
Context-Aware Experience Sampling for the

Design and Study of Ubiquitous Technologies

by

John C. Rondoni

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2003

@ Massachusetts Institute of Technology 2003. All rights reserved.

Author .
De tmr' t of ElhfKric gineering and Computer Science

May 27, 2003

Certified by..
Stephen Intille

Changing Places / House-n Technology Director
MIT Department of Architecture

Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

BARKER

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003

LIBRARIES

4

Context-Aware Experience Sampling for the Design and

Study of Ubiquitous Technologies

by

John C. Rondoni

Submitted to the Department of Electrical Engineering and Computer Science
on May 27, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As computer systems become ubiquitously embedded in our environment, computer
applications must be increasingly aware of user context. In order for these systems to
interact with users in a meaningful and unobtrusive way, such as delivering important
reminders at an appropriate time, their interfaces must be contextually-aware.

This vision of future computer systems and the insight that the implementation of
contextually- aware systems requires contextually- aware analysis and development tools
has motivated the two primary contributions of this work. First, a Context-Aware
Experience Sampling Tool has been designed, implemented, and tested. Second, this
tool has been used to develop an algorithm that can detect transitions between human
activities in office-like environments from planar accelerometer and heart rate data.

The Context-Aware Experience Sampling Tool (CAES) is a program for Microsoft
Pocket PC devices capable of gathering qualitative data, in the form of an electronic
questionnaire, and quantitative data, in the form of sensor readings, from subjects.
This system enables contextually-aware user interactions via real-time modification
of the electronic questionnaire based on sensor readings. CAES is publicly available
to researchers and is actively being used and evaluated in several studies at MIT.

The algorithm capable of detecting transitions between human activities was eval-
uated on a data set collected from nineteen subjects with CAES and successfully dif-
ferentiated continuous activities from activity transitions with 93.5% accuracy. This
detector could be used to improve CAES and to develop applications capable of
proactively presenting users with information at appropriate times.

Thesis Supervisor: Stephen Intille
Title: Changing Places / House-n Technology Director
MIT Department of Architecture

2

Acknowledgments

I would like to thank the subjects who invited these devices and sensors into their

daily lives. Without their time and patience, this work would not have been possible.

To my colleagues at House-n: I hope I have contributed a fraction of what I will

take away from my time with you. You have given me a new way to think about

the integration of technology, health, and the home. Interacting with such a diverse

group has allowed me to understand these challenges more holistically than I could

have otherwise.

Stephen:

I am grateful for the direction and support you have given me over the last year.

Working with you has enabled me understand how technology can be used to

address difficult social problems. I believe it was your knowledgeable advising

that led me to make a real contribution with this work.

Isabel:

The success of CAES is a testament to the great work you did in helping us to

design the user interface. Without your dedication and hard work CAES would

not be nearly as beautiful or usable.

Emmanuel:

Thank you for your patience and help at all hours. I very much appreciate it.

Sachin:

Without your hard work the heart rate monitor would not have been working

as well or as soon. Thank you.

Tom (Mr. B):

I will always credit you with teaching me to think critically and argue a point

of view. You taught me the power of ideas.

3

Andrea:

Your help was invaluable over the course of this study and in the writing of

this document. I do not know what I would have done without your writing

expertise or without such a willing and patient subject.

My Friends:

From MN, BSM, MIT, ATA, and elsewhere: you have all supported me through

the rough times and been there at the best times. For that I am truly grateful.

Peter:

I am lucky to have you as my brother. I have always been impressed with your

capacity for original thought as well as your ability decide what you want out

of life and chase it down. I know you will be a success at whatever you decide

to do-even if you do not want to be.

Anne:

You are the best sister a guy could hope for. You are an incredibly talented

person and still have the dedication to work hard when you need to. I will enjoy

watching the world learn that you cannot and will not be overlooked.

Mom and Dad:

You have made this work possible in more ways than one. You have supported

me through all the tough times and taught me how to learn from them. You have

shown me what is important in life and the right way to live. Unfortunately, I

cannot even scratch the surface of all you have given me and all I have learned

from you. I hope I can live up to the example you have set. Thank you.

This work was supported by NSF grant #ITR/PE: Using Context Recognition

for Preventive Medicine in the Home (#0112900) and the Changing Places / Home

of the Future Consortium.

4

Contents

1 Introduction 11

1.1 Challenges of Ubiquitous Computing 11

1.2 Contextually-Aware Systems . 12

1.2.1 Context-Aware Experience Sampling Tool 12

1.2.2 Activity Transition Detector 13

2 The Problem 14

2.1 Data Collection In Natural Settings 14

2.1.1 C hallenges . 14

2.1.2 Solutions . 15

2.2 Designing Technology for Proactive User Interaction 16

2.2.1 C hallenges . 16

2.2.2 Solutions . 16

3 Theory and Rationale 17

3.1 Data Collection In Natural Settings 17

3.1.1 Field Data Collection Techniques 17

3.1.2 Experience Sampling Methods 19

3.2 Interruptions and Activity Recognition 20

3.2.1 Interruptions . 21

3.2.2 Recognizing Activities . 22

3 .3 G oals . 23

3.3.1 Improving ESM . 23

5

3.3.2 Detecting Times to Interrupt

4 Design and Implementation

4.1 Context-Aware Experience Sampling Tool

4.1.1 Design Criteria .

4.1.2 User Interface .

4.1.3 Specifying New Context-Aware Experience Sampling

4.1.4 Sensor System ..

4.1.5 Interaction System

4.1.6 Core Scheduling System

4.1.7 Status of CAES Project and Software

4.2 Activity Transition Detector

4.2.1 Activity Transition Selection

4.2.2 Sensor Selection and Placement

4.2.3 Survey and Sampling Strategy

4.2.4 The Labeling Problem

4.2.5 Representation .

4.2.6 Data Preprocessing

4.2.7 Features .

4.2.8 Machine Learning .

5 Evaluation

5.1 Context-Aware Experience Sampling Tool

5.1.1 Patterns of Daily Life Study

5.1.2 Activity Transitions and Interruption Study

5.1.3 Additional Studies and Interest

5.2 Detection of Activity Transitions

5.2.1 Subjects .

5.2.2 D ata .

5.2.3 The Labeling Problem

5.2.4 Performance .

6

Studies

23

24

24

24

27

29

31

32

33

34

34

34

35

37

38

39

41

43

. 46

47

47

47

49

50

50

50

50

51

52

5.2.5 Analysis

6 Conclusions 54

6.1 Context-Aware Experience Sampling Tool 54

6.2 Activity Transition Detector . 55

A CAES User Interface 56

A.1 Default Screen . 56

A.2 Question Screens . 56

A.3 Device Screens . 58

A .4 Help Screen . 60

B CAES Implementation Details 63

B .1 T hreading . 63

B.2 Sensor and Interaction Instantiation 64

B.3 Pocket PC Timers . 65

C Activity Detector Study Data 66

D Adding Interactions 70

D.1 Defining the Class . 70

D.1.1 Naming Considerations . 70

D.1.2 Making a Serializable Class 70

D.1.3 Extending Interaction . 71

D.2 Implementing RunInteraction() . 71

D.2.1 Functions Provided . 71

D.2.2 Example Implementation . 72

D.3 Adding EventTags . 73

D.3.1 Creating CA-SIGNAL . 73

D.3.2 Modifying CEngine: :ReccuranceSignalStrings 73

E Adding Sensors 74

E.1 Defining the Class . 74

7

53

E.1.1 Naming Considerations . . .

E.1.2 Making a Serializable Class

E.2 Implementation

E.2.1 Abstract Sensor Functions .

E.2.2 Example Implementations .

8

74

74

75

75

76

.

.

.

.

.

List of Figures

1-1 CAES and Activity Detector Relationship

CAES Running on Pocket PC Devices .

CAES System Diagram

CAES User Interface

CAES Sensors

Heart Rate Monitor System

Planar Accelerometer

Heart Rate Triggered Subject Interaction

Data Evaluation Tool

Heart Rate Data

Planar Accelerometer Data

Feature Calculation

CAES Default Screens

CAES Question Screen Messages

CAES Question Screen Alternate Answer

CAES Question Screen Start and Stop .

CAES Microphone Device Screens . . .

CAES GPS Sensor Help Screens

CAES Audio Note Device Screens . . .

C-1 Activity Transition Data: Subject Day

C-2 Activity Transition Data: One Hour

9

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

A-1

A-2

A-3

A-4

A-5

A-6

A-7

. 13

. 25

. 26

. 28

. 31

. 36

. 37

. 38

. 39

. 41

. 42

. 46

. 57

. 58

S 59

. 59

. 60

. 61

. 62

. . . . 67

. . . . 68

C-3 Activity Transition Data: Ten Minutes 69

10

List of Tables

4.1 Simplified CAES QuestionDataFile Example 30

5.1 Activity Transition Detector Subject Demographics 51

5.2 Activity Transition Detector Classification Results 53

11

Chapter 1

Introduction

The paradigm of desktop computing is beginning to shift in favor of highly distributed

and embedded computer systems that are accessible from anywhere at anytime [2].

Applications of these systems, such as advanced contextually-aware personal assis-

tants, have enormous potential not only to benefit their users, but also to revolutionize

the way people and computers interact.

1.1 Challenges of Ubiquitous Computing

The future of ubiquitous computing presents many challenges [2]. Perhaps the most

difficult of these is the task of building applications and interfaces that accurately as-

sess the context of their users. For example, a ubiquitous messaging application, per-

haps running on a mobile computer, could be capable of interrupting a user anywhere

and at anytime with a message, such as an email. Lacking contextual-awareness, this

system would not know better than to interrupt users whenever they have a message.

While possibly useful, this system would be a persistent annoyance. Instead, if the

system was aware of its user's context, such as they are in a meeting with a client, and

aware of which messages the user cares most about, then it would be able to interrupt

users at appropriate times with important messages. Without contextual-awareness,

the omnipresence of ubiquitous applications will be a deterrent to their deployment.

12

1.2 Contextually-Aware Systems

A significant problem related to building contextually-aware interfaces and systems

is that of studying people in their natural settings, such as home or work. This

problem is important because it is in precisely these environments that people will

want to deploy contextually-aware applications. Researchers attempting to study

people in natural settings must carefully design their studies to collect sufficient data

describing a subject's context without significantly influencing their environment or

behavior. The ideal balance between these factors is difficult to achieve because the

strategies that are the most descriptive, such as direct observation, also tend to be the

most disruptive and expensive. However, by leveraging new tools and technologies

to acquire context-specific information while minimizing the burden on the subject,

naturalistic and cost-effective data can be collected.

1.2.1 Context-Aware Experience Sampling Tool

The first contribution of this work is the Context-Aware Experience Sampling Tool

(CAES) [23]. CAES has been built to expedite the process of developing and im-

plementing context-aware computer applications and interfaces. It supports studies

based on the experience sampling method (ESM) [13], also known as ecological mo-

mentary assessment (EMA) [37] (see Section 3.1.2). CAES is differentiated from

existing ESM tools by its support for sensor data collection and context-aware sam-

pling strategies. which are the real-time modification of ESM strategies based on

sensor readings.

While a person's context could include anything from emotional to physical state,

throughout this paper context will mean some aspect of an individual's state that can

be detected by a reasonable sensor. Context-aware applications would not be able

to differentiate between daydreaming and deep thought. However, such applications

would be able to identify if a person is physically idle or transitioning to a new activity.

13

1. CAES based study

CAES Activity Transition
Detector

2. C++ Implementation

Figure 1-1: The Context-Aware Experience Sampling Tool was used to collect the
data necessary to develop the activity transition detection algorithm. In future

work, this algorithm could be implemented as a CAES Interaction class (see Sec-
tion 4.1.5).

1.2.2 Activity Transition Detector

The second contribution of this work is an algorithm, developed with CAES, capable

of detecting human activity transitions in office-like environments using a heart rate

monitor and a planar accelerometer. The algorithm was 93.5% accurate in detecting

transitions between sitting, walking, standing, using stairs, and lying down. This

result was validated on approximately 130 hours of data collected from nineteen

subjects.

The activity transition detection algorithm is an example of the type that could

be deployed by contextually-aware computer systems, such as CAES, to detect appro-

priate times to interrupt their users. Figure 1-1 illustrates this relationship between

CAES and the detector algorithm.

14

Chapter 2

The Problem

The first problem addressed by this research is cost-effective and non-invasive collec-

tion of qualitative and quantitative data from people in their natural settings, such

as the home or office. The second problem addressed by this work is the design of

technologies and interfaces that are automatically aware of good and bad times to

interrupt their users.

2.1 Data Collection In Natural Settings

2.1.1 Challenges

The construction of robust context-aware interfaces required by the next generation

of ubiquitous computing applications requires the collection of large amounts of qual-

itative and quantitative data describing the context in which the application will

operate. System designers need this data to concretely characterize the user contexts

and behaviors an application must be aware of. Additionally, such data is needed to

train and test contextually-aware algorithms that use machine learning techniques.

Collecting this data can be costly and always carries the risk that the process of data

collection will significantly change the context and behaviors being studied. However,

failure to thoroughly study people and their reactions to these emerging systems will

ultimately undermine their commercial appeal. People will not be interested in ubiq-

15

uitous technologies that require constant attention or that often make the wrong

assumption about the user's context.

There is no clear best option when choosing a data collection technique. In par-

ticular there are no approaches that systematically and simultaneously collect the

qualitative data, such as a subject's thoughts or feelings, and quantitative data, such

as heart rate.

More intrusive data collection techniques provide more detailed data but are also

more likely to impact subjects' actions or environment in a significant manner. For

example, subjects that know they are being observed may be careful to wash their

hands after using the bathroom. However, those same subjects may occasionally

forget to do so in the absence of an observer.

2.1.2 Solutions

For the desktop computing paradigm, end user data is often collected in controlled

usability labs where the overall context of the user is not a consideration [27]. Ubiq-

uitous computing system developers need an analogous tool that also considers user

context.

An ideal tool would provide researchers with a low-cost automated method of

collecting qualitative and quantitative data from subjects. The qualitative data would

allow them to understand the needs of their users, while the quantitative data would

allow them to concretely analyze the contexts of their users and build machine learning

algorithms capable of detecting those contexts. The automated tool should also be

easily modifiable. Researchers should be able to quickly adapt it to their study

without having to learn its inner workings or make any significant modifications.

Finally, the tool must be robust and easy for subjects to use. Ideally, subjects would

be interrupted for self-report data only at appropriate times. If the tool cannot

meet these criteria, then researchers will have difficulty finding willing subjects and

collecting accurate data from users' natural settings for extended periods of time.

16

2.2 Designing Technology for Proactive User In-

teraction

2.2.1 Challenges

One of the problems central to ubiquitous computer applications is choosing a proper

time to interrupt users in order to proactively present them with information. Such

computer applications will be running nearly all the time and must be capable of

getting their users' attention when needed. Selecting the right time and way to

interrupt users can make the difference between an application that is a constant

annoyance or one that is an invaluable assistant. Context-aware systems should be

sensitive to users' tasks, such as when they are meeting a client, and the relative

importance of the reason for interrupting.

2.2.2 Solutions

A good first step in solving this problem would be to reliably detect when users

should not be interrupted. A system capable of detecting such situations would help

ubiquitous system designers overcome one of the most difficult problems they face.

17

Chapter 3

Theory and Rationale

This research draws on previous work from the domains of activity recognition,

context-aware systems, interruption scheduling, field data collection, and machine

learning.

3.1 Data Collection In Natural Settings

Several methods of acquiring data from human subjects in natural settings have been

developed. These can be coarsely divided into field data collection techniques and

experience sampling methods.

One of the problems central to all these techniques is that they require researchers

to select the behaviors of interest and a data recording schedule before the study has

begun. This prevents the collection of data related to events and behaviors that

researchers did not anticipate because these approaches do not allow for the dynamic

modification of data collection strategies.

3.1.1 Field Data Collection Techniques

Field data collection techniques include direct observation, recall surveys, time di-

aries, and indirect monitoring. Each of these approaches has drawbacks that limit its

capacity to support the development of contextually-aware systems.

18

Direct Observation

Direct observation techniques involve a researcher following a subject for the duration

of a study and intermittently observing and recording the subject's behaviors [29].

The most problematic aspect of these techniques is the large amount of time and

money that they require. Due to the fact that recording data prevents continuous

observation, for each hour of data collected researchers must observe subjects for

over an hour. Furthermore, observers must be carefully trained and tire quickly. A

secondary problem with direct observation is that it introduces an observer into the

subject's environment. The physical presence of another person makes it more likely

that the subject's context and behavior will be effected by the study. This effect is

known as reactivity.

Recall Surveys

Recall surveys present subjects with a questionnaire in an attempt to gather data on

a previous event or behavior [18]. The survey's accuracy is critically dependant on

the subject's ability to recall the situation being studied. The primary problems these

surveys suffer from are recall and selective reporting biases. Subjects have difficulty

recalling the event or behavior being studied and the information they report is often

incorrect [37].

Time Diaries

Time diaries require subjects to record their behaviors as they occur or at regular

intervals. This helps to minimize some of the biases that effect recall surveys [35].

However, time diaries tend to suffer from low levels of subject compliance [38] and

can be quite burdensome on their users.

Indirect Monitoring

Indirect monitoring, in the form video or other sensors, addresses some of the problems

of direct observation, recall surveys, and time diaries. However, indirect monitoring

19

must be combined with other techniques to collect qualitative data on subjects, such

as feelings, reasoning, or interruptibility. As a result, indirect monitoring is often

supplemented with time diaries or experience sampling [21] (see Section 3.1.2). In

the absence of such supplementary data, indirect observation generally requires the

researcher to review and annotate all the collected data to locate events of interest.

This process can be as time consuming as direct observation.

3.1.2 Experience Sampling Methods

Overview

The experience sampling method (ESM) [131, also known as ecological momentary

assessment (EMA) [37] to medical researchers, has been developed to address the

deficiencies of field data collection techniques discussed in Section 3.1.1. Experience

sampling is an automated version of time diaries. The least automated ESM studies

require subjects to carry a diary and a device, such as a beeper, that will signal them

to record data. Computerized ESM studies require subjects to carry a palm-sized

computing device, such as a Palm Pilot or Pocket PC. In theses studies the computing

device prompts the subject for data and electronically records their responses.

Benefits

ESM improves on time diaries and recall surveys in several key ways. First, it improves

subject compliance and accuracy of the data collected [38]. Second, ESM studies

reduce the burden on the subject by prompting them for information instead of forcing

subjects to schedule their own recording times. Third, computerized ESM studies

simplify researchers' work by reducing the preparation needed for each subject and

by eliminating the intensive and error-prone data entry work that follows paper-based

studies.

20

Problems

While ESM addresses some of the deficiencies of the field data collection techniques,

it has some problems of its own. First, ESM does not provide for the collection of

objective data describing the subject's behavior or context. Instead, it relies on the

subject to accurately describe her own behaviors. Second, a data recording schedule,

also known as a sampling strategy, cannot be responsive to the subject's environment.

As a result, short activities of interest are often missed without intolerably high

sampling rates.

Availability

Both commercial [24] and free [5] computerized ESM software is available. How-

ever, these existing packages are significantly less functional than the Context-Aware

Experience Sampling Tool implemented in this research.

3.2 Interruptions and Activity Recognition

Research into building context-aware computer systems capable of interrupting users

at appropriate times has combined work from diverse fields. Medical and activity

research on sensors and sensor signal features as well as planning and machine learning

techniques developed by artificial intelligence and pattern recognition researchers have

found their way into context-aware systems.

Computerized ESM presents a possible application of context-aware systems re-

search. The biggest problem ESM causes for subjects is that they are interrupted by

the system at inappropriate times (see Section 5.1). To solve this problem ESM could

be integrated with interruption and activity recognition systems into a contextually-

aware ESM tool. Such a tool would be able to detect a subject's activity and schedule

interruptions for appropriate times.

21

3.2.1 Interruptions

Research into how to interrupt users can be grouped into three primary categories:

understanding when users are interruptible, planning interruptions, and deciding how

users should be interrupted.

Deciding When to Interrupt

Work on understanding when users are interruptible has usually taken the form of

human studies leveraging one or more of the techniques discussed in Section 3.1.

A good example is Hudson's study [21], which shows that social interaction is a

good indicator of when people are interruptible; people talking or working in groups

generally do not want to be interrupted.

Research of this type could be used with the Context-Aware Experience Sampling

Tool and the activity transition detection algorithm to verify the theory that people

in office-like environments prefer to be interrupted when they transition between

activities.

Planning Interruptions

Research on planning interruptions has focused on developing reminder strategies

that are not annoying to users and ensure that tasks are efficiently accomplished [28].

Much of this work, such as Pearl [33], involves developing and testing systems that

implement plan-based reminder strategies.

The interruption planning strategies developed by research in this area could be

extended with the activity transition detector or other contextually-aware algorithms.

This would enable interruption planning strategies capable of considering more as-

pects of a user's context and thus finding better interruption strategies.

Deciding How to Interrupt

The third area of interruption research has been on what content an interruption

message should have to clearly communicate with users. While some novel reminder

22

interfaces have been developed, such as SpiraClock [15], there has not been much

work addressing the core issues and challenges of reminder design [36].

The content of interruption messages is an important aspect of any complete

contextually-aware application.

3.2.2 Recognizing Activities

The physical activity of the user is an important piece of context that computer

applications should consider when deciding how and when to interrupt users.

Medical Activity Research

Medical and activity researchers have been exploring human activity recognition tech-

nologies for some time. Their work has focused on identifying characteristic motions

of human activities, the sensors needed to identify those motions, and quantifying the

energy expenditure [7, 8, 10, 17, 19].

This research is important primarily because it has validated the use of heart rate

and accelerometer data to quantify and identify physical activities.

Ubiquitous Computing Activity Research

Researchers from fields unrelated to medicine, such as computer science and pattern

recognition, have also studied human activity recognition. This work is more focused

on developing machine learning algorithms and techniques, such as Layered Hidden

Markov Models [32]. As a result, much of the work in this area relies on data gathered

from a small number of subjects in limited contexts [12, 25, 39]. However, there has

been some thorough work on robust activity recognition using simple sensors [34].

The relevant contribution from this area of research is the validation of machine

learning techniques to identify a wide range of human behaviors from posture [25] to

glances at a wristwatch [12].

23

3.3 Goals

The goals of this research are:

1. To improve on the existing ESM tools to better meet the needs of researchers.

2. To develop an algorithm capable of detecting good times to interrupt the users

of contextually- aware computer systems.

3.3.1 Improving ESM

Existing ESM tools are improved upon by the Context-Aware Experience Sampling

Tool. CAES integrates ESM features with a system capable of collecting sensor data

and dynamically modifying ESM strategies based on real-time analysis of sensor and

subject-provided data. In addition, CAES has been designed to be more flexible and

easier to use for both researchers and subjects than existing software packages.

3.3.2 Detecting Times to Interrupt

The algorithm capable of detecting good times to interrupt users has been developed

by detecting transitions between activities. When users transition between activities

they are also likely to break from their current task. As a result, targeting these

times for interruptions should be better than interrupting users at random times.

This algorithm also presents two opportunities for CAES. First, CAES can be used

to study transitions in human activities and collect data to support the development

of a machine learning based detector. Second, this algorithm can be integrated back

into CAES, making it an even more powerful and user-friendly system (see Figure 1-

1).

A key feature of the algorithm developed is that it is highly reliable in detecting

times when a user should not be interrupted. This alone is an important step toward

the implementation of contextually-aware ubiquitous systems.

24

Chapter 4

Design and Implementation

This section presents the design and implementation of both the Context-Aware Ex-

perience Sampling Tool and the algorithm capable of detecting transitions in human

activities.

4.1 Context-Aware Experience Sampling Tool

CAES is implemented in C++ and uses the Pocket PC 2002 Microsoft Founda-

tion Classes API (MFC). This program has been tested extensively on model 3870

HP/Compaq iPAQs, but it runs on all 3800 series iPAQs. HP/Compaq iPAQs were

chosen as the development platform because of their flexible input/output and sensor

capabilities. Porting CAES to other Pocket PC devices will be a simple process.

Figure 4-1 shows CAES running on a 3800 series iPAQ and two other Pocket PC

devices.

Figure 4-2 illustrates the interaction between primary CAES functional modules.

These modules are discussed in detail throughout this section.

4.1.1 Design Criteria

The design criteria for CAES is summarized in the points below:

25

Figure 4-1: The Context-Aware Experience Sampling Tool running on a Dell Axim
(left), iPAQ 3600 (center), and an iPAQ 3800 (right).

Complete Experience Sampling Functionality

CAES should be built as a next generation ESM tool. Toward that end, it

should have full support of all important and popular ESM features. In the

absence of sensor modules, CAES should operate as a good ESM tool.

Extensive Sensor Support

CAES should be built from the ground up to integrate a wide range of sensors for

both collecting raw data and enabling context-aware ESM strategies. It should

be possible to use sensors to answers questions, such as leaving an audio message

or taking a picture. Using sensors should be no more difficult for researchers

than specifying the survey questions and answers that will be asked of subjects.

Scheduling sensor readings should be as similar to scheduling survey questions

as possible.

Enhanced Flexibility

CAES should be more flexible than existing ESM tools. It should support

the integration of questioning strategies, such as subject-initiated, recurring,

researcher specified, and random. Each question and sensor should be inde-

pendently scheduled so these strategies can be used simultaneously in the same

study.

26

Quetions

Data

SubJect
Responses

Bensor Data &

SuXV y Subject Responses
settings

EventTags

Figure 4-2: This diagram illustrates the interaction between the primary functional
modules of the Context-Aware Experience Sampling Tool.

Leverage Existing Commercial Technology

CAES should be immediately usable by researchers in the real world. To achieve

this it should rely on existing and commercially available technology. This

applies to the hardware and software required to deploy CAES.

Easy to Start Using

CAES should be as simple for researchers to use as possible. If the system is

difficult to get running, its adoption will be inhibited.

Subject Friendly

CAES should be simple and easy for subjects to use. The interface should

be clean, functional, and easy to read. Subjects should not be able to access

the underlying Pocket PC platform. If anything goes wrong, subjects should

be able to reset the device and expect it to start working correctly. A visual

help system should be implemented to walk subjects through using sensors and

charging the system. Subjects should be made aware if the power runs low;

however, strategies should be implemented to make it unlikely that the system

will ever actually run out of power or lose data.

27

Extensible Implementation

The process of extending the CAES system to include new sensors and new

context-aware interactions, should be painless for any reasonably experienced

C++ programmer. More experienced programmers should be able quickly grasp

the system architecture and make improvements if they so desire.

Modular Construction

CAES should be modularly constructed. Any major CAES functional module,

such as the user interface, should be easily replaceable. CAES should be de-

signed so that its modules could be used in the building of a new Pocket PC

based context-aware system.

Open Source Distribution

CAES should be available to the research and business community to extend

as they see fit. Furthermore, useful extensions to CAES should be integrated

back into the distributed system.

These criteria have been met in the design and implementation of CAES.

4.1.2 User Interface

The default CAES user interface was developed over a period of several months with

a professional interface designer [4] and tested extensively after its implementation.

This interface has been successfully deployed with subjects eighteen to eighty years

old (see Section 5.1).

The user interface has four primary screens: the Default, Question, Device, and

Help screens. Figure 4-3 shows these primary screens. When not being prompted for

information, the subject can interact with the Default screen. This screen has no

functionality other than to mute the survey so that the device does not beep when

the subject is in a meeting, library, or a similar setting. The Question screen is where

the subject responds to survey questions. It currently supports both multiple choice

and multiple answer questions. Additionally, the researcher may give the subject

28

What are you doing
physically?6:3 2 PM p sittlN Recording Audio

April 5, 2003 0 Walking Mesage..
Survey: Actity Samplng Rekue $ b lue button ti

Us Aric*k8 Path __ ________ stop recording.cntac t: JOhn Randoni Goinguip stairs
House_n MIT
(617) 733-%47
yandonivmitadu AsWmrs 1-4 of 8 :Hold the GPS antenna

up in the air.
Mute survey More answers, touch arrow

Figure 4-3: The Context-Aware Experience Sampling Tool User Interface: The
Def ault screen's text (left) is customized for each study. The Question screen (left-
center) is displaying a question from the activity transition detector study. The
Device screen (right-center) shows the interface for recording audio messages. The
Help screen (right) shows one of three screens that demonstrates to subjects how to
use a GPS device.

the ability to answer questions by leaving an audio note or taking a picture. The

Device screen has no active elements and is visible while readings are taken from

sensors that require user interaction, such as GPS. The Help screen displays a series

of instructions. This screen is most often used for reminding subjects how to use

sensors.

The design of the user interface is focused on simplicity and usability. It is designed

such that users unfamiliar with handheld computers will be able to easily interact with

the system. For simplicity and security of the survey data, the interface covers the

entire 320x240 pixel screen and locks out all Pocket PC functionality. The generic

Help screen interface allows researchers to use sensors that require user interaction

and to build custom help files for other purposes. For example, a researcher may

use custom help files to prompt the subject to record data on a specialized paper

interface, such as a map.

Due to its flexibility and success with a wide range of subjects, this user interface

should meet the needs of most standard ESM and context-aware ESM studies. How-

ever, if the need arises for a new interface the existing one can be easily replaced due

to the modular design of CAES.

29

4.1.3 Specifying New Context-Aware Experience Sampling

Studies

Researchers new to CAES should be able to have the system up and running quickly.

After installation, the only necessary step is to define a survey and sampling strategy

in the QuestionDataFile (QDF). This can be easily accomplished using any spread-

sheet tool, such as Gnumeric or Microsoft Excel, because the QDF is stored in a comma

separated value (CSV) format.

A simplified QuestionDataFile is presented in Table 4.1. The first section of the

QDF contains the survey's global settings, such as the default question, Interaction

classes, and aggregation time (see Section 4.1.5). The second QDF section defines

the sensors used in the study, their sampling rate, and whether the subject should

be prompted to collect the data. In this example, the HeartRate sensor collects

data continuously without subject interaction, while the GPS sensor collects data

every thirty minutes and requires interaction with the subject. The final QDF section

defines the survey questions. Questions 1 and 5 are scheduled to query the subject

every fifteen minutes. The Chain field allows questions to be asked or sensor data

to be collected in response to subjects' responses. In this example, question 30 is

asked only when the subject responds to question 1 with Reading. Similarly, the GPS

sensor is sampled when the subject responds to question 5 with Yes.

If a previously unsupported sensor is required, the researcher will need to program

a new Sensor class (see Section 4.1.4). If a new context-aware capability is needed,

the researcher will need to program a new Interaction class (see Section 4.1.5).

Most researchers will be able to use CAES with no programmatic modifications.

To illustrate the flexibility and capabilities of CAES, consider a psychology study

of human emotions. To study people's emotions on a daily basis a researcher may

want to prompt subjects' when their heart rate significantly increases in the absence

of physical activity. To detect heart rate the researcher may decide to use a Polar

heart rate monitor and to control for physical activity the researcher may decide

to fit subjects with an accelerometer. This study would be able to leverage the

30

'es aa'pe ale
SurveyName

DefaultQuestion

Aggregation

QuestionTimeOut
Interactions

ForceAggregation

String
ID
H:M
H.M
ClassString
EventTagString

Example QDF File
5
0:10
0:2
HeartRateInteraction
HEARTRATEINCREASE

ID DeviceType UserSample Continuous Recur Chain ...
>0 DeviceString Y/N Y/N WD:H:M ID ...
100 SerialGPS Yes No 0:0:0:30 1 ...
200 HeartRate

QuestionType

No

Recur

Yes

Question Answer Chain

>0 QuestionString W:D:H:M I String String ID
MLTPLCHCE
MLTPLCHCE
MLTPLANSR

0:0:0:15
0:0:0:15

What are you doing?
Are you outside?
What do you read?

Reading
Yes
Books

30

100

Table 4.1: a Simplified CAES QuestionDataFile Example. The top table contains
the global settings for a survey. The center table contains the survey sensor definitions.
Only sensors that are used in a study need to be defined. The bottom table contains
the question definitions.

existing Polar heart rate monitor Sensor class. However, a new Sensor class for the

accelerometer and a new Interaction class to detect emotional events will have to

be programmed.

Once the programming is complete, CAES would be capable of monitoring sub-

jects' heart rate and physical activity. When the researcher's new Interaction class

detects an accelerated heart rate in the absence of physical activity it would signal the

core scheduling system by sending an EventTag (see Section 4.1.5). The core schedul-

ing system would then take action based on the researcher's QuestionDataFile. In

this case, the EventTag would cause the subject to be prompted with questions con-

cerning their emotional state.

31

ID

1
5
30

DataTypesKeys Values

Figure 4-4: These images show the Context-Aware Experience Sampling Tool with
sensors: The bar code scanner (left) can read standard 2D bar codes. The camera
(left-center) enables subjects to take a picture as an alternate answer to questions
when enabled by the researcher. The GPS receiver (right-center) provides outdoor
location data. The iPAQ serial cable (right) enables CAES to support for a wide
range of sensors, such as a wireless Polar heart rate monitor.

4.1.4 Sensor System

The CAES sensor system is designed to support a large number of sensors, such as

GPS, heart rate monitor, bar code scanner, and microphone. Figure 4-4 shows several

sensors CAES currently supports. Only a small subset of these sensors can be used

simultaneously due to limited input/output capabilities of a Pocket PC. CAES takes

advantage of this and only creates internal instances of those sensors defined in the

QuestionDataFile. Sensors in CAES have two roles: the collection of data and the

context-sensitive triggering of subject interaction. Sensors can serve either of these

two roles or both simultaneously.

The CAES sensor system was specifically designed to be easily extensible as new

sensors become available. Programmers are provided with two tools to aid in extend-

ing the CAES sensor capabilities: the DataSource and Sensor classes.

Data Sources

DataSource classes encapsulate a low level input stream, such as a serial or network

port. This allows programmers, even if they are unfamiliar with Pocket PC APIs,

to quickly integrate new sensors that rely on standard communication methods. By

32

leveraging DataSource classes, a programmer can access new sensors in three lines of

C++ code: one line to create an instance of the appropriate DataSource class, one

line to initialize the class by calling Initialize (), and one line to get data from the

sensor by calling GetBytes (BYTE* buf , UINT length).

Sensors

All sensors supported by CAES extend the abstract Sensor class. The Sensor class

greatly eases the burden on the programmer integrating a new sensor into CAES.

Sensor implements all the thread protection and core scheduling system interfacing

functionality that a sensor requires. Programmers adding a new sensor to CAES need

only to extend the Sensor class and implement its six abstract functions. Because all

the CAES system code has already been implemented, programmers of new sensors

can focus on the sensor specific functionality.

By leveraging both the serial port DataSource implementation and the Sensor

class, a Polar heart rate monitor was added to CAES in 41 lines of new C++ code.

Seventeen of those 41 lines of code are used only for storing the time-stamped heart

rate data to a tab-delimitated file.

4.1.5 Interaction System

The interaction system implements CAES contextual-awareness and context-sensitive

triggering capabilities. The interaction system has two primary components: Interaction

classes and the core scheduling system's list of EventTags and associated actions.

EventTags are a secondary component of the interaction system. They are the mes-

sages that link the core scheduling system and the Interaction classes.

Interaction Classes

Before any sensor or subject-provided data is stored it is passed through all Interaction

classes specified by the researcher in the QuestionDataFile. At this point each class

can perform any processing on the data. The Interaction classes act as detectors.

33

When they notice an interesting event in the sensor or subject-provided data they can

alert the core scheduling system by sending an EventTag descriptive of the detected

feature.

Core Scheduling System

A list linking EventTags to actions is maintained by the core scheduling system. These

links are created according to the researcher's specification in the QuestionDataFile.

When a particular EventTag is received, one of several things can happen. First,

EventTags can be linked to questions or sensors, causing them to be activated, deac-

tivated, or triggered. Triggered questions prompt the subject for information, while

triggered sensors gather data. Second, EventTags can be linked to system events and

cause CAES to terminate execution or cause all timers to be aggregated. When all

timers are aggregated, any questions or sensors scheduled to be triggered within the

Quest i onDataFile specified aggregation period will be triggered.

Extending the Interaction System

The interaction system is central to the contextually-aware functionality of CAES.

It is expected that researchers will need to extend the interaction system to im-

plement new context-aware capabilities. To support this, programmers have been

provided with an abstract Interaction class that implements the necessary system

interfaces and thread protection. As a result, the programmer is free to concentrate

on the signal processing and context-aware functionalities that their new class must

implement. Programmers of new interactions are required only to implement the

RunInteraction() function, which is where all signal and data processing should

occur.

4.1.6 Core Scheduling System

At the heart of CAES is a timing and scheduling system. This system is configured

on each run by a researcher specified QuestionDataFile (see Section 4.1.3). This

34

file contains the questions that are to be asked of the subject as well as the sensors

and sampling strategies to be used. The core scheduling system is responsible for

notifying the user interface when the subject is to be prompted for information. It

also works with the user interface to manage the system's power. The core scheduling

system enables CAES's context-awareness by maintaining a list of EventTags and a

list of actions to be taken when each EventTag is received. In addition, this system

routes sensor and subject-provided data through active Interaction classes before

the data is stored (see Section 4.1.5).

The core scheduling system should not require customization beyond that provided

by the QuestionDataFile.

4.1.7 Status of CAES Project and Software

The Context-Aware Experience Sampling Tool has been implemented as described in

this paper and is freely available as MIT Licensed Open Source Software [11]. This

project is being maintained by researchers at the MIT House.n / Home of the Future

Project [30].

4.2 Activity Transition Detector

The activity transition detection algorithm has been designed for eventual implemen-

tation as a CAES Interaction class. This would allow CAES to target questions at

activity transitions. Targeting interruptions for activity transitions should be better

than interrupting users at random times because users are likely to be taking a break

from their current task when they transition between activities.

4.2.1 Activity Transition Selection

For tractability, the general problem of detecting transitions in human activities was

narrowed to focus on those activity transitions that occur in office and classroom-like

environments. For the purposes of this study, office and classroom activities include:

35

sitting, standing, walking, using stairs, and lying down. These activities were selected

because they have been the subject of successful activity recognition studies based

on simple sensors [14, 17, 26, 34] and because transitions between them should be

generally indicative of changes in a person's task. For example, when a person gets up

from her desk to get a cup of coffee, she takes a break from desk work and undergoes

a transition in activity from sitting to walking.

4.2.2 Sensor Selection and Placement

For developing the activity transition detector a Polar [16] wireless heart rate mon-

itor and a planar accelerometer were chosen. Previous medical activity and pattern

classification research shows that these sensors are sufficient to recognize the selected

activities [14, 17, 34]. This implies that those sensors should also be good choices for

detecting the transition between activities.

Heart Rate Monitor Selection

The heart rate monitor was selected because it is a good indicator of transitions

between postures, such as sitting and standing [10, 17]. Furthermore, the heart rate

monitor may also indicate transitions between static and dynamic activities, such

as sitting and walking, or between dynamic activities that require different levels of

exertion, such as walking and using the stairs. Figure 4-5 shows the Polar heart rate

monitor worn by subjects as well as the circuit board used to receive the heart rate.

The receiver sent its data over a short wire to the iPAQ serial port.

Planar Accelerometer Selection

The accelerometer was selected for three primary reasons. First, a planar accelerome-

ter can indicate posture and therefore differentiate between different static activities,

such as sitting and standing still [17]. Second, the accelerometer signal should dis-

tinguish between static and dynamic activities [10]. Third, accelerometers have been

shown to capture subtle changes in patterns of motion that may help differentiate

36

Figure 4-5: the heart rate monitor. The top three images show the standard commer-
cial Polar wireless heart rate monitor configuration. The heart rate monitor is worn
around the center of the torso (top-left). The heart rate monitor transmits the heart
rate wirelessly to a receiver in a watch that displays the users' heart rate (top-right).
The bottom three images show the custom heart rate receiver that was connected to
the iPAQ for this study. The heart rate receiver board is small enough to be com-
fortably worn in subjects' pockets or on their belt (bottom-center & bottom-right).
The board needs its own power supply in the form of a nine-volt battery, but is still
reasonably sized (bottom-left).

between dynamic activities such as walking and using the stairs [3, 20].

Planar Accelerometer Placement

For this study, the planar accelerometer was placed on subjects' outer left thigh;

tangent to their side such that the Y-axis runs vertically along the subjects' body

and the X-axis runs horizontally from the subjects' back to their front.

The accelerometer was thigh-mounted for several reasons. The accelerometer

board being used, shown in Figure 4-6, was bulky and uncomfortable for extended

wear in many places. For example, if placed on a subject's back, they would not

be able to sit normally. The ADXL202 accelerometer used is only capable of mea-

suring up to two G's, while the extremities of human limbs receive nearly ten G's

of acceleration in many activities [7]. As a result, limb extremities were not a good

placement choice. In addition to these criteria, the thigh was chosen because it would

37

Figure 4-6: the Planar Accelerometer. The accelerometer is mounted on the top of
the data collection board (left). The board is powered by four AAA batteries and
data is stored to the compact flash card located on the underside of the board (left-
center). The board is rather thick (right-center); however, it was easily mounted on
subjects' outer left thigh using a coin purse and elastic strap (right).

allow the planar accelerometer to differentiate between standing, when the X-axis is

perpendicular to gravity, and sitting, when the Y-axis is perpendicular to gravity.

4.2.3 Survey and Sampling Strategy

Subjects were asked seven questions by CAES for this study. Six of the questions were

used to identify activity and one addressed how open to interruption the subject was.

In any one question series a subject would have to answer at most three questions:

two for identifying their activity and one concerning how willing to be interrupted

they were. These questions were presented to the subject at regular intervals of four

minutes. This sampling rate was chosen because it was the highest sampling rate

preliminary testers found tolerable for studies up to eight hours.

To increase the number of activity labels near activity transitions, a simple context-

aware Interaction module was developed. This module would send an EventTag

when a subject's heart rate rose or fell continuously for fifteen seconds or when it

changed by twenty percent or more in a second. The QuestionDataFile specified

that this EventTag would aggregate questions and prompt the user for an activity

label (see Section 4.1.5). Figure 4-7 shows an example of where this context-aware

38

,lo2 - I 3I I ;I I : I
1: S-anding S 3 Sing 4 SlUng

100 20 3004O KO70

F 1gur 4-7 Thes plt hw neape hr hag nher aeovrtet

70

400 53jI 13-0 :0 131145 : 1.

s 13:0515 13073 13:11:49 1 131511 1

0 ~ no0 20I 0 4 000 6" 0 0500 ?S HO 00

Figure 4-7: These plots show an example where a change in heart rate over twenty
percent caused CAES to prompt the subject for an activity label. The dotted line
indicates when a subject was prompted for the activity label. The immediately fol-
lowing solid line indicates when the subject responded and the activity label they
provided. As a result of prompting the subject for this information, CAES was able to
accurately label an activity transition from standing to sitting. See subject-provided
activity labels two and three in the above image.

triggering occurred and improved the accuracy of the data.

4.2.4 The Labeling Problem

The labeling problem is the challenge of accurately identifying all activity transitions

using CAES. Two labeling difficulties arose during this study. First, subjects occa-

sionally entered incorrect information. Second, in some cases subjects underwent two

symmetric activity transitions, such as sitting to standing and standing to sitting,

between providing activity labels. As a result, a transition occurred but was not

labeled.

To allow researchers to evaluate the effectiveness of subject labels and to modify

them when they are obviously wrong, a Matlab interface capable of viewing an entire

day of planar accelerometer and heart rate data along with subject-provided labels

was developed. The interface allows researchers to view the data by zooming in

and out as well as scrolling temporally. The subject-provided activity labels can be

modified or deleted and new activity labels can be added simply by clicking on the

39

1:3845 183W.56 18:43.47 1 74

100 200 301 400 00 600 700 800 900

N- D + - RTV&Anw..,1j 4p*neID4I

Figure 4-8: This tool displays the planar accelerometer and heart rate data. The
user is able to scroll temporally with the controls at the top of the interface. The
lower controls allow the user to modify existing activity labels or add new ones.
Additionally the user can zoom in and out to view different time periods.

graphed data. Figure 4-8 illustrates this interface and its functionality.

Section 5.2.2 demonstrates the use of this tool to evaluate the extent of the labeling

problem.

4.2.5 Representation

State Space Description

Most machine learning human activity recognition research relies on a representation

that describes subjects' activities as a series of states. For example, consider a time-

line annotated with subjects' activities, such as walking and running. These models

of human activity usually return the likelihood that an individual is performing a

particular activity at a given time. Such an approach is appropriate if the problem

to be solved is determining the current activity of an individual. However, this is not

the problem being addressed by the activity transition detector. This algorithm is

attempting to detect the transitions between activities, not the activities themselves.

40

Transition Space Description

Borchardt's Transition Space representation is based on the insight that the correct

way to reason about causal descriptions and temporal events is often not as a series

of states, but as a series of transitions [6]. Consider a car accident. A State Space

description of an accident would be: The cars were moving. Next they collided. Then

they stopped. In contrast, a Transition Space description would be: The distance

between the cars decreased. Next the distance between the cars disappeared. Then

the velocity of the cars decreased and disappeared. The important difference between

these two descriptions is that state based one focused on a series of states while the

transition based one focused on the important changes between the states.

Transition Space Benefits

The Transition Space paradigm is a better choice for a detector of transitions between

human activities for several reasons. First, the transition space representation focuses

the designer's attention on the features that describe transitions instead of those that

describe activities. While some features may be descriptive of both activities and

transitions between them, this is not always the case. For example, the Transition

Space representation suggests features, such as change in heart rate, that are not

descriptive of a particular activity but are descriptive of transitions between them.

Leveraging the Transition Space representation allows the actual activity of a

subject to be ignored. The advantage of this is that it enables the detection of

transitions between activities not anticipated by the system designer. An activity

recognition or State Space approach can only detect transitions between activities

it is able to recognize. At best, a well designed State Space system would also be

aware of when an unknown activity is being performed. However, such a system

would be helpless to detect transitions between unknown activities. In contrast, the

Transition Space approach allows these types of unknown activity transitions to be

detected because the system is not burdened with having to first detect individual

activities before detecting transitions between them. This also allows the detection

41

70

60
50
40

30

Preprocessed Hear Rale Data

0 m00 200 300 400 500 60 0 100 200 30 400 500 600
Ti,,, (morda0) The, (.00h0)

Figure 4-9: These figures shows the same ten minutes of heart rate before and after
it was preprocessed. The zeros in the raw data (left) are the result of a lost wireless
connection. The missing heart rate values were computed by averaging the nearest
good data points. As a final step, the preprocessed signal (right) is low pass filtered.

of transitions between hard to detect activities.

4.2.6 Data Preprocessing

This section describes the preprocessing steps taken with the heart rate, planar ac-

celerometer, and subject-provided activity labels collected by CAES. Following the

preprocessing, features are computed on the data (see Section 4.2.7) and the features

are used in machine learning algorithms to complete the activity transition detector's

development (see Section 4.2.8).

Heart Rate Monitor

The heart rate monitor data was noisy due to the wireless connection and occasional

poor readings.

Two steps were taken to clean the heart rate monitor signal. First, all unreliable

heart rate readings and those that differed by over 25% from the previous reading

were replaced with the average of the first previous and following good data points.

42

Raw Heart Rate Data

70- -

60 -

50 . i

30 -

20 -

N ~

100 -

0 50 0 1 00 x) 350 400 4 50

200(l0,

Figure 4-10: This is a plot of ten minutes of planar accelerometer data. The crossover
of the X and Y-axis signals is indicative of a change in posture from standing to
sitting. The planar acceleration is measured on a scale from 0 to 1023; a value of 512
indicates zero acceleration, 1023 indicates 2G's of acceleration, and 0 indicates -2G's
of acceleration.

Second, the signal is low pass filtered such that:

y[n] = x[i].
i.=n-8

Each value of the filtered signal is the average of it and the eight previous unfiltered

values. This process was recommended by Polar, the heart rate monitor manufac-

turer [22, 9], and yields a cleaner and more reliable signal. Additionally, this filter

requires very little computation and thus can be easily implemented in a real-time

algorithm. Figure 4-9 illustrates the effectiveness of heart rate data preprocessing

with ten minutes of data from this study.

Planar Accelerometer

The planar accelerometer data collected from subjects' left thighs required no pre-

processing. Figure 4-10 shows ten minutes of accelerometer data collected for this

study.

43

Pla- Amale-for Data

Y.I.
X-I.

Subject Question Responses

The only noise in the question data was a result of subjects entering incorrect data.

While this is a concern, no pre-processing techniques can effectively account for this.

The best that can be done is to compare the subject-provided activity labels to the

heart rate and planar accelerometer data to ensure that the subject's responses were

generally accurate. This problem is discussed more generally in Section 4.2.4. The

extent of the incorrect subject-provided data is evaluated in Section 5.2.2.

4.2.7 Features

This section describes the features that were calculated on the planar accelerometer

and heart rate data. All of these features are based on the temporal change of an

interesting characteristic in the raw data. This is a direct result of the Transition

Space approach, which emphasizes directly identifying transitions between activities

by analyzing temporal changes in the data.

Heart Rate Monitor Features

Only two features were computed on the heart rate data: the change in mean heart

rate and the change in the average slope of the heart rate.

Change in mean heart rate was chosen because different physical activities cause

human hearts to operate at different rates. As a result, changes in mean heart rate

may be indicative of transitions in activity.

Change in the heart rate slope was chosen because human heart rates do not make

discrete jumps. Instead the heart rate changes gradually as people transition between

activities. Additionally, human heart rates tend to remain steady when a person's

activity stays the same. For these reasons, significant changes in the slope of heart

rate may be indicative of transitions in activity.

44

Planar Accelerometer Features

Four features were computed on the planar accelerometer data: change in mean X and

Y-axis acceleration, change in the mean difference between X and Y-axis acceleration,

change in the primary frequencies of the X and Y-axis signals, and change in the

magnitude of the primary frequencies of the X and Y-axis signals.

Change in the mean accelerometer values was selected as a feature because those

values are indicative of posture. For example, when a subject is standing, the Y-axis

is parallel to gravity's acceleration while the X-axis is perpendicular to it. A large Y-

axis acceleration and a small X-axis acceleration is descriptive of a standing posture.

Changes in posture are important because significant changes in posture should also

be indicative of transitions between activities.

Change in the mean difference between the X and Y-axis acceleration was also

selected because it is indicative of posture. A large mean difference between the

accelerometer signals is descriptive of the fact that the larger of the two is closer to

parallel with gravity while the smaller is closer to perpendicular with gravity. A small

mean difference between the signals is descriptive of a posture in which both the X

and Y-axis accelerometers are offset from vertical by a similar degree. As a result,

significant changes in the mean difference between X and Y-axis accelerometer signals

may indicative of transitions between postures and activities.

Change in the primary frequencies and their magnitude should be indicative of

changes between dynamic activities, such as walking and using stairs. The frequency

of human leg motion is different for walking up stairs, walking down stairs, and

walking on flat terrain. Therefore, significant changes in primary frequencies and

their magnitude should be indicative of transitions between activities.

Calculating Features

Calculating the features from the pre-processed signals is a three step process.

1. Creating and Labeling Data Segments

First the pre-processed data is segmented based on the subject-provided activ-

45

ity labels. Each data segment contains heart rate and accelerometer data for

the period between two subject-provided activity labels.

After the data segments are created they are labeled as transition or stable.

Segments with the label transition have different subject-provided activity labels

directly preceding and following them. Segments with the label stable have

identical subject-provided activity labels directly preceding and following them.

2. Calculating Feature Precursors

Each of the features described has a pre-change precursor, such as mean heart

rate for the change in mean heart rate feature and mean X-axis acceleration for

the change in mean X-axis acceleration feature. These feature precursors are

calculated for each static data segment.

3. Segment Comparison

The final features are calculated by comparing the feature precursors of differ-

ent static data segments.

Each static segment is compared to the first two of the three segments that tem-

porally precede it, if those segments are also labeled static. Segments are not

compared to their immediate predecessor because an activity transition takes

a significant amount of time. The segments temporally located between those

compared is where an activity transition may have occurred.

After the final features are calculated by comparing the feature precursors of two

segments, each segment comparison is labeled. If a transition segment is tempo-

rally located between the two static segments compared, then the comparison

is labeled a transition. If all the segments temporally located between those

compared are labeled static, then the comparison is labeled static. Figure 4-11

illustrates how this process works.

46

Sitting Sitting Sitting Sitting Walking Walking

Static Static Static Transition Static

Time

Figure 4-11: This illustrates the process of comparing feature precursors of each static
segment to the feature precursors of first two of the three segments that temporally
precede it. In this case, the first two of the three segments that precede the current
one are both static. As a result, the current segment is compared to both. There is a
transition segment located between those compared. Therefore, both these compar-
isons with their features will be labeled as transition instances.

4.2.8 Machine Learning

The final step in constructing the activity transitions detector was to build and test a

classifier. Standard machine learning techniques were used to build classifiers based

on the segment comparisons. The performance of all classifiers were verified with ten

fold cross-validation.

Section 5.2.4 presents the performance of the machine learning algorithms. The

WEKA [1] machine learning tool was used to perform the machine learning tasks.

47

Chapter 5

Evaluation

This section aggregates the feedback received concerning CAES and the algorithm

for detecting activity transitions.

CAES feedback has come from both researchers and subjects involved with CAES

based studies. Feedback was received from a broader community at the 2003 CHI

conference [23] and through more informal channels.

The activity transition algorithm has been evaluated primarily on the basis of its

performance on approximately 130 hours of data collected from nineteen subjects.

5.1 Context-Aware Experience Sampling Tool

Evaluation of CAES has primarily been a process of eliciting subjective feedback from

researchers and subjects using the system.

5.1.1 Patterns of Daily Life Study

CAES is currently being used in an ongoing MIT study into the patterns of activities

people perform in their own home. In this study CAES is being used to ask subjects

to identify their current activity, such as watching TV or cooking. The subject self-

report labels will then be synchronized with data collected from a large number of

simple switch sensors taped throughout the subjects' homes [31]. At the time of

48

writing, two subjects in this study had used experience sampling for sixteen days

each. The first subject was a thirty year-old female and the other was an eighty

year-old female.

At the conclusion of the studies, each of these subjects was interviewed and asked

about the study and CAES. In both cases the subjects indicated that the experience

sampling was disruptive to their activities. They also both commented that the

CAES requirement that they view all possible answers before completing a question

was annoying. However, most of the comments from both subjects concerning CAES

were focused on the questions and answer choices the researcher chose to present them

with.

At one point during the sixteen day study with the first subject, CAES failed

to wake-up and start prompting the subject for information in the morning. At the

conclusion of the study the CAES log file was studied and a minor bug that was the

likely cause of this problem, was discovered and fixed. This behavior has not been

observed since this fix was made.

An interview before the start of the study with the eighty year-old subject re-

vealed the need for a modification to CAES. This subject had difficulty reading the

question and answers quickly and thus needed longer than normal to answer each

question. CAES, however, would begin to beep at the subject only 90 seconds af-

ter presenting them with a question. To solve this problem a line was added to the

QuestionDataFile to allow researchers to specify the delay before CAES starts beep-

ing at the subject and before CAES assumes the subject has ignored the question.

Overall the results of these studies were positive for CAES. Subject frustrations

were not with the tool, but with the interruptions inherent to all ESM studies. Only

two modifications of the CAES software were required. One modification added an

important feature and one fixed a minor bug. It is a testament to the CAES interface

and design that most of the subjects' comments focused on the researcher's survey

design. This implies that the software was unremarkable, easy for the subjects to

use, and that the success of a deployment will be determined by a researcher's survey

and sampling protocol, not by CAES. These studies are confirmation that CAES

49

can be successfully deployed for extended periods of time without any researcher

intervention.

The end of study interviews with these two subjects suggest a few guidelines for

researchers as they design and deploy CAES based surveys. First, each question

should be as easy to understand and answer as possible. Second, overall survey

organization and question ordering should be carefully considered. For example if the

subject indicated five minutes ago that they were watching TV, the survey should

assume they are still watching TV. If that is not possible, the survey should at least

ask if the subject is still watching TV before requiring them to choose from a long list

of possible activities. Finally, whenever possible questions and their answers should

be tailored to each subject's unique situation.

5.1.2 Activity Transitions and Interruption Study

At the conclusion of the study with each subject, a brief interview was held to gather

the subject's feelings about the study and CAES.

There were several comments that echoed throughout most of the interviews. The

first was that a four minute CAES sampling rate was at, if not beyond, the limit of

what is tolerable for a business day. Subjects also generally disliked having to view

all the answers to a questions before making their selection. Finally, when directly

questioned about the software user interface, subjects responded that they found it

intuitive and easy to use.

It is interesting to note that subjects quickly became aware of the context-aware

question triggering used in this study. Nearly every subject mentioned that CAES

seemed to prompt them for activity labels when they transitioned between dynamic

and static activities, such as walking and sitting.

Throughout this study CAES was reliable. No changes to the software were

required. Some modifications to the survey and sampling strategy were required

after preliminary testing.

50

5.1.3 Additional Studies and Interest

Discussions about the capabilities of CAES with other researchers were quite positive.

These conversations took place in the context of the 2003 CHI conference [23] on

human-computer interfaces and also in more informal discussions. Several researchers

from other universities indicated they were interested in using CAES in their own

work. Since CAES is a highly flexible and freely available tool [11], it should prove

applicable to a wide range of ubiquitous system, context-aware interface, and human

behavior research.

5.2 Detection of Activity Transitions

The evaluation of the algorithm capable of detecting transitions between human ac-

tivities is highly objective compared to the evaluation of CAES.

5.2.1 Subjects

To properly evaluate the activity transition detection algorithm it was necessary to

collect real-world data from a significant number of subjects. A major pitfall that

many ubiquitous computing and context-aware system research projects fail to avoid

is verification of their results with data from real people doing real things. These

systems are too often evaluated in laboratory settings with the only subjects being

the same researchers that implemented the system.

For this work, data was collected from MIT students, students from other Boston-

area colleges, MIT researchers, MIT staff, and a Boston area lawyer. Table 5.1

contains additional demographic data on the subjects.

5.2.2 Data

Approximately 130 hours of heart rate data, planar accelerometer data, and subject-

provided activity labels were collected from the nineteen subjects. The mean study

51

Subject Age

Oldest Subject 33

Number of Male Subjects 16 Youngest Subject 18
Mean Subject Age 23

Table 5.1: Activity Transition Detector Subject Demographics

length per subject was 6.8 hours; with a minimum of 4.5 hours and a maximum of 10

hours.

5.2.3 The Labeling Problem

The Matlab interface for viewing subject data and correcting activity labels was used

to critically evaluate the extent of the labeling problem (see Section 4.2.4). Two

subjects' data and activity labels were evaluated for correctness. While it was not

possible to determine the correctness of all subject-provided activity labels, it was

possible to do a sanity check on them. Consider the following scenario: the Y-

axis of the planar accelerometer is measuring gravity's acceleration and the X-axis

is measuring little or no acceleration. At such a time the subject is almost certainly

standing; a SITTING activity label would be clearly wrong. In addition, significant

symmetric activity transitions, such as sitting to standing and standing to sitting,

occurring between activity labels can also be properly identified and labeled.

Overall the subject-provided activity labels were accurate. Most of the errors were

the result of symmetric activity transitions between user provided labels. The first

subject evaluated had only four unlabeled transitions during a seven hour study, all of

which were symmetric activity transitions between activity labels. The second subject

had ten unlabeled transitions in a ten hour study, eight of which were symmetric.

Only the second subject provided answers that were obviously incorrect. There were

two such answers provided by the second subject; however, in both cases the subject

transitioned between activities while answering the question. It seems that these

incorrect answers were accidental.

52

Subject Sex

From this analysis it is clear that one modification to the study would catch most

of the transitions missed: prompting the subject for activity labels when X and Y-axis

accelerometer signals undergo significant and simultaneous changes.

5.2.4 Performance

The performance of the activity transition detection algorithm based on a Naive

Bayesian and C4.5 classifier is presented in Table 5.2. These performance charac-

terizations are based on ten-fold cross-validation of the algorithms. The percentages

above the tables indicate the overall percentage of correctly classified instances. The

table rows represent the correct classification and the columns contain the algorithm

provided classification. The top two tables contain the likelihood of a static or tran-

sition class receiving a particular classification. The bottom two tables contain the

number of instances from each class receiving a particular classification.

The Naive Bayesian classifier is good at correctly detecting activity transitions.

However, because it misclassifies a significant number of static instances as transition,

the Naive Bayesian approach causes a high number of false positives. In this case,

only 59.5% of the instances classified as transition were actually transitions. This

is a problem because if actually deployed, the Naive Bayesian classifier would only

be correct about 60% of the time when it determined that a user was transitioning

between activities. As a result, users would be interrupted incorrectly 40% of the

time.

Overall the C4.5 classifier is the better choice. While it fails to correctly detect

a larger number of activity transitions, it is better at detecting static instances; the

absence of an activity transition. Due to the much larger number of static instances,

the C4.5 based classifier has a much lower false positive rate: 17%. Although the

actual number of instance classifications that are different between the Naive Bayesian

and C4.5 classifier is relatively low, C4.5 is significantly more reliable when it classifies

a instance as transition. This classifier will interrupt users correctly 83% of the time.

53

Naive Bayesian: 89%

Static Transition Static Transition
92% 8% static 98% 2% static
30% 70% transition 32% 68% transition

Static Transition Static Transition
1808 155 static 1919 44 static

96 227 transition 103 220 transition

Table 5.2: This table contains the classification results of the Naive Bayesian and
C4.5 algorithms. The percentages above the tables indicate the overall accuracy of
each classifier. The rows of all the tables represent the correct classification, while the
columns represent the resulting classification. The top two tables show the likelihood
that an instance of a particular class will receive a particular classification. The
bottom two tables show the actual number of instances of each class that received a
particular classification.

5.2.5 Analysis

The activity transition detection algorithm is very reliable detecting the lack of tran-

sitions between activities and is still reasonably sensitive to activity transitions.

This algorithm was developed to help the designers of context-aware ubiquitous

computer systems identify better times to interrupt users. If further research shows

that it is better to interrupt people when they transition between activities instead

of a random time than this algorithm is a success.

This algorithm is very effective at detecting when people are not transitioning

between activities and so would be highly accurate in detecting when not to interrupt

users. This is exactly what is desired, a reliable method of detecting when a users

should not be interrupted.

While this activity transition detection algorithm is more effective at detecting

when people do not transition between activities, it is still a reasonably sensitive

detector of transitions. More importantly, it is a reliable detector of transitions. A

transition classification is highly reliable with a C4.5 based system.

54

C4.5: 93.5%

Chapter 6

Conclusions

There are two primary contributions of this work: the design and implementation of

the Context-Aware Experience Sampling Tool and the development of an algorithm

capable of detecting real-world human activity transitions.

6.1 Context-Aware Experience Sampling Tool

CAES has proven itself, in testing and several studies, to be a robust and useful tool

for the study of natural human behaviors and contexts. This tool provides ubiquitous

computing researchers and context-aware systems researchers with a cost effective and

flexible way to study people and collect data for the implementation of new systems

and interfaces.

The data collected by CAES in this and other studies will allow researchers from

a wide range of disciplines to analyze human behavior in natural environments.

While CAES is fully implemented and freely available, future work could focus on

the development of more advanced Interaction classes and the integration of new

sensors into the tool.

55

6.2 Activity Transition Detector

The algorithm for detecting human activity transitions in office-like environments has

been shown to be effective and resistent to noise. This algorithm is an important step

because it reliably detects activity transitions and is highly accurate at identifying

when an activity transition does not take place. With only minor modifications, this

algorithm could be implemented as a real-time detector in a context-aware system and

allow that system to interrupt users at times more appropriate than those randomly

selected. For example, this algorithm could be implemented as a CAES Interaction

class.

The activity transition detection algorithm takes a novel approach to detecting the

human behaviors of interest: activity transitions. By leveraging Borchardt's Tran-

sition Space representation [6], the need to identify particular activities disappears.

This approach is simpler because it focuses the designer and the system at the most

important results of the behavior to be identified instead of at the behavior itself.

Future work on this algorithm could follow one of two paths. First, its perfor-

mance could be improved by identifying the activity transitions most likely to be

misclassified. Second, it could be used as the basis to study when context-aware

computer systems should interrupt people. In particular, future work should focus

on validating the theory that interrupting users at activity transitions is better than

interrupting them at random times.

56

Appendix A

CAES User Interface

This section describes the Context-Aware Experience Sampling Tool user interface in

greater detail and discusses some of the design changes that were made in response

to user feedback.

A.1 Default Screen

The Def ault screen has largely remained unchanged since the original design. This

screen only allows the user to mute the survey for up to two hours. This functionality

was required so that users could reasonably be expected to use CAES in their daily

lives. For example, when going to a movie, attending a meeting, or studying at a

library users must be able to prevent CAES from beeping at them. Figure A-1 shows

all the possible views of the Def ault screen.

A.2 Question Screens

The CAES question screen underwent one major set of revisions. When first tested,

subjects had a difficulty understanding the arrows at the bottom of questions spanning

multiple screens due to a large number of possible answers. Subjects would often

select the best answer from the first screen without realizing that there were more

possible answers. Also, subjects who did click on the arrows often thought they were

57

6 3 Mute survey for: 6:48
April 5, 2003 April 5, 2003

Survey: Activity Sampling
User: Andrea Patch

S1-hour
Contact: John Rondoni

Housen MIT
(617) 733-9847 2 hours
jrondoni~mitedu

Mute survey I Never mind 1 k Turn mute off

Figure A-1: the Def ault screens. The standard screen is visible to the user when the
survey is not muted (left). By pressing the Mute survey button users can access the
mute screen that allows them to select a time period to mute CAES (center). When
CAES is muted the user is notified of the time when the mute ends and is provided
with a button to end the mute on demand (right).

answering another question instead of viewing more answers to the same question.

To address these issues, directions were added to the bottom of the question screen.

When the user can view more answers to the same question the text More questions,

touch arrow is displayed. When the user has viewed all possible answers but has not

selected one, the text Select answer is displayed. Once the user has selected an answer

and viewed all the possible answers to a question, an Ok button replaces the directions

so they can complete the question. Figure A-2 illustrates these modifications.

There are some cases where the researcher designing the survey cannot ensure that

the questions asked of subjects will be applicable or that an appropriate answer will

be available. To deal with such scenarios, researchers are provided with two options.

First, they have the ability to allow subjects to select Not now instead of answering a

question. The fact that the subject skipped a question is recorded by CAES. Second,

researchers can enable subjects to answer questions using an audio or photo note.

The photo note requires that the Pocket PC on which CAES is running has a camera

installed. When the subject selects audio or photo note they are presented with a

series of help screens that graphically and textually describe how they should use the

58

What are you doing Are you running or jogging? What are you doing
physically? 0 Yes physically?

o Sitting 0 Going down stairs
0 No

O Walking _

) Lying down

O Going up stairs 0 Other

Answers 1-4 of8 Answers 5- of 8

More answers, touch arrow Select answer Ok

Figure A-2: the Question screen messages. When the subject has not viewed all the
answers, they are directed to use the arrow to do so (left). When they have viewed all
the possible answers or if there is only one screen of answers, the subject is directed
to select an answer (center). Once the subject has viewed all the answers and selected
one they are allowed to complete the question by pressing the Ok button (right).

sensor. Once the subject has taken a picture or left a message, their attached note

is visible on the Question screen and they are allowed to select another answer if

desired. Figure A-3 illustrates this functionality.

All question series are started and ended by a message screen. Before the start

of a question series a Touch screen to begin message is displayed while CAES tries to

get the subjects attention by beeping, unless it is muted. After the user touches the

screen the beeping stops and the first question is displayed. At the end of a question

series a Thank you! message is briefly displayed before returning the subject to the

Def ault screen. Figure A-4 shows these message screens.

A.3 Device Screens

The Device screen is the simplest CAES screen. This screen presents the user with

two simple text message while they are interacting with sensors and has no active

elements. The researcher specifies the text displayed to the user while they are in-

teracting with the sensor and when they have completed interacting with the sensor

in the QuestionDataFile. The researcher can choose to provide a primary message,

59

Where are you?

O At a major appliance

O At counter or counter
appliance

C Near storage area

O In an eating area

O In another room/area

LI Ntno1

Is this a good time for
kitchen questions?

o Yes

o No

Attach photo note

loll
Figure A-3: the Question screen alternate answers. Researchers may allows subjects
to opt-out of questions by selecting Not now when a question is first displayed (left).
If their Pocket PC has the appropriate hardware, researchers may also allow subjects
to answers questions with a photo or audio note (right). When selecting to answer
a question with a device, subjects may also select from the list of researcher defined
answers. Once a photo or audio note is attached it is visible to the subject and they
are allowed to finish the question without providing any additionally response.

Touch Thank you!
screen to

begin

Figure A-4: Before the start of a question series the subject is presented with a
simple screen while CAES beeps to get their attention (left). Once all questions in
a series have been answered, a brief message is presented to the subject before they
are returned to the Def ault screen (right).

60

which is displayed at the top of the screen in a large font, and a secondary mes-

sage, which is displayed lower on the screen in a smaller font. The researcher may

also choose not to provide any messages; however, this is likely to confuse subjects.

Figure A-5 shows the recommended device screen messages for the microphone.

Recording Audio Audio Message
Message... Recorded.

Release blue button to
stop recording.

Figure A-5: When the user first activates the microphone they are displayed a mes-
sage indicating that they are recording a message and with directions on how to
stop recording (left). After they have stopped recording, the second Device screen
messages are briefly displayed to confirm the successful recording (right).

For devices that have Help screens, the Device screen is displayed after the start

Help screens and before the end Help screens (see Section A.4).

A.4 Help Screen

The Help screens are a very flexible tool for researchers. The primary purpose of

this screen is to display a series of graphical and textual directions to subjects so

they are able to operate sensors. For flexibility the locations of the bitmaps to be

displayed are specified in the QuestionDataFile. This allows researchers to modify

the existing Help screen and create new ones for special purposes. For example, Help

screens could be created to prompt users to record data on a special purpose paper

diary, such as a map.

There are two primary types of Help screens. Those displayed with a sensor

61

5

is triggered by CAES and those displayed when a user is attaching an audio or

photo note to a question (see Section A.2). The Help screens displayed before a

user activates a device to attach a note to a question allows the user to cancel the

device interaction.

Hold the GPS antenna
up in the air.

2.
Press the blue button
to take a GPS reading.

Figure A-6: These screens are displayed to subjects when a GPS reading is triggered
by CAES. These Help screens are switched on the Pocket PC screen every couple
seconds until the user activates the sensor to take a reading. Once activated the GPS
Device screen is displayed

62

1. 2. 3.
Press the blue button Speak into the Release the button to
to start recording microphone stop recording

ever mind Nver ind Never mind

Figure A-7: These Help screens are rotated on the screen every couple seconds when
the subject selects the Attach audio note option on the Question screen. These
screens are displayed until the subject activates the microphone or they select Never
mind. If the subject activates the microphone the appropriate Device screen is dis-
played. If the subject selects Never mind they are returned to the Question screen
without attaching an audio note.

63

Appendix B

CAES Implementation Details

This Appendix discusses the most important aspects of the CAES implementation for

programmers attempting to extend or modify CAES. Programmers only attempting

to add devices or sensor to CAES should see Sections D and E.

B.1 Threading

CAES is a multi-threaded application. As a result, care must be taken when adding

or modifying CAES code. Programmers must make sure they understand what data

is shared between threads and take all necessary precautions to protect such data.

There is not a significant overhead on Pocket PC for synchronizing data access. Do

not take shortcuts by avoiding proper thread-safe programming practices.

There are at least two CAES threads at all times. The core scheduling system

runs on the primary thread and the user interface runs on its own thread to ensure

responsiveness.

The current user interface implementation introduces four additional threads. The

user interface is implemented in four Cialog classes: CQuestionDlg, CDeviceDlg,

CHelpDlg, and CStartDlg. Each of these classes is runs on their own thread. This

allows the main user interface thread to preform background work such as preparing

the next question while the user is answering the current one. When a dialog is not

visible to the user its thread is generally blocking.

64

An unknown additional number of threads can be introduced by researchers'

QuestionDataFile settings. Each sensor that is set by the QDF to collect data contin-

uously spawns its own thread to do this. This has potential performance implications

for CAES studies useing a large number of sensors that generate significant amounts

of data. The upper limits on performance with large numbers of continuously sampled

sensors has not been thoroughly tested.

B.2 Sensor and Interaction Instantiation

To simplify CAES and to allow for the integration of large numbers of sensor and

interactions, instances of Sensor and Interaction classes are not created unless the

researcher specifies it in the QDF. A little known or documented MFC implementation

detail is used to convert the string provided by the researcher into a CRuntimeClass

that can be used to create an instance of the Sensor or Interaction.

MFC keeps a global linked list of CRuntimeClasses for each Class in the applica-

tion that is serializable. This is done so MFC can actively serialize to and from files.

CAES reads the sensors and interactions specified by the researcher and then uses

this global list to get CRuntimeClasses to instantiate. This is done by comparing the

string from the QDF to the names of CRuntimeClass in the global list.

There are two significant implications of this approach. First CAES uses an MFC

implementation detail; functionality not documented by Microsoft. As a result, this

approach is not guaranteed to work in future MFC versions. If you upgrade MFC

and find CAES breaks check this first. It would not be overly difficult to replace this

approach with a global registry of all Sensor and Interaction classes.

The second implication of this approach is for Sensor and Interaction classes.

The implementation of these classes must ensure that they are serializable so their

CRuntimeClass is included in the global MFC list. This is easily done with two MFC

macros (see Section D.1.2). See MFC documentation or the DefaultInteraction

and Def aultSensor classes for more details.

65

B.3 Pocket PC Timers

Pocket PC implements system timers in a similar to fashion to desktop versions of

Microsoft Windows. However, they do not work for nearly all purposes in CAES.

This is because Pocket PCs are turned off as soon as the user presses the prominently

placed power button. When this happens, the internal processor is stopped as well as

the screen being powered down. As a result, if the system is turned off timers based

on the processor clock will not be accurate.

Pocket PC provides the Notification API to address this problem. Notifications

can act like timers that cause the system to be woken. However these are difficult

to use and manage. To address this problem the CTimers class was written. Call-

back timers crated with the global CTimers class maintained by the core scheduling

system are implemented with the notification API and so are assured to occur at

the appropriate times. Programmers are strongly urged to user this method to add

timing functionality to new CAES classes instead of creating a new mechanism.

66

Appendix C

Activity Detector Study Data

This Appendix presents some typical heart rate and planar accelerometer data from

a few subjects. The heart rate data presented has been cleaned according the process

described in Section 4.2.6.

In the following data is from nine different subject over different time periods.

Effort was take to make sure this data is generally representative of the type collected.

Figure C-1 shows the data collected from three subjects over the entire business

they were studied.

Figure C-2 shows the data from three subjects over the entire period of about one

hour.

Figure C-3 shows the data from three subjects over the entire period of about ten

minutes.

67

1004-

600DI

I
I

I.

80

70

0

0 0-2 04 06 00 1 1,2 1.4 1t6 1.ll 2

1000

00

200

0 00 2000 3000 4000 000 000 7000

140

120

100

so

.I

I
I

900

600

200-

200

40 .IT

1000 2000 3000 4000 5000 6000 7000 8000

Figure C-1: These graphs show the planar accelerometer and heart rate data collected
from three different subject for the duration of the study. The heart rate data has
been cleaned. This is the data that is segmented, compared, and used for machine
learning

68

- I I I I I I I I -

-o -o

700 -
600-

00

100

300

200

-00 I I I

0 1 00 2M 00 4000 5000 600 0 7 0 0

110-

100

90

o -
20 -60-

01000 2000 300a 4000 5000 6000

800 --

600 -

400 -

200-

0

-

1000 2000 3000 4000 50000 00 7000 800

100

95
90

0

75 --

400

200-

100

0

0 00 100 1000 2000 2000 3030 3000

Figure C-2: These graphs show the planar accelerometer and heart rate data collected
from three different subject for one hour. The heart rate data has been cleaned. This
is the data that is segmented, compared, and used for machine learning

69

-

I I _ I

il~J',
If~~ I '1

400

30

00

0 100 200 300 400 100 600 700 a00 00

Figure C-3: These graphs show the planar accelerometer and heart rate data collected
from three different subject for ten minutes. The heart rate data has been cleaned.
This is the data that is segmented, compared, and used for machine learning

70

I

I

1000 2000 3000 4000 6000 6000 7000

o 100 200 0 400 o 600600
- -

1 0G 2000 3000 4000 S000 6000 70 00

900

80

70O

600

00

400

070

200

100

IN

70

65

0

001

40

1400

360

90

85
80

715

70

- I I I I I I -

75

70

0

IL

Appendix D

Adding Interactions

This Appendix presents the important points of developing a new Interaction class.

D.1 Defining the Class

All new interactions are implemented in Interaction subclasses. There are three

important steps to defining a new interaction: choosing the class name, making the

class serializable, and extending Interaction.

D.1.1 Naming Considerations

The names of Interaction classes are more important than most class names in

CAES and other programs. CAES translates the interactions specified by the re-

searcher directly into a CRuntimeClass that instantiated. As a result, researcher

who will want to use the new interaction will have to be familiar with its name.

Interaction class names therefore must be not be accurately describe the function-

ality of the interaction.

D.1.2 Making a Serializable Class

For CAES to retrieve a CRuntimeClass to instantiate a version of the new Interaction

class it must be a serializable class. The has to do with the inner workings of

71

MFC; however it is easy to make your class serializable. For an example look at

the Def aultInteraction class. Also the process of making a class serializable is well

documented by Microsoft.

To make the new class serializable add the macro call DECLARESERIAL (CNewCiassInt erac tion)

to a private area of the class definition. Then add the macro call IMPLEMENTSERIAL (CNewCl assInt e

CObject, 1) to the implementation file for the new class. Replace CNewClassInter-

action with the name of the new Interaction class.

D.1.3 Extending Interaction

CAES is a multi-threaded application. To ease the burden on the programmer writ-

ing only a new Interaction class all thread protection and core scheduling system

functionality is implemented in the abstract Interaction class. As a result, this

should not be a concern.

The multi-threaded character of CAES is important to remember for two reasons.

First, there is a lot of work to be done so make sure to be as efficient as possible in

the implementation of new interactions. If an interaction will be slow by its nature

warn researchers so they know what to expect when using it. Second, it is extremely

important that the RunInteraction() guidelines are followed.

D.2 Implementing RunInteraction()

The interaction function will be called regularly by the core scheduling thread. This

will allow the Interaction class to perform the necessary processing to detect events

of interest and notify the core scheduling system.

D.2.1 Functions Provided

There are seven functions provided by the Interaction class that will be used in

RunInteraction 0. The first two functions, UserDataAvailable () and SensorDataAvailable ()

return true when data is available to be processed. When data is available, the next

72

two functions GetNextUserAnswer() and GetNextSensorData() should be used to

retrieve the next user response or chunk of sensor data. Once RunInteraction() is

done processing the user response or sensor data, Handled(CSensorData* data) or

Handled (CUserAnswer* answer) should be called so the core scheduling system can

store the data and de-allocate its memory. The final function call is only used when

an interesting event is noticed in the user responses and sensor data. In that case,

SendSignal(CA-SIGNAL signal) should be called with the appropriate EventTag.

D.2.2 Example Implementation

void CDefaultInteraction: :RunInteraction()

CSensorData* data;

CUserAnswer* answer;

while(UserDataAvailable()

{

answer = GetNextUserAnswero;

// Do Processing Here

SendSignal(CADEFAULT);

Handled(answer);

}

while(SensorDataAvailable()

{

data = GetNextSensorData(;

// Do Processing Here

SendSignal(CADEFAULT);

Handled(data);

}

}

73

D.3 Adding EventTags

Once a new Interaction class has been implemented, the EventTags it will use to

communicate the occurrence of interesting events the core scheduling system must be

defined.

D.3.1 Creating CASIGNAL

The CASIGNAL type is defined in types. h. The first step in defining an event tag is

to add it to CASIGNAL.

D.3.2 Modifying CEngine: :ReccuranceSignalStrings

Once the new CASIGNAL is defined add, the text string researchers should use to

refer to the new EventTag to the CEngine: :ReccuranceSignalStrings array in the

position corresponding to that of the new CASIGNAL.

At this point the new event tag has been added. The CEngine: : ReccuranceSignalStrings

array is only used for translating the QuestionDataFile text into the internal CA-SIGNAL

representation. Once the new EventTag has been added there is no reason to ever

refer to its string representation in the CEngine: :ReccuranceSignalStrings array.

74

Appendix E

Adding Sensors

The process of adding new sensors to CAES is quite painless. All of the work necessary

for thread protection and integrating new Sensor classes into the core scheduling

system has already been taken care of. Programmers adding new sensors will only

have to write code specific to the sensor being added.

E.1 Defining the Class

The first set in adding a new sensor to CAES is to create a new sensor class by

extending Sensor.

E.1.1 Naming Considerations

The name of a Sensor class is important. The class name is how researchers specify

the use of a sensor in the QuestionDataFile. The class name should be descriptive

of the sensor being implemented. If specific manufacturer names and model numbers

can be included in the class name much confusion will be avoided.

E.1.2 Making a Serializable Class

For CAES to successfully convert the class name provided in the QDF to an instance

of the class it must be serializable. This process is explained in greater dail in Sec-

75

tion D.1.2.

E.2 Implementation

All new sensor classes must implement the six abstract functions they inherit from the

Sensor class. However, programmer do not need to worry about thread protection

or core scheduling system interfacing, all this has already been taken care of in the

Sensor class

E.2.1 Abstract Sensor Functions

All sensors need to implement the six abstract Sensor functions: SensorInitialize()

SensorSampleStarto, SensorSampleStopo, SensorStoreData(CSensorData *sd)

SensorSample(), and SensorContinuousSample().

The SensorInitialize() function is where all device initialization should be

performed. If a DataSource class is being used it should be initialized here. If a file

must be opened to store sensor data to it should be opened here and closed when the

class is destroyed.

The SensorSampleStart () function is called when the sensor is started and

stopped at different times. For example the microphone sensor is started when the

subject depresses a button.

The SensorSampleStop() function is called following SensorSampleStart () when

the sensor sample should be stopped. Sensors unlike microphones that always take

instantaneous samples can implement all the sample functionality here because this

is guaranteed to be called following SensorSampleStart ().

The SensorStoreData(CSensorData *sd) function is called after the data col-

lected by a sensor has been acted on by all active Interaction classes. The data can

be stored or the data can be discarded.

The SensorSample() function should perform a quick and discrete sample of the

sensor. This could be considered a successive call to SensorSampleStart () and

SensorSampleStopo.

76

The SensorContinuousSample () function should act similarly to SensorSample 0,

however if the sensor is continuously being sampled this function will be called by the

sampling thread in case special measures should be taken.

E.2.2 Example Implementations

bool CDefaultSensor: :SensorInitialize ()

{

return true; // Do Initialization Here

}

bool CDef aultSensor: :SensorSampleSt art ()

{

return true; // Start Sample

I

CSensorData* CDefaultSensor: :SensorSampleStop()

{

// Finish Sample

return new CSensorData(this, CTime::GetCurrentTime(, /*Data Pointer*/NULL);

}

bool CDefaultSensor: :SensorStoreData(CSensorData *sd)

{

// Store Data To Appropriate Directory / Repository

return true; // return false if store fails

}

CSensorData* CDefaultSensor: :SensorSample()

{

// Do Complete Sample

77

SensorSampleStart();

return SensorSampleStopo;

}

CSensorData* CDef aultSensor: : SensorContinuousSample 0

{

return SensorSample 0;

}

78

Bibliography

[1] Weka machine learning project. http://www.cs.waikato.ac.nz/-ml/index.html.

[2] G.D. Abowd and E.D. Mynatt. Charting past, present, and future research

in ubiquitous computing. ACM Transactions on Computer-Human Interaction,

7(1):29-58, 2000.

[3] K. Aminian, P. Robert, E. Jequier, and Y. Schutz. Estimation of speed and

incline of walking using neural network. IEEE Transactions on Instrumentation

and Measurement, 44(3):743-746, 1995.

[4] I. Anacona. Context-aware experience sampling tool user interface, November

19 2002.

[5] L.F Barrett and D.J. Barrett. The experience sampling program.

http://www2.bc.edu/~barretli/esp/.

[6] G.C. Borchardt. Causal reconstruction. Technical Report A.I. Memo No. 1403,

Massachusetts Institute of Technology, February 1993.

[7] C. V. Bouten, K. T. Koekkoek, M. Verduin, R. Kodde, J. D. Janssen, Division

of Computational University of Technology, and Eindhoven The Netherlands car-

lijn wfw tue nl Experimental Mechanics. A triaxial accelerometer and portable

data processing unit for the assessment of daily physical activity. IEEE transac-

tions on bio-medical engineering., 44(3):136-47, 1997.

[8] C.V.C. Bouten, A.A.H.J. Sauren, M. Verduin, and J.D. Janssen. Effects of place-

ment and orientation of body-fixed accelerometers on the assessment of energy

79

expenditure during walking. Medical & Biological Engineering & Computing,

35(1):50-56, 1997.

[9] Kathy Burns, May 6th 2003.

[10] J. B. Bussmann, J. H. Tulen, E. C. van Herel, and H. J. Stam. Quantification

of physical activities by means of ambulatory accelerometry: A validation study.

Psychophysiology, 35(5):488-96, 1998.

[11] CAES. Context-aware experience sampling website, 2003.

http://caes.sourceforge.net.

[12] 0. Cakmakci, J. Coutaz, K. Van Laerhoven, and H. Gellersen. Context awareness

in systems with limited resources. In Artificial Intelligence in Mobile Systems

(AIMS 02), 2002.

[13] M. Csikszentmihalyi and R. Larson. Validity and reliability of the experience-

sampling method. The Journal of Nervous and Mental Disease, 175(9):526-36,

1987.

[14] R.W. DeVaul and S. Dunn. Real-time motion classification for wearable com-

puting applications. Technical report, MIT Media Laboratory, 2001.

[15] P. Dragicevic and S. Huot. Spiraclock: A continuous and non-instrusive display

for upcoming events. In CHI 2002, pages 604-5, Minneapolis, Minnesota USA,

2002.

[16] Polar Electro. website. http://www.polar.fi.

[17] F. Foerster, M. Smeja, and J. Fahrenberg. Detection of posture and motion by

accelerometry: a validation in ambulatory monitoring. Computers in Human

Behavior, 15:571-583, 1999.

[18] H. A. Hayden-Wade, K. J. Coleman, J. F. Sallis, and C. Armstrong. Validation

of the telephone and in-person interview versions of the 7-day par. Med Sci

Sports Exerc, 35(5):801-9, 2003.

80

[19] D. Hendelman, K. Miller, C. Baggett, E. Debold, and P. Freedson. Validity of

accelerometry for the assessment of moderate intensity physical activity in the

field. Medicine & Science in Sports & Exercise, 32(9 Suppl):S442-9, 2000.

[20] R. Herren, A. Sparti, K. Aminian, and Y. Schutz. The prediction of speed and

incline in outdoor running in humans using accelerometry. Medicine & Science

in Sports & Exercise, pages 1053-1059, 1998.

[21] S.E. Hudson, J. Fogarty, C.G. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler, J.C.

Lee, and J. Yang. Predicting human interruptability with sensors: A wizard of

oz feasibility study. In Proceedings of the Conference on Human Factors and

Computing. ACM Press, 2003.

[22] Polar Electro Inc. Adding heart to your technology: New smart coded reciever,

2003.

[23] S.S. Intille, J. Rondoni, C. Kukla, I. Anacona, and L. Bao. A context-aware

experience sampling tool. In Proceedings of the Conference on Human Factors

and Computing Systems: Extended Abstracts. ACM Press, 2003.

[24] invivodata. website. http://www.invivodata.com.

[25] Nicky Kern, Bernt Schiele, Holger Junker, and Paul Lukowicz. Wearable sens-

ing to annotate meeting recordings. In International Symposium on Wearable

Computers (ISWC). IEEE Press, 2002.

[26] A. Madabhushi and J.K. Aggarwal. A bayesian approach to human activity

recognition. In Proceedings of the Second IEEE Workshop on Visual Surveillance.

1998.

[27] Vijay Mahajan and Jerry Wind. New product models: Practice, shortcomings

and desired improvements. The Journal of Product Innovation Management,

9(2):128-139, 1992.

81

[28] C.E. McCarthy and M.E. Pollack. A plan-based personalized cognitive or-

thotic. In 6th International Conference on Al Planning and Scheduling, Toulouse,

France, 2002.

[29] T.L. McKenzie. Use of direct observation to assess physical activity. In J.G.

Welk, editor, Physical Activity Assessments for Health Related Research, pages

179-195. Human Kinetics, 2002.

[30] MIT. Changing places / house-n: Mit home of the future consortium, 2002.

http://architecture.mit.edu/house-n.

[31] E. Munguia Tapia, S.S. Intille, and K. Larson. Activity recognition in the home

setting using simple and ubiquitous sensors. House-n technical report, MIT,

2003.

[32] N. Oliver, E. Horvitz, and A. Garg. Layered representation for human activity

recognition. In Fourth IEEE International Conference on Multimodal Interfaces,

page 3, Pittsburgh, Pennsylvania, 2002.

[33] M. E. Pollack, S. Engberg, J. T. Matthews, S. Thrun, L. Brown, D. Col-

bry, C. Orosz, B. Peintner, S. Ramakrishnan, J. Dunbar-Jacob, C. McCarthy,

M. Montemerlo, J. Pineau, and N. Roy. Pearl: A mobile robotic assistant for

the elderly. In AAAI Workshop on Automation as Eldercare, 2002.

[34] C. Randell and H. Muller. Context awareness by analysing accelerometer data. In

Blair MacIntyre and Bob lannucci, editors, The Fourth International Symposium

on Wearable Computers, IEEE Computer Society, pages 175-176. IEEE Press,

2000.

[35] J.P. Robinson. The validity and reliability of diaries versus alternative time use

measures. In F.T. Juster and F.P. Stafford, editors, Time Goods and Well-Being,

pages 33-62. Ann Arbor, MI, 1999.

[36] B.G. Silverman. Computer reminders and alerts. IEEE Computer, 30(l):42-49,

1997.

82

[37] A.A. Stone and S. Shiffman. Ecological momentary assessment (ema) in behav-

ioral medicine. Annals of Behavioral Medicine, 16(3):199-202, 1994.

[38] A.A. Stone, S. Shiffman, J.E. Schwartz, J.E. Broderick, and M.R. Huf-

ford. Patient non-compliance with paper diaries. British Medical Journal,

324(7347):1193-4, 2002.

[39] K. Van Laerhoven and 0. Cakmakci. What shall we teach our pants? In The

Fourth International Symposium on Wearable Computers, pages 77-83. IEEE

Press, 2000.

83

