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Abstract

Elastography is a method that can be used to measure the elasticity of soft biolog-
ical tissue and, ultimately, to detect cancerous tumors. In this thesis, quantitative
compression based ultrasound elastography is developed using a fast multi-scale ap-
proach. The inverse problem optimization methods of elastography are applied to
estimate noninvasively the arterial wall stiffness of a vessel as well as blood pressure.
Simulation and experimental results are presented that predict the accuracy of the
methods. A method is also introduced to eliminate the need for a reference pressure
during the optimization over blood pressure. Using ultrasound, these techniques could
provide noninvasive continuous measurement of blood pressure in major arteries and
could give doctors another way to gather information about a patients cardiovascular
health.
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Chapter 1

Introduction

In this chapter, we describe two clinical applications of the work in this thesis: breast

cancer detection and cardiovascular system monitoring. The chapter then continues

with a review of elastography, a discussion of related work, and a description of the

contribution of this work.

1.1 Breast Cancer

1.1.1 Introduction

Breast cancer is the most commonly diagnosed cancer in women in 135 countries

around the world and the rate of diagnosis is predicted to increase by two percent

yearly [1, 2]. The disease is the most frequent cause of cancer death in women

worldwide [2]. In the United States, 125.3 women out of 100,000 get breast cancer

and the economic costs per patient have been estimated between 20,000 USD and

100,000 USD [3].

Early detection of breast cancer has been shown to decrease mortality rates from

the disease and reduce the need for a mastectomy [4, 5]. While there are established

detection methods, it has been reported that, on average, fifty percent of screened

women will have at least one false positive over the course of ten mammogram screen-

ings [6]. Accurate methods of breast cancer detection are needed in order to minimize
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patient anxiety and reduce false positives.

1.1.2 Current Screening Methods

Manual palpation of breast tissue allows one to sense the presence of potentially

cancerous lumps within breast tissue. New technologies aim to improve upon this

standard. While a full investigation of these technologies is beyond the scope of this

section, popular technologies include mammography, magnetic resonance imaging,

and ultrasound imaging [7].

Mammography is an imaging modality in which low intensity x-rays are sent

through the breast and recorded either through a conversion to visible light, known

as film screen mammography, or through a direct conversion to electrical signals,

known as digital mammography [8, 9]. Film mammography is a popular breast cancer

screening method, but digital mammography systems are gaining prominence in the

field because they might allow for higher quality images [8, 9]. Computer-aided

detection (CAD) technology can also be used with mammography to alert a doctor

that cancer might be present [8, 10]. The accuracy of mammography has been studied

by many groups. One study reported that mammography has a sensitivity of 78% and

a specificity of 99% [11]. Even though mammography is the most prominent breast

cancer screening method, it suffers from a substantial risk of false positives [6, 11].

Further, the sensitivity is significantly decreased for dense breast tissue [6, 11].

Magnetic resonance imaging (MRI) is an additional breast cancer detection method

that is studied in the literature. It uses variations in the magnetic field of a large

magnet to image slices of the breast. Contrast agents are often used to improve image

quality. The cancerous tissue absorbs the contrast agent more than the surrounding

tissue, allowing doctors to look for irregularities in the resulting image in order to

identify the cancer [9]. While MRI is an expensive procedure, papers have suggested

that use of MRI for breast cancer screening would be beneficial in high-risk patients

[9, 12].

Ultrasound imaging is another detection method that is commonly used by doc-

tors. In conventional ultrasound B-Mode imaging, changes in the echogenicity of
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breast tissue often correlates with the presence of tumors [9]. Ultrasound imaging

is particularly useful with dense breast tissue [9, 11]. In one study, ultrasound used

alone was able to identity 25.5% of cancer in dense tissue while mammography used

alone was able to identify 20.5% [11].

Finally, ultrasound imaging has been used in conjunction with qualitative elas-

tography to detect breast cancer. In one study, it was reported that qualitative ul-

trasound elastography, used in conjunction with traditional sonography-based cancer

screening, yielded less false positives than both mammography alone and sonography

alone [13]. However, misdiagnosis can occur at high forces because as the applied

forces increase, the tissue nonlinearity also increases [13]. This method is also limited

because both the cancer and surrounding tissue need to be in the region of interest

in order to ensure the success of the algorithm [13].

A fast, robust quantitative ultrasound elastography method that addresses the

problems of breast cancer screening with qualitative elastography, discussed in the

previous paragraph, has the potential to make breast cancer screenings even more

accurate by giving doctors more information about the breast tissue of interest.

1.2 Cardiovascular System Monitoring

1.2.1 Introduction

The stiffening of the arteries with age causes many traumatic cardiovascular diseases,

such as atherosclerosis and hypertension. These diseases, and the complications that

result from them, cause a significant number of deaths both in the United States and

around the world. A simple and accurate way to monitor the stiffness of arteries could

help doctors track the likelihood of such diseases and treat patients accordingly.

Similarly, blood pressure readings are important to doctors in the typical physical

examination, where the readings help doctors diagnose and treat patients. Blood

pressure estimation is also relevant in intensive care where changes in vital signs

can correlate to imminent problems for the patient. Continuous and accurate blood
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pressure estimation could give doctors important information that could be used to

make treatment decisions.

1.2.2 Current Arterial Wall Stiffness Monitoring Methods

There are many ways to measure the elasticity of the arterial wall. The most ac-

curate way to accomplish this is by excising a part of an artery and measuring the

elasticity directly. However, there have been developments that can achieve the same

information without excising tissue.

Pulse wave velocity (PWV), calculated as the distance traveled by a pressure

pulse divided by the travel time, is used as a noninvasive measurement of arterial

wall stiffness. It relies on the Moens-Korteweg equation,

PWV =E h11
2pR

where PWV is the pulse wave velocity, E is the elastic modulus of the artery, h is

the artery thickness, R is the artery radius, and p is the density of blood [14, 15].

This measurement has been shown to correlate well with future cardiovascular events

and is often considered the 'gold standard' for arterial wall stiffness measurements

[16, 17].

There are many important assumptions used when deriving Equation 1.1 and

some of these assumptions might not be valid in the human body. The derivation

assumes, for example, that blood is an incompressible fluid and that the artery can be

treated as thin-walled and elastic [18]. However, blood vessels might behave according

to viscoelastic constitutive laws and therefore might not be treated correctly as an

elastic material.

The thin-walled assumption can also be questioned. The equation is derived for

an ideal artery with a small thickness to radius ratio and a Poisson ratio of zero. It

has been reported that a thickness to radius ratio of 0.1 to 0.13, and a physically

relevant Poisson ratio of 0.5 would increase the pulse wave velocity by approximately

12 percent compared to that predicted by the equation [19]. Physiologically, reports of
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arterial radius and thickness vary depending on the source and patient demographics;

one paper finds that the average thickness of the carotid artery in females aged 41-45

years is 0.52 mm (± 0.04 mm) and the corresponding diameter is 5.17 mm (± 0.57

mm) [20]. This leads to a thickness to radius ratio of 0.2012. Thus, the thickness of

the artery could mean that the above pulse wave velocity equation gives inaccurate

results. While a correction equation does exist for thick arteries, some papers do not

use this correction [19].

There is also disagreement among researchers about which measurement of dis-

tance should be used for calculations [17]. For example, in carotid-femoral pulse wave

velocity, the distance could be measured as the total surface distance or the surface

distance minus the distance between the carotid measurement location and the sternal

notch, among other choices [17]. While a particular distance measurement might be

assumed for a particular study in order to see data trends, true arterial wall stiffness

will depend on a correct distance measurement. The pulse wave velocity equation

also assumes that the arterys cross-section is circular with a constant known radius

when, clinically, there is no information available about the shape or dimension of

the artery between the measurement points [17].

Furthermore, in specific conditions, the pulse wave velocity method will fail. For

example, the method will fail if blood flow is constant and there is no pressure pulse

within the body; such a situation is common for patients who have an artificial heart.

Finally, pulse wave velocity measurements require two, precisely timed measurements

in different parts of the body; this is inconvenient for doctors.

In addition to pulse wave velocity, there are other methods to estimate arterial

wall stiffness. Augmentation index, a2 , is a value that has been used as a surrogate

measure of arterial wall stiffness. It is calculated as

ai = A(1.2)
PP

where PP is the pulse pressure, defined as the difference between the systolic and

diastolic pressure, and AP is the augmentation pressure, defined as the difference

23



Systolic pressure

Augmentation pressurc

Pulse pressure

Diastolic pressure

Tim,

Figure 1-1: Typical shape of a pressure pulse within the human body.

between the systolic pressure and the pressure corresponding to the first hump of

the pressure pulse curve [14]. Figure 1-1 shows these values on a pressure pulse. In

fact, the pulse pressure and the augmentation pressure have been used themselves as

measures of arterial wall stiffness [17]. All three of these measures - augmentation

index, pulse pressure, and augmentation pressure - can only be used as a surrogate

measure of arterial wall stiffness and cannot give quantitative elastic modulus values

[17].

In the literature, it is also common to use arterial wall thickness measurements

as a surrogate measure of arterial wall stiffness. It is assumed that as the thickness

of the artery increases, stiffness will also increase. While easy to calculate using an

imaging technique such as ultrasound, this method can only yield qualitative results.

All of the current methods of arterial wall stiffness estimation described above

either do not express arterial wall stiffness in the proper units, or are prone to making

many physical assumptions. A method to measure noninvasively arterial wall stiffness

using minimal assumptions could give doctors a very accurate measurement with

which to track a patient's risk of cardiovascular problems.

1.2.3 Current Blood Pressure Monitoring Methods

Blood pressure is commonly measured by health care professionals in the doctor's

office and hospital. Because blood pressure is very useful to doctors, there are many

current methods of measuring it. The most accurate blood pressure estimation is ob-

tained with invasive catheters and attached pressure transducers. While this method

is very accurate, the invasive nature of the measurement prevents it from being feasi-
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ble outside of the hospital. Even within the hospital, there is also a risk of infection

and of blood clots.

Sphygmomanometers, also known as blood pressure cuffs, are the most common

method to measure blood pressure. They do so by cutting off blood flow to the limb in

question, and thus are not suited for continuous measurement. Blood pressure cuffs

cause bruising in elderly patients and can be very uncomfortable, especially when

measurements need to made periodically in the hospital in order to monitor vital

signs.

Pulse wave velocity has been used as a cuff-less noninvasive measurement of blood

pressure [21]. Pulse wave velocity is related to pressure by

PWV 2 =(XP)V (1.3)
(AV)p

where PWV is the pulse wave velocity, AP is the change in blood pressure, p is the

density of blood, V is the initial volume of blood per unit artery length, and AV is

the change in blood volume per unit artery length [22]. Similar to the limitations

of the pulse wave velocity method discussed in the previous section, this method is

limited by the use of many physical assumptions, the need for multiple precisely timed

measurements, and the need for a significant pressure pulse in the patient [21].

Tonometry is a method in which a noninvasive device partially compresses an

artery of interest and an array of pressure transducers on the device measures blood

pressure [23]. Results suggest that pressure measured in this way correlates well with

invasively measured blood pressure [23]. However, this modality is highly position

dependent because tonometry requires pressure transducers to be directly above an

artery [24, 25]. Further, because the artery is partially compressed, this method will

likely lead to patient discomfort.

Applanation tonometry uses a similar technique as that described in the previous

paragraph, but instead measures the systolic and diastolic pressures in the radial

artery, while simultaneously measuring the pressure wave form in the brachial artery

[24]. This technique gives an even better estimate of central blood pressure, but
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suffers from the need to make two concurrent measurements.

Finger cuffs have also been used to measure blood pressure. The cuff is inflated and

a servo-motor applies a near constant pressure to the finger. The oscillations that the

cuff experiences with respect to this base point is related to the overall pressure wave

[24]. In order to maintain a near constant pressure on the finger, light transmission

is sometimes used [26]. In such a variation, light transmission is related to blood

volume in the finger, and knowledge of the blood volume can assist the control loop

in providing a constant pressure [26]. These blood pressure measurements reflect

the blood pressure at the periphery, which varies significantly from the central blood

pressure, and the measurements also suffer from accuracy problems [24].

Thus, while there are many solutions available for blood pressure measurement,

each method has many disadvantages. A noninvasive and continuous method to

measure blood pressure could help doctors better monitor patients.

1.3 Introduction to Elastography

Elastography is a method that is used to estimate the elastic properties of soft bi-

ological tissue. Current methods can be classified as either qualitative, where only

relative stiffness information is obtained, or quantitative, where absolute stiffness

values are obtained. Methods are also classified as either quasi-static, where defor-

mations of tissue occur at slow enough speeds as to be considered almost static, or

transient, where deformations are quick and can often yield information about the

dynamic properties of tissue. There are many available methods for elastography,

including compression-based ultrasound, shear wave ultrasound, intravascular elas-

tography, magnetic resonance elastography, etc. Each of these methods are briefly

discussed below. Many review articles have been written to discuss these methods

[27-30].
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1.3.1 Quantitative Ultrasound Elastography

In 1991, Ophir introduced the concept of elastography performed using ultrasound

[313. In this modality, conventional ultrasound B-Mode images are used to charac-

terize how a tissue deforms under an applied force. Using this data, elastography

algorithms infer quantitative information about the elasticity of the tissue. This the-

sis details the elastography method described here, which is one of the most frequently

studied elastography modalities in the literature.

One of the main advantages of this modality is that ultrasound is easy to use and

widely available in hospitals. Further, manipulating the applied force allows for the

examination of nonlinear tissue properties [27]. However, this method requires an

additional device that can measure the force being applied by the sonographer on the

tissue of interest. Ultrasound is also limited by the depth that can be imaged within

the body [32].

1.3.2 Qualitative Ultrasound Elastography

Commonly referred to as 'strain imaging,' qualitative ultrasound elastography is sim-

ilar to quantitative ultrasound elastography, but it assumes a uniform stress field

within the region of interest. With this assumption, relative strain values give infor-

mation about the stiffness of a tissue. The strain estimation is a simple and quick

calculation, and the compression of the tissue can be made with an existing ultra-

sound probe [28]. However, quantitative values are not obtained and, as stated,

uniform stress is assumed throughout the tissue of interest; this assumption might

not be accurate in biological tissue [28].

1.3.3 Shear Wave Elastography

Shear wave elastography is performed by inducing mechanically driven shear waves

onto the tissue of interest and imaging the propagation of the waves using one of many

different modalities. From the wave propagation, the speed of the shear acoustic wave

can be calculated, and this value is directly related to the distribution of the shear
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modulus within the tissue of interest [33]. If an incompressible tissue is assumed, the

elastic modulus of the tissue is three times the shear modulus. Thus,

E = 3pv 2  (1.4)

where E is the elastic modulus, p is the tissue density, and v is the shear wave

velocity [34]. Many implementations of shear wave elastography can occur quickly in

order to minimize discomfort to a patient. However, attenuation can be dominant for

shear waves; thus, when imaging through bone or other stiff structures in the body,
the frequency of the shear wave must be very high [32]. Furthermore, due to the

attenuation properties of shear waves in fluids, shear wave elastography is likely to

do a poor job imaging through fluids in the body [35]. The method of inducing shear

waves and imaging shear wave propagation are the critical parts of the algorithm and

different means to complete these tasks have been studied in the literature.

Transient ultrasound shear wave elastography is a modality where the waves are

induced at the surface of the tissue and imaged using ultrasound [28]. This modality is

advantageous because it is highly insensitive to patient motion [36]. However, some

applications of ultrasound shear wave elastography have proven to be bulky and

have yielded incorrect elasticity distributions [36]. Despite some groups reporting of

this limitation, it has been implemented in commercial systems such as Fibroscan

(Echosens, Paris, France) [37].

Magnetic resonance imaging elastography (MRIE) uses magnetic resonance imag-

ing to track the shear wave while an outside mechanical excitation deforms the tissue

of interest [32, 38]. This modality is popular because it is operator independent and

allows for easy evaluation of 3D structures in the body [27]. However, it is restricted

due to the cost of MRI machines and due to the length of data acquisition [32].

Acoustic radiation force impulse (ARFI) imaging is a modality that uses focused

ultrasound to create a radiation force within a tissue, which causes the tissue to deform

[28, 39]. From this tissue deformation wave, elasticity can be calculated in both a

qualitative and a quantitative sense [35]. Various forms of ARFI based shear wave
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elastography have been investigated in the literature and the modality has already

been implemented into a Siemens commercial ultrasound system [37]. The modality

is advantageous because it can be used with existing conventional ultrasound systems

and has been reported to increase image quality and reduce image variability [35].

Spatially modulated ultrasound radiation force (SMURF) imaging uses carefully

spaced acoustic radiation forces to induce a shear wave with known wavelength on a

tissue. The method then determines the frequency of the wave, which is more easily

obtained than the wavelength because the wave is probed at a single location [40, 41].

From the frequency of the shear wave, elasticity can be found. In this modality, shear

wave propagation is imaged with ultrasound. The changing location of the radiation

force allows for a reduction in elastogram noise [42]. The method can also minimize

the impact of speckle errors by focusing on a specific point in the tissue, at which any

errors are canceled out by the two waves [43].

Crawling wave (CR) elastography is a shear wave based elastography method in

which two shear waves are used to infer information about tissue elasticity. The

slowly-moving interaction of two shear waves with slightly different frequencies is

tracked in order to find the elastic modulus of the tissue [28, 44]. While the shear

waves in this modality can be induced by either mechanical excitation or ARFI, the

former is more popular in the literature [45]. One advantage of CR elastography is

that it can be implemented on top of current Doppler systems [45]. The mechanical

excitations can also be situated so that most motion is in the axial direction, which

is convenient for ultrasound [45]. However, because separate wave generation devices

are required, this method might be inefficient in clinical use and will be restricted

to locations on the body that are easily accessible [27, 45]. Further, data capturing

might be slow, which makes respiration and other patient motion more significant

[45].

Supersonic shear wave imaging uses acoustic radiation force to induce a shear

wave, which is then imaged using ultrasound. The high speed at which each force is

applied is what distinguishes this method from ARFI imaging discussed above [28].

In the literature, image acquisition has occurred as fast as 20,000 frames per second
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[36, 46]. Quantitative results can be obtained in less than 30 ms in some applications

[36]. An important disadvantage of this method is the need for a high speed scanner

[27].

1.3.4 Intravascular Elastography

Intravascular ultrasound elastography is a unique modality that uses an invasive ul-

trasound transducer to image from within a blood vessel and determine properties

of the vessel itself, including the existence and nature of vessel plaque. The pressure

from within the vessel acts to deform the vessel and the resulting strain is measured

[47]. Spatial changes in the measured strain is a qualitative indication of different

material properties of the tissue [47]. While this modality allows for accessible char-

acterization of plaque inside a blood vessel, it is an invasive procedure.

1.3.5 Vibro-Acoustography

Another elastography modality is named vibroacoustography. It uses focused acoustic

radiation force ultrasound with carefully chosen frequencies to vibrate the tissue of

interest. From the vibration, an acoustic emission is released, which is then measured

by a hydrophone. From the amplitude and phase detected, images can be displayed

which gives the user information about the tissue's mechanical properties [48, 49].

Unlike conventional ultrasound, this modality allows for speckle-free imaging and

can accurately image surfaces that are not perpendicular to the ultrasound beam [27].

However, the time needed for data acquisition is a limitation as image acquisition

takes a few minutes [50].

1.4 Importance of Thesis

1.4.1 Related Work

The basic approach to quantitative compression-based ultrasound elastography has

been previously described in the literature [51, 52]. Papers have used a Levenberg-
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Marquardt optimization approach to solve the elastography inverse problem on a very

fine mesh. They are able to reconstruct the elasticity distribution accurately in both

homogeneous and heterogeneous phantoms.

A number of derivative approaches to quantitative elastography have been pro-

posed, especially with respect to regularization techniques. Doyley wrote a review of

different approaches to the elastography inverse problem [53]. Considerable attention

has also been given to evaluating the nature of the inverse problem and to using the

results of qualitative elastography in order to derive quantitative values [54]. In order

to improve the results of the inverse problem and decrease the sensitivity of the al-

gorithm to noise, multiple image pairs have been implemented into the elastography

algorithms [55].

Multi-scale approaches to elastography have been examined by some research

groups. One group uses knowledge of a region's mean squared error to combine or

split finite elements. In such an approach, finite elements are combined into a larger

region with equal elastic moduli if the mean squared error is of a similar order of

magnitude in the region and are split into smaller regions if the mean squared error

proves to have a lot of variation [55, 56]. The act of automatically splitting elements

and combining elements yields a multi-scale type approach.

One group has considered an adaptive meshing technique to make elastography

more robust to noise [57]. This group reported more accurate results compared to

other traditional methods.

Research groups have studied the reconstruction of the undeformed, zero-pressure

geometry of an artery [58, 59]. The reconstruction methods used are often inverse

approaches. However, published research assumes a known pressure within the artery

as well as a known arterial wall stiffness. To the authors knowledge, the surrounding

soft tissue is also not considered in the literature.

A field referred to as noninvasive vascular elastography (NIVE) uses traditional

longitudinal ultrasound probes to image and characterize the arterial wall [60]. While

obtaining important details about the vasculature, the field ignores surrounding tissue

as well as blood pressure and does not obtain quantitative results. There is one
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group currently working on an integrated noninvasive estimation of blood pressure

and arterial wall stiffness; however this method is based on the oscillometric method

of measuring blood pressure [61].

The first use of elastography to obtain quantitative values of arterial elasticity

and blood pressure using simulated data was made by the author of this thesis and

colleagues [62]. Experimental results were subsequently published [63]. It remains a

novel field of study.

1.4.2 Contribution

The contribution of this thesis to the literature is many fold. First, it improves

the existing methods of quantitative elastography by developing and implementing a

multi-scale solution approach that makes the current algorithms faster. It examines

the efficacy of a variety of materials in heterogeneous phantoms for use in quanti-

tative ultrasound elastography. It also develops a general, noninvasive, potentially

continuous, method to estimate blood pressure in the main arteries in the body. The

method also allows the arterial wall stiffness to be estimated accurately and noninva-

sively. Feasibility of an optimization method that eliminates the need for a reference

pressure during blood pressure estimation is also established.

1.4.3 Application to Other Fields

While the original motivation of this thesis is elastography, the methods presented

here can be applied to a number of different medical phenomena. For example,

elastography has been used to estimate the progression and presence of liver fibrosis,

deep vein thrombosis, prostate cancer, etc. Thus, the general methods presented in

this thesis have wide applicability to a number of important diseases.

Pressure estimation could be relevant beyond blood pressure. For example, cyst

pressure could be measured. It is well known that embryonic fluid volume correlates

with a healthy fetus; an accurate, noninvasive measurement of embryonic fluid pres-

sure could relate to the well-being of the fetus. The methods presented here might also
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be applied to measure interstitial pressure of a tumor. Measurement of intracranial

pressure might also be an area in which this technology could be useful to doctors.

In general, the methods presented in this thesis can be applied to situations where

ultrasound imaging is available and recordable, and where some deformation of the

tissue takes place.

1.5 Outline of Thesis

This thesis is divided into six chapters. This chapter provided motivation and intro-

duced a number of different elastography modalities. The next chapter will discuss the

theoretical details of elastography. The third chapter will investigate the experimen-

tal details. The fourth chapter will present results of the application of elastography

in theory and the fifth chapter will present experimental results. The last chapter

will summarize the findings presented in this thesis and discuss suggestions for future

work.

1.6 Summary

In this chapter, the clinical motivation behind this thesis was first discussed. The

current methods of breast cancer screening, blood pressure measurement, and arterial

wall stiffness estimation were discussed. Elastography was introduced and a literature

review of current elastography methods was presented. A literature review specific to

the work discussed in this thesis was also presented and the contribution of this thesis

was detailed. In the next chapter, theoretical details of the algorithm implemented

will be discussed.
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Chapter 2

Theoretical Details

As specified in the previous chapter, elastography is a method by which ultrasound

is used to measure the spatial distribution of a tissue's elastic modulus. This chapter

explains the details of the elastography algorithm and discusses how the algorithm is

applied to simulated data, including the specific finite element implementation that

is used. The details of the algorithms application to pressure and arterial stiffness

estimation are also discussed in this chapter. At first, a known reference pressure

is assumed when estimating pressure and arterial wall stiffness. At the end of the

chapter, this assumption is lifted as a reference pressure free approach is described.

2.1 Inverse Problem and Details

2.1.1 Theoretical Workflow

The inputs into the quantitative elastography algorithm are (1) how much the tissue

deforms and (2) how much force causes the deformation. In order to gather this

required data in a computer simulation environment, finite element analysis is first

used to deform the tissue according to the relevant physical laws. The force is spec-

ified in the finite element analysis and the result is information about the tissue's

deformation; thus, the elastography algorithm can immediately proceed. However, in

order to better represent the experimental realities of the problem, a Matlab program
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Figure 2-1: A flow chart showing the simulation setup.

(Mathworks, MA, USA) is used to form ultrasound B-Mode images of the tissue in

both its initial state (pre-compression) and its finial state (post-compression). The

displacement is then calculated from these B-Mode images. The error inherent in the

displacement estimation allows for more realistic simulations than that of using the

correct, error-free finite element displacements. The simulation-based elastography

workflow is shown in Figure 2-1.

With knowledge of tissue displacement and applied force, the elastography algo-

rithm attempts to find an appropriate elasticity distribution. The solution approach

of this inverse problem is shown in Figure 2-2. First, an initial elasticity distribution

for the tissue is guessed, the known force is applied, and the associated finite element

model is solved for the axial displacements. The axial direction is as defined in Figure

2-3. After the initial finite element model is complete, the resulting displacements are

compared with the displacements obtained from comparing the two B-Mode images.

If the error is small, the problem has been solved correctly and the elasticity distri-

bution guessed is correct. If the error is large, the problem is nonlinearly optimized

with the Levenberg-Marquardt algorithm in order to find a new potential elasticity

distribution. This new elasticity distribution is used in the finite element analysis

and the process continues until the error is small. The details of data preparation

and the elastography algorithm itself are discussed in subsequent sections.
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Figure 2-2: A flow chart showing the solution approach to the inverse problem.
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Figure 2-3: The orientation of the axial and lateral directions with respect to the
ultrasound probe. The elevational direction is into the page.
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2.1.2 Forward Problem and B-Mode Generation

A finite element model is made using the commercially available finite element pro-

gram Abaqus (Dassault Systems, France) in order to simulate tissue deformation.

The simulation of tissue deformation is termed a forward problem. There are many

different finite element configurations that can be used to simulate tissue deformation,

as shown in Figure 2-4. In Part A, the bottom of the tissue is given a known upwards

displacement while the probe is held fixed. The black box represents the elastography

region of interest. In Part B, a force is applied to the probe and the bottom of the

phantom is constrained in the vertical direction. In Part C, the region of elastographic

interest is the only part of the phantom that is modeled. This configuration is often

used in literature, but the corresponding boundary conditions applied in the inverse

problem will be more accurate than those in realistic experiments. In Part D, the

configuration that is used throughout this thesis, the full phantom is modeled and the

force is applied over the entire top face of the phantom. The bottom of the phantom

is constrained in the vertical direction. Configuration D also most closely mimics the

physical experiment that is discussed in Chapter 3.

A Matlab program called Field II is used to generate the simulated B-Mode images

[64, 65]. The nodal coordinates of a finite element model of the tissue are used for the

initial B-Mode image generation, with scatterers randomly distributed throughout

the simulated phantom. Similarly, the deformed nodal positions of the finite element

mesh are used for the final B-Mode image generation. In the theoretical ultrasound

generated in this thesis, the center frequency is 5 MHz. Speed of sound within the

tissue is assumed to be 1540 m/s.

2.1.3 Displacement Estimation Overview

To proceed with solving the elastography inverse problem, tissue displacements must

first be found from the two B-Mode images. The tissue displacements are estimated

using a Matlab code developed by Shih-Yu Sun [66, 67]. The code implements a

coarse-to-fine cross-correlation block-matching method to determine the displacement
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Figure 2-4: Different configurations that can be used when simulating tissue defor-
mation in the forward problem. In Part A, the bottom of the phantom is given a
prescribed displacement. In Part B, the probe is given a known distributed force. In
Part C, the entire phantom is the region of interest in elastography. In Part D, a rigid
plate on the top of the phantom pushes on the phantom and the region of interest in
elastography is smaller than the entire phantom.

that the tissue underwent. The algorithm performs median filtering on the displace-

ment and strain fields in order to ensure smoothness of the result. The output of

the program is an axial displacement field, a lateral displacement field, and an axial

strain field, all displayed on the initial configuration of pixels. The elastic property

estimation is highly sensitive to displacement estimation.

2.1.4 Optimization Techniques

The nonlinear optimization problem can be posed as follows:

min (ui - uk)T (ui - Uk) (2.1)
El ... ,Em

where E, is the elasticity of finite element j, m is the total number of finite elements,

'i is a vector of nodal axial displacements obtained from the finite element analysis,

and Uk is the vector of axial displacements obtained from comparing B-Mode images

and interpolating the displacement field onto the finite element node locations.
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This optimization problem is solved in Matlab using an in-house nonlinear Levenberg-

Marquardt optimization scheme. The update step, Ax, is

AX = (JTj + ,)- 1 (jT (Ui - Uk)) (2.2)

so that the new elasticity distribution can be found

Eu = E, - Ax (2.3)

In these equations, J is the n x m Jacobian matrix, n is the total number of nodes,

I is the m x m identity matrix, Eu is the updated elasticity vector, E, is the current

elasticity vector, and y is the Marquardt damping parameter [52, 68]. The ith position

of the elasticity vectors contain the elastic modulus for the ith finite element, as

numbered by the finite element program. The Marquardt damping parameter in

Equation 2.3 begins at 0.01 for each iteration and is dynamically varied within the

algorithm in order to yield ideal steps. The parameter is decreased by a factor of 2

to yield larger steps approaching a Gauss-Newton method if such a step will continue

to decrease the objective function and is increased by a factor of 2 to yield smaller

steps approaching a Gradient-Descent method if it is difficult to find a pathway to

minimize the objective function [69].

After each step is calculated, the Ax vector is processed. If any element in the Ax

vector is too large, the step amount is reduced while maintaining the optimal step

direction dictated by the update equation.

The Jacobian matrix is defined as

aul anun
aE1 a Em

J = : : (2.4)

E1 ... Em

and is calculated in steps. The elastic modulus of each element is successively varied

by 15%, the new finite element model is run for each variation, and the resulting
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axial displacements are recorded in the columns of an n x m matrix, Jp. An n x m

matrix of displacements, Umat, is made; each column of Umat is the same and equal to

the displacements resulting from a finite element analysis with the current elasticity

vector. A backward difference method then calculates the J matrix,

J = Umat -J (2.5)
0.15 *E

This J matrix is used in Equation 2.2. Because the Jacobian calculation requires

successively varying each element's elasticity and running the finite element model,

this calculation is the most computationally expensive portion of the algorithm.

It has been demonstrated in the literature that multiple image pairs can increase

the accuracy of common elastography algorithms [70]. In this thesis, multiple image

pairs are implemented into the objective function and Jacobian. The optimization

equations are altered accordingly. For three image pairs, the displacement vector

becomes

U = [U ,...U a ,U ,...U b )U ,..,)U T (2.6)

where ua to ua are the axial displacements obtained using the first image pair, ub

to ub are the displacements obtained using the second image pair, and uc to uc are

those corresponding to the third image pair. The 3n x m Jacobian matrix becomes

09Ula 4
9

Ula
6E1  ... Em

_una _
9Una

9E 1  ... aEm

&ulb aulb
&E1  ' &Em

J =(2.7)
6 Unb &Unb
0E 1  ... Em

aUlc 19UlC

... ' Em

aUnc Ounc
\E 1  ... Em/

The size of the elasticity vector remains unchanged because the mesh is identical
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Figure 2-5: Illustration of the multiscale approach, which automatically refines the
finite element mesh as shown.

for each image pair. For this reason, each image pair consists of a shared initial,

undeformed image. Note that because each matrix changes size accordingly, the

update step in Equation 2.2 does not change.

2.1.5 Multiscale Approach

In all elastography results presented in this thesis, unless otherwise stated, a multi-

scale approach is taken to solve the inverse problem discussed above. In this approach,

the inverse problem is initially solved on a coarse mesh, and the solution is projected

and interpolated onto a finer mesh. The solution to the inverse problem is obtained on

this finer mesh, and subsequently interpolated onto an even finer mesh. The process

continues as the mesh becomes finer and the resolution of the elasticity distribution

increases. This process is demonstrated for a heterogeneous simulated phantom in

Figure 2-5, where the upper left hand mesh is the elastography solution on a coarse

mesh before being refined and successive images show the solution on finer meshes

obtained with the multiscale approach.

The mesh automatically refines if one of three conditions are met. The first

condition is if the objective function either doesnt change or actually increases as
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a result of the Levenberg-Marquardt method; this indicates that a local minimum

might have been reached. The second condition is if the objective function changes

by less than a certain percentage over successive iterations. The final condition is if

the number of iterations reaches the maximum allowed by the program.

This multi-scale approach has advantages over many existing methods. Using

the solution of the inverse problem on coarse meshes as an initial guess on increas-

ingly finer meshes reduces the number of iterations, and thus the number of Jacobian

calculations, that are needed to solve the problem with high resolution. This is

especially important because the Jacobian calculation is the slowest part of the al-

gorithm. The reduction of iterations using high-resolution finite element meshes is

compounded with the fact that the finite element model runs much more quickly for

coarse meshes. In a clinical real-time application of elastography, these considerations

might be important.

2.1.6 Smoothing

Unless otherwise stated, smoothing of elasticity values is used after each iteration in

order to ensure a physically reasonable solution to the inverse problem. Smoothing

is applied according to the algorithm

Ee = (1 - )Ei + Z Ei (2.8)
n=1

presented by Doyley et al. [52]. In this equation, Ei is the current elastic modulus

of finite element i, EWew is the smoothed elastic modulus of finite element i, and 6

is the smoothing parameter. The summation is over the elements adjacent to finite

element i, p is the total number of elements adjacent to finite element i, and Er is

the elasticity of the nth adjacent element to finite elment i. In this thesis, 0 is 0.25

unless otherwise stated.
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2.1.7 Starting and Ending Point

An initial guess must be chosen as a starting point from which the algorithm can pro-

ceed. Since it is known that, assuming a uniform stress distribution, the elastogram

will be similar to the strain image within a constant multiplying factor, the strain

image could be used as the starting point. However, in order to test the validity of

the algorithms, a constant elastic modulus distribution is used as the starting point

in this thesis.

The program will stop running if the objective function is less than 10-6, which

indicates convergence of the algorithm. It will also stop if the maximum number of

refinements have been reached or if computational requirements become too great

for the algorithm to proceed. Further, the program can be ended by the user if the

amount of time taken by algorithm is deemed too long.

2.1.8 Error Calculation

While there are many potential error calculations that can be investigated, the two

main error estimates considered in this thesis are that of the objective function and

of a percent error on known parameter values. That is, the value of the objective

function, which is to be minimized, is an estimate of error between the known dis-

placements and the calculated displacements. Further, when the mean elastic modu-

lus of the tissue should be a known value, a percent error is calculated with respect

to this value.

2.1.9 Arterial Stiffness and Pressure

The algorithms described above are applied to estimate arterial stiffness and pressure

in a simulated phantom. In such an application, the pressure and arterial wall stiffness

are treated as variables over which optimize, using an approach similar to that used

to optimize each finite element's elastic modulus. The E vector discussed in Section

2.1.4 no longer represents just elastic moduli, but also pressure, P, and arterial wall

44



stiffness, A. The vector is written as

E = [E1, .. . Em, P, A] (2.9)

The Jacobian matrix becomes

/&Ui Oup 9U 9u,
0E1  ''' OEm OP aA

J= j (2.10)

1U_.1 au, au" Ou,
0E 1  ''' OEm OP aA/

so that Equation 2.2 now predicts the update step for arterial wall stiffness and for

pressure, in addition to finite element elastic modulus. Note that in Equation 2.2,

the identity matrix now has a size of (m + 2) x (m + 2).

Pressure and arterial wall stiffness are not included in the smoothing that occurs

after each iteration but these variables are given upper and lower bounds, which are

enforced during each iteration while maintaining the optimal step direction.

2.2 Finite Element Implementation

2.2.1 Boundary Conditions

The boundary conditions in the finite element models solved throughout the inverse

problem are the calculated axial displacement on the left, right, and bottom of the

tissue, with one node on the bottom surface constrained horizontally to prevent rigid

body motion. Note that lateral displacements are not used as boundary conditions

because ultrasound is less accurate in the lateral direction than in the axial direc-

tion and therefore, the displacement of the tissue in the lateral direction has much

more error than the tissue displacement in the axial direction. The measured force

is applied as a pressure boundary condition on the top surface of the tissue. These

boundary conditions can be visualized as demonstrated in Figure 2-6. The displace-

ment boundary conditions applied in the finite element problem were calculated from
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Figure 2-6: Boundary conditions on the finite element model used in the inverse
approach.

the comparison of the two B-Mode images, and thus, the boundary conditions contain

inherent error in them. This will affect the resulting elasticity map.

2.2.2 Modeling of Artery and Blood

When blood pressure and the arterial wall are included, the geometry of the simulated,

forward problem can be modeled as in Figure 2-7. The black box in this figure

represents the region of interest and geometry of the inverse problem. This geometry

can be modeled in finite elements in a number of different ways, as shown in Figure 2-8.

In the first configuration, the artery is given a finite, known thickness and is modeled

with plane strain elements. In the second, the artery can be given an unknown

thickness and can be modeled with plane strain elements. Finally, the artery can

be given an infinitesimal thickness and modeled with truss elements. Except where

otherwise indicated, both the forward problem and the inverse problem presented

in this thesis model the artery using the third configuration; that is, the artery is

modeled with two-node truss elements.

The blood pressure is modeled as an orthogonal pressure boundary condition

on the surface of the vessel directed towards the tissue. The fluid and associated

Navier-Stokes equations are not modeled and it is assumed that the blood pressure
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Figure 2-7: The simulated, forward problem geometry for the arterial wall and blood

pressure estimation problem.
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Figure 2-8: Different modeling approaches for the artery during the inversion process.
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is uniform over the cross-sectional view of the vessel. Thus, turbulence in blood flow,

fluid boundary effects, and other fluid-based phenomena are all not considered and

the boundary condition is only used.

2.2.3 Automatic Meshing

A high quality quadrilateral mesh, with no significant distortion, is needed to pro-

duce accurate finite element results [71]. Quadrilateral mesh generation occurs within

Matlab. For the rectilinear grid corresponding to traditional tissue, this mesh gener-

ation process is trivial. When the vessel is included in the problem, the quadrilateral

mesh generation becomes more complicated. The generation method used is summa-

rized in Figure 2-9. A preliminary rectilinear grid is made over the region of interest,

shown in Step 1 of the figure, such that the circle is completely conscribed within

elemental boundaries. In Step 2, elements that make up the bounding box of the

vessel are removed from the mesh and, in Step 3, the nodes of the elements adjacent

to the vessel are projected onto the surface of the vessel. This yields an initial mesh

with highly distorted elements near the vessel. In Step 4, mesh smoothing techniques

are applied to the mesh in order to reduce the number of distorted elements and to

promote uniformity [72].

The interior nodes of the mesh are smoothed using a modified Lagrangian method

that has been described in the literature [72, 73]. The nodes on the boundary of the

vessel and the boundary of the region of interest are not smoothed. In Figure 2-10,

a typical interior node smoothing situation is demonstrated, where Ni is the node

to be smoothed and none of the elements connected to node Ni touch a boundary.

In this figure, Ni is at location (xi, y2), and the vectors V1, . . . , V4 point from node

Ni to the nodes that are connected to node Ni. In this case, a contribution vector

Cj is equal to the V1 vector. The difference between these two vectors is apparent

when smoothing the nodes that are connected to the boundary, as described in the

next paragraph. The change in position, Ai, of Ni during the smoothing process is
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Figure 2-9: Mesh generation steps.
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Figure 2-10: Diagram of a typical smooth of an interior node.

calculated as a weighted average of the C vectors,

(2.11)Aj = (Ax, AY) = _______

zi=1 |Cic

and the new location, (xze", ye') is then found by adding this vector to the current

location of Ni

(Xnew new) = (Ax, z ) + (xi, ys) (2.12)

Figure 2-11 shows a typical case where the interior node to be smoothed is con-

nected to elements at the boundary of the region of interest. The algorithm described

here is also applicable to nodes connected to elements at the boundary of the vessel.

The purpose of using a different smoothing algorithm for this case is to ensure per-

pendicularity of element edges with respect to the boundary; this perpendicularity

has a great effect on overall mesh quality. In this figure, solid lines represent ele-
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ment boundaries and solid dots represent element nodes. Ni is the node that will

be smoothed, pi is the vector from the boundary node Nj to Ni, pi+1 is the vector

from Nj to one diagonally located node, and pi-1 is the vector from Nj to the other

diagonally located node. From these base vectors, PB1 is calculated as the angular

bisector of vector pi-1 and pi+i; the length of PB1 is not important. A vector, PB2

is now drawn in the direction bisecting vectors pi and PB1. Point Q is located along

the extended PB2 vector, at the intersection of a line drawn between the two nodes

diagonal to node Nj. This line is drawn with fine dots on the figure and point Q
is labeled. The distance between Q and N, is LQ, which is not shown in the figure.

A distance LD is calculated as 1.5 times the maximum distance between connected

nodes on the boundaries in Part B of Figure 2-9; boundaries included here are those

of the region of interest as well as of the vessel. From these values, the length of

vector PB2 is calculated as

LQ + LD if LD > LQ
|PB21 2-

LD else

Recall that V is the vector pointing from node Ni to the connected node in question.

Then, C, is calculated as

C3 = V + A C3 (2.14)

where

AC, = PB2 + P (2.15)

For cases where Nj does not lie on the boundary of the region of interest or vessel,

ACj is 0. With all C, vectors calculated for a particular node, Equation 2.11 can be

used in conjunction with Equation 2.12 to find the smoothed location of the node.

The mesh smoothing techniques described above are applied 10 consecutive times

in order to yield a stable mesh. Note that while the paving method, or another

quadrilateral meshing method, can be used to appropriately mesh the region of in-

terest, the method described above quickly yields a sufficiently accurate mesh for the
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Figure 2-11: Diagram of a smooth of an interior node that is attached to an element
on the boundary of the region of interest or of the vessel.
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purposes of elastography while using a relatively simple code.

2.2.4 Integration with Abaqus

The commercially available finite element program Abaqus is used to solve the inverse

problem. The optimization code in Matlab is coupled with Abaqus to allow a program

that runs with no user interaction. A materially linear, geometrically nonlinear,

analysis is completed with linear quadrilateral plane strain elements. Strains that

are out of the plane are assumed to be zero so that two dimensions are used for the

finite element model. The material is assumed to have a Poisson ratio of 0.495, which

mimics the near-incompressibility of biological tissue. It is important to note that

while a linear elastic material law is assumed throughout this thesis, the algorithms

apply to other constitutive laws as well, including the suite of hyperelastic models.

2.2.5 Integration with an In-House Finite Element Code

In addition to the ability to couple with Abaqus, there is the option of using an in-

house finite element program. This finite element code, written in Matlab, solves the

associated finite element equations using a plane strain assumption and using linear,

four-node isoparametric quadrilateral elements with a mixed displacement/pressure

formulation. The details of this formulation can be found in Finite Element Proce-

dures by Bathe as the 4/1 displacement/pressure formulation [71].

The main advantage of this method is that there is no need for the license checks

that are required when using commercial finite element programs. The code can also

be smoothly integrated into elastography without writing and reading lengthy input

and output files. However, the main limitation of this method is that the current

code cannot run nonlinear analyses and thus it is limited to a small deformation

finite element analysis. This is a significant limitation given the relatively low elastic

modulus of biological tissues. Further, the speed advantage of this Matlab based

implementation is lost as the mesh becomes fine because large matrices are generated

and must be factored.
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The finite element code in Matlab yields similar results to those obtained with

Abaqus. In Table 2.1, the Matlab code and Abaqus are run using the same model

parameters, and the axial displacement results are compared. The comparisons are

completed on a phantom with a uniform elasticity distribution, a phantom with a

pressure inclusion, and a phantom with an artery modeled with plane strain elements

in both analyses. While the Matlab code is restricted to a linear analysis, Abaqus

analyses are run using both a linear formulation and a nonlinear formulation. The

maximum percent difference between the axial displacements and the mean percent

difference between axial displacements are shown in the table. The percentage of

nodes above the mean percent difference gives an idea of the distribution of errors

between the finite element analyses.

2.3 Reference Pressure Elimination

The methods described in the previous sections are applicable when a reference pres-

sure is known. This section describes the origin of the need for a reference pressure

and suggests a method to eliminate the need for such a reference pressure.

2.3.1 Coordinate Optimization Theory

Physically, an artery is initially loaded with a particular pressure and the pressure

load changes to a different pressure along the pressure pulse. Thus, physiologically,

the artery is never in an unloaded state, as shown in Figure 2-12. In the figure, p1

and P2 represent any two pressures on the pressure pulse curve, P, is the pressure

inside the vessel, and Ft is the force from the probe on top of the phantom. Geometry

1 is defined as the geometry corresponding to a vessel pressure of pi and Geometry

2 is the geometry corresponding to the vessel pressure of P2. Both Geometry 1 and

Geometry 2 in Figure 2-12 can be determined from ultrasound images and they can

also be obtained in simulation through the forward problem shown in Figure 2-13.

While the artery is never unloaded physiologically, finite element models are al-

ways initialized from an unloaded state, then loads are applied. Thus, if pi is assumed
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Model Type ~ Matlab Abaqus Max. Percent Diff. Mean Percent Diff. _[Percent Nodes Above Mean

Uniform Linear Linear 41.5 0.595 17.8
Uniform Linear Nonlinear 20.7 0.307 17.0

Pressure Linear Linear 1513 12.6 13.6
Pressure Linear Nonlinear 35532 92.3 9.88

Pressure and Artery Linear Linear 837 8.85 21.4

Pressure and Artery Linear Nonlinear 21820 40.4 7.31

Table 2.1: Comparison of the in-house finite element code and the finite element package Abaqus.
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Figure 2-12: Clinically relevant physical problem.
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Figure 2-13: Forward problem, showing the unknown initial geometry.

to be a known reference pressure, the methods described in previous sections can be

applied to estimate the entire pressure pulse curve quantitatively. However, if no

point of the pressure pulse curve is known, the unloaded artery must be modeled

in order to estimate the pressure pulse curve quantitatively. Because the unloaded

artery is not a physically relevant condition, it is obtained through an optimization

scheme.

In other words, the methods described in the previous sections can be applied

to obtain the AC portion of the pressure pulse curve. However, without a reference

pressure, the curve has an unknown DC offset. The DC offset, and thus a reference

pressure, can be assumed known as in the previous sections, or it can be obtained

through the optimization scheme described here.

The initial, unloaded geometry is the variable over which optimization occurs, and

the objective function relies on a comparison between the Geometry 1 that is visible

with an ultrasound probe and the Geometry 1 that is a result of the current value of

the variable. Specifically, the x and y coordinates of the nodes in the finite element
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mesh in the unloaded condition are optimized over during the solution to the inverse

problem. The objective function is

min (ci - ck)T (ci - c ) (2.16)

Here, the 0 superscripts represent the initial geometry, the 1 superscripts represent

the Geometry 1, (xq, y9) are the unknown x and y coordinates of node j in the initial

geometry, n is the total number of nodes, ci is the known coordinates of Geometry

1, and cl is the Geometry 1 coordinates that result from a finite element analysis

completed on the current initial geometry. The vectors cl and ck are of the form

[xl, ... , i, yX , ... , y]. The current guess of initial geometry, is defined as

0 = I, . . . y .(2.17)

The update step, Ac, for this objective function is

Ac = (JT J + ,I)- (jT (ci - ci)) (2.18)

so that the updated initial geometry coordinates, c0, can be found

c =c - Ac (2.19)

In these equations, p is the Marquardt parameter as described in the previous sections,

I is the 2n x 2n identity matrix, and J is the Jacobian, defined as

OXaxi axl a1

(2.20)
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Figure 2-14: Workflow of the proposed optimization approach.

This Jacobian is evaluated using a backward difference method similar to that de-

scribed in the previous sections,

Xmat - Jpc
J = (2.21)0.15

where Xmat is a 2n x 2n matrix whose columns are the same and equal to cl, and

Jp, is a 2n x 2n matrix whose ith column is a vector of the Geometry 1 coordinates

resulting from a 0.15 mm change in the ith element of c0.

The workflow for the inverse approach is shown in Figure 2-14. As seen from the

figure, the optimization of the coordinates is separate from and occurs before the opti-

mization of the elasticity and pressure. The optimization over pressure and elasticity

takes the formulation described in the previous sections. After the mesh is refined,

the initial geometry for that mesh is found by interpolating onto the previously found

initial geometry. Initial feasibility of this approach is established using simulation in

Chapter 4.
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2.3.2 Initial Guess and Boundary Conditions

An initial guess of the unloaded geometry is obtained by taking the known Geometry

1 corresponding to a pressure pi and applying pi on the vessel wall directed inward.

The coordinates of the nodes at the end of this finite element analysis are taken to be

the initial guess for the optimization. This initial guess is much closer to the solution

than a random guess.

In the results presented in this thesis, the boundary conditions on the finite el-

ement problem during the coordinate optimization are assumed to be known and

equal to fixed boundary conditions on the bottom surface of the region of interest.

The elasticity of each element and the pressure within the vessel are set to the cur-

rent estimate of those quantities; thus, error is introduced by incorrect values in these

quantities.

2.4 Summary

This chapter discussed the theoretical details behind elastography, including solving

the inverse problem. The objective function and the Levenberg-Marquardt method

were introduced, along with error estimates and other optimization details. The mul-

tiscale approach as well as multiple image pairs were discussed. The inclusion of

blood pressure and arterial wall stiffness into the optimization approach was detailed.

The modeling of blood pressure and arterial wall stiffness was examined and the

specifics of the finite element model were discussed, including the mesh generation

techniques, boundary conditions, and solution techniques. Finally, a coordinate opti-

mization approach, which eliminates the need for a reference pressure, was discussed.

The algorithms and information in this chapter are directly used in Chapter 4 and

Chapter 5 where the simulation and experimental results are presented. The next

chapter details the physical experiments that were performed.
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Chapter 3

Experimental Details

3.1 Introduction

This chapter gives details about the experimental setup that is used to confirm the

algorithms presented in Chapter 2. The experimental workflow that is used in this

thesis is presented in Figure 3-1. This is similar to the workflow used for simulated

data, but the B-Mode images are displayed by the ultrasound probe and the force is

measured using an ultrasound probe attachment, as described below.

3.2 Experimental Setup

Recall that elastography requires axial displacement information and a known force

that is used to compress the tissue. To obtain the displacement information, the

cross-correlation block matching method described in Chapter 2 is applied to data

captured with an ultrasound probe. The data is captured by a Tersason 3000t system

that uses a linear 7L3-V Terason ultrasound probe (Teratech, Burlington, MA, USA).

The probe has 128 elements, images at a center frequency of 5 MHz, and images up

to a depth of 5 cm. A high fidelity, small form-factor device is attached to the

ultrasound probe in order to measure the force that is applied to the phantom [74].

The attachment is 3D printed with acrylonitrile butadiene styrene (ABS) plastic

and uses a carefully situated force gauge to measure the force and record it using
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Figure 3-1: The basic experimental workflow used in this thesis.

a Labview Virtual Instrument (VI) (National Instruments, Austin, TX, USA) [74].

In the phantom studies, the probe is attached to a linear slide that keeps the probe

in a stable, vertical position and that measures and records the displacement of the

probe in microns. Figure 3-2 shows a detailed view of the ultrasound probe with

the force-measurement attachment and the linear slide. The probe attachment and

data acquisition equipment were created in previous work by Matthew Gilbertson.

Commercial ultrasound gel is used as a coupling medium between the probe and

the phantom. An acrylic compression plate, with a hole that fits closely around the

ultrasound probe, is used at the top of the phantom to eliminate edge effects by

ensuring that uniform stress is applied from the ultrasound probe. The entire setup

is shown in Figure 3-3.

The experimental apparatus was also used for compression tests. That is, the force

measurement and displacement measurement were used, along with the dimensions of

the phantom, to calculate stress-strain curves. The elastic modulus is determined as

the slope of these curves. Typical force-displacement and stress-strain curves obtained

using this set-up are shown in Figure 3-4.

The B-Mode images displayed by commercial systems are a result of proprietary
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Figure 3-2: A detailed view of the ultrasound probe in the experimental setup.

Figure 3-3: The basic experimental setup used in this thesis.
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beam forming algorithms on the raw channel data obtained by the transducers. B-

Mode images are the Hilbert transform of the radio frequency (RF) data, which is

data corresponding to an intermediate point in the data processing chain. Because

RF data is obtained before the B-Mode images, it can be thought of as a more

pure data source than the B-Mode images themselves. For this reason, and due to

the limitations of the ultrasound system, it is the RF data that is experimentally

captured and subsequently analyzed.

To record the RF data from the ultrasound probe, Bill Vannah and Shih-Yu Sun

developed a Microsoft Visual Studio C++ program that uses the Terason software

development kit (SDK). During RF data collection, one to three zones can be captured

by the program. The minimum amount of data to form a B-Mode image is captured

when one zone is picked, while overlapping data is present when three zones are

picked. While the overlapping data means that the image contains less error, one

zone is chosen in order to simplify the subsequent data analysis and reduce ultrasonic

reflections from the bottom of the phantom. The Labview VI, Terason SDK interface,

and sample B-Mode image are shown in Figure 3-5.
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Figure 3-5: Screenshot of the Labview VI, the Terason SDK based program used to
gather data, and a sample B-Mode image.

3.3 Phantom Construction

3.3.1 Materials

Many different phantom materials were investigated for use in the experimental stud-

ies. Gelatin, agar, gelatin/agar, PVA-Cryogel, copolymer, and commercial phantoms

were all experimented with during the preparation of this thesis. These phantom

types are briefly discussed below, including a review of the advantages and disadvan-

tages of each material.

Gelatin-based phantoms are commonly used in the elastography literature and

are relatively cheap to make. While unflavored Knox gelatin (Associated Brands

Inc., Ontario, Canada) can be used, 300 bloom gelatin (Porcine skin, Type A, Sigma-

Aldrich, MO USA) was shown to make more consistent, better quality phantoms.

Importantly, Knox gelatin requires refrigeration, while the high quality gelatin does

not. In order to make the phantoms, water was mixed with gelatin powder and raised

to a temperature just below the boiling point of water in order to allow the powder

to dissolve. The liquid is lowered to room temperature, at which point the Sigma-

Aldrich gelatin will be a solid material while the Knox gelatin will undergo further
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cooling in a freezer in order to solidify. While gelatin phantoms allow for very high

elastic modulus contrast ratios to be achieved between inclusion and bulk material,

these phantoms tend to be very fragile.

Agar phantoms, made from agar powder (Alfa-Aesar, MA USA), are also com-

monly used in the elastography literature. In order to make these phantoms, agar

is mixed with water and the temperature is increased to a point just below boiling.

After clarification of the mixture, the liquid is poured into the mold and allowed to

cool. When it reaches room temperature, it is a solid. For agar phantoms, there is no

need for refrigeration [75]. These phantoms allowed for excellent ultrasound trans-

mission properties and exhibited similar advantages and disadvantages as gelatin but

were slightly more robust.

Agar-gelatin phantoms use a combination of both agar and gelatin [76]. Agar and

gelatin are mixed with water and then raised to a temperature just below boiling

to clarify the mixture. The mixture is a solid when it is allowed to reach room

temperature. Such phantoms are easy to make, are of very high quality, and are well

suited for elastography data collection. The agar powder contributes nonlinearity to

the stress-strain curve, while the gelatin powder contributes linearity. Even with the

agar's nonlinearity, the elastic modulus can still be accurately estimated for small

strains of 5 % or less.

Another material investigated was PVA-Cryogel, which has been successfully used

in the literature as a ultrasound phantom [77]. This material is made by mixing

polyvinyl-alcohol (Alfa-Aesar, MA USA) in water, heating the mixture in order to

clarify it, then pouring the mixture into a mold, and allowing the mixture to undergo

a series of 24-hour freeze-thaw cycles. As the number of cycles increases, the phantom

material becomes more stiff. While the material allows for a very high elastic modulus,

these phantoms are time consuming to make and the final elastic modulus is very

sensitive to the rate of cooling as well as the geometry of the mold.

Copolymer-in-mineral oil phantoms were also investigated, using a formula sim-

ilar to the literature [78, 79]. These phantoms are a mixture of white mineral oil

90 (Clarion Lubricants, TX USA) and styrene-ethyelene-butene-syrene triblock copy-
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olmer (Kraton Polymers lie, OH USA). In brief, the two materials are mixed, brought

up to at least 175'C in order to clarify the mixture, and the honey-like liquid is cooled

in order to solidify. Copolymer phantoms have unprecedented durability, but require

very hot temperatures to make and can only yield elastic moduli values up to a certain

point.

Commercially available ultrasound elastography phantoms were also investigated.

The Cirs (Computerized Imaging Reference Systems) breast phantom (Model 059A,

Cirs, VA USA) that was used is made of a patented material called Zerdine [80].

The phantom both cysts and stiff inclusions that mimic features commonly found

during ultrasonic breast exams. This phantom material was consistent and of very

high quality. However, because the Cirs phantom that was available for study did

not have precise, published elasticity values, the utility of this phantom is limited to

a qualitative examination of the elastography algorithm.

Scatterers are used in order to increase the echogenicity of the homemade phantom

materials and allow for high quality ultrasound images to be acquired. Small graphite

particles (crystalline, -300 mesh, 99%, Alfa Aesar, MA USA) are used as scatterers

in these experimental studies with a concentration of approximately 2 % by weight.

N-Propanol, which increases the speed of sound within a phantom material, was used

for all gelatin-based phantoms at a concentration of 2 % by weight.

3.3.2 Molds

The phantom molds discussed address four different model configurations: homoge-

neous phantom, heterogeneous phantom, pressure phantom, and finally, pressure and

artery phantom. Phantom molds were constructed and machined with the help of

Matthew Gilbertson.

Note that in each of the homemade materials discussed above, a liquid is clarified

at an elevated temperature then poured into a mold while it is still a liquid. The

liquid becomes a solid as the temperature decreases. Because of this commonality

between each of the materials, the molds discussed in this section can be applied to

each of the homemade materials described above.
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Figure 3-6: Mold used for the compression test phantoms, as well as for the homoge-
neous phantom.

The first configuration is a uniform, homogeneous phantom. The aluminum mold

is shown in Figure 3-6. To make the phantom, the liquid is simply poured into the

mold and allowed to congeal. After congealing, it is carefully removed for testing. The

diameter of the mold is 94.77 mm and the heights of the phantoms are approximately

60 mm. Compression test phantoms were also made using this homogeneous mold,

in order to have a ground truth value to which elastography can compare. For the

homogeneous phantom construction, the compression test phantom itself was used

both for compression tests and elastographic measurements.

The next phantom considered is a heterogeneous phantom, where a stiff inclusion

is imbedded in a softer matrix. In order to make these phantoms, the bulk material

was made and poured into a mold that contained a cylindrical rod, see Figure 3-7.

After the material was allowed to cure, the cylindrical rod was removed, and the

stiffer inclusion material was then made and filled into the hole in the bulk material.

Compression test phantoms for both the bulk material and the inclusion material

were made concurrently with the corresponding part of the phantom.

The next type of phantom examined was one with a negative in the phantom to

allow space for water. This phantom models the case where no artery is present, but
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Figure 3-7: Mold used for the heterogeneous phantom. The bulk material is poured
into the mold and allowed to cure. After solidification, the rod is removed and the
inclusion material is poured into the resulting hole.

a pressure change can occur. A mold, as shown in Figure 3-8, is made such that the

phantom contains a hole for water and hose connectors to allow water to be efficiently

piped into the phantom. The liquid phantom material was poured into a mold which

contained a rod that formed the lumen. Once the material solidified, the rod was

removed from the phantom, the phantom was removed from the mold, and hoses

were attached to the embedded connectors. Water pressure changes were measured

as changes in the height of a water column. A compression test phantom was made

using the same material as the elastography phantom.

A phantom is also made to investigate the case where an artery is present, in addi-

tion to a bulk material and a water pressure change. Figure 3-9 shows a schematic of

the water pressure phantom with an artery included. In order to make this phantom,

the artery is first made using the cylindrical mold shown in Figure 3-10. The two

sides are tightly taped together, the liquid is poured in the larger cylinder, then the

small rod is placed inside the mold so that the artery forms between the rod and outer

cylinder. The inner rod is constrained to be concentric with the outer rod using a

machined steel cap on the bottom and a Teflon centering cone at the top. Pam spray

is used before the liquid is poured, in order to make it easier to remove the fragile
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Figure 3-8: Mold used for the water pressure phantom.
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Figure 3-9: A schematic showing the experimental
lumen, and bulk material.

setup that includes the artery,

artery from the mold. The sides are separated once the artery has solidified. The

artery is then removed and placed with a similar configuration to the no-artery water

pressure phantom discussed above. Figure 3-11 shows a cross-section of the mold,
with the artery made and connectors in place. The other half of the mold is attached,
the mold is water proofed, and the bulk is then poured around the solid artery. Figure

3-12 shows a view of the actual phantom during experimental testing. Compression

test phantoms are made for both the artery material and the bulk material.
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15.6

Figure 3-10: A Picture of the artery mold.

Figure 3-11: A cross-sectional picture of the bulk mold showing both the artery and
the hose connectors.
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Figure 3-12: Picture of the experimental artery phantom during testing.

3.4 Summary

This chapter discussed the experimental parameters that were adhered to when gath-

ering data. Details were provided about the experimental setup and equipment used.

The materials that were used to make the ultrasound elastography phantoms were also

discussed. Finally, the phantom molds used were shown and discussed. In Chapter

5, these experimental ideas are applied and the results are shown.
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Chapter 4

Simulation Results and Discussion

In this chapter, simulation results are presented. Homogeneous and heterogeneous

phantoms are discussed with respect to a number of different model configurations,

including a 25 element highly idealized model, a model based on the known finite

element displacements, and a model based on displacements estimated from B-Mode

images. Pressure phantoms and pressure/artery phantoms are discussed using a 24

element highly idealized model and a model based on displacements from B-Mode

images.

4.1 Homogeneous Phantoms

To prove the initial validity of the elastography algorithm, a highly idealized simu-

lation is run with the geometry as shown in Figure 4-1. In this simulation, a mesh

of 25 elements, each with an elastic modulus of 4 kPa, undergoes a deformation

due to a 5 x 105 N force per unit length. In the elastography run for this model,mm

a multiscale approach is not used, and the elastography mesh is constrained to be

equal to the forward problem mesh shown in Figure 4-1. Further, in order to see the

true performance of the optimization approach, no smoothing algorithms are applied.

In this idealized case, the elastography boundary conditions consist only of those

known, fixed, boundary conditions on the bottom of the phantom. An initial elas-

ticity distribution of 10 kPa is used to begin the inversion. From these elastography
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Figure 4-1: Geometry for the highly idealized homogeneous simulation test.

parameters and the known nodal displacements, elastography is used to reconstruct

the elastic modulus of each element. The results are shown in Figure 4-2; the top

left image is the ground truth elasticity distribution while the top right image is the

elastography result. The bottom image in the figure is a plot of percent error of the

tissue's mean elastic modulus versus iteration number. The elastography algorithm

accurately predicts the overall elastic modulus to within 0.013 percent error.

After this initial confirmation of the inversion scheme, elastography is performed

with more realistic dimensions, boundary conditions, etc. In particular, elastography

is performed in simulation on homogeneous phantoms with a known elastic modulus

of 4 kPa and with dimensions of 44.45 mm by 63.5 mm. The forward problem is solved

according to the discussion in Chapter 2. A force per unit length of 5 x 10- N is

applied to the top of the phantom. Field II calculates the pre-compression and post-

compression B-Mode images, which are shown in Figure 4-3. Note that the region of

interest is centered in the rectangular phantom. While the true axial displacements

that result from the applied force are known from Abaqus, axial displacements are also

estimated from the B-Mode images. In Figure 4-4, the known axial displacements

from a homogeneous phantom are compared to the axial displacement calculated

from B-Mode images. The top line in the figure is the true abaqus displacements

while the bottom line is the displacements calculated from the B-Mode images. From
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Figure 4-2: Convergence results for the highly idealized homogeneous test. Top left:
ground truth elastic modulus distribution. Top right: elastography-based elastogram.
Bottom: percent error vs. iteration number

left to right, the axial displacement, lateral displacement, and axial strain image are

displayed.

In Figure 4-5, the objective function is plotted as a function of bulk tissue elastic

modulus. As expected, the minimum of the objective function is at the true elastic

modulus of 4 kPa using both the true axial displacements and the axial displacements

estimated from B-Mode images. Because the true displacements give a sharper curve

and a lower minimum value, it is predicted that these displacements will yield better

convergence properties in elastography.

In Figure 4-6, elastography is performed using the true displacements as the in-

put (middle) as well as with displacements calculated from B-Mode images (right).

A ground truth elastogram is also displayed for reference (left). In these results, the

full elastography algorithm was implemented as described in Chapter 2, including

smoothing, mesh refinements, boundary conditions, maximum step sizes, etc. Mean

elastic modulus as a function of iteration number is shown in Figure 4-7, for both sets
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Figure 4-5: Plot of the objective function, normalized for the number of nodes in the
mesh, versus elastic modulus for the simulated homogeneous phantom.
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Figure 4-6: Elastograms for a homogeneous simulated phantom. From left to right,
the figure shows the true elastogram, abaqus-displacement based elastogram, and
b-mode-displacement based elastogram.

of axial displacements. The convergence of the true axial displacement case is shown

on the left while the result using B-Mode displacements is shown on the right. The

true displacements allow for a final percent error of 4.03% and the B-Mode displace-

ments yield a final percent error of 16.41%. While the ground truth displacements

yield more accurate results, the B-Mode displacements also allow for correct results

to be obtained. The elastograms show a numerical ringing, whose source is likely

interpolation error in the boundary conditions used in the finite element model.

The results discussed above use one small tissue compression to obtain the elas-

tographic results. Now, multiple image pairs are used to obtain the final elastogram.

In addition to an applied force per unit length of 5 x 10-5 , the deformation of the
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0 5 10 15 20
x dimension im| i

25

i. 2kPa 25

~20
10.4 k a

15
15.6 kh.

0 5 10 15 20
x dimension mm I

25
I

10.4 kla

15.6 ki

Figure 4-8: Elastograms for a homogeneous simulated
pairs images used.

20 10.4 k Pa

15 15,6 k~la

S 5 10 15 20 25
x dinmension mii

phantom with three image

tissue as a result of a force per unit length of 10 x 10-5 N and 15 x 10-5 N are usedMM mm

in the inversion process. The relevant elastograms are shown in Figure 4-8, where the

left picture is the true elasticity distribution, the middle picture is the result obtained

using ground truth axial displacements, and the right picture is the result obtained

using displacements estimated from B-Mode images. Figure 4-9 shows convergence

plots of percent error versus iteration number for the case when three image pairs are

used. The left convergence plot corresponds to the true axial displacement informa-

tion while the right convergence plot corresponds to the B-Mode displacement case.

The elastography algorithm converges to 19.18 percent error for the ground truth

multiple image pair case and to 8.543 percent error for the multiple image pair case

with displacements calculated from B-Mode images.
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Figure 4-9: Convergence properties for a homogeneous simulated phantom with three
image pairs images used.

4.2 Heterogeneous Phantoms

The highly idealized simulation is also performed in heterogeneous phantoms. In this

case, there are 25 elements, with three elements having a higher elastic modulus than

the rest, as shown in Figure 4-10. In particular, the background material is chosen

to have an elastic modulus of 4 kPa and the inclusion material is chosen to have an

elastic modulus of 20 kPa. The inversion uses the same mesh as the forward problem

and implements all of the assumptions discussed in the highly idealized homogeneous

simulation above. Thus, this highly idealized scenario does not make use of the

multiscale approach or of smoothing methods. The ground truth elastogram is shown

on the top left of Figure 4-11, while the elastography result is shown on the top

right of the same figure. The bottom of the figure shows the convergence results.

The inclusion material is estimated to 0.018 percent error while the bulk material is

estimated to 0.0238 percent error.

The full elastography algorithm is then applied to more realistic heterogeneous

phantoms. In this phantom, a stiff circular inclusion has a diameter of 10 mm and an

elastic modulus of 20 kPa while the surrounding bulk tissue has an elastic modulus

of 4 kPa. The tissue undergoes a displacement due to a force per unit length of

5 x 10-~N . The pre-compression and post-compression B-Mode images, as a result

of the applied force, are shown in Figure 4-12 and are used to calculate displacements.

These displacements are compared to the known ground truth displacements in Figure

4-13. The top line contains the ground truth data while the bottom line contains the
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Figure 4-12: Simulated pre-compression (a) and post-compression (b) B-Mode images
for a heterogeneous phantom.

B-Mode estimated values; axial displacement is on the left, lateral displacement is in

the middle, and axial strain is shown on the right. Elastography is performed using

both sets of displacements and the elastogram results are shown in Figure 4-14, where

the left image is the known elasticity distribution, the middle image corresponds to

the ground truth displacements, and the right image corresponds to displacements

calculated from B-Mode images. The convergence results are shown in Figure 4-15,

where the left is the convergence for the ground truth displacement case, and the right

is the convergence for the B-Mode displacement estimation case. The inclusion and

bulk are estimated to within 21.7% and 8.6%, respectively, for the true displacements

and within 11.04% and 10.38%, respectively, for the B-Mode displacements. While

both the inclusion and bulk material are estimated correctly, improving the contrast

between the bulk and the inclusion will be a focus of future work.

Finally, three image pairs are used in the inversion scheme, as discussed in Chapter

2, under a loading of 5 x 10-5N 10 x 10-N, and 15 x 1 0 -5 N. The elastogram

results are shown in Figure 4-16, where the left image is the ground truth, the middle

image is the ground truth displacement result, and the right image is the B-Mode
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Figure 4-15: Convergence properties for a heterogeneous simulated phantom.
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Figure 4-16: Elastograms for the three image pair case with the heterogeneous simu-
lated phantom.

displacement result. The convergence results as a function of iteration are shown

in Figure 4-17, where the left image is the ground truth displacement convergence

results and the right image is the B-Mode displacement result. Bulk tissue elasticity

and inclusion elasticity are estimated to within 20.28 percent error and 31.61 percent

error, respectively, for the true axial displacement result and within 19.68 percent

error and 7.401 percent error, respectively, for the B-Mode displacement result.

4.3 Pressure Phantoms

In this section, as the simulated ultrasound probe compresses the phantom, there is a

pressure increase within a hole in the phantom. While the force from the ultrasound

probe is a known value, the pressure change within the hole is unknown and is to be

found using the elastography algorithm described in Chapter 2. Note that the starting

pressure for all simulations is 0 kPa; thus, a coordinate optimization approach, as
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Figure 4-17: Convergence properties for the three image pair case with the heteroge-
neous simulated phantom.

described in Chapter 2, is not needed. Further, the artery is not modeled in this

section, and therefore, this level of complexity is nonphysical but can be used to test

the algorithms. The artery is modeled in the next section.

To prove that the methods of elastography can be used to measure blood pressure,

a highly idealized case is initially examined in which a 24 element mesh contains a

square hole with pressure inside as shown in Figure 4-18. The elastic modulus of

each element is chosen to be 4 kPa while the pressure change within the hole is set

to be 0.45 kPa. Note that such a small pressure change is required for a well-posed

finite element model; higher, more clinically relevant pressure changes are examined

when an artery is included in the model. As in the idealized cases discussed in the

previous sections, the inversion uses the same mesh, same dimensions, and same

boundary conditions as the forward problem. A multiscale approach is not used, and

smoothing is not implemented in this ideal case. The elastography algorithm is run

for such a configuration and the results are shown in Figure 4-19. In this figure, the

upper left is the ground truth elastogram and the upper right is the elastography

elastogram. Note that pressure is not visualized on the elastograms even though

pressure is a variable that is optimized. Percent error versus iteration number is

shown in the bottom of the figure. The pressure is estimated to 0.457 percent error

while the elasticity is estimated to 0.136 percent error.

The next step is to relax the assumptions in the 24 element highly idealized case

above. The hole is specified to be 5 mm in radius, while the elastic modulus of each
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Figure 4-19: Convergence results for the highly idealized pressure simulation test.
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Figure 4-20: Simulated pre-compression (a) and post-compression (b) B-Mode images

for a pressure phantom without an artery.

finite element is 20 kPa and the pressure change is 1 kPa. Relevant pre-compression

and post-compression B-Mode images are displayed in Figure 4-20. Displacements are

calculated as discussed in Chapter 2 and are shown in Figure 4-21. The elastogram

results using this input are shown in Figure 4-22, where the left image is the ground

truth and the right image is the B-Mode displacement result. The convergence results

as a function of iteration number are shown in Figure 4-23. In this run, the elasticity

is estimated to within 4.26 percent error and the pressure is estimated to within 4.22

percent error.

The results of a phantom with the square hole can be compared to the results of

the phantom with the circular hole in order to approximate the error introduced by

a mesh approximation to a circle. Figure 4-24 shows a comparison of the simulation

results obtained using a square hole versus the results obtained using a circular hole.

The square hole results presented in this figure were obtained without refining the

initial mesh. In the square hole simulation, the pressure and bulk elasticity are

estimated to within 1 percent error and 5.9 percent error, respectively. From the

figure, it is clear that there is error introduced into the system by the approximation
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Figure 4-23: Convergence properties for a pressure simulated phantom.

of the circle with straight lines. This error is likely decreased by using a finer mesh

in the inversion process.

4.4 Artery Phantoms

A 24 element model is used to confirm the accuracy of the algorithms on the artery

phantom with a pressure inclusion. In this model, shown in Figure 4-25, the artery

is designated as the elements around the pressure inclusion in the material. In this

highly idealized case, these elements are plane strain elements. In this case, the

artery has an elastic modulus of 200 kPa, the pressure change is 10 kPa, and the

bulk elastic modulus is 20 kPa. The multi-scale approach is not used in this proof of

concept simulation, smoothing is also not implemented, and the boundary conditions

are specified to be exactly those in the geometry showing in Figure 4-25. Using these

parameters, the elastography results are presented in Figure 4-26. In this figure,

the ground truth elastogram is displayed in the upper left, while the elastography

elastogram is displayed in the upper right. The convergence plot, as a function of

iteration, is shown on the bottom of the figure. The artery elastic modulus, pressure,
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Figure 4-25: Geometry of the 25 element artery phantom.

and bulk elastic modulus are estimated to within 0.0108 percent error, 0.0253 percent

error, and 0.135 percent error, respectively.

The assumptions made in the highly idealized model are now lifted and the circular

artery is now modeled with truss elements in both the forward problem and the

inverse problem. In the simulated phantoms discussed here, the lumen has a radius

of 5 mm and the artery has a thickness of 1 mm. The bulk elastic modulus is 15

kPa, the pressure change is 10 kPa, and the arterial elastic modulus is 400 kPa. The

relevant pre-compression and post-compression B-Mode images are shown in Figure

4-27. The axial displacement field, the lateral displacement field, and the axial strain

field are shown in Figure 4-28. Clinically, the artery location and thickness must be

segmented automatically from the B-Mode images and displacement fields. However,

in this simulation, the artery location and thickness is known in advance and this

advance segmentation knowledge is used during the inversion process.

The ground truth elastogram is shown on the left in Figure 4-29 and the elas-
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Figure 4-26: Convergence results for the 25 element phantom with an artery present.

tography result is shown on the right of the same figure. The convergence results

are shown in Figure 4-30 as percent error versus iteration for the artery elasticity,
pressure, and mean bulk elasticity. Arterial wall stiffness, pressure, and bulk tissue

stiffness are estimated to within 8.16 percent error, 9.42 percent error, and 9.30 per-

cent error, respectively. Note that the elastography results presented here use a total

of four image pairs in the inversion process. This reduces the error in the algorithm

as discussed in Chapter 2.

4.5 Elimination of the Reference Pressure

In this section, the feasibility of the coordinate optimization approach discussed in

Chapter 2 is shown by solving the highly idealized 24 element problem. In this prob-

lem, Geometry 1 as defined in Figure 2-12 is assumed known and the coordinates of

the initial mesh are the variables over which optimization occurs. After the coordi-

nate optimization, the optimization over elasticity and pressure occurs as suggested

in Figure 2-14. As in previous sections, this highly idealized model for pressure and

elasticity reconstruction assumes known boundary conditions, no smoothing, and as-
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pressure phantom with an artery.
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Figure 4-29: Resulting elastogram for a pressure phantom with an artery.
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Figure 4-31: Elastogram for the highly idealized reference pressure free simulation
test. The initial geometry has a height of 60 mm and a width of 100 mm.

sumes the mesh does not refine as the iteration number increases. The elastic modulus

is assumed to be 4 kPa and the pressure is assumed to be 0.5 kPa. Figure 4-31 shows

the resulting elastogram, displayed on the Geometry-1 mesh. Figure 4-32 shows the

convergence results during the pressure and elasticity optimization. The pressure and

elasticity converge to within 3.63 percent error and 1.60 percent error, respectively.

4.6 Summary

In this chapter, the theory presented in Chapter 2 was applied using simulated phan-

toms and the results were presented. In particular, ultrasound elastography was

performed on four different model configurations, including on homogeneous phan-

toms, heterogeneous phantoms, pressure phantoms, and pressure-artery phantoms.

For each configuration, a proof-of-concept was displayed, in addition to results ob-

tained using more realistic displacements. The reference pressure free approach to

blood pressure estimation was shown to be feasible in a highly idealized model. In

the next chapter, experimental results will be presented.
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Chapter 5

Experimental Results and

Discussion

In this chapter, experimental results are presented for homogeneous phantoms, het-

erogeneous phantoms, pressure and bulk phantoms, and initial results are presented

for phantoms with an artery, pressure, and bulk material.

5.1 Homogeneous Phantoms

The algorithms are first applied to homogeneous phantoms made using a gelatin

material, as described in Chapter 3. In these phantoms, the true elastic modulus

was calculated as the average elasticity from 25 compression tests. For the phantom

discussed here, the average elasticity was 13.66 kPa. The Terason system is used to

capture B-Mode images of the homogeneous phantom; the pre-compression and post-

compression images are shown in Figure 5-1. Displacement is calculated from these B-

Mode images and is shown in Figure 5-2 where the left image is the axial displacement

in millimeters, and the right image is the lateral displacement. Unlike Chapter 4, there

is no ground-truth displacement with which to compare the calculated displacement.

Elastography is performed on this data and the elastogram results are shown in

Figure 5-3, where the left image is the elastic modulus obtained from the compression

test and the right image is the result of elastography. The convergence of the mean
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Figure 5-3: Experimental elastogram along with the ground truth elastogram.

elastic modulus as a function of iteration number is shown in Figure 5-4. The elasticity

of the phantom is estimated to within 5.30 percent error.

5.2 Heterogeneous Phantoms

Heterogeneous phantoms made of a gelatin/agar mixture are now considered. The

methods of Chapter 3 are used to make a phantom that contains a stiff inclusion

surrounded by a softer material. In Figure 5-5, B-Mode images are displayed for

the heterogeneous phantom. The true elasticity of the stiff inclusion was found as

the average of 25 calculations to be 126.62 kPa, and the true elasticity of the bulk

material was calculated as 35.77 kPa. Figure 5-6 shows the displacement-estimation

results where the left image is the axial displacement, the middle image is the lat-

eral displacement, and the right image is the axial strain image. Figure 5-7 shows the

resulting elastogram and the predicted elasticity distribution obtained using compres-

sion test phantoms. In this figure, the inclusion is manually segmented. Convergence

results for the elastography run are shown in Figure 5-8. The bulk tissue is estimated

to 10.46 percent error and the inclusion tissue is estimated to within 13.82 percent

error.

While these results are a typical output of the algorithm, many different phan-

tom materials were considered when making heterogeneous phantoms and most of

these materials were not suitable for elastography. Using the copolymer-in-mineral-

99



S-Bulk Elasticity
40t

30

20

10

0
4 6

Iteration Number
8 10

Figure 5-4: Experimental convergence results for a homogeneous phantom.

&5
0

4 1D

0 5 10 15 20 25 30
x dimension [mmin

I V 1.) 2U 2) 30
x dimension [mn]
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100

0

U

T



).05

15

2

x direction (mn) x dirc ion (min x dirction (min)

Figure 5-6: Displacement and strain estimation for the heterogeneous phantom.

5 10 15 20
x dimension [imn]

E 1(

2(

2

-2 7 .6 kPa

57.2 kPa

86.8 kPa

116.4 kPa

146 kPa
5 10 15 20 25 30

x dimension Irnin]

Figure 5-7: Elastogram for the heterogeneous phantom.

-Bulk Elastici
80 -Inclusion Ela

60

40

20

10 15
Iteration Number

ty
sticity

25

Figure 5-8: Convergence results for the heterogeneous phantom.

101

0)35

32

27.6 kPa ,

57.2 kPa 15

86,8 kPa 10

116.4 kPa 5

146 kPa 0j
0

I:

0

0

tJ

5

5:

- -45 ': - .

0



0-20

S0 5 2 255 to 15 20 25
x dimension Immi x dimension 1mm!

100

-. 5 17.6 kWa

2(25

20 0 .155

L~l 22.8 k'ia

5 2 5 10 15 20 25
x dimension tmm l x dimension Immi

Figure 5-9: Common error induced in experimental phantoms with inclusions.

oil phantom material, which was described in Chapter 3, the strain and elasticity of

the inclusion proved to be nonuniform even though uniformity was expected. The

nonuniformity was also present, though to a lesser degree than copolymer phantoms,

in phantoms made solely of gelatin and in phantoms made solely of agar. This nonuni-

formity of the inclusion material within the phantom is shown in Figure 5-9 where the

top left is a B-Mode image, the top right is the axial displacement image, the bottom

left is the axial strain image, and the bottom right is the resulting elastogram. The

nonuniformity is particular evident in the strain image and the elastogram.

Experiments were completed in order to determine if this error was a function

of the phantom material or a result of the algorithm itself. A commercial phantom,

as discussed in Chapter 3, was used to perform elastography where the inclusion is

known to be uniform. In Figure 5-10, a pre-compression and post-compression B-

Mode image is shown for this commercial phantom. Displacement estimation results

are presented in 5-11, where the left image is the axial displacement, the middle image
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the heterogeneous Cirs phantom.

is the lateral displacement, and the right image is the axial strain image. The output

of the elastography program is shown in Figure 5-12. These results for the commercial

phantom cannot be quantitatively evaluated because the elastic modulus of the bulk

material and inclusion are not given by the company. However, qualitatively, the Cirs

phantom does not exhibit the nonuniformity experienced with homemade phantoms.

This means that the error source is in the phantom making process rather than the
computational algorithms of elastography.

Further investigation showed that the combination of two materials using the
copolymer mixture gave many unexpected results, as shown in Figure 5-13. In this
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Figure 5-12: Elastogram for the heterogeneous Cirs phantom.

Copolymer Phantom Simulated Phantom

Figure 5-13: Results for a layered copolymer phantom. The stiff material is on the
bottom of the phantom and displacement is plotted for the center line of the phantom.

figure, a layered phantom is considered where the top half of the phantom has a

lower elastic modulus than the bottom phantom of the phantom. This phantom was

modeled in simulation and reproduced in a copolymer phantom. B-Mode images were

used to calculate the displacement field, and the figure shows a plot of one vertical

line of the axial displacement image. From the image, it is clear that when two

copolymer-based materials are present, it becomes difficult to distinguish between

the two.

With these tests, it was determined that the common error that occurred in the

phantom making procedure was likely due to the phantom material used. However,

the physical basis for these errors remains unknown. Still, the author does not rec-

ommend copolymer-in-mineral-oil phantoms for use in heterogeneous phantoms. In

fact, of all phantom materials considered, the gelatin-agar mixture allowed for the

highest quality phantoms especially with respect to heterogeneous phantoms.
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Figure 5-14: Pre-compression and post-compression B-Mode images for the experi-
mental pressure phantom.

5.3 Pressure Phantoms

A copolymer-in-mineral-oil mixture was used to make phantoms that allowed for

water pressure changes, as discussed in Chapter 3. A compression test phantom

was also made of the same material. The change in pressure is 0.157 kPa and the

elasticity is measured as 14.5 kPa. Note that such a small pressure change is needed

because of the lack of a stiff artery surrounding the vessel. Pre-compression and

post-compression B-Mode images from this phantom are shown in Figure 5-14, where

the hole is clearly visible. The results of the displacement calculation is shown in

Figure 5-15, where the left image is the axial displacement, the middle image is the

lateral displacement, and the right image is the axial strain image. In Figure 5-

16, the resulting elastogram is shown on the left while the elastogram predicted by

compression tests is displayed on the right. The convergence results as function of

iteration number are shown in Figure 5-17. The pressure and elastic modulus are

estimated to within 4.17 percent error and 5.26 percent error, respectively.
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Figure 5-15: Displacement and strain estimation for the experimental pressure phan-
tom.
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Figure 5-17: Convergence results for the pressure phantom.

5.4 Artery Phantoms

Finally, the experimental methods of Chapter 3 are applied to make gelatin/agar

phantoms that include a bulk material, an artery, and the ability to increase the

pressure of the liquid within the artery. The pre-compression and post-compression

B-Mode images are shown in Figure 5-18. Displacement estimation is performed on

this B-Mode image pair and the results are shown in Figure 5-19. The left image in

this figure is represents the axial displacement that the tissue underwent, the middle

image represents the lateral displacement, and the right image represents the axial

strain. These results show that phantom making procedure for arteries is sufficient

in order to obtain displacement results that make sense. Future work will include the

processing of this displacement and strain data to measure the water pressure, bulk

elasticity, and arterial wall stiffness.
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Figure 5-18: Pre-compression and post-compression B-Mode images for the experi-
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0)04

' m 15
Sdinmnkin [mml

(.02

om
-.01

25

I)'

10
U 2

15

~-o1)5 ~
20

ill ii
dimci ~ IS

20

Figure 5-19: Displacement and strain estimation for the pressure phantom with an
artery.

108

25E
0

()

AAA



5.5 Summary

In this chapter, the algorithms and experimental setup discussed in the previous chap-

ters were proven to be accurate. Results were shown using experimentally obtained

data on phantom configurations, including a homogeneous phantom, a heterogeneous

phantom, and a pressure phantom. Phantom making methods were demonstrated on

phantoms containing arteries. Additional results were presented, where appropriate,

to highlight interesting points in the experiment or algorithm. The multi-scale ap-

proach was shown to be effective and efficient when solving the elastography inverse

problem.
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Chapter 6

Conclusion

6.1 Summary

This thesis improved the speed of current quantitative elastography algorithms and

presented a novel technique to measure blood pressure and arterial wall stiffness. The

algorithm uses minimal assumptions and utilizes only RF data and force-measurement

data from an ultrasound probe. The accuracy of the blood pressure estimation tech-

nique was proven using simulated data and using experimental data. A reference-

pressure-free approach to blood pressure estimation was also proven to be feasible.

6.2 Future Work

There are many possible areas for future work. The first stage of future work consists

of further evaluating the algorithms presented in this thesis using both simulation

tests and experimental tests. The reference pressure free approach will be applied

to more realistic simulations and to experiments. Experimental tests on the artery

phantom will be studied to confirm the accuracy of the algorithms.

Work must also be completed to make the experiments more realistic. The exper-

iments in this thesis could be refined to better mimic in vivo conditions of the body.

More realistic elastic moduli could be used in phantom studies to further show the

applicability of the algorithm. Higher quality phantoms that mimic real structures
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within the body, such as bone, muscle, and fat, could be used in order to obtain more

realistic results. Integrating dynamic pressure pulses into the phantom experiments

would also provide a more realistic environment in which to test the algorithms.

In order to be clinically relevant, the algorithms in this thesis must be as fast and

as robust as possible. In the future, the technology presented in this thesis needs

to be evaluated for robustness. Speeding up the workflow, using both hardware and

software optimization, will be important for the future clinical application. Improving

the finite element backbone of the elastography algorithm will likely have a significant

impact on algorithm performance. The techniques will be applied to ex vivo tissue

and, eventually, to clinical studies.

While the algorithms and ideas examined in this thesis are discussed with spe-

cific respect to compression-based elastography and arterial pressure estimation, they

might also be implemented in other imaging modalities. For example, the methods

might be applicable to intravascular ultrasound elastography. Such implementation

could be used to measure accurately the blood pressure and arterial wall elasticity of

a blood vessel. The methods could also be implemented to measure other, similar,

medically important quantities. For example, the quantitative elastography methods

could be used to quantify the progression of liver fibrosis or prostate cancer. The

pressure estimation could be applied to measure cyst pressure, embroyonic fluid pres-

sure, interstitial pressure, or intracranial pressure. In general, the methods described

in this thesis are applicable when there is ultrasound available and when the tissue

undergoes a quantifiable deformation.
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