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Abstract

Our work is motivated by the need for tractable stochastic models for complex network
and system dynamics. With this motivation in mind, we develop a class of discrete-time
Markov models, called moment-linear stochastic systems (MLSS), which are structured so
that moments and cross-moments of the state variables can be computed efficiently, us-
ing linear recursions. We show that MLSS provide a common framework for representing
and characterizing several models that are common in the literature, such as jump-linear
systems, Markov-modulated Poisson processes, and infinite server queues. We also con-
sider MLSS models for network interactions, and hence introduce moment-linear stochas-
tic network (MLSN) models. Several potential applications for MLSN-in such areas as
traffic flow modeling, queueing, and stochastic automata modeling-are explored. Fur-
ther, we exploit the quasi-linear structure of MLSS and MLSN to analyze their asymptotic
dynamics, and to construct linear minimum mean-square-error estimators and minimum
quadratic cost controllers. Finally, we study in detail two examples of MLSN, a stochastic
automaton called the influence model and an aggregate model for air traffic flows.
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Chapter 1

Introduction and Contributions

Large networks with complex, stochastic dynamics have become increasingly common

in recent years, and the need for applicable models for these networks has grown con-

currently. In this thesis, we develop a tractable class of structured discrete-time Markov

models for network and system dynamics, and explore several applications and examples

of the models. Our aim in considering these models is to capture the essence of some of

the stochastic interactions that occur in interconnected systems, within a framework that

allows considerable analysis of network dynamics, state estimation, and control.

1.1 Motivation

In today's interconnected world, events of interest can have far-reaching impact on multi-

ple systems, and involve dynamics across several temporal and spatial scales. For instance,

consider the Western United States power outage of August 10th, 1996. The initiating

event for this failure, which affected approximately 8 million customers, was predicated

by environmental conditions: extreme heat caused high demand and hence high power

dissipation on power lines; this high power dissipation generated heat, causing a power

line to sag into a tree (which was not appropriately trimmed) and short circuit. The en-

suing propagating power failure was exacerbated by the high demand. Communications

failures among power transmission companies also contributed to the systemic failure, in
that these companies were unaware of existing statuses in the network and so were im-
properly prepared for the initiating event. The power failure affected traffic signals, and

so snarled road traffic. Air traffic and data communications networks were also indirectly
impacted. Meanwhile, some essential systems, such as hospitals, airports, and (on a lighter
note) casinos, continued to operate using emergency generators. While the August 10th
power outage consituted a spectacular, and rare, failure of multiple networks, the under-
lying connections within and among these networks clearly also impact their day-to-day
operations.
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The example above clarifies that interactions within, and among, multi-component sys-

tems are significant in understanding their global behavior. It further highlights that tran-

sient events in such networks are of importance, and that stochastics play a significant

role in their behavior. In short, we see the need for stochastic, dynamic models for net-

works from which we can compute aspects of their global behavior. This thesis seeks to

contribute to the stochastic modeling of network dynamics.

Modeling, and in particular stochastic modeling, of network dynamics is by no means a

new undertaking. For instance, queueing networks have been extensively studied, and

have found wide applicability in the context of, e.g., manufacturing and telecommuni-

cations (see [83] for an introduction). Linear and non-linear dynamical systems that are

driven by noisy inputs, or are subject to parameter uncertainties, are prevalent in several

contexts, including as models for power systems (see, e.g., [113] for an introduction to lin-

ear systems with stochastic inputs). Stochastic automata models have been used to repre-

sent spin dynamics in ferromagnetic materials, and as computational tools for optimizing

certain multivariate costs (e.g., [18]). These three, and many other, stochastic models have

proven to appropriately represent particular engineered and natural systems, and to be

amenable to analyses that can be used to characterize and improve these systems.

While particular network models have been useful in several application areas, the large

scale and multi-faceted nature of modern network interactions-such as those described

in the introductory example of the Western states' power failure-have motivated simpli-

fied, and more general, approaches to modeling in recent years (see, e.g., [136, 27, 15]).

These approaches seek to extend, or modify, the traditional work on network modeling

by exposing global features of network dynamics that are common to many networked

systems. More specifically, these works postulate very simple stochastic or deterministic

interactions and/or particular network structures, and determine features of the global dy-

namics of such networks. The features that they observe in these toy models (e.g., the pres-

ence of heavy-tailed distributions for uncertain measures, the emergence of certain types

of coherent dynamics, or the fragility of the network to particular uncommon failures)

are also observed in various natural and engineered systems, lending some credence to

these models. In a general sense, these models have the benefit of being potentially broad

in their applicability, and simple or structured enough to allow for significant analysis of

some global dynamics. On the flip side, the models often cannot capture the details of the

interactions in specific networks, and their dynamics (and their analysis) are sometimes

highly sensitive to particular features of the network graph and/or interaction structure.
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We also are motivated by the need for models for multi-faceted network dynamics, from

which interesting global characteristics of these dynamics can be inferred. It is our belief,
however, that models for large-scale networks should, as much as possible, be derived

from or matched with the actual interactions that occur among components of particular

systems. Thus, we see value in modeling approaches that incorporate and generalize ex-

isting network and component models (e.g., certain queueing network and linear systems

models), while concurrently enforcing sufficient structure on the dynamics to allow for

global analysis. With this general motivation in mind, we aim to develop a class of net-

work models for which we can analyze aspects of the dynamics and study some relevant

questions of estimation and control. At the same time, we aim to show the applicabil-
ity, or potential applicability of our models by relating them to existing models and by
considering particular applications for them.

1.2 An Introductory Example of DNA Evolution

The essential feature of our models that leads to their tractability is a quasi-linear structure

in the interactions among network components. This structure allows us to partially char-

acterize their dynamics at low computational cost, and to develop optimal estimators and

controllers for the models. By the same token, this structure in the interactions limits the
scope of the systems that we can model. It is helpful to pursue one toy example to illustrate
how our models are structured and how this structure affords some special tractabilities.

Our example concerns a stochastic model for "DNA evolution" (in quotes, because we do
not, and cannot, claim that the model we describe is a good representation for evolution;

it is only meant to serve as a motivational example). For our purposes, a single strand of
"DNA" consists of a sequence of 100 nucleotide bases. Each position along the sequence is
one of four bases, adenine (A), cytosine (C), guanine (G), or tyrosine (T). We are concerned
with tracking the base sequence of this strand of DNA over time, measured in generations.
At a simplified level, we might expect that this strand of DNA changes with time through
a probabilistic mutation process, perhaps a Markov process-i.e., one in which probabili-
ties for transition (mutation) between the current time (generation) and the next time are
completely specified by the current base sequence.

Let's consider several discrete-time Markov process representations for "DNA evolution".

For each representation, we assume that the state of the system (the entire 100-base se-
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quence) is known at an initial time, and we then attempt to find the probabilities that each

base is present at each position at future times.

1. The most general representation for the state update is one for which probabilities can

be specified arbitrarily for each transition between any two 100-base sequences (see Fig-

ure 1.1). Note that there are a total of 4100 possible 100-base sequences. Thus, 4100 x 4100

probabilities are needed to model all transitions in this general representation. Even if

the transition probabilities could somehow be specified, the exact analysis of the model

is daunting. To compute the probability that a particular position has a particular base

at a time k, it turns out that we need to compute the probabilities that each of the 4100

sequences is present at each time between the initial time and k. This calculation re-

quires us to multiply a matrix of dimension 4100 x 4100 with a 4100-component vector

for k times! This calculation in infeasibile, suggesting that we should seek structured

representations which simplify analysis.

"DNA Evolution": General Markov Transitions

Time k Time k+1

Figure 1.1: A general Markov description for the evolution of a 100-base DNA sequence is
illustrated.

2. A simple Markov process representation for "DNA evolution" is one in which the base

at each position evolves independently (see Figure 1.2). In this case, the transitions at

each position are governed by independent Markov processes. Thus, the probability

that a position has a particular base at a time k can be obtained from the initial prob-

abilities that each base is present at this position, separately from the remainder of the

sequence. This calculation requires multiplication of a 4 x 4 matrix with a 4-component
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vector for k times. Even when this computation is repeated for all 100 positions on the

chain, the required computation is small. Furthermore, because each position evolves

independently, joint probabilities for seqence and subsequence configurations can be

found immediately by multiplying the individual probabilities (assuming that the bases

at each position are initially independent). While computation is significantly reduced

by assuming each position evolves independently, the applicability of the model is also

severely limited: no dependencies among the positions in the DNA chain can be mod-

eled if the sites are to evolve independently. In fact, models for DNA in which each site

evolves independently have been developed (e.g., [68]). As discussed in [8], however,

such models cannot capture the dependencies among bases that are observed in real

DNA sequences.

"DNA Evolution": Independent Positions

Timek Time k+1

---- Markov Transition

Markov Transition

Markov Transition

(!D- Markov Transition

Figure 1.2: Independent evolution of each base is illustrated.

3. We wish to model DNA evolution in such a way that probabilities for all sequence con-

figurations need not be tracked, yet each position is not constrained to evolve indepen-

dently. We might be tempted to do so by constraining the probabilities for the base at a

particular position at the next time to depend only on the current base at that position

and at the (in general) two neighboring positions (see Figure 1.3). Surprisingly, such a

spatial structure in the network interactions does not generally simplify the analysis

of base probabilities of individual positions, because the base probabilities for a single

position at a particular time depend upon the bases at more and more positions, as one

looks further back in time. That is, to compute the probability that a particular posi-

tion has a certain base a time k, we need to compute the joint probabilities for the bases
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"DNA Evolution": Local Dependence

Timek Time k+1

Figure 1.3: The evolution of each base position during the transition to the next generation
is governed by neighboring bases at the current generation.

of three neighboring sites at time k - 1, for five neighboring sites at time k - 2, etc.

(see Figure 1.4). Thus, while simplifying the network structure reduces the number of

parameters in the model significantly, it may not simplify its analysis. Interestingly, a

model for DNA evolution with localized interactions has been studied in [8]. To analyze

this model, the researchers use an approximation scheme which exploits the (potential)

weak dependence of spatially separated bases. While such approximations can be used

to simplify analysis of spatially structured models, there is no general guarantee that

close approximations can be found.

4. Our main conceptual insight is that tractability of stochastic network dynamics can be

guaranteed by constraining theform of the stochastic interactions in a model, rather than

the graphical structure or the strength of the interactions in the model. For instance, we

can constrain neighbor-dependent base evolution so as to ensure tractability, as follows:

each position can be modeled as selecting one of its neighbors (possibly including itself)

with some probability at each time-step; the current base at the selected neighbor is then

assumed to specify probabilities for the next base at the selecting position. With these

constraints on the interactions, it turns out we can compute probabilities for the base at

each position at a time k as a linear function of individual base probabilities (at that, and

at neighboring, positions) at time k -1. Thus, we can compute these time-k probabilities

from individual base probabilities at any past time using a linear recursion. Further, we

find that the computational cost required for this analysis is low: it is quadratic, not

exponential, in the length of the sequence. If joint probabilities of multiple bases-i.e.,
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Figure 1.4: We depict that evolution with local Markov dependences is not necessarily
tractable. The joint statistics of multiple base positions must be considered at previous
times to analyze individual base position statistics at the current time.

sequence configuration probabilities-are required, it turns out that the computation

grows gracefully with the number of bases whose joint probabilities are needed. We

note that the special analysis of the described model has no essential connection with

its graph structure; we can analyze the model for any interaction structure, as long as

these interactions are structured as described above.

Like the example introduced above, the various models that we consider in the thesis are

specially structured so that temporal dynamics can be partially characterized using linear

recursions.

1.3 List of Contributions

1. We introduce a discrete-time Markov model that is structured so that statistics of state

variables can be found efficiently using linear recursions. We show that this model,

which we call a moment-linear stochastic system (MLSS) provides a common representa-

tion for such diverse models as jump-linear systems, Markov-modulated Poisson pro-

cesses, and memoryless infinite-server queues, as well as variants of these with stochas-

tic parameters.
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Figure 1.5: If the evolution probabilities are specially structured, then partial information
about each base position can indeed be found with low computational cost. This figure
depicts one such structure: in particular, each base position is updated by selecting one
neighboring base randomly, which then specifies probabilities for the next base at the po-
sition.

2. Through examples, we expose a variety of network interactions that can be captured us-

ing MLSS and show that MLSS can be a keen tool for characterizing stochastic network

dynamics. Our examples are drawn from a wide range of contexts, including queueing

network theory, stochastic automata modeling, and traffic modeling.

3. We extensively analyze the dynamics of MLSS, and use these analyses to provide fresh
insights into the dynamics of several examples. We also develop and apply methodolo-

gies for optimal linear estimation and quadratic control in the context of MLSS.

4. We formulate the influence model (originally introduced in [9]) as an MLSS, and use

the MLSS formulation to develop some new results concerning this model.

5. We develop an MLSS model for aircraft counts in regions of an Air Traffic System, and
evaluate the performance of the model using historical data.

1.4 Thesis Outline

The thesis is organized as follows:
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" In Chapter 2, we introduce the general class of structured Markov models that is the

central topic of the thesis. We call these models moment-linear stochastic systems (MLSS).

We develop the basic recursive analysis of MLSS dynamics, and present several com-

mon models from the literature that can be represented as MLSS. We also briefly discuss

why the developed analysis is, in some respect, unique to MLSS.

" In Chapter 3, we consider the use of MLSS as models for network dynamics, and hence

informally introduce moment-linear stochastic networks (MLSN). We introduce several ex-

amples of MLSN, and discuss a block representation for MLSS dynamics that is relevant

in the analysis of some networked systems. We also discuss the use of MLSN to repre-

sent flows, in particular.

* In Chapter 4, MLSS dynamics are analyzed further. We focus in particular on character-

izing cross-time-step dynamics and asymptotics.

" In Chapter 5, we derive the linear minimum mean square error (LMMSE) estimate for the

state of an MLSS from a temporal sequence of imperfect observations.

* In Chapter 6, we study minimum-quadratic-cost dynamic control of an MLSS.

" Chapter 7 contains a case study of a particular MLSN, the influence model. We summa-

rize the basic development of the influence model, which was introduced in [9] as a

network of interacting Markov chains, from the perspective of MLSN models. We also

present some results that extend the analysis given in [9].

" In Chapter 8, we construct an MLSN representation for the aggregate dynamics of an

air traffic system (ATS). Through this example, we aim to show how MLSN can be used

to model certain real systems.

" In Chapter 9, we draw some general conclusions about our work, and suggest directions

for future study.

Our development makes use of some basic probabilistic and linear-algebraic concepts. The

reader is referred to Appendix A for a background summary.
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Chapter 2

Moment-Linear Stochastic Systems:

Introduction

In this chapter, we formulate the definition of a moment-linear stochastic system (MLSS), the

quasi-linear discrete-time Markov model that is the primary topic of this thesis. We then

describe the model's basic analysis-i.e., we exploit its special quasi-linear structure to

construct linear recursions for statistics (moments and cross-moments) of state variables.

We also briefly explore the scope of MLSS, by showing that the described analyses are

unique to MLSS, in a certain respect. The remainder of the chapter is devoted to five

examples of MLSS. These examples are drawn from prevalent models in the literature,

and so they show the broad applicability of MLSS.

2.1 Formulation

An MLSS is a discrete-time Markov model in which the conditional distributions for the

next state given the current state are specially constrained at each time-step. In particular,

these conditional distributions are structured so that moments and cross-moments of state

variables at each time-step can be found as linear functions of equal and lower moments

and cross-moments of state variables at the previous time-step. In consequence, we can

find these moments and cross-moments using linear recursions. In the following discus-

sion, we precisely define an MLSS and highlight the special structure of the model that

leads to its tractability.

Formally, consider a discrete-time Markov process with m-component real state vector.

The state (i.e., state vector) of the process at a time k is denoted s[ki, and the notation
{s[k]} is used to represent the state sequence s[O], s[1],.... We use the notation si[k] to

denote the ith component of the state vector at time k.
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Since {s[k]} is a Markov process, it is completely specified by the distribution for the initial

state s[0], as well as the conditional distribution for the next state s[k + 1] given the cur-

rent state s[k] at each time k. An MLSS is a Markov process for which these conditional

distributions are specially constrained.

Specifically, consider the conditional expectation E(s[k + 1] r1 s[k]), for r 1, 2, .. ., where

the notation s[k + 1]0' refers to the Kronecker product of the vector s[k + 1] with itself r

times and is termed the rth-order state vector at time k. This expectation vector contains all

rth moments and cross-moments of the state variables si[k+ .. . , s, [k+1] given s[k], and

so we call the vector the conditional rth (vector) moment for s[k + 1] given s[k]. We say that

the process {s[k]} is rth-moment linear at time k if the conditional rth moment for s[k + 1]

given s[k] can be written as follows:

r

E(s[k + l]ir I s[k]) = Hr,O[k] + Hr,i[k]s[k], (2.1)

for some set of matrices Hr,O [k], ... , Hr,r [k].

The Markov process {s [k] } is called a moment-linear stochastic system (MLSS) of degree F if

it is rth-moment linear for all r < F, and for all times k. If a Markov model is moment

linear for all r and k, we simply call the model an MLSS. We call the constraint (2.1) the

rth-moment linearity condition at time k, and call the matrices Hr,O [k], ... , Hr,r [k] the rth-

moment recursion matrices at time k. These recursion matrices feature prominently in our

analysis of the temporal evolution of MLSS.

Although it is natural to formulate an MLSS in the vector notation presented above, some

insight into its structure can be gained by considering conditional moments and cross-

moments of individual state variables separately rather than in vector notation. To do so,
consider one of the elements in the vector E(s[k + l]®r I s[k]); from our definition for an

MLSS, this conditional moment or cross-moment (of time k + 1 state variables given the

time k state) can be written as an affine function of the first r Kronecker powers of the con-

ditioned state s[k]. However, note that an affine function of the first r Kronecker products

of the state s[k] is simply an rth-degree polynomial of the time k state variables. Thus, a

Markov process is an MLSS of degree F if all rth conditional moments and cross-moments

of time k +1 state variables given the time k state can be written as rth-degree polynomials

of the time k state variables, for all r < F and for all k.
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2.1.1 Time-Invariant MLSS

A time-invariant Markov process that is an MLSS of degree F is called a time-invariant

MLSS of degree F. For a time-invariant MLSS (of degree r), the conditional rth moment for

s[k + 1] given s[k] is identical at each time k (for r < -). As a consequence, the rth-moment

linearity condition can be written in the form

r

E(s[k + iilr I s[k]) = Hr,O + Hr,is[k]i®, (2.2)

for some set of matrices Hr,O, . . , Hr,r.

To illustrate our formulation of MLSS, we present two simple examples of (time-invariant)

MLSS:

Example 2.1

Consider the discrete-time Markov model with state update

s[k +1] = Als[k], w.p. p1 (2.3)

s[k+l] = A 2s[k], w.p. p2 =1-p-

To compute the conditional vector moments for s[k + 1] given s[k], let's define a random variable

a[k] that equals 1 if s [k + 1] = As [k] and equals 2 if s [k + 1] = A 2s [k]. Conditioning on o-[k], we

can write the rth conditional vector moment as

E(s[k + 1]" 1 s[k]) = E(s[k + l]®r I s[k], o[k] =1)p + E(s[k + ]r I s[k], 0[k] = 2)P2

= P1 (A1 s[k])®r +p 2 (A2s[k]) r

= (p1Ar + p 2Afr)s[k]®r, (2.4)

where we have invoked the mixed-product property of the Kronecker product in the final step ([72]).

Thus, this model satisfies the rth-moment linearity condition for all r, and so the model is an MLSS.

Example 2.2

Consider the scalar Markov model with state update

s[k + 1] = x[k]g(s[k]), (2.5)
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where x[k] is an independent Normal (Gaussian) random variable with mean 0 and variance 1, and

go is an arbitrary non-linear function.

Then note that E(s[k + 1] 1 s[k]) = E(x[k])g(s[k]) = 0, so the model satisfies thefirst moment-

linearity condition (with H 1,1  H1,0 = 0). However, E(s[k + 1]2 | s[k]) = E(x2 [k])g 2 (s[k]) =

g2 (s[k]). Thus,for arbitrary go, E(s[k + 112 | s[k]) is not a quadratic function of s [k], and so the

second moment-linearity condition is not satisfied. This system is therefore an MLSS of degree 1.

Incidentally, if g(s) = s or g(s) = |sI, it is straightforward to check that the all moment-linearity

conditions are satisfied.

2.2 Basic Analysis

MLSS are amenable to analysis, in that we can find statistics of the state s[k] (i.e., moments

and cross-moments of state variables) using linear recursions. In particular, for an MLSS

of degree F, E(s[k + 1]®r) (called the rth moment of s[k + 1]) can be found in terms of the

first r moments of s[k] for any r < F. To find these rth moments, we use the law of iterated

expectations and then invoke the rth-moment linearity condition:

E(s[k + 1]0r) = E(E(s[k + 1]Or I s[k])) (2.6)
r

E(Hr,0 [k] + Hr,i[k]s[k]®2)

r
Hr,o[k] + Hr,i[k] E(s[k]).

We call Equation 2.6 the rth-moment recursion at time k. Considering equations of the form

2.6, we see that the first r moments of s[k + 1] can be found as a linear function of the first

r moments of s[k]. Thus, by applying the moment recursions iteratively, the rth moment

of s[k] can be written in terms of the first r moments of the initial state sf0].

2.2.1 A Concise Representation for the Moment Recursions

The recursions developed in equations of the form 2.6 can be rewritten in a more concise

form, by stacking rth and lower moment vectors into a single vector. In particular, we

-40 -

Moment-Linear Stochastic Systems: IntroductionChapter 2



Moment-Linear Stochastic Systems: Introduction

define the rth extended state vector to be s'r)[k] = s'[k]@' ... s'[k]@l I] . The rth ex-

tended moment vector at a time k+ 1, or E(S(r) [k+ 1]), can be written in terms of the extended

moment vector at time k by assimilating the first r moment recursions at time k (given in

Equation 2.6) into a single recursion. In particular, we find that

E(S(r)[k + 1]) = t(r)[k]E(S(r)[k]), (2.7)

where

Hr,r[k] Hr,r-1[k] ... Hr,1[k] Hr,0 [k] -

0 Hr_1,,_[k) ... H,-,1[k] Hr_1,o[k]

H(r)[k] =

0 ... 0 H1,1 [k] H1 ,o[k]
0 ... 0 0 1

We call Equation 2.7 the rth extended moment recursion at time k.

The rth extended moment recursion allows us to explicitly specify the rth extended vector

moments at time k in terms of the initial rth extended vector moments, as E(s(r) [k])

Hj- I H(r) [j]S(r) [01. For a time-invariant MLSS, the explicit expression for the rth extended

vector moment at time k becomes E(s )[k]) =ft s [0]

2.2.2 A Note on Redundancy in the Vector Moments

In our analysis of MLSS so far, we have focused on characterizing moments (and con-

ditional moments) of the state-i.e., expectations of self-Kronecker products of the state

vector. These vector moments are redundant, in that the same cross-moments of state

variables are repeated multiple times in a vector moment. This redundancy in the vector

moments has two somewhat disconcerting effects:

" It enforces a certain structure in the moment recursion matrices, since the moment

linearity condition relating the vector moments at one time-step with the vector mo-

ments at the previous time-step must generate the same values for the redundant cross-
moments.

" By the same token, it introduces degeneracy in the moment recursions, since the mo-
ments and cross-moments of state variables at one time-step can be written equivalently

in terms of multiple identical cross-moments at the previous time-step.
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This redundancy typically does not hamper our efforts to find vector moments and cross-

moments using the basic analysis of MLSS. In most examples, one valid set of recursion

matrices can be constructed from the stochastic description of the state vector; these recur-

sion matrices can then be used to determine moments and cross-moments. It is irrelevant

that other sets of recursion matrices could be used to generate the same statistics, or that

the recursion matrices are structured.

However, some analyses that we pursue later in the thesis (relating, for example, to asymp-

totics of MLSS) are impacted by the degeneracies caused by vector moment degeneracies.

In these analyses, we reformulate the moment recursions so as to eliminate some or all of

these redundancies. The mappings among various forms of the moment recursions are

formalized in Appendix B.

We note that redundancies in the vector moments are not the only features of MLSS that

can lead to degeneracy in the moment recursions. In particular MLSS, constraints on state

variables can also result in degeneracy in the moment recursions. Such degeneracies are

described for one of the example MLSS introduced in Section 2.4.

The reader may wonder why we have chosen to write the higher moment recursions in

terms of extended moment vectors, which are redundant. We have used this formulation

because many systems of interest to us can be conveniently and intuitively represented in

this notation, as will become clear in the examples in Section 2.4.

2.2.3 Complexity of the Moment Recursions

Here, we discuss the order of the computation required to determine the rth moment of the

state at time k from the first r moments at the initial time 0, for an MLSS with m-component

state vector.

For general MLSS, we are required to find this moment vector using k iterations of the

extended moment recursion. Each of these iterations requires multiplication of an rth ex-

tended moment vector with an extended moment recursion matrix. Since the rth extended

moment vector has E mi entries, each vector-matrix multiply requires on the order of

(GiI m') 2 additions and multiplications. (In fact, about one-half of the entries in the ex-

tended moment recursions are necessarily 0, but these zero entries do not change the order

of the computation.) Thus, the numbers of multiplications and additions required to find
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the rth moment at time k are on the order of k(Eo m2) 2 .

To gain a bit more intuition regarding the complexity of the rth moment computation, note

that Z _r m' is close to mr for large m. (More precisely, it is upper bounded by m" mr.)
Thus, the required number of additions and multiplications is on the order of km 2r. That is,

the computation roughly grows linearly with k, polynomially with m, and exponentially

with r.

We note that the complexity analysis described above is a worst case analysis. For some

MLSS, structural features of the model (e.g., constraints on the form of the recursion matri-

ces, time-invariance) can be exploited to reduce the computation required to find moments

and cross-moments.

Example 2.3

This example illustrates the basic analysis of MLSS. Consider the scalar system with state update

s[k + 1] = x[k] + 1, (2.8)

where x [k] is uniformly distributed between 0 and s[k]. We can straightforwardly check that the

first two moment linearity conditions for this MLSS are E(s[k+ 1] 1 s[k]) = !s[k 1 and E(s[k+

1]2 I s[k]) = s 2 [k] + 1s[k] + {. (We can straightforwardly show that higher moment linearity

conditions also hold, but omit these conditions from our discussion here.) Using the basic analysis

of MLSS, we thus see that the first and second moment recursions are given by

1
E(s[k + 1]) = -E(s[k]) + 1 (2.9)

2
2 12 1 1

E(s[k + 1]2) = E(s2[k]) + -E(s[k]) + -.

3 2 4

Assembling the first and second moment recursions into a single update, we find that the second

extended moment recursion is given by

E(s(2)[k + 1]) =0 1 E(s(2)[k]), (2.10)
-0 0 1_

s 2 [k]-
where s(2) [k] = [k]
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Example 2.4

This example illustrates how redundancies in a second-moment vector impact the formulation of

the second-moment recursion. We consider an MLSS with 2-component state vector s[k]. For

simplicity, we assume that the second-moment linearity condition for this MLSS has the form

E(s[k + 1]12 | s[k]) = H 2,2s[k]. (The MLSS in Example 2.1 has a second-moment linearity condi-

tion of this form.)

Note that the second moment vector at time k is

s1 [k]

E(s[k] 2) = E s1[k]s 2 [k] . (2.11)
s2[k]s1[k]

\K_ s2[k]

Thus, the second and third entries of the second moment vector are identical.

To see how this redundancy enforces a structure on the second moment vector, note that the product

[0, 1, -1, 0]E(s[k + 1]02) equals 0. Thus, by applying the second-moment linearity condition, we

see that

[0, 1, -1, 0]H 2,2s[k] 2 = 0. (2.12)

However, the product in Equation 2.12 is guaranteed to be 0 in general' only if [0,1, -1, 0]H 2,2 is

a vector of the form [0, c, -c, 0]. Thus, it is required that [0, 1, -1, 0] is a left eigenvector of H 2 ,2.

We can also check that the second-moment recursion matrix for this MLSS is degenerate. In par-

ticular, any matrix of the form H 2 ,2 + v 0 [0, 1, -1,0], where v is any length-4 column vector, is a

valid second moment recursion matrix, since (H 2,2 + v 0 [0, 1, -1, 0])s[k]®2 equals H 2,2 s[k]®2

2.3 The Scope of MLSS

Throughout the thesis, we aim to show the significant tractability of MLSS, and to explore

the insights into stochastic dynamics that are gained because of this tractability. Just as

importantly, however, we need to understand what features of these models-and of the

'We say "in general" because in particular examples the state vector s[k] may be constrained in such a way that the
product in Equation 2.12 can be shown to equal zero without the condition described here.
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underlying physical processes that they may describe-allow for this tractability. One

approach for understanding the scope of the moment-linear analysis is to consider many

examples of the models, as we do at several points in the thesis. However, we believe

it is useful also to look at the scope of MLSS from a theoretical viewpoint, by trying to
characterize the set of models that are MLSS or are similarly tractable to MLSS in a general

way.

To this end, we describe a rudimentary study that begins to explore the following question:

what is the broadest class of Markov models for which rth moments and cross-moments

of state variables at a given time can be found in terms of rth and lower moments and

cross-moments at the previous time-step? Our discussion only scratches the surface of the
range of questions that could be asked regarding the scope of MLSS, but we hope that it
will give the reader a first indication of both the breadth and the limitations of our models.

2.3.1 A Rudimentary Study: Scope of the First-Moment Recursion

A special property of MLSS is that that expected value of s [k +1] can be computed from just

the expected value of s[k]-no further information about the distribution of s[k] is needed.

It turns out that, for Markovian systems, this special tractability is unique to systems that
satisfy a first-moment linearity condition. More precisely, say that E(s[k]) is known, but

the distribution s[k] is otherwise unknown. Then E(s[k + 1]) can be computed if and only

if the conditional expectation E(s[k + 1] 1 s[k]) is an affine function of s[k].

We have already proven the forward (if) direction of this statement, in developing the
MLSS moment recursions. To prove the reverse (only if) direction, we consider computing
E(s[k + 1]) for various distributions of s[k] with mean E(s[k]). In order for E(s[k + 1]) to be
computable from E(s[k]), it is required that the mean of s[k + 1] computed for each such
distribution of s[k] is identical. It turns out that this requirement forces the conditional
expectation E(s[k + 1] 1 s[k]) to be affine with respect to s[k]. For the sake of clarity, we only
describe the proof for a scalar Markov process s [k] here, and give an outline of the proof in
the general case in Appendix C.
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Outline of Proof for the Scalar Case

Consider a Markov process with scalar state s[k], and assume that E(s[k]) is known for

some k. For clarity, use the notation - for this expectation. Also, assume that E(s[k + 1])

can be computed from E(s[k]). Then we can make the following deductions:

* Consider a plot of E(s[k +1] 1 s[k]) as a function of s[k], and consider three points on this

curve: E(s[k+ 1] s[k] = 3- 1), E(s[k+ 1] I s[k] = 9), and E(s[k+ 1] I s[k] =fi+ 1). These

three points are collinear (Figure 2.1). To see why, consider two possible distributions

for s[k]. First, say that s[k] equals - with probability 1. Then E(s[k]) = - and, from the

law of iterated expectations, E(s[k + 1]) = E(s[k + 1] 1 s[k] = -). Second, say that s[k]

equals - - 1, with probability 1, or equals - + 1, with probability 1. Then E(s[k]) = -

and, from the law of iterated expectations, E(s[k + 1]) = jE(s[k + 1]1 s[k] = - - 1) +

1E(s[k + 1]1 s[k] = § + 1). Since E(s[k + 1]) must be equal for both distributions of s[k]

in order for E(s[k + 1]) to be computable from E(s[k]), we see that E(s[k + 1] s[k] =

-§) = E(s[k + 1]| s[k] = - - 1) + 'E(s[k + 1]I s[k] = - + 1). Hence, the three points are

collinear: E(s[k + 1]1 s[k]) = hs[k] + b for some h and b.

" We aim to show that for all / > 0, E(s[k + 1]Is[k] = + 3) = h(- +,3) + b-that

is, that all points E(s[k + 1]1 s[k] = - + 3) (to the right of E(s[k + 1]| s[k] = §)) fall

on the same line as three collinear points (Figure 2.2). To do so, let's consider another

possible distribution for s [k]. Say that s [k] equals - -1, with probability 3, and equals

3 + /3 with probability .j- It is straightforward to check that E(s[k]) = -, and that

E(s[k + 1]) = /jE(s[k + 1] s[k] -1) + 4 E(s[k + 1] 1 s[k] = - + 0). In order for

E(s[k + 1]) to be computable for E(s[k]), we thus require that E(s[k + 11 s[k] =) =

,3E(s[k + 1] 1 s[k] =- 1) + / E(s[k + 1]1 s[k] = -+ 0). Finally, by substituting h + b

for E(s[k + 1] 1 s[k] =g) and h(3 - 1) + b for E(s[k + 1] s[k] = 3 - 1), and then doing

some algebra, we see that E(s[k + 1]1 s[k] = - + /) = h(- + /) + b.

. We can similarly prove that the points on the curve to the left of E(s[k + 1 1 Is[k] =

must fall on the same line.

Hence, we have proven that E(s[k + 1] s[k])must take the form hs[k] + b, for E(s[k + 1])

to be computable from E(s[k]).
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E(s [k+ D]s [k])

E(s[k+])k

Distribution of s[k

E(s[k))s[k

E(s [k+ ] s [k])

... 1E(s[k+l])

Distribution of s[k]

E(s[k])-1 E(s[k])+1

Figure 2.1: E(s[k + 1]) cannot be computed from E(s[k]), unless E(s[k + 1] s[k] E(s[k])),
E(s[k + 1] s[k] = E(s[k]) - 1), and E(s[k + 1] 1s[k] = E(s[k]) + 1) are collinear, because
otherwise the mean of s[k + 1] will depend on the particular distribution for s[k].

Discussion

Our result is interesting because it characterizes the class of discrete-time Markov models

for which the expected state at each time k + 1 can be calculated from the expected state

at time k (in any manner, linear or not). We have shown that the characteristic of the

update law necessary to generally allow this mean value calculation is that the conditional

expectation for the state at each time k + 1 given the state at time k is an affine function of

the state at time k, which is precisely the first-moment linearity condition of an MLSS.

We caution that our result requires some refinement, and generalization, before it can pro-

vide insight into the tractability (or lack thereof) of various classes of models. First, we

would like to be able to relax the strong assumption that the distribution of s[k] is com-

pletely unknown except its mean. For example, we would like a result that applies to

models in which the state space is naturally constrained (e.g., queueing models, in which
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E(s [k+ I]Is [k])

E(s[k+1])

Distribution of s[k]

E(s[k])-l E(s[k])+l X

E(s[k+1] s[k])

E(s[k+1])

Distribution of s[k]

E(s[k])-l E(s[k]')+

Figure 2.2: By choosing different distributions for s[k], we can verify that the remaining
points on E(s[k + 1]Is[k]) must lie on the same line as the original three collinear points, if
E(s[k + 1]) is computable from E(s[k]).

the state variables must be integral). Second, we must understand better how higher mo-

ments play a role in the computability of next time-step statistics. Third, we must study

how results on computability or required computational cost at one time-step translate to

results on the analysis of the entire state sequence dynamics, or of the asympotics. (For in-

stance, the steady-state probability mass function for a dynamic Ising model-a type of finite

state stochastic automaton defined on a network-can be determined from pairwise inter-

actions among sites, even though characterization of transient dynamics requires computa-

tion involving the joint configurations of all sites [137]). The following diabolical example

also verifies that asymptotics can sometimes be determined even if one-step prediction of

the mean is impossible:
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Example 2.5

Consider the scalar system with the following update:

s[k + 1] = 2, if 3 < s[k] < 4 (2.13)

s[k + 1] = 1, otherwise.

Let's say that the mean of the initial state s[O] is known, but its distribution is otherwise unknown.

From the theorem above, we know that the mean of s [1] cannot be uniquely determined. However,

regardless of the distribution of s [0], the state for k > 2 equals 1 with probability 1 for this model.

Thus, though the mean of s[0] is not sufficient to determine the mean of s[l], it is sufficient to

determine the mean of s [k], k > 2.

In this section, we have focused on characterizing the scope of MLSS, by showing that

the models are exclusive in some sense-i.e., that only models satisfying moment linearity

conditions (in particular, the first-moment linearity condition) are amenable to the anal-

yses that we describe for MLSS. Another important step in delineating the scope of our

modeling framework is to describe the types of interactions that can be represented as

MLSS updates. While the many examples of MLSS that we describe suggest the types of

interactions that can be represented, it would be interesting to explore whether all MLSS

interactions generally have some qualitative similarities. We leave this study for future

work.

2.4 Examples of Moment-Linear Stochastic Systems

The remainder of this chapter is devoted to five examples of MLSS. These examples are di-

rectly drawn from the existing literature on linear and quasi-linear models, or are closely

related to such models in the literature. These examples serve to illustrate the formula-

tion and basic analysis of MLSS, to motivate MLSS models by highlighting their broad

applicability, and to give an indication of the scope of MLSS. The analyses of the examples

described in this section are largely not new, but we believe that these analyses are nev-

ertheless important because they place the examples in the context of MLSS, and set the

stage for novel methods of analysis that are described later in the article.

Because the models considered in this section are prevalent, a wealth of literature exists

for each model, and a thorough analysis of this literature is beyond the scope of this thesis.

Here, we present literature that relates to our basic analysis (i.e., literature that is concerned
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with analyzing moments and cross-moments of state variables). We also present some

literature regarding extensions of this basic analysis for the examples; in particular, we

discuss literature concerning asymptotics of the models, and concerning linear estimation

and quadratic cost control of these models. These results portend analyses of MLSS that

are developed in Chapters 4, 5, and 6, but are given here so that the examples are presented

in a thorough manner.

Other than presenting relevant literature, we seek to show that these five models are in-

deed MLSS and to introduce their basic analysis. For some of the models, we present the

MLSS formulation generally; in other cases, the formulation of a particular example suf-

fices to illustrate the general case, so only an example is given. We will revisit the models

described here throughout the thesis.

2.4.1 Markovian Linear Systems Driven by I.I.D. Noise

Discrete-time Markovian linear systems driven by independent, identically distributed

(i.i.d.) noise samples are commonly used in a wide range of engineering and scientific

disciplines (see, e.g., [85] for a few examples). Markovian linear systems driven by noise

are typically specified with a state sequence and an output sequence [851. The state sequence,

which is of interest to us in this section, constitutes a Markov process and is governed by

an equation of the form s[k + 1] = Aks[k] + Bku[k] + Gkw[k], where s[k] is the state at

time k, u[k] is a vector input at time k, {w[k]} is an i.i.d. noise process (i.e., a sequence of

independent random vectors), and Ak, Bk, and Gk are appropriately-dimensioned matri-

ces [85]. We require that the statistics (moments and cross-moments) of the noise samples

are known and finite. (We note that our analysis does not strictly require that the noise

samples at each time are independent, but only that all cross-moments across time-steps

can be factorized into Kronecker products of moments at each time-step.)

It is well-known that the expected state E(s[k]) can be found through a linear recursion

(e.g., [85, 113]). It is also well-known that second moments of the state variables can also be

found recursively; these second moments are typically computed through a linear matrix

equation on the covariance matrix of the state [85]. If {w[k]} is a Gaussian white noise

process, then the state s[k] at each time k is known to be Gaussian, and its distribution can

be calculated from the first two moments (see, e.g., [85]).

Higher moments of linear systems are also known to satisfy recursions. Such recursions
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have been developed given particular noise input processes [106, 61]. Kronecker product-

based recursions for higher moments and/or cumulants, given more general input noise

processes, have also been explored, under the general framework of higher-order statistics

for linear systems (see [99] for a review).

Asymptotics of the state s[k] and of its first two moments have been extensively studied,

and conditions for convergence of moments and of the state vector are well-known [85].
Steady-state values for second moments and cross-moments of state variables are some-

times found as the fixed point vector of a Kronecker product-based recursion, which is
similar to a second moment recursion in our formulation (e.g., [26, 87]) In addition to char-
acterization of the state s[k], estimation of the state sequence from the output sequence and
feedback control of the state (using an input sequence) have been studied extensively. We
are particularly interested in linear minimum mean square error (LMMSE) estimation; the
seminal work of Kalman [77] in the 1960's introduced LMMSE estimation for Markovian
linear systems (see [85] and [20] for good summaries). Also of interest to us is minimum

quadratic cost control. Minimum quadratic cost controllers for linear systems are well
known, as summarized in [85] and [20].

We illustrate that a linear system driven by i.i.d. noise can be formulated as an MLSS
through an example. In particular, consider the system with state sequence defined by

s[k+ 1] = 0.6 0.2 1 s[k] + v[k], (2.14)
-0.3 0.8

where {v [k] } is a stationary white noise process, and v1 [k] and v2[k] are independent ran-
dom variables that are uniformly distributed over the intervals [0, 1] and [0, 2], respectively.

The conditional expectation for the next-state of this process given the current state is

0.6 0.21
E(s[k + 1] | s[k]) = E . s[k]+v[k]|s[k])

-0.3 0.8[0.6 0.21
-0. 08 s[k] + E(v[k]|s[k])-0.3 0.8

[0.6 0.21
= s[k] + E(v[k]) (2.15)

-0.3 0.8

Equation 2.15 shows that the state sequence is first-moment linear at each time k.
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We can verify from Equation 2.14 that rth-Kronecker powers of the next-state are affine

with respect to the first r Kronecker products of the current state. Using this observation,

we can show that the state sequence satisfies all higher moment linearity conditions at each

time k. For instance, a little algebra shows that the second conditional vector moment of

s[k + 1] given s[k] is given by

E(s[k + 1]2 1 s[k]) = H2,2s[k] 2 + H2,is[k] + H 2,o, (2.16)

where H 0.6 0.2 - 0.6 0.2 I 0.6 0.2Jhr 2 H2I ®E(v[k])±E(v[k])0
' -0.3 0.8 ' -0.3 0.8 -0.3 0.8

and H 2,o = E(v[k]0 2 ). Similar expressions can be derived for higher conditional moments,

but these expressions are not shown here.

s [k]: Simulations, Mean, and 2cr Intervals

3-

U,
2.5-

CO,
U)

CU

0.5i-

0 5 10 15 20 25 30

Time-step

Figure 2.3: This figure plots the state variable s1 [k] as a function of time in 10 simulations

of the noise-driven linear system in Equation 2.14. Also, the expected value for s1 [k], as
well as 2a- intervals about the mean, are shown. We assume the state vector of the system
is initially 0.

Since our example linear system is an MLSS, moments and cross-moments of state vari-

ables at each time-step can be found using moment recursions (Equation 2.6). We have

used the moment recursions to find the expected value of si[k], as well as 2a- (i.e., two

standard deviation) intervals around this mean, for 20 time-steps. For these calculations,

we assume an initial state s[0] - . Simulations of si[k], along with the mean and

two-standard deviation intervals, are shown in Figure 2.3. In the figure, there is good
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agreement between the computed statistics and the simulations.

Although we have only considered an example, our discussion illustrates that discrete-

time linear systems driven by i.i.d. noise (and additional deterministic input) can generally

be formulated and analyzed as MLSS.

2.4.2 Finite-State Markov Chains

Markov chains with finite state-space are also prevalent in systems modeling (see [53] for

a general introduction). In our development here, we describe a Markov chain as tran-
sitioning among a finite number of statuses or values along a discrete time axis2. Recall

that the evolution of a finite-state Markov chain is specified by a probability distribution

for its initial status, as well as transition probabilities-i.e., conditional distributions for the

next-status of the chain, given the current status. These transition probabilities are of-

ten presented in a transition matrix, a stochastic matrix whose rows specify the next-status

probabilities for each current status.

It is well-known that the (unconditioned) probabilities that the Markov chain is in each

status at a particular time-step (henceforth called status probabilities) can be found through

a linear recursion. In the following example, we illustrate that this recursion can in fact

be viewed as a first moment recursion of a particular LSS whose state vector indicates the

current status of the Markov chain. This reformulation exploits a simple (and well-known)

equivalence between status probabilities and expectations of status indicators [110].

The further analyses of MLSS that we will pursue in later chapters-namely, asymptotics

of state dynamics, estimation, and control-have been considered extensively for Markov
chains. The main results concerning the asymptotics of Markov chains can be recovered
from our MLSS formulation. Estimation of Markov chain statuses from noisy observa-
tions is of importance in speech processing, bioinformatics, and several other settings
[116, 16, 48]. This need for estimation of statuses from observations has led to the de-
velopment of hidden Markov models (HMMs) [116, 48]. In the context of HMMs, efficient
non-linear algorithms for calculating the probability that a Markov chain is in a particular
status given a sequence of observations have been developed, and thus estimation of the
most probable status given the observations can be achieved [116, 13]. The linear esimator

2In the literature, the values assumed by a Markov chain are typically denoted as states [53]; we use the
alternative terminology to distinguish from the LSS state.
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that we develop for MLSS (presented in Chapter 5) turns out to be a suboptimal estimator

for the HMM; it may prove valuable in bounding the probability of error for the optimal

HMM estimator.

Consider an m-status Markov chain with transition matrix A. To formulate this Markov

chain as an MLSS, we define a m-component state vector s[k] that indicates the time-k status

of the Markov chain-i.e., s[k] has a single entry of 1 at the position corresponding to the

time-k status, and is otherwise 0. The conditional expectation E(s[k +1] 1 s[k]) is therefore a

vector of next-status probabilities, given the current state vector (and hence current status

of the Markov chain). This next-status probability vector is specified by the row of the

transition matrix A corresponding to the current status, and so can be written as A's[k].

Thus, we find that

E(s[k + 1] |s[k]) = A's[k]. (2.17)

The first conditional moment of s[k + 1] given s[k] completely specifies the conditional

distribution for the next state, given the current state. Thus, higher conditional vector

moments do not characterize the dynamics of the model any further, and are not of any

particular use. Nevertheless, for the sake of completeness, we briefly discuss why higher

moment linearity conditions hold. To do so, consider the conditional rth moments. The

entries in this vector, which are expectations of products of multiple different time-k + 1

state variables, are always zero. Thus, the only non-zero entries have the form E((si [k +

1])rI s[k]). Since si[k + 1] is either 0 or 1, we have that

E((si[k + 1])r 1 s[k]) = E(si[k + 1]1 s[k]). (2.18)

Since E(si [k + 1] 1 s[k]) can be written as a linear function of the state variables, E((si [k +

1])r I s[k]) can also be written as a linear function of the state variables, and the conditional

expectation E(s[k + 1]Or I s[k]) can be written as a linear function of s[k]. Thus, the higher-

moment linearity conditions for an MLSS hold.

As a specific example, consider a two-status Markov chain with transition matrix

A 0.9 0.11 (2.19)
0.3 0.7

Defining the state vector s[k] to indicate the status of the Markov chain and applying the
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MLSS reformulation described above, we see that the first-moment linearity condition is

E (s[k + 1] | s[k]) = A's[k] [ 0.9 0.3 ] [] (2.20)
We0.1 0.7 s2[k]

We can also analyze the second conditional vector moment, as follows:

E (s[k + 1]02 s[k])

([k + 1])2 \

= E s2[k]s2[k] Is[k]

( 2 [k + 1])2

s1[k +1]

= E 0 |s[k]
0

\ J2[k+1]
0.9 0.3

0 
0 

s[k0 0 S2 [k]
0.1 0.7

Interestingly, we can also write the second conditional vector moment as follows:

E(s[k+ 1]02 1s[k])

- - 0.3

- -0

- -0

- - 0.7

si[k]

0

0

s2 [k]

- - 0.3

0 s[k] 2,
- - 0
- -- 0.7

where the '-' entries in the matrix may be arbitrary (because the initialization of s[k]0 2 is

such that these entries are irrelevant). From Equation 2.22, we see that the second moment-

linearity condition can be expressed in multiple (in fact, an infinite number) of different
forms. In the context of the Markov chain, this degeneracy reflects inherent redundancy
in the higher-moment vectors. In particular, all entries in the higher-moment vectors are

either 0 or identical to entries in the first-moment vector.
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0.9

0

0

0.1

0.9

0

0

0.1

(2.22)

(2.23)
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2.4.3 Markovian Jump-Linear Systems

A jump-linear system is a stochastic hybrid model (i.e., combining continuous-valued and

discrete-valued state processes) that has many applications, including as a model for leaks

in an experimental heat-exchanger [94], more generally as a model for systems that are

subject to sudden perturbations (e.g. [32]), and for control systems that are subject to

communication delays [52]. We consider a discrete-time Markovian jump-linear system

of the form

x[k + 1] A(q[k])x[k] + B(q[k])u[k] (2.24)

y[k] C(q[k])x[k] + D(q[k])u[k], (2.25)

where {q[k] } is an indicator vector sequence representation for an underlying Markov

chain with finite state-space, {u[k]} is a continuous-valued input process, {x[k]} is the

continuous-valued state process of the system, and {y[k] } is an output process. In this section,

we show that the state update (2.24) of the jump-linear system can be reformulated as an

MLSS, for a known input {u[k]}. (We will return to the output equation 2.25 and consider

state-dependent inputs later, in the context of state estimation and control.)

Recursions for the mean and covariance matrix of x[k] are well-known in the literature

(e.g [36]). Through our MLSS formulation, we rewrite these recursions in a Kronecker

product-based notation. Asymptotics of the state and of state-variable statistics have been

characterized, usually with the goal of determining sufficient conditions for stability (e.g.,
[51]). Later, we will show how the MLSS formulation can be used to derive conditions for

moment convergence for MLSS. Both non-linear and linear estimators for the continuous-

valued state of a jump-linear system, given the output, have been developed (see, e.g.,
[1], [36],[134])3. The linear estimator of MLSS that we will introduce in Section 5 can be

applied to jump-linear systems; this estimator is identical to the linear estimator advanced

by [36], except in that a slightly different quadratic cost is minimized by each. Control and

stabilizability of jump-linear systems have also been explored ( e.g., [47],[37],[51]).

We now discuss the MLSS reformulation for the state update. In particular, consider Equa-

tion 2.24 for a fixed input u[k]. In this case, Equation 2.24 can be rewritten in the form

x[k + 1] = A(q[k])x[k] + bk(q[k]). (2.26)

3In these examples, the jump-linear system is typically subject to a stochastic input; for the sake of brevity,
we do not explicitly consider stochastic inputs here, though our analysis carries over.

- 56 -

Chapter 2



Moment-Linear Stochastic Systems: Introduction

For convenience, we rewrite Equation 2.26 in an extended form as

k[k + 1] = Ak(q[k])R[k], (2.27)

where R[k] x[k] and A (q[k]) = [A([k.) bk(q.[k) We denote the transition matrix
11 01

for the underlying Markov chain by E.

To reformulate the jump-linear system as an MLSS, we define a state vector that captures

both the continuous state and underlying Markov dynamics of the jump-linear system. In
particular, we define the state vector as s[k] = q[k] 0 i[k], and consider the first condi-
tional vector moment E(s[k + 1] 1 s[k]). Since s[k] uniquely specifies x[k] and q[k], we can
determine this first conditional vector moment as follows:

E(s[k + 1] s[k]) = E(s[k + 1] q[k], x[k]) (2.28)

= E(q[k + 1] 0 i[k + 1] 1 x[k], q[k])

= E(q[k + 1]| q[k]) o Ak(q[k])R[k]

= E'q[k] o Ak(q[k])x[k]

With a little bit of algebra, we can rewrite Equation 2.28 as

[olAk(q[k] = e(1)) ... OfllAk(q[k= e(n))
E(s[k + 1]I s[k])= s[k], (2.29)

[inAk(q[k] = e(1)) ... OnnAk(q[k] = e(n))J

where e(i) is an indicator vector with the ith entry equal to 1.

Equation 2.29 shows that the first-moment linearity condition holds for {s[k]}. We can
show that higher-moment linearity conditions hold in a similar fashion, though some ad-
ditional bookkeeping is needed. We do not present these higher-moment linearity condi-
tions here.

Since {s[k] } constitutes an MLSS, its moments can be found using linear moment recur-
sions. We can manipulate these moments to find moments and cross-moments of the
continuous-valued state variables of the jump linear system, as well as conditional mo-
ments and cross-moments of these continuous-valued variables given the current status of
the underlying Markov chain.
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Continuous-Valued State: Sample Run and Statistics
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Figure 2.4: This figure shows a 50 time-step simulation of the example jump-linear system,
along with statistics for the continuous-valued state and underlying Markov status. The
upper plot in this figure specifies the continuous-valued state during the simulation, along
with the computed mean value and two standard deviation intervals for this continuous-
valued state. The lower plot indicates the status of the underlying Markov chain during
the simulation and also shows the probability that the Markov chain is in status "1". The
underlying Markov chain is in the status "0" initially, and the continuous state is initially
x[0] = 1.

For illustration, we consider a jump-linear system with a two-status underlying Markov

chain and a scalar continuous-valued state. The underlying Markov chain for this example

0.9 0.1
has transition matrix E = 0.7 The scalar continuous state is updated as follows:

0.3 J.
if the Markov chain is in the first status at time k, then the time-(k + 1) continuous state

is x[k + 1] = -0.9x[k] + 0.5; if the Markov chain is in the second status, the time-(k + 1)

continuous state is x[k + 1] = x[k] + 1. In this example, the expectation of the next state
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s[k + 1] given the current state s[k] is

E(s[k + 1]j s[k]) = E([[k+1x[k]+l]] Is[k) (2.30)
o-[k + 1]

0.9(-0.9) 0.3(1) 0.9(0.5) 0.3(1)
0.1(-0.9) 0.7(1) 0.1(0.5) 0.7(1) x[k o-[k]

0 0 0.9 0.3 o-kl

0 0 0.1 0.7

The first- and second-moment recursions for this example are used to to determine the
probabilities that the underlying Markov chain is in each status, the expected continuous-
valued state, and 2-standard deviation intervals around this mean. These statistics are
shown along with a 50 time-step simulation of the jump linear system in Figure 2.4. Based
on the simulation, we might guess that the continuous-valued state remains bounded but
does not settle to a constant. This intuition is borne out by the computed mean and 2-
standard deviation bounds for the continuous-valued state, since the mean settles to a
constant (0.94) and the 2-standard deviation intervals about the mean settle to a non-zero
constant (6.8 on either side of the mean).

The first-moment recursion can also be used to compute expectations of the continuous-
valued state at each time-step, given each possible status of the underlying Markov chain
at that time-step, as shown in Figure 2.5. These conditional expectations allow us to com-
pare the expected dynamics of the continuous-valued state at a particular time-step given
that the underlying Markov chain is concurrently in each possible status. For instance, Fig-
ure 2.5 shows that, asymptotically, the expectation of the continuous-valued state is larger
if the underlying Markov chain is in its second status.

2.4.4 Markov-Modulated Poisson Processes

A Markov-modulated Poisson process (MMPP) is an arrival process model that has com-
monly been used to represent sources in communications and manufacturing systems (e.g.,
[14], [1071, [301). In some applications ([14, 107]), data sources are modeled with a single
MMPP; in other models, combined arrivals from multiple MMPPs are used to represent
a data source [31, 981. MMPP arrivals are typically envisioned as entering a queue or
queueing network. Much work has focused on characterizing the steady-state dynamics
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Figure 2.5: The top plot shows the expectation of the continuous-valued state of the ex-
ample jump-linear system. The two lower plots show the conditional expectations of the
continuous-valued state, given each possible status of the underlying Markov chain. In
these calculations, we assume that the continuous-valued state is initially 1, and that the
underlying Markov chain begins in its first status.

of queues and queueing networks with MMPP input (e.g. [107]). For queues with in-

puts from multiple MMPPs, in particular, intensive computation is required to determine

steady-state dynamics [31, 98], motivating the need for reduced-order characterizations.

Algorithms for state estimation from certain observations are discussed in [84],[127],[24].

Control of queueing system dynamics through design of MMPP inputs has been studied

(e.g. [69]).

MMPPs are typically formulated in continuous time. A discrete-time formulation has been

given in [1241, and has been related to the continuous-time formulation. Here, we illustrate

how a discrete-time MMPP can be represented as an MLSS through an example.

In our formulation of a discrete-time MMPP, we track the status {o-[k]} of an underlying

Markov chain as well as the number of arrivals f[k] in a discrete-time arrival process. The

underlying Markov chain evolves according to a transition matrix A, while the distribu-

tion for the number of arrivals at time k + 1, or f[k + 1], is specified based on the time-k
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Figure 2.6: This figure illustrates the dynamics of an MMPP. An MMPP comprises an un-
derlying Markov chain, as well as a Poisson arrival process which has a rate that is modu-
lated by the underlying Markov chain.

status of the underlying Markov chain. In particular, the distribution for f[k + 1] given

o-[k] is a Poisson random variable, with mean specified by o-[k]. Note that f [k + 1] can be

interpreted as the number of arrivals during a unit interval for a continuous-time Poisson

process which has rate specified by o-[k]. An illustration of the MMPP that is based on this

continuous-time interpretation is shown in Figure 2.6.

For instance, we consider an MMPP with a two-status underlying Markov chain that[0.9 0.11
evolves according to the transition matrix A = . For convenience, we again

0.3 0.7
define a length-2 status vector q[k] that indicates the status of the Markov chain. Given

that q'[k] = 1 0], the number of arrivals f [k + 1] is assumed to be a Poisson random

variable with mean 1. Given that q'[k] = [0
Poisson random variable with mean 10.

1], the number of arrivals is assumed to be a

To formulate this example MMPP as an MLSS, we define a state vector s[k = q[k]. To
f [k]j
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verify the first-moment linearity condition for {s [k] }, we note that

E(s[k + 1] 1s[k]) = E( q| +1 s[k]) (2.31)
f [k + 1]]L E(q[k + 1]1 o-[k])

E(f [k + 1] o[k])J

0.9 0.3 q[k]

= IL0.1 0.7 1
[1 10] q[k]

0.9 0.3 01

= 0.1 0.7 0 s[k].

. 1 10 01

We briefly discuss why higher-moment linearity conditions hold. To see why, note that

the E(s[k + 1],3r I s[k]) = E(s[k + l]®r I q[k]). This expectation can be further rewritten as

E(s[k + 1]r s[k]) = qi[k]E(s[k + 1]" 1 q'[k] = [1, 0]) + q2 [k]E(s[k + l]Or I q'[k] = [0, 1]),

since the expression is equal to E(s[k + l]Or I q'[k] = [1, 0]) when qi = 1 and q2 = 0, and

similarly for qi = 0 and q2 = 1. Thus, E(s[k + 1]0r I s[k]) is a linear function of s[k], and the

rth moment linearity condition holds for any r.

A simulation of the example MMPP is shown in Figure 2.7. Along with the simulation, the

computed expectation and variance in the number of arrivals f [k] are shown as functions

of time.

2.4.5 A Discrete-Time Infinite Server Queue with Random Service Probabili-

ties

Our final example is a particular discrete-time infinite-server queue. We pursue this par-

ticular example here because it simply captures several types of dynamics that can be rep-

resented using MLSS.

Although the queueing model that we discuss here is not common in the literature, it is

closely related to some common queueing models. In particular, the queue that we de-

scribe here is a variation on a discrete-time M/M/oo queue-i.e., a queue with Poisson

inputs and an infinite number of exponential servers (see, e.g., [83], [63], or [40] for intro-
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Simulation, Mean, and 2c- Intervals
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Figure 2.7: The upper plot in this figure specifies the status of the underlying Markov chain
during a simulation of the example MMPP (the status "1" corresponds to q'[k] = [1,0],
while the status "2" corresponds to q'[k] = [0,1]). The lower plot shows the simulated
number of arrivals f[k], as well as the expected number of arrivals E(f[k]) and 2o- inter-
vals about this mean. We have assumed that the underlying Markov chain is in the second
status initially. Interestingly, the lower bound is negative, although f [k] can never be neg-
ative; the large variance, which causes the negative lower bound, reflects the large positive
deviations in f [k] from its mean.

ductions to M/M/oo queues). Infinite-server queues, and in particular M/M/oo queues,
are of interest as approximations for queueing systems with an abundance of servers [55].
They are particularly analyzable, in that the distribution for the number of jobs in the

queue (i.e., the number of jobs being served) at each time-step can be found, given the ini-

tial number of jobs in the queue ([63], [40]). Of interest to us is the fact that these transient

and steady-state distributions are indirectly obtained using the moment-generating function

for the number of jobs, and in consequence the moments of the number of jobs in the queue
can also be determined [63]. We have not found any work concerning estimation and con-
trol of M/M/oo queues, though estimation has been considered for other queueing models

(e.g. [45]).

The discrete-time queueing example that we consider evolves as follows during each time-

step:
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" New jobs arrive at the queue. We assume that the number of new jobs is a Poisson

random variable a[k + 1] with mean 10. Also, the number of jobs arriving during each

time interval is assumed independent of the arrivals at other times, and of the number

of jobs in the queue at previous times.

" Each job that is in the queue at time k is served and released (i.e., service is completed)

independently at time k+ 1 with the same probability p[k]. The probability p[k], which is

itself stochastic, is assumed to be determined independently at each time-step according

to the following p.m.f.:

p[k] f0.6, w.p.0.7 (2.32)
0.2, w.p.0.3

We are interested in tracking the number of jobs si [k] that are in the queue at each time k,

as well as the number of jobs S2[k] that depart at time k.

The time-(k + 1) state variables s1 [k + 1] and s2[k + 1] for this system can be expressed in

terms of the time-k state variables by considering the jobs that enter and exit the system at

time k + 1:

s1[k + 1] = s1(k] + a[k + 1] - b[k + 1] (2.33)

S2 [k + 1] = b[k + 1],

where b[k + 1] represents the number jobs that exit the queue at time k + 1. Given p[k],

b[k + 1] is a binomial random variable with distribution Binom(s2[k], p[k]). (Note that the

time-(k + 1) state variables do not depend on S2 [k], given s1 [k], so we could equivalently

define the system solely in terms of si[k]. We explicitly consider s2[k] because we later

consider estimation of si [k] given a corrupted measurement of s2 [k].)

Consider the state vector s[k] = l [k]. Note that {s[k]} constitutes a Markov process. In
s2[k]j

fact, {s [k] } is an MLSS. To see why, first consider the first-order conditional vector moment:

E(s[k +1] s[k]) = E( [s[k] + a[k± 1]- b[k | 1 s[k])
b[k +1]

_ s[k] + 10 - E(b[k + 1]1s[k])1 (2.34)

E(b[k + 1] | s[k]) I

We can find the the expectation E(b[k + 1]1 s[k]) by conditioning on the stochastic service
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probability p[k]. We find that the expectation becomes E(b[k + 11 s[k]) = 0.7(0.6s1 [k]) +

0.2(0.3s1 [k]) = 0.48s 1 [k]. Substituting this expectation into Equation 2.34 and rewriting in

matrix form yields

_ 0.52 ol [1o
E(s[k + 1]1ks[k]) = 0.48 s[k] + [ . (2.35)

0.48 0 0

Equation 2.35 shows that the state process satisfies the first-moment linearity condition of

an MLSS.

In fact, it turns out that all moment linearity conditions hold. We do not specify the higher

conditional moments in detail, but give a brief conceptual justification for why the higher-

moment linearity conditions hold. A key observation needed for checking these higher-

moment linearity conditions is that conditional rth moment for b[k + 1] given s[k] and

p[k], which has a binomial distribution with parameters s1 [k] and p[k], is an rth-degree

polynomial with respect to s1 [k] [75]. Next, since p[k] is chosen independently of s[k], the

rth moment for b[k + 1] given s[k] is also an rth-degree polynomial of si[k]. It is then

straightforward to check that the rth moments of si[k + 1] and S2 [k + 1] given s[k] are

rth-degree polynomials of s1 [k].

Mean, 2a Bounds, and 10 Sample Runs

4 -

30 30

Time-Step

Figure 2.8: This figure shows the evolution of the number of jobs s1 [ki in the queue. In
particular, 10 simulations of the system are shown, and the moment recursions are used to
find the mean number of jobs and two-standard deviation (2o-) intervals about the mean.
The queue is assumed to be empty initially.

We have used the first and second moment recursions to find the expected number of jobs
in the queue and 2o- intervals about this mean as a function of time (assuming an initially
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empty queue), as shown in Figure 2.8. The second moment recursion can also be used

to show that the steady-state correlation between s1 [k] and s2 [k] is negative (in particular,

-0.28).

Skewness of sl[k]
6

5-

4-

CO,

3 -

U)
2

0 10 15 20 25

Time-Step

Figure 2.9: This figure shows the skewness of s, [k], the number of jobs in the queue. The
skewness is positive, indicating a possibility for occasional abnormally-large numbers of
jobs in the queue.

Also, we have used the third-moment recursion to find the skewness of si [k] (defined

as [E((sI[k] - E(s1[k])) 3 )] 1/ 3). This skewness is shown in Figure 2.9. We find that the

number of jobs in the queue is positively skewed. The positive skewness is reflected in the

tendency for large positive anomalies in the simulated queue length, and in the contrasting

hard lower bound (as seen in Figure 2.8).

It turns out that the steady-state distribution for the number of jobs in the queue can be

determined numerically in a straightforward manner. Thus, we can compare the com-

putational effort required to directly characterize the steady-state distribution with the

computational effort required to determine the first three moments of this distribution us-

ing the MLSS formulation of the queue. In particular, we have compared the processor

time required to determine the steady-state distribution with the processor time required

to compute the first three moments (Figure 2.10). As shown in the figure, our MLSS-based

computation of the first three moments is much quicker than our calculation of the distri-
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Steady-State Distribution of the Queue Length

Statistics, Computed from LSS
Mean=20.8
St. Dev=6.42
Skewness(U nnormalized)=5.97

Computation Times
to generate distribution: 18.3s
to find first 3 moments: 0.057s

0 10 20 30 40 50 60 70 80

Number of Jobs in Queue (s1 [k])
90 100

Figure 2.10: This figure shows the steady-state distribution for the number of jobs in the
queue (found using numerical techniques), as well as the first three moments of this num-
ber (found using the MLSS model). The moments can be computed much more quickly
than the distribution.

bution. This (admittedly rough) comparison suggests that MLSS can potentially be valu-

able for deducing state statistics for models in which computing the state distribution is
infeasible or taxing.

It is worthwhile to mention that the random service probability in this example is indica-
tive of a braoder tractability: MLSS can naturally capture variations of existing models that
have randomly-varying parameters. As in this example, one only needs to condition on
the random parameter to recover the moment-linearity conditions in this case.
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Chapter 3

Using MLSS to Represent Network Dynamics

3.1 Introduction

This chapter focuses on four examples of MLSS that have network structure. While the

dynamics represented in these four examples vary widely, each is a network in the sense

that it comprises multiple distinguishable sites (components) with associated statuses (local

states) that evolve in discrete time in an interrelated manner. More specifically, in each

example the sites' statuses, collectively constituting the (global) state of the system, evolve

according to a discrete-time Markov process. Moreover, the evolution is structured in

such a manner that the state process-where the state is defined to be a concatenation of

the status vectors that codify the sites' statuses-constitutes an MLSS. We informally use

the term moment-linear stochastic networks (MLSN) to identify such examples of MLSS, i.e.,

those in which the dynamics can be viewed as occurring among groups of interacting or

interrelated sites.

We formulate these network examples by first specifying a complete probabilistic descrip-

tion of the evolution of site statuses, with the aim of representing a particular physical

process or developing an evocative example of certain types of network interactions. We

then show that the model's state process constitutes an MLSS, and hence that state statis-

tics can be found using linear recursions. In turn, the statistics obtained using the moment

recursions allow us to characterize individual site statuses, as well as interdependencies

among these statuses, at particular times.

In Section 2 we describe, in a general way, our motivations for seeking MLSS models for

networks. In Section 3 we introduce the four examples of MLSN. In Section 4, we dis-

cuss a common theme of three of the four examples-namely, that they representflows, or

movements of items of material, in a network. In Section 5 we briefly discuss some possi-

ble approaches for generally specifying graphs for MLSN, and mention some difficulties

in these approaches. Finally, in Section 6, we discuss a reordering of the MLSS moment
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recursions, which facilitates representation of site interactions in cases for which a vector

(rather than scalar) status is associated with each site.

3.2 Motivation

We are motivated to consider MLSS modeling of networks for several reasons:

" MLSS can potentially provide computationally attractive representations for large

systems (i.e., systems with many state variables), including networks. Analysis of

large stochastic systems can be daunting, because the required computation often grows

exponentially in the number of state variables (see, e.g., [137, 56] for a discussion of the

computation required to analyze stochastic network models). For instance, consider

a network with n components, each of which is constrained to take two statuses, or

values. Then the network can be in 2n configurations at each time-step, and a Marko-

vian description of the system's evolution would require a 2n x 2' transition matrix.

Representation of stochastic systems with continuous-valued state variables is similarly

daunting, since joint configurations of state variables and mappings for transitions be-

tween such configurations are required for representation and analysis. By enforcing a

moment-linear structure on the network dynamics, we can greatly reduce the required

computations; at the same time, as our examples will show, a rich class of dynamics can

nevertheless be captured using moment-linear interactions.

" MLSS models can expose transient dynamics of networks. Though considerable work

has focused on determining steady-state characteristics of dynamic stochastic models

(see, e.g. [90, 137]), and on developing dynamic models with particular steady-state

characteristics (e.g., Markov chain Monte Carlo models [110]), we have seen less work

on characterizing the transients of stochastic network models. MLSS models are spe-

cially structured so that statistics of both their transient and steady-state dynamics can

be determined. We highlight the transient analysis of our network models in the ex-

amples in Section 3.3, and relate these models to other queueing and flow models that

admit transient analysis.

" The basic analysis of MLSS models can be used to expose dependencies among the

dynamics at multiple nodes in a network. In particular, say we let state variables

in our network models represent properties or statuses of different components in the

network. Then cross-statistics of these state variables, which can be found using the
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moment recursions, partially characterize the dependencies among the components.

Such characterizations can then potentially be used to explore the relationship between

a network's structure and its dynamic evolution.

Example 3.1

This simple example of a number-passing game provides a first illustration of how the MLSS anal-

ysis can be used to study interesting transient dynamics of networked systems.

Consider a row of n people, labeled 1,... , n from left to right. At the initial time, the leftmost

person has a correct message-in this case, a paticular integer between 1 and 10-that he/she wishes

to transmit to the other individuals. The remaining people take an initial guess (i.e., an integer

chosen uniformly between 1 and 10) for the message. The people use the following (very inefficient)
algorithm to transmit the message: at each discrete time-step, one of the first n - 1 people (i.e.,
anyone except the rightmost person in the line) is chosen with probability r1 1. The chosen person

relays his/her message to the neighbor on the right, who assumes the received message as his/her

guess for the message. The remaining people retain their previous messages. Since each person's

message at any time depends only on his/her previous message and his/her left-neighbor's message,

the row of people can be thought of as linear (string) network in which each node is affected by itself

and (at most) one neighbor.

To formulate this model as an MLSS, we define each state variable, llei < n, si [k] as an indicator

that the person has the correct message. Thus, note that s1[0] = 1, and si [0] is 0 with probability 9
and 1 with probability - for 2 < i < n. Now consider the conditional expectation (first moment)

for each time-k + 1 state variable given the current state s[k]. Note that E(s1 [k + 1] | s[k]) = 1 =

s1 [k]. For 2 K i K n, this expectation can be computed as follows:

E(si [k + 1] s[k]) Pr(si[k + 1] = 1I s[k]) (3.1)

I si i[k] + s k.i [k].

Thus, we see that the model satisfies the first moment linearity condition. Higher moment-linearity
conditions can be verified in similar fashion, but are not pursued further here.

We have applied the first moment recursion to determine the probability that each person in a row

of n = 5 people has the correct message at each time-step k. These probabilities are shown in Figure
3.1. The probability plots show the gradual propagation of the correct message along the network of
people. The higher-moment recursions can be used to determine conditional probabilities that one
person has received the message given another person's status, and hence to illustrate the role of
network structure in determining dependencies among the people's messages; these higher-moment
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recursions are not discussed any further here.

Correct Message Probability

5 10

Time
15 20

Figure 3.1: The probability
shown.

that each person in the network has the correct message at each time is

3.3 Examples of MLSN

We introduce four network models that can be formulated as MLSS. Our discussion will

give some indication of the variety of network dynamics that can be represented using

our models. Unlike the MLSS models, our MLSN models are not directly drawn from the

literature, but are closely connected with various network models in the literature.

Two of these network models-the influence model and an aggregate flow model for an

air traffic system-are pursued in further detail as case studies in Chapters 7- 9. The other
two models, a queueing network model and a bulk flow model for a road traffic network,
do not warrant separate case studies and so are considered in somewhat more detail in
this section.
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3.3.1 Example: The Influence Model

The influence model, originally introduced in the thesis [9] as a network of interacting
finite-state Markov chains, is an attempt at representing, in an analytically tractable way,
some of the essentials of stochastic interactions that may occur among components of a
network.[10]. The influence model falls in the general class of stochastic cellular automata

models-in which network components or cells evolve through a discrete set of statuses
according to various interaction rules [137]. The influence model is an automata model
for which the probability distributions of site (cell) statuses can be determined using linear
recursions. A specific form of our influence model is closely related with the voter model
(also called the invasion process), another model that is also amenable to linear analysis
[71, 90]. The circuit analog model given in [79] is yet another automaton that is amenable to
linear analysis. The analysis of state statistics using linear recursions has been pursued in
some detail for the influence model [9, 10], and to a lesser extent for the models introduced
in [71], [90], and [79]. Asymptotics of the influence model have been characterized in [9].
One approach for influence model state and parameter estimation is discussed in [17], and
ML state estimation in influence models can also be related to estimation in other stochastic
models such as Hidden Markov Models (HMMs) ([116]) and dynamic Bayesian networks
([56]). An algorithm for control/design of a particular influence model is given in [122],
but control of influence models has not been considered in a general setting.

The influence model comprises a network of n sites. Site i assumes one of a finite number
mi of possible statuses at each discrete-time instant. The status of site i at any discrete
time k is represented by a mi-component status vector si [k], which is an indicator vector
containing a single 1 in the position corresponding to the present status, and 0 everywhere
else. In keeping with the notation used in [9], we express the update of the influence model
in terms of the row vectors s' [k] (i.e., the transposes of the status vectors).

We are concerned with the temporal evolution of the statuses of the sites. The update of the
statuses constitutes a Markov process, in that their joint probability distribution at the next
time step is independent of past statuses, given the current statuses of all sites. Updating
the status of the ith site in the influence model can be thought of as involving the following
three stages:

* Stage 1: The site i randomly selects one of its neighboring sites in the network-or
selects itself-to be its determining site for Stage 2; site j is selected with probability dij
(so dij > 0 and E4 dij = 1). We call the probabilities dij the determining-site probabilities.
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" Stage 2: The present status s [k] of the determining site j fixes the probability vector

p'[k + 1] that will be used in Stage 3 to randomly choose (or "realize") the next status of

site i (so p'[k + 1] is a row vector with nonnegative entries that sum to 1). Specifically,

if site j is selected as the determining site, then p'[k + 1] = s [k]Aji, where Aji is a

fixed row-stochastic mj x mi matrix, i.e., a matrix whose rows are probability vectors,

with nonnegative entries that sum to 1. We call the matrices Aji the local status-evolution

matrices of the influence model.

* Stage 3: The next status si [k + 1] is realized in accordance with the p'[k + 1] computed

at Stage 2.

All sites are updated simultaneously, and independently, in this way. The state vector of the

si[k]

influence model is defined as s[k] =

[sn [k]_

The influence model, as defined above, constitutes an MLSN. Let us briefly discuss why

the first-moment linearity condition holds for this model. In particular, consider the con-

ditional expectation for a site's next-status vector, given the model's current state: E(si [k +

1] 1 s[k]). Since s2 [k + 1] is an indicator vector for the status of site i at time k + 1, the

conditional expectation E(si [k + 1 1 Is[k]) lists the probabilities for the time-(k + 1) sta-

tus of site i given the time k state of the model. By conditioning on site i's choice of

determining site choice for time k + 1, we can immediately show that the vector of prob-

abilities E(si[k + 1]1is[k]) is given by E_ dijAjisj[k]. Stacking the conditional expecta-

tions E(si[k + 11 s[k]) into a single vector shows that the influence model satisfies the

first-moment linearity condition. Expressions for conditional expectations for higher joint-

status vectors, and consequent expressions for moments of the state (in permuted form),

are given in [9]1. These expressions, which will be discussed in detail in Chapter 7, show

that the model is an MLSN.

The rth MLSN moment recursions can be used to find expectations of joint status vectors at

each time k. For the influence model, these expectations of rth joint status vectors specify

probabilities for the joint statuses of groups of r sites (i.e., for the pattern of statuses of

groups of r sites). Of particular interest, the nth (permuted) moment recursion for the

'Because status vectors in the influence model are constrained to be indicator vectors, it turns out that the
conditional permuted vector moments can be written is several forms, one of which is given in [9]. These
different forms for the moment recursions are sometimes amenable to different analyses.

-74-

Using MLSS to Represent Network DynamicsChapter 3



Using MLSS to Represent Network Dynamics

1/3

Site I
N

1/2 1/4 1/2
1/3 1/3 1/6

Site 2 1/4 Site 3
F N

1/3

Figure 3.2: The determining site probabilities of the three-site example are depicted. In
this diagram, the weights on the arrows into each site i specify the probabilities for the
determining site choice of i. Sample statuses are also shown at each site.

influence model can be used to calculate probabilities for the joint statuses of all n sites in

the influence model at each time-step, and so to completely characterize the probability

distribution for the influence model's state at each time.

A three-site example is used to illustrate the influence model and its analysis as an MLSN.

In this example, each site can be in one of two possible statuses, Normal (N) or Failed

(F). Figure 3.2 shows the probabilities dij with which each site in this example chooses its

determining site. Also, all local status transition matrices for this example are identically

choen o b A3  = - 0.99 0.011chosen to be Aji = A = .9 1 Thus, in this homogeneous influence model, the rows
0.05 0.95

of a single fixed stochastic matrix A constitute the set of probability vectors that govern

the realization of the next statuses of sites. Which of these probability vectors is chosen

depends on the status of the selected determining site.

We have used the first-moment recursion for the influence model to determine the prob-

ability that Site 2 is failed at each time-step, given that all sites are initially healthy. This

probability is displayed along with a simulation of the status of Site 2 in Figure 3.3. We

have also used the second-moment recursion to determine correlations among site sta-

tuses. For instance, we find that Site 2 is failed 76% of the time when Site 1 is failed (though

Site 2 is in general only failed 17% of the time). Thus, we see that information about the

status of Site 1 can be used to estimate the concurrent status of Site 2. In Chapter 7, we will

discuss methods for estimating the status of a site given information about the history of
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Simulation and Expected Dynamics
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Figure 3.3: This figure shows the failure probability for site 2 during 200 time-steps, given
that all sites are initially normal. A simulation of the status of site 2 is also shown. (A "*"

at the top of the graph indicates a failed site, and a "*"~ at the bottom indicates a normal
site.)

statuses at another site.

3.3.2 Example: A Heavy-Traffic Single-Server Queueing Network with State-

Dependent Input Rates

The queueing network described here is the first of three examples of flow models--i.e.,

models in which items or material are envisioned as moving among sites in a network. In

all three examples, our state variables are the numbers of items or the amounts of material

that are present at the sites at discrete time-steps. The flows in these three examples are

structured in such a way that their state processes constitute, or can be approximated as,

MLSN.

There is an extensive literature on queueing networks (e.g., [83], [79]). Our queueing model

builds on the Jackson network, a standard queueing model comprising a network of M/M/1

queues [53, 79]. Our model differs from the standard Jackson network in that the rates at

which jobs (items) enter sites in our model at a particular time are allowed to depend

(in a particular way) on the queue lengths at that time. Jackson-type models in which

input rates depend upon queue lengths have been studied in [79], but the specifics of

the dependence as well as the analysis techniques for these models differ from those of
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our model. A broad class of single-server, memoryless queueing networks with state-

dependent service and routing probabilities has also been studied in [961; our model is a

special case of the model described in [96], for which moments and cross-moments of state

variables are amenable to analysis using linear recursions.

A heavy-traffic assumption (i.e., an assumption that queues in the network are busy with

high probability at any time) is required for our model to be formulated and analyzed (ap-

proximately) as an MLSS. A heavy-traffic assumption is often germane in modeling real

systems, because the behavior of the network under heavy-load conditions is of special

interest. Quite general queueing network models (e.g., models with general service distri-

butions and generally distributed but state-independent input processes) have been ana-
lyzed approximately under an assumption of heavy traffic (e.g., [43],[86], [67]). In particu-

lar, deterministic flow approximations for queueing network dynamics can be constructed

under a heavy-traffic assumption. These deterministic flow approximations are capable of

modeling first- and second-order statistics of the queueing network, and can be shown to

capture these statistics exactly in certain limiting cases.

Deterministic flow approximations for queueing networks have served as a context for

studying models with state-dependent input rates (e.g. [43, 861). In some communications

applications of these models, the queues themselves are modeled deterministically, but

aspects of the input processes into the queues are modeled stochastically [5, 3, 4]. In [4],
first- and second-order statistics have been determined for a linear approximation to such

a model, and methods for control are also considered. Like [4], we also characterize state

variable moments and consider linear estimation and control, but our work differs from

[4] in that we explicitly consider the stochastics of service at the queues.

Our model comprises a network of n sites. The dynamics of the model-i.e., the flows

of jobs among sites in this network-are specified in continuous time t > 0, as follows.

Each site in the model contains a single-server first-in-first-out (FIFO) queue. The server at
each site i is exponential, with mean service time denoted Ai. Once a job has been served
at site i, it is routed to the queue at the site j, where j # i, with probability pij, and
leaves the system with probability pio. (The service times and routing choices of each job
are assumed independent of all past history of the system, including the previous service

times and route of that job.)

Additionally, jobs enter the queue at each site from outside the network according to a
time-varying and state-dependent Poisson process. The rate of this input at queue i at a
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particular time t is assumed to be uoi(t) max(0,oi + gi(s (t) - -i)), where si(t) is the

length of queue i (i.e., the number of jobs at queue i) at time t, the constant Tioi is a "target"

rate, the constant - is a "target" queue length, and gi is a negative constant. Thus, the

input rate into each queue at any time is a linear (actually, affine) function of the queue

length at that time, as long as the queue length is small enough that the resulting rate is

non-negative. If the queue length becomes sufficiently large, the input rate is set to 0.

We are concerned with tracking the queue lengths at each site in the model, at discrete

time-steps. In particular, our goal is to characterize the state variables s2 [ki = s,(kAT),

where AT specifies the interval at which we wish to track the queue lengths. If the fol-

lowing three assumptions hold, the state process {s[k]} of this queueing network is well-

approximated by an MLSN:

1. Heavy-traffic assumption: with high probability, all queues in the network are busy (i.e.,
have at least one job) at each time t.

2. Positive input rate assumption: with high probability, the input rate uo0 (t) into each queue

i is positive.

3. Short time-interval assumption: the time interval AT is chosen so that, with high proba-

bility, the input rate uoi (t) into each queue i remains constant or nearly constant over

intervals of duration AT.

We briefly give an imprecise justification for why these assumptions are sufficient for {s [k]}

to be represented as an MLSN. To do so, consider si[k + 1]. Given s[k], si[k + 1] can be

expressed in terms of the time-k state variables by considering the flows into and out of

site i between times kAT and (k + 1)AT:

n n

s[k+ 1]=s[k]-- Uij[k]+ Ui[k], (3.2)
j=O,joi j=O,ji

where U3 .[k], 1 < i < n, 0 < j < n, represents the number of jobs that flow from site i

to site j (or out of the system, for j 0) between times kAT and (k + 1)AT and Uoi[k]

represents the flow into site i from outside the system. First, consider the flows among

sites, and out of the system. Since all servers are assumed to be busy from the heavy traffic

assumption, the process of jobs that flows out of each site i (either to other sites or out of

the system) is a Poisson process with rate Ai, independent of the past history of the system

and of the other time-k flows. In consequence of the splitting law for Poisson processes,
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A Controlled Jackson Network

0.7+g(s-50)

0.
s is the length

2 of queue i.

P12 '=0.6 0.5
P 0.1 0.1 g=-0.02 is

P =0.2 0.6 used.

1 3
0.2

X1 =0.8+g(s 50) 0.3 0.5+g(s-50)

Each queue has a single server, with rate pL=1.
Inital queue lengths are 10, 5, and 2.

Figure 3.4: A three-site network of single-server queues with state-dependent input rates
is shown. We track the lengths of the queues in this network at unit intervals (i.e., for
AT = 1). This example satisfies the three conditions required for analysis as an MLSN.

each process of the jobs that flow from a site i to another site j (or to the exterior of the

system, for j = 0) is an independent Poisson process with rate Aipi. Thus, we know that

the random variables Ui3 [k], 1 < i < n, 0 < j < n are each independent Poisson random

variables with means Aipij AT.

Also, consider the distributions for the input flows UOi [k], given s [k]. Since we have as-

sumed that the rate of the input process remains essentially constant over intervals of du-

ration AT, we see that, given s[k], each Uoi[k] is an independent Poisson random variable

with mean uo0 [k] = u0 i (kAT)AT. From the positive rate assumption, we further see that

uoi[k] = Uoi + gi(si[k] - si).

Thus, given s[k], each queue length si[k + 1] is found from the previous queue length si[k]

by adding and subtracting independent Poisson random variables with means that are

either constants or linear functions of si [k]. Based on our analysis of the infinite-server

queue in Section 2, it is clear that {s[k]} satisfies all moment-linearity conditions and so

constitutes an MLSN. The first and second assumptions given above are central to this

MLSN reformulation, since they are required to exclude non-linear features of the model

and also ensure that the state update is Markovian.

If the state vector can be represented as an MLSN (i.e., if the three required assumptions

- 79 -

Chapter 3



Chapter 3 Using MLSS to Represent Network Dynamics

Length of Queue 1: Simulation and Analysis
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Figure 3.5: A simulation of the length of queue 1 in the example three-site network is
shown. Also, the MLSN-based analysis of the model is used to approximate the mean
queue length, and to construct 2c- intervals about the mean.

hold), then queue-length statistics can be found as a function of time using the moment

recursions. We use the three-site model depicted in Figure 3.4 to illustrate this analysis.

In particular, the MLSN formulation of the model is used to determine the expectation

and variance of the length of the queue at Site 1, given an initially empty network. Mean

and 2c--intervals on the length of Queue 1 are plotted along with the simulation of the

queue length in Figure 3.5. The simulation shown in Figure 3.5 verifies that the heavy-
traffic assumption holds for Queue 1, and the heavy-traffic assumption can similarly be
checked for the other two queues. The other two assumptions are also easy to check for

this example. We are currently working to develop constraints on the parameters that

guarantee the three conditions hold.

We note that the model described here can be generalized to allow certain state-dependencies

in server rates and routing probabilities, as well as more general input-rate dependencies,

while maintaining its tractability. Because these generalizations do not significantly alter

the analysis of the model, we do not develop them in detail in this thesis.

Another interesting observation about the model is that, as long as the average queue

lengths reach steady-state, average input rates and waiting times also can be character-

ized. The average input rates into the queue can be directly found from the average queue

lengths, since these input rates are linear with respect to the queue lengths. Subsequently,

- 80 -



the average waiting times can be determined from the average average queue lengths and

average input rates, using Little's Theorem (see, e.g., [83]).

3.3.3 Example: A Flow Model for an Air Traffic System

We have developed a dynamic stochastic model for aircraft counts in regions of an Air

Traffic System (ATS) in [123]. This model is yet another flow network that is amenable to

analysis as an MLSN.

In our model for an air traffic system, the state variables are the numbers of aircraft in n
Centers or regions of the airspace, tracked at discrete times [123]. We denote the number

of aircraft in Center i at a discrete time k by si[k]. These state variables change with time

because of flows between sites (regions of the airspace), as well as flows into and out of

the airspace.

First, between time-steps k and k + 1, the state variables can change because of aircraft

entering each Center upon departure from airports within the Center. The number of

aircraft that depart from airports in Center i, 1 < i < n, between times k and k + 1 is

modeled as a Poisson random variable Uoj [k], with mean denoted by A02 [k].

In addition to the flows into the ATS due to departures at airports, aircraft may change

Centers, or leave a Center through arrival at an airport within the Center. In our model,

we assume that each aircraft in Center i independently travels to Center j (or leaves the
airspace for j = 0) between time-steps k and k + 1 with probability pij [k]. We denote the
total number of aircraft that flow from Center i to Center j between times k and k + 1 by
Uj [k]. We denote the total number of aircraft that flow from Center i to Center j between

times k and k + 1 by Ugj [k]. If fO pij [k] << 1, it can be shown the conditional distri-
isii

bution for the flow U3 [k] given the Center count sf[k] is well-approximated by a Poisson
distribution, with mean flow pij[k]si[k] [119]; the results that are presented here use this

assumption, though the analysis is only slightly more complicated without this asumption

(i.e., the system can still be analyzed as an MLSN, though the computation of moments is

a bit more complicated). The dynamics of our model are depicted in Figure 3.6.

This model for an Air Traffic System is Markovian. In particular, each state variable sf[k + 1]
can be specified in terms of s,[k] and the flows Uj [k], which have specified distributions
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An Aggregate Model for the Air Traffic System

Center 2

Center I

s 1[k]=4

Center 3

Figure 3.6: This figure shows the dynamics of our aggregate stochastic model for the ATS.
Aircraft enter Centers according to Poisson processes. Also, during an interval of time,
each aircraft in a Center may move to another Center or leave the system, with some prob-
ability. We are interested in tracking the number of aircraft in each Center in this model.

given s[k], as

n n

si [k + 1] = si [k] - 1:Uij [k] + :Uji [k], (3.3)
j=O,jjAi j=OljAi

It can be shown, using reasoning that is quite similar to that used in the analysis of the

M/M/oo queue, that this model is an MLSN. An outline of the justification is given in

[123]; we do not pursue it further here.

In the context of air traffic modeling, the MLSN moment recursions can be used to charac-

terize the time-evolution of individual Center counts, and to indicate the nature of correla-

tions among Center counts at particular time-steps. In [123], we have applied this model in

representing Center counts in the U.S. ATS. Figure 3.7 compares model predictions for the

numbers of aircraft in a particular Center, ZSE (which covers the Pacific Northwest region

of the U.S.), with actual aircraft counts in ZSE during a span of approximately 12 hours2 .

The figure suggests that our model can capture both transient and steady-state dynamics

of Center counts fairly well, though the model response tends to be sluggish compared to

the actual transients.

It turns out that our model for an ATS can be viewed as a discrete-time network of infi-

2 Some processing is required to select model parameters (i.e., pii [k] and Aoi [k]) based on historical data of

flows in the ATS; this procedure is described in [123].
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Aircraft in ZSE: Actual Data and Model Predictions
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Figure 3.7: The actual number of aircraft in ZSE at 760 consecutive one-minute time steps
is compared with the mean number of aircraft predicted by our model. This plot also in-
cludes the 2o- bounds on the aircraft count in ZSE predicted by our model. The actual data
is largely contained within two standard deviations of the predicted mean, suggesting that
the model predictions for the mean and standard deviation are both reasonable. The one
noticeable difference between the actual data and the model prediction is the sluggishness
in the model's transient as compared to the data.

nite server queues, by reasoning as follows. From a queueing theory viewpoint, we can

describe each aircraft in a Center as being served independently at each time-step, with a

probability Z=o pij [k] that service is completed at time-step k. In this interpretation, an
jii

aircraft that has completed service in Center i during time k then enters Center j (or leaves

the system, for j = 0) by time k + 1 with probability p k '. Thus, we see that this

model indeed can be envisioned as an open network of infinite server queues, in which

served jobs (aircraft) are independently stochastically routed to other servers (regions), or

out of the system.

Since our model can be viewed as a network of infinite-server queues, we briefly re-

view relevant literature on such models. An introduction to discrete-time infinite-server

queueing networks can be found in [40]. Infinite-server queueing networks with memo-

ryless servers and Poisson input streams, which constitute a type of Jackson network with

state dependent service rates, are particularly amenable to analysis [79]. For instance, the

steady-state and transient joint distribution for the queue lengths in the network can be de-

duced [79]. Methods for characterizing (both transient and steady-state) first- and second-

order statistics of queue lengths are well-known, and a characteristic-function method for

inferring higher moments as a function of time has also been developed [88]. Our ap-
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proach serves to reformulate these higher-moment computations as temporal linear recur-

sions, and to provide a framework for further analysis (e.g., estimation and control) of

these models.

3.3.4 Example: The Linear Routing Model

Our third example of an MLSN flow model differs from the first two models in that the

state variables are not constrained to be integral. We call this model the linear routing model

because flows in the network between times k and k+ 1 are determined by choosing among

several linear combinations of the state variables at time k. We introduce and motivate this

model through a toy example, in which we consider bulk traffic flow in a network of road

segments.

A variety of stochastic models for traffic flows on single roads, and on networks of roads,
have been developed (see, e.g., [70, 91, 41, 118, 108] for some of the more popular, and

representative, models). These models span a variety of spatial and temporal scales, may

be deterministic or stochastic, and may use continuous or discrete representations for flow

densities. Our linear routing model, and associated traffic network model, are most closely

related to macroscopic (bulk) dynamic models for flows (e.g., [70, 112, 103, 81]). In these

models, as in ours, vehicle counts or densities in multiple interconnected road segments

are tracked with time. Stochastics in these models are typically envisioned as orginating

from congestion effects and routing of vehicles at junctions. Our model differs from these

models in that routing is explicitly controlled by randomized traffic signalling, and in that

congestion effects are not explicitly modeled. Although our traffic flow model is coarser

in some respects than those found in the literature, we believe that it is valuable because

network-level dynamics can be characterized (as discussed below), and relevant questions

of estimation and control can be answered (as discussed in later chapters).

Consider the network of n = 8 one-way road segments and z = 5 traffic lights shown in

Figure 3.8. Our goal is to model the numbers of vehicles on the n road segments, tracked

at discrete intervals. In our model, these vehicle counts are allowed to be continuous vari-

ables, based on the motivation that we are modeling this network at a bulk level at which a

fluid approximation for vehicle counts is reasonable. We denote the vehicle count on road

ss [k]
segment I at time k by si [k], and denote the state vector by s [k] These vehicle

-sn[k]-
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Figure 3.8: A traffic network comprising 8 one-way road segments and 5 traffic lights is
shown.

counts change with time because of flows among road segments, as well as flows into and

out of the traffic system. The flows are governed by the actions of the traffic lights in the

model.

At each time-step k (i.e., during the interval between times k and k + 1), each traffic light j
is modeled as engaging in one of wj actions. (For example, a traffic light may be envisioned

as engaging in two actions, which correspond to the light being either red or green.) We

assume that traffic light j chooses action x E 1, . . . , wj at time k with probability djx, inde-

pendently of the actions of the other traffic lights at time k, and independently of all past

history of the network. The action taken by traffic light j at time k is denoted xj [k].

Now consider the change in state variables between time-steps k and k + 1 due to flows

in the network. The flows leaving each road segment (either for other road segments, or

out of the system) are governed by one of the z = 5 traffic lights. For instance, consider

the vehicles on road segment 1, which are governed by traffic light 1. In this example, we

assume that that this traffic light may either be green (denoted x1 [k] = 1) or red (denoted

x1 [k] = 2). Whether the traffic light is green or red, we assume that 10% of the vehicles

in the road segment 1 leave the network. If the traffic light is red, the remaining vehicles

do not move from road segment 1. If the traffic light is green, we assume that 70% of

the vehicles remaining in the system move to road segment 2, and the remaining vehicles

move to road segment 6.
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For this example, the flows in the network governed by traffic light 1 at time k (which, in

this case, are the flows that originate from road segment 1, and go to road segments 2 and

6) can be written as a linear function of the state variables at time k for each possible traffic

light action. That is, the change in the n state variables due to the actions of traffic light

1 take the form Hi(xi[k])s[k], where Hi(xi[k] = 1) and Hi(xi[k] = 2) are two different

n x n matrices. Similarly, we assume that the changes in state variables due to the actions

of traffic light j can be written in the form Hy (xj [k])s[k].

In this particular example, we assume that the number of vehicles entering each road seg-

ment i at time k is an independent Poisson random variable, with mean Ai. The vector A is

defined as a n-component vector of these means.

Finally, we are ready to specify the state update of this model. Since each road segment is

governed by one traffic light, the different flows due to the actions of different traffic lights

are additive. Thus, s[k + 1] can be found from s[k] as

s[k+1]= ( Hj(xj[k]) s[k]+Ho[k], (3.4)

(j=1

where HO is a vector containing the numbers of vehicles entering the road segments from

outside the system at time k. We refer to systems with state updates in the form of Equation

3.4 as linear routing models. We note that a linear routing model is an instance of a Marko-

vian jump-linear system, for which the underlying Markov chain has large state space but
specially structured evolution.

The linear routing model can be shown to be an MLSN, with sites in the MLSN corre-

sponding to road segments in our description of the model. This analysis is not pursued

in detail here, but we do present the first-moment linearity condition as an example. The

conditional expectation for s[k + 1] given s[k] can be written as

(z)
E(s[k +1] |s[k]) = E(Hj(xj[k])) s[k] + E Ho[k])

(j=1

=dzjHj(x) s[k] + A. (3.5)
j=1 X=1

Using the MLSN formulation, we can compute statistics of vehicle counts in the traffic
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Figure 3.9: The first moment recursion is used to calculate the expected vehicle count in
road segment 1 as a function of time. The expected number of vehicles in road segment 1
reaches a steady-state, even though the actual number continues to fluctuate.

network example. In Figure 3.9, we use the first-moment recursion to find the transient

response of the expected number of vehicles in road segment 1 from a non-steady-state

initial condition. The transient response of the mean depends on the initial counts in each

road segment, but the mean does eventually reach a steady-state. In Figure 3.10, we plot

steady-state correlations between the number of vehicles on road segment 1 and the num-

bers of vehicles on the other road segments.

3.3.4.1 Designing Traffic Flow: A First Experiment

We believe that MLSN models can serve as a framework for designing networks, because

statistics of the network state can be easily computed and can possibly be related to net-

work parameters. Although we have not yet studied MLSN design in a general sense, we

describe a simple design experiment for the 8 road-segment traffic flow example, which

highlights the possible value of using MLSN to study network design.

Our design experiment is motivated by an observation about the traffic flow on road seg-

ment 1 in the example network (Figure 3.8). In simulations of the model, we notice that

the number of vehicles in road segment 1 occasionally becomes quite large, because traffic

light 1 remains red for several time-steps while traffic light 4 remains green and so admits

vehicles onto the road segment. By the same token, road segment 1 is often nearly empty,
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Figure 3.10: This plot shows steady-state correlations between the number of vehicles in
road segment 1 and the number of vehicles in each of the other road segments at a par-
ticular time. The strong negative correlation between the vehicle counts in road segments
1 and 4 because a build-up of vehicles in road segment 1 corresponds to flow out of road
segment 4 (because traffic light 4 is green).

since traffic light 1 may be green while traffic light 4 is red. This large variability in the

flow in road segment 1 is indicated by the large steady-state standard deviation of the sta-

tus s1 [k], which can be found using the second moment recursion; for the set of network

parameters that we have chosen, this standard deviation is 22.5, which is roughly equal to

the steady-state mean number of vehicles in the road segment! The effect of the unsynchro-

nized behavior of traffic lights 1 and 4 is also indicated by the strong negative correlation

between the numbers of vehicles in road segments 1 and 4 at a particular time-step in

steady-state (see Figure 3.10).

Because the mismatched timings of traffic lights 1 and 4 contribute to the variability in the

flow on road segment 1, redesign of the network through synchronization of the traffic

lights is compelling. As a first experiment toward such a design, we modify the traffic

network as follows: we maintain the probabilities that each traffic light engages in each

of its possible control actions from the original network. However, we no longer assume

that the traffic lights operate independently. In particular, we assume that traffic lights 1

and 4 are perfectly synchronized. (Note that perfect synchronization suggests that the two

traffic lights have the same probabilities of engaging in each action; the probabilities in the

original traffic model were chosen to allow synchronization.)
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It turns out that the network with synchronized traffic lights can also be formulated as

an MLSN. We can show that the first moment recursion for the synchronized network

is identical to the first moment recursion for the original model, so that the steady-state

mean number of vehicles in road segment 1 remains the same as in the original model.

However, the second moment recursion shows that the steady-state standard deviation

in the traffic flow on road segment 1 drops to 16.4. A decrease in the magnitude of the

negative correlation coefficient between the numbers of vehicles in road segments 1 and

4, from -0.4 to -0.16, is also observed. Thus, we expect that the number of vehicles on

road segment 1 is less likely to be anomalously large or small for the synchronized model,

as compared to the unsynchronized one. A histogram of the number of vehicles on road

segment 1 verifies this advantage of synchronization (Figure 3.11).

3.4 Modeling Flow Networks

The last three examples that we introduced in Section 3.3 have in common that statuses

represent quantities (i.e., numbers of items or amounts of material) present at sites, and

these statuses change between successive time-steps due to the movement, or flow, of

these quantities between adjoining sites in the network. In general, flow networks such as

these are often good candidates for representation as MLSS, because the changes in nodal

quantities are inherently linear with respect to the flows. For this reason, and because the

notion of flows is common to three of our examples, we feel that is worthwhile to examine

the dynamics of flow networks with moment-linear structure (henceforth referred to as

moment-linear flow networks) in a general way.

The state update of a moment-linear flow network can be viewed as a two-stage process.

* First, flow variables at a time k, which describe the quantities that move between each

pair of sites and move into and out of the network, are determined from the time-k state

variables (statuses) in a moment-linear fashion. The moment-linear structure of this

stage is dependent on the on the particulars of the represented system. For instance,

in the air traffic model, the flows are Poisson random variables whose means are linear

functions of the state variables, and hence the flow variables are moment linear with

respect to the state variables. We use the notation Uj [k], 1 < i < n, 1 < J < n, i $ J,
to represent the flow from site i to site j at time k. We also denote the flow into site i

from outside the system at time k by Uoi [k], and the flow exiting the system from site i
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Figure 3.11: The plots compare histograms of the number of vehicles on road segment 1 in
the unsynchronized and synchronized traffic flow networks. The histograms were gener-
ated based on single 10000 time-step simulations of each network. The upper plot shows
the entire histogram, while the lower plot expands the histogram for large vehicle counts
(> 40). The histogram shows that the synchronized system is less prone to anamolously
large and anomalously small flows than the unsynchronized system.

- 90 -

* - -- unsynchronized
-- synchronized

El-

0

- p

.54

- I,

--

I

-

0

--- unsynchronized
- synchronized

40



Using MLSS to Represent Network Dynamics

by Ujo[k].

Second, the time-k + 1 state variables are computed from the time-k flow variables,

by adding and subtracting the appropriate flow variables. That is, we compute the

time-(k + 1) state variables from the time-k state variables and time-k flow variables, as

follows:

n n

si[k + 1] = si[k] + Upi[k] - U>3 [k], (3.6)
j=0 j=0

for 1 < i < n. This stage of the update is identical for all flow models. It is structured

so that the time-(k + 1) state variables are moment linear (in fact, purely linear) with

respect to the time-k state and flow variables.

We can show that that state update of this model is moment linear, in the following way.

We first define an augmented state vector that lists all time-k state and flow variables, and

verify that this augmented state vector is moment linear with respect to the time-k state

vector. Next, we note that the time-(k + 1) state vector is moment linear with respect to the

augmented time-k state vector. Finally, by invoking the law of conditional expectations, we

can show that the time-(k + 1) state vector is moment linear with respect to the time-k state

vector. In this way, we can express the moment recursion matrices in terms of products

of matrices that relate the moments of the time-k + 1 state to the time-k augmented state

and matrices that relate the time-k augmented state to the time-k state. We note that that

the matrices relating the the moments of the time-k + 1 state and the time-k augmented

state depend only on the dimension of the state vector, not the particulars of the network

stochastics.

We believe that this two-step formulation is useful, for a couple reasons. First, it clarifies

that the three flow network examples can be viewed in a common framework, in which

flows add to and subtract from site quantities, but the specifics of these flows depend on

the particulars of the modeled systems. Second, the special structure of the update can po-

tentially be used to develop results that apply to moment-linear flow networks generally.
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3.5 Graphs for MLSN: Ideas and Difficulties

Since we view the four examples introduced in the last section as networks, it is natural to

ask whether the interactions or interdependencies among their sites can be illustrated by a

graph. For some of the examples, graphs play a central role in specifying the updating of

the sites' statuses. For instance, in the influence model, a directed network graph is used to

specify the weights of the influences between pairs of sites. Similarly, in the model for an

ATS, aircraft are constrained to flow between contiguous regions in the airspace, so that a

map of connections between regions is relevant in defining the flows. In the road traffic

network, however, a graph with directed edges between "connected" sites (i.e., road seg-

ment pairs in which vehicles can move from one road segment to the other during a single

time-step) does not aptly describe the state update. This is because the flows from a par-

ticular road segment to other road segments are strongly correlated, based on the action of

the governing traffic lights. Thus, an apt graphical illustration for the state update would

require representations for groups of sites, or alternately explicit representation of the traf-

fic lights. The road traffic example highlights why a graph description for general MLSN

is complicated-pairwise interaction among sites may not capture all relevant interactions

in the network. Nevertheless, it is reasonable to consider graphs of the network that il-

lustrate update interactions or dependencies in the first conditional moment expression,

as long as we keep in mind that these graphs only partially capture update interactions.

In similar fashion, graphs that illustrate update interactions among groups of sites or de-

pendencies in higher conditional moments can be developed. Some caution is needed in

developing graphs for illustrating higher moment conditions, because redundancies in the

higher moment vectors can lead to non-unique specifications for the graph. We leave it to

future work to precisely define general graphs for MLSN, and to determine the relation-

ships among various graphical representations. An abstract graphical illustration of an

MLSN is shown in Figure 3.12.

3.6 A Block Representation for Structured MLSS Dynamics

As we briefly mentioned before, for network examples with vector (rather than scalar)

status representations, we find it useful to re-order the moment recursions so as to clarify

interactions and status configurations of groups of sites. This section introduces a block

representation for MLSS (and, in particular, MLSN) dynamics, which allows us to naturally
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Figure 3.12: This figure illustrates the features of an MLSN. An MLSN is an informal term
for an MLSS which seeks to model the interdependent evolution of parts of a network. Our
picture shows one possible graphical representation for MLSS: here, an arrow indicates
dependence of the conditional mean of the next-status at one site on the current status of a
neighbor (possibly including itself).

represent interactions among vector site statuses.

3.6.1 A Block Kronecker Product

To construct a block representation for structured MLSS dynamics, it is useful to define

a block Kronecker product notation. In particular, consider two vectors x and y that are

XI

partitioned into n(x) and n(y) subvectors, respectively, as follows: x = ' and y =

_xn(x).
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Y1

Then we define the block Kronecker product of x and y, denoted x Z y, to be

_Yn(y).

X 1 O yi

x 1 0 Yn(y)

x Z y= (3.7)

Xn(x) 0 Y1

Xn(x) 0 Yn(y).

In words, the block Kronecker product is a list of the Kronecker products of each pair of

subvectors of x and y (rather than a list of the scalar products of each pair of entries of x

and y, as in a standard Kronecker product).

We note that the entries of x M y are obtained by a simple permutation of the entries of

x ® y. We specify the permutation matrix relating x and y in Appendix B.

3.6.2 Block Representations for MLSS

In the examples of network dynamics that we have discussed, we have associated statuses

or status vectors with each site in the network. We have then shown that the state process

of the system-where the state is defined to be the concatenation of the status vectors-is

an MLSS. Thus, we see that it may be natural to view the state s[k] of an MLSS as being

partitioned into subvectors.

In particular, say that the state s [k] of an MLSS is partitioned into n subvectors s1 [k], ... , s, [k]

si[k]

(i.e., s[k] = ). In keeping with our network perspective, let's call these n subvectors

[sn [k]
status vectors, and think of them as being associated with n sites.

In MLSS with partitioned states of this sort, it may be natural to specify the dynamics in

- 94 -



Using MLSS to Represent Network Dynamics

terms of interactions between sites or groups of sites, and to characterize moments and

cross-moments of status vectors. For this reason, it is useful to re-order the rth-order state

vector in such a way that Kronecker products of status vectors form contiguous parts of it.

To this end, we define the permuted rth-order state vector, denoted s[r] [k] to be

S [r][k]= s[k]2r. (3.8)

That is, the permuted rth-order state vector is the block Kronecker product of the vector

s[k] with itself r times. We can straightforwardly show that the entries of s [, [k] are obtained

by permuting those of s[k]or. Details of this permutation can be found in Appendix B.

3.6.3 Further Notation

In Chapter 7, we will use the block representation for MLSS in specifying higher-moment

recursions for the influence model. In this context, the moment recursion matrices are

developed by considering interactions among groups of sites. In constructing these recur-

sion matrices, we often find it useful to work with Kronecker products of status vectors of

groups of sites. It becomes tedious to present expressions in terms of such Kronecker prod-

ucts, so we define a little further notation to simplify presentation of Kronecker products

of multiple status vectors.

First, we define an rth-order grouping v as an ordered list of r (not necessarily distinct)

sites: v = {v 1 , . . . , V }, where each vi E 1,. . . , n. We define the joint status vector of the

rth-order grouping v at time k as

s [k] = s,[k] 0 svj[k] 0 ... 0 sv,[k]. (3.9)

The joint status vector of a grouping is simply a concise notation for the Kronecker product

of the status vectors of the sites in that grouping.

The permuted rth-order state vector s[,] [k] is a list of all joint status vectors of rth-order

groupings, arranged in lexicographic order according to the grouping (see Appendix A)
for a definition of lexicographic order).
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Chapter 4

Further Analysis of MLSS and MLSN

Dynamics

In this chapter, we extend the basic analysis of MLSS and MLSN dynamics in several di-

rections, and also develop some methodologies that are required for these analyses.

The chapter is organized as follows.

" In Section 1, we outline an approach for computing statistics across time-steps.

* In Section 2, we discuss reduced formulations for state and moment vectors, which

eliminate redundancies in these vectors. These reduced representations are required

for the developments in the remainder of the chapter.

" In Section 3, we characterize aspects of the asymptotic dynamics of MLSS and MLSN.

We discuss several notions of convergence, and also mention non-convergent dynamics

that can occur in MLSS and MLSN.

4.1 Statistics Across Time-Steps

The moment-linear structure of our model also facilitates calculation of statistics across

time-steps (i.e., cross-moments between state variables at multiple time-steps). Such statis-

tics are valuable in that they can identify aspects of the stochastic dynamics that persist

through time. In the literature, correlations among state variables at two time-steps are

commonly studied for stochastic systems (see, e.g., [1131, [1141, [54] for a few applications).

Such correlations have been found for some network models; for instance, correlations

across time-steps have been derived for a particular cellular automaton [117], and for a

model for computer network traffic [128]. In the context of signal processing, these cor-

relations play a role in several important theoretical developments, including the analysis
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of spectra of stochastic systems and the development of filters for noise-reduction in lin-

ear systems (see, e.g., [113]). Some (comparatively) recent work has focused on higher-order

statistics (i.e., third and higher moments /cross-moments and cumulants/cross-cumulants)

of linear and nonlinear systems, and their application in signal identification and process-

ing (see, e.g., [99],[100],[109]). Of particular interest to us is the development of Kronecker-

product expressions for higher-order statistics of linear systems ([133],[99]). Like these

articles, we also compute higher-order statistics across time-steps in a Kronecker product

representation, but for MLSS rather than linear systems.

4.1.1 Formulation

We describe a method for finding expectations of Kronecker powers of extended state vec-

tors (of various degrees) at multiple time-steps for an MLSS (or MLSN). That is, we con-

sider the expectation

E (0'ilS(r) [ki]) , (4.1)

where we have assumed without loss of generality that k, > k 2 > ... > kT > 0. The

expectation 4.1 contains statistics of state variables across times k1 ,... , kT. Specifically,

Equation 4.1 contains all moments and cross-moments of the form E (fL'11 H l L1 sj [kii),

where each aij is a non-negative integer and E', ai < ri for each i.

Example 4.1

To find cross-correlations between state variables at two time-steps, k1 and k2, with k1 > k2 (i.e.,

expectations of the form E(si [k1]sj [k 2])), we evaluate the expectation E(s(1) [ki] 0 s(1) [k 2]) ac-

cording to the procedure developed in the following subsection. Note that the expectation that we

evaluate contains not only cross-correlations between the two time-steps but also expectations of

state variables at each time-step.

4.1.2 Evaluation of Equation 4.1

In this subsection, we show how to evaluate the expectation 4.1. For clarity, we limit our

analysis to time-invariant MLSS.

Our approach for determining the expectation 4.1 is to rewrite it in terms of an expectation
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of Kronecker products of extended state vectors at times k2 , ... , kT. The process used to

rewrite the expectation can then be applied iteratively to find the Expectation 4.1 solely in

terms of an extended moment vector at time kT. Finally, a moment recursion can be used

to find the extended moment vector at time kT, as described in Chapter 2.

We rewrite the expectation 4.1 by conditioning on s[k 21, ... , s[kT], as follows:

E (01 1S(rj)[ki]) (4.2)

= F (E (Of iS(r)[ki]Is[k2 , .. ., s[kT]))

= F (E (S(ri)[ki] s[k21, . . . , s[kT]) 0 (0- 2 s(ri)[ki]))

= E ( (s(r) [ki] I s[k 2]) (i- 2S(r.) [ki]))

- E (f5kI-rk2S(rl) )k 2 ] 0 (OT_2 sgr)[ki]))

The mixed-product property of the Kronecker product (see, e.g., [72]) can then be used to

rewrite (4.2) as

F (0@iS(ri)[ki]) (4.3)

0( 2 Ir)) F ((s(ri)[k2] 0 S(r2 )[k 2]) 0 (i- 3 S(ri)[ki]))

where Ia(,) is an identity matrix with dimension oz(1) equal to the total length of the vector

0i 1
2S(r.) [ki], or ce(1) =j= 2 m-1

To continue the analysis, note that s(,,) [k 2 ] S( 2 ) [k 2 ] contains only monomials of time k2

state variables with total degree less than or equal to r 1 + r 2. Thus, all entries of S(ri) [k 2] 0

S(r2 ) [k 2] are also contained in the vector S(r,+r2 ) [k 2 ], and so S(ri) [k 2] S (r 2 ) [k 2] can be written

as a linear function of S(rl+r2 ) [k 21. That is, there is a matrix Lri,r2 such that

S(ri)[k2] 0 S(r 2 )[k 2 = Lri,r2S(r,+r 2 )[k2]. (4.4)

Some algebra is required to construct the mapping matrix Lri,r2; this algebra is discussed

in Appendix B1.

'Note that the form of the matrix Lr1,r2 depends only on the dimension m of the state vector, and on ri
and r2; it does not depend on the time-step k2 or the value of the state vector. In other words, given m, we
can construct a set of matrices Lr1 ,r 2 that specify maps between Kronecker products of extended state vectors
and higher extended state vectors, regardless of the specifics of the MLSS or of the computation of interest.
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Substituting Equation 4.4 into Equation 4.3, we find that

E (0QiS(rj)[ki]) (4.5)

(fr1 k2 0 la(l) E (Lri,r2s(r+r2 )[k 2] 0 (0T- 3st r)[ki]))

We again use the mixed-product property to rewrite Equation 4.5 as

E (0TiS(rj)[ki]) (4.6)

= 05 4 J( a(I) ri,r2 O 11(1)) E (0 2s(j)[ki]))

where F2 = r, + r 2 , = r, for j > 3, and 3(1) is equal to the length of the vector

0i= 3 S(ri)[ki]-i.e. 0(1) = ] m -1

Equation 4.6 shows that E (iiS(r.) [ki]) can be written as a linear function of the expec-

tation of Kronecker products of extended state vectors at times k2 , ... , kT. By iteratively

applying the analysis described above T - 1 times in total, we can find E (®1is(r )[ki])

in terms of an extended moment vector at time kT, and so (by applying an extended mo-

ment recursion) in terms of an extended moment vector at the initial time 0. This iterative

procedure yields the following expression for E (07iiS(ri) [ki]):

E (O _ is(r)[ki]) (4.7)

wh1(r k ( + 0 () (L , Io ) 1/(i))) HT VE(S(rT) [0]),

where i = E= ri, a(i) .- j 1 -I ri 1_1 for i < T - 2, and
L-3 'i y+1 rn-i OW =-.fj-i--2 rn-1

/(T - 1) = 1, Ia(i) and I3(i) are identity matrices of dimension a(i) and 0(i) respectively,

and (Lf,,j+, specifies the linear map s(,) [ki+1] 0 s (,r,+) [ki+1] = LFi,r2 S(Fl+r 2 )[k2].

Though the notation in Equation 4.7 is complicated, the basic concept behind the equation

can be simply understood, by considering the terms in the equation from right to left. In

this way, we see that Equation 4.7 iteratively computes statistics across groups of time-

steps of the form kT,. . . , ki (i.e., across some of the time-steps in the set kT, ... , ki, starting

from the earliest time-step). Statistics of sufficiently high order are determined at each

iteration to eventually allow calculation of E (0iS(ri) [ki]). It's interesting to note that the

computational complexity of Equation 4.7 is similar to that of the recursion used to find

statistics of degree iT = ET_1 r at a single time-step.

The procedure described here can also straightforwardly be applied to a time-varying
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model: the resulting expression for the expectation 4.1 then contains products of extended

recursion matrices at multiple time-steps, rather than powers of a single extended recur-

sion matrix. In determining statistics across time-steps for MLSN in particular, it may be

useful to rearrange the entries in the expectation 4.1 to reflect interactions among sites.

These rearrangements are similar in spirit to the permuted state vectors developed in Sec-

tion 3.6; we do not consider the rearrangements any further here.

Example 4.2

In this example, we apply the procedure above tofind the expectation E(s(l) [k 1 ] 0@s(1) [k 21), k1 > k2,

for an MLSS with m = 2 state variables. Our discussion of this special case serves to highlight
some of the details of the general analysis above.

By following the procedure described in Equation 4.2 and then applying the mixed-product property

of Kronecker products, we can rewrite E(s(1) [k 1 ] G s(1) [k 2]) as

(s(1) [ki1] s(i) [k2]) = (1*c)-k 2 0 13 )E(s(l) [k 2] 0 s(l)[k2]), (4.8)

where 13 is an 3 x 3 identity matrix. Note that E(s(1) [k 21]s(1) [k 2]) is a vector of length (M+1)2
ftkl-k201tiofdmnin(n+ '_9, and that (1) -k i+1 is a matrix of dimension (m+ 1)2 x (m + 1)2 = 9 x 9, so the matrix-

vector multiply in Equation 4.8 is properly dimensioned.

The next step in the analysis is to rewrite E(s(1 ) [k 2]®s(1) [k 2]) as a linear function of E(s(1+1) [k 2])
E(s( 2) [k 2]). For this simple example, this linear map can be constructed by inspection, as follows:

E(s(1 ) [k 21 0 s(i) [k2]) E
[- ] 0 2

s, [k 2]

s1 [k2]s1 [k2]s2[k2
s1[k 2]

s1 [k2]s2[k2]

s|[k 2]

s2[k2]

s1[k 2]

s2[k2]

\ . 1
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1 s [k2]

1 s1[k 2]s 2 [k 2]

1 s1[k 2]s2[k2]

1 sj[k 2]

= 1 E

1 s1[k 2]

1 s2[k2]

1 - 1 -

- Ll,1E(s( 2)[k 2]).

Substituting into Equation 4.8 gives

E (s(1) [ki] 0 s(1) [k 2]) = (Htk1 7 k2 0 13 )L1,1 E(s( 2) [k 2])- (4.10)

Finally, by invoking the second extended moment recursion, we can write Equation 4.10 as

E (s(1)[ki] s(1)[k 2]) = (k-k2 0 1 3 )L1,1( 2)[k]. (4.11)

SS Correlation between s1 [k] and s_2[k+\wideha{k}I

0.5 -

0.4 -

0.3 -

0.2-
CZ

COO
0.1 0

0
0000 00

-0.2 -

-10 -4 -2 0 2 4 6 8 10

Time Interval \widehat{k}

Figure 4.1: The steady-state normalized cross-correlation function between the stochas-
tic process of the number of jobs in the queue and the stochastic process of the number

of exiting jobs is shown. That is, we plot the steady-state value for E(si[k]s2 [k + k]) -

E(si[k])E(s 2 [k + k]) as a function of the time interval k.

-102-



Further Analysis of MLSS and MLSN Dynamics

Example 4.3

Let's revisit the infinite server queue with random service probabilities introduced in Section 2.4.5.

Using the techniques described in this section, we have found the steady-state normalized cross-

correlation function between the number of jobs in the queue and the number of jobs exiting the

queue, as shown in Figure 4.1. As one might expect, the number of jobs currently in the queue

is positively correlated with the number of jobs released during future time intervals: if there is

currently a large number of jobs in the queue, it is likely that a larger-than-average number of jobs

will be released during future time intervals. The value of this positive correlation decreases with

time, as the average behavior of the system returns to steady-state. Also, Figure 4.1 shows that the

number of jobs in the queue at a certain time is negatively correlated with the number of released

jobs at previous times: the number of jobs in the queue at a certain time reflects the number of jobs

that have not been released at previous times, explaining the negative correlation. Interestingly,

this negative correlation is less pronounced than the positive correlation at future times, because a

larger number of jobs in the queue at the current time-step can also indicate a larger number of jobs,

and larger service rate, at previous time-steps.

4.2 Reduced Representations for MLSS

4.2.1 Motivation and Approach

Our development so far has been concerned with representing example systems as MLSS

and MLSN, and then computing state statistics for these systems using linear moment

recursions. Though we have noted the our representations for state statistics contain re-

dundancies (both because of repeated cross-moments in the vector moments and because

of intrinsic contraints on state variables in some examples), these redundancies have been

tangential to our analysis so far. In subsequent sections of this chapter, we will seek to

relate qualitative features of MLSS dynamics (e.g., asymptotic and settling characteristics)

with MLSS parameters (e.g., eigenvalues of recursion matrices). In these analyses, the de-

generacies in recursion matrices resulting from redundant moment vectors are significant,

since the MLSS parameters of interest may depend on the form of the recursion matrices

considered. Thus, it is important for us to structure moment representations in such a

way that meaningful characteristics of model dynamics can be gleaned from parameters.

Further, appropriate forms for recursion matrices are valuable because they can simplify

analysis of parameters such as dominant or subdominant eigenvalues.
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With this motivation in mind, we discuss reduced representations for moment vectors

and the corresponding moment recursions. For the sake of convenience, we constrain our

discussion to time-invariant or stationary MLSS, though similar representations for time-

varying MLSS can be constructed.

4.2.2 Reduced Representation: Definitions

We construct (as done implictly in [9], in developing higher moment recursions for the in-

fluence model) reduced representations for MLSS state and moment vectors by identifying

subsets of the entries in these vectors that are sufficient for determining the entire vector.

In particular, consider an MLSS of degree F. For any r < F, a set of vectors S[1] [k],... , S[r] [k]

is called an rth reduced state vector set if all entries of each [] [k], 1 < i r, are entries

of s[k]@0, and further each s[k]@0 can be written in the form I Mijs W [k] + Ni, for some

Mi, 1, . . . , Mj, and Ni, and for all k. In words, -s] [k], . . . , s[r] [k] is an rth reduced state vector

set if the entries of-[] [k] are drawn from s[k]@0, and if each s[k] can be written as a linear

function of S[1] [k], . . . , S[] [k]. As a direct consequence of the definition, the vector S[] [k] can

always be written in the form LrS[k]®T for some matrix Lr, since each element of s[r] [k] is

an element of s[kl r.

Note that we have defined the rth reduced state vector set so that each subset S[ [k], ... , s[i] [k]

is a sufficient statistic for s[k]@i, and further s[k]®0 is a sufficient statistic for - [k]. Thus, we

might hope to develop moment recursions for reduced moment vectors (i.e., expectations of

reduced state vectors), by exploiting the mappings between the reduced and original state

vectors. The ensuing discussion shows that such reduced moment recursions can indeed

be constructed.

Example 4.4
Consider the MLSS formulation for a three-status Markov chain (see Section 2.4.2). Recall that the

s 1 [k]
state vector s[k] = s2[k] at each time k in the MLSS formulation is a length-3 indicator vector

.33[k]_
for the status of the Markov chain. We claim that a 1st reduced state vector set for this example is

given by (the single vector) '[, [k] = [si . To check, note the following:
E2[ k]]

e Each entry of 9[g [k ] is an entry of s[k|.

-104-

Chapter 4



* Since the state vector is an indicator, the final entry of s[k] is exactly specified by the first two

entries, as s3 [k] 1 - s 1 [k] - s 2 [k]. Thus, s[k] can be written in terms of - 1 [k] as

.1 0 0~
s[k] = [ 1 ] [1] [k] + 0 . (4.12)

-- I -1_ _1_

Thus, the conditions required for [1] [k] to be a 1st reduced state vector set are satisfied. Also note

that -[1] [k] can be written as a linear function of s[k], as

S i [k0 s[k]. (4.13)
0 1 0

In order to reformulate the extended moment recursions in the framework of the reduced

state vectors, it is useful for us to assemble the first r reduced state vectors into a single

vector. Thus, we define the extended reduced state vector of degree r to be

S[r] [k]

-(r)[k] =1] (4.14)

-9[1][k]

(Note that, unlike the extended state vector, we do not include a unity entry at the bottom

of the extended reduced state vector.)

4.2.3 Relationships between Extended State Vectors and Extended Reduced
State Vectors

Assembling the linear relations between higher state vectors (i.e., Kronecker products of

the state vector) and reduced state vectors, we find that the extended state vector can be

expressed in terms of the extended reduced state vector as

s(,r) [k] = M(r)S(r) [k] + N(r) (4.15)
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where

Mrr Mr,r-I ...

Mr 1,r_1 ...

Mr,i

Mr, 1

M,

0

Similarly, the extended reduced state vector

vector as

Nr

Nr_1

N1

1

can be written in terms of the extended state

S(r)[k] L(r)s(r)[k], (4.16)

where

Lr

L(r =
Lr-I

L, 0

Example 4.5

Let's again consider the three-status Markov chain from Example 4.4. Note that the 1st extended

state vector for this example is the length-4 vector s(1) [k] = , while the first extended reduced
1 1.

state vector is the length-2 vector (1, [k] = s 1] [k]. From the above discussion relating extended

state vectors with extended reduced state vectors, we see that

s(1)[k] = M(I)s(I)[k] + N()
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where

1 0

M(i) 0 1 (4.18)
-1 -1
0 0

and

0

N(i) = . (4.19)

Also, we can write the extended reduced state vector as

s(l)[k] = L()s(l)[k], (4.20)

where

L 1 0 0 01(.)L(i) = (4.21)

4.2.4 Recursions for Reduced Moment Vectors

Because of the linear mappings between the extended state vectors and the extended re-

duced state vectors, we can develop recursions for extended reduced moment vectors (i.e.,
expectations of extended reduced state vectors), as follows:

E(s(,)[k + 1]) = L(,)E(s(,)[k + 1]) (4.22)

L(r)Ht(r)E(S(r)[k])

= L(r)H(r)M(r)E(S(r)[k])+L(,r) ()N(r)

From here on, we use the term extended reduced recursion matrix for the matrix H(r)

L(r)H(r)M(r), and use the term extended reduced recursion vector for the vector (r) L(r)H(r)N(r).
In this notation, the recursion in Equation 4.22 is given by

E(S(r)[k + 1]) = H(r)E((r)[k]) + (r) (4.23)
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Example 4.6

Again consider the three-status Markov chain from examples 4.4 and 4.5. Say that the transition

0.7 0.2 0.11

matrix for the Markov chain is D = 0.1 0.6 0.3 . Using the procedure above, we can construct

0 0.3 0.7]
the recursion for the 1st reduced vector moment. This recursion turns out to be

E(ls()[k + 1]) = [7 011 E(s()[k]) + (4.24)
--0.1 0.3 0.3

4.2.5 More on the Extended Reduced Recursion Matrix and Vector

Because of the way reduced state vectors have been defined, the extended reduced recur-

sion matrix and vector are specially structured. In particular, the matrix H(r), like H(r), is

block upper-triangular:

Hr,r Hr,r-i ... Hr 1

0 Hri,r-i ... Hr-i,i
H(r) (4.25)

0 ... 0 H1,1

where H 3 = Li J _ Hi,tMtj, for i > j.

Like Hr, B(r) can be related to the original recursion matrices of the MLSS, as

B1

(r)= (4.26)

-Br]

where Bi = Li(Z _1 Hi,tNt + Hj,0).

4.2.6 Eliminating Cross-Moment Repetitions

As we have already discussed, state and moment vectors can be redundant both because of

system-specific constraints on the dynamics, and because of repetitions of cross-moments

in the vector moments. Cross-moment repetitions are identical in all MLSS, so they can be
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eliminated in a systematic fashion. We discuss one approach for constructing a reduced

state vector set that eliminates repeated cross-moments.

In order to construct this reduced representation, it is useful to develop a notation for

products of groups of state variables. To do so, define an ith state variable grouping to be

an ordered list of i indices of state variables. That is, an ith state variable grouping v is a
list of the form v = {vi, ... , vi}, where each vj E 1,... , m. Next, define the state variable

product at time k for the state variable grouping v as

s[k] = 11 svj [k]. (4.27)
j=1

In total, there are m' distinct ith state variable groupings. The vector s[k]0® is simply a list
of the corresponding mi state variable products, arranged in lexicographic order according
to the grouping.

Redundancies in moment vectors come about because some entries in s[k]0® are identical.
In particular, consider any two entries in s[k]®' corresponding to state variable group-

ings that are rearrangements of each other (by rearrangement, we mean that the one state
variable grouping can be constructed by reordering the other grouping). Based on the def-
inition of the state variable product, these entries are identical (i.e., they are defined by the
same function of the state variables). Thus, their expectations must be identical, and so the
entries introduce redundancies in the extended moment vectors.

To construct an rth reduced state vector set which eliminates thes redundancies, let's de-
fine an ith primary state variable grouping, 1 < i < r, to be a state variable grouping v for

mr+i -1
which vi < ... < vi. Note that there are ( m - 1 ) distinct ith primary state variable
groupings. Define the vector [j] [k] to be a list of the state variable products corresponding

to these state variable groupings, arranged in lexicographic order. Note the following:

" Each entry in s[k]0 ' is identical to an entry in S[2 ] [k], and vice versa. Thus, s[k]0' can be
written in the form M ,i[j[k], and 9[] [k] can be written as Lis [k] @'. Thus, S[1] [k], ... , s[r] [k]
constitute an rth valid reduced state vector set.

" In general, two state variable products are guaranteed to be equal only if their state vari-
able groupings are rearrangements of each other. Note that the state variable groupings
corresponding to any two entries in S[i] [k] cannot be rearrangements of each other, so
the S[i] [k] generally do not contain identical entries. Thus, expectations of the vectors
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g[ [k] do not generally have redundant moments and cross-moments.

We have shown how to construct reduced state vector sets so as to eliminate redundant

cross-moments. In our discussion, we have not explicitly shown how to construct the

matrices Mjj and Li. These mapping matrices are constructed in in Appendix B.

Example 4.7
Consider an MLSS with m = 2 state variables, and consider the second-moment vector. In order

to eliminate redundant cross-moments in the second-moment vector, we must construct a reduced

s [ [k]

02 s1[k ]2 [k]
representation that eliminates repeated entries in the vector s[k] S[k]s[k] . For this exam-

s [k]

s1[k] ~
ple, we can use the vector s[2] [k= s1[k]82[k] as the reduced representation. Note that s[k]0 2

s [k]_

and S[2] [k] are related by

1 0 0

s~] 12 0 1 0
s[k 0 1 0 S[2 ][k], (4.28)

0 0 1

and

1 0 0 0

s[2][k= 0 1 0 0 s[k]®2 . (4.29)

-0 0 0 1-

4.2.7 Minimal Representations

It is useful for us to define minimality of reduced representations. That is, we would like

to develop a condition for checking whether or not any further reduction in a particular

state representation is possible. The way in which we define a minimal state vector set is

motivated by the convergence analyses that we pursue in Section 4.3; for now, we simply

present the condition for minimality.
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Consider an rth reduced state vector set for a particular MLSS. We define the minimality

of this set in terms of its extended reduced moment vector E(s(r) [k]). First, we define the

concept of a valid initial condition for the extended reduced moment vector. In particular,

we say that s is a valid initial condition for the extended reduced moment vector if we can

specify a valid probability distribution on the initial state s[0] (which meets the constraints

of the particular MLSS) such that E(s(r) [k]) = §.

Next, we define minimality as follows. We say that the rth reduced state vector set is an
rth minimal state vector set if there exists a vector 9, positive constant c, and norm 11.11,
such that 9+ is a valid initial condition for the corresponding extended reduced moment
vector, for all J such that J < I . In words, a reduced state vector set is defined to be
minimal if there is a valid initial moment vector that can be perturbed in any way by a
small amount and still remain a valid initial moment vector.

Example 4.8
We again consider the three-status Markov chain of Examples 4.4, 4.5, and 4.6. In particular,

consider the 1st reduced state vector set -1 [k] = 1 [k] ,and consider the initial extended reduced
S2 [kl I

moment vector, E ([i] [0]1) = E [0 . In this example, the two entries of this vector, E(s1 [0])momen vecor, ES111[0]) E (S2 [0]1)
and E(s2 [0]), are the probabilities that the Markov chain are in status 1 and 2, respectively, at the

initial time-step. These initial status probabilities are constrained to be positive, and E(s1[0]) +
E(s2 [0]) must be less than 1, but they can otherwise be arbitrary. Thus, we can prove that the

FO.61
reduced state vector set is minimal, as follows. Choose s = , and c = 0.1. Then we can

[0.2
clearly construct an initial state distribution such that E(s [1 [0]) = + for ||6|11 < c, so the state
vector set is minimal.

4.2.8 A Subspace Interpretation to Our Development

In this section, we have developed a formalism for eliminating redundancies in the vector
moments of an MLSS by using reduced state vector representations for the MLSS. In con-
cluding the section, we briefly discuss a second approach for accounting for redundancies
in the vector moments, without explicitly constructing reduced state vector sets.

To do so, consider an rth extended vector moment s(r) [k] for an MLSS of dimension m.
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Note that s(r) [k] is a real vector of dimension ir = - m 2-i.e., it is defined in the space

Rr. However, any redundancies in the vector s(r) [k] correspond to linear constraints

on its entries (e.g., they force some of the entries to be identical); in this case, s(r) [k] is

constrained to a subspace of R r, which we call the relevant subspace.

The reduced representations that we have developed eliminate these constraints by refor-

mulating the extended vector moments in a lower-dimensional subspace. Alternately, we

can maintain the dimension of the extended vector moment but explicitly identify and

account for the constraints placed by the redundancies. In particular, we can identify sub-

spaces within the span of the recursion matrices that the vector moment is confined to

when excited by initial vectors in the relevant subspace. This approach has been used in

[9] to identify irrelevant modes (eigenvector directions) in the influence model's recursion

matrices. We will use a similar approach in studying the influence model.

4.3 Asymptotics of MLSS

Our aim here is to outline methods for characterizing the asymptotic dynamics of MLSS

and MLSN, and to study the asymptotics of several examples. We caution that our ap-

proach is rudimentary in many respects: because we study methods that are general to

MLSS and MLSN, our methods overlook some features of the asymptotics in particular

models that are related to the specifics of these models' dynamics. Nevertheless, our ap-

proach provides some fresh insights into the asymptotic dynamics of several examples and

identifies some key characteristics of models that define their asymptotic behavior.

We focus primarily on studying moment convergence of MLSS in the following discussion,

but also touch on several other types of asymptotics, including mean-square convergence,

distributional convergence, and some non-convergent dynamics.

4.3.1 Moment Convergence

The moments of random vectors strongly characterize their distribution, and so the asymp-

totic dynamics of moments of random processes are of some interest. For instance, moment

asymptotes can sometimes be used to prove convergence of the state distribution [62, 2, 92],

or to bound the probability that the state strays far from its mean at large time (see, e.g.,
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[62]). The large-deviations theory also uses moment information to bound the probability

that a random variable strays far from its mean, and has been applied in studying asymp-

totics of, e.g., queueing networks ([89]). The asymptotics of the moments are also valuable

in proving, or disproving, some notions regarding convergence of the state of a random

process, such as convergence in mean-square and convergence in probability (see, e.g., [62]). We
will discuss these notions of convergence and their connection with moment convergence

in later parts of this section.

Techniques for checking moment convergence (and for the corresponding steady-state mo-
ment analysis) are well-known for discrete-time linear systems driven by stochastic inputs.

The moment dynamics, and asymptotics, of MLSS are in general richer than those of purely
linear systems, as highlighted in our analysis and examples.

Definitions

We define the notion of moment convergence in MLSS and MLSN in terms of the extended
moment vectors, as follows. Consider an MLSS (or MLSN) of degree r. For r < F, we say
that the MLSS is strictly rth-moment convergent or rth-moment convergent to the vector 9(r)
if liMksoo E(s(r) [k]) = 9(r), for any (possibly random) initial condition s(r) [0] that has its
first r moments finite.

Often, a weaker notion of moment convergence which allows for the asymptotics of the
extended moment vector to depend on the initial state distribution is useful. Thus, we say
that an MLSS is marginally rth-moment convergent if liM E(S(r) [k]) exists for any S(r) [0]
that has first r moments finite. Note that the value of the limit may in general depend on
E(s(r) [0]) for marginally moment convergent MLSS.

An MLSS that is not marginally rth-moment convergent is said to be rth-moment noncon-
vergent. For an rth-moment nonconvergent MLSS, there is at least one E(s(r) [0]) for which

limk,oo E(s(r) [k]) does not exist.

Our objective is to develop methods for relating the moment convergence properties of an
MLSS to its parameters.
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The Direct Method Fails

The extended moment vectors of an MLSS satisfy linear recursions of the form E(s(r) [k +

1]) = HrE(S(r) [k]). Thus, we can directly develop conditions for rth moment convergence

of MLSS in terms of the eigenvalues and eigenvectors of Hr, using standard linear systems

results (e.g., [42]). However, because the extended moment vectors may in general be re-

dundant, this direct approach may fail. In particular, H(r) may have eigenvalues that seem

to indicate the rth extended moment vector does not converge, while in fact these eigen-

values are irrelevant in the sense that the corresponding eigenvector directions cannot be

excited by a valid extended moment vector. Thus, we often cannot develop necessary con-

ditions for convergence, nor tight sufficient conditions, solely in terms of the eigenvalues

and eigenvectors of H(r).

By eliminating the redundancies in the extended moment vectors, good sufficient condi-

tions (and in some cases necessary conditions) for moment convergence can be developed.

This development is a primary motivation for the reduced representations of MLSS devel-

oped in Section 4.2.

Example 4.9

Consider a Markovian jump-linear system with a two-status underlying Markov chain, specified

by the transition matrix D = d1 1 d12. Define q[k] to indicate the status of the underlying
d21 d22_

Markov chain. Assume that the scalar continuous-valued state is updated as follows:

x[k + 1] aix[k] + bi, if q'[k] [1, 0] (4.30)

x[k + 1] = a2x[k] + b2 , if q'[k] [0, 1].

Recall from Section 2.4.3 that this jump-linear system can be reformulated as an MLSS with state

s[k] = q[k] & []. We would like to determine sufficient conditions on D, a1 , b1, a2 , and b2,

for strict 1st-moment convergence of s[k] (which in turn proves 1st-moment convergence of the

continuous-valued state).
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From Equation 2.29 in Section 2.4.3, we see that

dla1 b1 ~ a2 b2 0
0 1 0 1

H() d2ai b, [a 2 b2  0 (4.31)

0 11 0 1
0 0 1

It is easy to check that H(1) has two unity eigenvalues regardless of the parameters D, a1 , b1, a2 ,
and b2. One of these unity eigenvalues corresponds to the unity entry at the bottom right of H(1),

and is clearly insignificant to the dynamics of the state s[k]. However, the other unity eigenvalue

is associated with the dynamics of the underlying Markov chain and cannot be seen to be irrelevant

by inspection. Thus, we cannot straightforwardly prove strict 1st-moment convergence of this

MLSS by considering the eigenstructure of H(1 ). More generally, rth-moment convergence cannot

straightforwardly be understood in terms of the eigenvalues of H(r).

Moment Convergence and Reduced Representations: Sufficiency

Tight sufficient conditions for rth-moment convergence of an MLSS can sometimes be de-

veloped by considering rth reduced state vector sets for the MLSS. In particular, say that

an rth reduced state vector set has been developed for an MLSS, and consider the extended

reduced moment vector E(S(r) [k]) for this representation.

Equation 4.22 (in Section 4.2.4) specifies the linear recursion satisfied by E(s(r) [k]). Let us

consider convergence of this linear recursion. From standard linear systems theory, we

see that E(s(r) [k]) is strictly convergent if the extended reduced recursion matrix H(r) has

eigenvalues that are strictly less than 1 in magnitude.

Next, note that convergence of E(S(r) [k]) implies convergence of the extended moment

vector E(S(r) [k]), since E(s(r) [k]) is a linear function of E(S(r) [k]). In consequence, we have

proven that strict rth moment convergence of an MLSS is guaranteed if the eigenvalues of

its extended reduced moment recursion H(r) are strictly less than 1.

In a similar fashion, we can show that an MLSS is marginally rth moment convergent if

the magnitudes of all eigenvalues of H(r) are less than or equal to 1, all unity magnitude

eigenvalues are actually 1, each unity eigenvalue corresponds to a different Jordan block
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(see, e.g., [42] for definition) of H(,), and the left eigenvectors corresponding to the unity

eigenvalues are all orthogonal to B(r) (recall that F3(r) was defined in Equation 4.23.

Recall that an extended reduced recursion matrix H(,) is necessarily block upper-triangular

(see Equation 4.25). Thus, the eigenvalues of H(r) can be determined by computing the

eigenvalues of each of its diagonal blocks. The block upper-triangular structure can also

be used to simplify computation of the eigenvectors of H(r), as described in [131]. These

simplifications in the eigenanalysis of H(r) are especially valuable for developing suffi-

cient conditions for convergence that are phrased explicitly in terms of the parameters of

a particular MLSS, and for analyzing large systems with potentially high computational

cost.

Example 4.10

We develop meaningful conditions for strict rth-moment convergence of the jump-linear system

considered in Example 4.9, using a reduced representation for this system.

To decide how to construct a useful reduced state vector set for this example, let's first explore the

structures of the state vectors s[k]®, to better understand their degeneracies. With a little thought

(and some algebra), we see that the entries of s[k]®2 all have one of the following three forms:

qi[k](x[k]) , 0 < j < i (4.32)

q2 [k](x[k]) , 0 j < i

0.

Thus, it is clear that s[k]® is redundant in several senses:

" Entries in the vector s[k]®z are repeated several times.

" Entries in the vector s[k] i are contained in s[k] j, j < i. For instance, q1 [k](x [k] ), j < i is

also contained in the vector s[k]i.

" The two entries q1 [k] and q2[k] are redundant, since q2[k] =1 - q1 [k].

To eliminate these redundancies, we can construct an rth reduced state vector set [1] [k], . . . ,[] [k]
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as follows:

q1[k]x[k]1

s[1|[k] =q2[k]x[k] (4.33)

q1[k] J
q1 [k] (x [k|)isq [k]x =) , 2 < i < rs[id] 

- q2 [k](x[k])ij

It is clear from Equation 4.32 that the entries of each &[i] [k] in Equation 4.33 are contained in s [k]'3',

and that each entry in of s [k] 0 can be written as a linear function of the entries in s[1 [k], . . . , [k].

Thus, the vectors specified in Equation 4.33 are indeed a valid reduced state vector set.

Since [1 [k], ... ,S. [k] is a reduced state vector set, we can test for rth-moment convergence by

determining the eigenvalues of the extended reduced moment recursion matrix H(r) corresponding

to this reduced state vector set. Since we are only concerned with determining the eigenvalues of

, we need only construct the diagonal blocks of H(R). These diagonal blocks turn out to be

simple to construct from the system's stochastic description, so we compute the diagonal blocks in

this direct way rather than by relating H(r) to H1(r). To do so, note that E(q1[k + 1] | s[k]) can be

rewritten as E(q1[k + 1] qj[k]) = djq 1 [k] + d21 (1 - q1[k]) = (d1 1 - d21 )q1 [k] + d21 . Also,
consider E(q1[k + 1](x [k + 11)i | s[k]). It is easy to check that this expectation can be written as

djjq1[k](ax[k] + b1 )2 + d21 q2 [k](a 2 x[k] + b2 )i. Similarly, E(q2 [k + 1](x[k + 1])i 1 s[k]) can be
written as d1 2q1 [k](aix[k] + b1 )2 + d2 2q2 [k](a 2x [k] + b2 )i. Assembling the appropriate terms from

these expectations, we see that the diagonal blocks of I(r) are given by

dna1 d21 a2  --

H1 1  d12a1  d22 a2  -- (4.34)

[0 0 d -d 2 1.

- dia' d21 a1
Hji = , zi> ,

' d12 ai d22 a2

where the symbol - - has been used to represent entries that are irrelevant to the eigenanalysis and

so need not be specified.

By determining the eigenvalues of the H2 ,j, 1 < i < r, we can specify a sufficient condition for

rth moment convergence In particular, we find that this jump-linear system is guaranteed to be
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Maximum Value of a Allowed for Stability

1.4

1.25 -

S 12

E _

Degree of the Mloment

Figure 4.2: In this plot, we show that the parameter values required for moment convergence of a
jump linear system are a function of the degree of moment convergence. In particular, we consider
the system with d11 =0.7, d12 =0.3, d21 =0.4, d22 = 0.6, and a1 =0.5. We use the condition
4.35 to plot as a function of r the maximum a2 for which the system is guaranteed to be rth-moment
convergent. Note that an a2 guaranteeing rth-moment convergence can be greater than 1 (so that
the system x [k + 1] =a 2x [k ] + b2 would be unstable) for each r. However, a2 must be at most 1 if
all moments of the jump linear system are to converge.

'rth-moment convergent if the following r + 1 conditions hold:

|di- d21j < 1 (4.35)

~ ~d12 ai d2 2 aiJ

where p( [H ]) is the s pectral radius of the matrix H (i.e., the maximum among the magnitudes of

the eigenvalues of H ). In Figure 4.10, we use these conditions to explore how the parameter values

needed for moment convergence can change with the moment of interest.

Example 4.11

We also show strict rth-moment convergence for the M LSN model for bulk road traffic flow (Section

3.3.4), given some general conditions on flows in the network. Recall that the state update for the

road traffic network has the form s[k + 1| (= - Ha(x3 [k ]) s[k] ± Ho[k], where the matrices

H1 (x3 [k]) describe the movements of vehicles among (and out of) the road segments due to the

probabilistic actions x, [kj] of the z traffic lights, and the random vector H0 [ki describes flows into

each road segment from outside the system.
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To show moment convergence, we specify a reduced state vector set -[1] [k], .... [r] [k]. In this

example, we choose the reduced state vectors in the obvious way, as 2[i] [k] = s[k] 0 (so that the
extended reduced state vector is identical to the extended state vector, except for an extra unity entry
at the end of the extended state vector). Although the reduced state vectors have some degeneracy,
since entries are repeated multiple times, they are sufficient for proving moment convergence in this
case.

Let's consider the diagonal blocks of the extended reduced recursion matrix H(,) corresponding to
this reduced state vector set. From the state update, we see that these diagonal blocks are given by

Hjj = E Hj (xj [k]) ,(4.36)

where the expectation is taken with respect to the actions x3 [k] of the z traffic lights. To prove rth
moment convergence, we must show that all eigenvalues of H2,2, 1 < i r, are strictly less than 1
in magnitude.

To bound the eigenvalues of H1,j, let's first consider the columns of the matrix Ezl Hj(xj [k]),for
a particular set of actions x1[k] = ,.. ., xz [k] = zz. The ith column of this matrix specifies the

fractions of the vehicles in the road segment i at time k that are present in each road segment at
time-step k + 1, due to the flows resulting from the actions of the traffic lights. Regardless of the
particular actions taken by the traffic lights, these fractions should be non-negative for any realistic
traffic model; also, we would expect that the sum of the entries in each column is less than or equal
to 1. From here on, let's assume that a non-zero fraction of the vehicles in each road segment exits
at each time-step, so that the sum of the entries in each column is strictly less than unity2.

Now consider the matrices (Ez_ 1 Hj(xj[k]))O2, 1 < i r. We can easily check that the entries
in each column are non-negative, and that their sum is strictly less than 1. Since the matrix H2 ,j is
a weighted average of matrices of the form (E' 1 Hj (xj [k])) i, 1 < xj [k] < wi, 1 < j < z, the
entries in each column of Hi,j are non-negative, and their sum is less than 1. Thus,from Gersgorin's
Theorem, we see that all eigenvalues of H2 ,j are strictly less than 1 in magnitude, and so this MLSN
is rth moment convergent for all r.

2Moment convergence can also be proved with weaker assumptions on the flows out of the network, but we use this
assumption to simpify our presentation.
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Moment Convergence and Reduced Representations: Necessity

Necessary conditions for rth-moment convergence can be developed using minimal repre-

sentations for MLSS. In particular, say that a minimal state vector set has been constructed

for a particular MLSS. Call the valid initial condition, interval, and norm used to prove

minimality (see Section 4.2.7) 9, c, and 11.11, respectively. Consider the extended minimal

recursion matrix H(r) (i.e., the extended reduced recursion matrix corresponding to that

minimal state vector set). We claim the following: it is necessary that the eigenvalues of

H(r) are strictly less than 1 in magnitude for rth-moment convergence. That is, if the eigen-

values of H(r) are not strictly less than 1 in magnitude, then the MLSS is not rth moment

convergent.

To prove the claim, consider the rth extended minimal moment vector E(S(r) [k]) (i.e., the ex-

tended reduced moment vector corresponding to that minimal state vector set). Let's prove

that E(S(r) [k]) does not converge strictly (i.e., to a single value, from all valid initial condi-

tions) if the eigenvalues of H(,) are not strictly less than 1 in magnitude. To do so, consider

Equation 4.22, which specifies the recursion satisfied by E(S(r) [k]). It is well known from

linear systems theory that this recursion is not strictly convergent if any eigenvalue of H(r)

has magnitude greater than or equal to 1-i.e., the limiting value of the recursion for all

(valid and invalid) initial conditions is not identical. Invoking linearity, we can see that the

limiting value of H[k E(S(r) [0]) also cannot be identical for all E(S(r) [0]). Thus, there is a

vector Sb such that limkk H(,s -limk- (r)Sb. Thus, Iim oo H(r)(g - 9b) # 0, and so

limk,, H(,)a(S - Sb) z 0 for any a $ 0. Thus, limk, ( - a(s - Sb)) # lim_,C f(,)S

for any a > 0. Based on the way that we have defined the minimal state vector set, there is

necessarily some a such that 9 + a(9 - Sb) is a valid initial condition for the MLSS. Thus, we

see that there are two valid initial conditions such that the limiting value of H(.)E(S(r) [01)

is not identical. Again invoking linearity, we see that E(s(r) [k]) does not converge to the

same vector from all valid initial conditions.

Next, note that E(s(r) [k]) is contained in the extended moment vector E(S(r) [k]). Thus,

if E(S(r) [k]) does not converge strictly, E(S(r) [k]) also does not converge strictly, and the

MLSS is not rth moment convergent. Thus, we have proven the claim.

Example 4.12

Again consider the jump-linear system studied in Examples 4.9 and 4.10. It can be shown that the

reduced state representation considered in Example 4.10 is in fact minimal.
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To see why, consider the initial condition of the rth reduced moment vector set for this example.

A valid initial condition can be chosen by choosing the probability E(q1 [0]) that the underly-

ing Markov chain is in Status 1, as well as the conditional moments E((x[0])' I q1 [0] = 1) and

E((x[])i I q2[0] = 1) for 1 < i < r. Note that E(q1[0]) can be chosen in the continuous range

[0, 1]-let's choose an initial E(q1 [0]) that is strictly in the interior of this space (e.g., in (0,1)).
Also, note that there is a closed ball in r-dimensional space such that any point in this ball consi-

tutes a valid set of initial conditions E((x [0])' |q1[0] = 1), 1 < i < r (this is just a reflection of

the fact that moments of a random variable can lie in a continuous range)-let's say that we choose

E((x [0])i I q1[0] = 1), 1 < i < r that are strictly within this ball. In a similar fashion, let's say

that we choose E((x [0]) I q1i [0] = 2), 1 < i < r, that are strictly in the interior of their valid space.

From these initial conditions, we can compute all entries in the reduced moment vector set: E(q1 [k])
is already specified, the entries E(q1 [0] (x[0]) ) can be computed as E(q1 [0])E((x[0])i q1 [0] = 1),
and the entries E(q2 [0] (x[0])i) can be computed as (1 - E(q1[0]))E((x[0])' 1 q2[0] 1). These

entries constitute a valid rth reduced moment set.

Now say that we modify each entry in the reduced moment vectors by at most 6. Then the new

probability that the underlying Markov chain is in Status 1 differs from E(q1 [0]) by at most E,
so this new probability is valid for small enough c. Changing the reduced moment vectors by a

magnitude of c changes E((x [0])i I q, [0] = 1) from E(q|1O](x[O])) to E(q kO](x[O ).) Bye
E(qi[O]) E(ql [0])±c B reducing

the magnitude of c, the second quantity can be made arbitrarily close to the first, and hence the

modified values for E((x[0])' I q1 [0] = 1) are valid conditional moments for small enough E. In

turn, the corresponding entries of the modified reduced moment vectors are valid. Using a similar

argument, we see that the modified values of the entries E(q2 [0] (x [0] )i) are also valid for small

enough c. Hence, we have shown that the reduced state representation is in fact minimal.

Since the reduced state representation is minimal, the sufficient conditions for rth moment conver-
gence given in Example 4.10 are in fact also necessary for rth moment convergence. This example
suggests minimal state representations can be a powerful approach for developing necessary and
sufficient conditions for convergence.

4.3.2 Convergence of the MLSS State

In this section, we consider MLSS for which the state process {s[k] } itself converges to a
constant or to a random variable. In particular, we discuss two notions for the convergence
of the state of a random process, namely convergence in mean square and convergence in prob-
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ability (see [62] for an introduction), in the context of MLSS. Convergence in mean-square

is related to the first and second moments and cross-moments of the state variables of a

stochastic process, so we can straightforwardly develop sufficient conditions for conver-

gence in mean square in terms of the parameters (i.e., recursion matrices) of the first- and

second-moment recursions. In turn, convergence in the mean square guarantees conver-

gence in probability [62], so we can also check for convergence in probability.

A stochastic process {s[k]} is said to converge to the constant vector s in mean-square if

lim E ((s[k] - -)'(s[k] - -)) = 0. (4.37)
k--+oo

It is well-known (see, e.g., [62]) that {s[k]} converges to 9 in mean-square if and only if the

following two conditions hold:

" The sequence E(s[k]) converges, and limk-,o0 E(s[k])

* The sequence E(s[k]® 2 ) converges, and liMrno. E(s[k] 2 ) -s

(Typically, the second condition is specified in terms of the limiting value of the correlation

matrix E(s[k]s'[k]), but our formulation in Kronecker product notation is equivalent.)

Thus, we see that the state vector of an MLSS necessarily converges to the constant 9 if 1)

the MLSS is second-moment convergent, 2) lim_,oc, E(s[k]) =, and 3 )limkpo, E(s[k]0 2 )-

S02. Our discussion of moment convergence in the previous section shows one approach

for checking these three conditions, and for explicitly specifying the conditions in terms of

the MLSS recursion matrices.

Example 4.13

As a particular example of mean-square convergence to a constant, consider the scalar MLSS

s[k + 1] = 0.4s[k], w.p. 0.5 (4.38)

s[k + 1] = 1.3s[k], w.p. 0.5.

We can straightforwardly verify that the state vector is second-moment convergent, and that the

first and second moments of the state both converge to 0. Thus, the state of the MLSS is seen to

converge to 0 in mean square. We therefore know that the state of the MLSS converges to 0 in

probability-i.e., 1imkaooPr|s[k] - 0| > E) = Ofor any e. Interestingly, although the system

is mean-square convergent, higher moments of the state do not converge. The divergence of higher
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moments signals that the state can become anomalously large at large time, but not with high

enough probability to prevent convergence of the second moment to 0. Simulations of the system

4.38 are shown in Figure 4.3. The mean response of the system, as well as 20- intervals around the

mean, are also shown.

Simulations, Mean, and 2cr Bound

3.5- ! Ji

CO

U) 2

0.5 -

0 5 10 15 20 25 30 35 40 45 50

Time-Step

Figure 4.3: Simulations of a scalar MLSS in which the state of the MLSS converges to the constant
0 in mean square. The mean and two-standard deviation intervals about the mean are also shown.
Note that the third moment of this MLSS does not converge.

Another possible asymptotic behavior of an MLSS is convergence in mean square to a

random vector. Specifically, a random process {s[k]} is said to converge to the random

vector 9 in mean square if limk, E ((s[k] - 9)'(s[k] - 9)) = 0. That is, a random process

converges to a random vector if for every possible sample path of the process a (possibly

different) limiting value can be assigned such that the expected squared deviation of the

process from its limits approaches 0 with time. Note that convergence to a constant is a

special case of convergence to a random vector, in which the limiting vector takes only one

value, with probability 1.

Example 4.14

We can design an MLSS that converges to a random vector in mean square, but does not converge
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to a constant. For instance, consider an MLSS with two state variables, updated as follows:

s[k + 1] = s[k], w.p.0.5 (4.39)

s[k + 1] = 0 s[k], w.p.0.5.
0.7 0.3

Assume that the initial state is s'[0] = [1,0]. It is straightforward to check that, in the limit, the

two state variables converge to the subspace si[k] = s 2 [k]. If s 1 [k] = S2 [k], then the next state

s[k + 1] equals s[k], regardless of which of the two possibilities in Equation 4.39 is exercised. Thus,

since each sample path of this process converges (in general to a different value), we expect that

the sequence converges to a random variable in mean square. (Convergence in mean square can

be justified rigorously for this example using theorems for convergence discussed in, e.g., [621.)

Simulations of the system 4.39 verify convergence (Figure 4.4).

Sims Showing Mean Square Convergence to a RV

0.8

07 -

6 4

T5-

E 0.4-

o 032 .--. ..~ .-.....

C2

0

0 2 4 0 8 10 1 2 14 18 18 20

Time

Figure 4.4: We show si [k] for 20 simulations of the system 4.39. Each simulated sample path
converges to a different value, reflecting that the system converges in mean square to a random
vector.

This simple example indicates how MLSS generally converge to a random variable in the mean

square: they converge to a subspace of the state space, in which they are constrained to remain

constant. This insight can be translated into specific conditions on the first and second moment

recursion matrices that guarantee convergence to a random vector, but these conditions are not

developed any further here.
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4.3.3 Toward Further Analysis: Distributional Convergence, Non-Convergent
Dynamics, and Settling

Here, we list three further directions for study regarding the asymptotics of MLSS. First,

we are interested in checking for distributional convergence-i.e., convergence of the prob-

ability (or cumulative) distribution of the state vector. In several examples of MLSS and

MLSN (including the queueing model with random service probabilities, particular influ-

ence models, the air traffic model, and the road traffic network model), we observe that

all moments of the state vectors converge, possibly indicating distributional convergence.

We are motivated to check for distributional convergence in these examples, in order to

develop a stronger characterization for the models' asymptotics. We anticipate that proofs
for distributional convergence of MLSS will be based on the following two approaches:

" We can show distributional convergence by showing moment convergence, as long as

the asymptotics for the moments satisfy certain conditions, which guarantee that the

distribution of the state is uniquely specified by its moments (see [2], [62], [130]).

" We can use distributional convergence results for general Markov chains (i.e., discrete-

time Markov processes with generally defined state spaces) [104]. For MLSS with finite

state space (e.g., the influence model), distributional convergence results for finite-state

Markov chains can be used. Convergence analysis of the influence model is discussed

in [9].

Example 4.15
Consider the infinite server queue with random service probabilities that was introduced in Section

2.4.5. We can prove that the (cumulative) distribution of the number of jobs in the queue converges

with time, using the approach of [1041. The details of this proof are tangential to our analysis and

so are not pursued here. However, we briefly outline the proof and hope that the reader can fill in

the details if he/she is interested.

The result is proved by using a result for distributional convergence of general Markov chains that

was developed by Kendall, Numellin, and Tweedie ([104]). The details of the proof are concerned

with showing that the assumptions of this theorem hold. The following are assumptions that must

be verified:

* Recall that the number of jobs in the queue, s1 [k], is a Markov chain (in the terminology of [1041)

with state space comprising the non-negative integers. We must show that this Markov chain
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is irreducible and aperiodic (see [1041 for definitions of these concepts for general Markov

chains).

* It is required that we can construct a function V(s1 [k]) that maps from the state space s1 [k]

to the interval [1, oo], such that E(V(sI[k + 1]) I s1 [k]) < 3V (s1[k]) for some 3 < l and for

all s1 [k] except those in a small set (see [1041). It is straightforward to show that the function

V(s) = s + 1 satisfies the condition,for any 3 > 0.52.

Once these assumptions have been shown, the theorem of Kendall, Numellin, and Tweedie can be

used to prove that the cumulative distribution function of si [k] converges. Furthermore, the 1-norm

of the difference between the cumulative distribution at time k and the steady-state distribution is

upper bounded by a multiple of Ok. In other words, the transient cumulative distribution of the

number of jobs in the queue approaches the steady-state in a geometric fashion. This approach to

steady-state is shown in Figure 4.5.

2)

0

-2
E
0

C-4
0

> -6

0

-: -8

Geometric Convergence in Distribution
Calculation
Gometricound

10

Time
15 20 250

Figure 4.5: The one-norm of the difference between the transient distribution
distribution of number of jobs in the queue is plotted as function of time, on a
plot verifies the geometric convergence of this deviation for the asymptote.

and the asymptotic
semi-log scale. The

As a second direction of study, we are interested in characterizing some non-convergent

dynamics of MLSS. In particular, some MLSS are not moment convergent, but their mo-

ments remain bounded. Such MLSS can display periodic or other dynamics, and may be of

interest. We are also interested in characterizing other non-convergent MLSS, by specify-

ing the rates of growth of state variables with time. One interesting approach for studying
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non-convergent MLSS is to construct other MLSS with update rules that are scaled versions

of the update rules for the original MLSS.

Third, we are interested in exploring the settling of MLSS- i.e., the process by which MLSS
state and moment dynamics approach their asymptotic dynamics. Questions regarding the
settling properties of influence models were introduced in [9], and we will pursue some of
these questions in detail later in the thesis. We intend to consider settling more generally
in the context of MLSS in future work.

Example 4.16

Consider the jump-linear system discussed in Examples 4.9, 4.10, and 4.12. If the system is rth-
moment convergent, the settling times of the first r moments are closely related to the dominant
eigenvalue (i.e., the eigenvalue of maximum magnitude) of the extended minimal recursion matrix

(r) It is interesting to ask whether or not the settling times of higher moments are slower than

those of lower moments. To check, note that the eigenvalues of N(,) are the eigenvalues of the

matrices H 1,1, ... , HR,,,. Thus, by comparing the eigenvalues of the matrices Hi,i, we can check

whether or not higher moments will settle more slowly than lower moments.

For instance, consider an example with the following parameters: D = 0 01], a1 = 0.9,
0.2 0.8

and a2 = 0.5 (the values of b1 and b2 are not relevant in computing the eigenvalues of H~r). In
Figure 4.6, we plot the maximum eigenvalue of each Hii for this example. The plot shows that the
maximum eigenvalue of H,i decreases with i, so we would expect settling times of higher moments
to be no larger than settling times of lower moments in this example.
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Maximum Eigenvalue of \widehat{H}{i,i}

2 4 6 8 10 12 14 16 18 20

Figure 4.6: The maximum magnitudes of the eigenvalues of each Zii are shown as a function of i
for the example jump-linear system. Thse eigenvalues decrease with i in this example, suggesting
that the settling rates of higher moments is not slower than the settling rates of lower moments in
this example.
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Chapter 5

Linear Minimum Mean Square Error

Estimation in MLSS

In this chapter, we develop a recursive algorithm for linear minimum mean square error
(LMMSE) filtering of MLSS and MLSN. That is, we show how to recursively find the best

linear estimator, in a mean-squared sense, for the state of an MLSS, given a sequence of

imperfect observations of the state. To construct this recursive estimator, we exploit the

special quasi-linear structure of MLSS, and of the observations in our model (specified

below). For the sake of notational clarity, we describe the filtering algorithm for time-

invariant MLSS (and MLSN), though the analysis for time-varying MLSS is identical.

Although we focus onfiltering (estimation of the state a particular time-step using obser-

vations up to that time-step), the techniques developed in this chapter can be extended to

construct optimal predictors, smoothers, and state sequence estimators.

5.1 Some Relevant Literature

LMMSE estimation of linear systems was introduced by Wiener, and for state-space sys-

tems, in the seminal work of Kalman [77]. See the review in [76] for a history of LMMSE

estimation. A thorough and easy-to-read description of the discrete-time Kalman filter (i.e.,
the LMMSE filter of a discrete-time linear state-space system) is given in [28]. Our deriva-
tion of the LMMSE filter of an MLSS closely follows the derivation of the discrete time
Kalman filter given in [20].

Our LMMSE filter for an MLSS can be viewed as a generalization of the Kalman filter.
Our filter reduces to the standard Kalman filter if the state update is governed by a linear
state space equation driven by additive, state-independent white noise, and observations
are linear functions of the state with added independent white noise [28]. The book [28]
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describes some generalizations of the Kalman filter, including filters for linear systems

with correlated state and output noise and for linear systems with non-white noise pro-

cesses. The generalization introduced in [141] is more similar to our filter. In [141], the

Kalman filter is generalized to allow for observation noise that has a state-dependent vari-

ance. MLSS can be viewed as linear systems that have observations and state updates

with state-dependent statistics, so our filter has some similarities with the filter given in

[141]. The state update and observations of MLSS can be viewed as linear systems driven

by state-dependent noise that is specially structured to maintain moment-linearity. The

article [111] specifies another model with state-dependent parameters that is amenable to

Kalman filter-type analysis. The well-known extended Kalman filter (see, e.g., [93]) for

approximate estimation in non-linear systems may prove to be of use in our context, either

as a tool for parameter estimation in our models or as a source of tractable generalizations

for our models and filter. More research is needed in this area.

The methods of [141] and [111] have been applied in, e.g., financial times series modeling

and characterization of fish populations [132, 101]. Estimation in a state-space model for

HIV infection can also be done using the method of [141], though the authors use a sim-

plified version of the method [65]. We envision that filtering in MLSS will be particularly

valuable for study of the networked systems that we have described, because other es-

timation techniques (such as ML estimation) are computationally infeasible or taxing for

these systems.

Several researchers have developed linear estimation techniques for arrival processes whose

underlying rate processes are themselves random, and sometimes arrival-dependent (e.g.,

[126],[125]). Segall and Kailath describe a broad class of arrival processes of this type, for

which a martingale formulation facilitates linear estimation using a Wiener filtering ap-

proach [125]. It may be that the approach of [125] motivates martingale-based analyses of

MLSS, or suggests (possibly non-state-space) generalizations for which linear estimation

is possible.

5.2 Observations in MLSS

To study estimation in MLSS, we must first specify observations for our model. We con-

sider observations of MLSS that are structured to facilitate estimation, and yet are general

enough to represent realistic measurements in our examples of MLSS and MLSN. In our
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model, we assume that a real vector z [k] is observed at each time k, and is independent of

the past history of the system (i.e., s[O], .. . , s[k - 1] and z[O], ... , z[k - 1]), given the current

state s[k]. Furthermore, we assume that the observation z [k] is first- and second-moment

linear, given s[k]. That is, z[k] is generated from s[k] in such a way that the first (vector)
moment for z[k] given s[k] can be written as an affine function of s[k],

E(z[k] s[k]) = C1,is[k] + C1,0, (5.1)

for some C1,1 and C1,0, and the second vector moment for z[k] given s[k] can be written as
an affine function of s[k] and s[k]®2 ,

E(z[k] 2 1s[k])= C 2,2 s[k] 2 + C2,is[k] + C2,o. (5.2)

for some C2,2, C2,1, and C2,0.

It is worthwhile for us to discuss types of observations that can be represented in our
framework, in order to better motivate our approach. Our aim in considering observa-
tions that are first- and second-moment linear with respect to the state is to provide a
generalization of observations that are linear with respect to the state (as is assumed in the
development of the Kalman filter). The following list specifies some types of observations
that are first- and second-moment linear with respect to the state.

" Observations that are linear with respect to the state vector can be represented in our
framework. For instance, an observation z[k] = Cs[k] + w[k], where {w[k]} is an inde-
pendent white-noise process, is first- and second-moment linear with respect to s[k].

" Observations that are determined by choosing randomly among multiple different lin-
ear functions of the state satisfy first and second moment linearity conditions.

Example 5.1

We can model a system in which linear observations may or may not, with some probability, be
taken at each time-step. In this case, the observation z[k] at each time-step k may be a nontrivial
linear function of the state with some probability, or 0 with some probability.

* Consider a state update that is structured so that state variables are always positive.
Then observations that are Poisson random variables with means given by state vari-
ables (or by positive combinations of state variables) are first- and second- moment
linear with respect to the state. Such observations may occur, for example, in systems in
which hidden underlying state variables modulate an observed Poisson arrival process.
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More generally, observations that are random vectors with distributions parametrized

by state variables can possibly satisfy the moment-linearity conditions, depending on

the manner in which the distribution is parametrized by the state.

Example 5.2

Consider a scalar observation z[k] that is generated from a scalar, positive state s [k] as a Poisson

random variable with mean !s[k] + 1. Then E(z[k] I s[k]) = 's[k] + 1 and E(z[k]2 Is[k])

(s[k] + 1)2 + (1s[k] + 1) = Is 2 [k] + s[k] +1, so z[k] is first- and second-moment linear with

respect to s[k]. Figure 5.2 shows a scatter plot of z[k], along with its computed mean and 2o-

intervals. The scatter plot is generated assuming that each s [k] is uniformly distributed between

1 and 5.

Scatter Plot, Mean, and 2c; Intervals for z[k]
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Figure 5.1: A scatter plot of 150 observations is shown. Each observation z[k] is generated
from the state s [k] according to a Poisson distribution with mean s [k] + 1. Mean and 2o-
intervals of z[k] are shown along with the data. The state values were chosen to uniform
in the interval [0, 5].

e Consider an MLSS with a state vector comprising one or more status indicator vec-

tors (e.g., the influence model state vector). In such models, it may be reasonable that

observations can also be represented with indicators. If these indicator observations

are generated based on a probability vector specified by a current status, or as a linear

combination of such probability vectors, then the observations are first- and second-
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moment linear with respect to the state.

Example 5.3

Hidden Markov Model (HMM) observations can be formulated as MLSS observations. The

HMM that we consider comprises an underlying m-status Markov chain, along with an obser-

vation drawn from a finite alphabet 1,... , q. Given that the status of the underlying Markov

chain at time k is i, the probability that each observation is generated at time k is specified by the

length-q probability vector pi.

Assume that the status of the underlying Markov chain at time k is indicated by a length-m vec-

tor s [k], and that the observation is indicated by the length-q vector z [k]. Note that E (z [k] I s [k])
is a list of the probabilities that each observation is generated, given s[k], and so can be written

as

E(z[k] s[k]) = Pi ... Pm] s[k]. (5.3)

Also, since z[k] is an indicator vector, the entries in z[k]®2 are either 0 or are entries in z[k].

Thus, we see that E (z [k] 02 1 s [k]) can be written as a linear function of s [k], and so the observa-

tions are first- and second-moment linear with respect to the state s[k].

Generalizations of the HMM in which multiple observations are generated at each time-step

can also sometimes be represented in our framework. For instance, the book [16] discusses a

generalization in which probability vectors pi for observations are specified by the state just as

in a standard HMM, but multiple observations are generated independently according to these

probabilities. These generalized HMM observations can be captured as MLSS observations, in a

couple ways. First, an extended observation vector which is a concatenation of indicator vectors

for each observation constitutes an MLSS observation. Alternately, an observation vector that

counts the number of occurrences of each type of observation can be shown to be an MLSS
observation.

5.3 Moment Linearity and LMMSE Estimation: A Useful Lemma

A key step in the derivation of the Kalman filter is the development of a relation be-
tween estimates (given data) for two random vectors that are themselves related by a
linear transform (e.g., [20]). Here, we relate estimates for two random variables that
are related by first- and second-moment linearity conditions. This relation is applied in
developing the LMMSE estimator in the next section.

Consider two random vectors x and y, for which the LMMSE estimate of x given y,
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denoted R(y), and the corresponding error covariance matrix

E ((x - R(y))(x - 2(y))') are known. Now consider a random variable z that is inde-

pendent of y, given x. Further, assume that z is first- and second-moment linear with

respect to x, with vector moments given by

E(z x) = C1,1x + C1,O (5.4)

E(z 0 z x) = C 2 ,2 (x 0 x) + C2 ,1x + C2,0. (5.5)

We write the LMMSE estimate of z given y, denoted i(y), as well as the corresponding

error covariance matrix E ((z - i(y))(z - i(y))'), in terms of the LMMSE estimate of x

given y, the corresponding error covariance matrix, and the first two moments of x.

5.3.1 The Estimate of z, Given y

First consider i(y). The standard formula for calculating i(y) from the observation y

and the statistics of y and z is

Z(y) =+ EzyEyy(y - Y), (5.6)

where z = E(z), y = E(y), Ezy = E((z - Y)(y - y)'), and Eyy = E((y - Y)(y - y)')

(see, e.g., [20]). Using the first moment-linearity condition for z given x, we can express

the mean of z in terms of the mean of x, as

2 = E(z) = C1,1E(x) + C1,0. (5.7)

The first moment linearity condition can also be applied to express the covariance ma-

trix E7y in terms of Exy = E ((x - K)(y - y)') (where R = E(x)), as follows:

Ezy =E((z - )(y -y)') (5.8)

= E (E((z - i)(y - y)' I x))

= E (E(z - Z Ix)E(y - yIx))

E ((C1,1x + C1,0 - C1,1R - C1 ,o)E(y - y I x))

= C1,1E ((x - R)E(y - Y Ix))

= C1,1E (E((x - 5)(y - y) Ix))

= C1,1E((x - Z)(y - y))

C1,1Exy
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Substituting the expressions for Y and Ezy into Equation 5.6 and doing a bit of algebra
yields

£(y) = C1,1i(y) + C1,0. (5.9)

5.3.2 The Error Covariance of the Estimate of z, Given y

Next, we compute the error covariance matrix for the estimate i(y) in terms of the

statistics of x and 2(y). It is well known (see, e.g., [20]) that this error covariance matrix

is given by

E ((z - i(y))(z - i(y))') = Ezz - EzyEyyEyz. (5.10)

Let us first compute the covariance matrix Ezz = E(zz') - E(z)E(z'). The mean value

for z has already been computed in terms of the statistics of x in Equation 5.7. Next
consider E(zz'). Next, note that the entries in the vector E(zz') can be determined from

the entries of the vector E(z 0 z). In turn, E(z 0 z) can be expressed in terms of of the
vectors E(x ® x) and E(x) by applying the second-moment linearity condition relating

x and z. In particular, we find that

E(zz') = UNVEC(C 2,2E(x 0 x)) + C2 ,1E(x) + C2,o), (5.11)

where the operation UNVEC is defined as follows:

- For a length-n2 column vector Y, X=UNVEC(Y) is the n x n matrix X that has ith

Yn(i-1)+1

column given by , for 1 < i < n. That is, UNVEC(Y) is constructed by

[ yni

assembling blocks of n entries of Y side-by-side to form an n x n matrix.

Next, substituting into Equation 5.10, we find that the error covariance for the estimate
of z is

E ((z - -(y))(z - i(y))') (5.12)

= UNVEC(C 2,2E(x 0 x) + C2,1 E(x) + C2,o)

-(C, 1 k+ C1,o)(C1,1Y + C,o)' - CI,IExy YY yxC,1.

Finally, by adding and subtracting C1,1 ExxC,1, we can rewrite Equation 5.13 explicitly

in terms of the error covariance of the estimate of x, as well as the first two vector
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moments of x, as

E ((z - i(y))(z - i(y))') (5.13)

= UNVEC(C 2,2 E(x 0 x) + C2 ,1E(x) + C2,O)

-(C1,1R + C1,o)(C 1 ,R + C1,o)' - C1,1ExxCi

+C1,1E((x - R(y))(x - R(y))')C(,1

5.3.3 Discussion and Comparison

We have specified the estimate of z and its corresponding error covariance in terms

of the estimate of x, the error covariance of this estimate, and the statistics of x. It is

interesting to note that the estimate i(y) is linear with respect to R(y). If we considered

only this relation between the estimates, we could view z as being related to x through

a purely linear transform (i.e., z = C1,1x + C1,0, or z = C1,1x + w, where w is an

independent noise signal with mean C1,o).

However, the error covariance for the estimate of z depends on the first and second

moments of x, as well as the error covariance of R(y), in our case; for purely linear

systems, it turns out that the error covariance for z would depend explicitly only on

the error covariance of x (see, e.g., [20]). The more complex expression for error covari-

ance in our context captures the more general second-moment relationships specified

by moment-linearity conditions as compared to purely linear interactions.

In fact, we can make a stronger statement about the error covariance for the estimate of

z. In particular, let's compare the error covariance for the estimate of z with the error

covariance for the estimate of a second random variable -= C1,1x + C1,0. The error

covariance for the LMMSE estimate i(y) of z is

E ((i - Z(y))(i - Z(y))') - EiY EYY , (5.14)

where Eii, Ejy, and Eyj are defined in the usual way. Note that Ejy = Ezy, so

To compare Ezz and Ei, we rewrite the two quantities as

Ezz E [E((z - E(z I x))(z - E(z Ix))'l x)] + E [(E(z jx) - E(z))(E(z x) - E(z))'J5.15)

Ei= E [E(( - E(I x))(i - E(z I x))' Ix)] . + E [(E(z x) - E(z))(E(i x) - E(z))']

(see, e.g., [21] for justification). Since E(z Ix) = E(z I x), we see that
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E [(E(z jx) - E(z))(E(z jx) - E(z))'] = E [(E(z Ix) - E(z))(E(i jx) - E(i))']. Thus,
subtracting EZj from Ezz yields

Ezz - E F = E [E((z - E(z I x))(z - E(z I x))'l x)] - E [E((z - E(z I x))( - E(zIx))' Ix)].
(5.16)

However, since z = C1,1x+C1,o = E(zIx), we see that E [E((i - E(z i x))(i - E(z Ix))' I x)]

is 0, and Equation 5.16 reduces to

Ezz - EZj = E [E((z - E(z I x))(z - E(z I x))' x)] . (5.17)

In turn, the difference between the error covariances of the estimates for z and z is seen

to be

E ((z - i(y))(z - i(y))') - E ((z - Z(y))(i - Z(y))') F [E((z - E(z I x))(z - E(z I x))' x)]

(5.18)

Note that the matrix E [E((z - E(z I x))(z - E(z I x))' x)] is positive semidefinite, since

E((z - E(z I x))(z - E(z I x))' Ix) is positive semidefinite for any x. Thus, we finally get

that

E ((z - i(y))(z - i(y))') - E ((z -i (y))(z - Z(y))') > 0, (5.19)

where the notation A > 0 means that A is positive semidefinite. Conceptually, this result

shows the estimate for z is at least as noisy as the estimate for i-that is, the estimate is

most accurate if the observation is purely linear with respect to the state.

Example 5.4

Consider a scalar random variable x. Let's say that the LMMSE estimate for x given an observation

y, denoted 2(y), has been computed. Now consider a random variable z that is uniformly distributed

between 0 and 2x. Note that E(z I x) = x, and E(z2 | x) = i, so the observations are first- and

second-moment linear with respect to the state. Equation 5.9 shows that the best linear estimate for

z given y is 7Z(y) = iX(y). However, the error covariance for the estimate of z is larger than the error

covariance for the estimate of x, by the amount E(E((z - X2 | x)) (Equation 5.18). A little algebra

shows that this difference in the error covariances is .
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5.4 The Recursive Algorithm for LMMSE State Estimation in MLSS

An efficient recursive algorithm for LMMSE estimation of the state s [k] at each time k from

the sequence of observations z[0], . .. , z[k] is developed. We use the following notation to

represent state estimates and their corresponding error covariance matrices:

* skIk denotes the LMMSE estimate for s[k] given z[0], . . . , z[k]. That is, skIk is the linear

combination of the vectors z[0], . . . , z[k] that minimizes the expectation E ((s[k] - siIk)'(s[k] - Skk)).

* Ykjk A E ((s[k] - sIk)(s[k] - ski)') denotes the error covariance of the estimate skk.

* sk+1ik denotes the LMMSE estimate for s[k + 1] given z[],... , z[k]. This one-step pre-

diction or next-state update is required in the recursive estimation procedure.

* r-k+1Ik E F ((s[k + 1] - Sk+llk)(s[k + 1] - SkIJ)) denotes the error covariance of the es-

timate sk+11k-

The state estimates and error covariances at each time k are found iteratively, in two steps.

First, a measurement update is used to determine Skjk in terms of z[k], SkIk-1, EkIk-1, and the

a priori statistics of s[k]. That is, the measurement update recalculates the estimate for s[kl

given the new observation z[ki. We also simultaneously compute the corresponding error

covariance matrix EkIk in terms of EkIk-1 and the a priori statistics of s[k].

Second, a next-state update is used to determine Sk+11k in terms of -SkIk, E , and the a priori

statistics of s[k + 1]. That is, the next-state update is used to estimate the next state, given

the observations up to the current time-step and the estimate of the current state given

these observations. The corresponding error covariance matrix Ek+llk is simultaneously

computed.

Our derivation of the LMMSE estimator closely follows the derivation of the Kalman filter

given in [20].
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5.4.1 The Measurement Update

It is well known (see, e.g., [20]) that the LMMSE estimate for s[k] given observations up to
time k can be written as

Skjk SkIk-l +sk (z[k] - k (Z[k - 1])) - E(s[k]), (5.20)

z [01
where Z[k - 1] is a convenient notation for the vector of observations ,zk(Z[k -

z[k - 1]
1]) denotes the LMMSE estimate for z[k] given Z[k - 1], and - (z[k] - ik(Z[k - 1])) denotes
the LMMSE estimate of s[k] given z[k] - Zk(Z[k - 1]).

First consider ik(Z[k - 1]). Since z[k] is independent of Z[k - 1] given s[k] and z[k] is
moment linear with respect to s[k], the lemma developed in Secion 5.3 applies. Thus, the
estimate can be written as follows:

Zk(Z[k - 1]) = C1,1ikIk-1 + C1,0. (5.21)

Also, by applying the lemma, the corresponding error covariance matrix can be written in
terms of EkIk-1 and the statistics of s[k]:

E ((z[k] - -k(Z[k - 1]))(z[k] - -k(Z[k - 1]))') (5.22)

C1,1Ekjk1C ,1+ Nk(E(s[k]), E(s[k] 2 )),

where

NA(E(s[k]), E(s[k] ±2)
UNVEC [C 2,2E(s[k] ) + C2,iE(s[k]) + C2,O]

-(C,E(s[k]) + C1,o)(C1,iE(s[k]) + CLo)'

-C 1 ,IUNVEC [E(s[k] 2 ) - E(s[k])®2 ] C,.

Next, we compute -k (z[k] - ik(Z[k - 1])). Using the standard formula for the LMMSE
estimate (as in Equation 5.6), and invoking the unbiasedness of the LMMSE estimate
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Zk (Z[k - 1]), we find that

Sk (z[k] - ik(Z[k - 1])) (5.23)

E(s[k])+ ,[k, z[k],z[k] s[k],z[k] [z[k] -ik(Z[k - 1])]

where

Zs[k],z[k] = E [s[k](z[k] - Zk(Z[k - 1]))']

Ez[k],z[k] = E [(z[kl - ik(Z[k - 1]))(z[kl - ik(Z[k - 1]))'].

(5.24)

Our goal is to rewrite the estimate in Equation 5.23 in terms of the estimate -k k-1, the corre-

sponding error covariance EkIk_1, the statistics of s[k], and the new observation z[k]. Most

of the terms in the equation have already been computed: E(s[k]) can be calculated from

the first-moment linearity conditions (and in fact eventually cancels out of our estimator),

E [(z[k] - - (Z[k - 1]))(z[k] - -k(Z[k - 1]))'] is given in Equation 5.22, and ik(Z[k - 1]) is

given in Equation 5.21. Thus, it only remains to determine E [s[k](z[k] - zk (Z[k - 1]))'] in

terms of the appropriate quantities. To do so, we first rewrite the expectation as follows:

E [s[k](z[k] - zk(Z[k - 1]))'] (5.25)

= E [s[k](z[k] - C1,iSkjk_1 - C1,o)']

= E(s[k]z'[k]) - E(s[k](C1,1Skjk-1 + C1,o)')

= E(s[k]E(z[k] I s[k])) - E(s[k](C1,_1 kk- + C1,o)')

= E(s[k](Cis[k] + C1,o)') - E(s[k](C1,1SkkI_1 + C,o)')

- E(s[k](s[k] - SkkI_1))CI,1.

Next, it is well known from standard orthogonality results on LMMSE estimates (see, e.g.,

[20]) that E(SkIkI1(s[k] - sik1)) equals 0, so E(SkIk-_(s[k] - skIkl1))C,1 also equals zero.

Subtracting this (zero) quantity from the right side of Equation 5.25, we find that

E [s[k](z[kl - zk(Z[k - 1]))'] (5.26)

= E((s[kl - SkIk_1)(s[k] - Rkijk1)')CI,1

= Ek 1klCll
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Substituting Equations 5.26, 5.22, and 5.21 into Equation 5.23, we find that

sk (z[k] - ik(Z[k - 1])) = E(s[k]) + (5.27)

Ekjk-11i,1 (C1,1Ekik-1Ci,1 + Nk(E(s[k], E(s[k]®2 ))) 1

(z[k] - C1,1ikik-1 - C1,0),

Finally, substituting into Equation 5.20 leads to

SkIk SkIk-1 +

Ekik-1C,1 (C1,1Ekik_1C,1 + Nk(E(s[k], E(s[k]®)))--1

(z[k] - C1,1'kik_1 - C1,o).

Also, we find the error covariance matrix EkIk in terms of EkIk_1 and the statistics of s[ki.
It is well known (see, e.g., [20]) that this error covariance can be written as

Ekk - klk-1 - Es[k],z[k]Ez[k],z[k]Es[k],z[k]. (5.28)

By substituting Equations 5.26 and 5.22 into Equation 5.28, this error covariance is imme-
diately found to be

EkIk =klk-1 - (5.29)

kk-1Ci1 (C1,1lEk-1C,1 + Nk (E(s[k]),E(s[k] )))y- C1,1EkIk-1, (5.30)

This completes the derivation of the measurement update for recursive LMMSE estima-
tion algorithm.

One note about the measurement update is required. We have implicitly assumed in our
derivation that the matrix C1,1Ekk1C,1 + Nk (E(s[k]), E(s[k]®2)) is invertible. Since this
matrix is an error covariance (corresponding to the estimate ik(Z[k - 1])), it is necessarily
positive semi-definite. Roughly speaking, we would expect the matrix to be strictly posi-
tive definite, and so invertible, as long as the entries in z [k] cannot be exactly inferred from
Z[k - 1]). We leave it to future work to state precise condition on an MLSS that guaran-
tee invertibility of this matrix, and to specify the measurement update if the matrix is not
invertible.

-141 -

Chapter 5



Chapter 5 Linear Minimum Mean Square Error Estimation in MLSS

5.4.2 Next-State Update

Next, we compute the next-state estimate sk+1|k and error covariance matrix Ek+11k in

terms of -SkIk, Ekk, and the statistics of s[k]. To do so, note that we have assumed that

s[k + 1] is moment-linear with respect to s[k], and is independent of z[O], ... , z[k], given

s[k]. Thus, the lemma developed in 5.3 applies, and sk+1Ik can be found as

Sk+llk = H1ikIk + H1,0 . (5.31)

Also, using the lemma, we find that the corresponding error covariance matrix is given by

Ek+1Ik = H1,1EkIkHi,1 + Mk(E(s[k], E(s[k] 2 )), (5.32)

where

Mk (E(s[k], E(s[k] 2 ))

= UNVEC [H 2,2E(s[k]®2 ) + H2 ,iE(s[k]) + H2 ,o]

-(Hi,iE(s[k]) + Hi,o)(HiiE(s[k]) + H1 ,o)'

-H, 1 UNVEC [E(s[k] 0 2 ) - E(s[k])0 2 ] Hj,1.

This completes the next-state estimation step in the update procedure.

5.4.3 Putting the Pieces Together

The measurement update and next-state estimate together show how to determine the es-

timate Sk+llk and corresponding covariance matrix Ek+1k from the new observation z[k],

along with skIk_1 and EkIk-1. Thus, a method for recursively determining estimates of the

state at time k + 1 from observations up to time k (and, by applying another measurement

update, up to time k + 1) has been developed. The only step remaining is to specify the

initial estimate Ro _1 and E0 _1, which are defined to be the estimate and covariance matrix

for the initial state given no observations. Note that the LMMSE estimate for the initial

state given no observations is simply E(s[0]), and the corresponding error covariance ma-

trix is UNVEC(E(s[0] 2 )) - E(s[0])E(s[0])'. Thus, the initial conditions for the estimator can

be constructed from the initial conditions for the first and second moments of the state.
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5.5 Three Examples

In this section, we consider LMMSE filtering in the context of three example MLSS. The
first two examples, which are concerned with state estimation for the infinite-server queue
and for a jump-linear system, serve to illustrate the basic application of the filter developed
above. In the third example, we indirectly use the LMMSE estimator to bound the proba-
bility of error of a Maximum Likelihood estimator in the context of HMMs. We intend for
these examples to elucidate some basic uses of our estimator. We will consider LMMSE

estimation further in the three case studies of MLSN at the end of the thesis.

5.5.1 Filtering: Infinite Server Queue

Here, we consider the infinite-server queue with random service probabilities that was

introduced in Section 2.4.5. We attempt to estimate the number of jobs in the queue, based
on an imperfect measurement of the number of jobs exiting the queue at each time-step.

Actual Queue Length and Estimate

30

:3
(3)

:325

C)

U) 20
-o
0

0

E 10
D3

z

10 15

Time-step
20 25

Figure 5.2: The actual number of jobs in the queue is compared with the LMMSE estimate
for the number of jobs. Here, we assume that the state vector is initially 0, and that the
initial estimate is also 0.

Recall that the MLSS formulation for this model has two state variables: si[k] represents
the number of jobs in the queue at time k, and s2 [k] represents the number of jobs exiting
the queue at time k. At each time k, we observe the number of jobs exiting the queue. We
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assume that our observation z[k] is noisy; specifically, we assume that z[k] is generated

from s2 [k] according to the distribution Binom(s2[k], 0.9). (Such an observation may come

about, for example, if jobs exiting the queue are counted, but each exiting job is accidentally

missed with probability 0.1.) The observation z [k] is first- and second-moment linear with

respect to s[k], since E(z[k] I s[k]) = 0.9s 2[k], and E(z[k]2 Is[k]) = 0.81s 2[k] 2 + 0.09s 2 [k].

Using the techniques developed above, we construct the LMMSE estimate for the state

s[k], given the observations z[0], . .. , z[k]. Figure 5.2 shows the estimate for the number of

jobs in the queue (s1 [k]) at each time-step during a 25 time-step simulation.

5.5.2 Filtering: Jump Linear System

We consider the jump-linear system example with scalar state and two-status underlying

Markov chain introduced in Section 2.4.3. The transition matrix for the underlying Markov

0.9 0.1
chain is D = 0.9 0.1. The scalar continuous-valued state is updated as follows: if the[0.3 0.7J
Markov chain is in the first status at time k, then the time-(k + 1) continuous-valued state

is x[k + 1] = -0.9x[k] + 0.5; if the Markov chain is in the second status, the time-(k + 1)

continuous-valued state is x[k + 1] = x[k] + 1. Recall that this jump-linear system can be

formulated as an MLSS by choosing a state vector s[k] = q[k] 0 x[k] , where q[k] indicates
1

the status of the underlying Markov chain.

We assume that a corrupted version of the continuous-valued state is observed. In partic-

ular, the observation at time k is assumed to be z[k] = x[k] + N[k], where N[k] is Gaussian

random variable with mean 0 and variance 9.

We are concerned with estimating the continuous-valued state and underlying Markov

status for this jump-linear system at time k, given the observations up to time k. We do so

by finding the LMMSE estimate skIk for s[k], given z[0], . . . , z[k]. This LMMSE estimate is

an approximation for the MMSE estimate for s[k], given z[0], ... , z[k]. The MMSE estimate,

which we denote sikk, is well-known (e.g., [21]) to be the conditional expectation for s[k],
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given the observations z[0], ... , z[k]:

q1 [k]x [kf]

Sktk E(s[k] I z[],... , z[k]) = E qi[k] Jz[0],..., z[k] . (5.33)
q2 [k] x [k]

q2 [k ]

By adding the first and third entries of this vector, we can get the MMSE estimate for x[k],
given z [0], ... , z [k]. Also, the second and fourth entries of the vector can be interpreted
as probabilities that the underlying Markov chain is in each status given the observations,
and so can be used to find the most likely underlying state. Since the LMMSE estimate is
the best linear approximation for the MMSE, we can construct the best linear estimate for
x[k], and for the conditional probabilities of the underlying Markov status.

Continuous State and Observations
4- State x[k]

-e- Observatonyk
8-

6-

4-

2- 1 4

-6-1

0 5 10 15 20 25 30 35 40 45 50

Time

Figure 5.3: The continuous-valued state and observations during a 50 time-step simulation
of the example jump linear system are shown.

Figure 5.3 shows the actual continuous-valued state and the corrupted observations in a
50 time-step simulation of the jump linear system. Figure 5.4 plots the actual continuous-
valued state along with our LMMSE estimate for this continuous-valued state. The plot
suggests that the LMMSE estimate is indeed a better estimate for the continuous-valued
state than the observation sequence. This improvement is borne out in our analysis, since
the error covariance of the estimate is 4.5, while the average squared error between the
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Continuous State and Estimate

F - State 4k] i
IG- Estimate \hat{x}[k]

6/

4-/

-oI

Time

Figure 5.4: The LMMSE estimate for the continuous-valued state is compared with the
actual continuous-valued state. The LMMSE estimate is a better approximation for the
continuous-valued state than the observation sequence.

data and observation is 9.

We have also plotted in Figure 5.5 an LMMSE estimate for the probability that the under-

lying Markov chain is in status 2. The figure shows that the estimator has some ability

to track the underlying Markov status, but is not particularly accurate in doing so. Our

simulations also suggest that the probability estimate tends to remain below 0.5 dispro-

portionately, so that an estimator based on these approximate probabilities would tend to

be biased. It remains to be seen whether the shortcomings in the estimator are a conse-

quence of the linearity constraint of our estimator, or are inherent to the dynamics of the

system.

5.5.3 Filtering: Hidden Markov Model

This example mentions a perhaps surprising use for LMMSE estimation in developing

error bounds for MAP estimators of HMMs. Please refer to example 5.3 for our MLSS

formulation of a HMM.
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Estimation of Status Probabilities

.Etatus.7

Estimate

.1

.1

-o 5 10 15 20 25

Time
30 35 40

Figure 5.5: LMMSE estimation is used to approximate the
underlying Markov chain of the jump linear system is in
given the observations up to that time.

conditional probability that the
the second status at each time,

To understand how an LMMSE estimator can be used to bound the error probability, first

consider the minimum mean-square-error (MMSE) estimate for the (indicator) state vector
of a HMM at a time k, given the (indicator) observations from time 0 to k. With some
algebra, we can show that the squared error minimized by MMSE estimate, which is the
sum of the diagonal entries of the error covariance matrix, is in fact the probability of error
for the MAP estimate of the state! Since the LMMSE estimator is restricted to be linear
with respect to the observations, its mean squared error is at least as large at the mean
squared error of the MMSE estimator. Thus, the sum of the diagonal entries of the error
covariance matrix for the LMMSE estimator upper bounds the probability of error of the
ML estimate. It remains to be seen whether this bound is ever sufficiently tight to be useful
in characterizing the ML estimator for an HMM.

5.6 More on Estimation: Introduction

In this section, we mention one interesting observation about the LMMSE estimates for
MLSS, which may allow us to extended our analysis. We also list some other directions for
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study.

5.6.1 Including the Estimate in the State Vector

Let's consider the LMMSE estimate for the next state, given observations up to the current

time-step, or sk+1Ik. By assimilating the measurement update and next-state update, we

see that sk+llk is a time-varying deterministic linear function of the estimate ikIk-1 and the

observation z[k], say

Sk+1|k =[Skk-I1 + "[k]z[k] + /[k] (5.34)

By exploiting Equation 5.34, we can show that an extended state representation which

incorporates the next-state estimate is also an MLSS. In particular, consider the appended

state vector s[k] = s[k] 1  It turns out that, if {s[k]} is an MLSS of degree F, then {s[k]}

is also an MLSS of degree F. As part of the justification, we can check the first-moment

linearity condition for the appended state vector, as follows:

(5.35)E (9[k + 1]|1s[k]) = E s| 1 s[k),Jik_-1
rsk+1k _

E (s[k + 1] 1 s[k] , 1

E (([k]-kIk_1+y[k]z[k] + 1[k]|s[k],!k k_1)

H1,is[k] + Hi,o
([k]- klk_1 + [k]E(z[k]|Is[k]) + [k]l

H1,is[k] + H1 ,o
([k]Sklk _1 + _[k]C1,1s[k] + -[k]C1,o + O[k]I

H, 1  ]I s[k] Hi,o
[k]C1,1 SkIk 1 7[k]C1,o + 13[k]

Similarly, by invoking the linear structure of the next-state update, as well as the condi-

tional independence of the next-state and current observation given the current state, we

can verify the higher-moment linearity conditions.

Since the appended state process is an MLSS, statistics of the next-state estimate at each

time-step, as well as cross-statistics between the next-state estimate and the state, can be
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computed. With a bit of algebraic manipulation, we can also determine statistics of the

estimate Skjk, since this estimate is linear with respect to Skikl and z[k].

We note that, by considering the LMMSE update procedure, ([k], y[k], and 13[k] can be
viewed as non-linear functions (which are constructed in a recursive manner) of the first

and second moments of the state at times up to k and of the initial estimate. Hence, the mo-

ment recursions for the appended state vector can be thought of as non-linear difference
equation describing the moments of the state and the estimate. Such an explicit represen-
tation of the dependence of the moment recursion matrices on previous moments may be
valuable, e.g., in characterizing the steady-state dynamics of the estimator.

We believe that, in addition to allowing computation of estimator statistics, the appended
state representation may be useful for developing partial-state-information controllers for
MLSS. Given partial state information, estimation of the complete state is often a requisite

step in the controller design. By using an appended state vector, we can represent con-

trollers that use linear feedback of the state estimate as a control input as MLSS. Hence, the
dynamics of the controlled systems can be characterized.

5.6.2 Other Directions for Study

" The form of the LMMSE estimator suggests some possibilities for accurate non-linear
estimation. For instance, the gain or weighting given to the previous estimate and the
observation in the LMMSE estimator depends on expected variance of the noise in the

observation and state update procedures; it is tempting to replace this expected vari-
ance with an estimated variance, which uses the observed data to approximate the ac-
tual variance in the observation and state-update procedures. (Note that, in contrast
to purely linear systems, the spreads in the observation and state-update equations of
an MLSS may depend on the current state, and hence an estimate for these variances
based on the data may be valuable for state estimation.) We hope to compare non-linear
estimators of this form with the LMMSE estimator in the future.

* Much remains to be done in comparing our LMMSE estimator with other estimators
applicable to systems that can be represented as MLSS. For instance, several estimators
have been developed for jump-linear systems; a comparison of our estimator with these
would be valuable.

" We have mentioned that LMMSE smoothing for MLSS can be achieved. We can also
generalize the estimator to minimize a weighted mean-square-error. These variations
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on the LMMSE estimator are straightforward to derive, but their explicit construction

may be useful in particular applications. We leave this to future work.
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Minimum Expected Quadratic Cost Dynamic

Control of MLSS

In this chapter, we discuss finite time-horizon minimum quadratic cost control of an MLSS

with full state information. We first introduce the concept of inputs, and of stochastic

quadratic costs, in the context of MLSS. We then derive the optimal input policy (i.e., the

rule for choosing the input at each time-step from the observed state in order to mini-

mize the expected cost over the time horizon). The derivation shows that, in analogy with

quadratic cost control of linear systems, the optimal input at each time-step is linear with

repect to the observed state. Finally, we illustrate quadratic control in a couple of examples.

For the sake of clarity, we limit our analysis to time-invariant MLSS and MLSN. The anal-

ysis of time-varying models is completely analogous.

6.1 Relevant Literature

Minimum expected quadratic cost control of noisy linear systems has been extensively

studied. A description of several variants of this control problem-including control with

and without perfect state information, control in discrete- and continuous-time systems,

and finite and infinite horizon control-can be found in [20].

Of particular interest to us is the control of linear systems with stochastic parameters (e.g.,

[44, 78, 11, 140]), and of systems with state- and control- dependent noise (e.g., [82, 97]).

Systems of these sorts have interactions that are similar to some interactions that can be

modeled using MLSS (e.g., updates based on choosing randomly among several linear

systems, and noise dynamics with state-dependent spread). Early work on systems with

stochastic parameters and/or state-dependent noise [78, 82] focused on specifying the op-

timal controller, by (simply) generalizing the analysis of purely linear systems. Other
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research (e.g., [44, 11]) has been concerned with characterizing the qualitative nature of

the optimal controller, and the dynamics of the controlled system. For example, [11]

shows that infinite-horizon optimal controllers do not exist for certain linear systems with

stochastic parameters, reflecting the fact that optimal control of future dynamics is impos-

sible for sufficiently noisy systems. In the examples at the end of this chapter, we occasion-

ally point out qualitative features of MLSN control that match with (or differ from) those

discussed in the literature.

More recently, quadratic cost control algorithms have been developed for jump-linear sys-

tems (see, e.g., [33, 351 for examples of discrete-time control). It turns out that many of the

particular quadratic cost control problems that have been considered in the literature fit

within our modeling framework.

We believe that our study of optimal control of MLSS is valuable in that it allows us to

develop controllers for several generalizations of purely linear systems, and for systems

with seemingly non-linear dynamics (such as influence and queueing networks).

6.2 MLSS with Inputs

To develop algorithms for dynamically controlling MLSS, we must introduce the concept

of an input signal in our model. The inputs in our model are structured in such a way that

the next state is first- and second-moment linear with respect to both the current state and

the current input, as specified in the following definition1 . A system is a 2nd-degree MLSS

with state sequence s[k] and input sequence u[k] if the conditional distribution for the next state is

independent of the past history of the system, given the current state and input, and if there exist

matrices H1,1, D1 ,1, H1 ,0, H 2 ,2, G 2,2 , D 2,2 , H2,1 , D 2 ,1, and H2,0 such that

E(s[k + 1] 1 s[kl, u[k]) = H1,is[k] + Diiu[k] + H1 ,0

E(s[k + 1]102 s[k], u[k])

= H2,2s[k] 2 + G2 ,2 (s[k] 0 u[k])+ D2,2[k] 2

+H 2,1s[k] + D2 ,1u[k] + H2,0 . (6.1)

'We consider only first- and second-order statistics in the definition of an MLSS with input because only the
first and second moments and cross-moments are needed for designing an optimal quadratic cost controller.
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That is, a Markov process is a 2nd-degree MLSS with input u if the first and second moments

and cross-moments of the next state, given the current state and input, are first- and second-degree

polynomials, respectively, of current state and input variables.

6.2.1 Examples of MLSS with Inputs

We have restricted MLSS inputs to a form for which analytical expressions for optimal

quadratic controllers can be found, yet several relevant types of input interactions can nev-

ertherless be represented. To motivate our formulation of MLSS with inputs, we highlight

a few types of input interactions that fall within our framework.

" State updates that are linear with respect to the previous state and input can be repre-

sented.

Example 6.1
Consider the scalar system with state updated as

s[k + 1] = 0.9s[k] + u[k] + N[k], (6.2)

where N[k] is a zero mean, unit variance independent Gaussian white noise process. Then the

first two conditional moments for s [k + 1], given s [k] and u [k], are

E(s[k + 1] 1s[k], u[k]) = 0.9s[k] + u[k] (6.3)

E(s[k + 1]2 1s[k],u[k]) =0.81s 2 [k] +1.8s[k]u[k] +u 2 [k] + 1

Equation 6.3 verifies that the described state update specifies a 2nd-degree MLSS.

" State updates in which one of several linear functions of the state and input is chosen
randomly can be represented.

Example 6.2
Consider the scalar system with state updated as

s[k + 1] = 0.9s[kl + N[k]u[k], (6.4)

where N[k] is a zero mean, unit variance independent Gaussian white noise process. Then the
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first two moments for s[k + 1], given s[k] and u[k], are

E(s[k + 1] 1 s[k]) = 0.9s[k] (6.5)

E(s[k + 112 1 s[k]) =0.81s2 [k] + u 2 [k].

Thus, the update 6.5 specifies a 2nd-degree MLSS with input.

" Some updates with state- and input-dependent noise statistics can be represented.

Example 6.3

Consider a scalar system in which the next state s [k + 1] is generated from s [k] and u [k] as a

Poisson random variable with mean s[k] + u[k]. (Assume here that u[k] is chosen in such a way

that s [k ]+u[ k] is positive at each time-step.) Note that the conditional distribution of the "noise"

in s[k + 1], or the deviation from its conditional mean, depends on s[k] and u[k]. Nevertheless,

the model can be represented as a 2nd-degree MLSS, since E (s [k + 1] | s [k], u [k]) = s [k] + u [k],

and E(s[k+1]2 | s[k],u[k]) = (s[k]+u[k])2 +s[k]+u[k] -= s 2 [k]+2s[k]u[k]+u2 [k]+s[k]+u[k].

" Some systems with indicator states and inputs can be modeled.

Example 6.4

Consider a controlled m-status Markov chain that operates as follows. At each time-step, the

state s[k] of the Markov chain, defined to indicate the status of the chain, is updated based on

either the previous state or the external input:

- With probability p, the next state is determined from the current state according to the

m x m transition matrix D.

- With probability 1 - p, the next state is generated according to the probabilities specified in

a length-n input vector u[k]. Note that the input u[k] must be a probability vector-i.e.,

its entries must be non-negative and sum to 1.

The conditional expectation for s[k + 1], given s[k] and u[k], is linear with respect to s[k] and

u [k]:

E(s[k + 1] |s[k], u[k]) = pD's[k] + (1 - p)u[k]. (6.6)

Also, since the elements of E(s[k + 1]02 s[k], u[k]) are either entries of s[k] or are 0, this

expectation can also be written as a linear function of s[k] and u[k].

0.8 0.2 0
As a particular example, consider a controlled Markov chain with p = 0.9, D = 0 0.7 0.3,

_ 0 0 1
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Figure 6.1: We compare the probability that the example controlled Markov chain is in status 2 (the
curve with the lower peak that settles to a non-zero value) with the probability that the correspond-
ing uncontrolled Markov chain in in status 2. The uncontrolled Markov chain eventually settles
in status 3, so the probability that it is in status 2 approaches 0. At small time-steps, however, the
uncontrolled chain does not get reset to the first status like the controlled chain, and so is more likely
to be in status 2.

and u[k] [01. This system naturally evolves from Status 1 to Status 3, but is reset to Sta-
0

tus 1 periodically by the external input. The first-moment recursion for this controlled Markov

chain allows us to determine the probabilities that the chain is in each status at each time step.

The probability that this controlled Markov chain is in Status 2 is compared with the probability

that an uncontrolled Markov chain with transition matrix D is in Status 2 (Figure 6.1).

6.3 The Problem of Interest

Now that an MLSS with input has been defined, we are ready to pose a minimum-quadratic-

cost dynamic control problem. The cost that we minimize is a sum of incremental costs

over a total of T + 1 time-steps, k = 0, 1, . . . , T. The (scalar) incremental cost C[k] at
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time k is allowed to be stochastic, but its statistics are assumed to be determined solely by

s[k] and u[k] (i.e., C[k] is assumed independent of the past history of the system, given s[k]

amd u[k]). We assume that the expected cost E(C[k] I s[k], u[k]) has the following quadratic

form:

E (C [k]I s[k],u[k]) (6.7)

= s'[kIPsss[k] + s'[k]P su[k] + u'[k]P anu[k]

+Qss[k] + Quu[k] + R,

where the matrix [sS 2 SU is assumed to be (strictly) positive definite.
1PS1 PUU

Our goal is to minimize the expected total cost over T time-steps, or E(_k 0 C[k]), by

designing the inputs u[0],. .. , u [T] to dynamically control the state of the MLSS. We as-

sume that the inputs at each time k are chosen based on perfect state information- i.e., the

controller has available the exact current state, as well as past states and inputs, for use in

choosing the current input u[k]. In the ensuing discussion, we design the optimal policy,

or rule for determining the input from the available state and past input information, at

each time step. In mathematical notation, our goal is to determine the sequence of inputs

u* [0], . . . , u* [T] such that

T

u*[0],... , u*[T] = arg min E(Z C[k]), (6.8)
u[O],...,u[T] k=0

where each optimal input u* [k] must be determined solely from the current state, and past

states and inputs.

6.3.1 Motivation for Allowing Stochastic Costs

We explicitly model costs as being stochastic (i.e., we specify costs in terms of conditional

expectations given the state and input, rather than as explicit functions of the state and in-

put). Our subsequent development of the control algorithm will show that this stochastic-

ity has no bearing on the optimal control policy-the same control is derived if the stochas-

tic cost is replaced by its mean 2. Nevertheless, we feel that it is useful to model costs as

2 The equivalence of the control algorithm for certain and uncertain costs is one example of certainty equiva-

lence in quadratic control theory. Certaintly equivalence, or the equivalence of a control policy when a stochas-
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stochastic given the state and output, because costs in problems of interest to us may in

fact have a random component. The following example suggests one simple setting where

stochastic quadratic costs may be reasonable.

Example 6.5

There has been some interest in recent years in analyzing the occurrence of cascading failures (i.e.,
large and/or propagating failures) in networks. It has been found that real networks are often robust
to single component failures, but can be prone to cascading failures if two or more components fail
at the same time. As a very simple representation for costly cascading failures, let's say that the
network has a state variable s[k] that indicates the probability a single component will fail at a
given time-step (e.g., during a day). (The value of this state variable will likely be modulated by
design or control inputs, as well as system conditions such as loading.) Assuming that individual
component failures are essentially independent, the probability that a cascading failure occurs at

time-step k is s2 [k]. It is reasonable that a cascading failure would incur a large fixed cost, say C,
while no cost would be incurred if a cascading failure did not occur. Thus, the cost C[k] at time k is
stochastic, but the expected cost is E(C[k] I s[k]) = Cs2 [k], which is quadratic in s[k].

6.4 Deriving the Optimal Policy

It is well-known that optimizations of the form of Equation 6.8 can be solved iteratively
using the dynamic programming (DP) algorithm (see, e.g, [201 for an introduction to DP).
In a dynamic programming approach, the optimal policy at the final stage (e.g., at the
final time-step contained in the cost expression) is determined first. Subsequently, policies
are determined recursively backward-in-time, with the policy at each time determined
assuming that optimal policies will be applied at future time steps.

For our system, the optimal policy at the final time-step is

u*[T](s[T]) = arg min E(C[T] I s[T], u[T]), (6.9)
u[T]

and the corresponding terminal cost, or time T incremental cost assuming that the optimal

tic parameter is replaced by its mean, is an interesting feature of several optimal control procedures [20].
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policy is used, is

JT(s[T]) = min E(C [T] | s[T], u[T]). (6.10)
u[T]

(Our notation suggests that the optimal policy, and corresponding optimal cost, depend

only on s[T] and not on previous states and inputs; this is generally true for Markovian

systems such as ours [20].) By substituting the quadratic cost at time T (Equation 6.7

evaluated at k = T) in Equation 6.9, doing a bit of calculus, and invoking the positive

P o PSU
definiteness of 2 , we find that the optimal policy at the final stage is

u*[T](s[T]) = -p 1(-Ps's[T] - Q'1 ) (6.11)

The corresponding terminal cost is

JT(s[T]) = s'[T]Y 2 [T ]s[T] + Y1[T]s[T] + Yo [T], (6.12)

where

Y2 [T] = Ps - PsuP PSU

Y1 [T] = - Q 1P /
2

Yo[T] = 4QuPu-uQ' + R

We can straightforwardly check that Y2 [T] is positive definite, by invoking the positive

P APS
definiteness of [ 1 J to check the positivity of s'[T]Y2 [T]s[T] for all s'[T]. It is also

easy to see that Y2 [T] is symmetric.

Next, assume that the optimal policy from time k+1 to time T, or u*[k+1](s[k+1]), ... , u* [T] (s [T]),

has been found, and that the corresponding optimal cost is given by the quadratic form

T

Jk+l(s[k + 1]) = E( E C[ij I s[k + 1], u[k + 1]) (6.13)
i=k+1

= s'[k + 1]Y 2 [k + ]s' [k + 1] + Y1 [k + 1]s[k + 1] + Yo[k + 1],

for some symmetric positive definite Y 2 [k + 1], and some Y [k + 1] and Yo [k + 1]. Applying
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the DP algorithm (see [20]), we find that the optimal cost at time k is given by

Jk (s[k]) = min {E(C[k] s[k], u[k]) + E(Jk+1 (s[k + 1]) s[k], u[k])}, (6.14)
ulk]

and that the corresponding optimal policy at time k is

u*[k](s[k]) = arg min{E(C[k] s[k],u[k])+ E(Jk+1(s[k + 1])|s[k],u[k])}. (6.15)
u[k]

Let's consider E(Jk+l(s[k + 1]) | s[k], u[k]). Substituting Equation 6.13 for Jk+l(s[k + 1], we
find that

E(Jk+l(s[k + 1]) 1 s[k], u[k]) (6.16)

= E(s'[k + 1]Y 2[k + 1]s'[k + 1]

+Y1 [k + 1]s[k + 1] + Y [k + 1] | s[k], u[k]).

Since the expectation given in Equation 6.16 is quadratic with respect to s[k + 1], the equa-
tion can be rewritten as a quadratic function of s[k] and u[k] using the moment-linearity
conditions for an MLSS with input u[k]. Some algebra is required for this calculation, since
the moment-linearity conditions are expressed in terms of vector moments, while Equa-
tion 6.16 is in quadratic form. We skip the details of this algebra, and simply present the
final expression for E(Jk+l(s[k + 1]) s[k], u[k]):

E(Jk+l(s[k + 1]) s[ki, u[k]) (6.17)

= s'[k]Wss [k]s [k] + s'[k]Wsu [k]u[k] + u'[k]Wuu [k]u[k]

+Zs[k]s[k] + Zu[k]u[k] + L[k],

where

1 1
W8s[k] -UNVEC(Y 2 [k + l]H 2 ,2 ) + -UNVEC(Y 2 [k + 1]H2,2)'2 2
Wsu[k] UNVEC(Y 2 [k + 1]G2,2)

1 1Wuu[k] = UNVEC(Y 2 [k + l]D 2 ,2 ) + -UNVEC(Y 2 [k + 1]D 2 ,2 )'2 2
Zs[k] = Y2[k + 1]H 2,1 + Y[k + 1]H 1,1

Zu[k] = Y2 [k + 1]D 2 ,1 + Y 1[k + 1]D 1 ,1

L[k] = Y2 [k + 1]H2,0 + Y1 [k + 1I]H,O + Yo [k + 1]

Y2 [k + 1] = VEC(Y 2 [k + 1]),
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and where vec and unvec are defined as follows:

" VEC concatenates the rows of a matrix into a row vector.

" UNVEC places blocks of a row vector as rows in a matrix, with the length of the blocks

chosen to match the proper dimension of the resulting matrix.

We note that the matrix Wss [k]
[W' [k]

'Wsu [k] is positive semi-definite and symmetric.
Wuu[k kI

Finally, substituting Equations 6.17 and 6.7 into Equation 6.14, we find that

Jk(s[k]) = min
u[k]

s' [k] Pss [k] s [k] + s' [k] Ps [k]u[ k] + u'[k] Puu [k] u [k]

+Qs[k]s[k] + Qu[k]u[k] + R[k],

where

Pss[k] = Wes[k] + Pas

Psu[k] = Wsu[k] + Psu

Puu[k] = Wuu[k] + Puu

Qs[k] = Zs[k] + Qs

Qu[k] = Zu[k] + Qu

R[k] = L[k] + R,

[ [k] Psu [k]

SP'u[k] Puu[k]I
is symmetric and positive definite.

Notice that the minimization problem that we solve to find the optimal policy at time k

(Equation 6.18) is identical in form to the minimization that we used to find the optimal

policy at time T. Thus, we immediately find that the optimal policy at time k is

1
u*[k](s[k]) = Puu[k]1 (-Psu[k]s[k] - Q' [k]),

2
(6.19)

and that the corresponding optimal cost is

Jk(s[k]) = s'[k]Y 2 [k]s[k] + Y[k]s[k] + Yo[k], (6.20)
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where

Y2[k ] =Ps [k] - 1Psu[k]
4

Y1[k] = Qs [k] 2 Qu[k] Puu[k] 1Psu[k]

1
Yo[k] = -Qu [k]Puu [k]- 1 Qu[k]' + R [k].

4

Again, we can straightforwardly verify that Y2 [k] is symmetric and positive definite.

Since Jk(s[k]) takes the same quadratic form as Jk+l(s[k + 1]), and since JT(s[T]) has this

same form, the procedure used to determine Jk(s[k]) can be applied iteratively to find
the optimal cost at the initial stage, or Jo(s[0]), and the optimal policy over all time-steps.
Thus, we have completed the minimum quadratic cost control algorithm for MLSS.

6.5 Examples of Miminum Quadratic Cost Control of MLSS

In this section, we present two simple examples of minimum quadratic cost control of
MLSS. These examples give an indication of the range of control problems that can be

analyzed using our methods, and they explore some interesting dynamics observed in
controlled MLSS. Later in the thesis, we will consider a couple more examples of minimum

quadratic cost control, in the context of flow networks.

6.5.1 Controlling Linear Systems with Random Parameters

We consider the following MLSS with length-2 state vector and length-2 input vector:

E(s[k + 1] 1 s[k]) = [' ] s[k] + a[k]u[k], w.p. 0.4 (6.21)
0 1.35L0.8 0.21
0. 0.1 s [k] + a [k]u[k], w.p.0.6, (6.22)

where a[k] is 1 with probability 0.9 and 0 otherwise. This system is a generalization of a
standard linear system, in that the next state is chosen randomly among several different
linear combinations of the current state and input.
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Controlled Response
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Figure 6.2: si [k] is plotted during a 30 time-step simulation of the MLSS, for which the
input has been chosen according to the optimal policy. Both state variables are assumed to
initially equal 1.

We use the control algorithm developed above to find the optimal input policy over a time

horizon of 30 steps, assuming an incremental cost C[k] = s2[k] + s2[k] at each time-step.

The value of the first state variable in a typical simulation of the controlled system is shown

in Figure 6.2. The simulation suggests that the state variable s1 [k] converges to 0.

The optimal policy for the control input into this MLSS becomes stationary (time-invariant)

at an infinite time horizon (i.e., at many time-steps before the final time-step considered in

the dynamic program). For this example, the stationary policy is

(6.23)

It is interesting to compare the dynamics of this MLSS when the control input Equation

6.23 is applied with the dynamics of the system when no input is applied. Interestingly,

the mean response of this system is unstable (divergent) without input, but the optimal

control input stabilizes the mean response. In Figure 6.3, we compare the response of the

system with and without the input.
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Figure 6.3: The mean response of the MLSS with the stationary optimal policy applied is
compared with the mean response with no control input used. The controlled system is
stable, while the uncontrolled one is not. The initial values of the state variables in both
cases are assumed to be s1 [0] = 82[01 = 1.

Although a stationary optimal policy exists for the particular MLSS considered here, a

slightly modified version of the model does not have a stationary policy. In particular, if

the state is updated as

E(s[k + 1] |s[k]) = s[k] + a[k]u[k], w.p. 0.4 (6.24)
0 1.5

[0.8 0.21
L.8 0 ,2 s[k]+ a[k]u[k], w.p.0.6, (6.25)
0.1 0.6

then a stationary optimal policy does not exist, and in fact simulations show that the state

itself does not converge even if the (non-stationary) optimal policy is applied. Regard-

less of what policy is used, it turns out that the variance in the state variables increases

with time, so that the state does not converge. The non-existence of a stationary optimal

policy reflects an interesting distinction between quadratic control in MLSS and in purely

linear systems: in linear systems, a stationary optimal policy always exists, but the same is

not true for certain MLSS, for which the optimal control gain diverges in the infinite time

horizon limit. This phenomenon has been observed, in particular, for linear systems with
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random parameters [11], and for jump-linear systems [139]. In these systems, it is found

that there are strict conditions on the parameters of the system that guarantee existence of

a stationary optimal policy, and otherwise the system is sufficiently "uncertain" to prevent

development of a stationary optimal policy. This boundary between systems for which

stationary optimal policies can and cannot be found is referred to as the uncertainty thresh-

old. We leave it to future work to determine if MLSS have a similar notion of an uncertainty

threshold, and, if so, to quantify the threshold.

6.5.2 Controlling the Infinite-Server Queue

We pursue minimum quadratic cost control of the infinite-server queue with random ser-

vice probabilities (Example 2.4.5). We modify the original example from Section 2.4.5 to

allow some control of the input process into the queue. In particular, assume that the num-

ber of jobs entering the queue at each time-step is a Poisson random variable, with a mean

that can be controlled in response to the measured state. Our objective in controlling the

input process is to minimize the average squared deviation between the actual number of

jobs in the queue and a target number of jobs (which we have for purposes of illustration

chosen to be equal to the average number of jobs in the original example). That is, we

develop the optimal controller, assuming an incremental cost C[k] equal to the square of

the difference between s, [k] and the target 21.8.

It is straightforward to check that the described control problem can be analyzed in our

framework, so we do not detail this formulation and only present a few results of the anal-

ysis. In this example, we find a stationary optimal policy (i.e., we find that the backwards-

in-time DP recursion for the optimal policy reaches a fixed point). The stationary policy

specifies that the input u [k] at time k should be determined from the number of jobs s [k] in

the queue as u[k] = 19.8 - 0.52s[k]. Thus, as we might expect, the average number of jobs

entering the queue should be reduced if the number of jobs in the queue increases, and

should be increased if this number is small.

Figure 6.4 shows simulations of the queue in which the stationary policy is applied to

determine the input at each time-step. In addition to the simulations, the figure shows

the target number of jobs in the queue, as well 2 "standard-deviation" intervals around

this target, which can be found from the DP cost functions. The simulations and analysis

show that the controlled queue does track the target number of jobs more closely than the

uncontrolled queue described in Section 2. In particular, the root mean square deviation
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Controlled Queue, Simulations and Statistics

25A

215 ' i~ Al,

5 ~ 101102

CI 20 - J

Time-Step

Figure 6.4: Simulations of the infinite-server queue example with optimal input rate con-
trol are shown. Along with the simulations, mean and 2o- intervals around the mean are
shown. The figure shows that controlling the input rate can be used to reduce the squared
deviation of the actual queue length from a target length.

of the actual queue length from the target drops from 6.5 to 5.2.

Interestingly, the average number of jobs in the controlled queue is slightly less than the

target (19.8 vs. 21.8). Because the queue is occasionally prone to low service probabilities,
the control algorithm guards against excessively large numbers of jobs in order to mini-

mize the expected squared deviation. Thus, the control algorithm aims for a slightly lower

number of jobs on average than the target. This bias is borne out in the simulations of the

queue.

So far, we have considered control of the input rate into the infinite-server queue. Alter-

nately, the actual number of jobs entering the queue at each time step can be controlled.

The optimal policy (i.e., the policy that minimizes squared deviation from a target queue

length) for the number of jobs allowed to enter the queue has been derived. Simulations

of the queue length, as well as calculations of the expected queue length and two standard

deviation intervals around mean, are shown for this case (Figure 6.5). The figure shows

that the additional precision afforded by direct control of the number of jobs entering the

queue can be used to decrease the expected squared deviation from the target, to 4.3.
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Controlled Queue, Simulations and Statistics
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Figure 6.5: The infinite-server queue is simulated assuming that the number of jobs enter-
ing the queue at each time step is optimally controlled. Along with the simulations, mean
and 2o- intervals around the mean are shown. The figure shows that control of the actual
number of entering jobs allows closer tracking of input rates than control of the input rates.

6.6 Future Work: Control Using Only Output Measurements

An important aim of future work for us is to develop methods for control that use only
partial state information (in particular, moment-linear observations of the state), rather
than the state itself. For linear systems, minimum quadratic cost control from partial state
information is tractable because of a separability theorem, which allows for separate imple-
mentation of a minimum mean-square-error state estimator and a quadratic cost controller
that uses the state estimate as to determine its input (see, e.g., [20]). As noted in [20], how-
ever, the minimum quadratic cost control problem has no analytical solution if the linear
system parameters constitute an i.i.d. random process. Since the linear system with ran-
dom parameters can be formulated as an MLSS, we expect that an analytical solution for
optimal control from partial state information cannot be developed. Nevertheless, if we
constrain our estimator, or our estimator and controller, to be linear, we can perhaps de-
velop an optimal controller that uses only moment-linear observations of the state. We
leave it to future work to explore whether controllers of this form can be developed, and
whether a notion of separability can be shown.
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Chapter 7

The Influence Model

We briefly introduced the influence model in Chapter 3 as an example of an MLSN. In this
chapter, we explore the influence model in some more detail. Our goals in considering the
influence model here are the following:

" To highlight the influence model as a special subclass of MLSN, for which moments and
cross-moments of state variables specify (individual or joint) status probabilities, and

for which the moment-linearity conditions can be interpreted in terms of conditional
probabilities.

" To revisit the original analysis of the influence model in [9] and [10] from a different
viewpoint, and to catalog several new results on its analysis.

" To explore further the relationship of the influence model with other models, and to
briefly introduce some of its potential applications.

" To better understand the MLSN modeling framework through this detailed case study
of the influence model.

7.1 Motivation and Related Literature

The influence model, originally introduced in the the thesis [9] and in the article [10], seeks
to represent, in an analytically tractable way, certain stochastic interactions that may occur
among the components of a network. The influence model comprises a network of inter-
acting Markov chains, in which the evolution of each chain can be influenced not only by
the present status of that chain but also the statuses of neighboring chains in the network
(Figure 7.1).

At a broad level, the influence model is motivated by a need for network models that
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Figure 7.1: As depicted here, the influence model was introduced in [9] as a network of
interacting Markov chains.

allow us to understand the causes and characteristics of the global dynamic behavior of

networks. Modern engineered networks (e.g., power, communication, and transportation

networks) very often are multi-faceted, incoporating physical components, data communi-

cations channels, and human elements. Though individual components of such networks

can often be modeled well, it remains difficult to assemble or aggregate these component

models in such a way that global dynamics can be analyzed or understood. MLSN mod-

els, and the influence model in particular, are specially structured to allow inference of

global network characteristics. We believe that such structured models-while limited in

their modeling capabilities-are valuable as tractable representations of some essential dy-

namics that occur in networks. As such, we believe that they may provide a good context

for studying several aspects of engineered network behavior, including failure and event

propagation, estimation, control, and design. Our development in this chapter will show

how these aspects of network dynamics can be pursued in the context of the influence

model. Through examples, we will also seek to clarify the types of interactions that can be

represented using the influence model structure, and to introduce potential specific appli-

cations for the model.

The influence model connects with literature from several areas of research. We briefly

discuss some of these connections here.

The influence model is one example of a stochastic cellular automaton-i.e., a finite state-

space Markov model with dynamics embodied in interactions among sites in a network.

There is an extensive literature on stochastic cellular automata in general, and on their

potential applications in modeling natural and engineered systems (e.g., [137, 138]). Such

automata come in many varieties, with different specifications of local dynamics and inter-
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action structure, and different approaches to analysis. A recent example is provided by the

paper [117], which determines steady-state probabilities of configurations in a stochastic

automaton defined on a line, with arbitrary nearest-neighbor interactions.

A class of systems referred to as interacting particle systems (or infinite particle systems) in-
cludes models such as the voter model [71],[46], the contact process [60], and the stochastic
Ising model [25],[58], all of which bear similarities to specific forms of our influence model.
The standard setup for each of these interacting particle systems is as follows. The network
is generally an infinite multi-dimensional lattice, with each lattice site being in one of two
possible statuses at any instant of time. Each site also has an "alarm clock" that strikes
randomly with an exponential waiting time. When the clock strikes, the site switches to
the opposite status. The firing rate of the clock at any given time depends on the current
statuses of the site and its neighbors. The differences among the preceding models lie in
how the rates of the clocks depend on the concerned statuses [49].

Of the above models, the one that most resembles a specific form of our influence model
is the voter model, also called the invasion process, introduced independently in [71] and
[34]. In [34] the invasion process was proposed as a model for spatial conflict of different
species. The firing rate of the alarm clock at each site of this model is proportional to the
number of neighbors that are currently in the opposite status. Thus, the more neighbors a
site has with the opposite status, the faster it is likely to switch to the opposite value. If the
statuses of all the neighbors agree with that of a given site, then the status of that site will
not change.

A specialization of our influence model is the binary influence model, in which each site
is allowed to have one of only two statuses (whereas in the general influence model the
chains can vary in order and structure from site to site), and with the further restriction
that transitions between these statuses at a given site can only occur under the influence
of neighbors that have the opposite status. The resulting structure is quite similar to the
voter model or invasion process, but with two notable differences. First, the binary influ-
ence model evolves in discrete rather than continuous time, so the structure of the network
graph (for instance, whether it is ergodic or not) comes more strongly into play in deter-
mining whether all sites reach a consensus status. Second, our binary influence model
is formed with finite but arbitrarily connected and arbitrarily weighted graphs, whereas
the voter model literature largely focuses on uniformly weighted infinite graphs and/or
graphs with regular structure, such as the lattice [71, 90], the torus [38, 39], undirected and
uniformly weighted graphs [46], or infinite translation-invariant graphs [95]. An exception
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is [79], in which there are versions of the invasion process model that are much more like

the binary influence model (or natural generalizations of it to the case of more than two

statuses per site), although still in continuous time.

Discrete-time stochastic process models for graphical (network) interactions are also stud-

ied under the heading of dynamic Bayesian networks (DBNs) [105, 56]. The influence model

is a particular DBN, in which the interactions among the nodes have a special quasi-linear

structure. DBNs are of particular interest to us, because questions of state (and param-

eter) estimation have been studied in their context. Our methods for linear estimation

of MLSN suggest novel approaches for state estimation in certain DBNs. For instance,

the state update of a factorial HMM-a particular DBN in which each node evolves inde-

pendently [57]-is a special case of the influence model update. If the observations of a

factorial HMM are moment-linear with respect to the state (which is usually the case, since

observations are typically Gaussian whose mean is a linear function of the global state),

then MLSS estimators can be applied to the factorial HMM.

Another interesting related system is the Markov Chain Monte Carlo model. Good introduc-

tions to this model are given in [24] and [110]. In this model, sites are chosen at random or

according to a prespecified order, and they are updated in a probabilistic way, based on the

statuses of their neighbors. The update rules are chosen so that the steady-state distribu-

tion yields a Markov random field. Markov Chain Monte Carlo and Markov random field

models have found considerable use in image-processing and other applications, [64].

The stochastic automata network is yet another model consisting of interacting finite-state

stochastic components. The book [129], citing [12] and related literature, describes a form

in which the automata are interacting Markov processes. Two specific types of interactions

among the automata are considered: functional transitions, in which the rate of a transi-

tion in one automaton is dependent on the state of another automaton; and synchronizing

events, in which a transition in one automaton forces a transition in another one. The evo-

lution of the joint state of all the automata is described by a master Markov process with

number of states equal to the product of the number of states for the constituent automata.

It is shown in [12] that the generator matrix for this large master Markov process can be

written using Kronecker products of square matrices whose sizes equal the orders of the

constituent automata. The special structure of the generator matrix is then used to effi-

ciently calculate the steady-state expected joint status of the sites in the network. As will

be described later in this article, we too use a formalism based on Kronecker products to

determine the joint statuses of groups of sites in the influence model.
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Yet another branch of research that potentially relates to the influence model focuses on

simulating partial differential equations using interactions on discrete lattices. For exam-

ple, the lattice-gas model simulates the Navier-Stokes equations using a hexagonal lattice

representation of the system [120]. The model consists of particles possessing 'momen-
tum' that travel along the edges of the lattice and interact probabilistically, redistributing
momentum when they come in contact with each other.

7.2 The Influence Model

This section briefly reviews the basic development of the influence model given in [9] and
[10].

The influence model comprises a network of n interacting nodes or vertices or sites. Site i
assumes one of a finite number mi of possible statuses at each discrete-time instant. The
status of site i at any time k is represented by an mi-component status vector, which is an
indicator vector containing a single 1 in the position corresponding to the present status,
and 0 everywhere else:

s '[k] =[0 -- 010 ..- 0].

(The prime denotes matrix transposition.)

We are concerned with the evolution of sites' statuses at discrete time-steps. The update
of the statuses constitutes a Markov process, in that their joint probability distribution at
the next time step is independent of past statuses, given the current statuses of all sites. In
particular, updating the status of the ith site in the influence model can be thought of as
involving the following three stages:

" Stage 1: The site i randomly selects one of its neighboring sites in the network-or
selects itself-to be its determining site for Stage 2; site j is selected with probability dij
(so dij > 0 and E 3 dij = 1).

" Stage 2: The present status s [k] of the determining site j fixes the probability vector

p [k + 1] that will be used in Stage 3 to randomly choose (or "realize") the next status of
site i (so p'[k + 1] is a row vector with nonnegative entries that sum to 1). Specifically,
if site j is selected as the determining site, then p'[k + 1] =s [k]Aji, where Aji is a
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fixed row-stochastic mj x mi matrix, i.e., a matrix whose rows are probability vectors,

with nonnegative entries that sum to 1. We call the matrices Aji the local status-evolution

matrices of the influence model. The net effect of these first two stages is the same as

if the next status of site i is realized according to the probability vector pi [k + 1]

EN disl [k]Aji.

* Stage 3: The next status si [k + 1] is realized in accordance with the p'[k + 1] computed

at Stage 2.

All sites are updated simultaneously, and independently, in this way.

In words, each site updates its status by randomly choosing a determining site, and then

generating a new status based on a probability vector specified according to the current

status of this determining site. We think of each site as being "influenced" by its neighbor-

ing sites, since the current statuses of these neighbors specify the probabilities for the next

status of this site of interest.

We have introduced dij here as the probability that site i chooses site j as its determining

site. Alternately, the probability dij can be interpreted as the weight given to site j in spec-

ifying the probability vector for the next status of site i. In this interpretation, each site j
provides a probability vector s [k]Aji, which depends on the current status of site j. The

next status of site i is realized from a weighted combination of these probability vectors,

namely z;1 dijs [k]Aj 2 .

In Figure 7.2, we illustrate the update rule for a single site (Site 1) at a particular time-step. In

this influence model, Site 1 may choose itself as its determining site (with probability d1 = 0.6),

may choose Site 2 as its determining site (with probability d12 = 0.3), or may choose Site 3 (with

probability d13 = 0.1), at each time-step.

Consider the case where Site 1 chooses Site 2 as its determining site. Then the probability distri-

bution for the next-status of Site 1, which may be either Normal (N), or Failed (F), is specified by

the current status of Site 2, which may be Normal (N), Warning (W), or Failed (F). For example,

if Site 2 is in status W, as depicted in the figure, the next status of Site 1 is N with probability 0.6

and F with probability 0.4. In the notation of the influence model, the probability vectors for the

next status of Site 1, given that Site 2 is its determining site, are contained in rows of the matrix

A21. In this example, the second row of this matrix, which corresponds to the W status for Site 2,

is [0.6, 0.4]).
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Figure 7.2: The update rule for a single site in an influence model. The status symbols N, W, and F
denote Normal, Warning, and Failed respectively.

The probabilities dij with which determining neighbors are selected in effect define the

network associated with the influence model (in that they define the way in which sites

interact with each other). We assemble these probabilities in an n x n row-stochastic matrix

D = [dij], called the network matrix. Meanwhile, the row-stochastic matrices Aij show

how statuses of influenced sites are updated, and so are called the local status-evolution (or

transition) matrices. An influence model is completely specified by a single network matrix

along with local status evolution matrices Aij 1 i < n, 1 < j < n.

It is useful to construct a graphical representation for an influence network. To do so, recall

the common association of a directed graph F(X) with an n x n matrix X: this graph has

n nodes and a directed edge of weight xij from node i to node j if and only if the entry

xij of X is nonzero. For our purposes, it is somewhat more natural to use the graph of D',

namely r(D'), which we call the network influence graph or simply the network graph. This

graph has a directed edge of weight dij from site j to site i precisely when dij > 0, and the

weight of this directed edge is the probability that site i will select site j to determine its

next status. The sum of the weights of the edges directed into a site is therefore always 1.
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Example 7.2

Consider an influence model with one site. The network matrix for such an influence model is

necessarily D = dn = 1. Thus, the single site is always self-determined, according to a local

status-evolution matrix All. In particular, the probability vector for the time-(k + 1) status of the

site is specified by the time-k status, as s' [k]A1. The update rulefor the influence model is identical

to the status update of a Markov chain with transition matrix All (see Section 2.4.2). This example

shows that a Markov chain can be viewed as an influence model with one site.

Example 7.3

We consider an influence model with two sites. The first site can assume two statuses, called Normal

(N) and Failed (F). The status vector s' [k] = [1, 0] indicates the first, or Normal, status, while

s' [k] = [0, 1] indicates the second, or Failed, status. The second site can assume three statuses,

called Normal (N), Warning (W), and Failed (F), indicated by status vectors s' [k] = [1,0,0],

s' [k] = [01, 0], and s' [k] = [0, 0, 1], respectively. The network matrix for this example is given to

be

0.95 0.05 (7.1)
0.3 0.7

Thus, both sites in the model are likely to determine their own next statuses, though Site 1 influences

Site 2 more frequently than Site 2 influences Site 1.

The local status-evolution matrices for this example are

All = E 0.95 0.05 (7.2)
0.5 0.5

1 0

A21 = 0.5 0.5

70 1

C u tf 0 0 11 0 0

0.9 0.1 0

A22 = 0 0.5 0.5

0 0 1

(7.3)

Conceptually, the model evolves as follows. T he status of Site I is usually updated by self-influence;
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this status transitions back and forth between the Normal and Failed statuses in this case. In
contrast, the status of Site 2 remains the same or decays (i.e., goes from Normal to Warning or

Warning to Failed) if it is determined by itself. Site 2 requires the occasional influence from Site 1
to return to a Normal status.

Time-Step

0

1

2

3

4

5

6

7

8

Site

F

N

N

N

NJ

NJ

1 Site 2

FJ

Fk

FD

FJ

FD

Figure 7.3: Eight time-steps
initially in Failed status.

in a simulation of the two-site example are shown. Both sites are

Figure 7.3 shows a simulation of this influence model. Both sites are initially in a Failed status. In
this instance, 8 time-steps are required for both sites to simultaneously recover to Normal status. As
seen in Figure 7.3, Site 1 recovers first, through self-influence, and Site 2 is subsequently repaired
through influence from Site 1.

The influence model can be generalized to allow time-varying parameters (i.e., a time-
varying network matrix and time-varying status evolution matrices). The resulting stochas-
tic model is a time-varying MLSN. The generalization to this time-varying case is straight-
forward, so we do not consider it in any further detail. Though the extension to a model
with time-varying parameters direct, we note that such generalizations can exhibit some
interesting dynamics that are not present in time-invariant influence models.
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1/3

Site I
N

1/2 1/4 1/2
1/3 /3 1/6

Site 2 1/4 Site 3
F AN

Example 7.4 1/3

Figure 7.4: The network graph for the three-site example is depicted.

7.2.1 The Homogeneous Influence Model

In a homogeneous influence model, the weights of influences among sites (i.e., the dij) can

be arbitrary, but the local interactions are uniform throughout the network. That is, a

homogeneous influence model is one in which each site has the same number of possi-

ble statuses mi = m, and the local status-evolution matrices are identical throughout the

network (Aij = A for all i, j). The homogeneous influence model is of interest to us be-

cause it is specially tractable, as later development will show, and it is also closer to other

models that have been considered in the literature, as noted earlier. Although a homo-

geneous influence model is highly structured, we believe that it can potentially represent

some networks of interest, such as networks in which the interacting components are in-

distinguishable in some sense (e.g., DNA sequences, which are strings of the same four

nucleotide base pairs).

We repeat the example of the homogeneous influence model from Section 3.3.1, see Figure 7.4. In

this example, each site can be in one of two possible statuses, Normal (N) or Failed (F). The common

local status-evolution matrix for this example is A - 0.99 0.011. Simulations of the status of
0.05 0.95

Site 1 are shown in Figure 7.5.
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Figure 7.5: This figure shows the failure probability for Site 2 during 200 time-steps, given
that all sites are initially normal. A simulation of the status of Site 2 is also shown. (A "*"
at the top of the graph indicates a Failed site, and a "*" at the bottom indicates a Normal
site.)

7.3 The Influence Model as an MLSN

To reformulate the influence model as an MLSN, we

(concatenating) the status vectors of the n sites:

form a state vector s[k] by stacking

si[k]

s[k] =

[snr[k|

(7.4)

Since the next state s[k + 1] is generated solely based on the time k statuses, the sequence

{s[k]} is a Markov process. Further, from our specification of the influence model, we can

see that the state process is stationary. Thus, to verify that the sequence {s[k]}, constitutes

an MLSS, it only remains to check for rth moment linearity of the state update for each r.
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7.3.1 Verification of the First Moment Linearity Condition

We seek to show that the conditional expectation

E(si [k + 11 s[k])

E(s[k + 1] 1s[k]) =(7.5)

[E(sn[k + 1] s[k])J

is linear with respect to s[k].

To do so, let's consider the conditional expectation E(si [k + 1] 1 s[k]) separately for each i.

Because si [k + 1] indicates the status of site i, its expectation (given s[k]) is the probability

vector for the next status of site i (given s[k]). From our formulation of the influence model,

we know that this probability vector is given by (E31 dis [k]Aji)'. (Note that we have

transposed the expression for the probability vector given earlier, since we are specifying

a column vector rather than a row vector in the MLSN formulation.) Thus, the conditional

expectation for each site's next-status vector is

n

E(si[k+ 1]| s[k]) = dijAisj[k]. (7.6)
j=1

Stacking the expectations E(si [k + 1] s[k]) yields

E(s[k +1] | s[k]) = H's[k], (7.7)

where

dn An - dn1An1

H D D {Ajj}. (7.8)

d17nAn1  dnAnn

Equation 7.7 verifies that the first moment linearity condition holds for the state sequence

of the influence model. The matrix H, which specifies the first moment recursion for the

system, is denoted the influence matrix'. The notation we have defined for H is a general-

ization of the familiar Kronecker product notation for a pair of matrices. Specifically, the

'Incidentally, we specify the first moment linearity condition as E(s[k + 1] s[k]) = H's[k] rather than
E(s[k + 1] s[k]) = Hs[k] in order to maintain the notation used in [9].
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(i, j)th block in H is the product of the ith row, Jth column entry of the matrix D' (hence
dji) with the matrix Aij.

We note that the matrix H completely specifies the update of the influence model: given
the current state, conditional probabilities for each site's next status are contained in the
vector H's[k]. Thus, it is not surprising that the network matrix D' and the local interaction
matrices, which also specify the update of the model, can be extracted from the influence
matrix.

Example 7.5

Again consider the two-site influence model of Example 7.3. The influence matrix for this influence
model is

0.95 0.95 0.05 0.3 1 0 0
0.5 0.5 0 0 1

H 01 0 0.9 0.1 0 (7.9)
0.05 0.5 0.5 0.7 0 0.5 0.5

. 0 1 0 0 1

7.3.2 Higher Moment Linearity Conditions

To verify the rth moment linearity condition, we seek to express the conditional rth (vec-
tor) moment E(s[k + ]Or I s[k]) as an affine function of s[k], . . . , s[k] O. To do so, we first
compute conditional expectations for rth joint statuses at time k + 1, given s[k], and then
assemble these conditional expectations to form (a permuted and reduced form of) the
conditional rth moment.

Recall from Chapters 3 and 4 that higher moment linearity conditions of MLSN, including
the influence model, can be expressed in many different forms. The form considered here
is chosen to facilitate certain analyses concerning asymptotics and settling properties of
the influence model. An alternate form for the higher conditional vector moments is given
in [9].

Our development in this section, as well as in the following section on settling times of the
influence model, requires a wealth of notation. For convenience, a list of these notations is
given in Table 7.1.

- 179 -

Chapter 7



Chapter 7 The Influence Model

Notation Brief Description

v, w groupings (lists of sites)

s [k] joint status vector for v

i index for joint status vector entries

ess(v) essential site list of v

wV [k] determining site list for v

S~n [k] influence state vector

s(r) [k] extended influence state vector

Q(v) mapping between sv [k] and sess(v) [k]

Hili moment recursion matrix

Hij, (v, w) part of moment recursion matrix

H(s) extended recursion matrix (for influence model)

H(I) Hi,1  H' first (extended) recursion matrix

Table 7.1: We list the notations used in the subsequent development. A brief description

of each symbol is also given. Full definitions for each can be found in the text.

7.3.2.1 Expressions for Conditional Moments and Cross-Moments of Status Vectors

Generally, construction of the conditional rth moment requires determination of condi-

tional expectations of all rth joint status vectors (i.e., joint status vectors of all nr rth group-

ings). For the influence model, it turns out that only joint status vectors of groupings of

distinct sites need be considered, since these joint status vectors are sufficient to construct

a reduced representation of the rth moment linearity condition2 .

We introduce the following notation for our development:

" Recall from Chapter 3 that an rth-order grouping v is a listing of r sites: that is, it is an

r-vector whose components v, .. ., v, are each in 1, ... , n.

" Recall that the joint status vector for the grouping v is sv [k + 1] = s1 [k + 1] 0 sV2 [k +

1] 0 . .. 0 sv, [k + 1].)

" A grouping v is called a distinct grouping if all the sites in the grouping are distinct. Note

that only groupings of n or fewer sites can be distinct groupings.

" Consider the joint-status vector sf[k] of a grouping v of r sites (henceforth called an

rth joint status vector). This joint-status vector has length ] =1 m,. We use a vector

2For r > n, there are no groupings of r distinct sites, so no rth groupings need be considered in checking
the rth moment linearity condition. This reflects that the nth vector moment specifies all influence model
statistics, so that higher moments are irrelevant.
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notation to index the elements of this vector. In particular, we identify the entry in sv [k]
corresponding to the product of entry ii of status vector sv [k], entry i 2 of status vector

sV2 [k], etc., by the list i = (i1 , Z2, . . ir). We denote this product as entry i of the joint
status vector sv [k].

" The expected value of the joint status of a grouping is called the expected joint status of
that grouping.

" Consider a grouping v. Now construct a second list of sites ;r in the following way:
first, enter the first site in v as the first site in -V; then sequentially scan the sites in v,
and add any site that is not already in 9 to the end of that list. We call this vector, which
contains all distinct sites in V-, the essential site list of v. We use the notation - = ess(v)
to specify the essential site list of v. Note that an essential site list is a distinct grouping.

* Consider an essential site list V- which contains r or fewer sites. In general, there are
multiple groupings with r sites which have essential site list 4. Call the set of such
groupings WQ, ().

Example 7.6

Consider an influence model with three sites, and consider the two groupings {3, 1, 3} and {3, 3, 1}.
The essential site lists of both these groupings is {3, 1}.

Let's first discuss why joint status vectors of distinct groupings of r sites (henceforth called
distinct rth joint status vectors) are sufficient for specifying a reduced representation for
the rth moment linearity condition. According to the discussion in Chapter 4, we need
the entries of the distinct rth joint status vectors to be entries of s[k]®', and this is clearly
true. For the distinct rth joint status vectors to serve as a reduced representation, all rth
joint status vectors must be expressible as linear functions of rth and lower distinct joint
status vectors. To see why this can be done, consider the joint status vector for an arbitrary
grouping v of r sites. Each entry of this vector is a product of one or more entries from
each of the status vectors of the sites in ess(v). Since each site's status vector is a 0 - -1
indicator, these products are either 0 or they are products of individual entries from the
status vectors of sites in ess(v)-i.e., they are entries of sess(v) [k]. Thus, we see that the
joint status vector sv[k] is a linear function of sess(v)[k], where ess(v) is a grouping of no
more than r sites. From here on, we use the notation

s [k] = Q(v)sess(v)[k] (7.10)

to specify this linear function. The explicit general construction of the matrices Q(v) is
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tangential to our development, so we leave it to Appendix B. We mention one special case.

If the sites listed in v are distinct, then ess(v) = v, and Q(v) is an identity matrix. From the

above discussion3 , it is clear that the distinct joint status vectors can be used to construct a

reduced representation for s[k]@'.

Example 7.7

Consider an influence model with two sites, each of which can take on two statuses, and consider

the length-8 joint status vector S{2,1,2} [k]. The preceding development suggests that s{ 2 ,1 ,2} [k] is a

linear function Of sess({2,1,2})[k] = s{ 2 ,1}[k]. For this simple example, we can construct the linear

transformation by inspection:

1 0 0 0

0 0 0 0

0 1 0 0

sN2,1,2} [k] =f s2,1}[k]. (7.11)
0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

Let's now show how to compute conditional expectations for time-(k + 1) distinct joint
status vectors, given s[k]. In particular, consider the joint status of a distinct grouping v at

time k + 1. Recall that the time-(k + 1) statuses of the sites in v are each independently

determined from randomly (and independently) chosen sites in the network. It is useful

for us to specify the determining sites for the r sites in v at this time-step by another

length r-component vector wv [k], which we call the determining vector of v. The conditional

expectation for the time-(k + 1) joint status of v given the current state can be rewritten by

conditioning further on the determining vector of v:

E(sv[k + 1] 1 s[k]) (7.12)

= E(sv [k + 1]| s [k], wv [k] =w)P (wv [k] =w I s [k]) (7.13)

= E(sv [k + 1]| s[k], wv [k] =w)P(wv [k] w). (7.14)

3 We can also show that the joint status vector of any grouping of r sites can be expressed as a linear function
of distinct joint status vectors of exactly r sites. In [9], this insight is used to develop moment recursions that
involve only rth-order statistics.
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In Equation 7.12, the notation E refers to the sum over all possible determining vectors

(i.e., all possible groupings of r sites). Also, we note that the last expression in Equation

7.12 follows from the second expression because the choice of determining sites is inde-

pendent of the current state vector.

In Equation 7.12, P(wv[k] = w) is the probability that site v, is determined by site wi,

site v2 is determined by w 2 , and so forth. In terms of influence model parameters, this

probability is

r

P (wv [k] = w) = dv, wj. (7.15)
j=1

Now consider E(sv [k + 1] 1 s[k], wv [k] = w). This expectation can be written as

E(sv[k + 1] 1 s[k], wv [k] = w) (7.16)

= E(® 1 svj [k + 1]1 s[k), wv [k] = w).

Since each site in v is updated independently according to its determining site's status,

Equation 7.16 can be rewritten as

E(sv[k + 1]1 s[k], wv [k] = w) (7.17)

= 0 ,1 E(svj [k + 1] s[k], wv[k] = w)

= > 1 E(svj [k + 1] sw, [k], (wv [k])j = wj),

where (wv[k])j refers to the jth entry in the vector wv[k]. The expectation E(svj [k +

1] | sw [k], (wv[k])j = wj) is simply the probability vector for the next-status of site v3 ,

given the current status of its determining site wj, and so can be written in terms of influ-

ence model parameters as

E(svj [k + 1]| sw, [k], (wv [k])j = wj ) = A',,,j sw [k] (7.18)

Substituting this expectation into 7.17 leads to

E(sv[k + 1]Is[k],wv[k] = w) = _1 A',,sW, [k] (7.19)

= (®r1 A' ,,, )(® 1 sr, [k])

(@ 1A'v,,)sW [k].
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Next, we use Equation 7.10 to rewrite the expectation in Equation 7.19 solely in terms of

time-k joint statuses of distinct groupings, as

E(s,[k + 1] Is[k], w,[k] = w) = (0',A'Wj vj)Q(w)Sess(w)[k]. (7.20)

Finally, substituting Equation 7.20 and Equation 7.15 into Equation 7.12, we find that

r

E(sv[k + 1]| s[k]) = Z( _1A,,vj)Q(w)ess(w)[k] 17d1 . (7.21)
w j=1

Equation 7.21 shows how the conditional expectation of the time-(k + 1) joint status of

any distinct rth grouping can be expressed as a linear function of time-k joint statuses of

distinct groupings of r or fewer sites. This is the essential linearity property that allows us

to find recursions for vector moments (and hence joint status probabilities) in the influence

model.

Example 7.8

Again consider the two-site influence model of Examples 7.3 and 7.5. Let's consider the conditional

expectation E(s{2,1} [k + 1] | s[kl). According to Equation 7.21, this expectation can be written as

E(s{ 2,1} [k + 1] 1 s[k]) (7.22)

d2 1d1 1 (A'12 0 A')Q({1, 1})si[k] + d21d12 (A1 2 0 A' 1 )s{, 2 }[k1

+d 2 2d1 (A'2  A')s{2,1}[k] + d22 d1 2 (A'22 o A' 1 )Q({2, 2})s 2 [k].

7.3.2.2 Conditional Moments of the State Vector

The expressions for conditional expectations of distinct rth joint statuses can be stacked

into a reduced form of the rth moment linearity condition. In particular, we define the rth

influence state vector S[r] [k] as a stacking of all rth distinct status vectors in lexicographic
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order:4

syr[k= . (7.23)

Note that the rth influence state vector contains status vectors for (nnr)! groupings.

Since conditional expectations of rth joint status vectors at time k +1 are linear with respect

to rth and lower joint status vectors at time k, the conditional expectation for the time k + 1

rth influence state vector, given the time k state, has the form

r

E(S[r] [k + 1]1 s[k]) = E Hr,js[j] [k]. (7.24)
j=1

We call the matrices Hr,j the influence recursion matrices. We call the part of the matrix Hr,j

that multiplies the status vector of the distinct grouping W- and contributes to the expected

joint status of the distinct grouping v as Hr,j(v, W-). In other words, Hr,j(v, W-) specifies the

contributions to the next-joint status probabilities of v form the current status of W-; this

contribution is effected in the circumstance that the determining site list for v has essential

site list given by iC. The matrix Hr,j (v, W) is constructed by considering the summands in

Equation 7.21 for which the essential site list ess(w) is the distinct grouping W-, as shown

in the following equation:

r

Hr,j (v, iv) = Z ( d ) A'/ )Q(w) (7.25)
wcwr( v) j=1

Equation 7.25 specifies each part of the recursion matrices, and thus we can construct the

moment linearity conditions for the influence model. Thus, we have specified the rth

moment linearity condition for the influence model.

Example 7.9

Again consider the two-site influence model of Examples 7.3, 7.5, and 7.8. From Equation 7.22, we

4Note that we use the same notation for the rth influence state vector as for the permuted rth-order state
vector defined in Chapter 3, although the influence state vector does not contain joint statuses of non-disjoint
groupings. More precisely, the rth influence state vector is an example of an rth reduced state vector, in
permuted form. Our notation and terminology is meant to simplify the presentation while capturing the
essence of the analysis.
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can infer the matrices Hr,, (v, v-) for v = {1, 2}. For instance, we find that

Hr,j({l, 2}, {1}) = d2 ldli(A'1 2 0 A'I)Q({l, 1}). (7.26)

7.3.3 Basic Analysis: Influence Moment Recursions

As with all MLSN, the moment-linear structure of the influence model permits linear re-

cursions for computing moments and cross-moments of the status vectors at each time-

step in terms of the moments and cross-moments of the initial status vectors. Because

the status vectors of the influence model are 0 - -1 indicator vectors, their moments and

cross-moments actually specify the probabilities that a site or sites have certain statuses at

a given time-step.

Using the standard analysis for MLSN, the rth influence vector moment (i.e., the expectation

of the rth influence state vector) at time k + 1 can be expressed in terms of the first r

influence vector moments at time k, as

r

E(S[r][k + 11) = Hr,i E(s[i [k]). (7.27)

By applying equations of the form (7.27) iteratively, the rth influence vector moments-

which contain all relevant rth moments and cross-moments of status vectors-can be

found from the initial values of the first r influence vector moments. We call Equation

7.27 the rth influence moment recursion.

The moment recursions defined by Equation 7.27 allow us to find the joint probability

that a group of sites assumes a certain set of statuses. For example, consider the vector

E(S[r][k]). The vector [r] [k] contains joint statuses for all rth distinct groupings. For a

particular rth distinct grouping v, the entry in E(s, [k]) (which is contained in E(S[r] [k]))

indexed by the vector i =(i,. .. , ir) equals the joint probability that sites vi, ... , Vr have

statuses i 1 ,... , ir, respectively, at time k.

Interestingly, the nth influence vector moment E(s[,] [k]) contains a probability vector for

the joint status of all n sites. Thus, the expectation E(s[,] [k]) completely specifies the joint

p.m.f. for the state (and state vector) of the influence model at time k. Since E(s[ ] [k]) can

be found using the first n influence moment recursions, we see that moment recursions of

order greater than n are not of interest for the influence model.
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As with general MLSS and MLSN, the first r influence moment recursions can be concate-

nated into a single recursion. To do so, we define the rth extended influence state vector or

simply rth extended state vector as

S[r] [k]

s(r)[k] (7.28)

-s [k] = [k]_

Next, stacking the first r moment recursions (Equation 7.27) leads to

E(S(r)[k + 1]) H(r)E(S(r)[k]), (7.29)

where

Hr,r Hr,r-I ... HrJ1
0 Hr._1,r_1 . .. Hr-1,1

H(r) = . . (7.30)

0 .. 0 H1 ,1 _

Invoking Equation 7.29 iteratively, the rth extended moment vector (i.e., the expectation of
the rth extended state vector) at time k can be expressed explicitly in terms of the rth

extended moment vector at the initial time:

E(S(r)[k]) = Hf E(S(r) [0]). (7.31)

In the preceding development, we have introduced the influence model and described its
basic analysis. In the following sections, we discuss several aspects of influence model
dynamics, estimation, and control. Our discussion is not mean to be exhaustive by any
means (e.g., convergence is not discussed at all; the reader is referred to [9] for a disus-
sion). Instead, we present a few new results and extensions, and highlight some ideas that
we find interesting and potentially applicable. In the same vein, we also often limit our
discussions to illustrative examples, rather than presenting the most general forms of the
result.
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7.4 Settling Times

The settling time, or time required for a stable system to approach its steady-state, is often

a useful characterization of a system's transients. For the influence model, the moment

recursions are known to be stable, in the sense that the vector moments approach steady-

states (which do not depend on the initial condtion), under fairly general conditions on

the network matrix and local status evolution matrix (see [91). The required conditions for

stability can further be phrased in terms of the class structure of influence model graphs,

and hence can be checked easily. When the vector moments are stable, settling times are

well-defined; these settling times specify how quickly the joint-pmfs of groups of r sites

approach their steady-state values.

More specifically, it is shown in [9] that (given the appropriate general conditions on the

network and local status evolution matrices), each moment recursion has a single unity

eigenvalue 5 . The eigenvector corresponding to this unity eigenvalue is known to specify

the steady-state moment vector (which contains steady-state status or joint-status proba-

bilities) for the recursion, [9]. The remaining eigenvalues of the recursion have magnitudes

that are strictly less than 1. As discussed in [9], the subdominant relevant eigenvalue (i.e., the

non-unity eigenvalue of largest magnitude with eigenvector that can be excited by a valid

set of initial conditions) of each of these recursion matrices is the key determinant of its set-

tling time. In [9], Asavathiratham conjectures that the subdominant relevant eigenvalues

of all moment recursions of a particular influence model are identical. If true, this propo-

sition would be quite a useful result, since it suggests that the settling characteristics of all

joint status probabilities can be inferred solely from the eigenanalysis of the first moment

recursion, with a dimension equal to the sum of the number of statuses at each site. Here,

we prove this subdominant relevant eigenvalue conjecture for the homogeneous influence

model and show a counterexample for the general model.

7.4.1 Homogeneous Influence Model: Proof of Conjecture

We prove the preceding conjecture by showing that the subdominant relevant eigenvalue

of the rth extended moment recursion ft() is the subdominant eigenvalue of the local

interaction matrix A, for all r. For convenience, assume that D and A specify ergodic

5The moment recursions are phrased in a different form in [9] than in Section 7.3 here, but the essentials
remain the same (as we will show in some more detail for the homogeneous influence model).
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Markov chains. In this case, it's easy to check that the unity eigenvalue of H(r) is unique.

Note that the eigenvalues of the extended recursion matrices H(r) are the union of the
eigenvalues of its diagonal blocks, H1,1, ... , Hr,r (because H(r) has a block-upper triangu-
lar form with diagonal blocks given by Hi,1, ... , Hrr). For the homogeneous influence

model, the eigenvalues of these diagonal blocks can be straightforwardly related to eigen-
values of the local status interaction matrix A.

In particular, we express the matrix Hi,i in terms of (A')O', as follows. We first invoke
Equation 7.25 to find the joint status recursion matrix between two distinct ith groupings
v and w:

Hi,i(v, w) (1 d,,, )(A')@0, (7.32)
j=1

where we have used the fact that v and w are both ith groupings, and that the the model
is homogeneous, to simplify the expression. Next, we form the matrix Hi,i by assembling
these joint status recursion matrices for distinct ith groupings (in lexicographic order ac-
cording to both row and column). Since each joint status recursion matrix is a product of a
scalar and the matrix (A')O', the recursion matrix Hi,i can be written as

Hi,i D(i) 0 (A')"', (7.33)

where D(i) contains the probabilities j _dvjw for distinct ith groupings, arranged in
lexicographic ordering, row-wise and column-wise. We note that the matrix D(i) can also
be constructed by removing rows and columns that are indexed by non-distinct groupings
from the matrix DO'. We call D(i) the ith network matrix.

Example 7.10

Consider a two-site, two-status influence model, with network matrix

D = 0.9 0.11 (7.34)
0.3 0.7

and local interaction matrix

A-0.75 0.251A = . (7.35)0.4 0.6
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The first network matrix is simply D( 1) = D. To construct the second network matrix, we first

generate the matrix

0.81 0.09 0.09 0.01

D 2 0.27 0.63 0.03 0.07 (7.36)
0.27 0.03 0.63 0.07

0.09 0.21 0.21 0.49

We then remove the rows and columns that are indexed by non-disjoint groupings-i.e., the first

and fourth rows and columns-from D 2 to construct the second network matrix:

_ 0.63 0.031
D(2 ) = 0.03 0.63J (7.37)

0.03 0.63

Note that H1,1 = H' = D 0 A'. Thus, the eigenvalues of H1 ,1 are the Cartesian product

of the eigenvalues of D with those of A'. The dominant eigenvalue of H1,1 is 1, since the

dominant eigenvalues of D and A' are both 1. As shown in [9], the eigenvalues of H1 ,1

that are products of the unity eigenvalue of A' with the eigenvalues of D are not relevant.

Thus, the first candidate for the subdominant relevant eigenvalue (i.e., the remaining sub-

dominant eigenvalue of largest magnitude) of H1,1 is the subdominant eigenvalue of A', or

equivalently the subdominant eigenvalue of A. It is discussed in [9] why this eigenvalue

is relevant. Briefly, relevance can be argued as follows: we can show that the components

of the right eigenvector of H1,1 corresponding to this eigenvalue that are associated with

each status vector sum to zero; hence, a valid initial condition for the expected state, for

which each expected status is a probability vector, can be modified by a component in the

direction of this eigenvector and remain valid. Thus, we see that the subdominant relevant

eigenvalue of H1,1 is the subdominant eigenvalue of A.

Because of the nested (upper-triangular) structure of H(r), the relevant eigenvalues of H1,1

are also relevant eigenvalues of H(r), so that the largest relevant eigenvalue of H(r) is at

least as large as the subdominant eigenvalue of A. Next, we show that the dominant rele-

vant eigenvalues of the matrices Hi,i, 2 < i < r, are less than the subdominant eigenvalue

of A in magnitude, so that subdominant eigenvalue of H(r) is the subdominant eigenvalue

of A.

Since Hi,i is the Kronecker product of D(i) and (A')O', its eigenvalues are the Cartesian

product of the eigenvalues of D(i) and of (A')O'. Note that the eigenvalues of (A')O' are
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products of r (not-necessarily-distinct) eigenvalues of A. Thus, the only eigenvalue of

(A') 0 with magnitude greater than that of the subdominant eigenvalue of A is the unity

eigenvalue. Also, it is easy to check that the eigenvalues of D(i) have magnitudes that are

strictly less than 1. Thus, the only eigenvalues of Hi,i that can have magnitude as large

as the subdominant eigenvalue of A are the eigenvalues of D(i). We prove that all such

eigenvalues are not relevant to the rth moment recursion. To do so, we show that the left

eigenvectors of H(r) corresponding to these eigenvalues are necessarily perpendicular to
any valid rth extended state vector. This orthogonality is proved indirectly, as described

below. Before describing these details, however, we present an example that shows the
relevant and irrelevant eigenvalues of a homogeneous influence model.

Relevant Eigenvalues Irrelevant Eigenvalues
H1 ,1  1, 0.35, 0.21 0.6
H2,2  0.231, 0.231, 0.21, 0.21, 0.66, 0.6

0.0808, 0.0735

Table 7.2: The relevant and irrelevant eigenvalues of H1,1 and H2,2 are shown. The eigenvalues
of the extended second moment recursion matrix H(2) are the union of the eigenvalues of H1,1 and
H2,2. We see that the largest subdominant relevant eigenvalue of H(2) is the largest subdominant
relevant eigenvalue of H1,1 = Hmi), which is also the subdominant eigenvalue of A.

Example 7.11

Again consider the influence model introduced in Example 7.10. The relevant and irrelevant eigen-

values of H 1,1 and H2,2 for this model are shown in Table 7.2. From the table, we see that the sub-

dominant relevant eigenvalue of both the first- and second-moment recursions (e.g., of f(1) = H 1,1
and H( 2) is the subdominant relevant eigenvalue of H1 ,1, or 0.35. This is also the subdominant

eigenvalue of A.

Since the subdominant eigenvalues of the first- and second-extended moment recursions are identi-

cal, we expect the settling times for these recursions to be comparable. For illustration, we compare

the dynamic response of the probability that site 1 is in its first status (Figure 7.6) with dynamic

response of the probability that both sites are in their first statuses (Figure 7.7). These figures

suggest that the settling times of individual site status probabilities and joint status probabilities
are identical, reflecting that the first- and second-moment recursions have the same subdominant

eigenvalue.

We return to the details of the proof. To prove that the eigenvectors of H(r) corresponding
to eigenvalues that are also eigenvalues of the D(i), 1 < i < r are not relevant, we define a
square matrix D(r) that captures all network-level dynamics (i.e., all interactions specified
by network matrix-based site selection) of the rth moment recursion. The number of rows
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Figure 7.6: The probability that Site 1 is in its first status is shown for 10 time-steps. We assume
that both sites are originally in their first statuses.

(and columns) of D(r) is assumed to be the number of distinct groupings of r and fewer

sites for the influence model of interest. These rows and columns, which are indexed

by groupings, are assumed to be ordered according to increasing grouping size, and in

lexicographic order by grouping within a grouping size. The entry with column indexed

by v and row indexed by w (called column v and row w from now on) is the probability

that grouping w is determined by any grouping V- such that ess(;t) = v. Thus, note that

the entry at row w and column v is

d(w,v)= Jd , (7.38)
Ss.t. ess(;)=v i=1

where q is the size of the grouping w. From this definition, we see that D(r) is a block-

lower-triangular matrix, with diagonal blocks given by the matrices D(),.. . , D(). We

denote the off-diagonal block of D(r) relating all groupings of size i and j by D(j,). Note

that f(r) is a stochastic matrix, since each distinct ith grouping, 1 < i < r, is determined

with certainty from some other grouping of at most r (in fact, at most i) sites. Thus, each

row of D(r) sums to 1. Now consider the eigenvalues of D(r). These eigenvalues are the

union of the eigenvalues of D(1), ... , D(r). Thus, one of the eigenvalues of D(r) is 1, and

the remaining eigenvalues are strictly less than 1 in magnitude. Since D(r) is a stochastic
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Figure 7.7: The probability that Sites 1 and 2 are both in their first statuses is shown for 10 time-
steps. We assume that both sites are originally in their first statuses. This settling time of this joint
status probability is similar to the settling time of the individual status probability shown in Figure
7.6, reflecting that the subdominant relevant eigenvalue of the first and second moment recursions
are identical.

matrix, its right eigenvector corresponding to the unity eigenvalue is a vector of all ones.

Thus, all left eigenvectors of D(r) corresponding to the remaining (non-unity) eigenvalues

are orthogonal to the vector of all ones-i.e., they sum to zero. This insight regarding the

left eigenvectors of D(r) is used below to prove the eigenvalues of H(r) that are eigenvalues

of D(i), 1 < i < r, are irrelevant.

Consider the left eigenvector of H(r) corresponding to a particular eigenvalue A, which

is a particular non-unity eigenvalue of D(i), .... D(r) (and hence also a non-unity eigen-

value of D(r)). Say that the left eigenvector of D(r) corresponding to the eigenvalue A is

c'. For convenience, we use the notation c' = C ... c'. to distinguish the parts of

the left eigenvector that are identified with groupings of different sizes. We claim that

the vector c'H = c' 0 1'f c' 0 i'f ... c' ( 10m] is a left eigenvector of H(r) with the

same corresponding eigenvalue. To see why, consider the product 1' Hij (w, v) (where

w is an ith distinct grouping, v is a jth distinct grouping, and i > j). For j i, this

product is 1' d,,,(H _dwVj)1' . For j $ i, note that Hi,(w, v) =

; s.t. ess(9)=v H?=1 dwg, [(A')O], where [(A')Oi]- is a mi x mj matrix with columns that

are a subset of the columns of (A')O'. Thus, we find that 1', [(A')@2 = 1', and so
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i' iHi,j(w,v) = (Zidt)1' .. Next, consider (c' 0 1 ')Hi,j. Using the

expressions above, we see that the product can be rewritten as c'D(ij) 0 1'. Thus,

0

CH c=( D(,) 0 1'= Ac' 0 1', (7.39)

HrJ

since c' is a left eigenvector of the block-lower-triangular matrix D(r). Assembling Equa-

tions 7.39 for j = 1, . . . , r, we find that c'H is a left eigenvector of H(r), with eigenvalue A.

In this way, we find that the left eigenvectors of H(r) corresponding to eigenvalues that are

also eigenvalues of D(1), . . . , D(r) can be written in terms of the left eigenvectors of D(r) in

the manner specified above. Finally, consider the product c' s(r), where S(r) is any valid

rth extended state vector. Since all status and joint status vectors are indicator vectors,

C'S(r) equals c'1. For any c'H corresponding to a non-unity eigenvalue, c's(r) = c = 0.

Thus, no valid rth extended state vector have a component in the direction of these eigen-

vectors, and so we have proved that the non-unity eigenvalues of D(1), .. , D(r) are not

relevant eigenvalues of the rth moment recursion matrix. Thus, the largest relevant sub-

dominant eigenvalue of the rth moment recursion matrix is the subdominant eigenvalue

of A. Q.E.D.

7.4.2 Non-Homgeneous Influence Model: Counterexample to Conjecture

The relevant subdominant eigenvalue conjecture is not generally true for the influence

model. For instance, consider a two-site model with the following influence matrix:

0.5 0.99 0.01 0.5 0.01 0.99
0.01 0.99 0.99 0.01

H(1) =_ H 1, = H' 0.99 0.01 10.01 0.99

0.5 0.01 0.99 0.5
0.99 0.01

..L 0 1 -J -

We can straightforwardly check (using Matlab) that the subdominant relevant eigenvalue

of H(1) is 0. Meanwhile, the subdominant relevant eigenvalue of H( 2 ) is -0.4802. Thus,
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the magnitude of the subdominant relevant eigenvalue of H(2) is larger than that of H(l),
and so the subdominant relevant eigenvalue conjecture is untrue. We thus expect that

the second moment recursion settles to steady-state more slowly than the first moment

recursion. All relevant and irrelevant eigenvalues for H(1) and H(2) are listed in Table 7.3

Relevant Eigenvalues Irrelevant Eigenvalues
Hi,1  1,0,0 0
H 2 ,2  -0.4802, 0, 0, 0, 0, 0 0.5, 0

Table 7.3: The relevant and irrelevant eigenvalues of H 1,1 and H2,2 are shown. The eigen-
values of the extended second moment recursion matrix H(2) are the union of the eigen-
values of H1,1 and H2,2 . We see that the largest subdominant relevant eigenvalue of H(2)
is larger than the largest subdominant relevant eigenvalue of Hi,1 = H(i), and hence the
relevant subdominant eigenvalue conjecture is false.

It is worthwhile to explore this example a bit further, to understand why the first-moment

recursion settles to steady-state more quickly than the second-moment recursion. In fact,

we have structured H1,1 so that the first moment recursion settles exactly to its steady-state

in two time-steps. To see why, consider any valid E(s[0]). From the symmetries of H1 ,1,

we see that E(s[1]) = H1,1E(s[0]) has the form I j . Next, we can easily check that

I - 0Z

0.5
_ 0.51

E(s[2]) = H1,1E(s[1]) = , and that E(s[k]) = E(s[2]) for k > 2.
0. 5

0.5

Now consider the second-moment recursion. The matrix H 2,2 specifies aspects of the set-
tling dynamics that are not present in the first-moment recursion. Note that H2,2 describes
the influence model update in the case when the two sites are determined by different

sites-i.e., when both sites are self-determined, or each site is determined by the other. In
this case, the next state is related to the current one as follows: if both sites have the same
status at the current time, the two sites have different statuses at the next time with high
probability, and vice versa. Thus, if the two sites are updated by different sites (i.e., if H2,2
describes the dynamics of the update) for several time-steps, the influence model oscillates
back and forth between a same-status configuration and a different-status configuration

with high probability, and so does not reach steady-state. Since there is a non-zero proba-

bility that the sites are consecutively updated by different sites during any finite number
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of time-steps, the second moment of the state does not converge in a finite number of time-

steps. Figure 7.8 shows the probability that Site 1 is in its first status as a function of time,
given that both sites are initially in their first statuses. Meanwhile, Figure 7.9 shows the

probability that Sites 1 and 2 are both in their first statuses, given the same initial condi-

tion. These figures verify that the first moment of the state settles in 2 time-steps, while the

second moment does not.

1

0.9

0.8

0.7

0.6

0.5

U)0.44/)0

0.3

o 0.2

0.1

Status Probability

0 1 2 3 4 5

Time
6 7 8

Figure 7.8: The probability that Site 1 is in its first status is shown for 10 time-steps. We
assume that both sites are originally in their first statuses. As indicated in the figure, the
status probabilities for individual sites reach steady state in two time-steps, reflecting that
the subdominant relevant eigenvalue of H(1) is 0.

7.5 Statistics Across Time Steps

The techniques developed in Chapter 4 can be used to find statistics across time-steps for

the influence model. These statistics specify joint probabilities for the statuses of one or

more sites at several time-steps. In turn, these joint probabilities can be used to find con-

ditional probabilities for individual or joint statuses of sites, given the statuses of these

and/or other sites at other time-steps. As an example, we have found the conditional sta-

tus probability response of a single site in an influence model for failures. In particular,
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Joint Status Probability

1 2 3 4

Time
6 7 8 9

Figure 7.9: The probability that Sites 1 and 2 are both in their first statuses is shown for 10
time-steps. We assume that both sites are originally in their first statuses. This joint status
probability does not exactly reach steady-state in a finite number of time-steps, reflecting
that the subdominant relevant eigenvalue of H(2 ) is not zero.

0.25 0.25 0.25 0.25

we consider a four-site model, with D 0.25 0.25 0.25 0.25 and A =0.9 0.1
0.25 0.25 0.25 0.25 0.2 0.8
0.25 0.25 0.25 0.25

Figure 7.10 shows the probability that site 1 is Normal at each time-step, given that it is ini-
tially Normal. The figure is generated assuming that the model is operating at steady-state
at the initial time. The figure shows that the status probability returns to its steady-state
value more quickly in the four-site model than in a single-site model with the same local
status evolution matrix.

7.6 State Estimation in the Influence Model

In this section, we discuss methods for estimating the state vector of an influence model
from a sequence of observations. Our study of state estimation in the influence model
is motivated by a prevalent interest in estimation in stochastic automata models, includ-
ing hidden Markov models (HMMs) and more general dynamic Bayesian networks (DBNs)
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Comparing Conditional Failure Probabilities
Four Site Model

Z 0.95-

0
Z 0.9-

U,

0.85

0.8

0
0.7-

0 5 10 15 20 25

Time

Figure 7.10: The failure tendency of a single site in a four-site failure model is compared
with the failure tendency of a one-site failure model with the same status evolution matrix.
In particular, we compare the conditional probabilities that the site of interest is Normal
at each time-step given that it is initially Normal, for the two models. For the model with
four sites, we assume that the model is a priori operating in steady-state at the initial time.

[116, 56]. While the methods for state estimation developed for these models can be ap-

plied (directly or indirectly) to the influence model, we are especially interested in adapt-

ing those methods, or developing new methods, that exploit the special structure of the

influence model to facilitate estimation. In this section, we discuss two methods for Maxi-

mum Likelihood (ML) state estimation for the model. The first is a direct approach, based

on calculating and maximizing the probabilities for site statuses (or joint statuses) given

an observation sequence. The second method uses the LMMSE estimation procedure for

MLSS to approximate status probabilities, and then generates estimates from these approx-

imate probabilities.

7.6.1 The Direct Approach to Estimation

ML filtering for the influence model-i.e., ML estimation of a site status (or joint status)
at a particular time from a sequence of observations up to that time-is considered. In

particular, say that we observe the statuses of sites in a grouping v at times k = 0, 1, ... T.

Our goal is to estimate the status of a site i at time T that is not in the grouping v, given
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the observations.

By viewing the dynamic evolution of the influence model as the status evolution of a large
master Markov chain (which specifies the evolution of the joint status of all sites in the in-
fluence model), we can rephrase the state estimation problem in the notation of HMMs.

More specifically, consider the joint status for the grouping w 1, . . . , n} (i.e., the group-
ing of all sites) at time k. Since this joint status specifies the state vector of the MLSS at time
k, the sequence {s, [k] } constitutes a Markov process; in fact, as discussed in our original
development of the influence model, s, [k] is an indicator status vector for a Markov chain
with i= 1 mi statuses. Using the notation of [9], we denote the transition matrix for this
master Markov chain as G. For the purpose of estimation, we view this finite-state Markov
chain as the underlying Markov chain of a HMM (see [116] for details on HMM).

In general, observations of HMM are chosen stochastically from a finite symbol set at each
time, with the probabilities of each output symbol specified according to the status of the
underlying Markov chain at that time. In our case, we choose the output symbol to be the
joint status (equivalently, joint status vector) of the sites in the observed grouping v. Thus,
note that the observation at time k is specified deterministically in terms of the underlying
state (equivalently, the joint status vector of all sites) at time k, and so these observations
are valid as HMM observations.

Based on this formulation, we can use the forward algorithm of the HMM to compute prob-
abilities for the joint statuses of all sites at time T, given observations of the sites in v at
times 0, 1, ... , T. By marginalizing these joint status probabilities, we can compute status
probabilities for the site i, given the observation sequence. The ML estimate of the status
of site i is the one corresponding to the largest of these probabilities.

Example 7.12

2 3 6
We have applied the estimation procedure to a three-site example, with D = and

-424

A 0.99 0.011
A =0.0 0.91. Figure 7.11 shows the conditional probability that Site 2 is failed at each

0.05 0.95
time-step, given observations of Site 1 up to that time-step. For this particular simulation, the ML
estimate for Site 2 matches the actual status of the site 188 out of 200 times.

It is important to note that the recursive forward algorithm requires us to compute, and
store, probabilities for joint statuses of all n sites, so that the computational complexity of
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Status Probabilities Given Observations

T0 40 60 80 100

Time
120 140 160 160

Figure 7.11: A three-site failure model is considered. The conditional probability that site 2 is failed
at each time-step given a sequence of observations of site 1 up to that time-step is shown. The
conditional probabilities are compared with the actual status of site 2 (with a * at the top of the
graph corresponding to a failure, and a * at the bottom corresponding to a Normal status). For this
particular state and observation sequence, the ML estimate for the status of site 2 matches the actual
site status at 188 out of 200 times.

- 200 -

- .

0.9

c\j
0.8

-0 0.7
U)

0.6

as

05

U) 04

(/) 0.3

0.2

0.1

200

Chapter 7



The Influence Model

the algorithm grows exponentially in the number of sites. Because of the special structure

of the observations in our example, it turns out that the forward algorithm can be rewritten

in terms of the (conditional) joint status probabilities of only the unobserved sites (those

not in v), in which case the complexity is exponential in the number of unobserved sites

rather than the total number of sites. A recursive estimation algorithm that incorporates

this simplification is discussed in the Master's thesis [59].

The large computational complexity of the forward algorithm is a significant hurdle to

its implementation, and is worth further study. An explanation for why an exponen-
tial growth in the computational complexity with the number of sites cannot usually be
avoided is given in [59]. Gomez-Uribe's thesis also explores how the graph structure of
the influence model can be exploited to simplify the computation in some cases. These

simplifications may often be quite valuable in making influence model state estimation

feasible.

While we have discussed an ML filtering algorithm for the influence model here, smooth-

ing and state sequence estimation algorithms can be developed in similar fashion, as dis-

cussed in [59].

7.6.2 Indirect Approach to Estimation, Based on LMMSE Filtering

The LMMSE estimation techniques developed for MLSS can be used in the context of the
influence model to approximate conditional probabilities for site statuses, given sequences

of observations. The results can then be used to approximately determine the ML esti-
mate for hidden site statuses. The advantage of such an indirect approach to estimation is
that the computational complexity of the algorithm is polynomial, rather than exponential,
with respect to the number of sites in the model.

First, let's verify that our filtering set-up can be reformulated in terms of an MLSS with
observations, and interpret the result of the LMMSE estimation techniques for this formu-

lation. As we have discussed previously, the state sequence for the influence model con-
stitutes an MLSS. Note that the observations at each time k-namely, the statuses (equiv-
alently, status vectors) of a subset of the sites in the model-can be obtained by choosing
some elements of the state vector, and so are a linear function of the state. Thus, the ob-
servations at each time are moment-linear with respect to the corresponding state, and the
observed influence model is an LMMSE with observations.
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Suppose the LMMSE estimate for the influence model state vector is determined based on

the formulation described in the previous paragraph. To interpret this LMMSE estimate,
first consider the (not-necessarily-linear) minimum mean square error (MMSE) estimate

for the influence model state vector, given the observation sequence. It is well known

(see, e.g., [21]) that the MMSE estimate for the state vector is the expected value for the

state vector, given the observations. Thus, since the state vector of the influence model

comprises a 0-1 indicator vector, the MMSE estimate specifies the status probabilities for

each site, given the vector of observations. The LMMSE estimate may be considered an

approximation to the MMSE estimate, as the best mean-square error estimate that is linear

with respect to the observations. Thus, the LMMSE estimator allows us to approximate

the probabilities of site statuses, given the sequence of observations. These approximate

probabilities can then be used to approximately generate the ML estimate.

Example 7.13

We again consider the failure model introduced in Example 7.12. Figure 7.12 shows LMMSE-

based approximations for the probability that site 1 is failed, given observations of the status of site

2. Interestingly, the estimates for this failure probability are very close to the actual values of the

failure probability, which were shown in Figure 7.11. The approximate ML estimates generated

from these approximate status probabilities also correctly predict the hidden status correctly at 188

out of 200 times.

The LMMSE estimator-based approximation may be a compelling approach for ML es-

timation in large influence models, for which direct computation of status probabilities is

infeasible. More research is needed to better understand whether or not LMMSE estimator-

based techniques can usefully predict actual status probabilities for a broad range of model

parameters.

7.7 Models with Random Parameters

An influence model can be modified so that the parameters of the model (the network and

status-evolution matrices) are chosen stochastically at each time-step. If these model pa-

rameters are chosen independently of the previous states of the model, and of previous

parameter choices, then the state update can be formulated as an MLSN, as follows: the

conditional rth vector moment for the next state, given the current state, can be rewritten

by conditioning further on the model parameters; doing so, and using the independence
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Status Probabilities Given Observations (Appr.)
1j

20 40 60 80 100

Time
120 140 160 180 200

Figure 7.12: We approximate the probability that site 1 is failed at each of 200 time-steps, given
observations of the status of site 2 up to that time-step. The LMMSE estimator is to generate this
approximation. The actual status of site 1 at each time-step is also shown.

assumption, this conditional expectation can be written as linear function of the current

rth extended state vector. Alternately, if the parameter choices form are Markov and in-

dependent of the past history of the system, it turns out that the state update can still be

formulated as an MLSN, albeit one with a larger state space.

In the following example, we consider a specific influence-type model with randomly cho-

sen parameters. In particular, consider a system with n sites, each of which can assume

m statuses. At a time-step k, the state of the system (i.e., the statuses of all sites in the

network) is updated as follows:

" One site is randomly chosen for updating, independently of all past history of the sys-

tem. The probability that site i is chosen is pi.

" Given that site i is chosen for updating, the time-(k + 1) status of site i is determined

as in an influence model. That is, site i chooses a determining site j according to the

probabilities dij. The time-(k +1) status of site i is then chosen based on the probabilities

specified by the row in the local status evolution matrix A corresponding to the time-k

status of site j.
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The Influence Model

* All sites except site i maintain their time-k statuses at time k + 1.

This example can be viewed as an influence model with parameters that are chosen ran-

domly at each time-step. Given that a site i is updated at a particular time, the update rule

for the example is identical to the update rule for an influence model: all sites except i in

this influence model choose themselves as their determining site and copy their previous

status, while site i is updated as a typical site in an influence model. The influence matrix

for this influence model, which we denote H(i), has the form

I 0 dj 1 A 0 0

0 . : 0 0

H (i) = 0 0 dii A 0 0 (7.41)

0 0 : I 0

0 0 dinA 0

In Equation 7.41, the part of the matrix H(i) that relates the next status of the site i to

the current status of a site j has the form dijA for each j. Meanwhile, the submatrices of

H(i) that relate the next-statuses of any site other than i to their own previous statuses are

identity matrices, and those that relate the next statuses of sites other than i to other sites'

previous statuses are zero matrices.

Let's show that the example is indeed an MLSN. Since the site to be updated at each time-

step is chosen independently of the history of the system, and the statuses of the sites are

updated as in an influence model, given this choice, the state of the system constitutes a

Markov process. Thus, it only remains to check the moment-linearity conditions to show

that the system is an MLSN.

Consider the first conditional moment for the next state, given the current state. Condi-

tioning on the site X that is chosen for updating, we find that this expectation is given

by

n

E(s[k + 1] s[k]) = E(s[k + 1] 1 s[k], X i)P(X i i s[k]) (7.42)
i=1

= P(X = i H'(i s [k]
i=1
ZPiH'i)H's[k]

- 204 -

Chapter 7



Thus, the first conditional moment for the next state given the current state is a linear func-

tion of the current state s[k], and so this system satisfies a first-moment linearity condition.

Similarly, the model can be shown to satisfy higher-moment linearity conditions. Given

that site i is updated at time k, we know that the next-status of each site is determined

according to the update law of a basic influence model. Call the rth extended recursion

matrix for this eqivalent influence model Hr(i). In this notation, the conditional expecta-

tion for the rth extended state vector s(,) [k] for the model of interest (which is assumed to be

defined in the same way as for the influence model) is given by

E(s(,)[k + 1]|s[k]) = EHr(i)pj s(r)[k]. (7.43)

Example 7.14

The dynamics of an influence model in which all sites are updated simultaneously (called a basic

influence model in this section, for clarity) differ in some interesting ways from the dynamics of a

model in which sites are chosen randomly for updating. In some cases, we can relate the dynamics

of an influence model and a variant in which sites are chosen randomly for updating. For instance,

let's consider the following two models:

" A (homogeneous) basic influence model with network matrix D, and local status-evolution ma-

trix A.

* A model in which a single site is chosen for updating at each time, with the probability that each

site is chosen given by p = -. Once a site has been chosen, it is updated in the same manner

as the homogeneous influence model above (i.e., it choose a determining site according to the

appropriate row of D, and the current status of this determining site specifies the updated site's

next-status according to the appropriate row of A).

Let's call the first-moment recursion matrix for the basic influence model H 1,1. Then, applying

Equation 7.42, we find that the recursion matrix for the second model is H1 1 = pH1,1 + (1 - p)I.
We can straightforwardly check that the steady-state status probabilities for individual sites are

identical for the two models. We can also check that the eigenvalues of the two recursions are related

as follows: if A is an eigenvalue of H1,1, then pA + (1 - p) is an eigenvalue of H1,1. Note that, if

the number of sites n is large, all the eigenvalues of H1,1 will be near 1; this reflects that dynamics

become slow if the model has many sites, because only one site is updated at each time. Joint status

probabilities for the basic influence model can be also be related to those of the model in which sites
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are chosen randomly for updating. For the sake of brevity, we do not pursue these connections any

further.

For example, consider two n site homogeneous models, with the same network dynamics and status

evolution matrix. in which the sites that are chosen for updating are updated in the same fashion.

For the second model, assume that each site is chosen for updating with equal probability p = I.
In this case, the first moment recursions for the two examples are simply related. In particular, let's

say that the basic influence model has first recursion matrix (which is the transpose of the influence

matrix) given by H1 ,1 = D 0 A'. Then, applying Equation 7.42, we find that the recursion matrix

for the second model is H1,1 = pH1,1 + (1 - p)I. We can straightforwardly check that the steady-

state status probabilities for individual sites are identical for the two models. We can also check

that the eigenvalues of the two recursions are related as follows: if A is an eigenvalue of H1 ,1,

then pA + (1 - p) is an eigenvalue of H1,1. In similar fashion, joint status probabilities for the

basic influence model can be related with those of the model in which sites are chosen randomly for

updating. For the sake of brevity, we do not pursue these connections any further.

The reader may be wondering about our motivation for considering models with ran-

domly chosen parameters. Our broad aim is to expose more general types of interactions

that can be represented using influence-type models. More specifically, however, stochas-

tic automata models in which single sites or groups of sites are chosen for updating at each

time are used in several contexts-including in Markov-Chain Monte Carlo (MCMC) and

stochastic optimization algorithms [1101, and in modeling DNA sequence evolution [8].

While the specifics of our models differ somewhat from these models, it may be useful in

our context to also allow for such site selection mechanisms. We also believe that influence

models with stochastic parameters may be valuable in representing systems with random

component failures or changes.

7.7.1 Models with More General Network-Level Dynamics

In the basic influence model, we assume that each site chooses a determining site indepen-

dently of the other sites (and of the past state history of the model) at each time-step. A

model in which concurrent determining-site choices are correlated (i.e., a model in which

the determining site choice of one site affects the determining probabilities of other sites)

can also be formulated as an MLSN. In fact, such a model can be viewed as a special case

of an influence model in which the network parameters are chosen randomly.
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Specifically, consider a model with n sites, in which each site has a single determining site

at each time-step (like the influence model). Define J[k] to be an n-component vector that

lists the possible determining sites for each site at time k. There are at most n n possible

lists 5[k]. For an influence model, each element in the list (i.e., the determining site for each

site) is chosen independently at time k. Here, we more generally assume that each possible

list 5[k] of determining sites is chosen with some arbitrary, but time-invariant, probability

at each time-step (but still independently of the choices at other time-steps). We denote the

probability that the list J[k] is 6 by d(6). Once the determining sites at a time k have been

chosen, we assume that the time-(k +1) statuses of sites are found in the same way as for an

influence model: each site independently generates its next status from the current status

of its determining site according to a vector of probabilities specified by the appropriate

row of a local status evolution matrix.

To see why this model can be viewed as an influence model in which parameters are ran-

domly chosen at each time-step, consider generation of the time-(k + 1) state from the

time-k state and the list of determining sites 5[k]. This update is the same as the update

for a basic influence model, in which each site is updated with probability 1 by the deter-

mining site listed in 5[k], according to a particular local status evolution matrix. Thus, the

update at each time-step in the generalized model can be viewed as follows: first, the list

J[k] is chosen probabilistically, independently of all past dynamics of the system; each pos-

sible J[k] then specifies the parameters of an influence model, which is used to determine

the next-status of each site.

The rationale given in the previous paragraph touches on an interesting feature of influence-

type models. Given the determining sites of some or all the sites in the model at each

time-step, the update of the model can still be viewed as the updating procedure for a

particular influence model. Thus, even given additional information about the determin-

ing site choices at each time-step, the model remains tractable as a time-varying influence

model.

We also note an interesting property concerning settling times of some influence-type mod-

els with correlated network interactions. In particular, consider homogeneous models of this

sort-i.e., models in which the local status evolution matrices are identical throughout the

system. With a bit of algebra, we can show that the extended recursion matrices for these
models can be written in similar form to the extended recursion matrices for the homo-

geneous influence model. Using this form for the extended moment recursions, we can

show that the largest relevant subdominant eigenvalue associated with the rth moment
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recursion is the same-specifically, the largest subdominant eigenvalue of the local sta-

tus evolution matrix A-for all r. Thus, the subdominant eigenvalue conjecture, which

characterizes aspects of the settling behavior, holds for these homogeneous models.

Above, we have viewed general network-level dynamics as allowing for correlations among

determining-site selections. In some models, such correlations can also be viewed as spe-

cial structures enforced on the determining site selection process. For instance, one can

imagine a hierarchical model, in which groups of sites select other groups for updating,
and individual sites subsequently select individual determining sites within these groups.

For a hierarchical model, recursions for status and joint status probabilities can be spec-

ified at several levels of aggregation. We leave the further study of hierarchical or other

influence-type models with generalized network dynamics for future work.

It is also worthwhile to mention that variations and generalizations of the local status evo-

lution rules that maintain the influence model structure can be developed. This may be a

valuable direction for future work.

7.8 An Influence Model Generalization for the HMM

Hidden Markov Models (HMMs) have been usefully applied in several research disci-

plines, including speech processing and biological sequence classification (e.g., [116, 16]).

In this section, we show that an HMM can in fact be represented using an influence model

with two sites, and then discuss how to generalize the HMM from this influence model

representation. We are motivated to consider this connection between the influence model

and Hidden Markov Models, because we believe that our analyses of the influence model

can possibly provide some new insight regarding the dynamics of HMMs. We also be-

lieve that the influence model generalizations may prove valuable for some applications

of HMMs.

6Incidentally, we earlier showed (in the context of ML estimation for the influence model) that an influ-
ence model with site observations can be viewed as an HMM with large state-space, though with the special
structure of the influence model obscured. Thus, HMMs can be represented as influence models, and vice
versa.
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7.8.1 Reformulation of the Standard HMM as an Influence Model

We consider an HMM with mh hidden, or underlying, Markov statuses and m, observa-

tions. We assume that the underlying Markov chain has transition matrix Ah,h. In our

HMM, given that the underlying Markov chain is in state i at time k, the output symbol at
time k + 1 is determined 7 according to the probabilities contained in row i of the Mr x m,
row-stochastic matrix Ah,o . We call Ah,h the state update matrix and Ah,o the output genera-

tion matrix.

This HMM can be reformulated as an influence model with two sites. The length-Mh status
vector Sh [k] of the first site h indicates the status of the underlying Markov chain in the
HMM. Meanwhile, the length-mo status vector so [k] of the second site o, indicates the
output symbol of the underlying HMM. The two sites are updated as follows:

* Site h chooses itself as its determining site, with probability dhh = 1. The pmf for the
next-status of site h is given by s'[k]Ah,h.

" Site o chooses site h as its determining site, with probability doh = 1. The next-status of
site o is determined according to the pmf s [k]Ah,o.

Since the statuses of sites h and o are updated in exactly the same way as the underly-

ing status and output of the HMM, respectively, this influence model is equivalent to the
HMM.

Note that the network and influence matrices for the two-site influence model are as fol-
lows:

* The network matrix is

D = . (7.44)
1 0

7In the literature on HMMs, the generated output symbol is typically associated with the time-step k rather
than the time-step k+ 1. We choose to associate the output with the next time-step because the reformulation of
the model as an influence model is a little clearer. Though we change the notation, we still pursue the analyses
that are of interest for the standard HMM; available output measurements in these analyses are renumbered
to match with the new notation.
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o The influence matrix is

H [ Ah,h Ah, (7.45)
0 0

The first-moment recursion for the influence model allows us to determine the probability

of each possible hidden state and output symbol in the HMM at each time-step in terms of

the initial pmfs for the hidden state and output. Similarly, the second-moment recursion

allows computation of the joint probability of the time-k hidden state and output symbol.

Example 7.15

Consider an HMM consisting of an underlying Markov chain with two statuses, and three possible

output symbols. For this example, the state update matrix is given by

[0.9 0.11
Ah,h = . (7.46)

0.2 0.8

Also, the output generation matrix is

[ 0.7 0.2 0.1 1
0.1 0.2 0.7

In the influence model representation for this example, the hidden site can take on two statuses,

while the output site can take on three statuses. The influence matrix for this representation is

0.8 0.2 0.7 0.2 0.1

H 0.1 0.9 0.1 0.2 0.7 (7.48)

0 0

7.8.2 A Generalization of the HMM

We generalize the HMM by allowing the next hidden state and next output to each depend

on both the current hidden state and output. In particular, our generalization is a two-site

influence model with an arbitrary network matrix D, rather than the particular network

matrix given in Equation 7.44. In this generalization, the hidden site (which can still take

on mh statuses) and output site (which can take on mo statuses) of the influence model are

updated at each time-step as follows:
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" The hidden site picks itself as its determining site with probability dhh, in which case the

next-status is determined using the local status evolution matrix Ah,h. Alternately, the

hidden site chooses to be updated from the output site with probability dho = 1 - dhh,

in which case the next-status is determined using the mo x Mh row-stochastic matrix

Ao,h-

* The output site can be updated by the hidden site with probability doh, in which case

its next-status is determined using the local status evolution matrix Ah,o. Alternately,

the output site can be updated by itself with probability doo = 1 - doh. In this case, the

next-status is determined using the mo x mo stochastic matrix A0 ,0 .

The influence matrix for this generalized HMM is given by

H = dhhAh,h dohAh,o (7.49)
dhoAo,h dooAO,O I

Note that the standard HMM is recovered from this generalization by setting dho and doo

to zero.

Example 7.16

We extend Example 7.15 to give some insight into the possible value of a generalization of this sort.

In particular, assume that this example HMM is modified as follows:

" In the original HMM, the hidden site always chooses itself as its determining site, and evolves

according to a certain stochastic matrix Ah,h (given in Equation 7.46). In the new example,

we assume that the hidden site is updated from its own previous status with probability 0.9,

but is "corrupted" by the output site with probability 0.1. When the hidden site is corrupted,

it assumes the first status at the next time-step if either the first or second output symbol is

displayed at the current time-step, and assumes the second status if the third output symbol is

displayed.

" In the original HMM, the output site is always updated by the hidden site. In the new example,

we assume that the output site only "polls" the hidden site occasionally-say independently

with probability 0.4 at each time step-and otherwise maintains its previous status.
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This new example is a two-site influence model that generalizes the HMM. The influence matrix

for this example is

0.9 X 0.8 0.2 0.4 x 0.7 0.2 0.1
0.1 0.9 0.1 0.2 0.7

H =1 0 1 0 0 (7.50)
0.1 X 1 0 0.6 X 0 1 0

. 0 1. .0 0 1 _

7.9 Some Possible Applications for the Influence Model

We believe that the influence model is potentially applicable in several contexts. While we

have not pursued these applications in sufficient detail to warrant their detailed presenta-

tion, we briefly list these applications as directions for future study.

* Influence model analogs for certain RC and RLC circuits can be developed. These

analogs can potentially be used to efficiently partition and aggregate these circuits.

" The influence model can potentially be used to represent data sources. Binary Markov

chains are commonly used to a models for data; the influence model can display richer

temporal dynamics than a single Markov chain, and hence may be valuable for repre-

senting data sources.

" As we discussed in the introduction of the thesis, the influence model can potentially

serve as a crude model for the evolution of DNA sequences.

" The influence model may be useful for representing interactions that occur in cell sig-

naling networks (see, e.g., [74] for analysis of the dynamics of a particular cell signaling

network). In cell signaling networks, local interactions between particle types lead to

complex global network dynamics; the influence model can perhaps capture these local

interactions, and hence facilitate analysis of global dynamics.
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7.10 Beyond MLSN Analysis

We mention several further studies of the influence model that are tangential to our MLSS-

based development, but may be interesting to the reader.

" In [121], we consider the effect of a network's structure on its dynamic evolution in the

context of an influence model for failures. Specifically, tree graphs formed by connect-

ing randomly-located vertices in the plane using various connection rules are used as

network graphs for an influence model. We initiate failure events in the influence mod-

els for failure by setting one site in the model to the Failed status, and then track the

dynamics of failure events. Simulations and analysis show that characteristics of these

failure events are indeed related to the structure of the underlying network graph. For

example, the integrated size of a failure event (the total number of sites failed over the

duration of a failure event) has a power law distribution when the degree of a randomly

chosen vertex in the network has a power law distribution. However, we also find that

the role of the network graph in the dynamics of the failure graph is modulated by the

characteristics of the local interactions in the network (in this case, the repair capabilities

of interacting sites in the model).

" In [1221, we study resource allocation in networks in the context of an influence model

for failures. A resource allocation problem in which repair resources are used in the

network to mitigate failure events is considered. Assuming a linear resource cost and

linear expected failure cost, we are able to characterize failure occurrences and costs

incurred in the network for several different resource allocation methods (such as op-
timal vs. heuristic resource allocations, static vs. adaptive allocations, and spatially

homogeneous vs. inhomogeneous allocations). We find that the methods are similar in

that each attempts to balance resource and failure costs. However, the methods differ
in their ability to achieve this balance. A comparison between a dynamic, heuristic re-

source allocation and a dynamic, optimal resource allocation is particularly interesting.

As would be expected, the optimal method is more efficient in balancing costs and so
achieves a lower average cost. Suprisingly, however, large-cost events occur more fre-
quently in the optimal design than the heuristic one (because the optimal design does
not allocate resources to prevent large but rare events, which do not increase the total
cost significantly). Also, the optimal design can sometimes be more highly sensitive to
network parameter errors than the heuristic allocation method. This comparison high-
lights, albeit in a very simple setting, some of the possible advantages and drawbacks
of optimal resource allocation schemes in networks.
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* We have developed approximate analysis methods for some useful global network

characteristics of an influence model. In particular, probability distributions for the

number of sites in a certain status at a certain time may be important measures of a net-

work's behavior, but these distributions are difficult to obtain exactly (the computation

required to find the distributions is exponential in the number of sites in the model).

We have constructed computationally feasible mean-field approximations for these dis-

tributions. Simulations and analysis suggest that these approximations are accurate for

a fairly large set of influence models. Further, by subdividing the graph into multiple

regions and considering the number of sites in a certain status in each region, better ap-

proximations for these distributions can be constructed, albeit at higher computational

cost. Also of interest, in the limit when certain parameters become small (e.g., failure

and repair probabilities in the failure model), the exact distribution for the number of

failures can be obtained. Finally, we note that the moments of the distribution of the

number of failures can be found indirectly from the moment recursions.
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Chapter 8

An Aggregate Modelfor the Dynamics of Air

Traffic Systems

In this chapter, we introduce an MLSN flow model for aircraft counts in regions in an Air

Traffic System (ATS). Through the development, we intend to show one example of how

a tractable LSN model can be extracted from a more detailed probabilistic description of

an actual system-in this case, an ATS. In developing a model for a specific application,
we will also touch on some issues that we have not yet considered, such as parameter

estimation in MLSN models (based on data from the U.S. ATS in this example). The MLSN
analyses will then be used to study some questions of interest concerning dynamics and

control of an ATS, and also to verify (and identify shortcomings of) the modeling approach.

Unlike the previous chapters, our development here is driven by the application of inter-

est, rather than the general MLSN development. In particular, we begin by giving some

general motivations for our development. We then introduce a detailed stochastic descrip-

tion of an ATS based on Poisson processes. Using this detailed description, we construct

a stochastic dynamic model for aircraft counts in regions of an airspace. As an example,

the developed model is used to represent Center counts in the United States ATS. We also

discuss parameter determination in the model, present some analyses of the model, and

evaluate our methodology. Two extensions of the basic model -a hierarchical model that

represents aircraft counts in regions of various sizes at multiple time scales, and a model

that incorporates stochastic disturbances such as thunderstorms -are described. Also, the
MLSN control techniques are applied to develop some basic insights about Traffic Flow

Management (TFM) at boundaries between regions in an ATS. Finally, we briefly discuss
the model in the more general context of MLSN and flow models.
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8.1 Introduction and Motivation

At any time, thousands of aircraft are in flight across the world. For many reasons, in-

cluding uncertain take-off times and unpredictable weather, the locations and behavior of

these aircraft at a given instant in time cannot be exactly predicted in advance. Because

of this intrinsic uncertainty in any Air Traffic System (ATS), we believe that a stochastic

approach to modeling an ATS is valuable.

In addition to uncertainty, a second hurdle in describing and understanding an ATS is

its complexity. In the U.S. ATS, for example, as many as 5000 aircraft may be in the air

at once, flying along different routes among several hundred airports. Furthermore, the

dynamics of each aircraft may be affected by numerous events, including control directives

and weather. Because of the complexity of such an ATS, it is sometimes impractical-

and often not useful- to track and predict the location of each aircraft in making global

decisions about the management of the system. An aggregate description of the ATS may

be more tractable and effective in this situation.

Based on these general motivations, we develop an aggregate dynamic stochastic model

for an ATS, in which the numbers of aircraft in regions of the airspace are tracked at dis-

crete time-steps. These aircraft counts change with time in the model because of stochastic

flows-in particular, the aircraft in each region move to contiguous regions or leave the

system with some probability during each time-step. As an example, we model the num-

bers of aircraft in each Center in the U.S. ATS at discrete time-steps of one and ten minutes.

Some aspects of the uncertainty in ATS's have been studied in the literature. For example,

the distributions of departure, enroute, and arrival delays of aircraft have been character-

ized [6]. Also, queueing models for the arrival of aircraft at airports have been developed

[135] [29]. In particular, the article [135] assumes a Poisson process description for aircraft

arriving at an airport, and computes the average delay incurred due to the constraints on

the landing aircraft. In [29], a more accurate description of the process of aircraft arriving

at an airport is considered, and is used to estimate landing delays. The effects of uncertain-

ties in weather prediction on air traffic flow have also been considered [50]. Yet another

area in which uncertainty has been considered is in the modeling of airport surface traffic

[7]. One aspect of the airport surface traffic, the departure operation of an airport, has

been characterized using a queueing model [115]. A queueing model has also been used

to study delay cost optimization at hub airports [23]. Recently, a deterministic aggregate

model for an ATS has been developed and analyzed in [102]. Detailed deterministic mod-
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els for an ATS, which track the location of each aircraft, have been used to study optimal

methods for Traffic Flow Management (TFM) [22].

As far as the authors know, a stochastic dynamic model for the global behavior of the ATS

has not previously been presented in the literature. As in [102], our model dynamically

tracks the numbers of aircraft in regions of the airspace. In contrast to [102], however,

we use stochastic models for both the flow of aircraft into the airspace, and for the move-
ment of these aircraft between regions. In addition to the general motivation of exploring

stochastic and aggregate descriptions for the ATS, we believe that our model has some
specific practical uses. Potential applications of the model include the following:

" Our model may allow quantification of uncertainties in predicted aircraft counts (such

as Center or Sector counts in the U.S. ATS). The regional aircraft counts predicted by the

model will differ from actual counts, both because of intrinsic uncertainties in the ATS
and because of the aggregation in the modeling process. The structure of our model

allows us to explicitly compute the degree of uncertainty in the predictions, and to
evolve these computations dynamically in time.

" Our model may allow rapid calculation of the behavior of an ATS under many different

circumstances (e.g., different initial conditions or different flow patterns due to weather

events). We expect that our model can be used to rapidly identify scenarios that may
lead to violations in Sector or Center capacities.

" The aggregate model may provide a good framework for studying TFM. The effects
over time of a TFM restriction can be more easily determined with an aggregate dy-
namic model than with a detailed model of an ATS. We are particularly interested in
developing algorithms for placing Miles-in-Trail (MIT) and Minutes-in-Trail (MINIT)
restrictions in the context of the aggregate model.

As the model is introduced and analyzed in this article, we will occasionally discuss the

possible value of the model in achieving these three aims.

8.2 An Aggregate Stochastic Model for an ATS

In this section, we formulate a stochastic model for aircraft counts in regions of an ATS.
First, a Poisson process description of the flow of aircraft in an ATS is presented. We then
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discuss some difficulties in directly using this detailed description of air traffic flow to an-

alyze the dynamics of the ATS. Motivated by these difficulties, we construct the aggregate

stochastic model and consider its relationship with the detailed description.

8.2.1 Poisson Process Description of an ATS

Centers and Airports B

it i lised i bot Ceners

SE LC MP AU OB NY
sea, pdx SIe msp ord, odw pit Ufk Sa ci m e

OA DV KC ID DC
so, oak dCn SO vg ci r t d

LA AB TL
va i san, phx ftw. da i arl, ai

HU JX MA
ah, hou MC, tpa m o, a

Figure 8.1: A network representation of the 20 Centers in the United States. Two Centers
are connected in this plot if they are contiguous in the U.S. ATS. Also, the major airports in
each Center are listed in smaller font. If an airport is close to the boundary of two Centers,
it is listed in both Centers.

The airspace of an ATS is typically subdivided into regions, to facilitate the control and

management of aircraft in the airspace. For example, the U.S. airspace is composed of

20 Centers, as shown in Figure 8.1. Aircraft depart from airports distributed among the
various Centers, follow routes through the airspace, and arrive at other airports.

Consider an ATS with n Centers. (Although Centers in the U.S. ATS are specific regions of

the U.S. airspace, we use the word Center more generally to denote a region of interest in

the airspace.) In our stochastic description for the ATS, we assume that the departures of

aircraft from each airport are governed by an independent Poisson process with a (possi-

bly) time-varying rate. Later in the article, we will verify from historical data that such a

Poisson process description for departures is reasonable.

We also assume that the routes taken by, and the destinations of, the departing aircraft are

stochastically independent. This assumption means that the route and destination of a par-
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ticular departing aircraft does not provide information about the routes and destinations of

other departing aircraft. This assumption constitutes an oversimplified representation for

the actual flows in the ATS: for example, we might expect that the departing aircraft that

are destined for a particular airport roughly follow a periodic schedule, so that the depar-

ture of one such aircraft does provide some information about routes and destinations of

other aircraft. However, we use the assumption because it allows us to tractably represent

flows in the ATS, without worrying about the particular details of departure schedules for

aircraft. We also assume that the cruising speed of each aircraft is constant, and that the

cruising speed of different departing aircraft are independent.

Now consider the flows of aircraft among Centers in this Poisson process description of an

ATS. For notational convenience in this analysis, we introduce a fictitious Center labeled

"0". Aircraft which depart from airports in a Center are said to flow from Center 0 into that

Center, while aircraft arriving at an airport in a Center are said to flow from that Center

into Center 0. The aircraft flows among Centers in this description can be characterized:

" The aggregate departures of aircraft from all airports in a Center (and their consequent

injections into the airspace) are governed by a Poisson process. To see why, note that

the aggregate departures in a Center comprise a merging of the departures from each

airport in the Center, which are each governed by an independent Poisson process. The

result of such a merging is well-known to be governed by a Poisson process [53]. We

denote the (in general time-varying) rate of the Poisson process governing departures

in Center i (or equivalently, flows from Center 0 to Center i) by AoM(t).

" Aggregate boundary crossings, or movements of aircraft across a particular boundary from
one Center to another one, are also governed by a Poisson process. To see why, first

consider the aircraft that depart from a particular airport, fly along a particular route
to a destination airport, and have a certain cruising speed. The departures of these
aircraft are governed by a Poisson process, since these departures are a splitting of all
the departures from the airport of interest [53]. Now consider any boundary between

two Centers along the route taken by these aircraft. The boundary crossings of these

aircraft are also governed by a Poisson process, since each aircraft crosses the boundary

after a fixed delay following departure. Finally, the aggregate boundary crossings are
the merging of boundary crossings along several routes at several different cruising

speeds, each of which are governed by a Poisson process. Thus, the aggregate boundary
crossings are governed by a Poisson process. We denote the rate at which aircraft cross
a boundary from Center i to Center j at time t by AM(t).

-219-

Chapter 8



" Using the same reasoning as for boundary crossings, we find that the aggregate arrivals

of aircraft in a Center (i.e., the arrivals of aircraft at all airports in a Center) are governed

by a Poisson process. The rate of the aggregate arrivals in Center i (or equivalently,
flows from Center i to Center 0) at time t is denoted Ajo(t).

" The number of aircraft si (t) in Center i at time t is a Poisson random variable. To see

why, again consider the aircraft that depart from a particular airport, fly along a par-

ticular route to a destination airport, and have a certain cruising speed, and consider a

particular Center along the route traveled by these aircraft. The number of these aircraft

that are in the Center of interest at time t is equal to the number that entered the Center

between times t - tand t, where tis the (fixed) amount of time needed for the aircraft to

pass through the Center. Thus, this number equals the number of boundary crossings

into the Center over a time interval t. Since these boundary crossings are governed by

a Poisson process, the number of these aircraft in the Center is known to be a Poisson

random variable. Finally, the total number of aircraft si(t) is found by summing Poisson

random variables of this sort, and so is Poisson.

Even though we can compute Center count and boundary-crossing statistics using the

Poisson process description for the ATS, this description is difficult to use directly for

many computations of interest, because aircraft statistics along each particular route must

be computed and stored separately. For example, if the total departure rate in a Center

is changed in the model (perhaps to reflect the occurrence of inclement weather in that

Center), the flows along all routes leaving from each airport in the Center must be recom-

puted. For similar reasons, the dynamics of Center statistics are difficult to determine. For

example, let's say that we wish to determine the distribution for the number of aircraft in

a Center at some time in the future, given information about the current state of the ATS.

The Poisson process description can be used to compute this distribution only if the exact

locations of every aircraft in the airspace and the statistics of the possible departures along

each route from each airport are explicitly modeled. For applications in which dynamics

potentially need to be recomputed for many sets of model parameters, such as control or

optimal design applications, such computationally intensive calculations may be infeasi-

ble. Thus, we are motivated to develop a simpler aggregate stochastic model for the ATS.
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8.2.2 An Aggregate Dynamic Model for Center Counts

The state variables in our aggregate model are the numbers of aircraft in each Center,

tracked at discrete times. Let AT be the time-interval of the model. Thus, the number of

aircraft in each Center is tracked at the times kAT, k = 0, 1, 2,... We denote the number of

aircraft in Center i at time kAT as si [k]. Our goal is to develop a model that describes the

time-evolution of the state variables s2 [k].

First, between time-steps k and k + 1, the state variables can change because of aircraft

entering each Center upon departure from airports. In our aggregate model, the num-

ber of aircraft that depart from airports in Center i, 1 < i < n, between times kAT and

(k + 1)AT is modeled as a Poisson random variable Uoi [k], with mean denoted by Aoi [k].

In addition to the flows into the ATS due to departures at airports, aircraft may change

Centers, or leave a Center through arrival at an airport. In our aggregate model, we en-

vision each aircraft in a Center as moving to another Center or arriving at an airport with

some probability during a time-step. In particular, we assume that each aircraft in Center

i independently travels to Center j (or leaves the airspace for j = 0) between time-steps

k and k + 1 with probability pij [k]. We denote the total number of aircraft that flow from

Center i to Center j between times k and k + 1 by Uj3 [k]. For small enough AT, it can

be shown that the conditional distribution for the flow Ugj [k] given the Center count si[k]

is well-approximated by a Poisson random variable, with mean pij[k]si[k] [119]. (If AT
is larger, the U2, [k] must be represented using dependent binomial random variables; the

same analyses of the model can be completed in this case, albeit with a little extra com-

putation.) Thus, we have modeled the flows of aircraft among Centers in the airspace, as

well as the flows of aircraft arriving at airports.

Now that we have characterized the flows of aircraft in our model, the state variable up-

date can be specified by accounting for the number of aircraft entering and leaving each

Center i between times k and k + 1:

n n

si[k + 1] = s2 [k] - E Ujj [k] + E Uji[k], (8.1)
j=0,j:Ai j=oj:?i

This update rule defines the temporal evolution of our aggregate stochastic model. The

dynamics of the model are depicted pictorially in Figure 8.2.

In our application of the aggregate model, it is not Equation 8.1 that we propagate forwards

in time. Instead, we propagate expectations and variances of the si [k], using equations that
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are derived from Equation 8.1, and that have a very simple structure. The details are given

in Section 3.2.

An Aggregate Model for the Air Traffic System

Center 2

Center I R

s,[k]=4

6k Center 3

Figure 8.2: This figure describes the dynamics of our aggregate stochastic model for the
ATS. Aircraft enter Centers according to Poisson processes. Also, during an interval of
time, each aircraft in a Center may move to another Center or leave the system, with some
probability. We are interested in tracking the number of aircraft in each Center in this
model.

Our aggregate model is closely related to the detailed Poisson process description of the

ATS discussed in Section 2.1. In the detailed description, the departures of aircraft in each

Center i are governed by a Poisson process with rate Aoi (t). Thus, between times kAT and

(k + 1)AT, the number of departing aircraft in Center i is a Poisson random variable, with
mean 1 (1)AT (t)dt ~ Ao(kAT)AT. If the mean of Uoi[k] in the aggregate model is

chosen to be Aoi [k] = Aoi (kAT)AT, the statistics of the departures in each time-interval in

the aggregate model and detailed description are essentially identical. Unlike departures,

the flows among Centers in this aggregate model cannot be made identical to the flows

in the detailed description of the ATS (e.g., an aircraft in the aggregate model can flow

from Center i to Center j and then return to Center i with some small probability in the

aggregate model, while an aircraft in the detailed description follows a route and so would
not revisit a Center). However, the probabilities pij [k] in the aggregate model can be set
so that the flows in the aggregate model match the flows in the detailed description in an
average sense.

To do so, consider the number of aircraft si [k] in Center i at some time-step k in the de-
tailed description of the ATS. It is reasonable to expect that, on average, a certain fraction
(possibly 0) of these aircraft will travel to each other Center, or will exit the ATS, during a
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time interval AT. At time-step k (time kAT), there are on average A (kAT)AT, 0 < j n,

aircraft that flow to Center j during the next time interval (this includes aircraft exiting the

system through arrival at airports, which corresponds to j = 0). Furthermore, there are

on average i (kAT) aircraft in Center i. Thus, we might expect that a fraction AjcjA) AT,

o < j < n, of the aircraft in Center i will travel to j between time kAT and (k + 1)AT. By

setting probability pij [k] in the aggregate model equal to Aj(1T) AT, we obtain the same

average fraction of aircraft traveling from Center i to Center j as in the detailed model. We

can also show (with a little algebra) that the average number of aircraft in Center i, as well

as the average number of aircraft that flow from Center i to Center j, are essentially the

same for the aggregate and detailed descriptions at each time-step if the pij [k] are chosen

in this way.

8.3 Parameter Determination, Analysis, and Verification

In this section, we pursue three important questions regarding the stochastic model devel-

oped for an ATS:

1. How can the parameters of the model be determined from data?

2. How can the model be analyzed, and why is this analysis useful?

3. Does the model accurately represent some aspects of the behavior of ATS?

Throughout the discussion in this section, examples from the U.S. ATS are used to illustrate

our methodology.

8.3.1 Parameter Determination

Our aggregate model for Center counts requires three sets of parameters: the time-interval

AT, the average number of departures A0 i [k] in each Center i at time-step k, and the prob-

abilities that aircraft in Center i, 1 < i < n, go to Center j, 0 < j < n, during time-step

k. Because the detailed Poisson process description of an ATS represents the movement of

actual aircraft more precisely than the aggregate model, it is more natural for us to estimate

parameters of the detailed description from historical data first, and subsequently infer the
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parameters of the aggregate model. Thus, we focus on estimating the parameters of the

detailed description- namely, the mean number of aircraft in each Center (9i (t)); and the

average departure flow rates, arrival flow rates, and flow rates between Centers (Aij (t)).

Assuming that the ATS is operating under typical conditions, these parameters can be es-

timated from historical data. Once these parameters have been found, we can choose a

time interval AT and approximate the aggregate model's parameters as described in the

Section 2, i.e., by setting Aoi [k] = AO (kAT)AT and pij [k] = A2 3(kAT) AT.

First, consider the mean number of aircraft 9i (t) in Center i at time t. In general, we allow

this expectation to vary with time in our framework; realistically, we might expect that

the mean number of aircraft in each Center would change slowly throughout a single day

under typical operating conditions, but would be nearly identical when compared at a

certain time over several days. As a simple first attempt at modeling the U.S. ATS, we use

a constant value for mean number of aircraft in each Center. These average numbers of

aircraft are estimated from actual Center counts during 500 minutes in the afternoon and

evening of a particular day, September 6, 2000. For example, we find that, on average,

127.6 aircraft are present in the Seattle Center during this time interval.

The second set of parameters that are necessary for the analysis of the model are the rates

Aij (t) of aircraft flow from Center i to Center j (or, for i = 0 or j 0, the flow rates

into or out of the Center due to departures and arrivals). Like the mean parameters, the

rate parameters Aii (t) can be computed by using historical data on the numbers of aircraft

that cross each boundary, and that enter into and depart from the system at airports. As

with Center count averages, the flow rates across boundaries are expected to vary slowly

throughout the course of a day. In our simulations, we have used a crude model in which

a single flow rate is estimated based on historical data from September 6th, 2000. For sim-

plicity's sake, these flow rates have been computed assuming that each aircraft flies along

the shortest path from its origin to its destination. A more accurate model would require

careful measurement of flow rates; here, we are interested in the modeling methodology

rather than the accuracy of the specific model, so a more careful computation of the flow

rates is not pursued. The average flow rates computed from data and used to construct

the model are shown in Figure 8.3.

Under normal operating circumstances, it is reasonable that mean numbers of aircraft and

expected flow rates can be computed from data. Thus, the model can employ these aver-

age statistics, combined with actual information on the state of the ATS, to simulate and

analyze the future behavior of the network. However, under unusual conditions (due to
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Rates of Poisson Flows Across Sector Boundaries
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Figure 8.3: The expected flow rates between Centers (in aircraft per hour) are shown for
five of the Centers in U.S. ATS. These average flow rates were computed using data from
September 6, 2000. The top number on each branch show the average number of aircraft
moving from the lower-numbered Center to the higher-numbered Center, while the bot-

tom number on each branch shows the average flow in the reverse direction.

bad weather or other disturbances, for example), average behavior most likely cannot be

deduced from historical data. In fact, in these aberrant situations, we would hope to com-

pute these averages through the modeling process rather than using them as parameters

in the model! In particular, we expect that information about a disturbance can be used

to change certain model parameters locally (i.e, near the affected Center), and in turn the

model analysis can be used to quantify the behavior of the disturbed ATS.

The final parameter of the model, the time-interval AT, should be chosen small enough to

capture the fluctuations of interest in the dynamics of the ATS. However, if AT is chosen

to be too small, unnecessary computation is introduced in the analysis of the model; if AT

is chosen to be too large, some dynamics of interest may not be modeled, and also the use

of a discrete model for the dynamics may introduce significant error. To choose a time-step

AT for our model for the U.S. ATS, we looked at plots of the average numbers of aircraft

in Centers during time intervals of various durations (Figure 8.4). Based on these plots,

we believe that a time-step of less than or equal to 10 minutes is sufficient to capture the

dynamics of interest in the ATS.

Once the mean Center counts, expect flow rates, and time-step have been determined, the

probability pi [k] that a randomly chosen aircraft in Center i goes to Center j between kAT

and (k + 1)AT can be computed for each i and j. Some of these probabilities are shown in
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Figure 8.4: The time-evolution of the number of aircraft in the Seattle Center (ZSE) during
the afternoon and evening of September 6th, 2000, is shown, plotted at four different time
scales. In particular, the top plot shows the number of aircraft that were actually present

in ZSE, measured at one-minute intervals. The second, third, and fourth plots show the
average numbers of aircraft present in ZSE during each ten-minute interval, thirty-minute
interval, and one-hour interval, respectively. Ten-minute averages of Center counts accu-

rately approximate the actual Center counts (almost always to within 5 aircraft), suggest-
ing that 10 minutes is a fine enough resolution to capture dynamics of interest in the U.S.
ATS.

Figure 8.5.

8.3.2 Analysis

Once the parameters of our model have been determined from historical data, the model

can be analyzed to gain insight into the behavior of the ATS. In particular, given the num-

bers of aircraft in each Center at the initial time, moments and cross-moments of the num-

bers of aircraft in each Center at future times can be computed. Thus, we can predict

expected future Center counts and the possible variability in these Center counts using the

model. In turn, the expected response and variability in Center counts can be used to iden-
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Probabilities of Aircraft Changing Sectors for A T =10 min
35 -

2.5

1.5- 0.034

0.2 - L

-04 -02 0 02 0.4 6 08 1 12 14

Figure 8.5: This plot shows the probability that an aircraft in the aggregate model moves
from one Center to another during one time-interval. The upper probability on each
branch is the probability that an aircraft from the lower-numbered Center moves to the
higher-numbered Center. (In our example, the probabilities do not change with time, since
the mean numbers of aircraft and flow rates do not change with time. More generally,
however, these probabilities may depend on the time-step k.)

tify regions of the airspace that may be prone to excessive traffic. These regions could then

be studied more carefully to determine whether or not capacity excesses would actually
occur.

To compute the expected numbers of aircraft in each Center at each time-step, given initial

conditions, it is helpful to redefine the model specified by Equation 8.1 in vector notation.

Consider the following definitions:

* Define the state vector at time-step k to be

[si[k]1
s [ = [13

020 0 s01 [ k030 4
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" Define the elements of the n x n transition matrix P[k] as follows:

n

for I < i < n, Pii [k] = (I - Epij [k])
j=oj:i

for < i < n, 1 j < ni j, Pij[k] = pji[k].

* Define the transition vector to be

A0,1 [k]

p[k] =

SA0 ,n [k]

Our goal is to determine the conditional expectation for the state vector s[k] given the

initial state vector s[0], or E(s[k] Is[0]). In fact, these conditional expectations can be found

through the following linear recursion:

E(s[1] js[0]) = P[0]s[0] + 13[0]

and

E(s[k+ ]ls[0]) =P[k]E(s[k]ls[O]) +/3[k], k>1. (8.2)

An outline for the derivation of Equation 8.2 is given in the Appendix. A simulation of

the number of aircraft in the Seattle Center ZSE is compared with the expected number

(conditioned on the initial Center counts) of aircraft in ZSE in Figure 8.6. The conditional

expected number of aircraft in ZSE depends upon the initial Center counts at the beginning

of the simulation, but eventually approaches the steady-state expected number (which is

a parameter of the model).

In addition to providing a prediction for the behavior of the ATS, we believe that the recur-

sion for mean Center counts is valuable because it allows us to determine the sensitivity of

Center counts to various parameters in the model, including initial conditions and steady-

state average flow rates. The sensitivity analysis of the model is not presented in any

further detail here, but we note that sensitivities of the expected state vector to parameter

changes can be deduced from Equation 8.2.

In addition to the conditional mean of each Center count, higher moments and cross mo-

ments of the numbers of aircraft in each Center (conditioned on an initial state) can be
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Aircraft in ZSE: Simulation, Mean, and 2- Bounds
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Figure 8.6: This plot shows a simulation of a flow model for the U.S. ATS. In particular,
the number of aircraft in ZSE is simulated at one-minute intervals, over a duration of 760
minutes. In addition to the flow model simulation of the number of aircraft in ZSE, the
expected number of aircraft in ZSE, conditioned on the initial counts of all Centers, and
2-standard deviation bands around this expected number are plotted. The initial Center
counts in this simulation are based on actual data of Center counts at approximately 5:00
AM PDT on September 6th, 2000. We have assumed that there are no departures from
airports in ZSE until 6:00 AM, and then departures commence at a nominal daytime rate,
explaining the sudden jump in the aircraft count at 6:00 AM.

computed through a linear recursive procedure. We have developed the recursion for the
second-order moments and cross-moments. The analysis of the second-order moments is
straightforward, but the resulting expression for the moments at each time-step is not very
illustrative. Thus, we only briefly describe the analysis in the Appendix. In Figure 8.6,
the computation of the second moments is used to develop 2o- bounds on the number of

aircraft in ZSE.

8.3.3 Verification of the Model

First, we would like to show that a Poisson process description for the ATS is adequate.
Our methodology is founded on the assumption that departures from airports are de-
scribed accurately by Poisson processes. At the time scales of interest to us (on the order
of a few minutes to a few hours), the data that we have explored suggests that depar-
tures from large airports are indeed essentially Poisson in nature. For example, we plot a
histogram of the number of daytime departures during one-minute intervals at Chicago
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O'Hare Airport (ORD) in Figure 8.7, and find that the departures in a minute are well

modeled by a Poisson random variable. Also, we find that the number of aircraft depart-

ing in any given minute is independent of the number of aircraft departing at other times.

Both these properties suggest that the departure process is well represented as Poisson, at

a one-minute granularity. We have found similar behavior at other airports, and for time-

scales of greater than one minute. At smaller airports, a Poisson process description with a

fixed mean is not accurate, but we believe that a time-varying Poisson process description

could be reasonable; alternately, the aggregate departure process from several small air-

ports can perhaps be modeled as a Poisson process. At any rate, the departures from large

airports contribute most significantly to air traffic, so we believe that a Poisson process

description for departures is justified. To further investigate our Poisson process frame-

Histogram of the Number of Departures During a Minute
25C

20(

LL
10

5C

0 1 2 3 4 5 6 7 8 9
Number of Departures During a Minute

Figure 8.7: An empirical distribution (histogram) of the number of aircraft departing from

an airport (ORD) during minute intervals is shown. The empirical distribution is based

on data from ORD over 600 consecutive minutes; over this time interval, the average de-

parture rate from the airport remained approximately constant. Also, the empirical dis-

tribution is compared with a Poisson distribution with the same mean. The comparison

suggests that the number of aircraft departing from ORD in minute intervals are indeed

well-represented by a Poisson random variable.

work, the distribution of the number of aircraft in a Center is also studied. For example,

an empirical distribution of the number of aircraft in the Seattle Center (ZSE) is compared

with a Poisson distribution of the same mean in Figure 8.8. The variances of the empirical

and fit distributions are close (117.6 and 127.6, respectively), and the two distributions are

similar in shape. The statistics of other Centers are similar. Thus, we believe that a Poisson

random variable model is a good description for the number of aircraft in a Center.
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Distribution of the Number of Aircraft in ZSE
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Figure 8.8: An empirical distribution for the number of aircraft in ZSE is shown, and is
compared with a Poisson random variable of the same mean. The empirical distribution is
generated based on 500 observations at one-minute intervals. The sample variance of the
empirical distribution and the variance of the Poisson approximation are similar.

Second, we explore whether our model, which is motivated by the Poisson process de-

scription of an ATS but is not identical to it, can accurately represent the dynamics of the

U.S. ATS. We can check whether or not our model is consistent with a Poisson process de-

scription of the ATS. For example, the standard deviation in the steady-state aircraft count

predicted by the model can be compared with the standard deviation if the count were

modeled by a Poisson random variable of the same mean (in accordance with the Poisson

process description of the ATS). In our example, the standard deviation for the number

of aircraft in ZSE predicted by our model is 9.7, while the standard deviation predicted

by a Poisson random variable representation is 11.3. In general, we find that the standard

deviations for Center counts predicted by our model are slightly smaller than, but close to,

the standard deviations predicted by the Poisson process description of an ATS.

Another approach for verifying the model is to check whether or not the behavior of the

model matches actual Center count data. In Figure 8.9, the number of aircraft in ZSE dur-

ing a 12-hour period on September 6th, 2000 is traced. Furthermore, the model prediction

for mean and standard deviation for the number of aircraft in ZSE, given the initial num-

bers of aircraft in all Centers, is plotted for comparison; these are the same as in Figure 8.6.

The actual data largely falls within two standard deviations of the predicted mean, sug-

gesting that the model provides a good description of the dynamics of the ATS. The most

noticeable difference between the model prediction and the actual data is the slower set-
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Aircraft in ZSE: Actual Data and Model Predictions
18C

16(-

14(

2 12&

0 10-

O 8C --

Z 60 --

2C0

0 100 200 300 400 500 600 700 800
Time (in Minutes)

Figure 8.9: The actual number of aircraft in ZSE at 760 consecutive one-minute time steps
is compared with the mean number of aircraft predicted by our model, using the actual
Center counts at all Centers at the time of the first data point (5:00 AM PDT, September 6th,
2000) as the initial conditions for the model. In our model, we have assumed that aircraft
departures in ZSE begin at 6:00 AM. This plot also includes the 2- bounds on the aircraft

count in ZSE predicted by our model. The actual data is largely contained within two
standard deviations of the predicted mean, suggesting that the model predictions for the
mean and standard deviation are both reasonable. The one noticeable difference between
the actual data and the model prediction is the sluggishness in the model's transient as
compared to the data.

ting time to the steady-state of the prediction. Based on our explorations, we believe that

this sluggishness in the model comes about because aircraft in the model do not spend

fixed amounts of time in Centers, and instead may be delayed for lengthy time periods

with some (small) probability.

In our comparison of the model prediction with historical data, we chose to track the Cen-

ter counts beginning early in the morning of September 6th, even though the parameters

of the model are based only on afternoon and evening Center counts. It is reassuring that

the model can predict the Center counts from this initial condition, albeit imperfectly. Af-

ter all, the primary goal of our methodology is to develop a dynamic model-one which

can track the transient behavior of the ATS (such as the increase in traffic in the airspace in

the morning), as well as the spatial and temporal correlations in Center counts.
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8.4 Extensions of the Basic Model

8.4.1 Extension 1: A Hierarchical Model

Real ATS naturally have a hierarchical structure: for example, Centers in the U.S. ATS

are further subdivided into smaller regions, called Sectors. Modeling of parts of the U.S.

ATS at a Sector level is often valuable, both because many air traffic control and flow

management decisions are made at the Sector level, and because a model with a finer

spatial granularity can predict the future behavior of the system more accurately. A model

for Sector counts also may require a finer time-sampling, because of the occurrence of

significant dynamics over shorter time intervals. On the other hand, parts of the ATS

can sometimes be aggregated in a model, reducing the computational complexity of the

analysis while still correctly representing the parts of the system of interest.

Our modeling methodology is well-suited for describing a system at various spatial and

temporal granularities. For example, consider an ATS with three levels of representation

(again, we adopt the terminology for the U.S. ATS in our model):

1. Some regions in the airspace are modeled at a Sector level. Thus, the number of air-

craft in each Sector in these regions is represented. These Sector counts are tracked at

intervals of AT.

2. Some regions in the airspace are modeled at a Center level. The Center counts in these

regions are tracked less often, at intervals of f AT, for some positive integer f.

3. Some regions of the airspace are not modeled at all, and aircraft counts in these regions

are not tracked (though aircraft flows to and from these regions are still incorporated in

the model).

Figure 8.10 shows such a hierarchical model for the ATS.

A system with these three levels of representation can be modeled in our framework, as

follows:

. First consider the update of Sector counts, in regions where Sector-level dynamics are

represented. Sector counts are updated at intervals of AT. Each of these Sectors has
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Figure 8.10: This figure shows a hierarchical model for the ATS which incorporates dy-
namics at various levels of aggregation and time-scales. The upper portion of the figure is
a drawing of the airspace, while the lower portion describes the equivalent model.

flows into and out of other parts of the airspace. In general, a Sector may have flows

to and from other modeled Sectors, regions modeled at the Center level, unmodeled

regions of the airspace, and the exterior of the system (i.e., flows to and from airports
within the Sector). The flows out of a Sector in an interval AT are computed based

on probabilities that aircraft flow to each other region, and out of the airspace (which

can be found by deducing the rates of traffic flow among the appropriate regions of the

airspace using historical data). Meanwhile, flows into a Sector are generated in different

ways in the simulation. Flows from the exterior of the system, and from unmodeled

regions, are modeled as Poisson processes. Flows from regions modeled at a Center

level are determined based on the most recently updated counts in these Centers (along

with flow probabilities), and flows from other modeled Sectors are determined based

on these Sector's counts at the previous time-step along with flow probabilities.

. Aircraft counts in regions modeled at the Center level are updated at intervals of f AT.
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The flows out of each Center to other Centers, unmodeled regions of the airspace, and

the exterior of the system, are determined based on the current count of the Center and

probabilities of aircraft going to other regions of the airspace. The flows out of a Center

to modeled Sectors are found by summing the appropriate flows into the Sector (which

have already been generated) over f intervals of duration AT. Next, consider flows

into these Centers. Flows from the exterior of the airspace and from unmodeled regions

are generated as Poisson processes. Flows from other Centers are generated as in the

basic model, using flow probabilities and counts in these Centers. Finally, the flows

from modeled Sectors to Centers are found by summing the appropriate flows out of

these Sectors over f time-steps.

8.4.2 Extension 2: A Model with Stochastic, Flow-Altering Disturbances

The U.S. ATS is subject to disturbances that change rates of aircraft flow in parts of the net-

work. Many of these flow-altering disturbances, which are often inclement weather events

in parts of the airspace, cannot accurately be predicted in advance. Furthermore, although

the disturbance event may directly affect only a small part of the airspace, the resulting

changes in flows and Sector/Center counts may propagate throughout the network. Since

our model for the U.S. ATS is stochastic, we can naturally incorporate stochastic distur-

bances that alter flows in the model. By computing the expected behavior and variability

of Center counts and flows in the model, regions of the airspace that may be prone to ca-

pacity excesses due to the weather events can be identified. In turn, the model may suggest

improved methods for managing traffic flow in response to weather disturbances.

We model local perturbations as changes to the nominal parameters, as shown in Figure

8.11. In our approach, multiple disturbances, each of which occur independently with

some probability, can affect flows in a ATS. Given that a particular set of disturbances

has occurred, we can calculate statistics of Center counts with our basic model, using the

appropriate set of model parameters (which are modified from their nominal values based

on the particular disturbances that have occurred). In turn, we can calculate statistics

of Center counts without prior knowledge of the disturbances, by scaling the predicted

statistics for each set of disturbances with the probability that these disturbances occur,

and then summing these scaled statistics. In this way, the dynamics of an ATS that is

subject to stochastic disturbances can be modeled and analyzed.

One possible shortcoming of this approach for modeling stochastic disturbances is the
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Figure 8.11: Local perturbation of flows due to a weather event is depicted. In this case,
the flow of interested is rerouted in two different directions, leading to different flow rates
across each boundary.

computational complexity resulting from the large number of disturbances that may need

to be considered. (For example, if there are 10 different weather events that may or may

not be present on a given day, we must consider 210 = 1024 possible combinations of

disturbances.) Given certain special conditions on the location of disturbances, the com-

putational complexity can sometimes be reduced by considering the change in the sys-

tem's dynamics due to each disturbance separately, and then combining these individual

responses.

8.5 Conclusions and Future Work on the ATS Model

In this article, we have proposed an aggregate stochastic model for an ATS. Some analyses

of the model that may eventually prove useful for predicting and controlling flows in an

ATS have been discussed. Also, some verification of our modeling framework has been
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attempted, and two extensions of the basic model have been outlined.

We believe that aggregate stochastic models provide a promising description of the ATS,

but more study is required to gauge the value of these models in improving understand-

ing and operation of the ATS. To better undertand the benefits and drawbacks of using

aggregate and stochastic models, we plan to compare our model with other deterministic

and detailed stochastic models for the ATS. We are also interested in using the model as a

framework for developing Traffic Flow Management (TFM) algorithms.

8.6 The Air Traffic Model as an MLSN: Mathematical Details

8.6.1 The Moment-Linearity Conditions

Equation 8.2 shows how the expected numbers of aircraft in each Center at each time-step

can be calculated recursively, given the initial numbers of aircraft in all Centers. We give

a conceptual justification of Equation 8.2, without concerning ourselves with a detailed

proof. In particular, we explain how the recursion in Equation 8.2 comes about, without

concerning ourselves with the vector notation of the recursion. To do so, consider E(si [k +
1]1 s[k], the expected number of aircraft in a Center i at time k + 1, given all Center counts
at time k. This expectation can be found by adding and subtracting the expected flows into

and out of Center i, respectively, from si [k]. Note that the expected number of aircraft that
flow from Center i to a Center j (or out of the system for j = 0) is given by si [k]pij [k], the
number that flow from a Center j to Center i is sj [k]pji [k], and the number that depart from
airports in Center i is Aoi [k]. Thus, the conditional expectation for the number of aircraft in
Center i is

E(si[k + 1]1 s[k]) (8.3)
n n

= si[k] - si[k]pij[k] +( sj[k]pji[k] + Ai[k]),
j=0 j=1

which is a linear function of the time-k Center counts. Finally, by taking the expectation of
Equation 8.3 with respect to the time-k Center counts s[k], given the initial Center counts
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s[0], we find that

E(si[k + 1] s[0]) (8.4)
n

E(si[k] s[0]) - E (si[k] Is[0])pij [k]
j=O

n

+( E(sj[k] Is[0])pji[k] + Ai[k]).
j=1

jii

Thus, we see that the expected number of aircraft in Center i at time k + 1 given s[0] can

be written as a linear function of the expected Center counts at time k given s [0].

We also briefly discuss why second moments and cross-moments of state variables can

be found using linear recursions given the initial state s[0]. The recursion for the second

moments and cross-moments is derived analogously to the recursion for the expectations

of state variables. For example, consider E(si [k +1] 1 s[k]), the expected value of the square

of the number of aircraft in a Center i at time k + 1 given the Center counts at time k.

Substituting the expression for si [k + 1] given in Equation 8.1 into this expectation gives

E(s'[k + 1] 1 s[k]) (8.5)

E((si[k] - Uj [k] + E Uji[k]) 2 s[k])
j=0 j=0

To continue the analysis, note that EZ.0 ( U2[k] and Ej=o U3 i [k] are two independent Pois-

son random variables given the time-k Center counts s[k], with means j=o s,[k]pij [k] and
f/4i

EZ=I si [k]pji [k] + Ai [k], respectively. Since the second moment of a Poisson random vari-
f/4i

able is a quadratic function of its mean, we find after some algebra that the expectation

E(s2 [k + 1] 1 s[k]) is a quadratic function of the state variables at time k (i.e., the expectation

can be written as a sum of second- and lower-order powers of the state variables, such

as sy [k], si [k]sj [k], si[k], etc.). Taking the expectation of Equation 8.5 with respect to s[k],

we find that the second moment of si[k + 1] (given s[0]) is a linear function of second and

lower moments and cross-moments of the time-k state variables (also given s[0]). In fact,

it turns out that all second moments and cross-moments of time-(k + 1) state variables can

be written as linear functions of second and lower moments and cross-moments of time-k

state variables. Thus, the second-order statistics of the model can be found using linear

recursions. It is clear that higher moment recursions can be developed in similar fashion,
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so we do not consider them further here.

8.6.2 Connection between the Air Traffic Model and Infinite Server Queues

It turns out that our model for an ATS can be viewed as a discrete-time network of infi-

nite server queues, by reasoning as follows. From a queueing theory viewpoint, we can

describe each aircraft in a Center as being served independently at each time-step, with a

probability ZE=o pij [k] that service is completed at time-step k. In this interpretation, an
isi

aircraft that has completed service in Center i during time k then enters Center j (or leaves

the system, for j 0) by time k + 1 with probability k] . Thus, we see that this
i54i

model indeed can be envisioned as an open network of infinite server queues, in which

served jobs (aircraft) are independently stochastically routed to other servers (regions), or

out of the system.

Since our model can be viewed as a network of infinite-server queues, we briefly re-

view relevant literature on such models. An introduction to discrete-time infinite-server

queueing networks can be found in [401. Infinite-server queueing networks with mem-

oryless servers and Poisson input streams, which constitute a type of Jackson network

with state dependent service rates, are particularly amenable to analysis [79]. For instance,

the steady-state and transient joint distribution for the queue lengths in the network can

be deduced [791. Methods for characterizing (both transient and steady-state) first- and

second-order statistics of queue lengths are well-known, and a characteristic function-

based method for inferring higher moments as a function of time has also been developed

[88]. Our approach serves to reformulate these higher-moment computations as temporal

linear recursions, and to provide a framework for further analysis (e.g., estimation and

control) of these models.

8.6.3 Our Model: An Airplane-Location Viewpoint

We have been concerned with tracking numbers of aircraft in regions of the airspace as a

function of time. As an alternative, it is interesting to track the locations (regions) of aircraft

with time. Once an aircraft in our model has entered the airspace (through departure), its

location in the airspace is governed by a Markov chain that is independent of the dynamics

of the other aircraft. More precisely, let's say that we specify a status to each aircraft in
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the airspace at each time, which indicates the location of that aircraft-either the region

containing the aircraft or the exterior of the airspace (which indicates that the aircraft has

left the airspace through arrival). In our model, the status of each aircraft subsequent to

take-off is governed by an independent Markov chain, since the next-status (location) of

each aircraft given the entire past history of the system is realized based on a probability

vector specified by the current status of that aircraft. In this formulation, the exterior of the

airspace is represented as an absorbing state, and aircraft are not tracked after they land

(aircraft that enter the aircraft are viewed as being "new")1 .

One possible use of this aircraft-location model is to incorporate correlations between air-

craft routes in our model. Instead of viewing each aircraft as being governed by an inde-

pendent Markov chain, we can think of the aircraft as influencing each others' statuses, and

hence obtain an influence model generalization for the original aircraft-location model. We

may be able to develop a more realistic model for the aircraft flows in this manner. We note,

however, that an aircraft-location model is likely to be considerably more computationally

intensive than a aggregate count model.

Another advantage of the aircraft-location viewpoint is that it suggests connections be-

tween with other models in the literature. For instance, cell locations of mobile users in

cellular wireless networks are often modeled using finite-state Markov chains (e.g., [66]).

Thus, we see that a cellular network with many users can be represented in the same way

as the air traffic system, and the MLSS analyses can perhaps provide useful characteriza-

tions for this network.

'If we modify the original model slightly, we can use a representation with a finite number of aircraft
that are located in regions in the air or on the ground, and move through these regions according to Markov
processes.
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Conclusions and Future Work

9.1 Summary and Conclusions

In this thesis, we have introduced a class of discrete-time Markov models, called moment-

linear stochastic systems (MLSS), that are specially structured so successive moments and

cross-moments of state variables at each time can be found from equal and lower moments

and cross-moments at the previous time, using linear recursions. We have shown that

MLSS provide a framework for representing several common models, and that interesting

network dynamics can be captured using MLSS.

We have exploited the special quasi-linear structure of MLSS to analyze their dynamics.

In particular, we have not only shown how to compute MLSS state statistics, but also

developed methods for developed qualitative features of state and moment asymptotes.

We have also developed optimal linear estimators and quadratic-cost controllers for MLSS.

These analyses constitute a significant generalization of analyses for discrete-time linear

state-space systems, and are applicable to a variety of models of interest (e.g., jump-linear

systems, infinite server queues, and hidden Markov models).

We have pursued two examples of MLSS-namely, a network model called the influence

model, and a model for aggregate flows in an air traffic network-in some detail, both to

illustrate our analyses and to explore the applicability of our approach. Our MLSS refor-

mulation of the influence model leads to several new analyses of this model, including a

proof for a conjecture of [91 on the settling time of state statistics and an efficient subopti-

mal estimator for the model. Our air traffic network model is a first attempt at end-to-end

stochastic representation of air traffic flows, and is also novel in that aggregate flows are

captured. This model holds promise as a framework for developing Traffic Flow Manage-

ment (TFM) algorithms for the United States Air Traffic System.

We believe that MLSS models will prove to be useful tools for characterizing the dynamics
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of complex networks and systems. As our examples show, MLSS can potentially represent

myriad interactions that occur in systems of interest, yet they are structured enough to

allow for significant analysis-not only of dynamics, but also of estimation and control.

Further, MLSS allow us to analyze network dynamics at multiple levels of detail (e.g.,
moments of different orders, or cross-moments characterizing multiple components), with

the cost of computation growing gracefully with the level of detail required.

Also, MLSS are valuable in that they provide a common framework for representing sev-

eral types of interactions. We expose a simple concept, moment linearity, which can be

viewed as underlying the dynamics several different stochastic systems. One significant

advantage of considering such a common framework is that analyses that are well-known

for one system can be applied to another. For instance, our formulation shows that lin-

ear estimation techniques-which are well-known in the context of linear and jump-linear

systems-can be also applied be applied in the context of infinite-server queues and certain

stochastic automata, such as the influence model. Another potential advantage of repre-

senting several types of interactions in the MLSS framework is that we can study systems

which combine several of these interactions.

As a whole, MLSS are compelling structured stochastic models, which potentially have

several applications and yet are amenable to significant analysis.

9.2 Future Work

Our aim in introducing MLSS has been to scan the range of their potential applications,

and to introduce several analyses. In taking such a broad approach, we have to some

extent sacrificed deeper study of particular applications and analyses. Much future work

is needed to fill out the theoretical developments presented here, and to gauge the value of

the MLSS framework in several application areas. Here, we list some significant directions

for future work.

1. We believe that development of a general graphical representation of an MLSN is an im-

portant direction for future work. A graphical representation of an MLSN would illus-

trate the interaction structure of the various networks that we consider, and might also

allow quick identification of qualitative features of these networks' dynamics. A graph-

ical representation might also help in understanding, in a general sense, the types of
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network dynamics (e.g., flows and influences) that can be captured in the MLSS frame-

work. One significant challenge in developing a graphical representation of MLSN will

be to account for the redundancies in the higher-moment recursions. The development

of influence model graphs in [9] may provide some guidelines for the types of results

that we can hope to derive from MLSN graphs, though (as described in Chapter 3) the

interaction structures of MLSN are in general more complicated than those of an in-

fluence model. We mention that, to develop graphs that capture interactions among

groups of sites or nodes, the notation of hypergraphs could be useful [19].

2. General results concerning asymptotics of the state distribution, including distribu-

tional convergence, are an important goal of future work. In Chapter 4, we outlined

an approach for proving distributional convergence for a particular MLSS, the infinite-

server queue with random service probabilities. Several other examples that we have

described in the thesis also have state variables that seemingly converge in distribu-

tion (e.g., the air traffic and road traffic networks), and a general approach for proving

distributional convergence may provide valuable insights into the dynamics of these

examples. Just as in the infinite-server queue, convergence results for general Markov

chains ([104]) are possibly applicable in the general case, because the moment recursions

can perhaps be tied with the premises of these results. However, a significant challenge

in applying these methods is the variety in the allowed state spaces (e.g., continuous-

valued, discrete-valued, and indicator states) among our examples; this variation re-

quires caution in applying general Markov chain results because notions of, e.g., recur-

rence and periodicity, which are required to derive these results, are tricky to verify in

general.

3. As discussed in Chapters 5 and 6, optimal control from observations, rather than from

the entire state, is an objective of future work. Because the separability of the optimal

observer and controller that facilitates analysis of linear systems does not generalize to

MLSS, optimal control from observations is likely a difficult problem. Nevertheless, we

believe that at least good suboptimal partial-information controllers can be designed

for MLSS, and that these will highlight interesting tradeoffs between estimation and

control.

4. We can analyze the dynamics of the example MLSN that we have introduced, regard-

less of the particular network structure of the interactions. However, characteristics

of these dynamics depend strongly on the network structure, so it is important for us

to better understand the role of the network structure in the systems' dynamic evo-

lution. More generally, for all MLSS, we would like to relate dynamic characteristics
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to model parameters (e.g., eigenvalues of the recursion matrices), and to relate these

model parameters to physical or graphical characteristics of the modeled systems. We

have presented some basic results that relate dynamic characteristics with model pa-

rameters (e.g., results on settling times in the influence model, which invoke general

characterizations of the subdominant eigenvalues of the recursion matrices), but have

not explicitly considered graph-based analyses. We believe that far more can be done

in both these directions for general MLSS and MLSN.

5. An important goal of future work is to develop tractable nonlinear generalizations of

MLSS. The modeling power of an MLSS is limited by its quasi-linear structure, and

hence many stochastic systems of interest cannot be represented as MLSS. Perhaps cer-

tain nonlinearities can be introduced to MLSS models, while preserving some or all of

their tractability. One interesting approach for generalizing MLSS is to enforce moment-

linearity conditions of a particular order, but to allow lower moments at the next time

to depend on current statistics up to that order (e.g., to only enforce that first and sec-

ond moments of the next state each depend on first and second moments of the current

state).

6. We would like to consider the use of MLSS and MLSN in modeling systems with multi-

faceted dynamics. Many real systems incorporate several disparate types of dynamics:

for instance, a power network has an underlying communications network associated

with it, and air traffic dynamics are modulated by random weather phenomena. MLSS
and MLSN may prove useful in modeling such systems, because they can naturally

capture several types of stochastic interactions.

7. The influence model is amenable to much further development. One glaring need is

to pursue potential applications of the models in further detail. A potential application

area of interest is in the modeling of social and economic networks1 . In terms of theoret-

ical studies of the model, parameter estimation and control are two topics that deserve

more consideration.

8. We believe that our aggregate model for an air traffic system will be useful for devel-

oping control for air traffic flows. In particular, we plan to develop methods for Traffic

Flow Management (TFM) in the framework of the aggregate model, using the quadratic

controllers of MLSS developed in the thesis. Another important goal of future work is

to incorporate weather phenomena in the model.

'We are grateful to Yannis loannides for an illuminating conversation on this topic (see, e.g., [73]).

- 244 -

Chapter 9



Chapter 9 Conclusions and Future Work

9. Finally, and perhaps most importantly, we need to apply all the developed analyses to

the many examples of MLSS considered in the thesis, and to delve further into relevant

application areas to motivate these analyses. Through these applications, we may be

able to better appraise the scope, and value, of MLSS.
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Appendix A

Background Review

A.1 Expectations

This thesis is deeply concerned with expectations, or averages, of functions of random vari-

ables. We refer the reader to [211 and [119], for good introductions to expectations. Here,
we only present some terminology on expectations that is used throughout the thesis, and

clarify a notational issue about conditional expectations that is pertinent to our develop-

ment.

In general, we use the notation E(f (s)) to represent the expectation of the vector function

f () of a collection (vector) of random variables s.

In the thesis, we derive methods for finding moments and cross-moments of random vari-

ables. These are expectations of powers, or products of powers, of random variables. In

particular, the rth moment of a state variable s is the expectation of the rth power of s

(where r is assumed to be positive and integral). Thus, the notation E(sr) is used to rep-

resent the rth moment of s. Meanwhile, an rth cross-moment is the expectation of the

product of positive integral powers of two or more state-variables, such that the sum of

the powers of all the state variables is r. For instance, for random variables si, s 2 , and s3,

E(s2s s 3 ) is a sixth cross-moment.

The notion of a conditional expectation is widely used in our development. A conditional

expectation is the average of a function of one collection of random variables, given an-

other collection of random variables. We refer the reader to [21] for a thorough introduc-

tion to conditional expectation.

It is important for us to mention that our notation on conditional expectations is sloppy in

one respect. To do so, consider the conditional expectation of one random variable si given

another random variable s2 . Formally, one could define this conditional expectation in two
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ways ([201). First, one could consider the expectation of si given that s2 takes on a partic-

ular value, say s. This conditional expectation, which is typically denoted as E(si I S2 = s)
is a function of the non-random variable s. Alternately, we can consider the conditional

expectation of si given the random variable s2, which is the function E(si I s2= s) evalu-

ated as s= S2. Note that this expectation, typically denoted E(s1 Js 2), is itself a random

variable-in partiular, a function of the random variable s2 . To avoid introducing dummy

variables, we consistently use notation of the form E(si J s2) in the thesis, though we some-

times view this quantity as a function of a deterministic variable rather than a random

variable.

A.2 Discrete-Time Markov Processes

The models that we consider are instances of discrete-time stochastic processes, and in

particular discrete-time Markov processes. A discrete-time stochastic process is a collection

of random vectors indexed by a discrete time index, or set of non-negative integers. We refer

to random vector indexed by the time-step or time k as the state of the process at time k. The

book [113] provides a good introduction to discrete-time stochastic processes.

A discrete-time Markov proces is a discrete-time stochastic process, in which the depen-

dence of the next state (i.e., the state at the next time) on the current and past history of the

system is limited to the current state. That is, the conditional distribution of the next state

given the entire state sequence up to the current time depends only on the current state.

A.3 Kronecker Products and Permutation Matrices

Kronecker products provide a useful notation for several applications, including in the

solution of linear matrix equations and in the analysis of hierarchically-defined systems

(see, e.g., [72]). A Kronecker product of two matrices is a larger matrix which contains all

pairwise products of entries in the matrices. In particular, let's consider a matrix an m x n

dii ... d1n

matrix D , and an p x r matrix A. Then the Kronecker product of D

[dmi ... dmnJ
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and A, denoted D 0 A, is given by

dnjA ... d1nA

D1 (A.1)

dmhA ... dmnA

Note that D 0 A has dimension mp x nr.

Chapter 4 of [72] list many properties of the Kronecker product. One property that we use

in our development is the mixed-product property. The mixed-product property states that

the matrix (AB) 0 (CD)-where A, B, C, and D are appropriately-dimensioned matrices-

can be rewritten as (A 0 C)(B 0 D).

In expressions or equalities involving Kronecker products, operators that rearrange the

entries in a vector or matrix are often useful. For instance, for vectors si and s2, consider

the two Kronecker products si 0 s2 and s2 0 si. These two Kronecker products are each

vectors that contain the same entries, but in different orders (except in the special case in

which one or both of si and s2 are scalars). Thus, to relate the two Kronecker products, it

is useful to construct an operator that rearranges the entries in a vector. It is well-known

that multiplication by a permutation matrix serves to rearrange entries in vectors, or rows

or columns in a matrix. A permutation matrix is one in which each row and column con-

tains a single unity entry, and otherwise contains only zeroes. Permutation matrices are

commonly used to map between different Kronecker product representations; the reader

is asked to see [72] for details.

One further concept that is useful in some of our Kronecker-product formulations is lexico-

graphic ordering. In particular, we sometimes find it useful to order items that are indexed

by vectors of integers. More specifically, we assume that each item is indexed by a (say)

m-component vector, and that each component of this index vector is an integer between

(say) 1 and n. A group of items indexed in this fashion is said to be listed in lexicographic

order if, in considering the index vector as a numeral in base n (with digits unconvention-

ally labeled beginning with 1 rather than 0), the value of the indices increase down the list

of items. For instance, say that 4 items are indexed by 2-element vectors, each of which

can take on the values 1 and 2. Then the items are organized in lexicographic order if the

indices down the list are {1, 1}, {1, 2}, {2, 1}, and {2, 2}, respectively.
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Mappings between State and Moment

Representations

At several points in the thesis, we argued that alternate representations for (first or higher)

state and moment vectors could be related by linear transformations, but did not explicitly

construct these transformations. In this appendix, we construct these mappings between

state representations. To do so, it is helpful for us to develop some further notation con-

cerning Kronecker products:

Definition B.1

Consider two partitioned vectors x =and y . Denote the length of vector xi

xn()_ -yn(y).

as mi(x) and denote the length of yi as mi(y). Thus, the length of x is m(x) = Z( mi(x) and

the length of y is m(y) = d y mi(y). We define the block Kronecker product of x[k] and y[k]
as follows:

X1 9 Y1

x1 0Yn(y)

x 0 y= (B.1)

Xn(x) OYI

Xn(x) 0 Yn(y).

As proven in the following theorem, the block Kronecker product of x and y is a permuta-
tion of the standard Kronecker product of x and y.
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Theorem B.2

There is a permutation matrix P such that x N y = P(x 0 y). This permutation matrix is precisely

specified in the proof of the theorem.

x 1 0 Y1

Proof. First, consider the vector [ . We claim that this vector is a permutation of

Y1

[Yn()i

the vector xi 0 y. To see why, let's rewrite xi 0 y as where xij is the jth

Y1

Xi,mi(x) :

element of the vector xi. Note that the vector xi 0 y has length mi (x)mi (y). Now consider

multiplying xi 0 y with a matrix P (1, j), which has mj (y) rows and mi (x)mi (y) columns.

Assume that the block of columns of P(l, j) indexed by (1 - 1)m(y) + Zj4 mk(y) +

1, ... , (1 - 1)m(y) + Ek=1 mk(y) is the identity matrix, while the remainder of the ma-

trix is all zeros. It is easy to check that P(l,j)(xj 0 y) equals xi,Iyj. Assembling these

equalities, we find that

Xi,1Y1

Xi,nYl

Pixi [ i Y1 (B.2)
:i 0 Yn,

Xi,lYn(y)

Xi,mi (x)Yn(y)_
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A
where P,

Pi(1, j)

Pi (1, n(y))

Pi(mi(x),n(y))
mutation matrix.

From our definition for P(l, j), it is clear that P is a per-

Assembling Equations B.2 for i = 1, . . . , n into a single column vector, we find that

xi Oy
xy= P =P(x 0 y),

Xn(y) 0 Y

Pi 0

w 0 P2
where P = .

permutation matrix.

0

0

01
0

Thus, we have shown that x 0 y = P(x 0 y), where P is a

Pn_
ED

Theorem B.2 can be used to relate the rth state vector with the rth permuted state vector

of an MLSN, as discussed in the following theorem.

Theorem B.3

The rth state vector s[k] 0' is a permutation of the rth permuted state vector s[,] [k]. The permutation

matrix Pr is explicitly constructed in the proof.

Proof. We prove the theorem by induction, in much the same way as in the appendix of [9].
First, note that s[l] [k] = Pis[k, where P = 1in, by definition. Next, assume that s[i] [k] =
Pis[k]' for some permutation matrix P. Now consider s[+l][k]. Note that s[i+l][k] =

s[k] Z s[i][ki, where s[kl is partitioned into status vectors, and s[i][k] is partitioned into
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ith joint status vectors. From Theorem B.2, we know that s[k] M s[i [k] can be written as

Pi(s[k] 0 s[i] [k]) for a permutation matrix Pi, and we know how to construct P2 . Thus,

s[i+P][k] = j(s [k] 0 s i[k]) (B.4)

= Pi(s[k] 0 (Pis[k]2)) (B.5)

= (Pi Pi)s[k]( +1 ). (B.6)

Pi 0 Pi is the Kronecker product of two permutation matrices and so is itself a permutation
A

matrix. Thus, we see that s[i+1] [k] = Pi+is[k]®(i+l) for the permutation matrix Pi+1

(P 0 P). Thus, we have shown how to construct the permutation matrix relating the rth

state vector to the rth permuted state vector. 0

The algorithm for computing MLSS statistics across time-steps invokes a linear relation

between the r1 + r 2th extended state vector and the Kronecker product of the r 1 th and

r 2th extended state vectors. In the following theorem, we explicitly construct this linear

relation.

Theorem B.4

The (r1 + r2)th extended state vector can be expressed as S(r+l2) [k] = Lri,r2 ((ri)[k] 0 S(r2 ) [k]).
In proving this relation, we recursively compute Lri,r.

s[k]Orl

Proof. Let's first relate s(r1+r2) [k] to s(ri) [k]MS(r2 ) [k], where s(ri) [k] is partitioned as

s[k](D

s[k] r2

and . This block Kronecker product comprises a listing of (r1+ 1) (r 2 + 1) Kro-

s[k]0 1

necker products, each of which are Kronecker powers of s[k]. Let's consider a matrix
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Lri,(i), with as many columns as there are entries in S(ri)[k] 0 s( 2)[k], and mSlnr+1

rows. Assume that the columns of Lr,r(i) are partitioned to correspond with the parti-

tions of s(,i) [k] and S(r2) [k]. Let the partition of L,r 2 (i) corresponding to block ri(i - 1) + 1

of s(ri) [k] M S(r2) [k] (i.e., the block which is the Kronecker product of the ith partition of

S(ri) [k] with the first partition of s(r2) [k]) be the identity matrix. Assume that the remaining

entries of Lr,,r2 (i) are 0. Then

Lrj,r2() [k] N s(2) [k] = s[k](,,+r-i+1) (B.7)

Also, consider a matrix Lrr2 (end) with Er2 m i rows, and as many columns as there are

entries in s(rj) [k] E s(r2) [k]. Assume that the columns of Lri,r2 (end) are partitioned in the

same way as the entries in S(ri) [k] E S(r2) [k]. Assume that the final r 2 + 1 partitions of

Lri,r2 (end) (which correspond to the prodicts of the final entry of s(ri) [k] with all partitions

of s(r2) [k], and total Er 2_ mI columns) are together the identity matrix. Also assume that

all other entries of Lri,r, (end) are 0. Then

S(r2) [k]1

Lri,r2 (end)s(ri)[k] N S(r 2 )[k] - - s(r)[k] (B.8)
s[k]

By concatenating the products specified by Equation B.7, for 1 < i < r2, as well as the

product specified in Equation B.8, into a single matrix-vector product, we find that

L(rl,r2 ) (1)

s(Nri)[k] s(r2 )[k] s(r+r)[k] (B.9)
L(r,r 2 )(rl

L(ri,r2) (end)_

Finally, from Theorem B.2, S(r) )[k] S(r2 )[k] = P(S(rl)[k] S(r2)[k]) for a permutation matrix

P. Thus, substituting, we find that

S(rl+r2 )[k] = Lr,r 2 (S(ri)[kl S( 2 )[k]), (B.10)
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where

[L(nri,) (1)

Lri,r2  P(S(ri)[k] 0 S(r2)[k]). (B.11)
L(rir2 )(i)

L(r,r 2 )(end)

Thus, we have proved the theorem, and shown how to construct the linear transformation

matrix Lri,r.

LI

In Section 4.2.6, we argued that the rth primary state vector :[r] [k] can be written as a linear

function of the rth state vector s[k]or. (Recall that S[r] [k] contains state variable products

for each rth grouping primary grouping of state variables-i.e., each ordered list of r state

variables for which the indices of the state variables are increasing along the list. These

groupings ae assembled in lexicographic ordering in forming S[r] [k].)

Theorem B.5

In this theorem, we specify the linear transformation Lr for which S[r] [k] = Lrs [k].

Proof. We compute this linear transform using an iterative process. To do so, first note that

S11i [k] = Lis[k]0 1, where L= Im. Next, assume that we have found the Li for which

'ip] [k] Lis[k]@®. To develop an expression for 2[i+1] [k], consider s[k] 0 i[i] [k]. For conve-

i< I> [k]

nience, partition the vector S[i] [k] as - , where 25 >[k] comprises the elements of

[i< m>[k]_
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[ij] [k] with ith primary groupings that begin with the state variable j. In this notation,

s[k] & S[ [k] =

<>[k]

si[k]

<m>[k]

S<1>[k]

sM [k ]

-s<m> [k]-

(B.12)

Also, note that [j+1] [k] can be rewritten in this notation, as

s[i+1][k] =

S1 [k]

82 [k]

[k]

.<m> [k]

i<2> [k]

-<m>[k]

(B.13)

To specify a map between s[kl ® s[] [k] and S[i+1] [k], we note that

i< > [k ]

sj [k] I =Lj(j

<m>[k]

where Li(j) has the form [0, I] and so truncates

[ <1> [k]

)sj [k]

<r>J[k]

si<1>[k]

LS<m>[k]

S4j>[k]

to

[-<m> [k]J
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Assembling equations of the form B.14, we find that

Li (1) 0

S[i+i][k] = 0 *.

0

From our assumption, 2[i] [k] = Lis[k]@i, so

Li(1) 0

' [i+1] [k] =0 '.

:0

(s[k] 0 Lis[k] ) (B.16)

L

where

Li(1) 0

Li+1 = 0 '

:0

(B.17)

(B.15)

Thus, we have constructed the mapping Lr such that S[,] [k]

tive process.

= LrS[k]@r, through an itera-

El

In Section 4.2.6, we also argued that the rth state vector s[k]lr can be written as a linear

function of the rth primary state vector s[r] [k]-i.e., that s[k]@r = Mr,rS[r] [k] for some Mr,r-

Theorem B.6

In this theorem, we specify the linear transformation Mr,r for which S[r[k] []= Mr,rS[k] or.

Proof. Like the mapping Lr from s[k]Or to S[r] [k], the reverse mapping Mr,r can be con-

structed iteratively. However, this iterative construction of Mr,r turns out to require rather

unpleasant notation; we believe that an explicit, non-iterative construction of Mr,r is clearer,

so we present this direct construction. We note that the other mappings described in this

appendix can also be generated through direct construction, and intend for this develop-

ment to clarify this approach.
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The number of rows in Mr,r is the length of s[k]®r, or mr. The number of columns in Mr,r

is the length of [,] [k], which is equal to the number of rth primary groupings, or ("+,r-).
For convenience, let us first index the rows and columns in lexicographic order according

to their groupings, and specify the matrix Mr,r in this notation.

Consider the element of s[k]or indexed by (ii, .. ., ir). This element of s[k] r is also neces-

sarily an element of S[r] [k]. In particular, this element is identical to the element of [r] [k]
indexed by (i 1 ,... , ir), where (i 1 , . . . , Zr) is constructed by sorting (ii, . . . , ir) in increasing

order. From now on, we use the notation (i1 , . . . ,ir) = prim(ii,. .. , ir) to represent the

sorting of the grouping (ii, ... , ir) into a primary grouping. Since the element (ii, ... , ir)

of s[k]or is equal to the element (i 1 ,... ,Zr) Of S[r][k], row (i, ... ,ir) of Mr,r can ve con-

structed to have a single unity entry at location (i1 ,... ,ir), and to be zero otherwise. Thus,
we can construct each row of Mr,r so that

s [k] r = Mr,r [r] [k]. (B.18)

In order to simplify the construction of Mr,r, it is useful tohave a scalar numeric index for
the columns of Mr,r. (In particular, we can then contruct each row of Mr,r by identifying

the numeric column index of the unity entry in the row.

To use a numeric index rather than a grouping index for the columns of Mr,r, recall that

the columns are indexed by primary groupings, arranged in lexicographic order. Thus, the

number of the column indexed by the primary grouping (Z1, ... ,ir) can be found by com-
puting the number of primary groupings which fall before this grouping in lexicographic
order. The number of such groupings is 12 _, . . . -l 1, so the numeric in-

dex for the grouping index (ii, .. .,ir) is (_Ey Z c .. .1 E12 + 

Consider an influence status vector s, [k] for an rth grouping w, as well as the influence

status vector s, [k] for its essential site list wv. We argued in Section 7.3.2.1 that sw [k] can be
written as Q(w)s [k] for some mapping matrix Q(w).

Theorem B.7

Here, we explicitly construct the matrix Q(w) such that s,[k] Q(w)s< [k].

- 259 -

Appendix B



Appendix B Mappings between State and Moment Representations

Proof. Let's say that the essential site list W- has a length of F (i.e., contains F sites). Note

that F < r. Denote the elements of w by w1 , ... , wr, and the elements of W- by i-1,.. . , ir. In

this notation, Q(w) is a matrix with j> mw, rows and f_1 m@, columns. We index the

rows of Q(w), and the elements of s,[k], lexicographically according to a length r vector

(ai, ... , ar), where aiin1, . .. , mw,. It's easy to check that the element of sw[k] indexed by

(ai, . . . , ar) is unity if and only if site w, is in status al at time k, site w2 is in status w2 at

time k, etc, and is zero otherwise. In similar fashion, we index the columns of Q(w) and

the elements of s[k], lexicographically according to a length F vector (-1, .. ., ), where

ai E , .. ,@s.

A little further notation is required in order to construct Q (w). Specifically, consider each

site i, 1 < i < -, in the essential site list. Note that there is at least one site in the grouping

w which is ii3. In general, let g(i) list the locations along the vector w such that the site

specified at the location is iDi.

Finally, to construct Q(w), consider the case where the element (a-, . .. , &F) of st[k] is 1.

Then site i@ is in status &j, for 1 < i < F. Also, exactly one entry of the vector sw [k] is

1 (and the remaining elements are 0). This unity entry is indexed by (a,, ... , ar), where,

for each 1 < i < F and j E gi), it is true that aj = ai for 1 < i < r. That is, we

require that each site in w equal to 'Jj has the same status &j as Gi. Thus, by setting column

(I.. - . , &p) of Q(w) to 0 except at element (a,... , ar), which we set to 1, we can ensure

that sw[k] = Q(w)sc[k].

We note that a bit of work is required to assign numeric, rather than vector, indices to the

elements of Q(w). We leave this (straightforward but somewhat tedious) mapping to the

reader.
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Scope of the First-Moment Recursion, Vector

Case

We consider the proof of the result introduced in Section 2.3, in the case of m-component

state vector s[k]. Conceptually, the proof in the vector case is quite similar to the scalar

case, so we only give an outline, and point out significant differences between the scalar

and vector case.

Recall that we assume the mean of the state s[kl of a Markov process at a time k is known,

but the distribution of s[k] is otherwise arbitrary. We wish to prove that, in order for the

expected state E(s[k + 1]) to be uniquely calculable, E(s[k + 1 1 s[k]) must be affine with

respect to s[k]-i.e., E(s[k + 1] 1 s[k]) = Hs[k] + b for some H and b. We can prove this

statement, through the following steps:

" First, we consider two different distributions for s[k], which both have the specified

mean E(s[k]) = 9. One of the distributions that we consider is concentrated solely at 9.

The second distribution that we consider is concentrated at m + 1 points (where m is

the number of elements in the state vector) whose convex hull in R" contains 9 strictly

in its interior. We can straightforwardly check that probabilities can be assigned to each

of these values for 9, such that the expected value of s[k] is 9. In order for E(s[k + 1]) to

be calculable, we need that the expected value of the next state in both scenarios to be

equal. Equating these expectations, we obtain a linear relation between the conditional

expectation of the next-state given 9 and the conditional expectations of the next-state

given each of the other m + 1 points. That is, in an m + 1 dimensional axis system

consisting of the m state vectors and the conditional expectation of the next state given

the current one, we find that these m + 2 points lie on the same hyperplane.

" Our remaining task is to prove that the conditional expectation for s[k + 1] given any

other value for s[k] lies on the same hyperplane. We use the same general strategy as in

the scalar case: we consider a distribution for s[k] that is concentrated on an arbitrary
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point, as well as m of the m + 1 points considered in second scenario above. Unlike the

scalar case, it takes a bit of effort to see that we can choose m of the m + 1 points so that

the new set of m + 1 points (i.e., these m points and the arbitrarily chosen point) have a

distribution concentrated on them such that the mean is 9. In particular, some thought

shows that, for any new point, m of the original points can be chosen so that 9 is in

the convex hull of these points, and hence that we can construct a distribution for s[k]

concentrated on the points that has mean 9. We then equate the expected value for s[k +

1] if s[k] has this distribution with the expected value for s[k +1] if s[k] is concentrated at

its mean 9. Finally, by invoking the linear relation between the conditional expectations

that was found in the bullet above, and doing some algebra, we can prove that the

condtional expectation for s[k + 1] given an arbitrary value for s[k] must lie on the same

hyperplane, and hence the result is proven.
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