often mentioned as the next targets [All97] [Bru97], and several companies specializing in 'Revenue



Management’ are actively engaged in such attempts!. Every application of YM to another industry,
however, has required considerable tailoring to its specific constraints. Also, the revenue improve-
ments are highly dependent on cultural acceptance of the whole paradigm in the organizations and
the willingness of the managers to support the related decision tools. Several difficulties involved in
applying YM to telecom are presented in section 1.6.2.

The fundamental viewpoint brought to a telecom network by YM is to view the bandwidth of the
network as a perishable commodity which vanishes if not immediately used. Further, the cost of using
the network when capacity is available is negligible. Therefore, it makes sense to use this capacity
when it is available and attempt to maximize revenue from it when it is scarce. Operationalizing
this simple intuition, however, is not obvious. Several complications arise when trying to map a
one-dimensional commodity like an airline seat to a continuous commodity like transmission rates
and switch utilizations. The different structure of the market for telecom services and the relative
magnitude of the revenue involved in servicing a request makes it further unclear if the benefits of
airline YM can be realized in telecom. Hence our argument for introducing new services to capitalize
on the YM intuition, as described in section 1.3.

One additional note on revenue benefits is that short-term revenue increase is just one aspect of
a larger picture. As exemplified by airlines, YM is usually accompanied by a longer-term reduction
of investment for capacity increases. This results from the attendant increase in the utilization
levels of the resources — such as fuller airplanes, by displacing peak demands to off-peak times. In
a competitive market, long-term cost reductions for the providers should ultimately lead to lower
costs for the consumers. With our argument for telecom YM, additional benefits to consumers could
come from the many new services created to 'yield manage’ networks, leading to greater choice and
flexibility.

1.2 Motivation, Contributions and Limitations of this Work

The successes of airlines YM were one motivation for this work. Similarly, the contributions to tele-
com YM are one aspect of its value. Here we discuss our other motivation and related contnbutlons,
as well as the limitations of this work.

Our main motivation from an Operations Research (OR) perspective was to: (i) show how
OR modeling and analysis can help structure a nebulous domain, and (ii) demonstrate a fertile
new modeling area to the OR community, resulting from opportunities to optimally operate new
YM services. Airline YM has been one of the great success stories of applied OR in the last few
decades and has spurred much interest in the discipline. Telecom YM will likely excite and motivate
significant OR modeling work.

One value of this work therefore is in re-iterating the value of OR as more than a narrow discipline
restricted to modeling existing operations and processes. Our work demonstrates again how one can
use modeling lessons from one domain to “invent” services and operations in another. There is as
much room for invention of operations in OR as in other fields, but this requires an imaginative
license and an awareness of the real environment in which such services are offered. Examples of
such work exist in OR but are relatively infrequent — a purely personal opinion of the author.

The relationship of modeling to reality needs to be understood here in order to place this con-
tribution. As always, reality is far more complicated than desired. The practical complexities of
telecom YM, very similar to airline YM, will be daunting — including the implementation of an
infrastructure needed to support the operations of new services, their marketing and data collection.
Modeling and analysis, even though simplified and only one aspect of the operational infrastructure,
can still play a strong supporting role by discovering optimal operating rules for these services. It is
important to realize that similar modeling, by approximating actual operations in a highly simplified

LA cursory search of the Internet immediately reveals the number of players in the revenue management arena.



manner, has made a strong impact on the profitability of airlines. The contributions of modelers are
to discover the first-order factors that can help achieve significant revenue increases from operations
of such services. This can only be done once the services are implemented. This is why we can
‘only make the case in this thesis for how telecom YM might evolve according to our argument. The
practical implementation might rely on vastly different services and models than those considered
in this thesis, using our argument and modeling framework.

As for our second stated motivation, we structure a modeling area for the OR community, and
make the case for its use. It is also useful to look at the relationship of YM modeling to other
models in telecom and airlines as shown in figure 1-1, to understand this aspect. However, the
speculative nature of this work means unequivocal claims are not possible. Detailed contributions
expected from the modeling and analysis work will only make sensible reading once the models have
been presented. Therefore they are presented at the end of each modeling chapter. As a general
comment, the models we analyze not only illustrate the connections to airline YM rules but also
reinforce interest in some of the emerging analytical directions, such as, for instance, analysis of
multi-server queues with heavy-tailed service times (c.f. chapter 3). Further, not only are these
models of interest in telecom but their analyses can perhaps also contribute to the airlines YM
literature, a connection which we do not pursue in this thesis.

A last contribution of our argument and modeling framework for telecom YM could be the
useful perspective it brings to management of other networks, such as energy or utility networks,
which share the perishability of inventory and negligible marginal cost characteristics. We hope
that examples of new telecom services and use of the airlines framework as we propose will excite
researchers to identify and model new services for other networks, such as transportation or electricity
distribution networks (c.f. section 1.3.3).

On the limitations front, the speculative nature of this work makes it hard to predict-its practical
usefulness. Market acceptance of the services, validity of the models and their effect on actual revenue
are all important matters, which cannot be addressed by a single thesis. At this point, models for
YM-type services can only serve as proof-of-concept that one can build and operate such services if
desired.

A very pertinent example of speculative modeling in the same spirit as ours was Vickrey’s [Vic72]
. bold solution for airline over-booking in the early 70’s. Envisioning a future in which airline reser-
vations were a commodity business, Vickrey proposed and developed a remarkably elaborate model
for over-booking decisions. His vision was too futuristic for its time and most people dismissed it
immediately. Interestingly though, markets are beginning to now evolve on lines proposed and mod-
eled by Vickrey. A similar example was Simon’s proposed auctioning procedure [Sim68] for bumping
excess customers on over-booked flights. Again, it was debunked when it first appeared, a practice
that is now prevalent among almost all carriers.

1.3 Owur Argument: Using Innovative Services for Telecom
Yield Management

Our argument is simple. Drawing on the trends of new service offerings in the telecom sector (c.f.
section 1.6.3), we ask the question, why not offer services that (i) create 'flexible’ demand, i.e. which
can be managed easily to use only spare capacity and/or (ii) use network information advantageously
to generate additional revenue.

This exactly parallels the start of airlines YM. The first steps towards airline YM date back to the
early 70s, to experiments with products that could effectively segment the market, such as the 21-
day advance bookings [Lit72] by BOAC around ’72, Super-saver fares by American Airlines around
'77 and the now familiar Saturday night stay-overs. Once the existence of market segments for the
different products was clearly established, it created the problem of protecting seats across different
fares, leading to Yield Management techniques. In a similar spirit, we propose creating new services

10



that operate at near-zero marginal cost by using only spare capacity and segment the market using
network information whenever possible. The vision is that similar to airlines, many such services will
find market acceptance, their implementation will spawn problems similar to airline YM problems
and the rules for their profitable operation will resemble the airline decision rules, such as optimal
over-booking levels, nested seat-allocations, etc.

Our argument is motivated by the difference in the nature of existing telecom services compared to
airlines, making a direct translation of airline YM to telecom difficult. Airline YM involves modeling
and controlling an accepted existing process for reservations, optimizing it to yield maximum revenue
from resources. It is by far unclear if the existing telecom services allow similar flexibility in resource
usage. Current network usage is mostly on-demand, making pricing the most obvious option for
revenue management — controlling peak usage and discounting in non-peak hours. With new services
created explicitly for YM, one obtains far more flexibility in usage of network resources such as spare
capacity.

What services might one think of in the spirit of our argument? Consider some of the ideas
proposed in this thesis. Further details are presented in chapter 2 where connections to airline YM
are also discussed. Chapter 5 models a data-courier service similar to FedExT™, where the provider
uses spare capacity to guarantee content delivery by fixed deadlines. Similarly, chapter 4 presents a
decision model for a service where users request the network to place a call before a user-specified
latest-start-time rather than require instantaneous service, allowing the provider to schedule these
calls using spare capacity. Chapter 7 presents a model for offering service guarantees for Web-server
performance to better segment the market, using network information to compute the guarantees.

For any new YM service, a network infrastructure will be needed to support its operation once
a case has been made for its implementation (c.f. section 1.3.2). This is likely to involve network
agents/software for managing capacity and demand to maximize revenue. Decision-making will be
an integral part of these agents and much of it will need to be pre-programmed within them.

It is here that our next contribution lies. Opportunities exist for models, optimization, and
construction of decision rules for these agents. This thesis structures and simplifies such modeling
using lessons from airline YM. Chapter 2 discusses in detail how the airlines framework can be
interpreted in a telecom context to construct useful models.

1.3.1 Yield Management models vs. existing telecom models

To situate the YM modeling effort among existing telecom modeling literature, we briefly characterize
the current space of telecom models. This highlights how YM models fill a niche in this space and
the difference in perspective brought by YM to telecom modeling.

) . Yield
Design Operational Management
Network Component
i design (e.g. switches,
Telecom design & (rolglters, )
Routing Performance evaluation
design (e.g. blocking probs, ...)
: Forecastin
Airlines dNet'wOrk Fleet assignment Over—_book%ng
esign Crew assignment g;z;ti-nugwentory control

Figure 1-1: A perspective on telecom and airlines Yield Management models.
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Extensive modeling and analysis has been done for telecom networks, and a large body of liter-
ature exists for every aspect of their design and operation. In spite of the extremely complicated
nature of telecom networks — with millions of components such as switches, routers, peripherals, etc.
acting on local information, the network behaves as a single, almost intelligent organism. These
networks respond to demand and traffic fluctuations to reconfigure themselves, re-route traffic and
to do fault checking seamlessly. Much of this behavior relies on a large modeling effort over the
past century. A simplified perspective on this body of knowledge is to classify the models according
to time-scales. For instance, depending on the abstraction level and the time-scale at which one is
interested in system behavior, one can classify telecom models as either cell/burst-scale, call-scale
or network-scale.

When the questions of interest are at the component design and analysis level, such as switch
buffer dimensioning, switching algorithm design etc. the cell/burst-scale is of interest. Here, traffic
consists either of discrete entities, the cells, or the instantaneous transmission rates of individual
sources [RMVe96]. Cell arrival models range from Poisson and renewal processes to more compli-
cated Markovian models [RMVe96]. Instantaneous rate models can range from short to long range
dependent models, such as on-off models, renewal rate processes and others [RMVe96]. Typically,
the network-wide effect of component analysis and modeling is difficult to estimate and is explored
through simulations.

When the questions of interest are in optimal use of network resources using admission control,
routing, etc. one considers system behavior at the call-scale. Here one ignores the granularity of
cells and the rate fluctuations of individual sources. Traffic is characterized by arrival rates and
holding times of calls. Call arrival processes are typically smoother than cell arrival processes and
models of interest are Stochastic Knapsack-type [R0s95]. Demand is assumed exogenous, and some
state information about the network is used, such as the number of calls on the various routes, but
no forecasting or other knowledge of demand is assumed. '

Finally, when network-topology design and resource dimensioning is needed, one considers the
system at the network-scale. Deterministic measures of demand such as peak arrival rates are
- used and the models of interest are mixed-integer linear/non-linear deterministic/stochastic pro-
grams [RMVe96]. At this level, demand is again exogenous, and relatively static decisions need to
be made. Extensive work has been done in this and the areas described above. Two good references
for such models are [Ros95] and [RMVe96).

In this space, room exists for models which use network traffic information such as daily or hourly
patterns to operate services that use only available capacity at any time. Further, such models may
also have some limited information about existing demand, such as the amount of unfinished content
to be transmitted between locations, and or the number of calls that must be served before some given
deadline. With partial information about demand and capacity, such models may more effectively
match demand and capacity to generate positive revenue. This is exactly the perspective we hope
to demonstrate in our work: that given tactical level information about the network — somewhere
between the static level planning and the bit-byte level detail, useful decision models for services
can make a substantial impact on revenue by capitalizing on the information.

1.3.2 Practical Issues: marketing, software, protocols, modeling

Implementation of YM services will not be limited to modeling and analysis and will require assault
on multiple fronts. We comment on several practical issues without laying claim to this being an
exhaustive list. The analogy, not surprisingly, is again from airlines. Airline YM systems were built
on an existent information technology infrastructure that could be leveraged by YM models to make
intelligent decisions. Benefits from YM directly motivated investments into better infrastructure for
obtaining more information, integrating YM models with the reservations systems and developing
software — interfaces, back-end systems and decision models.

Similarly, one expects that some basic information and capacity management infrastructure
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will be needed in order to control capacity usage across “Yield Managed” traffic and for service-
operating software to obtain adequate network information in order to make intelligent decisions.
When resulting benefits from such YM services are demonstrated, they might lead to investments in
better management infrastructure for these services. Both the nature of decisions that can be made
and implementation constraints are so tightly coupled that one cannot be considered without the
other.

For instance, if a service requires transporting bulk content between locations, its operating
software may consist of distributed agents at select ingress points to the network, making decisions
about if to accept content or off-load it to an alternate provider. In this case, each agent will need
some notion of available capacity between locations and the amount of bulk content at other locations
that need transport. This information may either be obtained directly from other agents, or from a
central database tracking summary information for all agents. In either case, one will need protocols
for information exchange between the agents and/or the controller. Clearly, if decision-making is
embedded in the agents, the models will be restricted by the amount of information that can be
reasonably exchanged by the agents. On the other hand, if the agents are “dumb”, simply querying
the decisions from a central model, the nature of the decision models will be completely different.

Several such issues that will arise in implementing a service idea once its market viability has
been established are listed below.

1. Obtaining network information: YM services cannot be operated without information about
available capacity. Collecting and summarizing network information is therefore essential to
any such effort. Unfortunately, in spite of its simple sounding nature, collecting network
information is a significant problem for Internet-type networks, see for instance [Pax97], and
will need to be addressed.

2. Allocating capacity: To ensure that discount or yield-managed traffic interferes minimally with
premium or existing traffic on the network, mechanisms must be built. Several possibilities
arise here, depending on the implementation. For instance, limits may be set, e.g. on a time-of-
day basis, on the maximum capacity usable by all discount or “yield-managed” traffic. In this
case, protocols and mechanisms will need to be developed to allow reconfiguring the network at
periodic intervals, including a central database which contains information on historical traffic
patterns. '

3. Developing service-management software: Implementing controllers or decision makers for op-
erating the services will be an interesting and challenging problem encompassing software,
modeling and communication protocols. The decision of a central or distributed control archi-
tecture will govern how much information can reasonably be exchanged between distributed
agents and will limit the range of suitable decision models. It will also govern the software
implementation of the agents and that of the central databases. In any architectural choice,
protocols will need to be developed for agents, controllers and databases to interact with each
other.

4. Marketing: Finally, organizational and marketing issues will need to be addressed for many
YM services. Marketing new services may require channels for easy dissemination of service
information to the most interested parties. One may also wish to enter into agreements with
other network providers for off-loading selected traffic to their networks during periods of
overloads, such as bandwidth exchanges for instance.

Fortunately, creating new services for telecom networks is now easier than before. Original
telecom systems were massive and integrated, making changes cost-prohibitive. Furthermore, func-
tionality needed for the management of new services was difficult and time consuming to provide.
The life cycle for new service development extended from one to two years. Since market opportuni-
ties afford far less time — generally six months or so, JavaT™ architectures such as JINITM have been
developed to facilitate the creation of new services, cutting development time down to the required
six months in some instances.
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1.3.3 Applications to other networks: energy, utility, etc.

Our argument for using 'innovative’ services for telecom YM could find useful application in manage-
ment of other networks which have fixed capacity, time-varying utilization, and negligible marginal
cost of providing service. Examples could include electricity, oil-and-gas pipelines and transportation
networks. ‘

Since most such networks suffer from problems similar to telecom networks, namely, that the
market and service structure does not directly map to airlines, the approach is to first discover
creative uses of the networks, i.e. design and offer services to segment the market and manage
demand, to fill in the valleys and shave the peaks. Again, this involves both an understanding of
the practical structure of the market these networks cater to and an operational understanding of
the networks themselves.

In fact, it might be useful for the reader to indulge in the exercise of imagining new services
for these networks to get a sense of the contribution involved in this thesis, and the work entailed
in creating practical service ideas. We mention a possible idea below to demonstrate the kind of
thinking that might result from such an exercise, for purely illustrative purposes.

Consider an oil-and-gas pipeline company. Demand is strongly seasonal and there is little one
can do in terms of pricing to influence demand. Consumers simply do not appreciably increase their
gas usage during summer months proportional to discount, even if they bought storage facilities.
However, during summer months electricity usage peaks. How are gas and electricity related? Well,
some electricity generation plants use oil and/or gas. If one could discount gas in the summer to these
plants, perhaps one could keep the networks filled. But discounting usually means that in order to
preserve profits, sales volume have to go up significantly. If one is concerned that simply discounting
may result in cannibalizing revenue as these plants may have huge storage facilities allowing them
to store gas in the summer for the winter, one might consider alternatives. For instance, one way to
preserve revenues could be to buy stock in public electricity generation plants and sell gas to them
at deep discounts, since marginal costs of transport are nearly zero, thus increasing the profitability
of the plants and the overall revenue from the combined infrastructure of the network and the plant
investments.

Once one has settled on some of the service ideas thus created, the next job is to demonstrate
~ the benefits that might result, by modeling the services to discover the decisions required for their
operation — an exercise we carry out for telecom networks.

1.4 Thesis Outline

We list brief synopses of the chapters that follow. This first chapter provides a broad overview of the
context in which this work is situated. Here we also state our argument for telecom YM to be based
on innovative services. Chapter 2 is a detailed explanation of our proposed modeling framework.
Each subsequent chapter articulates a YM service in detail and models one of the decisions involved
in its operation. '

Chapter 2 argues the need for using a modeling framework. It translates each component of the
airlines YM framework to telecom, circumscribing decisions that might correspond to each framework
category. It also introduces briefly the services proposed in this thesis. A summary of the modeling
work of later chapters is also presented.

Chapter 3 is the start of the modeling chapters. There we consider a service where the operator
attempts to use spare capacity on the backbone to allow bulk transport. We articulate the service
and describe its likely markets. We model a capacity determination decision for a single-link. Using
exponential random variables, we propose a heuristic policy which performs very close to the optimal
and is insensitive to the distributions of the random variables involved.

Chapter 4 outlines two possible services for which customers request to use the network be-
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fore a latest-start-time. Here we again consider a capacity determination decision for a single-link
model. We outline the complexity of the decision and analyze a simplified policy for several different
distributions of the involved random variables.

Chapter 5 proposes a digital courier service where users ask for content to be delivered between
locations by fixed deadlines. We discuss aspects of the service's operation and model a decision
to determine which content sizes to accept, given the amount of work in the system and the time
till the deadline. We analyze in detail a canonical single-link single-deadline model and extend the
results to several interesting cases. Many directions for further research are also outlined.

Chapter 6 considers a data-collection related problem for Internet-type networks. It illustrates
the problems that might arise for forecasting capacity in telecom. The issue is to decide where to
locate a given number of probes on the network to build a picture of the traffic. We formulate
an integer program for the problem, show its NP-hardness and outline a greedy heuristic with a
provable worst-case performance.

Chapter 7 proposes segmenting the market for Web/Ftp-server hosting using service-level guar-
antees. We discuss the problem and propose using stochastic facility location theory to compute the
service-level guarantees. A few results are included to show the utility of this approach.

Chapter 8 considers a service which offers discounts for long-distance calls at periodic intervals.
We discuss the service and consider the pricing decisions. Our argument is to consider revenue
cannibalization as the main factor in the discounts. For this we outline a very simple model to make
our case.

The level of analysis in chapters 7 and 8 is far less than in the others. Their main purpose is (i)
to illustrate our modeling framework of chapter 2 and (ii) to outline interesting research directions.

Chapter 9 is the final summary of the thesis, addressing issues like contributions not mentioned
elsewhere and future directions.

1.5 Airline Yield Management: A Brief History

The following is an abridged history of YM to provide a context for the work to follow. Detailed
accounts of airline YM history can be found in several references listed in the literature review
section 1.7.

The YM practice in airlines can be segmented into three portions, pre-1972, 72-77 and post 77.
Airlines were some of the earliest investors in digital computers and automated reservations systems
and had access to detailed reservations records for their networks. Leveraging this information to
increase revenue from the system was a strong motivating factor in the development of YM tools.

Prior to 1972, most research focused on forecasting and controlled over-bookings. Forecasting
was the problem of predicting probability distributions of customers from among the accepted reser-
vations actually appearing for boarding. Over-booking was the problem of deciding how many
reservations to accept for a given flight based on the forecasts. Naturally, given a positive no-show
probability for reservations, one would accept more requests than the capacity of the plane, the
trade-off being the risk of denying a passenger a seat because of over-booking. For a relatively long
time, over-booking was a well-kept secret and the airlines refused to acknowledge that there was any
such practice. See [Rot85] for a fascinating perspective on the history of over-booking in airlines.

In early 1970s, airlines began offering different fares for the same flights resulting in mixing
passengers with different revenues in the same cabin. Among the first such offerings was BOAC's
(now British Airways) early-bird bookings, selling discount seats to passengers booking at least 21
days in advance of the flight. This offered an opportunity to fill seats that would otherwise be empty,
but created the problem of deciding how many seats to protect for later booking customers. If too
few seats were protected, the airline ran the risk of denying a reservation request to a later arriving
- and higher revenue, customer. If too many were protected, one ran the risk of flying empty seats.
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Simple rules, such as protecting fixed percentages of seats on different flights, were not useful because
of widely different demand patterns for different flights. This led to investigation of seat inventory
control rules, marking the beginning of Yield Management, now referred to as Revenue Management.
It also created new forecasting problems, namely the prediction of the arrival processes of various
customer classes for reservations.

The final phase of Yield Management was spurred in 1977 by the launch of the American Airlines’
super-saver fares in April, 1977, shortly before the de-regulation of the U.S. airline industry. A
decade-long process was catapulted into spotlight in 1987 by American Airlines announcing $500
million/yr increase in revenue from YM systems alone. Since 1977, YM systems have developed from
simple single-leg flight control, to segment control 2, where multi-hop flights are considered to consist
of separate segments with seat-level control applied to each segment, to finally origin-destination
control. These advances have in turn required more investment in sophisticated information systems
and quantitative research. Currently, almost all major carriers in the world and a significant number
of smaller airlines have revenue management capabilities. Additionally, it is considered a major
competitive tool in price wars.

1.6 Telecom Yield Management: Setting the Stage

This section includes information relevant to YM in telecom, including a brief overview of the
telecom industry in the US, the analogies and differences between airlines and telecom pertinent to
YM, perspectives from industry regarding the need for telecom YM and a discussion of the possible
impacts of YM in telecom.

1.6.1 The telecommunications industry

The Telecommunications Industry is one of the largest sectors of the US economy: revenues for 1993
being in excess of $200 billion with 80% of the revenues coming from the sale of services and not of
physical products [Nol96]. Many orders of magnitude larger than airlines — compare, for instance, the
- largest carrier American Airlines at $17 billion to AT&T with $75 billion in revenues for 1997 (The
smaller “Baby Bells” routinely average around $10-15 billion in revenues) - it is also an industry in
a major state of flux for the past two decades. Almost totally regulated for the entire duration of its
existence, the industry now finds itself in uncharted waters in the wake of the Telecommunications
Act of 1996 which is aimed at encouraging competition in all kinds of communications facilities and
providing Universal Service to the entire nation. Historical parallels with the evolution of the airline
industry are remarkable. See [Tra97] for a time-line of the telecom industry evolution in the US.
Impetus to change is also being provided by technological developments enabling the convergence of
voice, video and data services on the same networks. All of this has resulted in making the industry
much more revenue conscious and customer focused than at any point in the past. This has resulted
in huge data-mining efforts for analyzing customer behavior from networks operations data. Several
real-time network management systems are being marketed to allow companies to manage their
networks more efficiently in response to changing demand. The relevancy of yield management
to such an environment is difficult to miss. Section 1.6.3 provides some very interesting industry
perspectives on the need for application of YM to telecom.

2Segment control refers to controlling discount sales for multi-hop flights independently of each other, ignoring the
network-wide revenue effect due to passengers using more than one segment.
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1.6.2 Analogies and differences between airlines and telecommunications
Analogies

Several analogies between airlines and the telecom industry make it very relevant to consider the
application of YM to telecom networks. This section discusses most of them.

Perishable inventory: Like airlines and hotels, one can view the bandwidth/sec in telecom net-
works as perishable inventory, making it attractive to utilize unused capacity whenever it is available.
Bandwidth/sec, however, is just one measure of inventory. Several notions of perishable inventory
exist in telecom networks, such as the streaming capacity of a video server, the switching capacity
etc.

Large sunk cost and low marginal cost: YM is usually useful when the relative difference between
the cost of increasing capacity is large compared to the marginal cost of providing service. For
example, short-term capacity such as aircraft seats is fixed. The cost of adding another aircraft
to the fleet is huge compared to the cost of providing service when capacity is available - which
in airlines might be as low as the cost of a bag of peanuts. It is obvious that the same situation
exists for telecom networks, with the marginal cost of providing service negligible when capacity is
available.

Varying but predictable demand volume: Demand for various services is strongly temporal with
predictable daily and weekly trends.

The competitive structure of the industry: Telecom industry evolution has been tracking the
airline post-deregulation history rather closely. See the article " You’ll Never Guess Who Wants to
Be Your Phone Company ”, by Mark R. Bruneau in Telecommunications®, October 1997, for a
fascinating listing of the parallels between airline and telecom industry evolution.

Differences

The perspective brought to telecom networks by YM is attractive, but only the tip of the iceberg,
and further, the analogies with airlines are only at a very high level. Several important differences
exist between airlines and telecom networks, in terms of resources and the market structure for
telecom services. These differences make it difficult to see an immediate translation of airline YM
practices to telecom. We contend, however, that the differences are liberating rather than limiting,
and that one can do much more in telecom for yield management than in air-travel. The resulting
modeling problems are also seen to be richer and more complex than their analogues in airlines. A
discussion of important differences between the two industries follows.

Lack of reservations: In airlines, hotels and the transportation industry, there is a market accepted
existing reservation process which is modeled. In contrast, majority of telecom services are on-
demand, with exceptions such as video-conferencing forming a negligible fraction. This makes it
difficult to have airline-like decision rules for controlling the use of bandwidth. However, nothing
precludes setting up a market for services on the network that could allow some form of a reservation
process. This is exactly what we propose in chapter 2.

Pricing and market structure: The pricing structure of telecom services is a legacy of its regula-
tory history. It is not clear if flexible pricing and/or discounting telecom services similar to airlines
will have comparable effects since the elasticity of demand may not be as high. In addition, the
existing market structure is subscription-based, meaning discounting services may result in cannibal-
ization of already existing demand — although this is expected to be changing rapidly by introduction
of deep-discount dial-around numbers such as MCI’s 10-10-321.

Complezity and heterogeneity of the networks: As mechanisms, telecom networks are orders of
" magnitude more complex than airlines and hotels. With convergence of telecom services and seamless
- inter-connection of voice-switched, ATM networks and the Internet, it is hard to even characterize
the resources needed for servicing particular requests. For instance, a voice call may get routed over
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a circuit-switched network, onto the public Internet and then onto an ATM network. How much
capacity does such a call use? This is itself a difficult question and makes it hard to design uniform
rules for network operation.

Availability of capacity: In airlines, the reservations system accurately tracks network-wide avail-
able capacity. In telecom, capacity characterization based on historical patterns is itself a significant
problem. Older voice networks could adequately use measures such as average hourly utilization,
for example. With Internet-type networks, such a characterization might be too crude to determine
the available capacity. It is now an accepted fact that traffic in the Internet is extremely bursty
and unpredictable, implying that available capacity fluctuates at very short-time scales [WP98].
Further, the presence of dynamic and local routing in such networks means an adequate picture of
the network is not always available [Pax97].

In spite of the above mentioned difficulties, the relevance of yield management to telecom has
been widely recognized in the past few years. Several perspectives from industry on the need for
YM are collected in section 1.6.3. The challenge in yield managing telecom networks is two-fold:
organizational and operational. The organizational challenge is to step out of the rigidity of the telco
mindset of basic telephone service offering, and the operational challenge is to offer and intelligently
manage services that capitalize on the simple yield management intuition.

1.6.3 Industry trends towards Yield Management

This section highlights current trends towards YM in the telecommunications industry. Finding
ways to increase revenues and maintain profitability is a first-order problem for telecom companies,
due to increased competition and diminishing margins. Other developments which may reinforce
the application of YM are also discussed, such as the emergence of bandwidth exchanges. Some very
common opinions in the industry are:

¢ Telecom companies should capitalize on their existent huge databases of operational and billing
data by: (i) building data mining tools and (ii) creating processes for making intelligent
business decisions based on that data.

e Carriers and Service Providers should provide more innovative and value-added services to
differentiate themselves from the competition.

o Carriers should reduce time-to-market of new services as much as possible by streamlining
development processes.

e Carriers should focus on outsourcing/building more flexible network management tools that
allow real-time monitoring and resource allocation of their networks.

Such thinking manifests itself in the new service offerings of the last few years, such as call-back
numbers, caller-IDs, service-bundling and others. Companies actively seek new services to generate
positive revenue streams from their networks. Partly, this is because creating new services is a much
easier task than before, with recent developments in architectures based on the JavaT™ language
which dramatically reduce the time-to-market of new services. We comment on these practical issues
in section 1.3.2. It is an accepted viewpoint that network operators who cannot segment their market
better will lose the competitive battle.

Many of the perspectives mentioned above can easily be seen by glancing through magazines
such as Telecommunications®. An excerpt which succinctly summarizes the thinking of the industry
regarding YM follows below, from the article ” Network Management: A Core Skill for Future Telcos”
by Stephen Allott in Telecommunications®, August 1997 (italics added).

Once carriers have mastered the skills necessary to run their new networks properly,
they then have to work out how to profit from them. Yield management is the name
of the game. In PSTN terms, this meant cheaper off peak calls and little else. The
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telcos can learn a lot from the airlines or major oil refineries who have both developed
extremely sophisticated yield management systems. Commodity industries such as petrol
refining or time-based industries such as transport already understand the capacity yield
management, the link with transaction and product pricing, and how the two skills are
essential to generating superior returns. Although the public service utility mindset of
the PTT's will take time to fade away, it is expected it will become increasingly obvious
that yield management will be essential as time goes by.

It is no coincidence that British Airways is the world’s most profitable airline and
its planes are nearly always full. Filling up a network is not merely a question of how
much you charge but also how the tariffs are structured. With PSTN services, time-
based billing is the norm. At the other extreme, Internet is flat rate. For ATM, both
time-based billing and usage-based billing are being tested. Hand in hand with tariff
structure, systems must capture billing records and ’right fit’ customers with appropriate
traffic profiles targeted to fill up the spare capacity on the network.

Finally, once carriers have bought the right network, run it reliably, and filled it up

~ with paying customers, they will then have to compete to attract and retain business.
Proof of service levels is the key basis of competition with Web delivery of service infor-
mation at the forefront. Key innovative service providers such as UUNet, GE Information
Services and BT are now able to offer customer views of real time network faults. We
expect carriers to offer Web-based united views of service information during 1997.

Other developments that will motivate the practice of YM are liquid bandwidth markets, resulting
from the emerging bandwidth exchanges.? Such exchanges may allow bandwidth trades to occur at
widely differing time scales - from minutes to months. This will give network providers flexibility
for many things. For example, networks might be dimensioned to run at very high utilizations, with
less profitable traffic classes off-loaded to capacity bought on-the-fly if needed, a classic YM over-
booking type of practice. Many such ways will be found to more closely match available capacity to
the actual traffic profiles, maximizing yield from the infrastructure.

In summary, there is no doubt that the future of telecommunications services will be market
driven. Telcos in particular will need to focus on the individual customer and will have to find
ways to segment the market, differentiate their products and manage capacity well to preserve their
revenue streams and counter competitive pressures. It is far from clear, however, what that means.
Companies like MCI, Sprint, GTE have all invested in large data warehouses to allow them to make
better managerial decisions by analyzing vast amounts of customer data. Also, software products
are emerging that allow operators to manage their networks in real time in response to fluctuating
loads. But a demonstration of these so called ”intelligent decision tools” has not yet surfaced.

1.6.4 DPossible impacts of Yield Management in telecom

YM has been demonstrated to be an effective competitive tool in airlines. Large carriers such as
American Airlines can only compete with smaller carriers during price-wars by matching the prices
of their competitors while taking care not to dilute their overall revenue too much to not be able to
meet costs. YM systems are the front-line defense for such tactical issues. One expects, and indeed
observes, similar and in fact more aggressive situations in telecom. In fact, some economists argue
that purely competitive markets are not viable in the case of digital services since the marginal cost
of production is so low that the producers can always afford to undercut the competition. See for
instance, [Var95).

The following excerpt from the article, ”Balancing Infrastructure Against Profitability” by Joao
Baptista and Edward Ainsworth in Telecommunications®, June 1997, summarizes the nature of

3See, for instance, the article by Thomas L. Friedman on bandwidth exchanges in the New York Times, titled
“TheLandgrab.com”, January 18, 2000.

19



competitive tactics in telecom, necessitating protective measures such as YM for incumbent network
- providers to not dilute their revenue excessively, and for new entrants to sufficiently differentiate
their services from the competition.

A look at the economics of telecoms competition reveals why (infrastructure invest-
ments are not a good idea). In any telecoms market, a new entrant’s operational efficiency
and regulatory advantages will be outweighed by the scale advantages of the incumbent
until the entrant reaches a critical level of market share. The exact level of the share
threshold varies by country, depending on the market’s size and density and the incum-
bent’s efficiency. A competitor’s ability to surmount the threshold is affected by its
own skill at attracting customers and the number of other new entrants it is competing
against.

For a new entrant with a market share below the threshold, the ownership of infras-
tructure becomes extremely costly, potentially offsetting any shareholder value derived
from customers acquired. Infrastructure ownership becomes a millstone around the new
entrant’s neck, forcing it to pursue marginal customers indiscriminately in an attempt to
fill its fixed-cost infrastructure. In practice, the imperative to fill capacity ends up dom-
inating the new entrant’s strategy. Management’s attention is consumed with waging
a price war against the incumbent, rather than seeking differentiation through service
innovation or creative customer management. The inevitable result is an industry-wide,
margin-sapping cycle of discounts and counter-discounts on 'me-too’ services - an out-
come that neither new entrants nor incumbents should favor.

Finally, another incentive for telecom providers to initiate YM activities might be the simple
goal of ’getting there first’. If useful YM systems for telecom are indeed built, the advantage of
being the first to deploy such systems could be significant. The analogy, without surprise, is again
from airlines. The yield management process was built and perfected at American Airlines, and
was a major strategic advantage leading to their success in the late 80s [SLD92|, before widespread
acceptance of the potential of these systems. Anecdotal evidence from airlines also suggests that the
only reason airlines are currently profitable is because of their YM systems, otherwise they would
be running losses.

1.7 Literature Review

Very little literature is available that is directly relevant for telecom YM. We provide a short review
of related work in section 1.7.2. But first, we provide a brief review of airline YM literature to give
both a sense of the decision problems solved by airlines and the connections we hope to illustrate
through our exercise for telecom YM. This review, however, is kept concise for the reason that airline
YM models are not directly applicable to telecom YM. This is because analogies between airlines
and telecom are only a very high-level as argued in section 1.6.2. We do not attempt to review YM
related work in other industries for the same reason.

1.7.1 Airline Yield Management

Survey articles are the corner-stones of literature reviews. Two such articles dealing with revenue
management research in the last forty-odd years are by Van Ryzin and McGill [MVR99] and Weath-
erford and Bodily [WB92]. The first is an excellent review and summarizes the state of the art in
revenue management. The second is older and proposes a generalization of the revenue management
paradigm for managing any form of perishable inventory. Below we include literature for the prob-
lems of forecasting, over-booking, seat-inventory control and pricing in airlines. The organization and
review below is heavily based on the article mentioned above, by Van Ryzin and McGill [MVR99].
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Forecasting

Accurate forecasting is extremely important for airlines because of its direct impact on revenues.
The earliest models were for forecasting final demand for itineraries, for use in over-booking calcu-
lations. This required forecasts for passenger bookings, cancellations and no-shows. Early work in
this area investigated the Poisson, Gamma and Negative Binomial models for final demand [BB58)].
Several variations for estimating cancellations, no-shows etc. were investigated [Tay68], and later re-
search showed that the normal distribution is usually a good continuous approximation for aggregate
demand [Bel87].

Models of arrival processes for bookings are important because of their use in determining rules for
seat-inventory control. Much of the above work used arrival models such as the Poisson or the non-
homogeneous Poisson processes to estimate final demand. These processes typically under-estimate
the variance of the final demand but have the advantage of simplicity in determining seat-inventory
control rules. To more realistically model the variance of the final demand, other processes such as
the stuttering Poisson [Rot68][Rot71] and the batch Poisson process [BB58] have been proposed.

Two other areas deserving mention are: uncensoring demand data and disaggregate forecasting.
The uncensoring problem arises from the fact that airline reservations systems only track accepted
reservations, which are affected by the presence of booking limits and capacity constraints. This
requires that one be able to build a picture of the total demand from censored data about bookings.
Work in this area has included several approaches [Swa90][Lee90][McG95], which we do not describe
here. Disaggregate forecasting is desirable because aggregate forecasting may not yield accurate
forecasts for less traveled itineraries, and specially rare itineraries. Network-wide, these include
an important part of the total demand [Wil92]. Further, disaggregate forecasting has been argued
to yield more accurate estimates of aggregate demand [Sa87]. Work on disaggregate forecasting
techniques has been done mostly by practitioners [HM83][SLD92][L’H86].

Over-booking

The objective in over-booking is to admit the right number of requests such that flights depart
as full as possible, given the presence of cancellations and no-shows. The trade-offs involved are
between admitting too many request, resulting in excessive denied boardings against not admit-
ting enough and flying empty seats. This problem had been part of airlines practices well before
yield management but for a long time, its use was denied by airlines [Rot85]. Another compo-
nent of the over-booking problem is in determining equitable bumping procedures for over-booked
flights [Fal69][Sim68][Sim72][Nag79] for which some of the earliest work was by Vickrey [Vic72].

Early over-booking research used statistical models for predicting single-fare show-ups to compute
over-booking limits [BB58][Tay68][RS67][Lit72]. Some work was done on the multiple-fare over-
booking problem [Bel87]. All of these models were non-dynamic in the sense that they did not
incorporate the passenger cancellation and reservation processes subsequent to the over-booking
decision.

Dynamic optimization models have also been investigated for over-booking to maximize revenue
from flights sold-out at departure. Such models quickly become complicated and unsuited for imple-
mentation. Multiple fare-classes add another level of complexity. The usefulness of dynamic models
is in obtaining structural results, indicating the optimality of control-limit type policies [Rot68].
Work has also been done on extensions involving the setting of joint over-booking levels for multiple
inventory classes [KVR98] when fares can serve as substitutes as in, say first-class seats serving as
substitutes for coach class.
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Seat-inventory control

The seat-inventory control problem is that of determining how to allocate seats across multiple fare
classes. Alternatively stated, given a booking request within a fare class for an itinerary, the problem
is whether or not to accept it, given available capacity on all legs and forecasts of future demand
for all fare classes. The respective trade-offs for the accept/reject decisions are denial of service to
a higher paying customer later in case the flight is full, vs. not being able to sell all seats before
the flight takes off. The statement sounds simple, but the actual computation of such a decision
can be extremely complicated. The influence of a decision propagates across the entire network by
potentially displacing other bookings which will have displacement effects of their own. Similarly,
the influence propagates forward in time because displaced bookings may terminate at a later date
than the current booking. Also, since most itineraries usually have a return component, there is a
downstream effect on capacity. '

The earliest seat-inventory control models focused on single flights, starting from Littlewood’s
rule for two-fare classes [Lit72]. Much work was done on testing the assumptions under which Lit-
tlewood’s rule is optimal and on empirical testing of its performance [BP73|[Ric82][May76]. Belob-
aba [Bel87] extended Littlewood’s rule to multiple fare classes and proposed the Expected Marginal
Seat Revenue (EMSR) rule, which is not optimal in general apart from the two-fare case but is very
easy to implement and usually gives good results for common demand distributions [McG89][Wol92].
Unfortunately, one can construct distributions for it behaves arbitrarily badly [Rob95] but these are
usually not natural. Work has been done on extensions of EMSR to produce better approximations
of optimal booking policies [VRM98].

Using dynamic programming approaches, optimal booking limits have been derived under a
set of assumptions on the arrival processes (see [MVR99] for a discussion of the assumptions), a
typical instance of which is an assumption of low-fare customers booking before the higher fare ones.
One typically obtains structural results from such models [McG89][BM93] but there are significant
computational limitations to their implementation. Several extensions of the of the single-flight
problem have been investigated under relaxed assumptions. Work on these is too extensive to cite
here, see [MVR9] for a collection of references.

Network-wide seat-inventory control has become increasingly important with the development of
hub-and-spoke networks which result in a large number of passenger itineraries involving connections
to different flights. Since single-leg control does not optimize network-wide revenues, airlines have
attempted to develop control rules to increase revenue from the network. The first approaches were
deterministic and involved solving either min-cost network-flow formulations [GGLMS82|[Won90] or
linear programming approaches [Wol86]. These approaches sometimes produced non-nested alloca-
tions, which was counter-intuitive and consequently undesirable for operational level control. To
use stochastic models, one needed to make them tractable. This was achieved by clustering the
thousands of O-D itineraries into a smaller number of controllable classes, for which several meth-
ods were proposed [SP88][Wil88]. Once one has a small number of controllable booking classes
network-wide, one needs to decide on control rules. This is currently done computing bid-prices
using information from deterministic linear programming/network models [SP88][Wil88][Wil92] to
compute dual prices, which are interpreted as the marginal values for incremental seats on different
legs in a network. These dual prices, when summed across the legs in an itinerary, are assumed to
provide an approximate displacement cost, called the bid-price, and a request is accepted only if its
fare is above the bid-price of the itinerary.

Pricing

Airline now view pricing as an important part of the revenue management practice. At the strate-
gic and planning level, it has always been important. There is an extensive literature on airline
pricing from an economic perspective which addresses issues at an industry level. Tactical or yield
management level pricing is now seen as important because the opening and closing of booking
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classes for seat-inventory control can be seen as changing the fare structure for customers. Work on
this can be found in [GVR97][GVR94], where dynamic pricing problems are treated to determine
optimal pricing policies. Little has been published on joint capacity allocation/pricing and market
segmentation. Some work can be found in [Bot94].

1.7.2 Telecom Yield Management

There is little or no research under the umbrella of YM in telecommunications, the only paper
known to the author that explicitly mentions a Yield Management link is by Paschalidis and Tsit-
siklis [PT98]. Here the authors investigate congestion-dependent pricing policies for maximizing
revenue from circuit-switched calls with exponential arrivals and holding times. The authors show
that under stationary demand functions, fixed or static prices (such as time-of-day prices) are asymp-
totically optimal in a number of limiting regimes, such as light and heavy traffic, and a large number
of small users. A tentative conclusion is that when demand statistics are slowly varying, tune-of day
pricing will often suffice. The behavioral assumption in such a model is that by lowering prices, cus-
tomers will call more often and demand is infinite. Optimal pricing policies fluctuate at very short
time-scales in reaction to congestion, a behavior natural for an algorithm that tracks fast-changing
prices but probably not for human reactions to prices. Additionally, in the current market structure
consisting of fixed subscriber-ship, one needs to consider the possibility of cannibalizing existing
revenue because of discounting.

All other literature has focused on the pricing problem in communication networks at either
packet-arrival time scales or pricing flows. For the former, Mackie-Mason and Varian [MMV95]
proposed a “smart-market” mechanism in which each packet carries a bid-price and the network
only forwards packets with prices above a certain threshold based on congestion. For the latter,
Kelly [KMT98][Kel97] proposes rate-based schemes in which flows are charged based on the fraction
- of network resources used when the network is congested. Clark [Cla97] proposes an expected
capacity based scheme where users contract for a given aggregate expected capacity from the network,
and packets may get dropped if the user exceeds their capacity profile and the network is congested.
Charges are based on the expected capacity contract.

The network-wide revenue impact of packet or flow-based schemes is not clear. More seriously,
it is not clear if these are appropriate revenue control mechanisms, since users do not typically
think in terms of packet flows and use the networks in a task-oriented way, such as send email,
retrieve web-information etc. Therefore other schemes have been proposed to investigate how to
price the Internet [CSEZ93][WPS97]. Work is relatively scattered and evolving in this domain and
the best research tool is often the Internet, with several researchers listing collections of papers at
their web-sites?.

Admission control for loss networks has been used to maximize revenue from multiservice loss
networks [Ros95] but here the prices are assumed fixed. Usual models are the form of stochastic
knapsacks with class dependent exponential arrival and service times. A good summary of the results
can be found in [Ros95).

It is also useful to understand how the modeling work proposed in this thesis relates to existing
telecom models — in design, operations etc. Section 1.3.1 discusses this briefly and shows how YM
models fill a yet unfilled niche in the space of telecom models.

4See for instance, Frank Kelly’s site http://www.statslab.cam.ac.uk/ frank/ and Hal Varian’s site
http://www.sims. berkeley. edu/resources/infoecon/.
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1.8 Summary

This chapter has presented the problem of Yield Management for telecommunication networks by
drawing motivation from the remarkable success of airlines. We discussed the expected contributions
and limitations of this work. Because of difficulties in directly translating airline YM to telecom,
we have proposed an argument for designing new services to better exploit demand and capacity
to increase revenues from the network. Several aspects of this argument are discussed, including
practical issues, its relationship to current telecom modeling and possible application to other net-
works. The rest of the chapter provided short backgrounds on airline YM and the telecom industry,
including high-level analogies between the two and the difficulties in implementing YM in telecom.
A short literature review on airline YM has been included but the corresponding review for telecom
YM does not include much of significance. '
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Chapter 2

A Modeling Framework for
Telecommunications Yield
Management

This chapter ties the thesis together. Here we explain how the airline YM modeling framework of
forecasting, over-booking, seat-inventory control, pricing and market segmentation can be used for
modeling operations of new telecom YM services motivated by our argument of section 1.3. We
interpret each component of the airline framework in the telecom context and introduce the service
ideas modeled in this thesis, each idea serving as a preview of a subsequent chapter.

The outline of the chapter is as follows. Section 2.1 presents the argument for using the airlines
modeling framework for telecom. Section 2.2 translates the framework for a telecom context and
presents the YM services modeled in this thesis to illustrate the use of the framework components.
Section 2.3 presents a summary of the modeling work in this thesis and section 2.4 lists ideas for
some other YM services which we do not model in this thesis. Section 2.5 is the summary of the
chapter.

2.1 Need for the Airline Yield Management Modeling Frame-
work | |

To understand our point-of-view and the need for using the airlines framework, consider a specific
idea for a YM service which attempts to transport bulk content between locations by fixed deadlines
using only spare capacity. Suppose the software architecture for service operation consists of agents
distributed across the network that accept content from customers and schedule its transmission.
These agents will routinely need to make decisions involving: (i) forecasting available capacity and
demand for the service, (ii) determining the pricing levels for bulk shipments, (iii) deciding if an
arriving request can be shipped by a given deadline and (iv) deciding which requests to accept in
case customers pay differently. A model that incorporates all decisions for the network-wide version
of the service is likely to be complicated to formulate and implement. Hence a framework that guides
modelers by identifying the common decisions and decomposing the resulting models in a simple
manner is extremely valuable.

This motivates using the airlines method of decomposing decision models into the following
classes: how to forecast demand and capacity for the service - forecasting, how many to accept to fill
up available capacity - over-booking, which class of traffic to accept in case customers pay differently
- seat-inventory control, how to price the classes - pricing, and how to segment the market for a
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service - market segmentation.

It is useful to point out that the airlines break-up of the system-wide YM problem into manage-
able chunks is also a direct result of the complexity of the system-wide YM problem - Smith [SLD92]
mentions an estimate that the system-wide problem for American Airlines network could involve as
many as 250 million variables. Not only are the problems made tractable by the airlines breakup,
many of the rules obtained from YM models are also interpreted intuitively, resulting in insights
into system behavior rather than simply giving a numerical solution.

Using the airlines framework, for any given telecom YM service, any or all of the airlines modeling
activities of forecasting, over-booking, seat-inventory control, pricing and market segmentation might
make sense. It is also obvious that depending on the service offering, some of the areas might not be
relevant. For example, if all bulk shipments were flat-rate or not significantly different in revenue,
one may not need seat-inventory-like control to distinguish between customer classes.

Another motivation for using the airlines framework is to highlight the connections between
airline YM and telecom YM. These connections are obvious at a high-level — perishable inventory
and time-varying capacity usage, but seem to disappear as one tries to imagine an application
of airline-like controls in telecom. The problem arises due to lack of existing services in telecom
that allow for airline-like decision-making. Even using our proposed argument (c.f section 1.3),
ideas for YM motivated telecom services are decoupled from the airline YM products! owing to the
nature of the telecom services market. Consequently, the services we propose for telecom YM seem
far removed from the airline YM products, the only connection being that they capitalize on the
fundamental intuition of market segmentation and operation at near-zero marginal cost. However,
by decomposing the models using the airlines approach, we re-establish connections to airline YM
models at a deeper level. With this approach, many of the rules one obtains for telecom services
parallel airline-like rules and the intuitive connections are made explicit. This way, we capitalize on -
more than the raw intuition of using spare capacity and zero marginal cost, by drawing lessons from
the modeling approach of the airlines as well.

To demonstrate how the framework can be used for modeling telecom YM services, we take an .
eclectic approach. We consider several YM service ideas and for each service, model one aspect of -
its operation which falls into an area in forecasting, over-booking, seat-inventory control, pricing or
market segmentation®. This leads to an interesting exploration of several intriguing YM service ideas
rather than demonstrating the entire framework for a single service. We feel that the speculative
nature of the services justifies modeling limited aspects of many of these rather than a complete set
of models for one, with the hope that some of the service ideas will find their way into practice.
Section 2.2 presents in detail how these activities are relevant in a telecom context and the services
modeled in this thesis.

A final note concerns the modeling effort in this thesis and its connection to real-world appli-
cations (also see section 1.2 for comments on connections between modeling and the real-world).
Most models we consider are single-link versions of what will typically end-up being complicated
network-wide models. This is a usual first-step. For instance, consider the airlines practices and
their evolution. Airlines typically cannot implement optimal decision rules for their networks ow-
ing to the complexity of the problem [MVR99]. Even single-leg models are not solved optimally
and heuristics such as the Expected Marginal Seat Revenue [Bel87] are extensively used. However,
single-leg models are useful for understanding structural properties of the decisions and are insightful
for building network-wide heuristics. In a similar spirit, our single-link models may serve as starting
points, to gain insight into building network-wide heuristics.

!The term product in airlines is used to refer to the fare for an itinerary in combination with restrictions, such as 14
day advance bookings, Saturday night stay-over, non-refundability etc., and is the primary mechanism for segmenting
the market for an itinerary.

2 Forecasting is a bit peculiar in this regard, as shall be seen later.
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2.2 Translating the Framework for Telecom Yield Manage-
ment

This section, in a sense, circumscribes the decisions for telecom YM services that map into the
modeling framework of forecasting, over-booking, seat-inventory control, pricing and market segmen-
tation. For each category in the framework, we also briefly introduce a service idea for which a
related decision is modeled in this thesis. The discussion on the services is brief, with most of the
details relegated to the relevant chapters.

All services considered in this section, and indeed the thesis, are assumed to operate at around
0 marginal cost, using only available capacity, for which mechanisms can be easily designed (c.f.
section 1.3.2). Also, it is useful to reiterate here that generating ideas for new services is not a
formal process. Not only are the services proposed a small subset of possible services but even the
ideas described here are only one possible offering mode for the proposed services.

2.2.1 Forecasting

What telecom decisions might fall into the forecasting category? This is usually clear. We comment
on the nature of forecasting problems that will arise for many of the YM services. It is anticipated
that many of these might be harder than their counterparts in airlines.

Capacity forecasting

An extra dimension involved in telecom is forecasting the physical available capacity for various
times of day/week. This problem does not arise in airlines, since the reservations system accurately
tracks available capacity at any time, even though one can think of customer cancellations and
no-shows introducing uncertainty into the actual available capacity for an aircraft.

The capacity forecasting problem in telecom networks is hard because of several reasons. Even
if statistical characterization of available capacities on links is obtained, it is difficult to obtain a
measure of the end-to-end available capacity. For instance, the question of how many extra calls can
be accommodated between another origin-destination pair is not always answerable using only link
data, since the networks employ routing strategies which use local information at time of call setup
to route calls.

The problem becomes significantly harder in Internet-type networks for several reasons : the
burstiness of traffic, the multiplexing of a large number of sources and the local behavior at the
routers, possibly causing several routes to be employed for servicing a request. This makes it very
hard to build an accurate picture of network traffic and available capacity at any time. Vern Paxson’s
thesis [Pax97] addresses the issue of adequate characterization of end-to-end behavior of the Internet
in great detail. The tremendous heterogeneity of these networks exacerbates the problem. Intense
research activity has recently focused on accurate statistical characterization of Internet traffic at
all time scales to understand the operational stability and efficiency of these networks.

The good news is that models for YM services may not require very accurate models of avail-
able capacity at all time scales. One may need only a crude estimate of the residual capacity for
components. Such estimates might be reasonably obtained from aggregate data such as average link
utilizations for various times of the day.

Demand forecasting

Demand forecasts are necessary to appropriately manage capacity, exactly as in airlines. Several
demand processes giving rise to requests for telecom services have been relatively well-investigated
in literature. For instance, the Poisson process is known to be a good model for long-distance call
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arrivals. Similarly, other requests taking place at the human-activity time scale are well modeled
as Poisson processes or non-homogeneous Poisson processes with slowly varying arrival rate. It is
generally accepted that this is because the Poisson process can be obtained by the superposition
of a large number of renewal processes. For other machine initiated arrival processes such as the
requests from Web-servers etc, researchers are actively trying to validate useful models.

‘We make reasonable assumptions for arrival processes whenever needed since revenue for telecom
is likely to be much less sensitive than airlines to the exact statistical characterization of the processes,
simply because of the magnitude involved per service request. For human-initiated requests, the
Poisson process is used. The only other arrival process used in this work is that of request arrivals
at a Web-server. For this, we use a batch Poisson process and provide qualitative arguments for its
reasonability, but do not perform rigorous statistical analyses of the claims. This is because of our
limitation in obtaining realistic data.

Forecasting-related work in this thesis

In light of the above discussion and because almost all services proposed in this thesis are speculative,
we do not present any work on demand forecasting. Also, for capacity characterization, we do not
find ourselves well-situated to contribute to traffic modeling literature at short time-scales. Work
on traffic modeling at this level is fast becoming extensive [Pax97][RMVe96]. Further, useful and
practical models require extensive data and may only be marginally more useful for YM-services.
We assume that crude measures of available capacity for components such as links, for example, are
obtainable. '

We do however, consider one problem related to capacity forecasting that has arisen recently for
Internet-type networks [WP98]. This is the problem of probe-location. The issue is gathering data
for building an accurate picture of traffic on the network. The mechanism is to locate monitoring
devices, called probes, on the network to capture information. Since probe locations are fixed and
traffic behavior dynamic, one needs to decide the most effective location for these probes to collect
the most information in a highly stochastic environment. This problem is mentioned as a newly
emerging research problem in [WP98]. We present a first-cut model in chapter 6.

An added advantage from probes might result in the seemingly unrelated area of market seg-
mentation. There is an emerging market 'need’ for performance data on ISP networks [Bor98] in
addition to the need of network operators for better utilization of existing infrastructure3. Corpo-
rate customers of ISPs are usually deeply concerned with the service-levels and quality of service
they actually receive from the network, and currently use ad-hoc measures for monitoring network
performance. Several companies such as Savvis Communications™ and At-Home Service™ make
performance guarantees the backbone of their marketing strategies. For an impact of performance
monitoring on customer retention, see the article [Bor98] in Business Communications Review™
which makes the case that ISPs cannot ignore the impact of such monitoring on sales and customer
retention. This is explained in detail in chapter 6.

The only other forecasting related work in this thesis is the presentation of actual data to qual-
itatively argue that the demand process at Web-server is reasonably modeled as a batch-Poisson
process (c.f. chapter 7).

2.2.2 Over-booking

How can over-booking arise in telecom? The essential question here is one of quality of service (QoS)
and capacity determination. The main characteristics of the airline over-booking problem are fixed
capacity (airline seats) and known reservations, with uncertain behavior. The decision on how many

3The difference in operating efficiency between the best and the worst operators in Norf.h America and Europe
exceeds 30% [Bay96].
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to admit is constrained by pre-specified limits on denied boardings. Such a problem could arise in
telecom in several forms. For instance, suppose that demand is certain, i.e. customers who show up
always want service before some deadline but capacity is stochastically available. Then the decision
problem is similar to before, one needs to decide how many to admit such that the possibility of not
being able to serve a request is kept within reasonable bounds. Capacity stochasticity in such cases
can naturally arise if the resource usage of customers is not pre-determined. One could imagine
other services where over-booking might arise. For instance, if customers actually reserve time on
the network but are free to not show up, similar to airlines. Again, the decision is exactly as before.
In every one of these versions of telecom over-booking, one has some information about existing
reservations and the uncertainty is either due to reservations behavior or capacity availability or
both.

At the bit/byte level, the over-booking problems mentioned above are somewhat similar to the
problem of ensuring an adequate QoS, and are not new to telecommunications literature. They
occur in several forms as in, for example, multiplexing of sources at ATM switches, but at a very
short time-scale. Using a measure of resource requirement called effective bandwidths [Kel96], one
admits sources such that their peak transmission rate is greater than the available transmission rate
of the resource, but the cell-loss probability for each source is within pre-specified limits. Similarly,
the problem of dimensioning a long-distance network to ensure that the fraction of blocked calls is
within some QoS bears some resemblance to an over-booking problem without future reservations.

The most important distinctions between these QoS problems and an over-booking problem as
we envision for YM are in (i) accounting for the accepted reservations at the time of admission
control and (ii) the time-scale. The difference from the cell time-scale QoS problem is obvious since
the over-booking problem happens at a call time-scale. But even at the call-scale, it is different from
other, more static problems, such as computing blocking probabilities for calls at the dimensioning
level, which do not assume partial information about demand, such as reservations. In one sense, if
the bit/byte level problem can be considered as an operational problem, and the dimensioning as
‘a strategic decision, the over-booking decision can be considered more as a tactical decision where:
one has some hmlted information about fiiture demand and capacity.

Over-booking related work in this thesis

We briefly mention some possible YM services for which we model an over-booking type decision.
Detailed discussions follow in relevant chapters. In all services below, the intent is to use only excess
capacity for their operation, at near-zero marginal cost.

Network-usage by a Latest Start Time: Two Possible Services

Services that require network usage by a latest start time can arise in more than one context.
For instance, an executive or engineer working for an extended period of time in her office or
telecommuting from a home office may not care exactly when a phone call or FAX transmission is
executed. She might be willing to accept a latest time during which the call or FAX is guaranteed
to be placed rather than require immediate service, provided that the fee structure is reduced to
reflect her flexibility. Say that the professional’s assistant, a software agent, is called Lucy. Lucy
'talks’ to a network ’agent’ and lets it know the latest time before such a call should commence. In
a more compelling example, the customer might be a corporation wishing to obtain network time
before a given deadline for its use.

Another service for which usage by a latest start time arises implicitly is when the service
provider acts as a content courier, guaranteeing non-preemptive content delivery at a fixed rate to a
destination before a customer-specified deadline. With these constraints and the amount of content,
a deadline to completion of delivery is the same as specifying a latest time to start of transmission.
We discuss this service in detail in chapter 4, including why the constraints of a fixed rate and
non-preemptible service might be desirable. Again, the interface for this service could be the same
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as Lucy which ’talks’ to a network agent.

It is clear that many different decisions arise as part of these services’ operation. In the simplest
case, if the discount was fixed, the network ’agent’ only needs to decide if the additional request
can be started before its latest start time with a pre-specified probability, given the number of calls |
already in session and the accepted reservations. This is an over-booking problem, with the added
complexity of the scheduling possibility, which does not arise in airlines. We present a model in
chapter 4 which also clarifies other details about the operation of such services. We do not model
many other aspects of the services which would also result in interesting models.

What would be a possible market for these services? With a bit of imagination, we can consider
more than one. For the first service, consider video-calling as an instance. As a service, it could
be expensive enough for a telecommuter to not consider it unless deeply discounted. To the service
provider, it costs nothing if capacity is expected to be available and the user would not have bought
this service otherwise. Similarly, consider down-loading video titles from libraries on the Internet.
One might ask 'Lucy’ to connect and down-load titles any time before 6pm for viewing. This would
be a case where the user wishes not to swamp her connection to the Internet with these transfers and
asks 'Lucy’ to down-load content using a separate connection. The market for the second service is
very much like the market for another service, which we mention in section 2.2.3.

The revenue potential of such services might be significant. Consider back-of-the-envelope calcu-
lations for the first service, for instance. With 80 million customers for a company like AT&T*, say
1% telecommute occasionally and of these only 10% actually subscriber to a 'Lucy’-type service. If
each such subscriber on average uses 'Lucy’ only once every two weeks, and each call yields only $2
in revenue, one obtains added revenues of approximately $4 million per year. Similar calculations
for the second service can be made, as illustrated in section 2.2.3.

Operating a High-Speed Backbone as a Transport Network

Consider a provider such as MCITM operating a high-speed backbone with time-varying utiliza-
tion. Suppose MCI installed web-sites around the backbone, allowing users to upload bulk content
to a geographically close web-site, which would then be transmitted at a guaranteed high-rate over
the backbone, as soon as it finishes uploading. The service is designed such that transmission only
takes place using spare capacity on the backbone, for which mechanisms can be designed®.

Depending on the details of the service offering, the entire airline framework of pricing, seat-
inventory control etc. might be relevant to its operation. We consider only an the over-booking type
decision for it in chapter 3, namely, how many to admit given the number in transmission and the
number uploading onto a web-site, to maximize revenue from the service.

A variant of such a service exists for private digital network operators such as Vyvx™. Corpo-
rations, for instance, CNNT™, NBC™ or other media companies needing to transport programmed
content across geographical locations call into the Vyvx operator to reserve time on the network in
fifteen minute increments. They pre-specify the locations that need to be connected. At any time
during their requested time window, they effectively have a private virtual network. The carrier
in this case, however, has control of two decisions - whether capacity is available for setting up a
network within the future time-window and, at the time of setup, what is an optimal topology. For
users wishing only to transport content, the service mentioned above might be a possible substitute
to renting network capacity.

4Source: Wall Street Journal (3 Star, Eastern (Princeton, NJ) Edition), 7 April, 1998.
5For instance, by setting time-of-day limits on the amount of capacity used by such transmissions.
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2.2.3 Seat-inventory control

In what contexts could a seat inventory-control problem be relevant for telecom? The abstract
version of this problem in airlines is easily stated as a valuation problem. Given two competing
uses for a resource, one certain but low-paying (the discount offer) and the other future expected,
which is better ? In the telecom context, such a decision naturally arises whenever customers with
differing revenues request to use the network at a future time. The exact nature of future usage can
be of many forms, as exemplified by the service ideas of section 2.2.2 for which we model only an
over-booking type decision. Both these services could easily require a seat-inventory like decision to
decide which class of customer of customer to admit if the customers yielded significantly different
revenues.

We use another service to illustrate how a seat-inventory control type decision might arise for
telecom YM services. The service offers deep-discount courier delivery of digital content, a digital
version of FedEx™. Operation of such a service can be carried out at almost zero marginal cost by
designing appropriate protocols.

Seat-inventory control related work in this thesis

Consider a FedEx-type service where customers request delivery of bulk content between locations by
a fixed set of network-wide deadlines, such as 5pm, 12 am etc. The service operates exactly analogous
to the FedEx company, with the modification that since capacity availability is highly stochastic,
the network provider must decide at time of arrival whether to accept the arriving content for
transmission on its own network, or ship it to an alternate provider. The objective is maximization
of revenue from available capacity while ensuring that no accepted requests miss their deadlines.

For this service, we consider a single-link model in chapter 5 to derive seat-inventory like decision
rules, where the objective is maximizing revenue from the system. We extend the results to networks.
The evolutionary parallels to airline seat-inventory control methods will be hard to miss.

The motivation for the service proposed above is that many users (e-g., creators of distance
education, commercial web-sites that needing regular updates such as UBIDT™, CNN7M, search
engines such as ALTAVISTA™, YAHOOT that need daily replication) view the network as a
logistics type distribution system, not dissimilar to FedEx, UPST™ or the USPST™. From this
point of view, there is a package of bits that must be shipped from A to B by time T. Instant
or near-instant communication is neither required nor expected. This allows the service provider
to place the package of bits onto the network (perhaps in chunks) at different low activity times,
thereby minimizing the risk that users having guaranteed high service are turned away or given
inferior service. In airline parlance, it minimizes the risk of denied boarding to first class or business
class customers. Commercial data courier services already exist for the Internet. For example, the
company e-Parcel™™ is an "Internet Courier” which hosts Virtual Warehouses on the Internet to
carry any type of file of any size®. The speculation that users do not always want instantaneous
service is strengthened by considering other services in which network ’delay’ is inserted into the
service. For example, SightPath™7 guarantees MPEG quality streaming video off the Internet if
the user is willing to wait some amount of time, allowing them to download the content to a buffer
close to the customer.

To get a sense of the revenue potential for such a service, consider a company that does not have
extensive infrastructure of its own or which needs guaranteed deliveries. To cite a particular context?,
an Internet-auction company A has its auction web-server in city X in the mid-west, whereas its
data processing center is in city Y on the west-coast. Every night at around 3 am, after processing

6 http:/ /www.e-parcel.com.

7 hitp:/ fwww.sightpath. com.

8From personal conversations with an employee of an existing company, the name not revealed because of
confidentiality. '
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has been completed, data is shipped off from Y to X. It usually takes 2-3 hrs for the transmission
to complete. Data has to be in Y and uploaded onto the server at 6am sharp because there are
usually 200+ users already logged in and waiting for the quotes. A delay in data arrival can mean
the loss of several thousand dollars of revenue. Network problems sometime cause data to arrive late
enough such that manual intervention is needed to manage the system®. Such a company seems like
a primary candidate for a data delivery service if delivery by the deadline can be guaranteed. Even
a nominal $5 charge for delivery each day results in additional revenue of $1820/yr. If there were
1000 such customers, one would obtain a $1.8 million/yr added revenue from this service alone.

2.2.4 Pricing

The relevance of pricing for telecom, and indeed any industry, does not need much argumentation.
It must be recognized, however, that it is usually governed by competitive pressures and other
constraints, which limits the range of options for pricing services and products.

In particular, to understand the possibilities of pricing in telecom, it is instructive to consider
the role it plays in airlines YM. It has been argued that dynamic pricing is not the key mechanism
leading to the success of YM in airlines. For single flights and most itineraries, prices are published six
months or more in advance of departure dates and are relatively constant across the large carriers,
since unilateral reduction of prices by a carrier might incite a price-war. The result is relatively
static pricing. On the other hand, it is true that there is a natural duality between pricing and
seat-inventory control decisions and the opening and closing of booking classes can be viewed as
changing the price structure faced by the customers. Also, dynamic pricing is clearly advantageous
in pricing custom-itineraries for which fares are not pre-published and pricing fares in a market
where bidding mechanisms for airline seats exist — as are evolving over the Internet.

For almost any telecom YM service, setting the prices, whether static or dynamic, will be a
relevant problem, but its benefit may be indirect rather than direct as in airlines. The most obvious
pricing options may simply not be the most effective. For instance, spot-pricing network usage may
not result in the anticipated benefits because of (i) competitive pressures, (ii) revenue sensitivity
and (iii) the structure of the market, such as fixed subscriber-ship, which may result in revenue
cannibalization.

If one does indeed consider spot-pricing a telecom service, a very important question is the right
time scale at which prices should evolve. The benefit of pricing at the cell arrival time-scale or
at the call-arrival time scale is not clear. Several schemes proposed in literature (c.f. section 1.7)
consider dynamic pricing at cell or flow time-scales. Their overall effect on revenue of an entire flow
is relatively uncertain, and network-wide effects are almost impossible to guess or control. Therefore
these schemes might more appropriately be called metering mechanisms where the rate charged
depends on short time-scale congestion levels in the network. Another model [PT98] investigates
pricing at the call-level to conclude that time-of-day pricing might be sufficiently near an optimal
dynamic pricing scheme. None of the schemes consider the structure of the market.

If pricing at the cell-level and at the call-arrival level is not beneficial for telecom networks, could
a time-scale in the middle work? We consider a service for which pricing decisions need to be made
at fixed time intervals and which explicitly considers the possibility of revenue cannibalization.

Pricing-related work in this thesis

Consider discounting the use of the network for long-distance calls when capacity is available and
raising the price when it is scarce. The concept itself is not novel but a fundamental issue is the
nature of the service. Suppose at fixed intervals of time, given some information about the state
of the network and the currently offered prices/products between pairs of locations, one announces

91 am not sure what it entails.
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to the users new prices/products for a future interval to maximize the revenue from the network.
The term “product” refers to a fixed discount price relative to a base tariff for a long distance call
between an origin destination pair. Naturally, it is assumed that communication channels of some
form exist which allow the users to be notified of the new price/product offerings at every intervall®,

The idea of real time price/product offerings hinges on the belief that some fraction of customers
will react to the price offerings and that the benefit in revenue from the changed behavior of these
customers will be significant. Clearly, demand has to come, more or less, from a fraction of existing
subscribers, and one needs working mechanisms to ensure that their regular usage is not unduly
displaced to discount periods — the issue of cannibalization. We address this and other details
regarding the viability of such a service in chapter 8.

The service proposed above makes sense, but several important issues can only be settled by a
serious market study. These issues relate to the revenue sensitivity of the users and the fact that
given the competitive nature of industry currently, the market may simply not accept complicated
pricing schemes. Since these issues cannot be addressed in a speculative environment, we leave them
for future research, pending the usefulness of the model formulated in this thesis.

To estimate the revenue impact of such an offering, say a company charges $1/month for subscrip-
tion to be notified of these price changes. Then consider a company like AT&T. With approximately
80 million customers!?, even if only 1% of the subscribers take up this offer, one immediately obtains
$800,000 per month as the revenue from subscription for the service. In addition, if an increased
revenue of $0.50 per month per subscriber is achieved on average, we have $400,000 million per
month increase. These are annual increases of $14.4 million, with little added costs. Remember that
we are assuming a market penetration of only 1%. Of course, if one loses more than $1 per person in
call revenue, one achieves a net loss. For smaller companies, the effects may not be as dramatic, but
are still significant. Sprint, for instance, provides long-distance service to around 15 million homes,
and the above calculations result in added revenue of $2.7 million annually. With these calculations,
one needs around 0.6 million people to subscribe to such a service to get $1 million added revenue.

2.2.5 Market segmentation

Market segmentation is a peculiar activity in the sense that it does not lend itself to formalization
like other YM activities. The usual method is to try variations of products and services to gauge
the market reaction. It is likely that the situation will be similar for telecom networks.

Again, the airlines examples serve as useful guides for the possibilities in telecom. Market
segmentation activities in airlines consist of mechanisms to separate business travelers from leisure
travelers. These mechanisms have evolved over the last 30 odd years by repeated experimentation
with fare products, starting from from British Airways’ Early-bird bookings and American’s Super-
Saver fares, maturing to include weekend-stay-overs, multi-hop pricing structures and frequent-flyer
mileage programs that minimally interfere with revenue producing customers. The informal nature of
the process has produced little published research. Even literature surveys on revenue management
do not usually usually include models for such activities. It remains an area where creativity and
understanding of the market are required.

One might expect a similar situation for telecom, where market segmentation will arise on multi-
ple fronts. In the YM services context, generating ideas for YM services is itself an informal process
and will automatically result in market segmentation, since most services will be created to cater
to users with different needs. For instance, the services mentioned in sections 2.2.2 and 2.2.3 target
users who do not need the network in real-time. Similarly, dynamic pricing is an attempt to segment
the market using prices.

10For instance, posting the prices on the web, or using a ticker tape to display the prices in a small window on the
user’s computer.
11Source: Wall Street Journal (3 Star, Eastern (Princeton, NJ) Edition), 7 April, 1998.
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Table 2.1: Services proposed in this thesis.

[ Service Ideas for Telecom Yield Management ||
Network-usage by a latest start time: two possible services
Operating a High-speed Backbone as a Transport Network
The Digital FedEx Service
Probe location
Guaranteeing web server performance
Quasi real-time pricing of long-distance calls

However, other possibilities also arise where one can use modeling to segment the market for
existing services. We choose to illustrate the use of market segmentation in the context of an
existing telecom service, using network information to create a qualitative difference in the service
offering. The general principle is straightforward. Use service guarantees to differentiate customers
wherever possible. We present an idea below in which such a concept could prove useful.

Market segmentation-related work in this thesis

Consider web-hosting services which are integral parts of most Internet Service Provider (ISP)
offerings. Suppose an ISP includes a guarantee of service of the following form when agreeing to
host a customer’s site. The fraction F of files transfers with transfer times greater than ¢ will be
less than P over every period of length 7. We expect to be able to charge a premium for such a
guarantee since the contract will also typically include a penalty for not meeting the guarantee. The
main issue for the ISP is to understand its network well enough to be able to meet this guarantee
reliably with the current traffic patterns on the network. Chapter 7 discusses the main considerations
in obtaining such a guarantee using a model for quantifying the delays experienced by files.

Suppose one charged $50/month on average from a corporate customer for a guarantee such as
above. Of course, different customers will have differing levels of guarantees and will in all likelihood
be paying different amounts, but for preliminary calculations, some number such as above serves
fine. Then one obtains $600/year as added revenue from one customer. With 100 such customers,
this becomes $60000/year in additional revenue alone. This may seem small but one has to keep in
mind that the numbers we have used are relatively small and arbitrary.

2.3 A Summary of the Modeling Work in this Thesis

Table 2.1 lists the services proposed in this thesis for telecom YM. Figure 2-1 illustrates the models
attempted for each service, and their situation within our proposed modeling framework. Figure 2-1
also reveals the modeling and analysis opportunities that lie ahead, as we “invent” new services —
rows in the figure, fill in the empty slots with new models, and construct increasingly better models
for the already filled ones.

2.4 Ideas for Other Services

In this section, we list some other interesting operations and services that might be relevant to
telecommunications YM, but for which no work is presented in this thesis.
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Figure 2-1: A summary of the modeling work in this thesis and its relation to the proposed modeling
framework. The ®’s are the models attempted.

Variants of “Lucy”

The same infrastructure underlying the Network-assisted Calls services of section 2.2.2 might be used
to offer other services. For instance, the network provider might use agents like “Lucy” as traffic
management mechanisms, posting ”spot prices” every T time units, for 'Lucy’ to initiate network
usage as soon as some algorithm — perhaps from a stochastic dynamic program, observes optimal
conditions for action. Even more straightforward might be for the network to post time-of-day prices
and for Lucy to act solely on that irformation. The range of possibilities for implementation is large.
For instance, instead of only user-side agents like 'Lucy’, the network could operate a population
of its own agents which have limited information about the network, and have them interact with
"Lucy’ to maximize net revenues from the entire network.

Operational network design in a ’Yield Management’ environment

Once a network is in place, one may wish to determine optimal routing and transmission policies that
handle discount or ’yield managed’ traffic differently from premium traffic. Revenue management
policies, coupled with time of day demand variations - may suggest routing and multi-casting schemes
that appear to the eye to be far from optimal yet in fact are optimal. Again, in the airlines, think
of routings for low fare customers: sometimes it is better to route a person from A to B on three
separate flight segments instead of a non-stop flight, increasing the number of hops from one to
three. Yet such a policy minimizes net congestion on the network, where congestion is appropriately
defined across the ensemble of customers.

Strategic network-design in a ’Yield Management’ environment

One may wish to capitalize on the effects of YM on network traffic to minimize capacity costs. In
the absence of revenue management policies that aim at smoothing demands for network services,
one must design the network to respond to (unmanaged) peak loads. This requires a larger network
capacity — hence larger capital investment — than would otherwise be required. This fact is a key
reason why electric utilities pay customers to find ways to save electricity, especially during peak
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times. The utilities do not want to invest capital toward creating a power generation and distribution
network that is fully utilized only at (infrequent) peak demand times; the investment simply does not
pay for itself. It is cheaper to pay customers to find ways not to demand their product! Such effects
might deserve modeling when designing networks. Particularly in an environment where capacity
can be leased on short notice, one may be able to minimize the rental costs of additional capacity.

Service-level agreements

At the strategic level, by linking Internet economics and Internet traffic via service level agreements,
contract design, and efficient market clearing mechanisms for bandwidth, one may be able to max-
imize yield from capacity usage. The central decision to be made here for a large network-owner
is essentially to determine a system of pricing with associated service level guarantees; for exam-
ple, given traffic patterns on a network, how many options contracts on capacity can be priced for
premium or guaranteed services. -

Examples of such market clearing mechanisms may be: (a) a system of capacity options, where
users are able to purchase the "option” to use capacity for a fixed period in the future with associated
service level guarantees. These contracts may be medium to long range time-scales of use (say a
few months), and also allow for interesting hedging opportunities; (b) spot market pricing of current
capacity to clear the capacity on a shorter time-scale of use (say a day or a week); (c) capacity
partitioning, a hybrid of the above, where a network owner makes the decision to use part of its
capacity for spot-market sales and part for options type contracts.

Modeling congestion cost for an “Internet Service Provider” (ISP)

Customer response to congestion levels is obviously important in several different ways, but the
seemingly simple question of how increase in congestion levels — appropriately defined — affect con-
sumer behavior has not yet been addressed in telecom literature. Research, instead, has focused on
other aspects of telecommunications economics such as, for instance: finding socially optimal pricing
schemes for usage of digital networks, see MacKie-Mason [MMV95] or Kelly [KMT98], allocation
of resources between users to maximize unspecified user utilities and telecommunications economics
policy such as Bailey and McKnight [MB97] (add inter-providers’ settlements literature).

There is room for new thinking in this arena and an idea is to borrow the framework of random
utility theory, or more precisely discrete choice theory, which has proved extremely valuable in other
related contexts such as transportation demand modeling — see, for instance, Lerman and Ben-
Akiva [BAL94]. In particular, discrete choice modeling has the attractive feature that it provides
a verifiable medium for testing if our analysis and predictions of consumer behavior are reasonable.
This framework can be used to operationalize our intuition about customer behavior and may result
in unforeseen benefits.

2.5 Summary

In this chapter, we proposed using the airlines YM modeling framework of forecasting, over-booking,
seat-inventory control, pricing and market segmentation for modeling telecom YM services. We
discussed possible telecom versions of each component of the framework. We briefly described the
new service ideas articulated in this thesis and the decision problems that will be modeled in later
chapters. We also included a summary of the modeling work and its relation to our modeling
framework. Finally, we mentioned some ideas for other telecom services and operations that could
be relevant to a YM effort in telecom.
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Chapter 3

Overbooking: Operating a
High-Speed Backbone as a
Transport Network

This chapter demonstrates how over-booking type decision models might arise for telecom YM.
The vehicle is a YM service designed to utilize available capacity on a high-speed backbone (c.f.
section 2.2.2 for the context). We first introduce and discuss the service, including some practical
aspects of its operation. We then model a decision problem related to capacity determination similar
to the over-booking decision in airlines. Specifically, a single-link model is considered for determining
the optimal number of requests to admit on the backbone, given existing traffic. We analyze the
performance of a simple and attractive class of policies for revenue maximization. Several interesting
properties of these policies are established and a fast algorithm is presented for obtaining them. Their
performance is compared to the optimal policies and the model is extended in several directions.

The chapter is organized as follows. Section 3.1 introduces and discusses the service. Section 3.2
presents a single-link model and its discussion. Section 3.3 proposes the use of linear admission
policies for revenue maximization and analyzes them in detail, presenting an analytical solution and
investigating their sensitivity to service time distributions. In section 3.4, we explore an alternate
formulation to compare the performance of these linear policies to truly optimal policies. Section 3.5
considers extensions of the model. Section 3.7 is the summary and lists the contributions of this
chapter. :

3.1 The service

Consider a provider offering spare capacity on a backbone for content transport. Users wishing to
transmit bulk content between locations can upload it to a web-site. Once uploaded, it is auto-
matically transmitted to a destination address over the backbone at a guaranteed high fixed-rate.
Incentives for the customers to use the service will be (i) a deep discount since renting network
capacity for content transmission is expensive, and (ii) performance, since web-sites will typically
be close to the end-users resulting in better performance than the public Internet. The motivation
for the provider is generation of revenue from available capacity, as long as existing traffic is not
adversely impacted. Several practical issues, both technical and marketing, must be considered to
ensure that the service offering indeed capitalizes on the motivation stated above. We comment on
several of these in section 3.1.1.

In this setting, we explore how to maximize revenue from the service, using an over-booking type
decision as follows. When a user accesses the web-site and ’clicks’ a button to upload content, the
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web-server must decide, based on the number of requests under transmission on the backbone and
the number of requests being uploaded onto the web-site, if it can guarantee a high-speed connection
to this user as soon as she finishes uploading the content. Further, assume that the operation of
the service is as simple as possible. Specifically, this means that (i) the user is not required to
enter any information about the nature and size of the content, and (ii) the server keeps no state
information such as the amount of content already transmitted for the requests in service. Then
the server has two options at each arrival, it can either redirect an upload request to an alternate
provider’s web-site at some cost, or let the upload proceed. If when the request is uploaded, it
cannot obtain a guaranteed connection on the backbone, we assume it is re-directed to an alternate
network instantaneously at a higher cost. This entire process is assumed to be transparent to the
user, i.e. the shunting of the content to an alternate provider and the shipping of the content over
an alternate backbone are all invisible to the user, for business reasons. '

3.1.1 Practical Issues

The yield management motivation for the service is (i) to either use spare capacity in the network
and/or (ii) to operate a network at near full capacity, by not designing it for peak demands (c.f. sec-
tion 1.3). In both cases, the excess demand would need to be deflected to alternate networks. This
could be an arrangement with an alternate provider, or perhaps, instantaneous acquisition of more
bandwidth whenever demand exceeds capacity. The second option could be exercised through elec-
tronic bandwidth-ezchanges, such as the ones being developed!. Such arrangements are increasingly
likely in the emerging telecom market where bandwidth liquidity is already significant.

Examples of providers for such a service might be companies such as MCI™™ which operate a
high-speed Internet backbone. One can envisage MCI using residual capacity in its network for
such a service, perhaps by setting capacity limits at daily or hourly time scales. Customers for this
service could include corporations such as CNN”¥ and NBCT™™, for example, which have typically
used arrangements with proprietary networks such as Vyvx™ in the past to transport programmed
content.

The idea for the service is intriguing, but an actual offering will have to consider many practical
issues, such as the infrastructure for managing the service. For instance, with our suggested archi-
tecture of geographically distributed web-sites as ’gateways’ to the backbone, location of the sites
will need to be considered carefully. The objective would be to locate the sites so users can find a
site close to them easily, making content download fast. Several interesting modeling questions arise
here, even though we focus only on an overbooking type decision in this thesis. For instance, (i)
determining the closest/fastest upload site for a request arriving from a location, (ii) determining the
number and placement of these upload sites to minimize the mean upload time across the ensemble
of customers? and (iii) determining the storage space required at the sites to handle demand.

The nature of the service offering and its operation is also subject to several possibilities. For
instance, even though we only consider one available transmission rate in this paper, it is more
likely that one would offer a range of available rates to cater to customer preferences and to better
segment the market. Further, the operation of the web-server itself is subject to many possibilities.
One may wish for the server to maintain state information such as the amount of content already
transmitted on the backbone, the size of the content the customer is uploading, etc. This information
may then be used to make better operating decisions. For instance, if one has information on the
distributions of the residual times for content transmissions under way, one can consider using the
model of chapter 4 instead of the model in this chapter.

1See, for instance, the article by Thomas L. Friedman on bandwidth exchanges in the New York Times, titled
“TheLandgrab.com”, January 18, 2000.
2Stochastic facility location models might be particularly useful for this problem.
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3.2 A Single-link Model

We model the decision problem presented in section 3.1 to determine a policy for redirecting upload
requests to an alternate provider. The model, more or less, captures most of the essential charac-
teristics involved in a revenue maximizing decision, and focuses only on network bandwidth as the
constraining resource.

3.2.1 The model

Poisson arrivals with rate A occur at a single link with C identical circuits. Each arrival can be
admitted to the system or redirected at cost c. to an alternate provider. If admitted, it takes the
customer a random amount of time to finish uploading content, distributed exponentially with mean
1/u1. When uploaded, the customer occupies a free circuit on the link, if one is available, for an
exponential duration with mean 1/u,. If no circuit is available when a customer finishes uploading,
the request is routed to an alternate link at cost ¢; > ce, at which point it is considered lost to
the system. The assumption ¢; > c. is necessary for the problem to be well-formed, for if ¢; < c,
admitting everyone would be optimal.

Call the fraction of arrivals that are redirected at arrival ezternal blocking B, and the fraction
of admitted requests that find all C circuits occupied, B;, internal blocking. Let i = 0,... , 00, be the
number of customers uploading and j =0, ... ,C, be the number of customers transmitting, both in
steady state®. Note that the subscript 4 in ¢; stands for internal blocking, and does not refer to the
state variable i. We preferred this abuse of notation to the burden of remembering a more obscure
subscript. i

B, - External blocking B; _ Internal blocking

T

—

i - requests uploading :
.
iy -
: J - requests transmitting
-
wa Idle servers
C - number of servers mm Occupied servers

Figure 3-1: The model.

3.2.2 Remarks

1. The exponentiality of the random variables in the model is attractive, making it tractable.
However, there is no reason to believe that service times will be memoryless, and a more
realistic model would have general distributions for service times. The Markov description
of system with general service times, however, becomes too complicated to be of much initial

31t is relatively obvious that steady state exists since an uncontrolled system is simply an M/M/co queue feeding
a loss system. ‘
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value. Such systems are useful for getting numerical results, but usually do not yield immediate
qualitative insight. Our hope is to gain insight into the behavior of the system using exponential
distributions, to help in analysis of more general models.

2. The assumption of memoryless arrivals is reasonable since requests generated at human activity
time-scales are usually well-represented by a Poisson process. Much evidence is available in
literature supporting this assumption, some of which can be found in [PF94].

3. A priori, one expects g1 < po since the backbone will usually be much faster than the con-
nection to the web-site. We will not, however, impose this restriction in the analysis unless
absolutely necessary.

4. The most troublesome aspect of the model is the assumption of independent service times at
successive stages for every request. This is clearly not the case, since the time spent uploading
by a request should be strongly correlated to the transmission time over the link. We expect, for
example, a correlation of 1 if there is no independent disturbance in the available transmission
rate over the link. Unfortunately, a Markov description again becomes very complicated for a
model with correlated service times. We comment on this problem in detail in section 3.3.4.

5. Instead of a detailed literature review, we briefly comment on related models. The space of
Markovian models is extremely rich and varied. Further, Markovian models often have deeper
connections to each other than appear at first sight. All of which makes it difficult to say that
ours is the first treatment of such a model.

For instance, several models involve multiple stages, but most consider systems where requests
overflowing a first link get a chance at a second link [Kel91]. A related two-stage retrial model
is discussed in detail in [Wol89], where over-flows from a first loss system are considered as
arrivals to a second loss system and the model is extended to an arbitrary number of stages.
Admission policies are not considered for this model and analysis is attempted under FCFS
operating policies. Common questions in over-flow and retrial models involve performance
measures such as fractions of requests lost, etc. Our search has not so far revealed a model
directly related — that considers optimization of revenue in a system where requests can get
blocked at a second link. Research on over-flow models remains huge but relatively scattered
(c.f. [Wol89], chapter 7-14). '

In terms of telecommunications literature, the above model does not appear in mainstream
literature since it does not naturally correspond to the mechanics of common services such as
real-time telephony etc. It may arise implicitly in modeling some ancillary activity but we have
not so far found a report. Over-flow and re-trial models, on the other hand, appear extensively
in telecommunications literature.

3.2.3 Objective function

To maximize revenue using an optimal redirection policy at arrival times, it is equivalent to focus
on minimization of system cost, defined as the cost of internal and external blocking since the
total revenue arriving to the system is constant whenever revenue for each arrival is independent
identically distributed — for instance, when revenue per call is fixed or depends only on the length
of transmission of a request.

A redirection policy 7 is a function mapping each state (i,5) to {0,1} for all i = 0,... 00,
and j =0,...,C. 7(i,j) = 1 if an arriving request is accepted when the system is in state (i, j),
otherwise 7(4,5) = 0. By convention, we let m(¢,7) = 0 if state (4,7) cannot occur with positive
probability under =.

Under any given redirection policy m, the system behaves as a Markov process with a single
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recurrent class?, and the long-term time average cost can be written as follows:

2" = AceBY + Ac;(1— BI)BT.

We can reduce the above expression to a convenient form expressing 2" in terms of p;, the steady
state probabilities of the Markov process under the policy . Call 8™ the set of positive probability
states under m, and recall that under m, Bf is the fraction of admitted requests that are blocked
because all C servers are busy. BT is then written as:

* X 1-Br '’

Then the objective function becomes:

Z" = A Z P+ ome z Do
(4,5)ESx: (¢,C)ESR
w(i,5)=0

The first summation involves states where arrivals are redirected to an alternate system and the
second summation involves states where C circuits are full. Because of the clutter in notation, we
will drop the superscript 7 from the algebra unless needed, since the policy under consideration will
usually be obvious.

3.2.4 Comments on optimal policies

Under any policy 7, one obtains a Markov process with the following transition rates. Figure 3-2
shows these transitions for a linear policy of the form, 7(i,j) = 1 iff i + § < @ — 1, for a particular
6=1,...,00.

(1,7) — (i+1,7), (3, 5)A,
i<C: = ({-1,7+1), i,
— (4,7 - 1), Jpa.

(1,C) —(i+1,7), (i, 5)A,
j=0C: = (i —1,5), ip1,
= (4,5 — 1), Jp2.

Given policy w, one can write the global balance equations in terms of the above transition
rates and solve them numerically to evaluate z™. This leaves, however, the question of determining
the optimal policy. The policy space is large, and a simple search might require evaluating a
combinatorial number of policies, each evaluation requiring the solution of a possibly large linear
system.

To get a rough sense of the problem, note that even if i is restricted to be always less than some
integer N, then with C servers, there are C x N positive probability states for the Markov process.
With the decision is admit, not admit in each state, the total number of possible policies are 26*¥V
clearly very large. This necessitates the need to either find an algorithm that that prunes the search
space significantly, or start the search with a policy already close to the optimal. Of course many of
these policies are non-sensical, for instance, the ones that do not assign 7(0,0) = 1, in which case
Pop = 1, or policies involving transient classes.

4State (0,0) and all states that are reachable from it.
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Figure 3-2: The state space under a linear admission policy of the form, admit iff i +j < 6 — 1.
Inward and outward transition rates are shown separately.

- Some simple policies, however, admit of relatively easier analysis. For instance, under a linear
redirection policy, the state space is given by figure 3-2, and one can easily write down the global
balance equations. This motivates the analysis of section 3.3 where we try to obtain a policy optimal
within the class of linear policies.

3.3 Linear Redirection Policies

Motivated by the difficulty of computing optimal policies, we analyze the performance of linear
redirection policies, as defined below. Other motivations are the simple form of a linear policy, which
makes implementation easy, and to obtain qualitative insights into the main parameters affecting
system cost.

Call a policy linear if it admits arriving requests only when i+ 8j < #—1 and j < C, where 8 and
6 > 1, are real constants. For any such given linear policy, characterized by (83, 8), the objective value
2(B,0) can be computed by solving the global balance equations numerically to obtain p;;(3, 8), the
steady-state probabilities.

A strategy might then be to search for an optimal linear policy over the space 4> 0,6 > 1. The
difficulty of such a strategy is the search, since each evaluation requires the solution of a system of
linear equations — likely to be large for anything but the most trivial systems. Further, it is unclear

" how to determine the direction of the search at each iteration. Fortunately, the class of linear policies
with # = 1 permit of an analytical solution, and are computationally found to be nearly optimal
within the class of all linear policies.

The central results obtained are:

1. Linear policies with 8 = 1, i.e. admit only if i + j < # — 1, permit a closed-form solution for
the steady-state probabilities, resulting in a simple algorithm for obtaining an optimal policy
within this class. Further, the closed-form allows for analysis of these policies, giving some
qualitative insights into the system.

2. Even within the restricted class of linear policies with 3 = 1, one obtains significant improve-
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ments over a naive policy — admit-everyone blocking at the link if necessary - by as much as
5%-30%, unless either the system is very lightly loaded or the ratio c;/c. is very low.

3. Numerical investigations indicate that the performance of the optimal 8 = 1 policy is very
close to a policy optimal within the class of all linear policies.

4. Numerical investigations reveal the performance of the optimal 8 = 1 policies is within 1-5%
of the true optimal policy, (c.f. section 3.4).

5. And most importantly, numerical investigations reveal that the steady state probabilities of
the system under a 3 = 1 policy are insensitive to the distribution and the correlation structure
of the service times in the successive stages. This property allows for real investigations into
the behavior of more realistic models.

3.3.1 Linear policies: 14+ j <6-—1
Steady-state probabilities for policies which admit iff i + j < # — 1 can be obtained in closed-form.
Call the state space for this policy, S(f). Then S(8) = {(¢,7) : i +3j < 8,5 < C,i > 0,5 > 0}.

Letting p;; = 0 whenever (i,5) ¢ S(8), the global balance equations can be written as follows for all
(4,7) € 8(9).

F<C: piy(M+ipy + jpe) = pic1,5A + Pij+1 (G + pz + piy1,j—1(6 + 1pa,
i=C: pij(A+ips + Cp2) = pi1,6A + Pit1,0(i + 1)p1 + pirr,0-1(8 + 1)pa.

With p1 = A/ p1, p2 = A/ 2, the solution to these equations is given by:

pio}
ENTh

1 pigd
3i(0) = —— ==, (i,j) € S(8), where G(8) =

And the objective function can be written as below, using z(#) to denote the objective value.

o _C-1
_A oidy 8 & B
2(9)—5@[63 Z gl + ¢ ol Z ik #=1,2,...,00. (1)
(’L',J')Es(ea)= i=0
i+j=

For convenience, we have written the expression in the above form, but the second summation
only exists for values of # with § > C + 1.

The product-form obtained for the steady-state probabilities is interesting and deserves some
thought, since the same product-form is not obtained for linear policies with 8 # 1. One possible
connection is to the known Erlang network. For instance, steady-state probabilities for our linear
policy are exactly the same as that of the well-known Erlang loss-network model in telecommunica-
tions [Ros95], with the topology shown in figure 3-3. This motivates the question if there is a deeper
connection between linear policies in our model and some appropriate topology of a product-form
loss network. The hope being to discover insights from the substantial analysis available for the
Erlang model [Ros95]. We do not pursue this direction in this thesis.

3.3.2 Properties

Expression (1) can now be investigated both analytically and numerically to establish some quali-
tative properties of the objective function z(8).
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Figure 3-3: An Erlang loss network having the same steady-state probabilities as the i + 5 < § — 1
policy. Links 1, 2 have capacities C, @ respectively. Calls of type i, arrive with rate A each with
mean holding times 1/u; and 1/us respectively. Calls of type j require a circuit on links 1 and 2
simultaneously while calls of type i only require a circuit on link 2.

Properties which are not very surprising and can be established with some algebra include the
following. The algebra is documented in section 3.6.

1. z(f) is monotone decreasing from 6 = 1,... ,C. An intuitively obvious fact since with 6 < C,
we are blocking requests unnecessarily even when the probability of internal blocking is 0.

2. z(00), the cost of admit-everyone policy, converges to the cost of Erlang blocking at the link —
as if the link of size C' was operated under Poisson arrivals with rate A and mean service time

1 / H2.
3. B.(6), the external blocking, is monotone decreasing in 6.

4. The cost of internal blocking is monotone increasing in 6.

Other properties of the optimal policy 8* and the optimal cost z(6*) for which there is numerical
evidence are demonstrated in representative graphs of z(#) against 6 shown in figure 3-4. The figures
suggest that the objective function either has a unique optimum or monotonically decreases. In the
comments below, factors affecting the optimal policy 8* refer to its sensitivity as long as 6* < oo,
i.e. whenever admit-everyone is not optimal.

1. The optimal cost z(6*) seems very sensitive to the arrival rate ), slightly less so to ¢, ¢; but
quite insensitive to u;. It is also moderately sensitive to u; for which a plot is not shown. This
is seen by looking at all the plots.

2. ce and c; seem to affect the values of the cost z(8) for § < C, and 8 > C, respectively, which
is not very surprising. The behavior is as shown by the bottom-left plot. The surprising fact
is that policy itself, 6%, seems not to be very sensitive on the specific ratio c./c; whenever a.
unique 6* exists as indicated by this and the top-right plot.

3. The optimal policy 6* does not seem very sensitive to the arrival rate A, all other parameters
being the same, as indicated from the top-left plot.

4. Even for lightly-loaded systems, characterized by moderate values of A/u2, one obtains a
unique 6* < oo if the ratio ¢;/ce is large enough, as indicated by the top-right plot. However,
when c;/c. is moderate, the optimal policy is likely to be to accept everyone, i.e. 6* = co.
This is also intuitively obvious, since if the cost of internal blocking is large, it should limit
the number of people accepted when the link is full.

5. Finally, the bottom-right plot indicates that 8* seems most sensitive to the parameter y;, with
lower values of p; increasing 6* substantially. The same is true for us, plots for which are not
shown. u; and p; therefore seem to be the critical factors controlling the optimal policy.
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Figure 3-4: Representative plots of z(6) vs. @ for the i + j < @ policy.

Finally, some other properties which we think are true but do not have formal proofs for include
the following:

1. A characterization of the optimal @ in terms of the parameters of the model, including condl-
tions on the loads p; and p; when such a 6 exists.

2. A proof that the optimal # is unique whenever admit-everyone is not optimal.

3.3.3 A fast algorithm for obtaining the optimal i + j < 6§ — 1 policy

Finding the optimal 8 = 1 policy involves searching over integers # = 1,...,00. Computing the
objective function z(f) involves summations over the space i+j < §—1 to evaluate the normalization
constants G(f). A much more efficient algorithm can be obtained by recognizing the recursive
structure of G(6).

First note that the value of the objective function is strictly decreasing over § = 1,...,C, as
mentioned in section 3.3.2. We can therefore restrict our search to § = C,... ,00. This search can
be organized very efficiently by re-writing expression (1) in the following form. One can then write
a simple algorithm that takes no more than O(C) operations to evaluate z(8 + 1) given z(8), instead
of O(C8) operations that would be required in a brute-force evaluation.

2(6) = G?e)[ ;G)(%)J + ci%g: e_ffl%:i], 6=0C,... 0. @)

=0

Consider the algorithm below for evaluating z(@) for § = C,... , 00, which takes advantage of
the following recursions involved in (2):

()=a55(5") =

G) =GO -1) + —5: zcj(j) (%)j.
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"An Algorithm for Fast Evaluation of z(d), 6 =C,... ,x
Input :

’\) K1, 12, Ce, Ci, C
Initialization :

6:=C

a; = (g) %)j, j.=0,...,0

G = pese) T
b:=0

2(8) = ce 350 04
Main Loop :

for0=C+1,...,00
A:=0
for j=0,...,C
a;(8) == 5% a;(6)
A:=A+aq;
end for;

G:=G+AZ

§—C—1
b = b + ((?:F——lﬁ o
z(0) == A [ccA + cib%)
end for;

Output :

z(6), 0=0C,...,00

3.3.4 General service time distributions and correlations

We address here the exponentiality and independence of the service times, assumed in the model of
section 3.2. These are clearly unrealistic assumptions since transmission times for the same request
must be strongly correlated at subsequent stages. We provide numerical evidence below that the
performance of the i + j < # — 1 policies is independent of the distribution of the service times and
their correlation structure, depending only on their mean. This makes such policies highly attractive
for implementation and analytical investigations. We think a formal proof for this property would
be very exciting to obtain.

The representative results below were obtained by simulating the system under the i + j <
6 — 1 policy with differing distributions of service times but the same means. Percent errors for
simulated costs are computed against the analytically obtained cost z(6*) for the following service
time distributions: independent exponential in both stages, exponential in the first and perfectly
correlated (i.e. second stage time is deterministic and the same as the sampled time in the first stage),
independent Erlang in both stages and independent Pareto on both stages. It is seen that the error
is less than 1% in all cases, which is more or less simulation noise, as shown by the comparison of
the simulated costs for the independent exponentials case against the exact cost z(6*).

Input || g1 | p2 | ce | | C
1 1 1 2 |5
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8* | z(8*) | Sim cost | % diff Sim cost % diff
Exp-Exp Exp-Det corr

A=2 || 10 | 0.146 | 0.14756 1.07 0.14763 0.05

=4 8 | 1.380 1.3796 -0.05 . 1.3806 0.07

A=6 8 | 3.199 3.2042 0.13 3.1941 -0.31

A=8 8 | 5.151 5.1431 -0.16 5.1471 0.08

o* | z(6%) Sim cost % diff Sim cost % diff
Erlang-Erlang Pareto-Pareto

A=2 || 10 | 0.146 0.14824 0.46 0.14619 -0.92
A=4 8 | 1.380 1.3741 -0.40 1.3756 -0.29
A=6 8 | 3.199 3.1923 -0.37 3.1928 -0.35
A=8 8 | 5.151 5.1461 0.06 5.131 -0.23

3.3.5 Optimal linear policies i + 3j < 8

A natural question to consider is the performance of the optimal policy 8*, when 8 = 1, compared
to an optimal linear policy with an arbitrary value of 8. Unfortunately, the same product-form
solution no longer exists for arbitrary # policies, because of the structure of the state-space, as
shown in figure 3-5 for several linear policies. We therefore resort to numerical investigations to
determine how to improve a policy with 8 = 1.

admitiff i+j<=4 admitiff i+2j<=6

LI

admit iff i-j<=1

admitiff i+ 1/22j<=1/2

\

Figure 3-5: Representative state space for some linear policies. The sets of positive probability
states are shown for each policy. The shaded regions are states to which one in-bound transition is
an admission.

Experiments with several linear policies as shown in figure 3-6 indicate that no significant im-
provement is obtained by arbitrary @ policies over the optimal 3 = 1 policy. The results were
obtained by numerically solving the global balance equations for certain sets of policies and compar-
ing the resulting z(3,#) values to the values of z(1,6). The slight differences may be attributable to
numerical imprecision in the solution of the global balance equations.

‘We speculate that the 8* policy captures the major trade-offs within the class of linear policies.
For § < 1, we always get a worse optimal policy, and for 8 > 1, the benefit in admitting more
external arrivals is offset by the cost of internal blocking, as indicated in figure 3-5.
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Figure 3-6: Comparison of linear policies for two sets of model parameters. The optimal value z(8)
does not decrease significantly from § =1 as 3 increases.

3.4 Optimal policies

Here we compare the performance of a §* policy to that of the true optimal policy. To obtain optimal
policies, we view our decision model as a countable state, continuous time, average reward dynamic
programming problem. Since under any policy 7, the Markov process obtained has bounded rates,
standard dynamic programming theory applies (see [Ber95] for instance) asserting that there must
be a stationary optimal policy. Note that in principle, our state space is infinite. However, there is
either an optimal policy with a finite state space or admit-everyone is optimal. In the latter case,
the 6* policy is also optimal and there is no need to search for an optimal policy. Therefore, only
when a finite 8* policy is obtained do we need to consider its sub-optimality.

We reformulate the problem as that of minimizing average cost over an infinite horizon. We
discretize time into intervals of length § and call J*é the optimal average cost per stage to write
Bellman'’s equation as follows:

j#£C: J*6 + h,‘j = Iélg)ll} { (1 — 7l'¢j)/\6ce + (1 — 10 — jugé — 7l'-,;j)\5) h,;j +
Tij ,

16 hi1 41 + p28 hijo1 + TiA8 higry ),

j=C:J*6+hy = I'él%‘rjll){ (1 —mii)Adce + (1 —ip1d — jpad — m3A6) hij + ipi1de; +
Tij )

10 him1,; + Gp28 higo1 +mi)d hip1y )

Here 7;; is the admit/not-admit decision in state (4,j) and h;; the relative cost in state (4, 5).
We will consider the set of above equations for states with ¢ < N,j < C, where N is some chosen
finite number, perhaps 26*. Then under the condition hgp = 0, Bellman’s equation has a unique
solution in the unknowns J* and h;;. Given a solution to Bellman’s equation, the optimal policy
is obtained by choosing a m;; which minimizes the right-hand side. As an aside, the solution to
Bellman’s equation has the interpretation that h; is the relative reward in state (4, 7). In particular,
if a policy that attains the minimum in Bellman’s equation on the rhs is followed starting from
state (7,7) and starting from state (m,n), the difference in total rewards over the infinite horizon is

(hij — hmn)/d.
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| [ 6] =z(6*) | J* ] (2(6*)—J*)/J* | Iterations
A=10( C=10 | 24| 1.3007 | 1.2993 0.1078 1
A=20| C=10 ([ 21 | 10.2661 | 10.0836 1.8099 2
A=20(C=15 | 34| 46274 | 4.5882 - 0.8554 2
A=50 | C=20| 43 | 27.847 | 27.3546 | 1.8001 3

Table 3.1: Performance comparison of the §* policy with the optimal policy for several values of A
and C. All other parameters were held constant for these runs, with g; = 1,42 = 1.5,¢. = 1 and
¢; = 2. The last column lists iterations of the policy-iteration algorithm before convergence, when
started with a 8* policy. ,

With the above formulation, one can obtain an optimal policy using any of the classical dynamic
programming algorithms, but the computational complexity increases with the size of the state space,
limiting the feasibility of a brute-force approach. We use the policy-iteration algorithm which, when
started from an arbitrary policy, obtains an improving sequence of policies in every iteration to
converge to the optimal policy. In order to guarantee that the policy iteration algorithm terminates
finitely, one needs to restrict it to a finite state space, hence the need for N. Further, the relative
rewards h;; need to be bounded. Both are not a problem when the state space is truncated.

We present computational comparisons of the optimal policy found using the policy iteration
algorithm, when started from a 6* policy. Table 3.1 lists the results and figures 3-7 and 3-8 show
the state space for an optimal policy vs. that of the corresponding 6* policy. Remarks are noted
below.

1. The policy iteration algorithm takes no more than 2-3 iterations to find the optimal policy
when started from a 6* policy.

2. The performance of the 8* policy is very close to the optimal, within 1 —2% for all cases tested.

3. The computational complexity of obtaining a #* policy is significantly lower than that of
obtaining an optimal policy®. Obtaining z(0) in every iteration of the algorithm of section 3.3.3,
when finding a 6 policy, is an O(C) operation, whereas every iteration of the policy iteration
algorithm might require O(C3N?3), N > C operations using standard Gaussian elimination, a
speed that makes policy iteration infeasible for any but the smallest values of C. To emphasize
the point, with C = 20, the difference in magnitude is greater than 20°. In a Matlab™
implementation, for instance, for the case of figure 3-8 with N = 60, the policy iteration
algorithm took 25 minutes to complete three iterations, whereas the 6* policy was obtained
in less than 10 secs. Further, the storage requirement of the policy iteration algorithm will
typically be O(CM), unlike the storage requirement of the 6* policy, only O(C).

3.5 Interesting directions

We comment briefly on some interesting directions without pursuing them further. For several
extensions of interest to the basic model of section 3.2, one might be able to identify product-form
policies and compare their performance to that of an optimal admission policy.

For instance, consider the model of section 3.2 with the modification that an external Poisson
stream of arrivals at rate v (say class 2) is allowed to the link or the second stage directly, skipping
the first stage. Call the arrivals from the original stream at stage 1 class-1. If service times for all

50ne may, of course, try and find other more efficient algorithms for obtaining an optimal policy.
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Figure 3-7: The set of positive probability states Figure 3-8: The positive probability states for the
for an optimal policy vs. the 8* policy for the case optimal policy for the case A = 50,C = 20, 0* =
A=20,C =15,6* = 34, table 3.1. 43, table 3.1.

requests using the link remains exponential with rate us regardless of class, a policy that admits
class-1 arrivals into the first stage and class-2 at the second stage® only when i + j < 6 — 1 retains
the product-form solution of section 3.3.1, where now pa = (A + 7)/p2. One can then investigate
exactly as we did, the performance of this policy compared to alternative policies.

Similarly, the approach of finding a product-form policy might be usefully extended to multiple
stages, fixed routing networks and/or multiple classes of arrivals and service times.

3.6 Proofs of properties: the i + j <6 — 1 policy

The algebra for many of the properties of a linear policy with 8 = 1 is transcribed in this section.

First we note the easy fact that in an Erlang loss system with given capacity C and load p, the
blocking probability B(C) is monotone decreasing in the capacity C. The Erlang loss formula is:

B(o) = £/
2 ico P/
This can be re-written as:
B(C) = —C%_—, and
Yico 7P ¢
B(C +1) L

C+1 c @+
£—c'—i)‘ + 2 it D! i c’
Now comparing the denominators, we see that B(C) > B(C +1).

Remark 3.6.1. z(f) is monotone decreasing in 8 =1,...,C.

Note that:

'52 I_Jp% o 2 2
Z ilj E(op J)IJ|= |Ep () (m%ﬁ, for=0,...,C.

i+j=0 j=0 F1

Therefore z(8) for § = 1,...,C can be written as:

6Class 1 arrivals are blocked after the first stage only if the second stage is full.
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The expression on the right is now the same as the Erlang loss formula with load p; + ps and
capacity 6, and is therefore decreasing in 6.

Remark 3.6.2. z(oo) converges, and the cost of admit-everyone policy is the same as ¢; times the
cost of blocking at the link with Poisson arrival rate A as if there was no first stage.

To get z(00), the cost of an admit-everyone policy and simultaneously show that it converges to
a limit, note the following for the sub-expressions involved in z(6), from (1):

lim Z -pi—p:'é:O,

6—00 il g1
(%,3)65(9)
i+j=60
-C-1
o0 O &= il cr

Jim G(9) = e z;o ”5.

Now it is obvious that z(#) converges and that the cost of admitting everyone is the same as the
cost of Erlang blocking at the link, as shown below:

0§ /C!

To show the remaining two facts related to the monotonicity of B.(#) and B;(f), we require some
messy algebra.

z(o0) = ¢;

Remark 3.6.3. External blocking is monotone decreasing in 6.

We know this is the case when § < C. When 6 > C, we will show that for every 7 = 0,...,C,
Do—j;,;(0), the probability of the external blocking state (@ — 7,7) under policy i +j < 8 — 1, is
monotone decreasing in #. Since B.(f) = Zc_o Po—j,;(0), we will get the desired result. This
proceeds relatively similar to the monotonicity mampula.tmns for the Erlang loss formula. For any
given J between 0 and C, we have:

pa Jp2
—=J, pip.'l' [ IRNC J)lJ' i—8+J j—J°
,H,j_(_g _z]i?z Zk=0 El+_7'=k [Axil 1 p]
i<

For the same J, we have pg41-7 s(6+1) as the corresponding blocking state under a 8+ 1 policy,
and a similar manipulation as above results in:
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P51~ p;

B-F1=J)1J!
Po+1-5,J(0+1) = = i

L
z‘+.7'5961—1 ilg!

i<
1
6+1 B+1-NDWJ! i f—-14+J j—J O+1=INT! §—0-14+J j—J
2: §:z+g =k T P P+ im0 P P2
j<C
1
O+1-NUJ! i—6+J j—J 9+1—J)IJt "
Ek=021+1— (i+21)15! 1 ,0% + p1+ =T o7

Now comparing the denominators of the expressions for ps_s s(f) and pg+1-45(0 + 1), we see
that pg_j,7(60) > pa+1,7(6 + 1), which establishes B.(8) > B.(6 +1).

Remark 3.6.4. Internal blocking cost is monotone increasing in 6.

From the expression for z(8), it suffices to show that 1/G(6) Zo ~o-1 pt/i! is monotone increasing
in 6, which requires us to show that for every 6,

6-C-1 6-C

@o+1-60) 3 % < 6(0); 0"1_ o (a).

i=0

Consider first the following inequality which will be used repeatedly, for C < k < 8:

Pz (6-0C)! S _JP;
Z(’c J)'J' Pk (k — C)'Z(e !

To illustrate why this is true, consider k = § — 2, for which we have:

A -0 -c-n A 0
Z i Z(e—oxe-cl—l)(e—j-z)!ﬁ

> #-C)F - C—l)z p%
(e

P1 J"

since j < C for all terms in the summation. Now consider the rhs of expression (a), using the
above inequality:

= K£C /S (B-0)
G(o)(e c)!z(é)—C)!(Z 7"k -C) )(Z("‘J'J)

k=c P
6-C i
-(%8) (S

Whereas the lhs can be written as:
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o1, 11 6-C-1
(G(9+1)—G(9)) Z (Z(9+1 Jp% ) Z %’

— 3\l
i=0 ‘7) ‘7 i=0

J=0

Comparing the inequalities for the rhs and the lhs, we get the result.

3.7 Summary

This chapter demonstrates how over-booking type models might arise in telecom YM by considering
a specific service idea. We proposed an idea for a service, and formulated a simple single-link
model to investigate a capacity determination decision during its operation. Specifically, the model
considered how many requests to allow in the system given a number of request already being
served. We proposed the use of a simple class of policies which admit of an analytical solution, are
within 1-2% of the optimal, and can be obtained much faster than true optimal policies. Further,
these policies have the property of being insensitive to the service time distributions and correlation
structure, making them highly attractive for analysis, as well as implementation. We then extended
the model in several directions to indicate how a similar line of reasoning might be useful in other
cases.

3.7.1 Contributions

Contributions from this chapter include the following:

1. The service idea which is straightforward enough to be no-brainer, if it can be implemented
intelligently. It has simple and intuitive appeal and we suspect some variation of it is likely to
appear in the market in the near future.

2. In the modeling arena, we view our contribution as the starting point for analysis of larger-
scale network models involving variants of the capacity determination question. Even for
the single-link case, the unexpectedly good performance of the 6* policy and its insensitivity
remain surprising, and motivate questions about deeper connections of these policies to multi-
class queuing networks [Kel79] and product-form loss models [Kel91]. It further seems that
optimal policies may have a simpler characterization than the one we have discovered, given
the closeness of their state space to that of the §* policy (c.f. figure 3-8). Many generalizations
of the single-link model are of interest, and we leave these for later research.

3. Finally, the connection with airline over-booking we alluded to earlier in section 3.1 can be
seen explicitly by looking at an optimal linear policy as described in section 3.3. Revenue
maximizing policies may allow arrivals to be admitted even when the link is full, in order to
more fully utilize the system, similar to airline over-booking. As a comment, this behavior
arises because we expect uy to be larger than p; in the model of section 3.2, therefore the
departure process from the link with rate Cuy is likely to be faster than the the uploading
process with rate iz;. The probability of a circuit becoming free before a download finishes
is therefore likely to be significant, and it makes sense to allow uploads even when the link is
full.
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Chapter 4

Overbooking: Network-usage by a
Latest Start Time - Two Possible
Services

We demonstrate how over-booking type decisions could arise in telecom YM, in the context of
two discount services where users indicate a latest start time (LST) before which service must
commence, allowing the provider to schedule their requests using spare capacity (c.f. section 2.2.2
for the context). The LSTs may be explicitly specified or may arise implicitly due to the nature
of the service, as explained in section 4.1. We outline the service ideas and model the problem of
determining the optimal number of requests to accept to maximize revenue from available capacity,
given existing requests and their LSTs.

Section 4.1 presents the services and discusses several possibilities for their operation. Section 4.2
presents a single-link model for determining an acceptance policy. Section 4.3 investigates a simple
acceptance policy in detail. Several cases are considered separately, including where the service
times are exponential, generally distributed and heavy-tailed random variables. Several directions
for future research are also outlined. The summary and contributions of this chapter are presented
in section 4.5.

4.1 The services

Imagine a service where a software agent 'Lucy’ on a user’s PC 'talks’ to a network agent to request
that a call commence anytime before a latest start time (LST) and the network agent places the
call whenever capacity is available before the LST. This capitalizes on the notion that not everyone
needs to use the network in real-time and many customers might be willing to trade-off on-demand
service for a discount. For the network provider, the cost of providing service is negligible if capacity
is available. Several practical choices must be made when designing such an offering, for instance,
does 'Lucy’ indicate the length of the session to the agent? Does every user demand a different rate
etc.? We comment on these and other practical matters in section 4.1.1.

Another context in which a service with LSTs occurs is when the provider acts as content
courier. Arriving customers request delivery of bulk content by a deadline, at a fixed rate and
with non-preemptible transmissions. This gives the service provider flexibility to time the start of
transmission when capacity is available. The constraints of fixed rate and non-preemptive service

could be a practical requirement, arising for instance, from security concerns from the customers!.

L Allowing arbitrary number of connection attempts to external computers can easily result in a breach of security.
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In this context, the LSTs arise implicitly since given the amount of content and the fixed rate,
non-preemption constraint, the network needs to start transmission by a LST if the deadline is to
be satisfied. Again, exact parameters of the service must be designed to make it practical.

It is clear that the entire airline YM framework could be relevant in modeling different aspects
of such services (c.f. section 2.1 for the perspective). For instance, decisions of interest about the
services could involve: (i) pricing, to determine prices that maximize revenue from the offering,
(ii) seat-inventory control, to accept the optimal mix of customers to fill available capacity when
customers pay differently, and (iii) forecasting, to determine available capacity and demand. Finally,
agents also need to use a scheduling rule to determine the order in which existing requests should
be served. :

We focus only on overbooking, determining the optimal number of customers to accept to maxi-
mize revenue, given available capacity and unserved requests. Because the decision for both services
is the same, we talk henceforth only about the 'Lucy’ service. The agent determines at request
arrival time if to accept the arriving request or to refer it to an alternate system at a cost, based on
the number of requests in the system, their LSTs and the number of calls in service. This cost can
also be interpreted as the cost of using ’'real-capacity’ instead of ’available capacity’. We assume no
information is required of the users in advance, such as the length of their sessions. Further, each
user uses some constant bandwidth during the length of her session, which could be an actual circuit
or a measure such as effective bandwidth of the source. Also, instead of revenue maximization, one
could also consider a service-level criteria where the objective is to ensure a QoS - typically specified
as the probability that an accepted request cannot be served before its LST. In this chapter, we
examine a single-link model to determine such acceptance decisions.

4.1.1 Practical Issues

Several issues need to be addressed before the services can be made operational. First, one needs to
decide the exact mode of the offerings, although we focus only on one possibility here. For instance,
one may allow users to request time-windows with earliest start times in addition to latest start
times. One may decide to make available different transmission rates to users. The users might
also be given the option to ’cancel’ their requests if they change their minds and may be asked to
indicate the approximate length of usage in advance.

Providers of such services can include network operators with predictable utilization patterns
and a network that allows for capacity management, such as setting time-of-day limits, etc. With a
bit of modeling work, one can perhaps also apply it to networks like the Internet which do not have
sophisticated capacity management mechanisms, if a measure of capacity usage can be obtained
for accepted calls, such as effective bandwidths for instance. Some mechanism to ensure that only
spare capacity is used by the agents needs to be constructed. The simplest schemes could involve
setting limits on the amount of capacity used by discount calls, which needs to be forecast and
set from usage patterns. Alternatively, one could implement a sophisticated control where each
network agent monitors usage of the network by premium traffic, and schedules calls based on its
own estimates of the available capacity. Also, in case demand can indeed be deflected to other
networks for lack of capacity, one would need to seek arrangements with other network providers for
capacity management.

Other design decisions relate to the architecture for the service management software. One
envisages a few, or possibly only one, network agents located around the network to which ’Lucy’
talks. Whether these agents are distributed or centralized will guide decision models. For instance,
models that have perfect information on accepted calls at the various agents and their respective
LSTs will naturally be different from local decision models at each agent, which may assume only
probabilistic information about existing demand at other agents. All such possibilities will raise
extremely interesting modeling problems.
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4.2 A Single-link Model

Consider a C-server facility with identical servers. Requests arrive to the facility as a Poisson process
of rate A. Associated with each arriving request is a latest start time (LST) X from the time of
arrival, before which it must start service. X are assumed to be i.i.d random variables, and we will
consider versions of the model when the value of X is specified upon arrival, or available only in
distributional form at the decision epoch. Once a call is started, it occupies a server for S units of
time, S being i.i.d random variables not known at start of service. Service is not preemptible.

We consider an acceptance policy which admits an arriving job only if the probability of starting
it before its LST is greater than a pre-specified QoS. The problem is to determine this probability,
with knowledge of either the exact value of the LST X or with only distributional information about
it. Section 4.2.1 discusses other information available for the decision and some modeling issues.
Section 4.3 presents and discusses a simple acceptance policy motivated by the complexities outlined
in section 4.2.1.

C - number of servers

[
-
k - queue size -
-
A—> oooooo| [ ]
-
: “le L .......,L"”., R
- > !
i X I
LST

Figure 4-1: A single link model.

4.2.1 Remarks

1. The probability of starting service for an arriving job before its LST clearly depends on all
the jobs in the system, their remaining service times, their LSTs and the scheduling discipline
— which may necessitate taking into account future arriving jobs such as, for instance, under
earliest LST first scheduling. Not only could such information requirements be too stringent to
maintain, using all such information to determine exactly the probability of missing the LST is
itself a hard problem. We therefore look for simpler admission control policies which abstract
away the scheduler as a black box and assume only distributional information about the service
times of jobs in queue and in service. Details follow in section 4.3 where the reasonability of
such a policy is also addressed.

2. One needs to specify what happens to accepted calls that miss their LST. We assume that (i)
the specified QoS is small enough that this is a rare occurrence and (ii) that a call must be
serviced even if it misses its deadline, perhaps with an associated penalty.

3. The case of having knowledge of the LST X only in distributional form before making the
acceptance decision models situations where users can specify the LST in probabilistic terms,
or when the available rate for bulk transmissions is stochastic.
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4. Our QoS based acceptance criterion makes this decision problem exactly the same as an airline
overbooking problem. The objective in both our problem and the airline overbooking problem
is to maximize the number of requests admitted given available capacity, realized demand and
stochastic demand behavior. See section 2.2.2 for more details on the connections. However,
the complexity in our problem stems from the presence of scheduling, making an optimal policy
much harder to obtain.

4.2.2 Literature review

Departure processes from queues are of interest in several applications and have been studied ex-
tensively, but results usually focus on the unconditional steady-state departure times, unlike the
departure times we consider, which are conditioned on an observed queue size. Therefore we men-
tion only a few papers in this area to serve as useful leads, instead of a true literature survey.

Even for unconditional steady-state departure processes, the exact description is hard to obtain
except for the simplest queues. Consequently, much literature focuses on obtaining bounds for
the inter-departure time distributions. For instance, Whitt [Whi84a], [Whi88] and [Whi84b] deal
with approximations for departure processes in single-server queues, and with light and heavy-
traffic approximations for inter-departure time distributions. Several references related to departure
processes are cited in these papers. Daley [Dal76] is an earlier work that attempts to address
mathematical aspects of output processes of G/G/s/N queues.

4.3 Analysis: A Simple Acceptance Policy

The complexity of incorporating all information in an acceptance decision, as outlined in section
4.2.1, motivates the search for simple admission control policies. Specifically, suppose that scheduling
is non-idling FCFS and e~%, the maximum possible probability of missing the LST for a call, is
very small. Then, if we only consider distributional information about X (LST), distributional
information about the lengths of calls yet to be started, and distributional information about the
remaining service times of calls already started, we can state the admission contrel problem in a
simple form as follows.

For any arrival at time 7 that finds & jobs in queue, call L;,i = 1,... ,k + C the inter-departure
time between the 7 — 1st and ith departure, assuming departure 0 occurs at time 7. Then admit iff:

k+1
Pr{ YLi>X } < el (1)
i=1

In such an admission control policy, the probability on the lhs is a function of k, X and the
distribution of L;’s, the inter-departure times. It needs to be computed on-line at every arrival if
either the value of X is specified or the L;’s are non-stationary.

If the L;’s are assumed stationary at every arrival and z, the value of X is known at each arrival,
an alternate specification of the policy is k*(z), the largest queue size an arrival with deadline z
must find, for (1) to be satisfied. This follows by noting that the departure times k,k + 1,. ..,
must be stochastically ordered under a FCFS non-idling policy, with the k + 1st departure time
stochastically larger than the kth departure time. Therefore there must be a largest k*(z) for every
z, which satisfies (1). It is further clear that k*(z) must be monotone increasing in z.

With stationary L;’s, a further simplification results when only the distribution of X is known
at arrival. Here, the policy is characterized by a single number £* and can be computed off-line. To
see this, note that since X are i.i.d, the probability on the lhs is only a function of k, the queue size
at arrival. In this case, the admission policy is characterized by the integer k* defined below, such
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that one accepts a job iff the number in the queue k < k*.
k+1
k' = argmax Pr{ Z;Li > X }
7=

k+1
s.t. Pr{ ZL¢>X} < e,
i=1

In the remainder of this section, we will consider the evaluation of both the general policy (1)
and the simplified ¥* policy, assuming the L;’s are stationary.

4.3.1 Remarks

o Note that the L;’s represent the earliest & departures from the system and are not i.i.d, which
is the real complication in determining the probability on the lhs of (1).

» The assumption that arrivals find stationary residuals is usually reasonable because of the
PASTA? property. Stationarity of the residuals implies that the L;’s are stationary, but not
ii.d. as mentioned above.

e Under the FCFS non-idling scheduling rule, the k* policy when X is not known is not unrea-
sonable, counter to a possible first reaction. In effect, the only assumption it makes in addition
to the scheduling rule is the stationarity of the residual service times.

e To understand the effect of information on our proposed acceptance policy, under the FCFS
non-idling assumptions, consider the following different cases of the amount of information
known at decision time.

1. If z, the value of X is known at arrival and one knows ezactly the service times of all jobs
in the system and the residual times of the jobs in service, the decision is straightforward,
since one can algorithmically determine the & + 1st departure time, and compare it with
the value z to make the acceptance decision.

2. If X is only available in distributional form, but one has perfect information about all

retiuests in the system as mentioned above, we can still use an algorithm to determine

1:11 L; and the admission control reduces to evaluating the CDF of X, G (z) as shown
below.

k+1 k+1
Pr{ ZLi >X } = G(ZLi) <e?
i=1 i=1

3. When z, the value of X is known at arrival but the L;’s are random, one needs the CDF
of Ef:ll Ly, the k + 1st departure time to make the decision. This is likely to be the
most complicated case since the departure-time distributions from multi-server queues
are usually difficult to characterize.

4. Finally, a k* policy results when both X and L;’s are random. In this case, one expects
a more conservative decision than all of the cases above since the randomness of the L;’s
and X increases the variance of the outcome.

These cases belp outline the trade-offs in using a k* policy vs. keeping more state information
for making the decision. Since the first two are straightforward, we focus on the last two cases
in the remainder of this section.

2Poisson Arrivals See Time Averages.
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4.3.2 Exponential LST X and exponential service times

This base case is of interest because the distribution of the (k+1)st departure-time is known explicitly
and because it serves as a useful benchmark for comparing approximation schemes for more general
distributions. Assume that X is exponential with mean 1/u4 and the service times at each server
are exponential with mean 1/u,. Then k* is easily obtainable by solving for the largest k using the
following expression, where the following is only valid for k£ > 1:

k+1 Cu k+1 ]
) =1 | —F < e 0.
Pr{ gL,>X} 1 [Clﬁs+ll:d:| <e (2)

This obtains

. In(1 — e~%) _
= [ln(Cus/(Cp, + ba)) IJ'

4.3.3 Generally distributed LST X and exponential service times

A simple expression for the probability of missing the deadline is unlikely to exist in this more
general case, since

/w Pr{ kf:lLi>X|X=x}dG(z) = /:o/ (Chs )k+1yke O“'ydy dG(z)

=0 i=1 =0

|
M >

[(k—zy / ~ eOm )t dG(x)] < el
(3)

Still, it is always possible to numerically evaluate the expression above for any value of k and
therefore to determine k*, the maximum & such that the constraint < e~ is satisfied. This compu-
tation is not too difficult and can be organized recursively, with each k& = 2,... , 00, requiring the
evaluation of only one extra integral, starting from & = 1 for which two integrals are needed, as
shown below:

i=0

k+1 o0 o0
k=1: Pr{ ) Li>X} = / e~CM® Cpu,z dG(z) + / e~Ck® dG(z),

=0 =0

k+1
k>2: Pr{ > L;>X}

=1

k oo
Pr{ ZL,- >X} + %/x_oe_c"’“ (Cusz)* dG(z).

This is also a good point to pause and experiment with approximations for the probability on the
lhs of (1), since when the service times are not exponential, approximations might be the only realistic
method for computing an admission decision. We consider the Chernoff-approximation below, to
bound the rhs of (3) above and determine an approximate k*. The expression for the Chernoff-bound
involves a single integral as shown below. Comments on the quality of the approximation follow
in 4.3.3. Connections and insights from these experiments will appear in later sections.
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k+1

oo %‘.'I;_: oo o‘ -
/ Pr{ YLi>X|X=z } dG(z) < / dG(z) + / g_e-ﬁ z-Iné(r)d@(z)
z=0 =0 m=k“:

k+1 M1 oo
= 6(Gn) * (kj-l) /?,L s (Cpez) T dG ()

< e’

i=1

(4)
Getting k* from the above expression again involves solving the integral numerically for & =
1,2,...,00, until it exceeds e~¢. Some remarks are noted below.

Remarks

1. Although obtaining the exact k* from (3) and the approximate k* from (4) is the same amount
of work, the Chernoff-bound will often yield a quicker estimate of the probability of missing a
deadline than the computation of the actual probability, involving a single integral compared
to the summation of k£ + 1 integrals for the actual probability.

2. To evaluate the quality of the Chernoff-bound (4), we investigate the case when both the
deadlines and the service times are exponential. In this case, the exact probability expression
is given by (2), and (4) resolves into the following expression for the Chernoff-bound:

k+1 I3
| kL [1 B Z* (k +1)! ( Chus )]
Cus -th (k+1—-9Yk+1) Cus + pa

Figure 4-3 plots the actual probability and the Chernoff-bound, and figure 4-2 plots the re-
sulting k*’s. A priori, the Chernoff-bound is expected to be good in the range where z, the
value of X exceeds the mean (k + 1)/Cu, significantly. This follows from the fact that for
exponential service times, the k& + 1st departure is the sum of k + 1 i.i.d random variables,
and for sums of a large number of i.i.d random variables, the Chernoffi-bound is known to be
asymptotically exact, in the sense of the Cramer-Chernoff theorem (c.f. [RMVe96], page 382
for instance). On the other hand, since (4) involves integrating over the entire range of X, the
bound is expected to perform worse than it might otherwise for large z.

This is reflected in figure 4-3. The Chernoff-bound tracks the actual probability well for all k,
but with almost a fized difference, as long as the ratio u,/pq does not get too small. Part of
the difference is clearly seen in the factor G((k + 1)/(Cpus)) in (4), since the Chernoff bound
obtains only for X > (k + 1)/(Cus). The influence on the approximate k* is also significant,
which might be off by as much as 5 — 10, as shown in figure 4-2.

3. To further understand the effect of the factor G((k + 1)/(Cus)) in approximation (4), which
arises from the randomness of the LST X, we experiment with deterministic X. When X is
deterministic with value z, the exact probability is obtained as

k41 (C

Pr{ ZL" >z} = e~ Cra Z PsT —
i=1 = (k- Z)

while the Chernoff bound gives

k+1 1, z< %‘;—1

. E+1
Pr{ ZL1>$}S e—cl-hﬂ?(CC z) x>ki
=1 k+1 ’ Cu
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Figure 4-2: The probability estimates from the Figure 4-3: Comparing k* obtained from the
Chernoff-bound for missing the deadline, plotted Chernoff-bound against that obtained from the ex-
against the exact value when service times and act probability when service times and deadlines
deadlines are both exponential. The Chernoff- are both exponential. The exact k* are shown with

bound curves are above the exact probability thicker lines.
curves.

Figure 4-4 shows the Chernoff-bound obtained and the actual complementary CDFs, giving a
sense of the range of z for which the bound might be a reasonable estimate. It is clear that the
bound is a good estimate only for large values of z, specially when z > 3(k + 1)/(Cus). For lower
values, it could seriously over-estimate the probability, despite being exponential in z. However,
recall our condition that the probability of missing the deadline e~¢ be very small. From figure 4-4,
it is clear that when e~® < 0.01 for instance, the difference in the largest deadline admitted using the
Chernoff-bound vs. the exact probability is less than 1, and hence the Chernoff-bound performs very
well in the range we are interested in. We leave further discussion of the bound for later sections.

4.3.4 Deterministic X and generally distributed service times

The simple integral equation (3) can be used only when service times are exponential. When service
times are more general, an easy description of the departure process is not available, motivating
approximations for the probability of missing a deadline. We propose two approximations in this

" section for the case when the value of X is known at the time of decision. Note that since in this

case, one actually needs to obtain the probability at every arrival, an additional requirement is that
the approximations be easily computable.

The approximations rely on the crucial assumption that at every arrival, the residual-life (service-
time) random variables at each server are independent identically distributed with the stationary
residual-life distribution associated with the service-time random variable. This assumption is moti- .
vated by the PASTA? property of queuing systems (see, for instance, [Wol89]). We then distinguish
two cases with separate approximations for each.

3 Poisson Arrivals See Time Averages.
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Figure 4-4: Chernoff-bound obtained for deterministic X and exponential service times, for several
values of Cps and k. The actual complementary CDFs are shown in thick lines.

‘When the mean of the residuals exists

Calling R the stationary residual life at a server, and S;, i = 1,... ,k, the service time random

variables for the k people in the queue at arrival, we propose the following approximation for the
probability.

k+1 k
Pr{ ZL¢>:1:} zPr{ ZS¢+R>C’:1:} < e ¢, (4)
i=1

i=1

This speeded single-server approximation can be shown to hold rigorously (see section 4.4 for the
proof) under the extra assumption that in addition to the i.i.d residuals seen at arrival, the residual-
lives for the jobs in service at the time this arrival will enter service are also i.i.d stationary residuals.
Such an assumption has been made before in literature [NR78] for deriving approximations for the
mean waiting time in an M/G/c queue. Comments on approximation (4) follow.

1. Our approximation is the exact probability if either C = 1 or if the service times are exponen-
tial.

2. The additional assumption of finding stationary residuals at start of service is expected to
be reasonable as k, the number in the queue gets larger. We argue this by noting that if a
request finds stationary independent residuals at arrival, then by the time she starts service,
C delayed renewal processes have been in process for a while. Certainly, as £ — oo, these
processes should become independent of each other by the k + 1st departure time, leading to
our assumption. This argument would not hold when % is small, and specially when k < C.

3. We test the quality of approximation (4) for service times with Gamma distributions. Results
are displayed in figure 4-5. The speeded-server approximation was obtained via direct con-
volution. The actual complementary CDF was obtained via simulation, assuming stationary
residuals at arrival times. It is also prudent to keep in mind the magnitude of numerical errors
that might exist in the results. In tests including exponential service times and Gamma service
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times when C = 1, the worst-case percentage errors between the simulation and the convolved
probabilities were between 0.1-3%, with most below 0.7%.

The approximation seems to do remarkably well at all values of z. Figure 4-5 also confirms
. our argument above that the quality of the approximation should get better as k increases.
In fact, one sees again that for large values of k, if e™® < 0.01, the difference in the largest
deadline admitted using the approximation vs. the exact probability is quite small.

One curious aspect of the curves is that the speeded-server over-estimates the actual probability
when z is approximately less than the mean of the & + 1st departure time, while it under-
estimates the probability for larger z. A possible explanation is in terms of the residual R in
(4). As z gets larger, we expect the residuals in the actual probability to have less effect on
the k + 1st departure time, a fact not reflected in the approximation, where a single residual
always stays. Given that the residual service times have an increasing failure rate (IFR) for
gamma distributions, it would explain the discrepancy in the curves.

Finally, we hope that the quality of the approximations extends to mixtures of Gamma dis-
tributions. Since mixtures of Gamma distributions have the property of being dense in the
family of distributions, a well known result (see [Kel79] for example), this could make the
approximation significantly more powerful. A possibly useful direction for future research.

. There remains the question of evaluating (4). A possibility is to actually convolve the S;’s and
R to determine the actual probability. Although not difficult numerically, this is too slow for
real-time control, and therefore one might consider quickly computable bounds for (4). We
comment on some possible directions below and their associated complexity.

e When the moment-generating function of the service-time random variable is available,
one can attempt to obtain the Chernoff-bound for (4) (the derivation is straightforward,
but is listed in section 4.4.2 for easy reference):

k

1 .
Pr Si+Ri>Cz ¢ < — oL () [ps(r*) — 1] C=
{‘{; } rE(S) 0 S )

1 —r"Cz + kIngs(r*) + Inlps(r*)=1] = Inr*_
E(S)

Where ¢g5(r) is the mgf of the service time random variable S and r* satisfies:

$s(r) | ds() 1
kosm) T B —1 7= C®

In general, we can go no further in simplifying (5) until we have an explicit form of the
mgf ¢g(r) to manipulate. Unfortunately, the expression above does not usually lend itself
to an easy solution for r*.

e Possibly useful techniques for bounding (4) might be similar to those used in obtain-
ing bounds for the steady state waiting-time in G/G/1 or M/G/1 queues, such as the
Kingman-bound (c.f. [Gal96] for instance) for example. Useful techniques might also be
learnt from bounds for G/G/c queues reported in literature (see, for instance, [Whi84a),
[Whi88] and [Whi84b]).

When the mean of the residuals does not exist

For certain distributions of interest, such as Pareto for example, the stationary residual distribution
does not have a mean. In this case, the speeded-server approximation is not expected to be good.
When k+1 < C, one alternative is to bound the probability of (k+1)st departure from the system by
time z, by the probability of the departure of the first k+1 of the C customers in service seen by an
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Figure 4-5: The complementary CDF for the speeded server approximation, plotted'against the
exact complementary CDF obtained via simulation, for service times having Gamma distributions.
The Gamma parameter is called stages above and the speeded-server curves are dashed.

arrival. Under the assumption of i.i.d residuals, this probability is obtained from the order-statistics
as follows, where H(z) is the CDF of the residual life.

k+1
PI‘{ ZL, > I} <
i=1
C

Pr{ (k + 1)st smallest of (R1,... ,Rg) >z } Zk: (_7) Hi(z) [1- H(z) ]¢7.

=0

The order-statistics approximation is too conservative when the mean of the residuals exists and
is less than or equal to the the mean of the service times. For exponential service times, this is
easily seen as the inter-departure times for the order-statistics approximation are exponential with
rates Cus, (C — 1)us, . . ., whereas the actual inter-departure times from the system are exponential
with rate Cu,. Order-statistics therefore under-estimate the probability of exceeding a given z.
One might extrapolate from this to guess that if the residuals have an increasing failure rate (IFR),
order-statistics will significantly under-estimate the actual probability. For decreasing failure rate
(DFR) residuals, as in the case of Pareto distribution, one expects the order-statistics to perform
very much better.

4.3.5 Directions for future research

Several interesting research directions are revealed by the analysis of our simple acceptance policy.
We note some of them below.

1. For our proposed policy, we have demonstrated the quality of the speeded single-server approx-
imation for general service times, but the computation of this approximation itself remains an
open issue, convolution not being a practical alternative. Quickly computable bounds might
be more easily obtainable for the approximation than the actual probability, and could be very
useful.

2. A generalization that would make the model significantly richer is to allow multiple customer
classes with class-dependent service time distributions. In this case, the acceptance decision
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would need to incorporate information about the position and class of the customers in the
queue and in service.

3. The most interesting generalization of our proposed acceptance policy would be to a network,
where the departure process is significantly more complicated. However, limit-type results
might exist here. The case of fixed routing networks with exponential service times might be
the easiest, allowing extension of the ideas of sections 4.3.3 and 4.3.4.

4. Finally, the restriction of an arbitrary policy is unwarranted, since the actual scheduling rule
would attempt to utilize capacity as efficiently as possible. Because of the difficulty of incorpo-
rating arbitrary scheduling rules into an admission decision, it might make sense to investigate
via simulation how the probability of missing the deadline changes if the scheduler follows a
rule different than FCFS - earliest LST first for example, even though the admission controller
assumes FCFS.

4.4 Derivations

4.4.1 The speeded single-server approximation

We derive the approximation of section 4.3.4 under the assumptions:

e The residual lives of the jobs in service found by an arrival are i.i.d random variables having
the stationary residual-life distribution of the service time.

e The residual lives of the jobs in service at the time this newly arriving job will enter service are
also i.i.d random variables having the stationary residual-life distribution of the service time.

Then when an arrival finds k jobs in the queue and C in service, let

V.: The total unfinished work seen at the instant of arrival.

Rj: The residual work at server j found at arrival.

E;: The residual work at server j at the instant this arrival enters service.
S;: The service time of the ith customer in the queue.

zk"'l L;: The departure time of the k + 1st departure from the system relative to the
time of arrival - note this is also the instant that the new arrival will enter service.

By definition V, = ZJC.LI R; + Zf=1 S;. Also, under FCFS non-idling scheduling policies, it is
true that

k+1

2=C> L +ZE-.

i=1

Using the two identities for Vj, it is immediate that

Now if we believe the two assumptions, then E; and R; have the same distribution for all j and
are independent of each other. Therefore, if they have a mean, 21—1 (Rj — E;j)/(C —1) should go
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to zero relatively quickly as C increases, by the strong law of large numbers, and the approximation
below follows. )

k+1 k
Pr{ ZL,->9:} & Pr{ ZS,;+RC>C(E }
i=1

i=1

4.4.2 Chernoff-bound for the speeded single-server approximation

The Chernoff-bound for expression (4) of section 4.3.4 follows from the independence of the S;’s and
Rg. For the service-time random variable S with distribution function G(z) and moment-generating
function ¢g(s), the stationary excess-life R has distribution, density and moment-generating func-
tions as shown below giving expression (5) of section 4.3.4 for the Chernoff-bound.

Fgr(r) = ﬁs) /-or [1-G(u)]du

1
fr(r) = E(S) [1-G(r)

_E(eS-1) 1 ¢s(s)—1
9r(8) = —F5 = B > s

4.5 Summary

This chapter proposed two services for telecom YM that ask users to specify latest start times
(LSTs) by which start-of-service must occur. To demonstrate overbooking-type decisions in the YM
framework of chapter 2, we explored when an arriving request could be served before its LST given
the number of requests and information about the system.

Using a single-link model, we outlined the complexity of the underlying decision and analyzed
a simple acceptance policy which bases its decision on the probability that the arriving request
can be served before its deadline. Several cases were analyzed, including when the service times are
exponential or generally distributed. Several approximations for the probability of missing a deadline
were proposed ‘and numerically investigated. We outlined several directions for future research.

4.5.1 Contributions

This chapter contributes the following.

1. Our exercise of articulating services for telecom YM is useful in that it demonstrates how to
capitalize on the YM intuition. We hope that it guides and interests researchers and telecom
operators in formulating innovative ways to manage capacity using new services.

2. Our model of section 4.3 finds applications in several domains, not only telecom YM. For
instance, the admission decision in queues with deadlines spans telecommunication traffic,
real-time systems, processor scheduling and services management, to name a few.

Further, the line of analysis we pursue focuses attention on the departure processes from queues.
This is an area of interest, but most results in literature relate to the unconditional steady-
state distribution of the inter-departure intervals and the associated results are asymptotic
(c.f. the literature review section 4.2.2 for details). We focus instead on the departure process
conditioned on the queue size seen at arrival, an approach that has not been dealt with widely.
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Our model motivates studies of departure processes from networks as well, conditioned on
partial network information.

The derivation of the speeded single-server approximation in section 4.4 is also, to our knowl-
edge, new, in spite of the fact that the approximation itself finds use often in literature
(c.f. [Wol89) for instance). It is surprisingly simple and seems to do quite well numerically, as
demonstrated in section 4.3.4. :

. Finally, the overbooking connection with airlines YM is transparent, as the acceptance decision
we model is directly motivated by the overbooking decision in airlines. Airline over-booking
decisions also attempt to obtain the probability of denial of service when admitting an arriving
customer [SLD92], but do not have the added complexity of a scheduling rule to contend with,
as in our case. Our modeling exercise also reveals how network information might be leveraged
to squeeze the maximum out of capacity.
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Chapter 5

Seat-Inventory Control: The
Digital FedEx Service

This chapter demonstrates how seat-inventory control type models could arise in telecom YM. The
context used is that of a digital courier service which utilizes spare network capacity to deliver
bulk content (c.f. section 2.2.3 for the context). The service offering is similar to physical courier
services such as FedEx™ or DHLTM. We present and discuss the service first and then a model for
one associated decision problem, determining content sizes to accept given available capacity. We
analyze a canonical model to determine the optimal policy, and then extend the results to several
_interesting cases.

The chapter organization is as follows. Section 5.1 discusses the details of the service offering.
Section 5.2 presents the formulation and analysis of the canonical model, with the actual proofs
relegated to section 5.5. Section 5.3 extends the insights from this model to several more interesting
cases. Section 5.4 generalizes the structure of the optimal policy to fixed-routing networks and
multiple deadlines. The summary and contributions from this modeling work are presented in
section 5.6.

5.1 The service

“The digital FedEx service” refers to an offering where customers request delivery of bulk content
between locations by a fixed set of deadlines, such as 5pm, 12 am, etc. Imagine a web-based interface,
where users enter the destination and source address, the file name and choose from a set of fixed
deadlines by which delivery must be completed to the destination. Motivation for customers to use
this service could be: (i) deep discount over comparable real-time transmissions, (ii) removing the
need to rent expensive and under-utilized network capacity for bulk transmissions, or (iii) offloading
non real-time traffic from corporate networks to reduce capacity investments. For providers, the
motivation is obvious; generating revenue from spare capacity whenever possible, as long as existing
traffic is not unduly impacted. To ensure minimal impact on existing traffic as well as guarantee a
service level such that content deliveries occur before their deadlines, one needs to limit the amount
of accepted content to available capacity. In practice, however, rejecting customers might not be a
desirable option. A better option might be to offload excess content to other providers, with whom
arrangements must be sought. Of the many interesting problems raised by the operation of such a
service, we model only an airline seat-inventory control problem, namely deciding which customers
to retain to maximize revenue from the system. Other problems which we do not consider and
several practical issues are discussed in section 5.1.1.

We model the decision of an agent at the web-server that determines whether to accept an
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arriving content request with a given size and deadline for a particular destination, or to off-load it
to an alternate provider at some cost, using revenue maximization as the criterion. The need for
a sophisticated decision model arises because of the uncertainty in capacity availability and in the
sizes of future arriving jobs, for which both the times and sizes are unknown. Agents naturally need
to have some forecast of the available capacity between the locations, and the demand, to make
the decision, and will obviously have access to the untransmitted content at various locations along
with their respective deadlines. We assume that an agent transmits continuously at the available
rate as long as there is remaining content in the system, policing itself to not flood the network. We
comment on how this can be achieved and other factors in section 5.1.1.

5.1.1 Practical Issues

“The digital FedEx service” is classic YM use of spare capacity to generate positive revenue from
the network. The constraint of using only residual capacity means the cost of such transmissions
is almost zero!, allowing revenue maximization. Examples of the possible market for such a service
are mentioned in section 2.2.3. In this section, we mention the several interesting problems that
could arise in developing an operating infrastructure for this service, which we do not address in
this thesis.

The architecture for service management could consist of several web-sites located strategically
on the network so most bulk shippers can find a close site easily. The placement of these sites
will be an issue of interest. Whether the sites manage their decisions centrally or base it only on
local information will need to be decided before any decision models can be formulated. We assume
perfect information exchange is possible between agents, i.e. an agent can quickly query the amount
of untransmitted content at other sites.

Also, questions about the capacity management mechanism by such a service will need addressing.
Two possibilities, for instance, are: (i) each agent bounds its maximum transmission rate by a time-
of-day available rate downloaded from a central database each day, and manages short time-scale
congestion within the bounded rate in a TCP-style?, which is tantamount to setting aside capacity,
or (ii) no capacity is specifically set aside for the service, but the transmission protocol used by the
agents is an extremely non-aggressive form of TCP protocol, which backs off transmission as soon as
it detects congestion in the network and ramps up its rates very slowly as congestion eases. In either
case, some notion of available capacity will need to be forecasted and summarized for the agents
to make their decisions at content arrival times. Limits on the total amount of content that can
be accepted for each deadline to obey service levels will likely have to come from a capacity model,
much like the overbooking-type decision models for airlines. The output of such a model might then
be used to decide which classes of content to admit.

The nature of transmissions, direct or intermediate, will need decision. In practice, the network
provider might want to use perhaps push-and-store policies to move content to intermediate web-sites
closer to their destination instead of direct transmissions to congested locations. This and whether
agents can download content immediately from a source or at any time of their choice will dictate
the storage requirements for intermediate housing of content. In this chapter, we assume direct
transmissions. Further, we assume for simplicity that the agents can transmit content whenever
they want, to whichever destination they choose, without constraint. In practice, there might be
limitations on keeping an open connection to a destination address, for security reasons for instance.

1Easily implementable in practice using one of several forms of rate policing.
2TCP stands for Transmission Control Protocol and is the predominant protocol used for transmission over the
Internet. Its congestion control algorithm is ezponential decrease, linear increase in case of congestion.
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5.1.2 Outline of the model and results in this chapter

The canonical model of this paper is a single-link with fixed available transmission rate, a single
class of arriving customers all paying the same regardless of job-size and a single common deadline
to completion of transmission for all requests. The optimal admission control policy for this model is
shown to be threshold-type with the thresholds depending on the amount of untransmitted content
in the system. Several structural results are obtained when the file-size distributions are general.
Computational experiments are carried out and the structure of the thresholds is explored in more
detail for concave file-size distributions. Further, we propose and compare the performance of a
heuristic admission policy to the optimal and greedy policies. ’

Insights from the above model easily extend in several directions. In particular, we show the
existence of threshold-type optimal policies for the cases listed below.

e For the single-link, single customer class case:

— When the revenue and cost per request is time varying and the file size distributions are
non-stationary.

— When capacity is a deterministic function of time, or when capacity is stochastic with
the distribution of the remaining cumulative transport capacity available.

e When multiple classes of customers arrive, arrivals pay a class-dependent revenue independent
of job-size. Here multiple nested thresholds are shown to exist.

e Networks with fixed routing and deterministic available capacity.

e Multiple deadlines on a single-link with the “Earliest Deadline First” scheduling discipline.
Here a connection is drawn to fixed routing networks.

5.2 AA canoni_cal model

We present a dynamic programming formulation for the following model. A single link has fixed
available rate R in some appropriate units (say Mb/s). Requests arise at one end of the link for
delivery of content to the other end on or before a fixed deadline D (in some absolute time-units)
common to all requests. The arrival process is Poisson with rate A and the sizes of jobs Y are random
variables with known distributions, independent of the arrival process and the amount of work in
the system. Each arriving job pays a pre-agreed revenue the structure of which is described later.

The decisions of interest are :

e At the time of arrival, if to accept content of known size for delivery by D, or ship it to an
alternate system at a cost, given the amount of work already in the system, with the objective
of maximizing revenue from the remaining transport capacity.

e How to schedule transmissions among the accepted jobs to maximize the number of jobs
that complete transmission by the deadline, where it is natural to only consider non-idling
pre-emptible policies for scheduling since the service provider will always have control of the
content after it has been accepted.

We will restrict our attention to admitting content only when it is feasible to complete its
transmission before the deadline under a non-idling scheduling policy. An equivalent statement is
that content is to be admitted only if it does not exceed the total remaining transport capacity of
the link, till the deadline. Figure 5-1 shows a sample path of work evolution for the model under
some given acceptance policy.
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The FedEx Service A Canonical Single-link Model
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Figure 5-1: The FedEx service and a canonical model.

5.2.1 A Dynamic Programming formulation

The following is a fairly general dynamic programming formulation for determining the admission
decision. For purposes of initial analysis, much of this problem will be restricted to the case of
stationary job sizes and revenue.

Let K = 0,...,D, index time in discrete units with length of each interval §. Let R be the
available transmission rate and D be the common deadline for completion of delivery at the other
end. Also, call:

zk: The amount of un-transmitted content in the system at beginning of the kth interval.

yk: The amount of arriving work waiting to be admitted/rejected at the beginning of
period k.

uk(2k, Yx) € {0,1}: Reject/accept decision for the content y, defining ug(zk,yx) = 0
whenever y; = 0 or zx + yx > D — k. We will use only uy, for brevity.

wy: Random size of content arriving during interval [k, k + 1) which will await decision
in period k + 1. The distribution of wy is assumed to be known for all ¥ and work is
assumed to arrive in quanta of size R4, 2RS, ... , 0.

Tk (yk): Revenue for content of size y in period k, defining r(0) = 0 for all k.

ck(yx): Cost of off-loading content of size yj, in period k to an alternate system, cx(0) =0
for all k.

Assume WLOG that R = 1, then the state of the system (z4, yx), at any period k = 0,...,D-1
evolves as follows:

Tet1| _ [ma.x(O, g+ upyk — 1)
Yk+1 Wk

Note that the state space is integral and when 0 < zo < D, the definition of the decisions
uk(Zk, yx) ensures that the state space is the set of all integer-valued vectors in the non-negative
orthant zx,yx > 0 satisfying z + yx < D — k at every k.

The DP recursion for the admission control problem can now be written as follows (here Jx(zk, yx)
is the expectation of the optimal “additional” revenue at stage k):
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We can write the above DP in an alternate form by defining the optimal “expected additional
revenue” given zy units of work in the system as:

= xk = p—
¢Ic(-’L‘k)—1]uEk Jk[wk], k=0,...,D—1.

For stationary file sizes with Y representing the file-size random variable at each stage, and fixed
revenue and cost per job, i.e. ri(ykx) = 7 and cx(yx) = ¢, the DP recursion in terms of ¢ (zy) is
noted below. r = 7+c and pg(zx) = Pr(1 <Y < D—k—xy) for 0 < 7 < D — k-1, the probability
that an arrival occurs and the arriving file size is less than or equal to the residual capacity. We
define pi(D — k) = 0 for notational consistency.

¢p(zp) =0, and for k=0,...,D -1,
¢k($k) = - CPI‘{Y > 0}+

(1 — pr(zk)) brt1(max(0,zx — 1)) + (5.1)

pk(Tk) E max{ 7 4+ @p41(max(0,zx +Y —1)),

Y|1SY<D—k-ax
brs1(max(0, z — 1)) }.

In the following sections, we note remarks on this model and present results on the optimal
admission control policy. We also note, in case it is helpful for the reader, that Pr{Y > 0} = AJ and
that conditioned on Y > 1, ¢p41 (ma.x(O, T +Y — 1)) is just another way of writing ¢p+1(zr +Y —1).

5.2.2 Remarks

1. Note that the model implies that inter-arrival times are memoryless and the arriving file sizes
are i.i.d random variables.

2. Since the state space is integral, the functions ¢ (zx) are only defined for non-negative integer
T, with ¢ (D — k) = —cA(D — k) representing the cost of a full system at stage k, since all
arrivals in subsequent stages must be blocked.

3. A trivial threshold for admission is D — k — zy, the feasibility condition. We will show, however,
that non-trivial thresholds for admission exist for almost all states and stages.

4. A fixed revenue/job is not as artificial as it may appear at first sight, for two reasons: (i) it
is easily relaxed once initial results have been obtained, and (ii) the revenue structure for a
FedEx-type service will probably be similar to postal service, with fixed charge for a range of
content-size. In fact, if revenue/job is a function of size, it will have to be significantly sub-
linear, since proportional revenue cannot be feasible owing to the large variability of content
sizes. Sub-linear functions are well-approximated with step-wise functions, or fixed revenues
for ranges of content sizes. For this reason, when considering multiple customer classes, we
will model each class paying a constant class-dependent revenue.
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5. Finally, we note that there is no real need to formulate the problem with a discrete state space.
In understanding the behavior of the model, sometimes discrete and sometimes continuous
versions of the model lend themselves to easier analysis. For instance, results for general file-
size distributions are obtained for discrete state space, with computational experiments, which
reveal the behavior for the discrete system. In contrast, results in section 5.2.4 for concave
file-size distributions are obtained for the version in which the state space and arriving work
are continuous variables.

5.2.3 General results

This section lists some results obtained for the above model, without any assumptions on the dis-
tribution of the file-sizes, except that they take values 0, ... ,00 with positive probabilities. Proofs
of the propositions, called remarks below, are provided in section 5.5.

We present first some properties of the optimal “expected additional revenue” functions ¢y (zx),
and then properties of the optimal admission control policy. '

Remark 5.2.1 (Monotonicity in the remaining work). For every k, the optimal “expected additional
revenue” function ¢i(zx),zx =0,... ,D —k, is monotone non-increasing in . This fact is intuitive
as ¢ (zy) represents the optimal “additional” expected revenue which can only be lower if one has
more unfinished work in the system. T'wo proofs are given in section 5.5, one by a simple argument
and another by induction.

Remark 5.2.2 (Monotonicity in time). For every z, ¢r(z) > ¢r+1(z). Again, intuitive as one can
only get more revenue if one has more stages to go and the same amount of work in system.

Remark 5.2.3 (Incremental revenue in both work and time bounded by r). For any z,k, (i) ¢r(z) <

T+ ¢r(z + 1) and (ii) ¢x(z) < 7 + ¢r41(z). This formalizes the intuition that one cannot get

incremental revenue greater than r with one extra unit of capacity, in either time or space. The
" proof requires induction.

A graph of the optimal expected “additional” revenue function for a Pareto file-size distribution
is shown in figure 5-2. Geometric file-sizes also exhibit similar behavior. The graph was obtained
by running the DP outlined in section 5.2. The results show ¢ (zx) to be concave®. Unfortunately,
the following counter-example illustrates that this is not always the case for arbitrary file-size dis-
tributions.

Example 5.2.1 (Counter-example to concavity of ¢x(zx)). Observe the behavior of ¢ (zk) as
depicted in figure 5-3 for discretized Gaussian-like random variables. Specifically, with mean p and
variance o2 for a Gaussian random variable, the plot is for file sizes having

0 -

Pr(Y = k) = { 5 m(” W27 dg, k=0,
f el== "‘)/2”d k=1,...,0
k1v21rcr ! ’

Note, however, that the behavior of the ¢x(zx)’s in figure 5-3 is transient, and asymptotically, the
functions become more regular, as shown in figure 5-4. We do not have an analytical result for the
convergence and asymptotic regularity of the ¢ (zx)’s, although the convergence of ¢x(zx)/(D — k)
is shown below.

3Using the analogue of concavity for functions with integral domains.
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Figure 5-2: A plot of ok (zk) vs. k and Tk for Pareto file size distributions with the Pareto parameter
a=125X=09,c=0and7=2. The deadline D is at 0 and k runs backwards.

Remark 5.2.4 (Convergence of the time-average additional revenue). For any given ,

lim $(z) _ Skni(2) _ gz +1)
(D—k)—v—-ooD—k D-k—-1 D—k y

i.e. the slope of the functions ¢ (z) becomes constant asymptotically, and therefore one expects
linear growth far away from the deadline D and the capacity constraint D — k. This behavior is
exhibited by the plots of figures 5-2 and 5-4.

With the above propositions, we can establish the existence of a pon-trivial threshold admission
policy which is optimal for the model. Some structural properties of the thresholds are also derived.

Remark 5.2.5 (Optimality of a non-trivial threshold policy). For any T, 0 < z < D — k, the opti-
mal admission control policy is characterized by a threshold job-size yp(zk) < D — k — z, such that
one admits a job of size yx in period k iff yr < yi(zx). Follows from the monotonicity of ¢x(z)-
The formal proof is provided in section 55 The intuition is as follows. For any Z > 1, consider
T+ Grs1(zk +y& — 1) and dri1 (zx — 1) as functions of yx. Then the picture in figure 5-5 is true.
This immediately reveals that as long as ¢xs1(zp — 1) > 7, thereis a vt (z) such that one accepts
a job iff yx < y,‘:(zk). The picture is similar for zx = 0.

Remark 5.2.6. y(zi) < yp(ze+1)+1 for all k and 0 < z < D—k—1. The threshold can increase
by at most 1 with a unit reduction in the amount of unfinished work. This is useful when finding
conditions for concavity of ¢x(zk)’s.

The above two propositions are exhibited in the plots of optimal thresholds obtained from com-
putational experiments with Pareto file-size distributions, figures 5.6 and 5-7. The plots hint that
the thresholds might possess some sort of monotonic behavior. Therefore the next two propositions
establish conditions for monotonicity of yj(zx) in Tk- However, computational experiments with ar-
bitrary file-size distributions (not transcribed here) reveal that the thresholds are not unconditionally
monotone, therefore necessary and sufficient conditions for monotonicity are obtained.
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Figure 5-3: ¢ (zx) plotted for Gaussian file-size Figure 5-4: Showing transient vs. asymptotic be-
distributions, with g = 10,0 = 2,A = 0.9,7 = havior for the same data.
5,¢=0.
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Figure 5-5: A graphic illustration of the proof for existence of optimal thresholds.

Remark 5.2.7 (Sufficient condition for monotonicity of the thresholds). If for every k, ¢x(z) are con-
cave in 2,0 < z < D — k, then yji(zg) > yi(zr + 1) for all zx. This explains the results from
computational experiments with Pareto and Geometric file size distributions. We also note that if
¢r(z) are convex, the direction of monotonicity is reversed, although it is difficult to think of the
practical interpretation for why these functions would be convex.

Remark 5.2.8 (Necessary condition for monotonicity of the thresholds). If for all0 < zx < D—k—1,
yi(zk) 2 yg(zk + 1), then
Gk+1(Z — 1) — $r41(2) < S (T + yie(2) — 1) — rra( + yi(z) + 1)

Note that the necessary condition is a relaxation of concavity.
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Figure 5-6: The optimal thresholds yf (zx) plot- Figure 5-7: Plots of y}(zx) vs. z) for some val-
ted for Pareto file size distributions with the ues of k. File sizes are Pareto with a = 1.25,\ =
Pareto parameter ¢ = 1.25,A = 0.9,¢ = 0 and 0.9,c¢ =0 and 7 = 2. The admission regions are
7 = 2. The deadline D is at 0. below the lines for each k.

5.2.4 Results for concave file-size distributions

The structural results of section 5.2.3 are useful but do not indicate how to compute the thresh-
olds. Since computational evidence suggests the thresholds are sufficiently regular for the Pareto
distribution (figure 5-6), we discuss the case of concave file-size distributions * to further understand
their properties. The intention is to explain the experiments with Pareto distributions and guide
the search for heuristic admission policies — addressed in section 5.2.5.

We conjecture the form of the optimal policy when file-size densities are convex and establish
the convexity of the thresholds based on the assumption that in this case, the optimal additional
revenue functions are concave for all stages. Extensive computational testing suggests that this is
indeed the case for Pareto and Exponential file-size distributions, but we do not provide a formal
proof of this latter property.

The convexity of the thresholds established below is for the continuous version of the model with
the decision stages still discrete but z; and Y now continuous variables. We assume that the support
of Y is [0, 00). This leaves formulation (5.1) unchanged, except that px(zx) =Pr(0 <Y < D—k—mx)
~ for 0 < zx < D — k and we define pi(D — k) = 0. The strict inequalities will not worry us too much
in the analysis below. Now it is easy to see that continuity of z; and Y does not affect the optimal
policy. In effect, for continuous file-size distributions over [0, co):

Remark 5.2.9. Continuity of the optimal additional revenue functions @i (zy) follows easily, and they
remain monotone non-increasing in zy, over 0 < z < D — k. The proof follows exactly the argument
for the discrete case, as outlined in proposition 5.5.1.

Remark 5.2.10. The optimal admission policy remains a threshold yj (z), similar to proposition 5.5.5.
It is also useful to remember that here y;(zx) solves

Tp>1: T+ rr1(zk +y — 1) = r41(zr — 1),
T <1: T+ ¢k+1(ma.x(0, T +Y— 1)) = Pp+1(0).

4With convex densities.
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for every zj with ¢g41(zk — 1) > 7 — cA(D — k — 1). And for larger zy, yj(zx) = D — k ~ zy.

Then the DP recursion can be written as follows, where G is the distribution function of Y:

ép(zp)= 0, andfork =0,...,D -1,

Pr(zk) = —cAd + Pry1(max(0,z — 1)) + (5.2)
Yi(ze) '
/=0 [r + ¢r+1(max(0,zx +y —1)) — drt1(max(0,zx —1))] dGy (y).

Now suppose that the file-size distributions are strictly concave and differentiable over [0, c0).
This covers the cases of Pareto and Exponential distributions 5. In this case, we believe ¢y (z)) are
strictly concave and differentiable for every k, based on computational experiments. This allows us
to obtain proposition 5.2.12. First, however, we need the following lemma.

Lemma 5.2.11. Let f(z) be a monotone decreasing, strictly concave and differentiable function of

z, defined over some interval [a,b]. Let h(z) = g-d;Ll[f(m) — ¢] for some constant ¢ > 0. Then
0 < h(z) £ 1, and h(z) is monotone increasing in x, for every c > 0.

Proof. It is obvious that f~! exists, from the monotone decrease and strict concavity of f. Also,
differentiability of f implies dlfferentlablhty of f~1. Now obviously f~![f(z)] = z and therefore, for
¢ = 0, the lemma holds since

df -
h(z) = (-’B)
For ¢ > 0, first re-write the above expression as
df -
e f(e)) = i I

Then notice that ‘—i-%l[ f(z) — ] is just displacing the function g%1-[_)"(50)] right by ¢. Then if
-1 -1
g’:if—[f(m)] = ﬁ = -+, we can write E'-%[f(:z:) — ¢] = 3zzy=¢- This implies

af

_[f()] =2 __1

h(z) = z(z)—c 1- 3ty

Now notlce that z(z) = i(w) < 0 and monotone decreasing in z, from the strict concav1ty of f.
Therefore ﬁﬁ is > 0, less than 1 and monotone increasing in z.

O

Proposition 5.2.12 (Convexity of the thresholds). If ¢r41(z) is strictly concave and differen-
tiable over 0 < z < D — k — 1, the following are true.

i. yi(z) is monotone decreasing in z.

ii. yi(z) is differentiable over 0 < x < by and over by < x < D —k, for some constant by > 0.
At by, it is continuous.

5For Pareto distributions, there is the small matter of the location parameter, which cannot be zero, but the results
here can be easily extended to cover this technicality.
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ifi. “T?;E(o) > —1, y;(x) is convezr in T over 0 < = < by and linearly decreasing over by, < z < D—k.

Proof. Part (i) requires only monotonicity and concavity of ¢r41. Assume z > 1, since the case
x < 1 requires little added effort. Then from remark 5.2.10, 7 = @p1(2 — 1) — @py1(z — 1+ yi(x)).
Therefore for any z > 0, r < ¢py1(z + 2 — 1) — Fpa (7 + z — 1 + yj(x)), ie. we must have
yi(z + z) < yi().

For (ii) and (iii), note that strict conca,vﬂ'.y7 differentiability and monotonicity of ¢+, brings
invertibility. And in fact, the inverse ¢, +1(z) is also strictly concave, differentiable, and monotone

decreasing over —cA(D —k — 1) < z < ¢4(0). Now let by = ¢} (r — cA(D — k — 1)). From
remark 5.2.10, first note that we can write:

0<z<1: vi(z)=1 — =z + ¢,:i1[¢k+1(0)—r],
1Sz <be: ¥ =1 -z + i} [drn(z—1)—7],
bh<z<D-k: yi(z)=D—-k—z.

Now (ii) is immediate, given differentiability of d)i}_l (z), and (iii) can be seen by differentiating

the above expressions. %”E(w) = —1 over the ranges 0 < z < 1 and by < = < D — k, while for
1 < z < by, we have:

dyi(z):—l + Wit [r+1(z—1) —7] 1<z <bg.
dz dz + ’ -0

Lemma 5.2.11 then gives (iii).
a

Note that the property above explains the behavior of the thresholds seen in figure 5-6 for Pareto
distributions. Part (iii) above is the analogue of remark 5.2.6 and its interpretation is that the
thresholds increase much more slowly than the decrease in the remaining content in the system. A
picture illustrates this behavior.

““ X +yr=Dk
Yk .

/

dy(0) / dxge> -1

Xk by

Figure 5-8: Illustrating convexity of the thresholds yj(zx) for concave file-size distributions. The
admission region is shaded.

Part of the behavior of the optimal thresholds for the Pareto case is explained by the above
property, but we still lack a complete characterization and an easily implementable policy. Figure 5-
6 suggests that the form of an optimal policy for the Pareto® case, in the discrete version of the
model, is characterized by a set of scalars a;,i =1,...,7, where a; > a;—1 and ag = 1, such that:

8Geometric distributions also have similar behavior.
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vi(zk) =1, for a;(D — k) <z < a;—1(D — k).

Where we define § = lim(p_x)—,_oo ¥5(0), a limit that seems to exist, from computations. Fig-
ure 5-9 illustrates the policy.

We state the above based on strong computational evidence but do not have a proof. However,
if one believes that the thresholds indeed have the form as above, an easy computational procedure
to determine the optimal policy is to compute the set of scalars a; off-line, based on a few hundred
stages of the DP7. The policy is then implemented by simply storing the numbers ¢; and performing
a single computation at each arrival.

Figure 5-9: Illustrating the conjectured form of the optimal policy for concave file-size distributions.

5.2.5 A heuristic policy: the airline “Expected Marginal Revenue” con-
nection

Two reasons motivate investigating heuristic admission policies: (i) we do not have a formal charac-
terization of the optimal policy, and (ii) when file-size distributions are not concave, the behavior of
the thresholds is expected to be more complicated. Even for concave distributions, obtaining opti-
mal thresholds is highly unlikely when the model is generalized to multiple deadlines and networks
(c.f. section 5.4). To develop our intuition and understanding of the model, we search for a heuristic
policy in the Pareto case and compare its performance to that of the optimal and greedy admission
policies. The heuristic proposed here is directly motivated by the popular EMSR [Bel87] heuristic
for airlines seat inventory control.

We let the discrete version of the model for the Pareto case guide our intuition. Here, if we
believe the characterization of the thresholds of section 5.2.4, we expect a nesting structure, where
at every stage k, the optimal policy protects some capacity for jobs of size 1. Similarly, it protects
some amount of capacity for all jobs of size 1 and 2, and so on. One line of reasoning this suggests
is as follows:

1. View demand at any stage & as segregated into independent Poisson processes A;,i = 1,...,00,
with A\; = APr{Y = i}, i.e. we have independent Poisson arrivals for jobs of size i. If X
is the total demand for size ¢ jobs that will arrive in the remaining stages till the deadline,
then X is a Poisson random variable with the Poisson parameter A;(D — k). Further, since
each arrival brings a constant benefit 7, we can view the benefit per unit of bandwidth from a
customer of size i as r/1.

7Around 100-150 stages seem to characterize almost all the cases we tested.
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2. Now suppose we held the view that we have D — k amount of capacity to sell in stage k to
all customers arriving after that stage, and demand will be realized immediately in the next
interval, with arrivals for larger jobs occurring before arrivals for shorter jobs. Then we can
look for the minimum units of bandwidth to protect from class ¢ + 1 and higher sized jobs.
Formally, we are looking for protection levels p;,i = 1,... , 00, such that a job of size 1 + 1 is
admitted in state z only if the remaining capacity D — k — zx > pi.

If we ignore knapsack effects and consider only class 1 and 2 jobs, we can use the following
analogue of Littlewood’s rule [Lit72] from airline seat-inventory control. Let p1x = D —k, and
keep reducing p;x as long as

r
7 > rPr{Xir > p1k}-

The interpretation is in terms of the marginal revenue per unit of bandwidth from jobs of size
1 ignoring knapsack effects. The revenue per unit of bandwidth from a size 2 job is /2. The
rule therefore models a decision where a job of size 2 has arrived, and its immediate benefit is
to be compared to the future expected benefit from arrivals of class 1, if all demand for size
1 jobs were to be realized immediately in the next interval, after the demand for job 2 was
realized.

For jobs of size 3, following the airlines analogy, the EMSR rule gives pox = p}, + p3,, where
p3, and p3, are individual protection levels given by:

% > rPr{X1t > p3i} and g 2 gPr{sz > phi}-

This process can be continued until the protection levels obtained exceed available capacity.

This completes the description of the heuristic. Below are comments on some of its properties and
assumptions. Figure 5-10 illustrates the thresholds obtained by this heuristic for Pareto distributions.

bt

x)

Figure 5-10: Thresholds obtained by the EMSR heuristic for Pareto file size distributions with the
Pareto parameter a = 1.25, A = 0.9,¢ = 0 and 7 = 2. The deadline D is at 120.

1. Assumptions in proposing this heuristic are many, the most important being static control,
realization of all demand in the next interval and the ordering of the demand realizations. One
also ignores the time dependency of the available capacity, which decreases at a constant rate.
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psi, (x)

Figure 5-11: The revenue function obtained with Figure 5-12: The revenue function obtained un-
the EMSR heuristic for Pareto files-size with a = der a greedy policy for Pareto files-size with a =
1.25,A=0.9,c =0 and 7 = 2. The deadline Dis 1.25,A=0.9,c=0and 7 = 2.

at 0.

2. The non-optimality of the protection levels as we describe is known even in the airlines lit-
erature [BM93], where an exact expression for the optimal protection levels is also derived
under certain assumptions. The exact expression, however, is more involved and at least in
the airlines, case, not significantly more beneficial than the EMSR heuristic [BM93].

3. The net effect of the assumptions and the non-optimality of the heuristic protection levels is
reflected in figure 5-10, where the heuristic under-estimates the protection levels for each job
class, the optimal thresholds displayed in figure 5-6. We do not attempt to assign the reasons
to the many assumptions, but comment that several refinements are possible — a promising
direction for future research.

4. The issue of computation needs attention. As described, the heuristic involves obtaining pro-
tection levels for each stage k, a procedure that, although straightforward, is still cumbersome.
However, it seems that the protection levels are approximately linear in k evidenced by fig-
ure 5-10 and only the slopes are over-estimated. If we believe this linearity, then we can obtain
protection levels for some stage k, compute the scalars §; = £ and implement this policy,
instead of computing the optimal a;’s by a DP recursion (c.f. section 5.2.4).

Performance comparison of the heuristic with the optimal policy and the greedy policy follow.
The performance of the greedy policy is obtained by the following recursion, with 1 (zx) denoting
the greedy expected additional revenue:

Yp(zp) =0, and for k=0,...,D -1,
) = Pr(Y > 0) 1 s (max0, 5 1) +

D—k—zy
Z Pr(Y = y)[r + Yr+a1(zk +y — 1) — Ypsa (max(0, zx — 1))].

y=1

Figures 5-11 through 5-14 summarize some computational experiments. Figures 5-13 and 5-14
are particularly informative, displaying the revenue function as function of ¢ and k separately for
all the policies. We comment on the results but leave the refinement of the heuristic for future
research.
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Plot of revenue functions ' Revenues as functions of k
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Figure 5-13: The revenue function obtained for Figure 5-14: The revenue function obtained for
different policies plotted as a function of zg, for different policies plotted as a function of k, for
Pareto distribution with ¢ = 1.25,A = 0.9,c = 0 Pareto distribution with a = 1.25,A = 0.9,c =0
and 7 = 2. The deadline D is at 0. and 7 = 2. The deadline D is at 0.

1. From figure 5-13, the EMSR heuristic remains exactly optimal for 30 < zo < 60, but dete-

riorates significantly in the range 0 < ¢ < 30. This behavior arises since the thresholds for
the optimal and EMSR policy match exactly in the range 30 < zo < 60, shown in figure 5-10.
In the range 0 < zp < 30, the EMSR thresholds over-estimate optimal thresholds, and the
performance decreases steadily. A tentative conclusion is that the EMSR heuristic is a good
approximation when the system carries a medium to heavy load.

. From figure 5-14, all policies seem to have linear growth in k, for fixed values of . Again,

owing to the nature of the thresholds obtained for EMSR, one sees that the approximation is
better when workload is higher, although the differences between the greedy and the EMSR,
and between the EMSR and the optimal policies, grow more or less linearly in k.

. One sees from figure 5-10 that knapsack effects become more important closer to the deadline,

an expected behavior. However, we speculate that the revenue impact of knapsack effects is
second order compared to the effects of under-estimation of the protection-levels at stages far
away from the deadline. A possibility for improving the performance of the EMSR, heuristic
might therefore be to limit the maximum size of the job that can be accepted in any stage,
and scale up the protection levels, for lower size jobs proportionally. We do not pursue this
further.

5.3 Extensions

This section presents several interesting extensions of the basic model of section 5.2. The principal
result here is the existence of an optimal threshold policy for a variety of more interesting cases.

5.3.1 Time-dependent revenue, rejection cost, file size distributions

A natural extension is the case where revenue, cost and file sizes are non-stationary. Specifically,
with revenue for stage & being 7, the cost of rejection ck, and the arriving file sizes independent
random variables Y; with distributions dependent on k, one obtains ezactly the DP recursion (5.1)
with ¢, 7 and Y now subscripted by k, i.e. c =cg, r =71 =7t +cx and Y = Yj. py(zk) likewise
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involves Y;. We assume ci < 7} for every k, for otherwise it would be optimal to reject everyone in
stage k.

With the formulation unchanged, the optimal acceptance policy must still be a work-dependent
threshold. To see this, note that ¢x(zx) is still monotone decreasing in zj, since the proof of
proposition 5.5.1 does not depend on r, ¢ or the distribution of Y. Likewise, the proof of existence of
the threshold policy, proposition 5.5.5, depends only on the monotone decrease of the ¢k (zx)’s and
the file-size random variables being continuous. Following the same argument as proposition 5.5.5,
it is easy to see that for zx > 1, if ¢pp1(mp — 1) < 7 — ’\Zz—k+1 ci, one accepts a job if it fits,
otherwise the optimal policy consists of a non-trivial threshold y}(zx) < D — k — z). The situation
is depicted in figure 5-15.

Fi+ Oker (Xgc + Y -1) T+ Qe (i + ¥ -1)
Smeg R
“e. e
9. o, -
e = o, . k RN .
R o Prar (- 1) o ° .
T .
\‘ \I
| Pier G- 1) ¢ 5
\I 0 - rk.lkElc.
T T T T T T T =. Trk';\'gcl T T T T T T T
Yk D-k-x e+ Yi Dk
a b

Figure 5-15: The proof for existence of optimal thresholds for non-stationary revenue, cost and file
sizes. Figure a illustrates the case y;(zx) < D — k — zx and figure b illustrates when yj(zx) =
D—k—xp.

5.3.2 Deterministic time-varying and/or stochastic transmission rate

The case of a given time-varying deterministic capacity function is easy. Suppose the non-negative
1nteger-valued function R0 represents the available transmission rate for stage k = 0,..., D. Calling
Rp=196 Em_k R;, the formulation (5.1) remains correct with zx—1 replaced by z;— RkJ and D—k—x;
replaced by Ry — zx. Now the proof of proposition 5.5.1 for monotonicity of the @i (zk)’s still falls
through and we see exactly as in section 5.3.1 that the optimal policy must still be a work-dependent
threshold. Finally, combining this and the reasoning of section 5.3.1, we see that the structure of
the optimal policy holds for time-varying capacity, revenue, cost and ﬁle-s1ze distributions.

The case of stochastic available capacity requires a re-formulation but the existence of optimal
thresholds can still be shown. We emphasize that we consider this case more or less academic, since
both characterizing the available capacity and computing the thresholds is expected to be a hard
problem. Suspending the issue of actually computing the involved quantities for the time being, we
proceed as follows.

Suppose we have available the complete description of a stochastic process {Rgd}k—o,..,.D-1
describing available transmission rate for each stage k. Assume Ry > 0 for all k, and is independent

of the decisions and the arrival process Call the associated cumulative remaining capacity process
{Rk}k=o,...,D—1 Where Ry = 52

We assume a feasibility constraint of the form Pr{y, > Ry — zi|Ro, R1,... ,Rek-1} < e~ B, for
some given # > 0. This ensures that the only acceptable content sizes y; in stage k are those

-
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which can be delivered by the deadline with probability greater than 1 — e~#. Now if G(.) is
the distribution function of Ry — z¢|Ro, R1, ... , Rk—1, we can see from figure 5-16 that the above
constraint translates to a largest size job Jx(z) that can be accepted in stage k, depending on the
work in the system and the history of the transmission rates, i.e. §x = max, GRi—zk|Ro,R1,... ,Re_y (¥)
such that Gr,_g,|Ro,Rs,.... Rs_, (¥) < €7P. The DP (5.1) can now be written as follows, defining
pr(zk) = Pr(1 <Y < gi(zk)).

¢p(zp)=0, andfor k=0,...,D -1,

ék(zK) = — cPr{Y > 0}+
(1 - pr(zw)) E ¢r+1(max(0, zx — Rid)) +
k
0 Y — Rié
Pr(Tk) Y|15YIEgk(zk)max{ T+ J]%, Gr+1(max(0, zi + %6)),

IIE ¢r+1(max(0, zx — Red)) }.

G-‘R.k - X! RowRye. l(y)

.

Vel y

Figure 5-16: The stochastic feasibility constraint for admission.

Now following the proof of proposition 5.5.1, we can see that ¢x(zx) is still monotone decreasing
as long as the Ry’s are independent of the decision process. Then the optimal admission policy must
still consist of a threshold job-size at each stage and state, since proposition 5.5.5 depends only on
the monotonicity of the ¢y (zx)’s.

5.3.3 Multiple customer classes

Here the model is the same as section 5.2 with the only difference being that multiple classes of
customers arrive according to independent Poisson processes. Every arrival has an associated class-
dependent revenue irrespective of size. The most reasonable model here would be to assume that
files are divided into size ranges with a fixed revenue associated with each range, larger files having a
higher revenue than smaller ones. The existence of multiple nested thresholds can easily be shown,
with the thresholds increasing in the revenue of the job. -

Specifically, denote the arrival rate A; and let y;,i = 1,...,n represent the arriving file size
for customer class 4 in stage k. Note that we drop the subscript k from the y;’s for notational
convenience, assuming that the Y;’s are discretized versions of i.i.d continuous random variables in
each stage k. Let 7;, c; denote the revenue and rejection cost for customer class 7 and assume both
ri>2rg>...2ryandc > ¢z > ... 2> cn. Now since at each stage, at most one arrival can occur,
the following DP formulation results, where Iy, 5o} is the indicator function of the event y; > 0. w;
are the random arriving file sizes for class i in stage k which will await decision in stage k + 1.
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i3]
Y1

Jo|.]|=0, VYZp,yY1,.-. YN,
YN
and for k=0,...,D—1,
N - w1
max Ei:l ri]I{y.- >0} + E. Jk+1 . ,
Wiy-..  WN .
wN
Tk max(0, zy — 1)
Y1 w,
Je| .| =9 _Zil cliy;s0p + E  Jkw1 }, 1< Zf;l i <D -k —zp,
. Wiy yWN .
YN Wi
max(0, z — 1)
N w1y
- Zi:l c'i]I{y;‘>D—k—:z:k} + E Jk+1 . , O/W.
wWy,.. ,\ WN - :
\ wWN
By defining
Tk
w1
te(ze)= E  Jrks1| . |,
Wy  WN :
wN

we can now write the following formulation, where pg(zx) = Pr(1 < Zfil Y; <D -k —z) and
Ty =T + ¢
¢p(zp) =0, andfor k=0,...,D -1,
N
Sr(zk) =— 38 Mici+
i=1
(1 — pe(zk)) Prt1(max(0,zx — 1)) +
N N
Pr (k) E max{ Y riliyisop + $ke1(max(0,zx + Y Yi— 1)),
Y1, YN[ISY)  Yi<D—k-zk i=1 i=1

¢r+1(max(0,zx — 1)) }.

Now we have the following results which establish the existence of nested admission thresholds
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for each class i, depending on the ordering of the 7’s.

Proposition 5.3.1. For every k, the optimal “ezpected additional revenue” function ¢r(xk), Tk =
0,...,D -k, is monotone non-increasing in Ti.

Proof. Note that an admissible policy m = {ftk, Hk+1,- - - ,4p—1} is a sequence of functions fix
such that
Tk
h {0’1}’ ISZﬁ:lyksD—k“mk:
He € {{0} o/w.
YN

Then starting from state x, consider the following policy. Let zx — Tk +1 and follow the policy
optimal for starting from state T + 1. This clearly produces a feasible sequence of admissions with
additional revenue ¢(zk +1). The optimal policy starting from state Z must do at least as well,
therefore ¢x(zk) = Pk(zk +1).

O

Theorem 5.3.2. If the file size random variables Y; can take values0,... ,00, the optimal admission
~ policy consists of a threshold job size Yl (zx) for each class i in stage k, such that one admits a
job of size yi iff ¥i < Yl (zk). Further, yh(zk) 2 Y a(@e), i = 0,- SN =1, if rs > iy for
i=1,...,N-1

Proof. Consider z > 1, since T = 0 follows exactly the same reasoning. A job of class i, with
size y; > 1 is admitted in stage k if 1 <y; < D — k — z3 and

ri + brrt (T + ¥ — 1) 2 drrr(ze — 1)

Now we have
yi=1: 75+ ¢re1(Te+Yi— 1) = 7i + k1 (),

N
yi=D—k—zx: Ti+¢k+1(37k+yi—1)=T1—(D'k—l)z)wci-

i=1

Also, from elementary reasoning, for all values of z, ¢xs1(zk — 1) = —(D —k— 1) 2?;1 AiCi-
Using proposition 5.3.1, if 7y — (D-k-1) Zf;l Nci < Pry1(me — 1) < Ti+ Pr1 (zx), there must
bea0 < yli(ze) <D—k—1zk such that for y; < ¥l (Tk), Ti + Pkt1 (zr +yi— 1) > dr41 (zr — 1) and
for y; < v (@), the converse is true.

The only other possibilities are: 7; + brr1(zk) < Prr1(Tr — 1), in which case yh(zk) = 0, ie
no jobs from class i can be admitted, or ¢r1(zk —1) < Ti — (D-k-1) Zf;l \;c;, in which case
yh(zk) = D —k—xk, Le. & job of class i is admitted if it fits. In any case, we have the existence of
a threshold size yji,(zx) < D — k — xj for admission of class .

To see that the thresholds are nested, note that if r; > 7;, then forall1 <y < D -k — =g,

i+ Gprr(zk +y— 1) 275+ Gesr(Tk +Y — 1).

Then the definition of Y (k) implies the following, and yh(zk) = yj(zx) follows from the
monotonicity of d4+1. Figure 5-17 illustrates this proof.

ri + b @k + Yip(@e) — 1) 2 75 + S (@ + yip(ze) — 1) > ez — 1).
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Figure 5-17: An illustration of the proof for existence of nested optimal thresholds.

5.4 Networks and multiple deadlines

We consider the case of a network with fixed routing and a single deadline, and the case of multiple
deadlines on a single link. The principal results in this section are that the monotonicity of the
optimal additional revenue is a robust property and the optimal policy is of threshold-type for these
more complicated cases, even though the actual thresholds are unlikely to be easily computable.

In the case of multiple We demonstrate this, we choose to analyze the case of only two deadlines
and a simple network instance with only one deadline and fixed routing, since the essential charac-
teristics of the line of reasoning are fully revealed by these cases. The generalization to the case of
a full network is then easy.

5.4.1 Networks with fixed routing

Let a network consist of j = 1, ... , L, links, with available rate R; forlink j. Letr=1,...,R, index
routes where each route r is a subset of the links. Requests arrive for content delivery over route
r as a Poisson process with rate A, and every such arrival requests delivery of a random amount
of content Y, over the route, before a deadline D common to all requests network-wide. For each r,
Y, are i.i.d and independent of the arrival process and state of the network. Arrival for route r, if
accepted, results in revenue 7., otherwise a cost ¢.. The assumption 7. > ¢, is natural.

We discretize time as before into intervals of length 4, with & = 0,..., D, indexing decision
stages, and assume Y, are appropriately quantized, i.e. arriving in quanta of min; R;6. Now call =,
the content for route r untransmitted at stage k. Let aj. =1 if link j € 7, and a;, = 0 otherwise.

The following vector notation can now be defined. Let xi = (Z1,... ,ork)T be the remaining
content vector and yx = (Y1k,. .- ,Yrk)? the arrived content vector requiring admission decision in
stage k. Y = (Y1,...,Yr)7 is the random content vector arriving in every interval, which awaits
decision till the next stage, i.e. yj is the realization of Y in stage k. Note that Poisson arrival
processes implies that yj cannot have more than one non-zero component with positive probability.
Finally, let A = [a;,] of dimension L x R be the incidence matrix of routes over links, R be the
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available rate vector indexed by links j and T, ¢, be the revenue and cost vectors indexed by routes
T.

Now requiring delivery of all admitted content before the deadline is imposing the constraint
Axy; < (D — k)R for all k. Therefore the feasibility constraint for admitting content vector yy is

Ay, < (D — k)R — Axp.

Before writing a DP formulation for the admission decision, we need to address the added com-
plication of the scheduling policy, since the content transmitted for route r in any interval depends
on the scheduling policy, which must account for admitted content for all routes in the network, the
vector x;. The key simplifying assumption we make is that in interval k, z,4, the rate allocated to
route r is a deterministic quantity that is exogenous input to the admission controller. This models
a situation where the admission controller has no knowledge of how the scheduler determines the
rates z,, and assumes that these rates are not affected by its admission decisions. Vector zy, is then
defined as z; = (21k, . .. , 2rk)T. We assume that z. are integral.

We write two versions of the DP as before since it makes explicit the exact decision model and
makes for easier understanding. Below we let I(yx) be the normalized vector y, ie. I(yx) =
1/ (Zzz:l Yr)¥k. The notation (xp — zx)* refers to the non-negative part of the vector x5 — zy.

JD [xD] = Oa VxD;YD,

and for k=0,...,D -1,

( N , X + Ve —2k)T | x, — 2z )"
max{ tTI(ye) + @Jkﬂ [( k y‘k( 2 , —<Tl(yx) + @Jk'ﬂ (x v k) },

Ji [xk _ Ay, < (D - k)R — Axy,
Y& T , yle>1,
— +
L —cTI[(yk) 4 @Jk+1 I:(xk YZIc) ] , o/w.

As before, we can re-write the formulation above in a form where the state consists only of the
vector x;. To do this, define the following quantities, e, being the rth unit vector.

pa) =P (¥ 20, AYSO-HR-Ax), o= 5]

Now we can let pg(xx) = (plk(xk), ce ey DRE (xk))T and write the DP as follows. Here 7, = 7, +c,,
e is a vector of 1’s, and ‘A, is the rth column of A.
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¢p(xp) =0, andfor k=0,...,D 1,
$(xk) = — cTpr(xe) + (1 —eTPi(xk)) Prss( (xk —20)T ) +

R
Zprk(xk) E max{ 7r + ¢r41( (xx +Yre, —zx)"),
Y.|1<Y;, Yo Ar<(D—k)R—Ax
¢k+1( (xx — Zk)+ ) }

r=1

We can now extend the results of the previous sections.

Lemma 5.4.1. For every stage k and state Xk, the optimal “ezpected additional revenue” function
is monotone decreasing in Xi, i.e. ¢r(xx) > dp(xk + ney),r =1,...,R, for all n > 1 satisfying
A(xy +ne,) < (D -k)R.

Proof. A relatively straightforward extension of the idea of the single-link proof. Notice that
the set of vectors y for which an admission is feasible in state x; + e, at stage k is

Ay<(D—-k)R—-A(xt +e;) < (D—k)R— Axy.

Therefore if some y is admissible in state xy, + e, it is also admissible in state xz. Then starting
from state (xk,y«), let xx — X + e, and follow the policy optimal for starting from state xj, + e,.
The cost of this policy is Ji(xx + e, y&). Since the optimal policy must do at least as well, we have

Xk Xi + e,
J > J , VY-
k [.VJ =k [ Yy ] Yk

Expectation over yy gives
Sk (xk) > dr(xx + er).

d

Theorem 5.4.2. If for each r, the file size random variables Y, can take values 0,... , 00, then the
optimal admission policy consists of a work-dependent threshold job size y¥.(xx) for each route r
and stage k, such that one admits a job of size y, iff yr < Yy (Xk).

Proof. Consider the admission decision for a request of size ¥y, for route r. The job is admitted
only when

Tr + k1 ( (% +yrer —z)t ) > e ( (xk —z)t.

Now letting §r(xx) = min;(D — k)R; — 211 a;rTr, we can see that there are only three possi-
bilities because of lemma 5.4.1.

e+ ¢k+1( (xk + e, —zk)" ) < ¢p1( (xk —2zk)t ) = No job can be admitted,
T+ ¢k+1( (xk + Tr(xx)er — 2k) T ) > ¢k+1( (xk — zk)* ) = Admit a job if it fits.

Otherwise there must be a y,(xx) > 0 and y¥.(xk) < Fr(xx), such that it is optimal to accept
a job of size y, for all values y, < y¥.(xx), and to reject otherwise.

O
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5.4.2 Multiple deadlines

The case of multiple deadlines on a single link is very similar to a network with fixed routing, with
a polyhedral region characterizing the set of feasible decisions. The only modifications are that the
terminal cost function is not 0 for deadlines before the last, and we let the scheduling policy depend
explicitly on the state of the system. Results obtained are similar to before. The optimal revenue
function is found to be monotone decreasing, and the optimal policy remains of threshold-type.
Instead of handling an arbitrary number of deadlines, we formulate and analyze an instance with
only two consecutive deadlines. The lines of reasoning are fully revealed by this case.

Consider two equally spaced deadlines on a single-link, with the same available transmission rate
for both deadlines. The model maintains information about undelivered content for both deadlines.
As before, we require that all admitted content be transmitted completely before its associated
deadline. Further, we assume that the scheduling policy is non-idling and infinitely pre-emptible,
where transmission for the second deadline is pre-empted if work is accepted for the first deadline,
and resumes only when there is no remaining work for the first deadline. Below is a a discretized
formulation of the problem. We do not provide details of the notation, since it is a natural extension
of earlier notation.

Let ¢ = 1,2, index deadlines with 1 being the earlier deadline. Arrivals for the two deadlines
occur as independent Poisson arrival processes with rates A; and arrivals for deadline 1 cease to
occur after the deadline expires. Call z;; the untransmitted content and y;i the size of the job for
which an admission decision is needed in stage k, with 7, ¢; the revenue and rejection cost for a job
associated with deadline 7.

Now if D < k < 2D, the problem involves only remaining content zp; and arriving content yag
for the second deadline, the model reduces to our canonical model of section 5.2, and all results for
the optimal policy apply, allowing us to write:

I1D
2D 7 |T2D
Jp =Jo V1D, T2D,Y1D, ¥2D,
D Y2D
Y20

where Jp is the optimal cost function obtained from the canonical model of section 5.2. We
therefore consider only 0 < k& < D in this section. The DP formulation can now be written as
follows, noting that at most one of y1x and yzx can be non-zero in any given stage. Ig is the indicator
function of set S and Y; are the random arriving file sizes in stage k& which will await decision in stage
k+ 1. We define Fox(T1k, Zok) = 2D — k — 215 — 22k and Gk (T1k, T2k) = min(Fox, D — k — z1x),

90



I1D

T2Dp| _ 7 |TDk

J = Vzip, T

D v o[y k], 1D, 2D, Y1D,Y2D,
Y2D

and for k=0,...,D -1,

( max(0, Z1x + y1x — 1)

F max(0, T2k + yak — I -
ma.x{ E?=1 Tin{yu>0} + ylEyz Jk+1 ( 2 2Y1 {z1k+v1k o})

Y;

’

max (0, z1x — 1)

‘ ax(0 — T, =
- Z?,=1 cin{yik>0} + E Jk+1 " ( » T2k {zlk_O}) }1
PP o)

Tik n

Jk il X Y2
Y1k 1 < vk < Tik(z1k, Tar),
Yok 1 < yor < Tak(Z1ky T2k ),

max(0, 1, — 1)

max(0, Tok — Liz,,—0})
- ClH{y1k>ﬂ1k(z1k.mzk)} - CZ]I{yzk>172k(=1k,-‘=zu)} + YI]EY Jk+1 Y {z2=0} ’

2
Y,

\

‘We now define:

n [:::] =Pr(1 £ Y1 < J1k(T1k, T2k)), D2 [2:] =Pr(1 <Yz < Gor(T1k, T2k)),

Tik

Tik T2k
= J)
O [wzk] YPH ln

Y,

The DP is then re-formulated as follows, where 7; = 7; + ¢; and ¢p is the optimal additional
revenue function in stage D, for the remaining single-deadline problem.
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oD [;;zJ = do(zzp) andfor k =0,...,D —1,

ox [2":] =—¢ Pr(¥1 > 0) — 2 Pr(Y2 > 0) +

_ Tik| T1k max(0,z1x — 1)
(1 7 [m] P [w%] >¢'°+1 [max(o,m -l{m=0})] *

T1k
ygl [wzk]

E
Y1[1<Y1<F1k (z1K,T2k)

T1k
D2 [Z%]

Y2|1<Y2<P2k (1, T2k)

max(0, z1x + Y7 — 1)] b max(0, 1 — 1) ] } +
max(0, T2k) * YR+ | max(0, Tak — L{z;=0})

max {7‘1 + Pk [

max(0, 1 — 1) } S [ max(0, z1x — 1) ] }
max(0, zok + Y2 — {5, =0})] ’ *1 Y\max(0, xz), — Lzye=o0p)| J°

max {Tz + k41 [

Now the following analogues of earlier results can be shown.

Lemma 5.4.3. For every k, the optimal “ezpected additional revenue” function is monotone de-
creasing in -z, and Tok, i.e. for all T1x, T2, satisfying T1p + T2x < 2D -k -1, 23, <D—-k -1,

o [:cm] > Pk [zlk + 1] ;

T2k T2k
T1ik Tik
> .
O [1'2.':] 2 Pk [-’hk + 1]

Proof. As before, here the definition of an optimal policy starting from any state (z1x, Zak, Y1k, Y2k)
is that it is optimal among all admissible policies m = {pk, px+1,... , 4D—1} consisting of sequence
of functions ug such that

T1ik {0,1}, 1< y1x <min(2D — k — z1 — Tog, D — k — z1%)
T

Lk yf: € 1< yok £2D — k — 218 — T2k,
yzk {0} O/W.

Then the following is an obvious consequence.
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].SylkSmin(ZD—k—(Z1k+1)—.’Dzk,D—k—(:L'lk-I-l)) <min(2D—k:—.'1:1k—mZk,D-k—xlk)
lgyszZD—k—(z1k+1)—z2k<2D—k—mlk—:c2k,

and

ISylkSmin(ZD—k—zlk—(zgk+1),D—k—wlk) <min(2D — k — 21 — T2k, D — k — z13)
ISkaS2D—k—$1k—($2k+1)<2D—k—2‘:1k—zzk.

Therefore if p is admissible for state (z1x + 1, Zak, Y1k, Y2x) or for state (Zik, Zak + 1, Y1k, Y2k),
it is admissible for state (z1x, Zak, Y1k, Y2k )-

Now starting from any state (z1k, T2k, Y1k, Y2k ), 1€t 1 = Z1x + 1, and follow the policy optimal
for starting from zx + 1, always possible owing to the definition of admissible functions, defined
above. The cost of this policy is Ji(z1x + 1, T2k, Y1k, Y2k)- Since the optimal policy must be at least
as good, we can take expectations over 4k, Y2x to conclude

T1k T+ 1
P [-’E:k] Z¢k[ lzzk ]

Follow exactly the same reasoning to see that

T1k T1k
ox [ka] > dx [mzk n 1] .
O

Theorem 5.4.4. If the file size random variables Y; can take values0,. .. , 00, the optimal admission
policy consists of a work-dependent threshold job size y},(z1k,Z2x) for each deadline i = 1,2, such
that one admits a job of size yix iff yir < Yl (®1k, T2k).

Proof. Consider the admission decision for a job for deadline 1. A job of size yy; is admitted iff
1 < y1e < min(2D — k — 21k — T2k, D — k — 1k) = J1k(T1k, T2k) and

Tig + Y1 — 1 max(0, z1x — 1)
>
L+ ¢k+1[ Tox ] 2 Prt1 [wzk Tigyoy |’

Now there are only three possibilities as outlined below, using the monotonicity of ¢x,1 from
proposition 5.4.3.

max(0, z1x — 1)

y = (= y T =0,
wzk—ﬂ{z1k=o}] Y1k (T1ks T2k)

z
r1 + Prs1 [m;:] < Pr41 [

T -f—' Tik,Tok) — 1 max(0,z1, — 1
1k 1k (T1k, Tak) ]2¢k+1[ (0,71 — 1)

. ) -
1 7+ Prt1 [ o To —H{z1k=o'}] v = YTk, T2k) = Jik(T1k, T2k).

Otherwise, if

Tk + Jik(Tik, Tok) — 1 max(0, 1 — 1) T1k
< <
1+ Prt1 [ Tox Pr+1 Zak — Lgyem0 T1 + k41 e
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we must have a y},(Tik, Tok) With 0 < Y3 (Z1ik, Z2x) < F1k(T1k, Tok), such that for all yyx <
Y1k (T1k, T2k), the job is admitted, and for all greater yx, it is rejected.

Following exactly similar reasoning, using the monotonicity of ¢x{1 from proposition 5.4.3 we
can prove the existence of y3, (z1k, Zok ).

O

5.4.3 Remarks

This section lists some remarks about the network and multiple deadline formulations.

1. Section 5.4.2 suggests that a multiple deadline problem can always be viewed as a fixed routing
network problem with a terminal cost function different from 0. This is because the polyhe-
dral region corresponding to the set of feasible decisions during any inter-deadline interval
corresponds to a network topology with a single deadline.

2. The above remark and sections 5.4.1 and 5.4.2 suggest that a proof for optimality of threshold-
type policies should be available for fixed routing networks with multiple deadlines.

3. It further seems that the only properties that were essential to proving the optimality of
threshold policies were that the files sizes take values 0,. .. , 0o and that the scheduling rule be
either fixed or independent of the admission decisions. This leads to the speculation that the
results above can be extended to the case when capacity is either time-varying or stochastic,
as long as it is independent of the admission decisions.

4. There seems little hope of being actually able to compute the optimal thresholds. The more
interesting question raised is thus of finding heuristic rules for approximating the behavior of
the thresholds. We have attempted this for the single-link case, in section 5.2.5, but the case
of a network remains open.

5. It also seems easily provable that multiple classes of customers should have nested thresholds
on a route-by-route basis, i.e. if multiple classes of customers paying differently request to use
the same route, one should obtain separate thresholds for each class, with the threshold for the
highest paying customer the highest, and likewise ordered for all classes. This can be seen by
following the proof for existence of nested thresholds for the single link case, in section 5.3.3.

6. Finally, for the multiple deadline case, we wonder if the existence of the threshold-type policy
can be extended to arbitrarily small inter-deadline intervals, to obtain an existence result for
the case when deadlines are continuous random variables. We do not pursue this direction in
this work. :

5.5 Proofs for the canonical model

This section collects proofs for the remarks listed in section 5.2.3.

Proposition 5.5.1 (Monotonicity in remaining work). For every k, the optimal “expected ad-
ditional revenue” function ¢x(zk),zx =0,... ,D — k, is monotone non-increasing in Ty.

Proof. Two alternative proofs are noted here. The first is more compact while the second is
more mechanical and uses induction on the functions ¢(z).

The first proof relies on the viewing a finite horizon dynamic program as maximization of the
additional expected revenue over all admissible policies (c.f. [Ber95]), starting from a given initial
state. Here, we define the optimal additional revenue function as
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fg]-ema )
Ye|  mell F [yk

where II is the set of all admissible policies, and an admissible policy ™ = {pk, pk+1,... , pp-1} is
a sequence of functions uj that map states (x,yx) into sets Uy (zk, yx) as defined below. JT (z,yk)
is the expected additional revenue starting from state (zx,yx) and following policy .

{0,1}, wx>1landzp+yxr <D -k,
{0} o/w.

Now notice that the definition of admissibility implies that a policy = admissible when starting
from state (zx + 1, yx) is also admissible when starting from state (z, yi)-

U (zk, yx) = {

Then given state (zk, Yk ), let zx — zx + 1, and follow the policy optimal for starting from state
(zx + 1,yk). Clearly this produces a feasible set of decisions for every sequence of arrivals and has
cost Ji(zx + 1, yx). An optimal policy must do at least as well starting from (zx, yx) and since Ji's
are the optimal costs, for any zp, < D —k -1,

Tk T+ 1
J, > J, V.
[ a ],
Taking expectation over y yields

bk(zk) > dr(zk +1).

An alternative proof using induction

We use induction on the monotonicity of the functions ¢x(z). The proposition is trivially true
for ¢p(z) since it is the zero function. Now suppose that for stage &+ 1, ¢p4+1(2) > drr1(z+1),z=
0,....D—Fk—1. -

Rewrite the expressions for ¢ (0) and ¢,(1) as follows:

D—k
$k(0) = —cAs + (1 —pr(0)) $r+1(0) + D max {r+dr1(y — 1), $x+1(0)} Pr(Y =),
. o
$i(1) =—cAd + (1-pr()) $x+1(0) + Y max {r+drs1(y), k11(0)} Pr(Y =),

simply writing pi(0) Ey|1<y<p—k max {7 + @ps1(Y — 1), ¢41(0)} as o max {r + dr1(y —

1), ¢x41(0)} Pr(Y =y). Then,

 46(0) — 4u(1) =

ér+1(0) [pr(1) — P (0)]+
D—k—1

> PrY =y) (max {r+ drsr1(y — 1), d41(0)} — max {r + drs1(y), ¢k+1(0)}>+

y=1
Pr(Y = D — k)max {r + ¢p+1(D — k — 1), dr41(0)}.
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Noting that py(1) —px(0) = —Pr(Y = D —k) and ¢p41(D =k —1) = —cA(D — k- 1), we rewrite:

$:(0) — k(1) =
Pr(Y =D - k)<max {r—cA(D-k-1), ¢p11(0)} — ¢k+1(0))+

D—k—1

> Pr(y =y) (max {r+ dr+1(y — 1), $xt1(0)} — max {r + dr41(y), ¢k+1(0)})

y=1
> 0.

The inequality on the last line follows since each term weighted by the probabilities is > 0, either
by monotonicity of ¢x+1(z) or by a simple elementary argument.

Similarly, we can write for z > 1,

D-k—-z
$r(z) = —cA6 + (1-pu(2)) drpa(z—1) + > max{r+oeri(z+y—1), rpa(z - 1)} Pr(Y =y),
y=1
D—k—z-1
dr(z+1)=—cA6 + (1—pr(z+1)) ¢rt1(z) + Z max {r + x11(2 + y), drs1(2)} Pr(Y =1y)
y=1
) D—k—z-1
< —edd + (1-pr(z+1)) ¢eta(z—1) + Z max {7 + ¢r41(2 + ¥), de41(z— 1)} Pr(Y =y).
y=1

The last inequality for ¢x(z + 1) follows from the inductive hypothesis. Now exactly as before,
we see that ¢x(z) — pr(z +1) > 0.

O

Proposition 5.5.2 (Monotonicity in time). For every z, ¢x(z) > ¢r+1(z).

Proof. Forz =0,

¢r(0) = —cAd + (1 —pk(0)) ¢et+2(0) + Dz_:kmax {r+ or1(y — 1), $x42(0)} Pr(¥Y =y),
Dk "
> (1-px(0) k+1(0) + D Bk+1(0)Pr(Y =)
= ¢x+1(0). "~
For z > 1,
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: D—k—z
$i(2) = —cA6 + (L—pi(2)) deyr(z—1) + > max{r+eera(z+y—1), dep1(z~ 1)} Pr(Y =),
y=1
D—k—z

> (1-pu(@) dhnr(z) + Y drna(z) Pr(¥ =),

y=1

= dr1(2),

where the inequality on the second line above follows from proposition 5.5.1, @x41(z — 1) >

Sr+1(2).
O

Proposition 5.5.3 (Incremental revenue in both work and time bounded by r). For any
z,k, (i) dr(z) <7+ de(z + 1), and (ii) dr(z) <7 + dr41(x).

Proof. Consider (i), for £ = 0, we immediately have

¢x(0) — dx(1)
= ¢k41(0)[pe(1) —pr(0)] + Pr(Y =D — k) max {r + ¢p41(D ~ k- 1), ¢x41(0)} +

D—k-1
> Pr(Y =y) (ma-x {r+ érr1(y — 1), dr4+1(0)} — max {r + dr41(y), ¢k+1(0)})
. D—k—-1
< Pr(Y=D-—-k) (ma.x {r+¢rs1(D—k—1), dp+2(0)} — ¢k+1(0)) + Z r Pr(Y =y)
y=1
D—k
< Z’r Pr(Y =y) <
y=1

The first inequality above follows from the facts: px(1) —pr(0) = —Pr(Y = D —k) and ¢g4+1(D —
k—1) = —eA(D — k — 1), and that for every y > 1,

max {r + ¢e41(y), dr+1(0)} > dr41(0) and
max {7 + ¢r+1(y — 1), Pr+1(0)} <7+ ¢x41(0) using proposition 5.5.1,
= max {7 + ¢r11(y — 1), dr+1(0)} — max {r + dr11(y), de41(0)} < .
When z > 1, we use induction on the functions ¢i. (i) is trivially true for ¢p(z) since it

is the O function. Now assume that ¢r+1(z) < r + ¢gt+1(z + 1) for all z > 0, then noting that
1-pr(z+1)=1-pr(z) +Pr(Y = D — k — ), we can write,
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¢r(z) — de(z + 1) =
(Pre+1(z —1) — Grs1(2)) [1 - p(z)] +

D—k—-z-1

Z. Pr(Y = y)(ma.x {r+drkr1@+y—1), ¢ppa(z—1)} -

y=1

max {7+ gusa(a+ ), dena(@)} )+
Pr(Y - D—-k- :z:)(ma.x {r+ée1(D—k—1), dpy1(z —1)} - ¢k+1(m)) .

Note each term weighted by the probabilities is < r by the inductive hypothesis — using an
argument similar to before for the middle term, i.e. for y > 1,

max {r + ¢r+1(z +v), Prr1(z)} > it (z)
max {r + ¢r1(z +y — 1), deta2(z — 1)} < max {r + ¢p41(z), det1(z — 1)}
= max {7+ ¢pr1(z+y— 1), der1(z — 1)} —max {r + ¢e41(z + ¥), det2(z)} < 7

This proves (i).

Now consider (ii) ¢x(z) < 7 + ¢k+1(z). When z = 0, the following is true for y > 1, using
T+ dk+1(y — 1) < r + ¢+1(0) by proposition 5.5.1.

D—k
$k(0) = —cAd + (1—pk(0)) dk41(0) + Y max {r+ drsa(y — 1), $us1(0)} Pr(¥ =y),

y=1

D—k

< (1= pk(0) (r+ dr+12(0)) + Z (r + ¢£41(0)) Pr(Y =)
y=1

= 1+ ¢r41(0).

When z > 1, we use (i) for ¢p41(z—1) < r+¢r+1(z) and proposition 5.5.1 for 7+¢r+1(z+y—1) <
T + ¢k+1(z) to show the following:

D—-k—=z
(z) = =X + (1-pi(2)) drta(e—1) + Y. max{r+dep(z+y—1), drsa(z — 1)} Pr(Y =y),
y=1
D-k~zx
<S(1-p(@) (r+de1(@) + D (r+ bena(z) Pr(Y =y),
y=1

=T+ ¢k+1(z)s
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Proposition 5.5.4 (Convergence of the time-average additional revenue). For any given z,

lim $k(z) _ k()  dr(z+1)
(D-k»-oD~k D-k-1~ D-k ’

Proof. To see the first equality, note from proposxtlons 5.5.2 and 5.5.3 that ¢ry1(z) < < du(z) <
7 + ¢r+1(z), which can be written as
dr+1(z) D—-k—-1 ¢k,(:z:) T ¢k+1(z) D—-k-1

D-k-1 Dk “D-k>D-%k T D-k—-1 D-F

Letting (D — k) —» —oo, we get the desired result.

Similarly, to see the second equality, we can write ¢r(z + 1) < ¢i(z) < 7 + ¢(x + 1) from
propositions 5.5.1 and 5.5.3. This gives us

¢k(:l: + 1) qSk(:c) T ¢k(.’L‘ + 1)
Dk ~D-k~D-%k T D-k

The result follows by letting (D — k) — —o0.

Proposition 5.5.5 (Optimality of a non-trivial threshold policy). For any z, 0 < z
D —k, the optimal admission control policy is characterized by a threshold job-size yj(zx) < D—k—xy,
such that one admits a job of size yi, in period k iff yi < yj(zk).

Proof. From the DP recursion (5.1), one admits a job of size yx, 1 < yx, < D — k — z\ in stage
k iff

T+ Gr+1(max(0, zg + yk — 1)) > ¢p+1(max(0,zx — 1)).

This condition, written separately for z, = 0 and z, > 1 is:

Tk =0: 7+ ¢py1(ye—1) > dr+1(0),
zg21: 7T+ Ppt1(Te +yk — 1) 2 dp+1(ze — 1).

View the condition for a fixed z > 1 as a function of y; and consider the case z; > 1 since the
same argument holds for zx = 0.

Atyr =1, 7+ drr1 (e +yk—1) = 7+ Pr41(Tk) = Pr+1(zk—1) from proposition 5.5.3, part (i). At
yr = D—k—xx, we have r+@pi1(zk+yr—1) = r—cA(D—k—1) since ¢pp41(D—k—1) = —eA(D—k—1).
In addition, from proposition 5.5.1, ¢g+1(zk + yx — 1) is monotone non-increasing in yy.

It follows that if ¢g41(zx — 1) < 7 — cA(D — k — 1), one accepts a job if it fits. Otherwise
3 yi(zx) < D — k — z, which is the largest yj such that 7 + ¢p41(zk + Y& — 1) > dr+1(zk — 1). From
monotonicity of g1, for all yx(zx) < yj(zk), the optimal decision is accept while for yi(zx) > v (zk)
the optimal decision is reject. Combining the two cases, the optimal policy consists of a threshold
job-size yj(zx) < D — k — zx such that jobs are accepted iff yx(zx) < yj(xx) < D — k — xk.

d

Proposition 5.5.6. y;(zr) <yi(ze+1)+1 forallk and 0<zxy <D -k —1.
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Proof. We consider 1 < zx < D — k — 1. The same argument is valid for zz = 0. By definition
of the thresholds yj (z«), we have

r ot B @k + @) —1) > e (zr— 1), "
T+ ¢ksr(zh +vi(Te)) < Brpr(ze — 1)

Similarly, for = + 1,

r+ ¢ri1(zk + yi(zk + 1)) > Pry1(zk), 3)
T+ Gkr1(ze + yh (e + 1) + 1) < Prrr(zr)-

Now suppose y;(zx) > yi(zx + 1) + 1, which is equivalent to yf(zx) — 1 > yi(zx + 1) + 1, then
we must have, from proposition 5.5.1,

T+ Prr1(zi + yi(ze) — 1) < 7+ dpp1(zr +yi(ze +1) + 1),

but then the definitions of yj(zx) and y;(zx + 1) imply the following,

br41(@k — 1) <7+ drpa(zr + yi(ze) — 1) < 74 dpsalme +yp(ze +1) +1) < drga(zk),

which is a contradiction to proposition 5.5.1.

Proposition 5.5.7 (Sufficient condition for monotonicity of the thresholds). If for every k,
¢x(z) are concave in z,0 <z < D — k, then yi(zx) > yi(zx + 1) for all .

Proof. First note that the proposition is true for z = 0 regardless of the structure of ¢4 (z) ,
and in fact y;(0) = 1 + y(1). This follows from the definition of yj(1), which is

7+ dr41(yx (1)) > ¢r41(0),
r+ drr1(Yi(1) +1) < Prt1(0).

‘Which can be written as

T+ g ( W) +1)—1) > ¢r4a(0),
T+ @kt (Wr(1)+2)—1) < ¢r41(0),

and therefore y; (1) + 1 is the largest y satisfying 7 + ¢x4+1(y —1) > @k+1(0), which happens to
be the definition of y}(0).

For z > 1, we require conditions on ¢ (z). Note that the definition of concavity for ¢y is that
for any z > 1,

¢r(z—1) — dk(z) S dr(z+y —1) — d(z +y), forally > 0.
This clearly implies the following for any z > 1.

Pr+1(z — 1) = Prr1(2) < Ppta(z +yp(z) +1 - 1) — de1(z +yi(z) +2 - 1),
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which can be re-written as
Pr1(z) —r = Ppp1(z+ 1+ yp(z) +1-1) > dpa(z — 1) — 7 — dpqa(z +yi(z) + 1) > 0.

The strict inequality on the second line following from the definition of y;(z). Now it is clear
that 1+ y}(z) does not satisfy 7 + @r+1(z+1+y—1) > @r41(z) and therefore yi(z+1) < 1+y*(z)
using the monotonicity of ¢3’s from proposition 5.5.1, or equivalently y;(z + 1) < y*(z).

a

Proposition 5.5.8 (Necessary condition for monotonicity of the thresholds). If for all0 <
zk < D -k —1, yg(zx) > yi(ze + 1), then

etz — 1) = Ge1(2) < Gr1(z + yk(z) — 1) — P (2 + yi(2) + 1)
(which is a relazation of concavity).

Proof. Given y(zk) > yi(zk + 1) for some z < D — k — 1, we also have from proposition
5.5.6 that yx(zkx) < yi(zx +1) + 1. The two together imply that either yk(zk) = yp(zx + 1) or
ye(zk) = yp(oe +1) + 1.

Suppose y;(zx) = yx(zk + 1), then the definitions (2) and (3) imply that

rer1(z — 1) — drs1(z) < drg1(z + yi(z) — 1) — dry1(z + yi(z) + 1),

Now suppose that y;(zx) = yi(zx + 1) + 1, then (2) and (3) yield

$rr1(@ — 1) — $r1(3) < $ea1 (2 + (@) — 1) — Pre (3 + ¥()
< dpp1(x +yi(z) — 1) — Ppgr(z + yi(z) + 1),

the last inequality following from proposition 5.5.1.

5.6 Summary

This chapter proposed a FedEx-like service offering for digital networks to generate positive revenue
from spare capacity. We modeled the admission decision for determining the optimal job sizes to
accept, to maximize revenue.

We analyzed in detail a single deadline, single link model with a single customer class, to discover
properties of the optimal admission policy and the associated optimal revenue. Analysis was carried
out for general file-size distributions and concave file size distributions. An easily implemented
heuristic policy was proposed and tested in computational experiments.

Insights from this simple model were extended to several successively more complex cases. For
instance, we showed existence of the thresholds for the stochastic capacity case and the existence of
nested thresholds for multiple customer classes with class-dependent revenues.

The model was further extended to fixed-routing networks and multiple deadlines. Existence of
optimal threshold policies was shown for both cases. We used connections from these analyses to
conjecture that the optimal admission policy was of threshold type for any problem with a polyhedral
feasible admission region. This covered the case of an arbitrary network with fixed routing and
multiple deadlines.
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5.6.1 Contributions

We think of this chapter having contributed the following.

1. The articulation of the service idea itself — an often ignored contribution. The digital-FedEx
service idea has both marketing and modeling appeal. On the marketing side, it relates well
to consumers acceptance of the mechanisms of physical courier deliveries. On the modeling
side, it cleverly lumps together content for each deadline, minimizing the need for complicated
state information for each consumer request, such as deadlines, content sizes etc. The decision
problem is made simpler — though not trivial, and a cleaner formulation results. We note,
however, that nothing essential in lost in the service offering, since one can let the difference
between the deadlines be as small as desired. In practice, we doubt anyone will care between
having a choice of deadlines which is arbitrary vs. deadlines spaced 5 minutes apart.

2. In terms of modeling and analysis, our contribution might be viewed as that of the two-fare
seat-inventory control model to airlines [Lit72], or the single-link Erlang model [Kel91] to
tele-traffic. Our single-link canonical model of section 5.2 has revealed promising directions
for more complicated cases. Our proposed heuristic (c.f. section 5.2.5) seems a promising
foundation for constructing practical operating rules. Similarly, our network model could play
a role similar to fixed-routing networks in tele-traffic literature [Kel91]. Also, the results for

~ networks and multiple deadlines indicate several directions for future research, some of which
are summarized in section 5.4.3. '

3. Finally, a goal was to illustrate the connection to the models used in airlines for seat inventory
control (c.f. section 2.2.3 for the motivation). The threshold admission policies optimal for
our model are directly analogous to the threshold admission decisions for multiple customer
classes in airlines, and depend only on the remaining work in the system. Our thresholds
are similarly difficult to compute and motivate the study of EMSR-like [Bel87] heuristics (c.f.
section 5.2.5). The existence of multiple nested thresholds for admitting jobs from different
classes again bear a strong resemblance to the airlines results [SLD92].
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Chapter 6

Forecasting: Locating Probes for
Determining Traffic Patterns

Integral to any ’Yield Management’ effort in telecom is the ability to forecast available capacity
and demand for services. We have so far assumed in earlier chapters the availability of such data,
adequately summarized for the problem at hand. In many situations, such data might be available
from existing mechanisms. However, for networks like the Internet, obtaining adequate information
and summarizing it is itself a burgeoning research area. Even though we do not focus on forecasting
in this thesis (c.f. section 2.2.1), this chapter serves to demonstrate the nature of the problems that
arise and the room for modeling and optimization in this domain. '

A fundamental issue for IP! networks is to forecast available capacity and traffic patterns on the
network. These networks require novel data collection mechanisms such as probes to track traffic
because of several reasons mentioned in section 6.1.1. The decision of interest here is the optimal
location of a given number of probes to build as complete a picture of network traffic as possible.
For this we formulate an integer program which results in an NP-hard formulation. We propose a
heuristic for its solution and bound the performance of the heuristic. Several interesting research
directions are outlined at the end.

In section 6.1, we discuss the context in which the probe location problem arises and some
considerations relevant to modeling. Section 6.2 presents the integer programming formulation, the
assumptions behind the formulation and a survey of related modeling literature. Section 6.3 describes
and discusses a greedy heuristic for obtaining a solution and section 6.4 provides its analysis. In
section 6.5 we address the complexity of the heuristic and outline two variants which differ in
the manner of obtaining the solution to a sub-problem within the greedy heuristic. A proof of
NP-hardness of the sub-problem also proves the NP-hardness of our integer program. Section 6.6
provides the summary and contributions from this chapter.

6.1 The Probe Location Problem

Several networking research projects are working on deploying sets of ’probes’ on networks — poten-
tially hundreds of them, to try to capture both orchestrated and independent snapshots of traffic on
IP networks [WP98|. Such “Network Tomography” is expected to enable Internet Service Providers
(ISPs) to better manage traffic across their links and exchange points. Further, it is anticipated that
performance monitoring will be a strong marketing and sales strategy for many ISPs in the future
(cf. section 6.1.1).

1Internet Protocol.
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The problem arises because of a desire to characterize capacity usage and traffic dynamics on the
network, to better utilize existing resources and because of a strong market demand for performance
monitoring (c.f. section 6.1.1). Capacity usage as indicated by link and switch utilizations is usually
not sufficient for traffic profiling and network capacity management. In recent years, many end-
to-end studies of the Internet have been carried out which try to characterize the performance of
'paths’ in the Internet, usually in terms of performance metrics like the round-trip times, packet loss
rates and routing behavior, see for instance [Pax97]. Unfortunately, building a network-wide view
of traffic dynamics is not possible with such strategies. Hence the need for a.lternate mechanisms
such as probes.

Probes are small workstation-size devices that can be attached to a limited number of links at
routers/switches in a network, allowing them to capture copies of all packets transmitted through
these links. This information can then be analyzed off-line for any desired purpose. The location of
the probes is a question of interest as one attempts to build as complete a picture of network usage
patterns as possible with a limited number of probes. It is important to get the location somewhat
right at the first attempt for relocation of probes is logistically and organizationally inconvenient.
Further, the location policy affects the total number of probes needed to monitor a network of a
given size, with obvious cost implications. The issues involved in locating probes on a network are
discussed in section 6.1.2, along-with the relevant modeling considerations.

6.1.1 The context

The probe location problem is part of a larger effort to understand traffic patterns and behavior of
IP networks - a.k.a the Internet. In recent years, intense effort has been dedicated by researchers
towards monitoring and understanding IP networks [Pax97, TMW97]. The problem arises because
we do not adequately understand how the local behavior of thousands of components such as routers,
switches and traffic sources translates to the macroscopic behavior of the network.

The Internet is peculiar as compared to traditional telephony networks because the network does
not carry state information. Because of its tremendous autonomy, heterogeneity and the paradigm
of best-effort service, an integrated monitoring framework was never envisioned or developed for
the Internet. As a result, appropriate mechanisms for traffic measurement do not exist. From the
limited information available at the routers, it is difficult to build a picture of traffic lows over the
network and the causes of congestion that arise thereof, necessitating the need for measurement
mechanisms and devices such as probes that can perform the function.

Strategies employed for Internet measurement studies can be crudely classified into end-to-end
or flow-based, depending on whether they try to obtain information between pairs of locations only
or if they obtain information about the flow passing some given point in the network. An excellent
example of an end-to-end study is the doctoral work of Vern Paxson [Pax97] in which several aspects
of network behavior such as end-to-end delay and its variations, routing behavior and bandwidth
availability between pairs of sites are studied. The finding of this study on routing is particularly
relevant to our modeling. It is reported that for most pairs of communicating nodes, routes are
usually dominated by a single route, and that lifetimes of routes can range from seconds to many
days, with most lasting for days. Probes naturally fall into the second category of measurement
strategies?. Network-wide deployment of probes is a more recent phenomenon as corporations and
large companies attempt to lower the cost of maintaining large network infrastructures and achieve
higher utilizations3.

There is also a strong market 'need’ for performance data on ISP networks [Bor98] in addition to
the need of network operators for better utilization of existing infrastructure?. Corporate customers

2For a background on the importance of flow-measurements and their relevance, see the home page of CAIDA -
Co-ooperative Association for Internet Data Analysis, http://www.caida.org/.

3There is evidence that utilizations for corporate networks might be as low as 5%.

4The difference in operating efficiency between the best and the worst operators in North America and Europe
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of ISPs are usually deeply concerned with the service-levels and quality of service they actually
receive from the network, and currently use ad-hoc measures for monitoring network performance.

Several companies such as Savvis Communications™ and At Home service™ make performance
guarantees the backbone of their marketing strategies. For an impact of performance monitoring
on customer retention, see the article [Bor98] in Business Communications Review which makes the
case that ISPs cannot ignore the impact of performance monitoring on sales and customer retention.

6.1.2 Modeling considerations

It is pertinent to point out two things: (i) probe location is just one of the problems raised in the
monitoring and performance analysis of the Internet, and (ii) the objective for locating probes is
usually vaguely phrased, as in, for instance, given a number of probes for monitoring traffic, where
should they be located on the network ? We find it necessary to mention this because questions
about our objective function will inevitably arise when the model is presented. The objective function
explored in this paper is a result of our modeling license. This is natural since the problem as posed
is not very meaningful.

We assume that our objective is to build as complete a picture as possible of important traffic
patterns in the network. What precisely constitutes important traffic patterns and what is meant
by a complete picture will become clear later. In fact, it will be seen that the objective function of
our formulation is more general than the preceding statement. Constraints are usually that probes
need to be located at a router/switch and there is a limit on the maximum number of links each
probe can monitor simultaneously.?

An additional consideration for modeling is the nature of the probe deployment process which
itself admits of various possibilities. For instance, one may decide to ship all probes simultaneously
to locations with attendant instructions on the links to which they must be attached. Alternatively,
one may wish to deploy them sequentially; installing a few probes, getting additional information
about the traffic patterns from them and deploying the next set. In our particular study, the logis-
tical inconvenience and organizational challenges involved in sequential location were considerable
enough dictating the choice of a single shot deployment. This is reflected in the proposed integer
programming model.

There is also the question of whether a priori information is available about the network that
can aid the probe location decision. For instance, data about link utilization levels is usually not
very difficult to get from the network. We assume any such information to be summarized in the
probability of traffic between a node pair taking certain routes through the network.

6.1.3 Outline of the model and results in this chapter

We formulate an integer programming model for probe location that tries to maximize the amount of
flow captured by a given number of probes, subject to a constraint on the number of links each probe
can monitor. The data required for the model are the network topology and the probabilities of traffic
between pairs of locations taking a given route through the network®. The model is found to be NP-
hard, motivating the use of a ’greedy’ heuristic to obtain good solutions or alternatively, to provide
a good initial lower-bound for an exact solution method such as branch and bound. We analyze two
variants of the greedy algorithm which trade-off efficiency against worst-case performance.

When the number of links each probe can monitor is relatively small”, the greedy algorithm runs

exceeds 30% [Bay96].
5Usually a low number, around 4-6 links.
8This information is usually easily obtainable from the network using standard utilities such as ping or trace-route.

"More precisely, when the number of links L is a fixed small number, then (l}f) is obviously a low order polynomial
in N, where N and L are the number of nodes in the network and the number of links each probe can monitor

105



in time polynomial in the number of nodes in the network. We analyze the heuristic to bound its
worst case performance to within 37% of the optimal. More specifically, we show that our problem is
actually an instance of maximizing a sub-modular set function subject to a cardinality constraint and
appeal to a result by Nemhauser, Wolsey and Fisher [NW78] for sub-modular function optimization
to obtain the bound.

When the number of links that can be monitored by probes is relatively large, we propose
another variant of the greedy heuristic which greedily selects the links to monitor at each node.
Here, however, the bound on the worst-case performance no longer applies.

6.2 An Integer-Programming Model for Probe Location

This section presents an integer programming formulation of the probe location problem. The data
for the model are (i) the topology of the network, (ii) the probability of pairs of nodes communicating
with each other (or alternately the relative importance attached to traffic between pairs of nodes),
(iii) the probability of traffic between each pair of nodes taking a particular path through the
network, (iv) the number of probes to be located, (v) the candidate locations for the probes and
(vi) the maximum number of links a probe can monitor at any given location. Probes are assumed
to be indistinguishable from each other.

6.2.1 Notation

Specifically, let G = (V, A) be a graph with bi-directional edges representing the network topology
with |V| = N and nodes indexed by 3.

Let k index origin-destination (O-D) pairs in the graph and Ry represent the set of routes between
O-D pair k. Every route is an acyclic ordered sequence of nodes or alternately, links in the network
and belongs to exactly one O-D pair. Call the probability that node pair ¥ communicates Py, and
the conditional probability (given that they communicate) that traffic between k takes route r € Ry,
PT”G'

Denote by M the total number of probes to be located on the network and let L be the maximum
number of links any probe can monitor. Probes are assumed to be indistinguishable from each other
and can only be located at nodes.

In this model, to maximize the expected number of O-D pairs that are being monitored by
the probes, one proceeds as follows. The probability of O-D pair k¥ being monitored is the sum of
probabilities Py.Py; across routes 7 € Ry that have at least one link being monitored by a probe.
But note that we cannot double count the probabilities, i.e, if more than one link in route r is being
monitored, we can only count the probability once. Preventing this double counting is the major
reason for the complexity of the ensuing model formulation .

6.2.2 Formulation

The following formulation attempts to maximize the expected number of O-D pairs that can be
monitored by probe location and assignment (which links to monitor). Call 4(z) the set of outgoing
arcs incident on node i, §(i) = {(i,7) : j € V,j # i}, and let z; € Z* be the number of probes
located at node 7. Call the probability of traffic between k taking route r € Ry as Pr = Py.Pp.
Let R = Ug{r € Ri : P. > 0} be the set of positive probability routes in the network.

Let

respectively.
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~_ )1, if probe located at node i assigned to monitor link (i, j) € 4(i),
Y = 0, otherwise,

and

o= {1, if route r monitored, reR

0, otherwise.

Then our formulation is:

P: max ZP,.z,
TER

N
s.t. in < M,
i=1

E Yij <Lz;, i=1,...,N,
(4,9)€8(3)

Z (vij + yj) = zr, Vrewm,
(i,5)€r

z. € {0,1}, VreR,

yij € {0,1}, V(i,75) € 4,

z; € 2T, i=1,...,N.

The first and second set of constraints are obvious, limiting the total number of probes to be
located on the network and the maximum number of links that can be monitored at any node. The
third set of constraints is necessary for preventing double counting of the probabilities by setting
zr = 1 in an optimal solution if at least one link on route r is monitored by some probe and forcing
it to be zero if no link is monitored. The objective function is then the expected number of O-D
pairs that are monitored by a given probe location and assignment. Some observations on the model
follow.

6.2.3 Remarks
Input data for the model

Data for the above program requires the specification of the probabilities P, for each route 7 € R. In
any general network, the number of paths is usually exponential unless the network is pathologically
sparse. If we required therefore, the specification of a positive number for all paths, finding a solution
to P would be nearly hopeless. The way data is assumed to be constructed for the above model is
therefore as follows.

For the important O-D pairs in the network, guess the probability that they communicate with
each other (if it is certain that they do, set this probability to 1). Conditioned on the event that
an O-D pair communicates (has positive traffic), assign a probability distribution to a small set of
routes between the two nodes. Usually, this is not an impossible task since some routing information
is available for the network. In the absence of any information, assign equal probabilities to all routes
in a likely set of routes Ry for O-D pair k. We assume henceforth that the likely number of routes
between any k is reasonably small so that the resulting input is polynomial in instance size rather
than exponential.
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Prioritizing traffic instead of maximizing monitored O-D pairs

We comment on the generality of the proposed objective function. Note that it is not necessary in
general for the numbers P, to be probabilities. They could in fact be arbitrary non-negative weights
assigned to routes to reflect the importance of monitoring traffic on that route. Given that each
route corresponds to at most one O-D pair, this allows us to rank the importance of sites on the
network, usually a very important practical consideration since it allows the exclusion of certain
nodes from consideration altogether®. : :

Routing

The most significant assumption in the formulation of P is that the probability of traffic between
pairs of nodes taking a particular route through the network can be determined and remains static
over time. Determination of these probabilities is not too significant a task. In fact, one can select
the important node pairs and monitor them for some length of time using utilities such as ping
or trace-route to collect routing data. To justify that the probabilities remain static, we appeal to
reported results in a study of end-to-end Internet dynamics [Pax97) where it is found that Internet
traffic between pairs of nodes usually traverses a single route that dominates most of the time. Even
when traffic oscillates between a small set of routes during a period of interest, say a day or a week,
we can view our probabilities as the fraction of time traffic spends on one route and can interpret
the objective function as the fraction of traffic intercepted over a given time horizon.

Unlimited probe memory

One final assumption in the formulation is that probes have unlimited memory. In practice, probes
are small computers with limited memory and can therefore only capture packets for short durations®
depending on the volume of traffic flowing through the links being monitored. It is clear that our
model ignores this limitation which begs the question of a reasonable interpretation of our objective
function. We propose the interpretation that our objective locates the probes so they are in a
position to intercept the maximum amount of relevant flow whenever desired for any given duration.
In future formulations, one may wish to explicitly account for the capacity constraint.

6.2.4 Literature review

Literature related to data measurement and performance monitoring on the Internet is rapidly
growing, with several independent and concerted initiatives underway, the most notable of which
is the Cooperative Association for Internet Data Analysis (CAIDA). The class of problems needing
to be addressed is highly varied and broad, relating not only to measurement, but also to analysis
of data and visualization [Cla99] at several network layers, as articulated in Willinger [WP98], for
instance. However, we have found no reports yet on optimization models for locating measurement
devices.

Optimization literature similarly reports no models for the probe location problem on the In-
ternet. In a different context, specifically transportation, the problem of locating facilities on the
network to maximize intercepted flow without double counting was first formulated by Berman, Lar-
son and Fouska (BLF) [BLF92] where a facility located at a node could intercept all the flow passing
through the node. The problem was shown to be similar to another problem in location theory
called the Maximum Covering Location Problem [MZH83], which is NP-hard. A greedy heuristic
was proposed in the same paper in view of the problem complexity and a bound on the performance
of the heuristic was derived. In a later paper [BBL95], a sharper tight bound was provided on

80ne may not, for instance, want to monitor sites with low traffic volumes or remote sites that are not of value.
9Usually of the order of minutes.
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the performance of the same greedy algorithm and the model was generalized in several directions,
where facilities were allowed to intercept flow within a pre-specified radius from their location. So
far, however, an extension to the case where facilities can monitor only a given number of links is
not available. In fact, in the original formulation in [BLF92], links are irrelevant to the formulation
as long as the paths (routes) are specified as sequences of nodes.

At first glance, it seems that our formulation P should be at least as hard as the formulation in
BLF. Informally, this can be seen by noting that P has many more variables corresponding to link
assignments and that by setting L = N —1, we can make the second set of constraints redundant and
get the formulation of BLF. A more insightful comment is that given a probe located at a node, the
problem of which links it should monitor is exactly the same as the BLF formulation for a restricted
network topology. We show this problem to be NP-hard in section 6.5 by transformation from the
NODE COVER problem.

6.2.5 The solution approach

The NP-completeness of our problem motivates the use of a greedy heuristic for obtaining quick
approximate solutions. We propose a heuristic in section 6.3 which is similar to the one proposed
in BLF [BLF92] with appropriate modifications to include the constraint on the maximum number
of links that can be monitored. The analysis of the complexity and worst-case performance of our
heuristic is complicated by these modifications and is addressed in section 6.4. Specifically, our
greedy heuristic relies on solving a sub-problem of assigning a single probe to L links at each node
to intercept the maximum flow. This is itself an NP-hard problem for even one node. We therefore
outline two possible ways of solving this sub-problem depending on whether L is a relatively small
or large number and analyze both cases to bound their worst-case performance.

6.3 A Greedy Heuristic

The basic idea behind the heuristic is to assign the probes sequentially to subsets of links at nodes
with cardinality < L which intercept most of the un-intercepted flow (probabilities are interpreted
as flows) that remains in the network. Every time a subset is selected, the links in the set and the
set of flows intercepted by it is removed from the network. This continues until M subsets have
been selected or until no more flow remains in the network. This idea is formalized below.

6.3.1 Notation

Recall that §(i),i = 1,..., N, is the set of outgoing arcs at node i. Let E; = {F C () : |F| < L}
be the family of all subsets of < L links at node 7 and let E = U,N=1E,- be the set of all possible
assignments for the probes in the given network.

6.3.2 The algorithm

Initialization: Sett =1, R =R, E; = E;,i=1,...,N. t is the iteration index, R is set
of routes with positive flows remaining in the graph and E; is the family of subsets (of ’
size < L) of the remaining links at node i.

Step 1: For each node i = 1,..., N, compute

Vi = max E P
E; - -
rER:TNE; #0
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and set

S; = arg max Z P
rER:TNE;#0

breaking any ties in the choice of S; arbitrarily.

This step computes the value V; of a node as the maximal remaining flow that can
be intercepted at that node by monitoring any subset of links of size < L and stores this
optimal subset as S;.

Step 2: Let j = argmax;=,..., v V; and assign the tth probe to monitor the set of links S;.
In other words, assign the probe to monitor the links with maximal interception of flow
across all nodes.

Step 3 Set

R:=R\{reR:rnS; +#0},
E,; :=E-1;\{FﬂSj #Q:FEE‘,;}, i=1,...,N.

Remove all intercepted flows from the graph. Remove all subsets of links that have
.at least one link being monitored from each node. »

Step 4: If t = M or if R = 0, stop. Otherwise set ¢ := t + 1 and return to step 1.

6.3.3 Remarks

The greedy heuristic clearly produces a feasible solution, but the issues of its complexity and worst
case performance need further scrutiny.

An outstanding issue is the ability to compute the values V; and finding the sets S; at each
iteration. We note that this is itself a combinatorial problem. For instance, in a complete graph,
there are (N L 1) possible subsets of cardinality L at each node in the first iteration, and more if we
consider lower cardinality subsets. Consequently, obtaining V; and S; is not a trivial task. One may
be tempted to look for an optimal algorithm for solving the sub-problem at each node by noting
that the graph at each node has a very simple hub structure and that flows through that graph can
only occupy at most two links. Unfortunately, we show in section 6.5 that this observation is not
beneficial and the sub-problem itself is in fact NP-hard. '

This motivates the use of two different variants of the greedy heuristic which differ only in their
manner of solving the sub-problem in Step I. We address this in more detail in section 6.5. At
this point, it is useful for presentation purposes to ignore complexity issues and assume that we can
obtain the optimal solution to the sub-problem in each iteration. This helps us present the main
analysis of the greedy heuristic in section 6.4. We return to the sub-problem in section 6.5.

6.4 Analysis of the Greedy Heuristic: Bounds on Perfor-
mance |

We show in this section that our problem is an instance of maximizing a sub-modular function subject
to a cardinality constraint by appropriately picking a ground set from our graph and defining a sub-
modular set function. In this setting, our greedy algorithm is the same as a generic greedy algorithm
proposed for sub-modular function optimization by Nemhauser, Wolsey and Fisher [NW78] for which
they prove that the worst case performance is always within 37% of the optimal and that this bound
is tight —i.e. there are instances in which greedy performs at least as bad as 37% of the optimal. Two
points are worth noting, however: (i) this is the worst case bound and the greedy solution might
be much closer to the optimum, and (ii} the tightness of the bound for the general sub-modular
optimization problem does not imply its tightness for our problem.
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The analysis below proceeds along lines similar to the development in [BBL95]. We first provide
the background on sub-modular functions, the sub-modular function optimization problem and the
generic greedy algorithm for it solution. We then show that our proposed heuristic fits this framework
by reformulating our integer program as a sub-modular function optimization problem.

6.4.1 Sub-modular functions and Sub-modular function optimization

Given a finite set N, let f be a real valued function defined on subsets of N. f is non-decreasing if
f(S) < f(T)for SCTCN. fis sub-modularif f(S)+ f(T) > f(SUT)+ f(SNT) for S,T C N.
A more detailed introduction to sub-modular functions can be found in [NW88].

A sub-modular function optimization problem subject to a cardinality constraint is formulated
as:

f(5)

! max
SCN,|SlsM

where f(S) is sub-modular. The case when f(.S) is non-decreasing has been studied by Nemhauser
et. al. in [NWF78, NW78]. Obtaining an exact solution to the problem is known to be NP-hard.
Consequently, the following generic greedy algorithm is proposed for obtaining 'good’ solutions, and
~ the worst case performance of the greedy heuristic is bounded by the subsequent theorem. In the
description below, Rg is the set picked by the greedy algorithm and Zg is the value f(Rg) of this
set.

The Generic Greedy Algorithm
Input: f(S),M,N

Initialization: R®:=0,t:=1

Main Loop: Fort=1,...,M.

i i= argmax;e y\re—1 F(R*”HU {5})
R := Rt-1y {]t}
Output: Rg = RM
 Zg = f(RM)

The following theorem is proved by Nemhauser, Wolsey and Fisher [NWF78].

Theorem 6.4.1 (Nemhauser, Wolsey and Fisher). The value Zg returned by the greedy algo-
rithm when applied to the problem

P sgf\;.llaglcsnlf(s)’

for f(S) non-decreasing and sub-modular satisfies

— 2>1—-(1-— >1—-20.63
Z. = ( M) = e !

where Z, is the optimal value for the problem.

The theorem ensures that the greedy heuristic is optimal when M = 1 and is within 37% of the
optimal for any other value of M. In addition, the bound above is tight in that there are instances
where Zg = Z.[1 — (1 - 1/M)M].
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An observation on the generic greedy algorithm as related to our problem: note that it requires
the computation of a function f(S) for any given subset of N and the ability to find the maximum
over the remaining elements in N in the main loop. Therefore if either of the steps has exponential
running time, the algorithm is itself exponential. We avoid the first issue by requiring the input to
be polynomial thereby ensuring that f(S) can be evaluated in polynomial time. The second issue is
the subject of section 6.5.

6.4.2 Reformulating the integer program

We will show in this section how to reformulate our original problem P as a sub- modular function
optimization problem to which the bound described above can be applied.

Recall from section 6.3.1 that F; are the families of sets with < L links at each node i and

E = UN | E; is the set of all possible assignments for the probes in the network. E is clearly finite.

With a slight abuse of notation, let N = {1 ... ,|E|} be our ground set for the new formulation and

index the sets in E by n € N arbitrarily, w1th E,, being the nth set in E. For any set S C N let
(S) UnGSE

Now reformulate P as:

£(8),

SCN |S|<M

with

f(S)= Z P,.

reR:TNE(S)#0

In other words, for any set S of links monitored by probes, f(S) is the sum of flows intercepted
by these links without double counting flows that traverse more than one link. We show below that
f(S) is sub-modular. The proof is similar to the proof in [BBL95] applied to our formulation.

Proposition 6.4.2. If P, > 0 for all v € R, then f(S) is non-decreasing and sub-modular.

Proof. If S C T, then E(S) C E(T), implying that f(S) < f(T) when P. > 0, so f(S) is
non-decreasing.

For sub-modularity, it is sufficient to show that for all S C T and k ¢ T, f(T U {k}) — f(T) <
f(S U {k}) — f(S). To see this, for any S C T, let Ry = {r € R: r N E(T) = 0}. R is the set
of routes not covered by assigning probes to the set T. Now since S C T implies E(S) C E(T), we
have R C Rs. Then,

FTU{k}) - F(T) = > P - >, ~m
reR:rNE(TU{k})#0 reR:rNE(T)#0
= > P, = > PR
réR:rNE(T)=0,rNE(k)#0 réRr:rNE(k)#0
< Py

r€Rs:TNE(k)#0

= f(SU{k}) - f(5),
showing that f(5) is sub-modular. | a
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6.5 Complexity

We address here in detail the complexity of the proposed beuristic of section 6.3.2 and the solution of
the sub-problem in Step 2 of the heuristic. We consider cases when the number of links that can be
monitored by each probe is small and large respectively, and propose selecting links greedily at each
node to obtain a solution to the sub-problem in the latter case. The need for such a heuristic solution
arises due to the NP-hardness of the sub-problem itself, which we establish using a transformation
from the NODE COVER problem. We also show the sub-optimality of this heuristic by a simple
example. For this modified scheme, the bound of section 6.4 on worst-case performance of the greedy
algorithm no longer holds.

6.5.1 Complexity of the greedy a]gérithm

Assume for now that the sub-problem is NP-hard. We show this later. We ask, when is the optimal
solution to the sub-problem difficult to obtain ? Since (N _1) is a loose upper-bound?? on the number
of possible assignments at each node, when the number of links relative to the number of nodes in
the network is small, the computational burden is not too great. In fact, the number of possible
subsets of links at each node is bounded by (N/L)L and we can simply enumerate the possibilities
for each node. This bounds the complexity of the greedy heuristic by O((N/L)!NM), where L is a
number as low as perhaps 3 — 5. Note that this is a very loose upper-bound, since we’re assuming
both that the graph is complete at each iteration, which is simply not true, and that there are at
least L links at each node that have positive low. The performance of this heuristic is then bounded

by Theorem 6.4.1.

When L (and N) gets to be significantly large relative to N, (N/L)¥ becomes prohibitively large,
and enumeration no longer remains feasible for solving the sub-problem. In this case, we propose
greedily selecting L (or less if needed) links at each node and using the sets obtained in this manner
as the S;’s. This bounds the complexity of the greedy heuristic by O(LNM). Note however, that
now the Nemhauser-Wolsey performance bound 1 — (1 — 1/M)M no longer applies since the analysis
of the heuristic in section 6.4 relies crucially on being able to find the optimal S;’s at each iteration.

6.5.2 Complexity of the sub-problem - proof of NP-hardness

We show that our sub-problem is NP-hard by demonstrating that every instance of a NODE COVER
problem can be solved in polynomial time if we have a polynomial time algorithm for our sub-
problem. :

NODE COVER is one of the fundamental NP-complete problems and can be found in any text
on computational complexity (GJ79]. The problem statement is: given graph G = (V, A) and a
positive integer K < |V|, is there a subset § C V with |S| < K such that for each edge {i,j} € 4,
at least one of 4, 7, belongs to S?

Given any instance of NODE COVER, create a hub-and-spoke graph G with the same number
of links as the number of nodes in NODE COVER, numbering the links from 1,... ,|V| arbitrarily.
For each edge {4,j} in G, assign a unit flow to the links corresponding to nodes i and j in G. It
is clear that this construction is polynomial. Note that the total flow in G is |A|. Now solve the
problem of locating K facilities to maximize intercepted flow for G. Report YES to node cover if
the optimal solution is |A|, NO otherwise. It is clear that G is an instance of our sub-problem.
Therefore a polynomial time algorithm for this problem cannot exist unless P = N P.

10We consider only maximum cardinality subsets of size < L at each node since it is clear that omitting a link
with positive flow is never optimal and including a link with zero flow is never worse, allowing us to eliminate from
enumeration all subsets of lower cardinality.
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Note that this also shows that the general problem in BLF [BLF92] is NP-hard since the sub-
problem is really just their general problem on a restricted network.

6.5.3 Counter-example to the optimality of a greedy solution to the sub-
problem

To see that selecting the links greedily at node 7 does not yield the optimal S;’s in the greedy heuristic
of section 6.3.2, consider the following example.!! We assume that the greedy heuristic picks the
link with the maximum flow, removes the flows from all other links, picks the next maximal flow
link and so on until no more flow remains or L links have been chosen. Suppose a node has three
links labeled 1,2, 3 incident in it as shown in figure 6-1 with the following flows:

Link 1 :f1 = 10,f2 =2,
Link 2 :f; = 10, f3 = 3,
Link 3 :f3 =3, fs = 1.

Then our greedy heuristic would pick links 2 and 1 (in that order) with a resulting value of 15
whereas the optimal choice is links 1,3 with a value of 16.

Link 1 Link 2
10 — —p 10

Link 3

M

1 3

Figure 6-1: A counter-example to the optimality of greedily selecting links at each node.

6.6 Summary

This chapter highlighted the potential for modeling and analysis in data collection and forecasting
for Internet-type networks, by focusing on the particular problem of locating probes on IP networks.
The decision problem of finding the optimal location for a given number of probes and determining
the best links to monitor at each location was formulated as an integer program. We proposed a
greedy heuristic for its solution and bounded its worst-case performance by transforming it to a sub-
modular function optimization problem. We proved that a sub-problem in one step of the greedy
heuristic was itself NP-hard, also showing the NP-hardness of our integer program. We therefore
distinguished separate cases where each probe could monitor a small vs. a large number of links,
and proposed a variant of the greedy heuristic for the latter case, where one selects the links greedily
at each node. The results obtained extended earlier results on discretionary facility location.

11 This particular example is courtesy of Les Servi at GTE Laboratories, Waltham, MA. _
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6.6.1 Contributions

Our contributions in this chapter are:

e To our knowledge, this is the first attempt at modeling the probe location problem for the
Internet. This is partly because large scale network monitoring is an emerging activity for the
Internet and partly because the operational problems usually outweigh optimization problems,
as mentioned in section 6.1.1.

e In the modeling context, a similar model for locating facilities to maximize intercepted flow
has been formulated and studied before by Berman, Larson and Fouska [BLF92] and a bound
on a similar greedy heuristic has been obtained in [BBL95], when a facility located at a node
can intercept all flow through that node. The bound in [BBL95] is tight and is within 37% of
the optimal.

‘We extend the model, the greedy heuristic and its analysis to the case where the number of
links monitored by each facility is fixed, to obtain the following main results:

1. When the number of links that can be monitored by each probe is small, the greedy
heuristic runs in polynomial time and its worst case performance is still bounded to
within 37% of the optimal. Slightly surprising since our problem is much more complex
requiring the determination of probe locations and assignments to links simultaneously.

2. When the number of links is relatively large, we propose an alternate scheme which selects
links greedily at each node, but for which the worst-case bound does not apply.

3. In addition, as part of the discussion motivating the use of two variants of the greedy
heuristic, we provide a short proof of NP-hardness of our problem for a very simple class
of networks that gives some insight into the hardness of our general problem (cf. section
6.5.2):

115



Chapter 7

Market Segmentation:
Guaranteeing WWW /FTP Server
Performance

What sort of modeling might be relevant and useful for market segmentation activities in telecom
YM? This chapter presents an example where models can help use network information to differen-
tiate a service and increase revenues. We outline some formulations and indicate directions that are
likely to yield useful results.

The service considered is web-hosting, offered by almost all Internet Service Provider (ISPs).
The question of interest is if this service can be differentiated to increase revenues using service-
level guarantees. The differentiation attempted here might be considered qualitative, not unlike the
practices employed by airlines, such as 14-day advance bookings, Saturday might stay-overs, etc.
(c.f. section 2.2.5 for the context.) Computing service-level guarantees for this purpose, however,
is a non-trivial task (c.f. section 7.1.2). We borrow the framework of stochastic facility location
theory [MF90] to model the problems, which allows us to compute certain service-levels as a function
of network traffic patterns and the server location. Some results are immediately obtainable from
this framework, such as the optimal location of an FTP server to minimize mean session delays.
The models we formulate and analyze in this chapter simplify many of the complexities in real web-
server operations, providing the basic building blocks for further investigations of these systems, the
behavior of which is largely not well-understood.

The chapter outline is as follows. Section 7.1 discusses some possible service-level guarantees
and several practical aspects of the server location problem, including the difficulty in its modeling.
Section 7.2 presents the models of the network, FTP and WWW servers. We discuss optimizing the
location of FTP servers in section 7.3 and that of WWW servers in section 7.4. Section 7.6 lists the
summary and contributions from this chapter.

7.1 The Service Offering

Briefly, a web-hosting service is when a corporation contracts with an ISP to manage its web-
servers and all associated details. These services are already differentiated by the obvious physical
parameters, such as server type (Windows NT or UNIX), server speed, connection speed to the
Internet, monthly traffic volume, backup frequencies, technical support!, etc. etc. We consider

1A cursory search of the Internet using “Web-hosting services” immediately reveals the plethora of options accom-~
panying these services.
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another option, namely some service-level guarantee, for differentiating the service. These guarantees
could result not only in added-revenue from the differentiation but also an extra competitive edge for
an ISP. Further, the cost of computing this guarantee is essentially zero from the network provider’s
point-of-view as long as adequate network traffic data is available. However, making sure that the
offered guarantees are reliably determined as a function of traffic levels is a non-trivial task, and
different models may yield drastically different answers. We mention several difficulties in this regard
in sections 7.1.1 and 7.1.2. ’

In this setting, consider the following possibilities for a WWW or an FTP server service guar-
antees: (i) maximum transfer time to a random user shall be below T with probability P or that
(iii) the mean transfer time across all users shall be bounded by M. Since questions of computing
useful service-level guarantees can quickly become very complex (c.f. section 7.1.1), in this chapter
we focus on the simplest question. Specifically, where should a single FTP or WWW server be
placed on the network to maximize a given service-level objective? The answer naturally depends
on the objective being optimized. We formulate models where the objective is minimization of the
mean delay experienced by a random request, or of the expected file transfer time across all ran-
dom requests. Computing such service guarantees require knowledge of the traffic patterns on the
network, the expected demand patterns on the server and some characteristics of the content, such
as the typical sizes of files on the server. We borrow a framework from stochastic facility location
theory to incorporate these factors in location models in sections 7.2 through 7.4. The remainder of
this section discusses related contexts in which the server location problems arise, the difficulties in
modeling such problems and the usefulness of stochastic facility location theory in answering them.

7.1.1 Practical Issues

To understand possible impacts of service differentiation, consider the web-hosting market. Forrester
Research estimates from 1998 projected that revenues from hosting complex web-sites will reach $8
billion by 2002 while revenues for hosting simple web-sites may reach $1 billion in 2002 [Cau99].
Almost all ISPs offer web-hosting services, including every major player such as IBMT™, GTE™,
MCI™™, Sprint™ and AT&T™ etc. Competition is therefore severe. It is expected to become
more intense as companies move towards hosting business applications on the Internet, an already
emerging trend as companies like Microsoft™ position themselves strategically — for instance, Mi-
crosoft’s $200 million investment in Qwest Communications International in December 1998. ISPs
find that customers are increasingly looking to replicate content and are asking for service-level
agreements to ensure their sites are both available and responsive, and for pushing content closer
to the end users [Cau99)]. To further understand the relevance of service guarantees for businesses,
see [Bul97, Hal99] for instance. Articles routinely cite that the most important factors for corpo-
rations in choosing carriers are performance and customer care [For98] and that many businesses
would gladly pay more for a better level of service [Kau99)].

In addition to service-level agreements, optimal server-location problems arises in other contexts.
For instance, when a provider such as IBMZM decides to host complex web-sites for events such
as the Olympics™, the U.S. Open™ or the GrammyT™ awards, an obvious first question is the
location of these sites. Similarly, when locating large sites such as Yahoo™, Travelocity™ etc., with
millions of subscribers worldwide, there is major incentive to consider the location decision carefully,
since even a small fraction of subscribers accessing the site simultaneously can substantially affect
network traffic. Aside from an ISP context, server location and caching remains an important issue
in general for the Internet. The importance of this question for the Internet is widely recognized.
See for instance, the WWW consortium’s “Replication and Caching Position Statement” 2.

In complete generality, a server location decision and the computation of a service-level guarantee
is likely to be quite complicated. Commercial web-sites usually involve complex hardware in the
form of clustering environments, co-operating servers and caches, all of which we abstract away

“2pitp:/ /www.w3. org/Propagation/Activity. html.
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as a single server. Moreover, hosting a web-site is increasingly likely to involve sets of network
caches strategically located to push content to the end-users. The location of these caches and the
replenishment strategies for refreshing content at these sites makes obtaining service-level guarantees
hard. Even appropriately simplified models, which abstract away much of the detail can be quite
complicated to analyze, as mentioned below.

7.1.2 Difficulties in modeling server location

A preliminary literature search has revealed little on analytical modeling of server location for the
Internet. On related issues such as dynamic selection of already existing servers, the primary mode
of investigation seems to be trace-driven simulations [CC96, CC95, GS95]. This is to be expected
since we are only now beginning to understand traffic models for Internet services such as FTP,
Telnet etc. [PF94].

An open question is whether location is even a first-order factor in web-server performance, given
the “physics” of the Internet and the nature of web-traffic. Large-scale and unpredictable variation,
often termed as “flash crowding”, is inherent in Internet traffic. This makes it unclear if useful
service-level guarantees can even be offered since there might always be enough likelihood of their
violation. Indeed, several other factors could easily dominate the performance of web-servers.

The chief modeling difficulty in answering the above question is that the natural formulations,
which are queuing-theoretic, require significant departure from the assumptions of classical queuing
theory. This results in a lack of analytical machinery available for answering relevant questions.
For instance, new understanding of the network indicates that arrival processes for many Internet
services are usually not Poisson [PF94], that service times may be heavy-tailed [CB96, BC98, PKC96]
and that the network traffic is self-similar and long-range dependent [LTWW94]. Consequently, few
results can be directly imported from known queuing models. One either finds attempts to use
classical queuing models, with the results inapplicable, or attempts to incorporate more realistic
assumptions, with few analytical results. This has not so far led to practically useful models for
Internet operations, to our knowledge.

Stochastic facility location theory might be a useful framework for studying location problems
in the Internet. Facility location has been usefully studied in other domains, starting from the
seminal work of Hakimi [Hak64b] for deterministic facility location to the location of mobile units
in stochastic environments [BCL190]. A good collection of such models and results is [MF90]. We
seek to apply some of this vast modeling literature to Internet server location whenever appropriate.
We will, in particular, find this framework very useful in formulating our models in section 7.2. Our
chief difficulty will then be in analyzing our models when the classical assumptions do not hold.

7.2 Basic Models

This section presents the basic models of the network, an FTP server and a WWW server. Modeling
assumptions and their motivation is argued in detail.

7.2.1 Network model

Let G = (V, A), an undirected graph, represent our communication network. Index the nodes by
i=1,...,N, and denote the links {i,j} € A. We specify in this section a common notation for a
demand process and end-to-end delay metric for this graph.

Requests for service arise at the nodes of the graph according to some arrival process with mean
rate ), with the relative frequency of requests from node i being w; > 0, Zf;l w; = 1. The long
term mean rate of requests arising from node % is then Aw;. We have so far left unspecified what it
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means for a request to arise from a node. This is intentional since it depends on the type of server
(FTP or WWW) being modeled and will be addressed later.

Network delay metric

Call D(i,j) the round-trip time (RTT) for a single packet to travel from node 4 to j and back to i.
D(i,j)’s are assumed to be random variables and will constitute our basic measure of network delay.

The use of RT'Ts as the network delay metric is motivated by the behavior of the TCP transmis- -
sion protocol used by FTP and web-servers. TCP re-transmission depends on the sender receiving
acknowledgments from the receiver, making RTTs the main determinant of file-transfer times. It is
reasonable, therefore, to consider file-transfer times to be roughly proportional to the D(i, j)’s. On
a practical note, measuring RT'T’s is relatively easy using a utility such as ping, for instance.

It is also useful to understand the nature of variations in the RT'Ts. The randomness of D(i, j)’s
is attributable to at least four distinct factors:

1. The routine random fluctuations in network packet traffic that is caused by the burstiness and
multiplexing of a large number of sources. We understand from various studies on Internet
traffic that this type of randomness is very bursty, implying wide fluctuations in round-trip
times (RTTs) for packets spaced even minutes apart, and that this burstiness persists over
several time scales. The seminal work in this area is that of Leland et. al. [LTWW94].

2. The effect of network routing and other operational policies. Such effects contribute to the
randomness of the RTTs but occur at much longer time-scales than the changes in traffic
volume [Pax97].

3. The changes in the average value of the volume of traffic during hourly, weekly and possibly
seasonal cycles (end of year reports for instance). Such changes have been observed in various
_ studies to be clear and predictable over daily and weekly periods [TMW97].

4. Accidents such as router or link outages, or other events causing non-routine randomness.

Cambridge

Figure 7-1: The Internet.
With server location decisions being of the tactical type, i.e. ones that make sense over reasonably

long periods of time — of the order of hours or days, it is variations of the third kind that most interest
us.
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Figure 7-2: The Model.

On a further note, in order to model the effects of predictable volume changes, one can assume
that the network has a state which is characterized by the distribution of RT'Ts between all pairs of
nodes. The network might then be assumed to transit between states at fixed intervals as a Markov
chain, each state differing from another by the difference in distribution of the RT'T between at least
one pair of nodes. For the moment however, to not confuse issues, we restrict our models to the
case where the network remains in one state. Alternatively stated, this means that the RT'Ts have
given distributions that do not change. This can be interpreted as modeling some fixed interval of
time during which traffic volume does not change appreciably.

7.2.2 FTP server model

The model for an FTP server is as follows: requests for FTP sessions (connections) arrive at the
server according to a Poisson process, an assumption which has been tested and found reasonable for
session arrivals [PF94]. From section 7.2.1, the rate of the process is A and the arrival rate from node
i is Aw,;. The FTP server can allow a maximum of C concurrent sessions. An arriving request, if it
finds C sessions in progress, is blocked and is considered lost to the system, otherwise it is accepted
and occupies a single port? for the duration of the session, whether or not it is transmitting data.

Several characteristics of FTP sessions over the Internet have been investigated [PF94]. Typical
sessions have been found to have on-off characteristics where data transmission only takes place
during on-periods. The on-periods themselves have heavy-tailed durations. Individual transmissions
during on-periods are extremely bursty, corresponding to transfers of individual or groups of files.

With such mechanics, it is reasonable to expect the session duration to be some non-decreasing
function of the network delay (and the number of users in the system), because of the file transfers.
A first approximation could be linear, the sum of a random uncontrollable default length of a session,
and the network induced delays in file transfers. Formally, conditional on a request from node i being
accepted when the server is located at node z, the duration of its session is the random variable
S(z|i) described as S(z|i) = F; + B8D(z, 1), where F; is the default session length of a user from node
i, D(z, 1) is the RTT from node z to ¢ and 8 > 0 is some chosen scalar. It immediately follows that
if the random variables involved have finite means, the mean duration of a session from node ¢ is

, S(z|i) = F; + BD(z,1).

3Usually the F'TP session control port.
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7.2.3 WWW server model

We model WWW servers as multi-server queues with FCFS discipline, Batch-Poisson arrival pro-
cesses and heavy-tailed distributions for service times. Brief explanation of these modeling assump-
tions follows below. The number of ’queue-servers’ in the model is the maximum number of TCP
connections the WWW server can have open simultaneously. Stochasticity in service times arises
from network-induced delays in file-transfers. An infinite buffer is assumed for queuing requests —
a reasonable assumption in practice considering the queuing capacity compared to the total number
of available TCP connections.

Individual arrivals

Arrivals in the model are identified with GET* requests made from the WWW server. These
are requests for individual files (html pages, images etc.) as seen by the WWW server. A GET
request is not the same as a client request for a URL®. In short, a single request for a url usually
initiates multiple GET requests for images and other files with embedded links from the requested
url. GET requests may be human or machine initiated and may not be identified easily with human
actions. The size of content requested by each GET is assumed to be random variable with a known
distribution. Each GET request is assumed to be handled separately by the WWW server and is
allocated a separate TCP connection® for the duration of the transmission.

The motivation for considering GET requests as the unit of arrival instead of using a behavioral
model for human generated requests is that server logs permit easy access to data associated with
each GET request (time of arrival, amount of content, referring page, client etc.). One the other
hand, inferring the behavior pattern of the process originating these GET’s is more troublesome.
Several studies have attempted to relate the behavior of a population of users to the resulting traffic
from WWW servers [BC98], with the resulting models often involved and not suited to optimization.

The arrival and service processes

‘We discuss below why the batch-Poisson process is a reasonable model for arrivals of GET requests
at a WWW server, and why the service times should be modeled as heavy tailed random variables.

For realistic modeling, the arrival and service processes must be chosen to agree with empirical
observations. It has been observed that (i) file-sizes associated with GET requests exhibit extremely
high variations and (ii) the resulting output traffic from WWW servers is self-similar in nature
[CB96)]. Incorporating (i) is obvious, i.e. select heavy-tailed service times. It turns out that in fact, (i)
gives rise to (ii) automatically even though there are several ways of producing self-similar processes.
For instance, studies such as [PKC96] report that selecting heavy-tailed file-size distributions may
be sufficient to produce the kind of self-similarity desired and that this self-similarity is relatively
invariant to the distribution of the inter-arrival times [PKC96]. It is further reported that the
retransmission rate and packet losses are not unduly affected by increasing self-similarity [PKXC96].
This has positive implications for using RT'Ts as the measure of network delay, independent of the
details of the server.

The insensitivity of the server-output process to the arrival process motivates approximating GET
requests by a simple stochastic process. For instance, a non-stationary Poisson process or perhaps
a Poisson process with bulk arrivals may suffice, while retaining the property of self-similar output
using heavy tailed file size distributions. This is actually not far from the case. For instance, the
figures below illustrate data from the logs of an actual WWW server. Figure 7-3 shows a sample path

4 Terminology used by most WWW servers.

5 Universal Resource Locator.

SNote that this models accurately the HTTP 0.9/1.0 protocol where separate TCP connections are used for each
file, compared to HTTP 1.1, which allows the use of a single TCP connection for multiple files.

121



Cumulative GET requests at a server N(t)/t - the average rate sample path

N(t) - # of GET arrivals
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Figure 7-3: An empirical sample-path of cumula- Figure 7-4: An empirical sample-path of the
tive 'GET" arrivals — from an actual WWW server. time-average arrival rate of GET requests.

of cumulative GET requests arriving within a time window of approximately four hours. Figure 7-4
shows the time-average arrival rate from the same data set. Qualitatively, we can see that in figure
7-3, the slope of the arrivals — or the arrival rate, is almost constant between the very steep climbs.
This confirms the speculation that arrivals may be well-approximated by a batch-Poisson process.
Further reinforcement is provided by figure 7-4 in which the time-average arrival rate almost seems
to be converging to a value as the time horizon gets longer. This, as is well-known, is a 'renewal
process’ property. Certainly, when the batch sizes are finite, one expects the time-average arrival
rate of a batch-arrival Poisson process to converge to a value.

7.3 Optimizing FTP Server/s Location

In this section, we formulate the optimal location problem for FTP servers to minimize mean session
length. For single servers, results are immediately available from stochastic facility location theory.
For multiple FTP servers, we formulate the problem, informally discuss its complexity and outline
some promising directions for its analysis. The network delay metric used is the RT'T between pairs
of locations, as discussed in section 7.2.1.

7.3.1 Minimizing mean delay and a penalty cost

When the objective is minimizing the sum of expected session length and a penalty for rejection,
we can directly apply a result from Berman et. al. [BCL*90]. On a modeling note, we assume here
that the ” penalty for rejection” is expressed in units equivalent to the mean session length, i.e. it is
in terms of units of time, converted if necessary, from other units such as dollars.

Consider a single FTP server located at node z, then the cost z(z) per unit time of this location
when the system is in steady state is: '

2(z) = [1 — B(z)|5(z) + B(z)Q,

where B(z) is the stationary probability of an arriving request being blocked, S(z) is the mean
session length of an arriving request, given by S5(z) = N, ‘!.U—,:_F:i + _52511 w; D(z,4) and Q >
Zf;l w;F; = F is the cost per rejected customer. Note that Q > F is necessary to make the
problem meaningful, for if it would cost less to reject a request than serve one, one would reject all
requests.

122



Rewriting z(z) as F + (1 — B(z)]D(z) + (@ — F)B(z) where D(z) = 8~ , w;D(z, ), the single
FTP server location problem is seen to be exactly the same as a problem studied in stochastic
facility location, called the p-server single facility loss median (p-SFLM) problem in Berman et al.
[BCL790]. Some results are then immediate. In particular, the optimal location for the p-SFLM
is the 1-median, defined as the location that minimizes the mean system delay S(x). Part of the
development in [BCL190] is presented below with appropriate notational changes.

First, we drop F' from z(z) since it does not depend on z and write z(z) as z(z) = [1—B(z)]D(z)+
QB(z), where @ = Q — F > 0. Then, an expression for B(z) is obtained by noting that the FTP
server model is exactly an Erlang loss system [GHS85, Kle75], with

B@) = 2@/
(=) Y7 o o(z)k/k!

where p(z) = A5(z) = AF + AN | w; D(z, ).

Now the single FTP server optimization problem is stated as:

P min z(z).
The following theorem is proven in Berman et al. [BCL190]. We adapt the proof in section 7.5
for our problem.

Theorem 7.3.1. The optimal location for Py coincides with the 1-median location when Q > 0.

The above result may seem a bit peculiar because there are no restrictions on the penalty cost Q
other than non-negativity. Some intuition into this behavior might be gained by reasoning about the
case when C = 1. With a single channel, consider the expected system cost by viewing the system
to be incurring a unit cost only when busy plus a possible penalty cost. Then the expected cost at
a random instant is 0 conditioned on the system not being busy and is 1 + AQ when it is, which
makes the expected system cost B(z)[1 + AQ| which is monotonically increasing in D(z). Thus the
expected system cost is minimized by minimizing D(z).

For a multi-channel system, i.e. C > 1, the above reasoning extends as follows. The expected
system cost per unit time when the system is not idle, is given by the following, since a unit cost
is incurred by each active connection and a penalty cost is incurred only when all circuits are busy.
Then

— B(z)\ CkP ih Po)= LPER o6
z(z) = (z)Q‘l'kZ::o % (Z), w1 k(x)_ffjop(—z)j/j—!’ =0,...,0.

Py (z) is the stationary probability of k sessions being in progress at a random time when the
server is located at z. Now the probabilities Py(z) are all monotonically increasing in p(z), or
alternately D(z), therefore minimizing D(z) minimizes system cost.

7.3.2 Optimizing multiple FTP server locations and assignment

We briefly formulate and comment on the optimal location of indistinguishable multiple FTP servers
on the network and simultaneous assignment of nodes to these servers. More precisely, in the simplest
model, all requests from a node are served by its assigned server. If the server is busy, the request is
assumed lost to the system, i.e. it does not spill to an available server. Server assignment is static
and does not change over time.

Let NV be the number of nodes in the network. Suppose K < N servers are to be located on it,
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since the case K = N is trivial. Let z; € N be the location of the jth server, j = 1,... , K, and
define

~_ )1, if node 7 assigned to server j,
Yig 0, otherwise.

Define the vector notation x = (z1,...,2k)7 and Y = [y;;] € RV*X. As before, let D(x;, 1)
be the end-to-end delay between the location of the jth server and node i. Now call B;(x,Y) the
stationary probability for an arriving call to be blocked at server j under the location and assignment
policy (x,Y). Then we define the cost z(x,Y) of a policy as:

K N _ _
z(x, Y) = Z Wilig <[1 - Bj (X,Y)](QEL + IBD(‘TJ', 7')) + Bj(xv Y)Q) .

j=1i=

Our problem is now stated as follows, where e is a vector of 1’s of appropriate dimension:

P,: min z(x,Y),
x,Y
st. Yle=e.

We note comments on the formulation below, but do not pursue an in-depth investigation.

1. Note that in case of light traffic, ie. A — 0, one expects B;(x,Y) to go to 0 for all j
and all location policies (x,Y) and the solution for P, must approach the deterministic K-
median solution. Therefore P, must be at least as complex as the deterministic K-median
problem [Hak64a], which is among the hardest NP-hard problems.

2. Similarly, in heavy traffic, if B;(x,Y) approaches 1 for all locations, the problem reduces to
an assignment problem.

3. In all other traffic ranges, the complexity of the problem suggests searching for heuristics or
analyzing appropriately simplified instances to gain insight into the structure of the solutions.
Such approaches have already been tried in stochastic facility location theory and might prove
useful here (see, for instance [CCI72]).

7.4 Optimizing a Single WWW Server Location

In this section, we discuss the complexity of the optimal location problem for a single WWW
server, but do not pursue in-depth analysis. The goal is to outline some promising formulations and
interesting directions. RT'Ts are used a proxy measure for the file transfer times throughout this
section.

7.4.1 Difficulties in optimizing web-server location

With the models for the network and the WWW server discussed in section 7.2.3, the optimal
location problem for a WWW server results in an M* /G/k queuing model, with the service time
distribution dependent on the location of the server. '

Obtaining and evaluating performance measures for the M%X /G/k model is complicated. For
instance, even first-moment information for the time taken to serve a request is not available in
closed form. To see this, consider the simpler case of Poisson arrivals and a general service time, the
M/G/k queue. This problem does not have a closed form solution.
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Adding to the complication is the fact that we require the service times to be heavy tailed. For
instance, we know that for the M/G/1 queue, the assumption of heavy tailed service time means
the mean of the time spent in the system does not exist. This follows from the Pollaczek-Khintchine
(P-K) formula for the mean system time which has the service time variance term in the numerator.
Specifically, if S is the service time, and W the mean time spent in the system, then the P-K formula
is (c.f. [GH85]): W = E(S) + (p% + A?var(S))/(2A(1 — p)), where p = AE(S)..

Other alternatives such as bounding the mean service time are also seldom available. Most
bounds available from from literature (cf. Harris [GH85] on bounds for mean sojourn time for
GI/G/k queues, among others) are usually in terms of the first and second moments of the service
time, rendering them inapplicable when the second moment of the service-time does not exist, such
as for heavy-tailed distributions.

Finally, when one requires more than first-moment information, as in determining the probability
of transfer time being below a threshold, things get even more complicated than before. This is
expected to be the practical case since, because of the high variation in the service times, the mean
transfer time may just not be useful.

In the absence of an exact closed form or a tractable algorithmic expression for the mean sojourn
time in a general multi-server queue, several approximate analyses can be attempted. We consider
an infinite capacity (M* /G/oo) approximation below.

7.4.2 The infinite-capacity approximation - M*/G/co system

In this section, we briefly comment on the formulations that might result when using an infinite
capacity approximation for a WWW server. The plausibility of an infinite 'queue-servers’ approx-
imation can be argued from the usually large number of connections that can be simultaneously
opened from a WWW server’, but the bursty nature of the arrival process and the presence of
heavy-tails (implying very large size file transfers) necessitates the need to test this assumption
more carefully. '

Call G;(t) the distribution of a randomly requested file’s transfer time from node z to i. We
assume Gg;(t) is easily available from the distribution of the RTTs between pairs of locations.
Following are some comments on possible formulations.

1. If the objective is to maximize the probability of the file transfer time being less than some
constant a > 0, the problem reduces to a 1-median problem with the distance metric between
pairs of locations Gzi(c). To see this, note that the CDF of the system-wide service time

when the server is located at node z is Gz (t) = Ef;l w;G;(t). Therefore the optimal location

z* = arg max Zf;l w;Ggi(a).

One may be tempted to assign a penalty cost @ to the event that the service time of a request
exceeds . This again results in a 1-median problem if the cost is a weighted sum such as
Gz(a) +Q(1 — Gz(a)) = (1 — Q)Gz(a) + Q. Clearly, whenever Q > 1, the optimal location is
one that maximizes G(¢), i.e. the 1-median location.

2. An capacitated formulation might be investigated if we are willing to make the following
assumptions: (i) batch sizes are i.i.d independently of the location 4, (ii) an arriving batch,
if not fully accepted, is considered lost, with an associated penalty, (iii) batch sizes are finite
random variables and (iv) the service time of all requests in a batch are exactly the same.

Now supposing the capacity of the system is C and the largest possible batch size is K, one can
view this system as one with multi-class arrivals. Here the arrival rate for class k =1..., K,
is Ag. An arrival of class k requires k units of capacity to be admitted. When admitted, the
service time of the request is distributed with the distribution function G.(t). This system

7The larger servers can have as many as 4000-5000 separate TCP connections open at the same time.
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is now a stochastic knapsack and the steady-state distribution of the state of the knapsack

is product-form and easily available [Ros95].

One may now be able to write appropriate

formulations for an objective function and determine the optimal location. We do not pursue

this further.

7.5 Proof of Theorem 1

We reproduce below, with notational changes, the proof of Theorem 1 as provided in Berman et al.

[BCL*90]. Recall that z(z) =

[l - B(z))D(z) + QB(z). We state the theorem again for convenience.

Theorem. The optimal location for P, coincides with the 1-median location when @ > 0.

Proof:

Since the 1-median location minimizes D(z), we need to show only that

;—g((z—x))— >0 fo; all zeV.
We begin by noting the following relationships:
t‘iill_;((fc)) =)A3 from p(z)= IaF + A\3D(z),
dB(z) dB(z) dp(x) _ ﬁdB(ib')
dD(z) ~ dp(z) dD(z) dp(z)’
dB(z) _ p(@)*] 7 p(x)° 71 [~ p(z)*(C — k)
dp(a) LZ:o K ] C -1 [Z KO ] 20

Then from z(z) = [1 — B(z)]D(z) + QB(z), we have:

dz(z) _ Bl dB(z)
5 =1~ B(@)) + 361Q - D) T
~ 1~ B@)] - D@ T + MR
> 1 - Bla)] - MD(@)
> 1 B@) - ple)

The first inequality is true since QdB(z)/dp(z) > 0 and the second follows from p(x)

= AaF +

A3D(z) > A\BD(z). Algebraic arguments are then used to show that [1 — B(z)] — p(x)dB(z)/dp(x)
is non-negative. This step is slightly more involved and a proof can be found in Chiu and Larson

[CL85).

7.6 Summary

This chapter highlighted the role modeling and analysis can play in market segmentation activities
related to Yield Management. Specifically, we considered segmenting the web-hosting services of a
service provider through service-level guarantees. To accomplish this, however, one has to compute

the guarantees with sufficient reliability based on network traffic patterns.
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need for modeling and analysis. Our goal in this chapter was to formulate some interesting and
promising models.

To do this, we proposed models for an FTP server, a WWW server and the network, and discussed
in detail their underlying assumptions. We then used the framework of stochastic facility location
theory to formulate location models for an FTP and a WWW server. We highlighted the nature
of results obtainable from such models by describing the optimal location of a single FTP server.
Finally, we commented on the multiple FTP servers location problem and discussed in detail the
complexity of the single WWW server location problem.

7.6.1 Contributions

This chapter was intended to structure questions rather than attempt answers and that is its contri-
bution. The idea of using service guarantees is not new but the modeling directions suggested here
are fresh.

1. The use of stochastic facility location theory in this domain is new, to our knowledge, and
might yield significant benefits by tapping into the large body of already available literature.

2. Contributions resulting from the formulated models are also expected. For instance, simple
models for the server location problem on the Internet are not available (c.f. section 7.1.2).
Further, the queuing-theoretic models that arise here reinforce interest in some of the emerging
analytical directions, such as, for instance, in the analysis of multi-server queues with heavy-
tailed service times (c.f. section 7.2.3).

3. Finally, even outside the context of Yield Management, several contributions are expected from
a good model of server location/replication and caching. We refer the reader to section 7.1.1
for a relevance of this problem to the general Internet.
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Chapter 8

Pricing: Quasi Real-time Prlclng of
Long-distance Service

This chapter demonstrates: (i) the role of pricing models in our proposed framework of section 2.2.4,
and (ii) how these models might differ from traditional pricing models by focusing on factors relevant
to revenue maximization, such as revenue cannibalization for instance. We do not attempt in-depth
analyses but articulate a service, argue modeling assumptions, formulate a simple model to concretize
our point-of-view and derive some simple insights from the model.

To make our case, we use a YM service which discounts network calls in quasi real-time to
maximize revenue. It essentially consists of communicating to the subscribers, at fixed periods, the

availability of discount rates for long-distance calls. The discounts offered and the destinations to . .

which they apply are under the control of the network provider. Section 8.1 provides the details
of the service. Variants of such services exist in different forms (cf. section 8.1.1) but are few and
relatively unknown and vigorous debate usually surrounds their viability and market acceptability.
In a speculative exercise, we hypothesize the most natural and consumer-acceptable (in our view)
version of such a service to model its operation.

The chapter is organized as follows. Section 8.1 presents the service and a detailed discussion of
practical issues, such as marketing and the expected benefit of discount pricing from an Economics
viewpoint. It also explains our modeling approach and presents a brief literature review on pricing.
Section 8.2 discusses and formulates a model for the discounting decision, to make the case for
some interesting lines of analysis. A summary of the chapter and its contributions are presented in
section 8.4. :

8.1 The Service

Consider a service where at fixed intervals of time, say every 15-30 minutes, given some information
about the state of the network! we wish to announce available discount rates for selected origin-
destination pairs during a future interval, to maximize revenue from the network. For instance,
suppose that the usual rate for calls from Chicago to Boston is 35 cents/min during peak periods
and 10 cents/min at off-peak hours plus possibly a fixed charge per call. In addition, suppose these
subscribers are made aware of %age discount off this base tariff from Chicago to Boston, possibly by
means of postings on a web page, or email (similar to fare-watcher e-mails by airlines) or by means
of a ticker tape on the phone-set, in the following format:

1 Typically utilization, past demand history and the current prices.
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"Chicago to Boston: Regular - $0.35/min, for discount rate $.20/min during 3-4pm, dial
1-800-977-1212

Chicago to Boston: Regular - $0.10/min, for discount rate $0.02cents/min during 12-
2am, dial 091-472-098*

The network prov1der s decision problem is to manage these discount offerings to increase revenue
from the network. Some comments on the features and intent of this service follow.

¢ One expects users to be receptive to such a service because of possible savings off their regular
monthly bills. Subscribing to a discount notification service for a nominal charge - say $1
per month, simply gives a user the option to use the discount prices if desired, without a
substantial increase in her monthly bill.

e The use of lengthy dialing codes for the discount service is an attempt at service differentiation?
by adding a level of inconvenience. One can actually require more than one step where each
step requires the dialing of a lengthy code.

e The target market here is the most price-sensitive portion of the subscriber-ship. The idea is
similar to coupon offerings in retail sales. The most sensitive customers are likely to pay the
most attention to these offerings and be willing to dial one or more extra codes to reach their
destination.

The idea of these coupon-like discounts is based on the hope that benefit from customer reaction
will be significant, based on experiences with other products. Studies on coupons show that about
20-30% of the market bothers to regularly clip, save and use coupons when they go shopping [PR89].
Statistical studies confirm their higher price-sensitivity. In the YM context, for example, airlines
have known for a while that demand for excursion fares is about four times as price-elastic as

first-class serviced.

However, one has to be careful of the possibility of cannibalizing revenue from otherwise higher .
paying demand. Airlines, for instance, attempt to minimize such cannibalization by segregating
demand into leisure, business and frequent travelers, in addition to closely regulating discount fares.
This problem is expected to be more acute for telephone networks as there is usually a fixed subscriber
base that makes up the majority of usage on the network. More or less, demand has to come from a
fraction of these subscribers, and one needs working mechanisms to ensure that their regular usage
is not unduly displaced to discount periods. On the positive side, a side advantage of this service
could be the prevention of loss of revenue, such as to dial-around calls and to customer switching
during long-distance price-wars. These and other practical factors are discussed in section 8.1.1.

8.1.1 Practical issues

Several recent incidents confirm that demand for network services increases with a lowering in price.
A case in point was when Sprint™ Canada offered unlimited calling anywhere in Canada for $20 per
month. This resulted in excessive network congestion forcing them to put a cap of 800 minutes on the
plan [All98]. Another classic and well-publicized case was that of America-Online™. On December
1st 1996, America On-Line decided to offer unlimited connection for $19.95 a month. However flat
rate Internet access in a country where local calls are often free proved to be a fatal attraction.
Users logged on and stayed on, tying up the phone lines and drowning the service provider.

2People sometimes prefer not to use a lengthy code simply to avoid the inconvenience of dialing it. This idea was
proposed by an actual telephone company in one of the author’s intern-ship experiences.

3Estimates from a study by J. M. Cigliano, “Price and Income Elasticities for Airline Travel: The North American
Market”, Business Economics, 15, September 1980:17-21. Cited in [PR89].
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In spite of the above, it is not clear that there is a substantial market for real-time discounted
long-distance calls. The chief reasons cited against the acceptability of such a scheme are consumer
preferences for a flat-pricing structure and the relatively low revenue per-call, which means there
may not be enough price-sensitivity to discounts. This is in contrast to airlines, for example, where
seats cost hundreds of dollars each. It is also argued that with a fixed subscriber base, if customers
were rational agents and were operating according to a fixed budget, they would always make sure
they pay only as much as before when using discount rates. In other words, discounting can never
pay for itself in the current environment*.

The issue of sensitivity to discount rates for telephone calls can be countered: the first argument

is the market use and acceptance of coupons for low-price items which are often less than a couple of
“dollars, such as soap, gelatin, cake-mixes etc. [PR89], a scheme very similar to our discount offerings.

The second is a study on elasticity estimates for long-distance calls which reports price elasticity
estimates of -0.54 for long-distance telephone calls for specific routes based on actual data [Dis96].

The points regarding consumer preference for a flat-pricing structure and the rational behavior of
customers can also be countered somewhat. In the service we propose, the market pricing structure
remains as it is, and the offered discounts are simply off the base tariff. One does not expect market
acceptability problems with such a service. Regarding rational behavior of customers, we cite an
interesting article from Philadelphia Daily News, 4 April, 1995, which reported the results of a
study by the Telecommunications Research € Action Center citing that “most people could save
20% to 30% on long-distance charges by switching to a discount-rate plan, even without changing
companies”. Rational behavior is not always the case with large consumer bodies, and sometimes
the presence of a large discounts is enough to encourage more spending than would otherwise occur.

Finally, to indicate the existence of a market for discount calls, we cite the emergence of the
“dial-around” market for discount long-distance calls. The dial-around service consists of dialing a
pre-assigned code before a long-distance call, which is then routed through an alternate network,
without switching providers. The incentive for the customers is obviously savings off their phone
bills. The most visible dial-around service is MCI™’s 10-10-321 number which had almost 50% of
the dial-around market, estimated to be about $1.5 billion in 1997 and expected to reach $2 billion
by the end of 1998°. This was a major concern for other companies like AT&T which saw its revenue
affected significantly by such a service®. AT&TT™™ finally launched its own dial-around company
under the name “Luck Dog Phone Company” after many other marketing counter-attacks’. This
clearly indicates not only that a market exists for discount calls but that it is significant. In such a
world, discount offerings can not only serve as an instrument for increasing revenue from the network,
but also to prevent the loss of revenue through competitor dial-around services, every dial-around
call representing lost revenue.

However, even if a market exists and customers do react and use the offered discounts, the
question still remains: does such discounting makes sense? We can reasonably expect from experience
that discounts will result in immediate increase in call-minutes, but where would the demand come
from? If the increase in volume of call-minutes is not sufficient for the decrease in revenue per
call-minute because of discounting, one would lose net revenue. There is thus an essential trade-off
between ’cannibalizing’ revenue from higher paying calls and increased discount utilization since
demand is not infinite. The model we formulate attempts to capture this trade-off using simple
reasoning.

4Some of these points were raised by representatives of an actual phone company in one of the author'’s experiences
as an intern.

5New York Times (national edition), 28 June, 1998.

8 Wall Street Journal, 7 April, 1998,

7 Advertising Age, vol. 69, no. 44, p. 17, 2 November, 1998.
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8.1.2 An Economics perspective

Some economic reasoning might help illustrate the feasibility of the service and the cannibalization
issue further. Say only 1% of the subscribers take up this offer. For a company such as AT&T™™,
with approximately 80 million customers®, the figure is 800,000. That immediately gives $800,000
per month as the subscription fee for the service. In addition, if an increased revenue of $0.50 per
month per subscriber is achieved on average, we have $400,000 million per month increase. These
are annual increases of $14.4 million, with little added costs. Remember that we are assuming a
market penetration of only 1%. Of course, if one loses more than $1 per person in call revenue,
one achieves a net loss. For smaller companies, the effects may not be as dramatic, but are still
significant. Sprint™, for instance, provides long-distance service to around 15 million homes, and
the above calculations result in added revenue of $2.7 million annually. With these calculations, one
needs around 0.6 million people to subscribe to such a service to get $1 million added revenue.

When is it reasonable to expect a revenue increase from such a service? Reasoning in an aggregate
sense, consider a demand curve for total usage in call-minutes over a period of time from a set of
subscribers to whom we wish to market such a service, as in figure 8-1. Price P is shown along the y
axis and call minutes @ along the z axis. At current rate r, the total demanded call-minutes are Q.
and the total revenue rQ, since there are no marginal costs. This is shown by area 4 in the figure.
Now say we discount the rate to d < r. If d prevailed over the entire period, we would see usage
Qg, but since it prevails for controlled periods, we see usage Q instead, between Q, and Q4. Some
fraction f of usage Q takes place at 7 and the rest at d. Now the total revenue is expressed as the
sum of the areas B and C, equaling [rf +d(1— f)]Q. It is clear from the figure that one gains revenue
shown in area D while losing revenue shown by area F. This is the nature of revenue cannibalization.
For instance, when the aggregate demand curve is convex, one expects such discounting to be more
effective, since the gain in area D will typically be larger than if the function is concave.

Price P

A (original reveiug
- shaded region)

Quantity Q

Qr Qd

Figure 8-1: Demand curve showing revenue effects of discounting. A (the shaded area) was the
original revenue before discounting, B + C is the revenue after discounting, we've lost revenue F
and gained D.

8Source: Wall Street Journal (3 Star, Eastern (Princeton, NJ) Edition), 7 April, 1998.
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8.1.3 Modeling directions

The modeling directions we pursue are motivated by the debate of section 8.1.1 over the revenue
generating potential of our service. The question of when one can gain revenue using real-time
discounts motivates investigating conditions on demand necessary to achieve increased revenues.
Questions of interest here, for instance, could be: under optimal decisions by the controller, what
demand functions will achieve increased revenues? Do we achieve an increase in revenue because
people call more during discount periods or because they call longer ? When demand is convex or
concave ? More or less, these questions relate to qualitative behavior of demand. This is useful in
the context of our work because we do not have real-data to assign cardinal properties to demand
functions, which usually involves assigning absolute values to utility functions of consumers.

To illustrate the questions of interest here, consider the simplest case of a single consumer. At
rate 7 per call-minute, say this person makes K, calls on average, over some period of interest, to
a certain location and each call is usually C, minutes long, making her total average call-minutes
z, = K,.C, and her total bill rz,. Now suppose one offers her a reduced rate d and she now calls K
times and each call is Cy minutes long, on average. We expect that she calls at least as often with
the reduced rate and at least as long on average, so K4 > K, and Cy > C,. With 74 = K Cy, the
total revenue is dzq. Now clearly we make more money only when dzg > rz, or d/r > z,/z4. This
condition can be written in terms of the demand elasticity E; for mean holding-times per call as
E4 < -1 (elasticity is the preferred measure since it is ordinal rather than cardinal). For instance,
for a linear demand curve, this indicates that we can only make money if the current rate is in the
upper portion of the demand curve (see section 8.3 for a short reminder of demand elasticities).

This line of questioning is not unlike micro-economic theory, i.e. attempting to understand the
structure of demand functions that result in increased revenue. Recall how in micro-economics,
a usual first interest is in describing the qualitative behavior of the market. This leads to the
- investigation of more or less ordinal or qualitative properties of demand curves and utility functions.
Usually Econometrics is used later to investigate their cardinal properties and validate the theory.
Elasticity estimates, for instance, are usually obtained by surveys and interviews (see section 8.1.1
for an elasticity estimate of long-distance calls reported in literature). Similarly, we reason that once
desirable qualitative behavior of demand has been described, marketing studies can be carried out
to determine if consumer response is indeed expected to result in added revenue from such a service.

8.1.4 Literature review

Pricing literature in other industries is vast and is difficult to categorize in a short section. A recent
paper of interest for telecommunications is by Paschalidis and Tsitsiklis [PT98] which studies optimal
pricing of calls as a function of available capacity when the arrival rate is a function of the price
and the arrival process is Poisson. It is shown that fixed price policies are not too far from optimal
when the call-holding times are exponential and the system behaves as a loss system.

Other pricing research in telecommunications has focused more on usage-sensitive pricing of
Internet services, rather than discounting or spot-pricing of long-distance calls. Examples are Kelly
[KMT98] and Mackie-Mason [MMV95], for instance.

Related papers of interest, in the sense that the underlying models consider intensity control
for optimal pricing, similar to [PT98] but not in a telecommunications setting, are Gallego et.
al. [GVR94] where the pricing problem is studied in a perishable-inventory pricing setting — the
traditional yield management problem. Gallego also provide a good review of pricing research,

We have so far not found anything that views demand in the way that we do and where the
interest is on the trade-off between displacing revenue from higher-paying call-minutes to discount
call-minutes.
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8.2 Modeling Discount Offerings

In this section we first informally consider various factors relevant to determining the discounting
decisions. We then develop a restricted model to make a case for lines of analysis different from
traditional pricing models. Specifically, the model illustrates how call-holding times are much more
important than call arrival rates, in the sense that one can actually lose more revenue by attempting
to increase the call arrival rates if the holding times do not increase appreciably.

8.2.1 Discussion

Suppose that the general problem is to announce to each location at some interval, say every three
hours, discounts to a set of destinations for each fifteen minute time-slot, for the next three hours.
Consider the following factors that might influence such discounts.

1. Utilization: Physical factors are the most obvious. When utilization is expected to be high,
discounts obviously do not make much sense, both because of the possibility of degrading the
quality of service and the fear of cannibalizing revenue from already existing demand.

2. The time-of-day effect on the ’take-up’ rate: The time of day is expected to influence the
number of people who ’see’ the advertised offerings. Since people are usually busier on weekdays
than weekends and in the afternoons than in the evening, the take-up rate for an offering should
depend on the time-of-day. This has some implications for the offering decision, as one might
like to offer 'really deep’ discounts only at times when relatively fewer and select people are at
home, such as 'retirees’ or ’students’.

3. The effect of discount on immediate demand: Possible effects to keep in mind here could
include: (i) the increase in current utilization may not be sufficient to compensate for the loss
of current revenue due to discounting and (ii) there may be a future loss of revenue because
people who call, say once a week, might use the discount periods to satisfy their needs.

4. Information about past discount responses: Suppose one observes an unusually large number
of discount calls from A to B over the past half a day or so. It is not too unreasonable to infer
then that most of the 'discount demand’ that could have taken place for that day has already
done so, and further discounting will only lead to ’cannibalizing’ revenue from other higher
paying demand.

5. Longer-term customer learning behavior. Finally, one needs to consider how the presence of
discounts will change the behavior of the consumers. For instance, too much predictability in
discount offerings might prompt some users to never call unless there is a discount. Offerings
should therefore be appropriately randomized both in time and in the amount of discount to
resist the forming of regular expectations on part of the consumers. However, one stills needs
some degree of regularity to maintain user perception that such a service is of some value to
them.

8.2.2 A model

Since incorporating all of the above factors in a first model is difficult, we consider a very simplified
case here. With minimal assumptions on the demand functions, we develop a plausible model for
expressing the additional revenue in response to a discount. This allows us to understand conditions
on demand that are necessary to achieve increased revenues from such discounting.

Consider the simplest case where the controller has only one decision: what discount rate to
offer for the next At (say one hour) to a single destination. Assume no more discounts will follow in
later periods and there are no other complicating factors. We focus on the effect of this discount on
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the users and ignore the time-of-day effects (which can govern how many people actually 'see’ the
advertised discount offering). Let us also forget capacity constraints for the time being.

Suppose S subscribers have signed up for the service. This is the population of interest to us.
Let the decision variable d € [0, 1] be the fraction of the regular rate r offered to this destination,
i.e. the discounted rate is d.r. Then for any offered discount d:

e Call the fraction of people who actually ’see’ the discount gq.

e Let the fraction of the ones who ’see’ the discount and decide to use it be p(d), which depends
on the discount. We can reasonably expect that p(d) should be monotonically non-increasing
in d. p(d) can also be viewed as the probability of a customer using the discount when all
customer actions are viewed to be independent.

e Call g(d) = 1/u(d) the mean holding time of calls made at discount d. The mean holding
time of un-discounted calls is expressed as g(1) = 1/u(1), and again we expect only that

" g(d) should be monotone non-increasing in d, a reasonable assumption. All holding times are
assumed independent random variables.

Then without any other assumptions on the functions p(d) and g(d) we can write the expected
revenue from discount calls in period At as R(d) = ¢ S r d p(d) g(d). The quantity g.p(d).S
can be interpreted as At times the arrival rate of discount calls over At, allowing us to define
A(d) = q.p(d).S/At. All we have done so far is to write the expected revenue R(d) from discount
calls as A(d).g(d).d.r.At, where the only assumptions on the arrival rate function A(d) and the
mean holding time function g(d) are that they are monotone non-increasing in d and further, that
A(d) < S/At (an assumption that every subscriber makes at most one call).

Now the question is: where is this revenue R(d) coming from? Simple reasoning can be used to
apportion this revenue to one of several causes, again not assuming that one can determine exactly
the cause of the call, but simply to derive an optimization problem. Each discount call that is
actually made falls into one of the following categories:

e Discretionary call: This is a call that would not otherwise have occurred if there was no discount
and does not affect future demand for this customer. Call the probability of a discount call
being discretionary fi(d). Again, dependence on the discount seems reasonable, since people
may not make discretionary calls if the discount is not enough. We assume only that fi(d) is
monotone non-increasing in d. Any revenue from such a call is net positive revenue.

o A “Dial-around” call: This is a call that would otherwise have been made using a “dial-around”
number. The customer, on seeing the discount, decides to use the offering instead of the dial-
around. See section 8.1.1 for the importance of the dial-around market for discount calls. Call
the probability of a call being of this type f2(d), which is monotone non-increasing in d. Again,
any revenue from such a call is net positive revenue since we would have lost those call minutes
to a dial-around provider.

o A ’'Need based’ call: This is a call the customer would have placed ’anyway’, perhaps as part of
her regular calling pattern, or for some other reason. The person saw the discount and decided
to use it instead of paying the regular rate. Here, we distinguish two further cases:

— With probability [, the call does not affect future calling pattern of this customer, as in
she does not wait only for discounts, not calling at other times. In this case, loss or gain
of revenue is limited to the current call.

— With probability 1 — I, It affects future calling patterns, in which case loss or gain of
revenue is from this call and the future expected losses and gains from altered customer
behavior. Here we need an approximation of the future costs in addition to the current
revenue to decide whether we gain or lose over the long-term.
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Since we are considering a discount only for one period and no more discounts, we can ignore
the case of future costs due to changed customer behavior for now. Let f(d) = fi(d) + fa(d), the
probability of call being either “dial-around” or “discretionary”. Also, when a call is “need-based”,
the “net additional revenue” r(d) from such a call may be written as ¢.p(d).S.[d.r.g(d) — r.g(1)] =
R(d) — M(d).g(1).r.At. This leads to the following optimization problem for the controller:

max f(d)R(d)+ [1- f(d)]r(d) = R(d) - [1 - f(@]Md)g(1)rAt
st 0<d<1.

With a few manipulations, we can write the objective function as r.At.g(1)A(d).[dg(d)/g(1) — 1+
f(d)]. Since 7.At.g(1) is just a positive constant, we ignore it and end up re-writing the optimization
problem as follows, with the objective function being a fixed fraction of the 'net’ additional revenue
due to discount d:

max A(d) [d% -1+ f(d)

st. 0<d<1.

This formulation immediately leads to the following observations.

e The optimal value of the program above is positive only if there is a d in the [0, 1] interval
where [dg(d)/g(1) — 1 + f(d)] > 0, regardless of the arrival rate A(d), since the arrival rate
is always non-negative. The interpretation of this is of some interest. It implies that arrival
rate control is of no value unless the holding times increase proportionally to make up for
the discounting in rate. This is contrary to most pricing models in literature where arrival
rate control is used to increase revenue using spot-pricing. In fact, it is clear from our simple
formulation that if one increases arrival rates while [dg(d)/g(1) — 1+ f(d)] < 0, one loses more
in terms of net revenue due to additional ’cannibalization’ of the regular call-minutes. For
instance, we get no additional revenue at d = 1 (no discounting) since the objective function
has value 0. Similarly, since 1 — f(0) < 0, we always lose revenue at d = 0 since no money is
being made — the rate of loss of revenue is then A(0)(1 — £(0)).

o Consider the condition for getting positive revenue from a discount d, i.e. [dg(d)/g(1) — 1 +
f(d)] > 0. We rewrite it in a few forms and note the interpretations:

~ Writing the condition as:
d)[1 -
45 B0 = F@)
(1)
we note the interpretation that one cannot discount more than the ratio of the mean

holding times of regular calls vs. non-discretionary calls. This establishes a lower-bound
on the discount, the ratio being a notion of additional demand 'volume’ generated.

Ed<1[ﬂ_ ],

— Writing it as

=d|1-d

where Egy is the demand elasticity of the mean holding times g(d), we have an upper-
bound on the elasticity of the demand curve. Since B4 < 0 always, if f(d)/(1 —d) > 1,
we always make a profit. The condition f(d)/(1 — d) > 1 expresses the fact that the
proportion of discretionary calls is at least the same as the percentage discount offered,
regardless of the ratio of the holding times.

— Finally, questions that merit further attention relate to the behavior of the quantity
[dg(d)/g(1) — 1 + f(d)] > O when the functions g(d) and f(d) are convex/concave etc. In
this case, we do not pursue results but note that:
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* When both the mean holding times g(d) and the discretionary call probability f(d)
are linear differentiable (to exclude piecewise linear functions) on 0 < d < 1, there
always exists a discount d at which one can achieve positive revenue.

* When both g(d) and f(d) are exponential, in limited experiments, we could not find
any value of d € [0, 1] for which the revenue came out positive.

8.2.3 Interesting research directions

The above section reveals the critical effect revenue cannibalization can have on the success of the
proposed service. We make the case for further experimentation with the ideas presented here, for
this issue has implications in other areas, such as airline revenue management, for example. If it
is established that for some demand function, a benefit is achievable from such discount offerings,
other directions such as the following can be explored.

o The impact of a discount on future revenues.

e Incorporation of capacity constraints.

e Extension to multiple destinations.

e Announcing discounts for multiple periods.

8.3 A Note on Demand Elasticities

Given a demand curve expressing the dernanded quantity @ of a ’good’ as a function of unit price
P, the price elasticity of demand E, is defined as:

_%AQ AQ/Q PAQ 8lnQ

Bo=g95p = AP/P QAP 8P

Elasticity is a preferred measure for dealing with demand curves because it indicates the percent
change in quantity with a percent change in price, and is not the same as the slope of the curve.
This is easiest to illustrate for a linear demand curve of the form @ = a — bP as shown in figure 8-2,
which has constant slope equaling —b, but it elasticity is not constant and in fact equals ~bP/Q, a
quantity that changes over the curve from —co at @ =0 to 0 at @ = a.

Price P

a/b

a/2b

Quantity Q

Figure 8-2: Elasticities of a linear demand curve.
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8.4 Summary

This chapter demonstrates how pricing models fit in our modeling framework of section 2.2.4, using
the context of a quasi real-time discounting service for long-distance calls. We articulated the idea
for the service and argued its viability in some detail. We formulated a model to make the case
for pursuing some non-traditional analytical directions when determining the discounting decisions
— such as the possible cannibalization of existing demand and the recognition that not all demand
behavior might achieve increase revenues.

8.4.1 Contributions

This chapter creates more questions than answers, but that is exactly its contribution. It makes the
case for alternative lines of analysis for pricing research in revenue management, focusing on issues
of practical interest. Several differences exist in the modeling approach of this chapter from existing
pricing literature, both in telecommunications and otherwise. Existing research usually assumes
known demand functions which express the arrival rate of calls as a function of price. The objective
of interest is to determine optimal pricing policies given some assumptions about the arrival rate
process (c.f. 8.1.4). By contrast, our approach is to first determine the factors that are relevant for
revenue increase, whether arrival rates or holding times. This is because we do not view the demand
for call minutes as as infinite, a reasonable situation considering the subscriber-ship structure of the
current market.
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Chapter 9

Summary, Contributions and
Future work

Figure 9-1 is the final summary of thesis and a concise schematic of both the work and its context.

This thesis attempted to (i) show how the intuition and strategies of airlines Yield Management
might be applied to telecom and (ii) highlight how Operations Research can help in the modeling and
analysis of this new area. In spite of popular opinion that telecom shares the perishable inventory
and negligible marginal cost characteristics of airlines, no one has yet coherently described how one
might ’yield manage’ telecom networks. A significant problem blocking this is the nature of telecom
services, which are vastly different from airlines.

We proposed in chapter 1 that new services should be created to ’yield manage’ telecom networks.
These services must be designed explicitly to use only spare capacity and segment the market to
generate extra revenue. We argued in detail the need for this approach and its relevance to the
existing telecom industry, fully realizing that this will require an investment in network infrastructure
for managing these new services. However, this is a familiar exercise for telecom operators and
creation of new services is an active part of telecom operations.

The managing infrastructure for these new services will consist of software embedded in the
network, with the purpose of minimizing their impact on existing traffic and maximizing revenue
from available capacity. Much of the behavior of this software will be based on decision rules that
incorporate network information to make intelligent choices. It is here that OR can play a strong
role. Models that result in optimal decisions regarding pricing, capacity allocation, forecasting and
so forth will be needed for each service’s operation. '

Recognizing the complicated models that could result from trying to incorporate all decisions in
a single network-wide model for a service, we proposed using a framework to identify and decouple
the decisions. This more or less parallels the airlines practice of breaking up the system-wide YM
problem into chunks to make the problems tractable. A similar framework might help guide modeling
choices for these new services.

To that end, we proposed borrowing the airlines modeling framework of forecasting, over-booking,
seat-inventory control, pricing and market segmentation for telecom. Even though the framework
classifies decision problems arising in airlines operations, we realized that the abstract versions of
the problems are very relevant for telecom. We therefore translated the framework by describing
how several decisions arising from the operations of each service can be identified and related to
each framework category.

The majority of the thesis was the new services we proposed to illustrate our argument and the
models we formulated to demonstrate our modeling framework. For each service idea, we attempted
as much as possible to describe the likely markets and the most obvious manner in which the
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Network infrastructure
needed for new services

Capacity availability
decisions

Pricing

decisions
Forecasting
problems

Figure 9-1: A summary of work in this thesis. The ®’s are the models attempted.

offering might be préctically managed. We then modeled one of the possible decisions identified by
the framework. Most of our models were single-link and were meant to be illustrative of the analyses
and results one might obtain from modeling.

It briefly deserves mention that significant effort has been expended in imagining the new services
and in thinking of their practical operations. This looks obvious in hindsight, but actually takes a
lot of ingenuity and understanding of both the technology and the markets, and research into the
possibilities.

9.1 Contributions and Future Work

It does not make sense to list all possible contributions of this work here for two reasons. First, if it
does indeed help motivate YM in telecom, there will be too many. If it does not, there will be few.
Second, the breadth and texture of this work makes it more useful to list the contributions where
they are most relevant. For these reasons, general contributions of this work to telecom YM and to
OR are listed in sections 1 and 1.2. Contributions of the modeling work are mentioned the end of
each modeling chapter. Here we briefly mention some last words on this issue.

It is, to our knowledge, the first work that outlines a coherent argument for making telecom YM
practical. In fact, we are not aware of any other work of this scope related to revenue management
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in telecom. In that sense, its value could also be in something as simple as a starting collection of
ideas, exciting further work on the topic.

It is also useful to comment on what has been achieved in this thesis and more importantly,
what remains undone. It is not our intention to claim that the services proposed and the models
formulated here will be implemented exactly as prescribed. It should also be clear that the work
here exemplifies only one aspect of the operational problems raised by offering YM services on a
network. In that sense, our work is only illustrative of the services and models that could arise to
support serious YM efforts in telecom, and does not address several major aspects such as network
software design, marketing of the new services and the regulatory issues that will arise.

We see the future modeling work as refining and enriching the framework as well as validating
the models. This will be tightly coupled to the marketing and infrastructure development, both of
which will have a huge effect on the success of the ideas proposed here.
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