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Abstract

We extract heart rate and beat lengths from videos by measuring subtle head oscil-

lations that accompany the cardiac cycle. Our method tracks features on the head,
temporally filters their trajectories and performs principal component analysis (PCA)

to decompose the trajectories into a set of ID component motions. It then chooses the

component that is most periodic as the pulse signal. Finally, we identify peaks of the

chosen signal, which correspond to heartbeats. When evaluated on 18 subjects our

approach reported heart rates nearly identical to an electrocardiogram (ECG) device

for all subjects and obtained similar beat length distributions for 17. In addition we

obtained pulse rate from videos of the back of the head and of sleeping newborns.

Initial findings also show that our method can measure heart rate from body parts

other than the head and can measure respiration rate by selecting a different frequency

band. Finally, we present visualization techniques such as motion magnification for

subjective analysis of body motions.
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Chapter 1

Introduction

Heart rate is a critical vital sign for medical diagnosis. There is growing interest in

extracting it without contact, particularly for populations such as premature neonates

and the elderly for whom the skin is fragile and damageable by traditional sensors.

Furthermore, as the population ages, continuous or at least frequent monitoring out-

side of clinical environments can provide doctors with not just timely samples but also

long-term trends and statistical analyses. Acceptance of such monitoring depends in

part on the monitors being non-invasive and non-obtrusive.

In this thesis, we exploit subtle head oscillations that accompany the cardiac cycle

to extract information about cardiac activity from video recordings. In addition to

providing an unobtrusive way of measuring heart rate, the method can be used to

extract other clinically useful information about cardiac activity, such as the subtle

changes in the length of heartbeats that are associated with the health of the auto-

nomic nervous system. Our method works with typical video recordings and is not

restricted to any particular view of the head.

The cyclical movement of blood from the heart to the head via the abdominal

aorta and the carotid arteries causes the head to move in a periodic motion. Our

algorithm detects pulse from this movement. Our basic approach is to track feature

points on a person's head, filter their positions by a temporal frequency band of

interest, and use principal component analysis (PCA) to find a periodic signal caused

by pulse. We extract an average pulse rate from this signal by examining its frequency
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spectrum and obtain precise beat locations with a simple peak detection algorithm.

1.1 Related Work

Our method is an alternative to the extraction of pulse rate from video via analysis

of the subtle color changes in the skin caused by blood circulation [18, 26]. These

methods average pixel values for all channels in the facial region and temporally

filter the signals to an appropriate band. They then either use these signals directly

for analysis [26] or perform ICA to extract a single pulse wave [18]. They find the

frequency of maximal power in the frequency spectrum to provide a pulse estimate.

Philips produced a commercial app that detects pulse from color changes in real-time

[17]. These color-based detection schemes require that facial skin be exposed to the

camera. In contrast our approach is not restricted to a particular view of the head,

and is effective even when skin is not visible.

There have also been studies on non-invasive pulse estimation using modalities

other than video such as thermal imagery [6], photoplethysmography (measurement

of the variations in transmitted or reflected light in the skin) [29] and laser and

microwave Doppler [25, 7]. Noncontact assessment of heart rate variability (HRV),

an index of cardiac autonomic activity, presents a greater challenge and few attempts

have been made [21, 13, 15]. A common drawback of these non-invasive systems is

that they are expensive and require specialized hardware.

The analysis of body motion in videos has been used in different medical contexts,

such as the measurement of respiration rate from chest movement [23, 17], or the

monitoring of sleep apnea by recognizing abnormal respiration patterns [28]. Motion

studies for diseases include identification of gait patterns of patients with Parkinson's

disease [4], detection of seizures for patients with epilepsy [16] and early prediction

of cerebral palsy [1]. The movements involved in these approaches are larger in

amplitude than the involuntary head movements due to pulse.

Our work is inspired by the amplification of imperceptible motions in video [30,

12]. But whereas these methods make small motions visible, we want to extract
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quantitative information about heartbeats.

The idea of exploiting Newton's Third Law to measure cardiac activity dates back

to at least the 1930's, when the ballistocardiogram (BCG) was invented [20]. The

subject was placed on a low-friction platform, and the displacement of the platform

was used to measure cardiac output. The BCG was never widely used in clinical

settings. Other clinical methods using a pneumatic chair and strain-sensing foot scale

have also been successful under laboratory conditions[11, 10]. Ballistocardiographic

head movement of the sort studied here has generally gained less attention. Such

movement has been reported during studies of vestibular activity and as an unwanted

artifact during MRI studies [2]. Recently, He et al. [8] proposed exploiting head motion

measured by accelerometers for heart rate monitoring as a proxy for traditional BCG.

1.2 Contributions

This thesis makes the following contributions:

1. Development of a method for extracting pulse rate and heartbeat variability

from videos by analyzing ballistocardiac motions of the head. Our method

tracks feature points on the head, filters their trajectories to a frequency band

of interest, and uses PCA to decompose the trajectories into 1-D signals. The

most periodic 1-D signal is then chosen to calculate pulse rate and find beat

intervals. Our method is not restricted to any view of the face, and can even

work when the face is occluded.

2. Validation of our method on video recordings

(a) Our system returned pulse rates nearly identical to an electrocardiogram

(ECG) device for 18 subjects.

(b) We are the first to evaluate beat-length distributions from video as a way

to evaluate variability. We captured very similar beat length distributions

to the ECG for our subjects.
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(c) We extracted pulse rate from videos of the back of the head and when a

subject was wearing a mask.

(d) We extracted pulse rate for several videos of sleeping infants.

3. Noise analysis of our method and a comparison to a color-based pulse detection

scheme [18].

4. Results showing that our method can also be used to measure respiration rate

and extract pulse from movements in the chest and carotid artery. While our

techniques were developed for measuring pulse from head motions, we tried to

keep our technique general enough to not be limited to the head alone.

5. Presentation of visualization techniques such as frequency trajectory plots and

motion magnification for more subjective evaluation of body motions. These

methods are useful for exploratory analysis of motions in video.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides background of

relevant physiology and computer vision techniques. Chapter 3 presents our method.

In Chapter 4 we evaluate our method on video recordings. In Chapter 5 we present

initial results showing how our method can be used for other applications. In Chap-

ter 6 we present visualization techniques for subjective evaluation of body motions.

Finally, we provide a summary and conclude in Chapter 7.
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Chapter 2

Background

This section provides a brief background on several key topics related to our study.

First we present the main elements of the cardiac cycle and the ballistocardiac forces

that cause body and head motions. We then discuss the clinical significance of heart

beat variability. We then give a simple overview of feature tracking, an important

element of our pulse detection system. Finally we summarize a recent method on

pulse extraction from changes in skin color to which we compare our work in our

experimental evaluation.

2.1 The Cardiac Cycle and Ballistocardiac Forces

Aorta --

Right
Atrium

Right
Ventricle

Left
Atrium

Left
Ventricle

....... Carotid Artery

Figure 2-1: Blood flows from the heart to the head via the carotid arteries on either
side of the head [14].
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The heart is is a hollow muscle that pumps blood throughout the body by re-

peated, cyclical contractions. It is composed of four chambers: the left/right ventricle

and the left/right atrium (Fig. 2-1). During the phase of the cardiac cycle known as

diastole, the ventricles relax and allow blood to flow into them from the atria. In

the next phase known as systole, the ventricles contract and pump blood to the pul-

monary artery and aorta. The aorta in turn transports blood to the rest of the body.

The head and neck receive blood from the aorta via the common carotid arteries,

which further divide into the internal and external carotid arteries in the neck.

We are not certain how much of head motion we detect is attributable to the large

acceleration of blood in the aorta compared to the localized acceleration of blood in

the carotid arteries moving into the head. He et al. [8] measured ballistocardiac head

motions with an accelerometer-based device to be on the order of 10 mG(0.098 M), but

it is unclear what fraction of this movement is attributed to aortic and carotid blood

flow forces. To understand this better, we will present derivations of the magnitude

of each of these forces in Sections 2.1.1 and 2.1.2. The calculations are simplified,

ignoring many details about fluid dynamics and physiology. From a biomechanical

standpoint, the head-neck system and the trunk can be considered as a sequence of

stacked inverted pendulums. This structure allows the head unconstrained movement

in most axes, making calculations of the system's motion complicated.

2.1.1 Aortic Force

During systole a healthy adult aorta is capable of impelling a volume of 70 - 80 ml

(0.07 - 0.08 kg) of blood at considerable speed (1 1) and acceleration (20 m) [19].

An average adult male weighs 70 kg. Using Newton's 2 ,d and 3 rd laws we derive the

approximate acceleration of the body due to the aortic forces (abody):
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IFbodyI = IFblood I

Iabody * mbody I = lablood * mblo o d

labody * 70 kgI --20- .0.07 kg

m
labodyl = 0.02 -2

Thus the approximate acceleration of the body due to the aortic forces is 0.02!!

Ballistocardiography produces a graphical representation of body movement due to

this force for a subject lying down on a low-friction platform (Fig. 2-2).

Figure 2-2: An old model of a ballistocardiogram where
friction platform. The displacement and/or acceleration of
infer cardiac output. Image courtesy of Nihon Kohden.

a subject lies on a low-
the body is measured to

2.1.2 Carotid Force

In addition to aortic blood acceleration, there is the smaller force resulting from

blood flowing through the carotid arteries into the head. Although there are studies

measuring blood flow, velocity and acceleration of blood in the carotid, we have not

found similar experimental measurements on the force imparted by carotid blood flow

21



on the head. According to one study, blood velocity in the common carotid increases

from approximately 0.02 m to 0.11 !1 in 0.1 s, or an acceleration of 0.9 m [9]. The

blood mass transported in this period is roughly 13 ml or 0.013 kg. Assuming both

carotid arteries are identical and that the head is 5 kg, we use a similar derivation to

the one used in Section 2.1.1 to find that the head should accelerate roughly 0.005 M

assuming independence from the rest of the body.

2.1.3 Heart Rate and Heart Rate Variability

Pulse rate captures the average number of cardiac cycles over a period of time (e.g.,

30 seconds). It is useful primarily for detecting acute problems. There is a growing

body of evidence [22] that measuring beat-to-beat variations provides additional in-

formation with long-term prognostic value. The most established of these measures

is heart rate variability (HRV). HRV measures the variation in the length of individ-

ual normal (sinus) heartbeats. It provides an indication of the degree to which the

sympathetic and parasymathetic nervous systems are modulating cardiac activity. To

measure HRV, the interarrival times of beats must be accurately measured, which can

be determined by locating the "R" peaks in successive beats in an ECG. A lack of

sufficient variation when the subject is at rest suggests that the nervous system may

not perform well under stress. Patients with decreased HRV are at an increased risk

of adverse outcomes such as fatal arrhythmias.

Beat Intervals R peak

Figure 2-3: Example of typical ECG signal. Differences between R peaks in successive

beats of an ECG can be used to calculate heart rate variability or HRV.
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2.2 Optical Flow and the Lucas-Kanade Algorithm

Our approach relies on optical flow tracking to quantify the motion of a head in a

video. Optical flow is the pattern of motion of objects, surfaces and edges in a visual

scene. Optical flow methods try to calculate the motion of pixel locations between

two image frames that are taken at times t and t + At. These methods are based on

local Taylor series approximations of the image signal. For a 2D + t dimensional case

a pixel at location (x, y, t) with intensity I(x, y, t) will have moved by Ax, Ay and

At between the two image frames and the following image constraint equation can

be given:

I(x, y, t) = I(x + Ax, y + Ay, x + Az) (2.1)

Assuming the movement to be small (subpixel or a few pixels in amplitude), the

constraint can be rewritten using a Taylor series:

I(x+Ax,y+Ay,x+At) =I(x,y,t)+ -AX+ Ay + At (2.2)
Dx Dy Dt

From these equations it follows that:

DI DI DI
_Ax+ Ay+ At=0 (2.3)
(x Dy (t

or

DIAx DIAy DIAt
±-+- +- (2.4)

Dx At y At t At

This can be rewritten to form the optical flow equation:

IAV' + I7VY = -It (2.5)

where V, V, are the x and y components of the velocity or optical flow of I(x, y, t)

and Ix, I, and It are the partial derivatives of the image at (x, y, t).

The Lucas-Kanade method of optical flow assumes the velocity is approximately
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constant within a small neighborhood of the point p under consideration. The optical

flow equation is made to hold for all points within the neighborhood and solutions

to V, and V, are obtained using a least squares fit. In our work we use the Lucas-

Kanade implementation provided in OpenCV [3]. This implementation is a sparse

feature point tracker, meaning that it finds the motions of selected point locations in

the image rather than finding a dense motion field for the entire image. The sparse

tracker worked well for our application and is also much quicker than a dense optical

flow algorithm.

For scenes with large motions, the Taylor approximation in Eq. 2.2 does not hold.

In these cases one can use a coarse-to-fine optical flow scheme with image pyramids

consisting of downsampled versions of the original images. The feature point velocities

are refined from the coarsest image down to the finest (original) image. Since the

motions we study are small, we did not use pyramids for our work.

RWd Channel Geen Chanel Blue Channel

Rud Skgnal Grae. SignaB SBue $gnu

Independent Component Analysis (ICA)

sopraO Swimu 1 Suetatod Suuicv 2 SeparaledSuren

Figure 2-4: Overview of color-based pulse detection method (image taken from [18]).
A face is found from the first video frame to construct a region of interest (ROI).
The red, green and blue channels are spatially averaged in the ROI in each frame to
form three signals. ICA is applied on these signals to obtain three independent source
signals. The most periodic source signal is chosen for analysis.
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2.3 Color-Based Pulse Detection from Video

Blood circulation causes volumetric changes in blood vessels that modify the path

length of ambient light. This is the basic premise of plethysmography. The red,

green, and blue (RGB) sensors of a video camera can pick up this plethysmographic

signal mixed with other fluctuations of light caused by artifacts. In addition, because

hemoglobin absorptivity varies across the visible spectral range, each of these sensors

records a mixture of these sources with different weights. The task of pulse signal

extraction is to reconstruct the signal of interest from these channels. A work that

has gained recent interest separates the plethysmographic signal from the noise us-

ing independent component analysis (ICA)[18]. The method (see Fig. 2-4) spatially

averages the R, G, and B values from the facial area in each video frame to form

three signals. Then, ICA is used to decompose the signals into 3 independent source

signals. The source with the largest peak in the power spectrum is chosen as the pulse

signal. Finally, the signal is smoothed and interpolated to 256 Hz for HRV analysis.

When they evaluated their method on 12 subjects, they produced accurate heart rate

and HRV measures.

Analysis of HRV was performed by power spectral density (PSD) estimation using

the Lomb periodogram. They found the low frequency (LF) and high frequency (HF)

powers which reflect different properties of the sympathetic and parasympathetic

influences on the heart. The video recordings used in their analysis were roughly a

minute in length, similar to the length of recordings in our work. However, this is

a much shorter duration than the hours of ECG recordings used to calculate HRV

measures in practice and it is not clear whether it is clinically meaningful. Therefore,

in our work, we directly evaluate heartbeat length distributions instead of using the

standard HRV measures.
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Chapter 3

Method

Our method takes an input video of a person's head and returns a pulse rate as well as

a series of beat locations that can be used for the analysis of beat-to-beat variability.

We first extract the motion of the head using feature tracking. We then isolate the

motion corresponding to the pulse and project it onto a ID signal that allows us to

extract individual beat boundaries from the peaks of the trajectory. For this, we use

PCA and select the component with the most periodic ID projection. Finally we

extract the beat locations as local extrema of the chosen 1D signal.

Fig. 3-1 presents an overview of the technique. We assume the recorded subject is

stationary and sitting upright for the duration of the video. We start by locating the

head region and modeling head motion using trajectories of tracked feature points.

We use the vertical component of the trajectories for analysis. The trajectories have

extraneous motions at frequencies outside the range of possible pulse rates, and so we

temporally filter them. We then use PCA to decompose the trajectories into a set of

independent source signals that describe the main elements of the head motion. To

choose the correct source for analysis and computation of the duration of individual

beats, we examine the frequency spectra and select the source with the clearest main

frequency. We use this criterion because pulse motion is the most periodic motion of

the head within the selected frequency band. Average pulse rate is identified using

this frequency. For more fine-grained analysis and calculation of beat durations, we

perform peak detection in the time-domain.
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Figure 3-1: Overview of our pulse estimation approach. (a) A region is selected
within the head and feature points are tracked for all frames of the video. (b) The
horizontal and vertical components are extracted from each feature point trajectory.
(c) Each component is then temporally filtered to remove extraneous frequencies. (d)
PCA decomposes the trajectories into a set of source signals s1 , s2, S3 , s4, s5. (e) The
component that has clearest main frequency is selected. (f). Peak detection identifies
the beats of the signal.
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Figure 3-2: The region of interest for subjects 1 and 2. The region encompasses the
middle of the face.

3.1 Region Selection

We find a region of interest containing the head and track feature points within the

region. For videos where the front of the face is visible, we use the Viola Jones face

detector [27] from OpenCV 2.4 [3] to first find a rectangle containing the face. We use

the middle 50% of the rectangle widthwise and 90% heightwise from top in order to

ensure the entire rectangle is within the facial region. We also remove the eyes from

the region so that artifacts caused by blinking do not affect our results. To do this

we found that removing the subrectangle spanning 20% to 55% heightwise works well

(see Fig. 3-2). For videos where the face is not visible, we mark the region manually.

3.2 Feature Point Selection

We measure the movement of the head throughout the video by selecting and tracking

feature points within the region. We use the OpenCV Harris corner detector (the

goodFeatures To Track function) to select the points. We set the parameters of this

function to ensure that we select 1500 points evenly distributed around the face.
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3.3 Feature Point Tracking

We apply the OpenCV Lucas Kanade tracker between frame 1 and each frame t =

2 - T to obtain the location time-series (xn(t), ys(t)) for each point n. We used a

window size of 40 pixels around each feature point for tracking. This window size is

1 the area of the face rectangle found by the detector for our subjects on average.125

It is large enough to capture local features around the nose/mouth area.

Many of the feature points can be unstable and have erratic trajectories. To

retain the most stable features we find the maximum distance traveled by each point

between consecutive frames and discard points with a distance exceeding the 7 5 th

percentile.

3.4 Temporal Filtering

Not all frequencies of the trajectories are useful for pulse detection. A normal adult's

resting pulse rate falls within [0.75, 2] Hz, or [45, 120] beats/min. We found that

frequencies lower than 0.75 Hz negatively affect our system's performance. This is

because low-frequency movements like respiration and changes in posture have high

amplitude and dominate the trajectories of the feature points. However, harmonics

and other frequencies higher than 2 Hz provide useful precision needed for peak de-

tection. Taking these elements into consideration, we filter each x,(t) and y,(t) to

a passband of [0.75,5] Hz. For babies, who have faster pulses, we use a passband of

[1.25, 5] Hz. We use a 5 th order butterworth filter for its maximally flat passband.

3.5 PCA Decomposition

The underlying source signal of interest is the movement of the head caused by the

cardiovascular pulse. The feature point trajectories are a mixture of this movement as

well as other motions caused by sources like respiration, vestibular(balancing) activity

and changes in facial expression. Each subject exhibits different motions. Fig. 3-

3 shows examples of the total energy of the feature point trajectories at different
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Figure 3-3: Examples of the combined energy spectra of feature points for 4 different
subjects. (a) is an example where the pulse frequency is the only dominant frequency.
(b) is an example where there is another frequency with nearly as much energy as
pulse. (c) is an example where the harmonic of the pulse frequency has more energy
than the pulse frequency. (d) is an example where the energy at the pulse frequency
is smaller than several other peaks in the spectrum. We were able to get accurate
pulse signals for all subjects using our method which separates the combined motion
of the feature points into submotions using PCA.

frequencies for four different subjects. The black arrow indicates where the true pulse

rate is. In the first case (a), the dominant frequency corresponds to pulse. This is the

easiest case. In the second case (b) the pulse still has maximum energy but there is

another frequency with nearly as much energy. In the third case (c), the harmonic of

the pulse has greater energy than the pulse itself. In case (d) the pulse is completely

masked by extraneous motions. The task of developing a method to extract a reliable

pulse for these different cases is challenging.

Our task is to decompose the mixed motions of the feature points into subsignals

to isolate pulse. To do this we consider the multidimensional position of the head at

each frame as a separate data point and use PCA to find a set of dimensions along

which the position varies. We then select a dimension on which to project the position

time-series to obtain the pulse signal.

Formally, given N feature points, we represent the N-dimensional position of the

head at frame t as mt = [x1(t), x 2 (t), - - - , XN(t), Y1(t), Y2(t), * . ,yN(t)]. The mean

and the covariance matrix of the positions are defined by:

I T

fin = E mTi (3.1)
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(3.2)

PCA finds the principal axes of variation of the position as the eigenvectors of

Em(bm = <bmAm (3.3)

where Am denotes a diagonal matrix of the eigenvalues A1, A2 ,-

ing to the eigenvectors in the columns of 4 m, 01, 02, - ,ON-

0p1

- AN correspond-

'P2

Figure 3-4: Examples of the first three eigenvectors for two subjects. Each white arrow

on a face represents the magnitude and direction of a feature point's contribution to

that eigenvector. The eigenvector decomposition is unique to each video.

32

TI

E m = T~ m -- fn( i )T



Fig. 3-4 displays the first three eigenvectors for two of the subjects. Each eigen-

vector represents the 2N-dimensional direction and magnitude of movement for the

feature points. The eigenvectors differ for each video. We obtain the 1-D position

signal si(t) by projecting the position time-series onto O4 :

Si(t) 2 i(.)

mT

There are periods in the video during which the head moves abnormally (e.g.

swallowing, adjustments in posture). Such movement adds variance to the position

vectors, thereby affecting the PCA decomposition. To deal with this we discard a

percentage a of the mt with the largest L2-norms before performing PCA. However,

all of the mt must still be used in the projection step (Eq. 3.4) to produce a complete

signal. We set a at 15% for our experiments.

A popular alternative to PCA is independent component analysis (ICA), which

decomposes signals based on higher order statistics. We did not see any improvement

in our results when using ICA.

3.6 Signal Selection

The question remains of which eigenvector to use for pulse signal extraction. The

eigenvectors are ordered such that q 1 explains the most variance in the data, #2 ex-

plains the second most, and so on. Fig. 3-5 shows the percentage of total variance

attributed to the first 5 eigenvectors averaged over all subjects. The first two eigen-

vectors account for 56% and 36% of total variance on average. This makes intuitive

sense when looking at Fig. 3-4, which shows that the first two components tend to

capture most of the horizontal and vertical motions of the head. However, this does

not mean that s, or s 2 is the clearest signal for analysis. In fact, it is likely that these

signals are not the best because they tend to capture extraneous head motions along
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with pulse motion.
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Figure 3-5: Percentage of total variance explained by the first five PCA components,

averaged over all subjects in our experiments. Bars are standard deviations. The

first component explains most of the variance for all subjects. However, the first

component may not produce the best signal for analysis.

We instead choose the eigenvector #1 with the signal si that is most periodic. We

define a signal's periodicity, p, as the percentage of total spectral energy accounted

for by frequencies within 0.05 Hz of the dominant frequency and 0.05 Hz of its first

harmonic. The energy spectrum of a signal is calculated using the Discrete Fourier

Transform (DFT). If Si is the Jth complex DFT coefficient of signal si, then the

energy at j is (Re(Sj)) 2 + (Im(Sj)) 2.

We found it unnecessary to consider any signals beyond the first five, i.e. s1 , ..., S5

for any of our subjects. We label the maximum frequency of the chosen signal as

fpuise and approximate the pulse rate as 60 * fpulse beats per minute.

For the 18 subjects in our experiments the first five components were chosen the

following number of times: 3, 1, 13, 1, and 0. The third component was chosen for

14 of the 18 videos. We hypothesize that this is because the first two components

remove much of the extraneous motions as seen in Fig. 3-3 leaving a purer residual

motion for the third component to capture.
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3.7 Peak Detection

Pulse rate alone is not, of course, sufficient to fully evaluate the cardiovascular system.

Clinicians often assess beat-to-beat variations to form a more complete picture. To

allow for such analysis, we perform peak detection on the selected PCA component

signal. Since a modern ECG device operates around 250 Hz to capture heart rate

variability and our videos were only shot at 30 Hz, we first apply a cubic spline

interpolation to the signal to increase its sampling rate to 250 Hz.

The peaks are close to 1 seconds apart with some variability due to the natural
fpulse

variability of heartbeats, variations of the head motion, and noise. We label each

sample in the signal as a peak if it is the largest value in a window centered at the

sample. We set the length of the window (in samples) to be round( 250 ). Fig. 3-6

shows examples of signals outputted by our method. Peaks are marked by circles.

Figure 3-6: Examples of motion signals outputted by our method. Red circles are

peaks.
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Chapter 4

Experiments

We implemented our approach in MATLAB. Videos were shot with a Panasonic Lu-

mix GF2 camera in indoor, unisolated environments with varying lighting conditions.

All videos had a frame rate of 30 frames per second, 1280 x 720 pixel resolution

and a duration of 70-90 seconds. Videos were saved in MJPEG format. During the

recordings, subjects were told to sit still as possible while looking forward at the

camera (for frontal videos) and away from the camera (side/back views). Fig. 4-1

shows frames from frontal videos of all 18 subjects. The subjects varied in gender (7

female, 11 male) and skin color. They ranged from 23-32 years of age and were all

seemingly healthy. We connected subjects to a wearable ECG monitor [5] for ground

truth comparison. This device has a sampling rate of 250 Hz and three electrodes

that we placed on the forearms.

4.1 Visible Face

We extracted pulse signals from the 18 subjects with a frontal view of the face (Fig. 4-

1). We calculate our program's average pulse rate using the frequency of maximal

power for the selected PCA component. Similarly, we compute the true pulse rate

by finding the main frequency of the ECG spectrum. Table 4.1 presents our results.

The average rates are nearly identical to the true rates for all subjects, with a mean

absolute difference of 1.4%. The number of peaks were also close to ground truth
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Figure 4-1: Reference frames from videos of all 18 subjects. Subjects varied in skin

color, gender and age.

values, with a mean absolute difference of 2.1%.

We also evaluate the ability of our signal to capture subtle heart rate variability.

Clinically meaningful HRV measures typically use 10-24 hours of ECG data. There-

fore we did not attempt to compute any of these for our 90 second videos. Instead, we

compare the distributions of time between successive peaks for each signal. Incorrect

or missed peaks can introduce spurious intervals too large or small to be caused by

the natural variations of the heart. We account for these cases by only considering

intervals with a length within 25% of the average detected pulse period.

We use the Kolmogorov-Smirnov (KS) test to measure the similarity of the dis-

tributions, with the null hypothesis being that the observations are from the same

distribution. Table 4.1 presents the results. At a 5% significance level, 17 of the 18

pairs of distributions were found to be similar. Fig. 4-2 presents histograms of 5 of
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Table 4.1: Results when comparing the beat length distributions of the ECG and our
method. Presented are the means (y) and standard deviations (o-) of the distributions
along with p-value of the Kolmogorov-Smirnov test measuring distribution similarity.
17 of the 18 pairs of distributions were not found to be significantly different (p >=
0.05)

Sub.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

ECG Motion Similarity
Pulse Rate # of beats A(a) Pulse Rate # of beats p0) p-value

(% err) (% err) (high is good)
66.0
55.3
81.3
44.0
95.3
78.0
73.3
59.3
56.6
78.9
84.6
63.3
60.0
60.7
80.7
74.7
50.0
78.0

99
83
122
66
143
91
110
89
85
100
127
95
90
91

121
112
75
91

0.91(0.06)
1.08(0.08)
0.73(0.04)
1.34(0.19)
0.62(0.03)
0.76(0.04)
0.81(0.05)
1.01(0.04)
1.04(0.07)
0.75(0.04)
0.70(0.06)
0.94(0.08)
0.99(0.04)
0.98(0.11)
0.74(0.05)
0.80(0.05)
1.18(0.08)
0.77(0.05)

66.0(0)
56.0(1.2)
82.7(1.7)
46.0(4.6)
96.0(0.7)
78.9(1.2)
72.0(1.8)
58.7(1.1)
58.7(3.6)
82.1(4.1)
85.3(0.8)
62.7(1.0)
60.0(0)
60.7(0)

81.3(0.8)
76.0(1.8)
50.0(0)

78.9(1.2)

99(0)
82(1.2)
119(2.5)

66(0)
143(0)
91(0)

98(10.9)
89(0)

83(2.4)
98(2.0)
116(8.7)

95(0)
90(0)

87(4.4)
117(3.3)
110(1.8)

75(0)
90(1.1)

0.91(0.07)
1.09(0.10)
0.73(0.08)
1.33(0.19)
0.62(0.07)
0.76(0.04)
0.83(0.06)
1.00(0.10)
1.04(0.12)
0.75(0.04)
0.71(0.07)
0.94(0.09)
0.99(0.08)
0.99(0.12)
0.75(0.06)
0.80(0.05)
1.19(0.10)
0.77(0.07)

0.78
0.96
0.16
0.92

<0.01
0.94
0.14
0.06
0.34
0.60
0.57
0.72
0.27
0.74
0.62
0.87
0.85
0.22

the 16 distributions binned at every 0.05 seconds. Our method was able to capture a

wide range of beat-length distributions shapes, from the flat distribution of subject 4

to the peakier distribution of subject 16. Fig. 4-2 also shows the distribution pair for

subject 5's video, which the KS test labeled statistically dissimilar. Our distribution

is more normally distributed than the ECG distribution. Subject 5's heart rate, 1.6

Hz, was the highest heart rate in our test set. At high heart rates the duration of

each beat is small, meaning that variation between beats is also small. We believe

that our method struggled because of this.

4.1.1 Motion Amplitude

Pulse motion constitutes only a part of total involuntary head movement. We quantify

the magnitude of the different movements within [0.75, 5] Hz by calculating root mean

square (RMS) amplitudes of the feature point trajectories.
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Figure 4-2: Beat distributions of the ECG and our motion method for subjects. (a)

We were able to accurately capture a wide range of distribution shapes, such as for

subjects 4, 17, 1 and 6. (b) We were not able to produce an accurate distribution for

subject 5.

Table 4.2: Mean (std. dev.) RMS amplitudes in pixels for the x and y feature point

trajectories for all subjects. Values are shown after filtering to within 0.05 Hz of the

pulse frequency (RMS Pulse) and without filtering (RMS Total).

RMS Pulse RMS Total RMS Pulse
RMS Total

X 0.17(0.11) 0.44(0.05) 0.36
y 0.11(0.05) 0.29(0.08) 0.38

Table 4.2 presents the amplitudes averaged across all subjects, with the x and

y trajectories averaged separately. We calculated the mean amplitude after filtering

within 0.05 Hz of each subject's pulse frequency (RMS Pulse) and without filtering

(RMS Total). The x axis had larger pulse and total motion amplitudes, but the ratio

between the two was slightly higher for the y axis. For both the x and y axes the

pulse amplitude was less than 40% of the total amplitude, indicating that factors

other than pulse cause a majority of head motions when a person is sitting still - even

when only considering the frequency band [0.75,5] Hz.
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4.1.2 Noise Analysis

Original 50 100 200 400 500

Figure 4-3: Frames from videos of subject 1 with varying levels of additive gaussian
noise. The top row shows frames before filtering. The bottom row shows frames after

bilateral filtering. Noise ranged from a standard deviation of 5 to 500 pixels. Bilateral

filtering smooths images while retaining edges.

We performed noise analysis to evaluate the robustness of our system. We added

zero-mean Gaussian noise to the videos, sweeping the standard deviation cros from

5 to 500 pixels. The noise was added to each channel independently. To smooth

the noise we applied a bilateral filter [24] to each frame of the noisy videos. The

bilateral filter is a smoothing filter that preserves edges and corners, which can be

useful for tracking. The intensity value at each pixel in an image is replaced by a

weighted average of intensity values from nearby pixels, with weights depending on

both Euclidean and intensity differences. Formally, the intensity of pixel p is replaced

by:

W EGod(I|p - qJ|)Ga,(||Ip - Iq||)Iq (4.1)
WPq,

where Ip is the current intensity at p, Iq is the intensity at each pixel q, G,, and G,

are Gaussian functions depending on Euclidean and intensity differences, and W, is

41



a normalization factor. We set Ocd = 3 and a, = Unoise. Fig 4-3 shows frames from

videos of subject 1 with different levels of noise before and after applying the bilateral

filter.

For each subject we found gmaxnoise, the maximum noise standard deviation before

our method first produced an average pulse rate outside 5% of the true rate. Bilateral

filtering resulted in a better (larger) 0maxnoise for 16 of the 18 subjects, worse perfor-

mance for 1 subject, and no change in performance for 1 subject. Overall, filtering

improves our method's performance against noise. Therefore, the rest of our results

are compiled using bilateral filtering.

Fig. 4-4a presents 0maxnoise for each subject. There is a large variance in 0-maxnoise

across the subjects. Fig. 4-4b plots the number of distributions of beat lengths that

are similar to ground truth (using the KS test) as anoise is increased. Most of the

17 distributions that were initially found to be similar to ground truth are dissimilar

when 7noise ~ 50.

The large variance in Omaxnoise suggests that there are video-specific factors that

affect performance. We hypothesized that the variance is caused by two video-specific

factors: strength of head motion and feature point quality. A video with large and

clear head motions related to cardiac activity should result in a higher Omaxnoise. A

video with feature points on good image patches, i.e. patches with high gradients,

should result in less tracking error, which also leads to a higher 0maxnoise. We tested

these hypotheses by quantifying motion strength and feature point trackability with

metrics. The metrics are based on the original videos (without added noise), and we

test whether they have any correlation with 0maxnoise.

We developed two metrics measuring motion strength. The first, which we call

3, is the difference between the total energy of the feature points at fpuse to the

maximum total power at any other frequency outside 0.05 Hz of the pulse frequency.

# captures the relative energy of pulse motion to the next strongest periodic motion.

If the energy at the pulse frequency is barely larger or even smaller than the energy

at another frequency, 3 will be small. It is possible for # to be negative, which means

that the energy at another frequency is larger than the pulse frequency. As shown in
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Figure 4-4: Plots presenting results after adding varying levels of Gaussian noise to

our videos. (a) shows clmaxnoise, the standard deviation of the first noise level at which

our method gave an incorrect average pulse rate. (b) shows the number of similar

distributions reported by the KS test as noise is added to the videos.

Fig. 3-3 this is possible when the harmonic frequency is large or when there is strong

periodic component corresponding to other body movement. The second metric, -y

is based on the PCA decomposition of the feature point trajectories of the original

video. -y is a weighted sum of the variance of each PCA signal si with main frequency

fi ~~ fpulse:

5

= S pAil{Ifpuise - fil < 0.05 Hz} (4.2)

The weight for each si is the periodicity metric pi that we defined earlier in Chap-

ter 3. A signal with large amplitude (high A) and large periodicity (high p) will result

in a high -y value. Fig. 4-5 shows our results comparing ormaxnoise to # and -y. Both 3

and -y have a significant positive correlation with -maxnoise (Pearson R coefficients of

0.83, 0.76, p values < 0.01). This suggests that the strength and clarity of the head

motions are contributing factors to noise performance.

Next, we wanted to determine the effect of feature point quality on gmaxnoise. We

quantify feature point quality, rK, as the variance of the luminosity intensity within

the 40 x 40 pixel window surrounding the point. This window size is the same size we
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Figure 4-5: Plots of Omaxnoise VS. 3 and -y our two metrics measuring head motion

strength. Both variables are significantly correlated with Omaxnoise-

used for the Lucas-Kanade tracker. Intuitively, a low variance indicates a featureless

or poor region. Fig. 4-6a shows a heatmap of r, on a frame of subject 3's video, with

red being the highest quality. Locations near the mouth and nose have high K while

the cheeks and forehead do not.

First, we explored how r, relates to tracking error. We measured the tracking error

for each feature point on the videos. The tracking error at a frame is the distance

between the point's location in the noiseless video and its location in the noisy video.

Fig. 4-6b plots the average RMS tracking error of the feature point trajectories binned

at different values of K for each noise level. We see a clear negative relationship

between tracking error and K. for all noise levels, as expected. However, at higher

noise levels even the best points have quite a large tracking error, indicating that

points are drifting in location over time. Despite this relationship between r and

tracking error, we were unable to find any relationship between the average r, for a

video and Omaxnoise (see Fig. 4-6c).

We ran a final experiment testing whether selecting a small subset of high quality

feature points will result in a larger Omaxnoise. We added a varying number of feature
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(b) Average root mean square tracking error of fea-
ture points for all subjects binned at different r values.
Each line corresponds to a different noise level (cnoise

is indicated next to each line). Larger K results in lower
tracking error for all noise levels.
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Figure 4-6: Analysis of K, our metric measuring feature point quality.
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points with high r, and recorded Cmaxnoise. We swept N, the number of points, from

150 to 1500 in increments of 150. Fig. 4-7 plots the average omaxnoise value across

all subjects for each level. For comparison, we also show results when only selecting

points with low K and selecting points randomly within the region of interest. For the

random selection we selected 10 random sets of feature points and record the average

(maxnoise. The results of this experiment show that selecting points randomly and by

high , yields similar results. Selecting points with low K performed predictably poorly.

Adding more feature points increased performance in all scenarios but helped low K

the most. Increasing the number of feature points from 150 to 1500 only increased

0maxnoise by 30 when selecting points randomly or by high ii.
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Figure 4-7: The average Omaxnoise of all subjects vs. the number of feature points

selected. 1500 points is the number of feature points used in the original results (see

Fig. 4-4a). We selected points in three ways: randomly around the region of interest,
by the highest r and by the lowest K. The random results were repeated 10 times

and averaged. Random selection and the high K selection peformed similarly while

low K yielded the worst results. Adding more feature points increased 0 maxnoise for

all sampling methods but helped the low , method the most.
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Figure 4-8: Comparison of our method to color-based detection. Ocmaxnoise is the max-
imum noise standard deviations where either color and motion give reliable results.
Our method worked longer (under the blue dotted line) for 9 of the 18 subjects while
color worked longer for 8 subjects. The color method failed to give a correct result
for subject 7 before the addition of noise.

4.1.3 Comparison to Color-Based Detection

We compare the robustness of our method to a color-based pulse detection system

[18] in the presence of noise. This color-based method spatially averages the R, G,

and B channels in the facial area and uses independent component analysis (ICA) to

decompose the signals into 3 independent source signals. The source with the largest

peak in the frequency spectrum is then chosen as the pulse signal. We calculated

Umaxnoise in an identical manner for the color method. Fig. 4-8 plots the results.

Our method outperformed color for 9 of the 18 subjects, and performed worse for 8

subjects. Note that color failed to produce a correct pulse rate for subject 7 before

adding any noise. A possible reason for this is that this video was overexposed. We

found that the / and -y values are positively related to omaxnoise for the color method,
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similar to the earlier findings for motion. To our surprise we saw no relationship

between color performance and skin tone.

4.2 Other Views of the Head

Figure 4-9: Reference frames from two videos of the back of the head and one of a

face covered with a mask.

One of the advantages of motion-based detection over color is that a direct view

of the skin is not needed. We took videos of the backs of the heads of 11 subjects

and a video of one subject wearing a mask, as shown in Fig. 4-9. We were able to get

average heart rates close to the true values for all videos, although the signal-to-noise

ratio was less than for the frontal videos. One reason for this is that the back of the

head is less trackable than the front due to a lack of distinct features.

4.3 Sleeping Newborns

We also tested our system on 30-60 second videos of three newborns recorded in situ

at a hospital nursery (see Fig. 4-10). The videos were shot under varying lighting con-

ditions while the babies were sleeping. We hand-picked these video sequences to have

minimal body movements like turning over, yawning, stretching, etc. We obtained

videos of the babies' actual pulse rates from hospital-grade monitors measuring the

perfusion of blood to the skin. Our algorithm extracts pulse rates identical to those

reported by the monitors.
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Figure 4-10: Results from videos of sleeping newborns. Our method produces pulse
rates matching the actual bedside monitors.

4.4 Discussion

Our results show that it is possible to consistently obtain accurate pulse rate measure-

ments from head motion. The results for beat detection were equally encouraging.

Most of our beat interval distributions looked qualitatively similar to the ECG dis-

tributions, indicating that we do capture physiological variability. For 17 of the 18

subjects, we found that there was not a statistically significant difference between the

ECG and the motion beat intervals. It is worth noting that this is a stronger test

than is required in most clinical contexts. Typically heart rate variability (HRV) is

used to dichotomize patients into high and low risk groups, so the precise shape of

the distribution is not relevant. The relevant test would be whether the distribution

of motion-generated intervals yields the same set of high risk individuals as ECG

generated intervals. Since all of our subjects were healthy volunteers, we were not

able to perform this test.

Several factors affected our results. First, our camera has a sampling rate of
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30Hz. ECG used for HRV analysis normally has a sampling rate of at least 128 Hz.

Cubic interpolation of our signal only partially addresses this discrepancy. Second,

the variable and suboptimal lighting conditions can affect our feature tracking. We

believe this to be the case for several of our videos. Finally, our videos were a

maximum of 90 seconds long. Normally, HRV measures are computed over many

hours to obtain reliable estimates.
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Chapter 5

Other Applications of Our Method

While the main focus of our work is on detecting pulse from head motions, we were

also able to apply our methods to other tasks.

5.1 Pulse From Other Body Parts

Blood circulation causes more than just the head to move in the human body. Arter-

ies, veins and limbs are a few of the other body parts that move in synchrony with

the pulse rate. By measuring and relating the movements of these different locations

together we can understand more about a person's cardiovascular condition.

We tried getting a pulse rate from the carotid artery and the chest of one subject.

Carotid pulsation can be felt with a finger below the jaw bone and it is quite common

for doctors to measure pulse rate by feeling the pulsations of this artery. The chest

moves in a different manner, vibrating to the movements of the heart. By placing a

hand over the chest, one can feel the Si and S2 sounds, better known as "lub-dub",

during a full cycle.

Fig. 5-1 shows signals we extracted from the carotid artery and the chest. These

signals were produced using the method we used for measuring head motions. Both

signals have two peaks per cycle, which is a phenomenon we did not notice with most

of the head motion signals. We hypothesize that this is related to the dicrotic notch,

a secondary upstroke corresponding to the transient increase in aortic pressure upon
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closure of the aortic valve.
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Figure 5-1: Pulse signals from the chest and carotid artery.

5.2 Respiration

Our methods are not limited to cardiac pulse. We are also able to measure respiration

by tracking movements in the face and chest areas. All that is required to measure

respiration using our method is to change the temporal filter passband applied to the

feature point trajectories. Adult resting respiration signals are in a frequency range

of 0.10 - 0.50 Hz (9 - 30 cycles per minute) while infants have a higher range, between

0.50 - 1.50 Hz. Fig. 5-2 shows examples of three signals from 2 of our adult subjects

and one infant. The rates for the two adult subjects were quite low (around 8 - 10

seconds per cycle), likely because they were told to sit still as possible for the videos.

The respiration rate for the infant matched real-time rates reported by a hospital

monitor. Hospital respiration monitoring often requires a nasal cannula and is often

unreliable. Our method provides an alternative that could be less irritating.

Finally, the respiration signals we extracted are cleaner than the signals we ob-

tained for pulse, probably because respiration has a much larger amplitude of motion.
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Figure 5-2: Respiration signals from 2 subjects (a,b) and a neonatal infant (c). The
rates for the two adult subjects were quite low, likely because they were told to sit
still as possible for the videos. The rate for the infant is near a normal adult's pulse
rate, which is typical for newborns.

53

3

p1



54



Chapter 6

Visualization Techniques

So far we have presented and evaluated a method of automatically extracting cardio-

vascular information from head movement. However, there is also a need for better

visual aids that can provide insights in a more intuitive way. Visualization techniques

in this area of research are important for several reasons. First, they can serve as

tools to help understand the physiology behind the signal of interest. For example,

by magnifying head motions we were able to understand the dominant axes of mo-

tion for different subjects. Second, visualization often helps open new research paths.

Finally, visualization could be of clinical utility on its own by serving as an aid to

understanding physiology without needing to collect precise measurements. In this

chapter we present several visualization methods that we have developed. We de-

scribe these techniques in the context of head motions, but we believe that they can

be used in other applications.

6.1 Single Images

The following two methods display motion information on a single or few images.
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6.1.1 Eigenvector Plot

We have already shown an example of eigenvector plots in Fig. 3-4. We visualize each

PCA signal of the head motion by creating an image of the eigenvector overlayed on

a frame of the video. For each point we plot the x and y weights returned by the

PCA algorithm as an arrow located over the point. Since most of the head motion is

captured by the first few components, only a few images are needed to describe the

directions of motion within a frequency range. These are also critical to understanding

what the motion corresponding to our method's extracted pulse signal looks like.

6.1.2 Frequency Trajectory Plots

We developed a second image visualization technique that shows how points move at

specific frequencies. The DFT of a signal returns a sinusoidal decomposition with a

unique sinusoid for each frequency component. We reconstruct the motion at specific

frequencies of our trajectories by obtaining their DFT coefficients and summing the

sinusoids at those frequencies. To produce visualizations we plot the trajectories

on the image of the video. Code A. 1 in Appendix A shows MATLAB code for

drawing a plot given the trajectories X,Y, the video frame to draw on and a vector

of frequencies.

Fig. 6-1 shows examples of plots for one video of a subject at.different frequencies.

The color of a trajectory specifies the direction the point moves on the trajectory

(clockwise for red, counterclockwise for white). Fig. 6-la shows trajectories, magnified

by 100, when considering respiration frequency and its first harmonic frequency. The

ellipses from the left and right chest point away from each other since the chest

expands and contracts when breathing. Assymetries of the trajectories between the

left and right chest may be attributed to the assymetric lighting in the scene (the left

side of the body is shaded). Fig. 6-1b is a plot at the pulse frequency and its first

harmonic, magnified 1000 times. An interesting observation is that the head moves

very differently from the chest at this frequency. First, the head ellipses are larger

meaning that the head moves more. The head also seems to move as one uniform
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unit separate from the chest. The head is moving mostly in the horizontal axis while

the motions on the chest are both horizontal and vertical. These observations may

suggest that the force acting on the head is not the same as the force on the chest.

Or, the head moves differently because of its mechanical properties. In any case

these plots could provide valuable insights about the precise causes of pulsatile head

motion, a question that is still unanswered (see discussion on this topic in Chapter 2).

(a) (b)

Figure 6-1: Frequency trajectory plots. Red trajectories are points moving clockwise
and white are counterclockwise. (a) is at the respiration frequency magnified 100
times. The ellipses from the left and right chest point away from each other since
the chest expands and contracts when breathing. (b) is a plot at the pulse frequency
magnified 1000 times. The head moves more than the chest in this case.

6.2 Video Motion Amplification

Our second set of tools create rerendered videos with motions amplified, allowing a

user to more easily see the movements.
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6.3 Basic Amplification

We track feature points on the head as described in Chapter 3, filter their trajectories

to a band of interest and amplify changes in position from frame to frame. We make

the magnified video by applying a Delaunay Triangulation to the points and warping

each triangle from the input video to fit the new, amplified trajectories.

Assume we obtain the horizontal and vertical trajectories of each feature point

i = 1 ... N as matrices X and Y, where Xi, = xi(j) and Yi = y(j). First, we filter

these trajectories to only contain frequencies within [0.75, 5] Hz. Next, we create

amplified trajectories Xa and Ya (see Code A.2 in Appendix A).

Using Xa and Ya we can re-render the input video with head motions in the band

[0.75, 5] Hz magnified. To do so we first apply a Delaunay triangulation to the first

frame of the input video using the point locations in X(1 -+ N, 1) and Y(1 -+ N, 1).

Fig. 6-2 shows an example of applying a triangulation on the first frame of subject

5's video (with many feature points removed for clarity). The remaining frames of

the video are rerendered by affine warping each triangle using the trajectories Xa

and Ya. Fig. 6-3 shows an example of a magnified sequence of frames. Notice how

both the up/down and left/right axes of motion are clearly visible after applying our

magnification. The movements are not visible in the normal frame sequence.

6.4 Typical Beats

A recording of a subject will almost always span several cardiac cycles. It can be

useful to have a simple model of the head motions observed over all the cycles. We

developed a way to extract the "typical motion" of a subject's head per cardiac cycle

in a given video. One could more easily understand an individual's head motion and

inter-subject differences by comparing the typical motions.

We first run our signal extraction method to obtain the trajectories of feature

points and the beat intervals from the pulse signal. We use dynamic time warping

(DTW) to average the trajectories from the intervals together. The resulting averaged
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Normal

Magnified

Figure 6-2: Example of applying a
Delaunay triangulation to feature
points on subject 5's face. Red
stars denote feature points and
the blue lines show the triangula-
tion between the points.

Figure 6-3: A comparison of a sequence of frames
before and after applying motion magnification.
The head motion is much more visible after magni-
fication.

trajectory is the typical head motion trajectory for this subject's video. It is important

to remember that the typical motion we extract is for a given video and may not

generalize to the same subject in a different environment or posture.

6.4.1 Input

As described in Section 6.3, we store filtered feature point trajectories in matrices X

and Y. We also store beat intervals in K, in which each row defines one interval. For

row i the element Ki,1 is the sample number at which the interval starts and Ki,2 is

the sample at which the interval ends. We assume that the samples in K are based

on the same sampling rate used for X and Y, i.e. 30 Hz.
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6.4.2 Algorithm

Given X, Y and K, we segment the video into intervals and compute the average

trajectory per interval. First, we discard intervals from K that are greater than 25%

from the mean interval length.

Because each interval will be of a slightly different length it is first necessary to

time-align the signals from all the intervals before taking an average. We use dynamic

time warping or DTW to do this. DTW is a method of aligning two signals and/or

measuring similarity between two signals which may vary in time or speed. The

algorithm is called "dynamic" because it makes use of dynamic programming to store

the current best match between the signals.

We first select the median beat interval in length. The trajectories from the rest

of the intervals will be aligned to the median interval's trajectory. DTW does this

by assigning a distance between each alignment. The distance in our case is simply

the Euclidean distance between the trajectories. Code A.3 in Appendix A presents

MATLAB code for extracting the typical trajectory Xtyp and Ytyp given X, Y, K

and m, the row index of K corresponding to the median beat interval.

Using Xtyp and Ytyp we can create a magnified video of the motion using the

algorithm presented in the last section, or we can analyze the signals directly. Fig. 6-

4 shows a simplified representation of the typical motions of our 18 subjects. The

curves in these plots are the typical x and y trajectories per feature point (instead

of the high-dimensional position of all points together). The trajectories for different

subjects are not aligned in time since our pulse signals are not aligned to a specific

physiological event. Subjects have different trajectory lengths due to different pulse

rates. Ignoring the differences in trajectory lengths, the morphology of the motions

still varies widely across our subject pool. However there are subsets of subjects

with similar patterns. For example, the curves for subjects 17 and 18 have a similar

morphology as do subjects 9 and 16. A future direction with this work would be

to link our motion signals to a physiological phenomena so that we can quantify

the differences between the typical motions. Measuring differences is the first step
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in differentiating between abnormal and normal motion patterns, which may have

clinicial significance.
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Figure 6-4: The typical x and y feature point trajectory for each subject.
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Chapter 7

Summary & Conclusion

In this thesis we described a novel approach that offers a non-contact means of cardiac

monitoring. Our method takes video as input and extracts heart rate and beat

measurements from the head motion associated with the pumping of blood at each

heartbeat. A combination of feature tracking, frequency filtering and PCA allows us

to identify the component of motion corresponding to the pulse, and we then extract

peaks of the trajectory to identify individual beats. When evaluated on regular video

recordings of 18 still subjects with a view of the face, our method produced virtually

identical heart rates to an ECG and produced similar beat-length distributions for 17

subjects. Our method also produced correct rates for videos of the back of the head,

when the head is occluded by a mask, and for infants sleeping in a hospital. From

these results we conclude that pulsatile head motion is large enough to be captured

from a consumer camera, and can be separated from other head motions to produce

a reliable pulse signal that can yield a pulse rate and variability measures.

We also ran experiments to understand how our method degrades with the addi-

tion of noise. We applied zero-mean Gaussian noise to the 18 face videos and found

that the noise level at which our method produced an incorrect average pulse rate

was positively correlated to the strength and clarity of the head motion in the given

video. Performance was not correlated with the texture of the face, which surprised

us. We conclude that strength of the head motion is the dominant factor determining

how well our method performs with noise. However we do not yet have a complete

63



understanding of why some videos work better than others under noisy conditions.

When we develop a better theory for this, we can then make our method work better

in a variety of real-world conditions.

We also presented methods for visualizing the head motions including motion mag-

nification, typical beat magnification and ellipse plots to show movement in a single

image. These visualization tools can help a clinician make subjective decisions on a

person's health without needing precise measurements. They also serve as exploratory

tools to guide researchers developing quantitative methods. A future direction is to

develop a set of standard visualization tools for different medical applications and

make them work in real-time.

Finally, we showed that the methods we propose are useful for other applications

besides extracting pulse from head motion. Initial results demonstrate that we can get

pulse from other body parts such as the chest and carotid artery. This finding opens

future research into combining signals around the body to obtain deeper physiological

information. For example, by measuring the timing difference between movements in

the chest, carotid and hands we might get a good estimate for blood velocity. We also

demonstrated that we can measure respiration from head/chest movement by merely

changing the frequency band of interest. Respiration is usually monitored in hospitals

using a nasal cannula, and is often unreliable. Our method provides an alternative

that may be more practical.

In this work we considered the frequency and variability of the pulse signal. How-

ever, head movement can offer other information about the cardiac cycle. If head

displacement is proportional to the force of blood being pumped by the heart, it

may serve as a useful metric to estimate blood stroke volume and cardiac output (the

product of blood volume and pulse rate). Additionally, the direction of the movement

might reveal asymmetries in blood flow into or out of the head. This might be useful

for the diagnosis of a stenosis, a partial blockage, of the carotid arteries. We would

like to perform a study with patients in a hospital to see whether our methods have

diagnostic value for cardiac conditions.

Our experiments were done with still subjects. Another future direction is to make
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our method work when subjects are moving. Considering that our method already

overcomes extraneous involuntary head motions to extract pulse, we believe that it

is possible to subtract out higher amplitude motions such as talking or changes in

posture. However, this may require more sophisticated feature tracking and decom-

position methods.

Finally, as always in the healthcare space, it is important to be able to interpret

the signals we are working with. Our method produces a new physiological signal that

may have clinical uses. However we still do not have a good understanding of where

the force causing the head to move is coming from. In Chapter 2 we derived simple

estimates of the acceleration of the head due to aortic and carotid blood flow forces.

These calculations indicate that the aortic force causes a majority of the acceleration

of the head. However we are not certain of the accuracy of our simple physical model

and more work needs to be done to verify this.
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Appendix A

Visualization Code

Code A. 1: Drawing ellipses for visualization.

1 function drawEllipses(X

2 %X,Y: N x T maLt rices o)

3 %trame: frame of video

4 %frequencies: a vecO 1

,Y, frame, frequencies)

trajectories

to plot the trajectOr

of frequencies to con

N = size(X,1);

T = size(X,2);

%Get the frequency indices in the DFT.

fr 30; %sample rate

f = fr * linspace(0,1,T);

fidx = [];

for i=frequencies

[-,idx] = min(abs(f - i);

fidx = [fidx idx];

end

figure; hold on;

imshow(frame);

21 t = 1:T;
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22 for i = 1:n

23 XFC = fft(X(i,:));

24 YFC = fft(Y(i,:));

25

26 for j=fidx

27 xS = xS + abs(XFC(i,j))/N * cos(2*pi*(j-l)/N * t +

angle(XFC(i, j)));

28 yS = yS + abs(YFC(i,j))/N * cos(2*pi*(j-l)/N * t + .

angle(YFC(i, j)));

29 end

30

%Compute directi :in of movement using right-hand rule.

dir = (xS(2)-xS(l))*(yS(3)-yS(2))-(yS(2)-yS(l))*(xS(3)-xS(2))

> 0;

if (dir == 1)

plot(xS,yS, 'r');

else

plot(xS,yS,'w');

end

end

end

Code A.2: Amplifying Feature Point Trajectories

i function [Xa,Ya] = amplifyTrajectories(X,Y,m)

2 %X,Y: N x T matrices otF trajectories

3 %m is magnif ication factor.

4 Xa = zeros (N,T);

5 Ya = zeros (N,T);

6 Xa(:,l) = X(:, );

7 Ya(:,l) = Y(:, );

8 for t = 2:T

9 Xa(:,t) = X(:,t-1) + m * (X(:,t) - X(:,t-1));

10 Ya(:,t) = Y(:,t-1) + m * (Y(:,t) - Y(:,t-1));

11 end
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Code A.3: Producing Typical Beat Trajectories

function [Xtyp,Ytyp] = typicalMotion(X,Y,K,m)

%X,Y: N x T matrices of trajectories

%K: matrix defining the pulse intervals.

%im: the index in K of the interval to which w

rest of the intervals tr.

N = size(X,1);

L = size(K,1);

e want to warp the

A = [X;Y] ; %Stack X and Y into matrix A for ease

Am = A(:,K(m,1) :K(m,2));

Atyp = zeros(2*N,1:K(m,2)-K(m,1)+1);

for i = 1:L

Ai =A(:,K(i,1):K(i,2));

%DTW returns Ti warped in time to match Tm as closely as

possible.

Atyp = Atyp + DTW(Ai,Am);

end

Atyp = 1/L * Atyp;

%Return the X and Y typical trajectories from Atyp

Xtyp = Atyp(1:N/2,:);

Ytyp = Atyp(N/2+1:end,:);

end
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