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Abstract
The rise of multicore computing has made synchronization necessary to overcome the

challenge of sharing data between multiple threads. Locks are critical synchroniza-

tion primitives for maintaining data integrity and preventing race conditions in multi-
threaded applications.

This thesis explores the lock design space. We propose a hardware lock implemen-

tation, called the lock arbiter, which reduces lock latency while minimizing hardware

overheads and maintaining high levels of fairness between threads. We evaluate our

mechanism against state-of-the-art software lock algorithms and find that our mecha-

nism has comparable performance and fairness.
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Chapter 1

Introduction

M 1.1 Synchronization in the Multicore Era

T H E past decade has seen a steady rise in the number of cores on a single die.
Commercial chips already have dozens of cores, such as Intel's 80-core Teraflops

chip prototype and Tilera's 72-core TILE-Gx [4] [5]. Forecasts predict hundreds or
thousands of cores on a single chip in the next decade.

The trend towards multicore processing stems from power constraints, scalability
concerns, and processor complexity. Application developers have also looked towards
parallelism for performance gains in their applications. Parallelism allows independent
tasks in an application to be performed by threads simultaneously. This allows perfor-
mance gains to be achieved in accordance with Amdahl's law. These threads may be
executed on different cores. Thus, hardware designers move towards multicore.

Threads working in parallel are not entirely independent. Threads typically share
data in order to communicate intermediate or final results from their tasks. These
threads must synchronize with each other so that any shared data is modified con-
sistently. In the next section, we illustrate why synchronization is critical for multi-
threaded applications.

* 1.2 The Importance of Synchronization

Thread A Thread B
read(x) - 0
add(x,1) -*1

read(x) - 0
add(x,1) - 1

store (x,add-result)
store (x,add-result)

Figure 1.1: An execution with two threads revealing a race condition.

Although tasks in applications can often be performed independently, there are
some data dependencies that need to be carefully handled to preserve correct program

11



Thread A Thread B

lock(m)
read(x) -+ 0

add(x,1) -+ 1
store (x, add-result)

unlock(m)
lock(m)

read(x) -* 1
add(x,1) -a 2

store(x, add-result)
unlock(m)

Figure 1.2: Adding a lock prevents the race condition.

execution. Algorithm 1 shows a classic example of a race condition that may occur if
two threads running the thread-work() function perform operations on the same data.

integer x = 0;
threadworko {

x = x + 1;

}

Algorithm 1: A simple, multi-threaded application in which threads increment a shared
variable x.

Threads A and B attempt to increment the shared variable integer x, which is
initialized to 0. Intuitively, the reader may think that either A or B increments x first,
then the other increments x, resulting in a final value of 2. However, A and B may be
executing in parallel, and x = x + 1 is not an atomic operation. In fact, x = x + 1 is
composed of three distinct operations: read x, compute x + 1, and store the computed
value to x. These three operations may be executed by A and B in any interleaved
order. Figure 1.1 shows a possible execution in which A reads x and performs the
computation. However, before A stores the value back to x, B reads the old value of
X, performs the computation and stores the value to x. When A finally stores its new
value to x, it overwrites B's value, resulting in a final value of 1.

In order to prevent race conditions, programmers use locks as a way to synchronize
threads and preserve correctness. Locks guarantee mutual exclusion. That is, ony one
thread can own a lock at any given moment. A thread can only move beyond the initial

lock request when it owns the lock. Locks provide a way to allow only one thread to
access a shared variable.

Algorithm 2 performs the same task as Algorithm 1, but uses a lock to protect
x. Once a thread acquires the lock, the other thread cannot acquire the lock or move

12 CHAPTER 1. INTRODUCTION
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integer x = 0;
lockvariable m;
thread-work() {
lock(m);

x = x + 1;
unlock(m);

}

Algorithm 2: A multi-threaded application with a shared variable x protected by lock
m.

forward in the code until the lock is released. Thus, only one thread increments x at a
time, and the result stored to x is always 2, as expected.

* 1.3 Lock Characterization

Locks are primitives that maintain mutual exclusion in applications by allowing only
one thread to own the lock at a given time. Locks protect data from being shared in
ways that may destroy the integrity of an application. In this section, we go into more
detail about the elements that compose a lock in order to better understand how locks
work.

* 1.3.1 Timeline

arbitration

handoff

F

critical section

I I i

I
last unlocko /

release

I
grant!
acquire

unlocko /
release

Figure 1.3: Timeline of a lock.

Locks have two phases, arbitration and the critical section, as shown in Figure 1.3.
Arbitration is the process of choosing the next lock owner, and is performed by a

I

lock() /
request

i\



mechanism called the arbiter, which may be centralized or distributed, depending on
the implementation. The critical section is the execution of the code protected by the
lock. Only one thread will be in the critical section at any point during the application
execution, while any number of threads may be in arbitration.

These phases are separated by three events: the lock request by the requesting
thread, the lock acquire (also called grant from the perspective of the arbiter), and the
lock release. After a thread requests a lock, the request goes into arbitration until the
arbiter grants the lock to the requester, at which time the requesting thread acquires
the lock. During arbitration, the arbiter determines which requesting thread should
be granted the lock. After a thread acquires the lock, it enters its critical section.
When the thread completes the critical section, it releases the lock and resumes normal
execution. The arbiter can then grant the lock to another thread that is in arbitration.
The time between the last lock release and the next grant when the lock is contended
is called the handoff.

The lock timeline reveals several opportunities for performance improvement when
synchronizing. First, the arbitration period can potentially be shortened by simplifying
or reducing the overall timing of the arbitration algorithm. However, shortening the
arbitration only improves performance if the lock is uncontended or critical sections are
too short to hide the arbitration latency.

Additionally, during the handoff period no useful computation towards the comple-
tion of the application is performed. Therefore, in order to optimize locks it is important
to reduce the latency of the handoff.

Also, after the request, release, and grant the thread must communicate with the
arbiter and vice versa. The communication introduces additional overheads in the
arbitration and handoff periods.

* 1.3.2 Physical Structure

How does the system know which thread, if any, owns the lock? Locks require some
memory to maintain information about the lock. At a minimum, a flag that indicates
whether or not the lock is owned is necessary. But as we'll see in Chapter 2, algorithms
with more complex arbitration may require more metadata about the lock, resulting in
an even larger data structure.

Size of the lock data structure is a major concern for multicore processors due to
scalability. For example, if the lock data structure depends on the number of cores, as
the number of cores on chip increases, so does the memory required by the lock.

* 1.4 Implementation Challenges

There are many implementation challenges associated with locks. First, a lock needs to
guarantee mutual exclusion. An incorrect lock implementation could lead to incorrect
execution with race conditions such as the one in Figure ??. Thus, verification that the
lock is correct is crucial. The number of execution orders increase dramatically as the

14 CHAPTER 1. INTRODUCTION
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number of cores increases, due to increased parallelization and, as a result, the number
of possible interleavings of operations. As a result, verification is a real and challenging
problem. Second, since guaranteeing mutual exclusion requires communication between
participants in the process, performance is dependent on the communication substrate
between the cores. Thus, the communication substrate provides a natural bound on
the lock handoff latency.

As the number of threads in an application increases, the potential for synchroniza-
tion to become a bottleneck increases. If more than one thread needs to acquire the
same lock at one particular instance, the lock is said to be contended. Contended locks
may result in poor performance because the lock can only be issued to one thread at a
time. All the other threads must wait for the lock. During this time, the other threads
are not doing any useful work. Only the thread holding the lock is making forward
progress in the application. Therefore, it is important for the lock handoff between
threads to be done as quickly as possible. It is also important that locks that are not
contended are granted to requesting threads quickly. Acquiring a lock, although nec-
essary for correctness, is not useful work in the application. Therefore, the process of
acquiring the lock, and handing the lock off to other waiting threads, should be made
as fast as possible.

Another challenge for synchronization is fairness. Fairness is the equal opportunity
for threads to obtain lock. An unfair lock may be granted to the same thread repeatedly,
despite other threads attempting to acquire the lock at the same time.

15
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Chapter 2

Related Work

N Chapter 1 we described the layout of a lock and ways in which locks could be
improved. In this chapter we describe existing synchronization solutions found in

the literature. We examine each lock's arbitration mechanism and handoff latency, and
compare them qualitatively.

* 2.1 Software-based Synchronization

Various software-based locks, which rely on cache coherence to synchronize, are sum-
marized in Table 2.1. Cache coherence is the most common mechanism to support
data sharing in modern multiprocessors. As we will see in this section, when managed
by the coherence protocol, synchronization data structures are continually replicated
and invalidated. When the lock is contended, this leads to significant network traffic
overhead and overall inefficiency.

* 2.1.1 Early Locks

The first locks used in multiprocessors were basic spin locks. These locks operate by
repeatedly accessing a memory location, or spinning, until the memory location contains
a specific value. The locking process is performed as a software algorithm, and the lock
data structure is maintained through the cache coherence protocol. Test&Set (T&S)
is an early spin lock algorithm that performs an atomic read-modify-write operation

Lock Algorithm Local Spinning Queue-based Fair (FIFO)
T&S No No No
T&T&S Yes No No
MCS Yes Yes Yes
CLH Yes Yes Yes
M Yes Yes Yes
QOSB Yes Yes Yes

Table 2.1: Summary of software locking algorithms.

17



on the lock address.When T&S performs the atomic instruction, it unconditionally sets
the lock data to a non-zero value and returns the previous value. A non-zero return
value means that the lock was already taken. The thread repeats the atomic operation
until a zero value is returned, indicating that thread now owns the lock. Every atomic
operation requires the thread to have exclusive ownership of the cache line containing
the lock data structure. Thus, when the lock is contended by many threads, T&S
produces significant network overheads as the lock data ping-pongs between threads
requesting the lock.

Test&Test&Set (T&T&S) is an extension of T&S by Rudolph and Segall in which
requesters waiting for the lock spin on read-only copies of the lock [20]. When the
lock is released, the read-only copies are invalidated by the thread releasing the lock.
When the requesters obtain another read-only lock copy, they find that the lock has
been released. All the requesters then perform the T&S atomic operation, at which
only one thread will succeed. The threads that fail to acquire the lock resume spinning
on read-only copies. T&T&S improves on T&S by introducing local spinning reducing
network traffic. However, when the lock is released, there is still high network traffic
as all requesters obtain a read-only copy and then upgrade to an exclusive copy of the
lock. In addition, the handoff time between when the last thread releases the lock and
the next thread acquires the lock is longer than T&S due to the next thread having to
acquire a read-only copy before obtaining the lock.

Exponential back-off locks reduce the network contention in T&S and T&T&S by
inserting delay between unsuccessful attempts to obtain a lock [15]. When a T&S
is unsuccessful, the thread waits for a pre-determined number of cycles before moving
ahead in the algorithm. Every additional unsuccessful attempt increases the wait cycles
exponentially. While exponential back-off can improve network contention by spacing
the lock requests, it requires significant fine-tuning in practice to avoid unnecessarily-
long handoff times. In some cases it may make handoff significantly worse than T&T&S.

Lamport improved on the T&T&S lock with his bakery algorithm, also known as
ticket locks [11]. In this algorithm, each requester performs an atomic read-increment-
write on a shared variable. The return value from the operation is the thread's ticket
number, and the thread spins on a read-only copy of a second variable. This variable
is incremented by the thread releasing the lock. When the variable equals the spinning
thread's ticket number, the thread owns the lock and enters the critical section. While
the bakery algorithm does not reduce network contention every time the available vari-
able is incremented, which results in all requesters' local variables being invalidated,
the algorithm removes the contention due to T&S at the handoff stage. As soon as the
next thread receives a copy of the ticket, it ascertains that it owns the lock. The bak-
ery algorithm also introduces fairness into synchronization. The algorithm maintains
a queue of requesters, unlike T&S and T&T&S. The baker algorithm grants locks in
order of acquires instead of to the first thread to get an exclusive copy of the lock data
after the lock has been released.

18 CHAPTER 2. RELATED WORK



19Sec. 2.1. Software-based Synchronization

N 2.1.2 Complex Software Locks

my-prevaddr;

myjlockaddr;

lock() {
prev-addr = ATOMICSWAP(lock-addr,my-prev-addr)

if(prevaddr == 0)

return;

[my-lock-addr] = 1;

[prevaddr] = [my-lockaddr];

while([my-lock-addr] != 0) {

}
return;

}
unlock() {
nextlockaddr = [my-prev-addr];

if(nextlockaddr == 0) {
prevaddr = COMPAREANDSWAP(lock-addr,my-prevaddr,0)
if(prev-addr == my-prev-addr)

return;

while((nextlockaddr = [my-prev-addr]) == 0)

{}
}
nextlockaddr = 0;
[my-prev-addr] = 0;

}

Algorithm 3: MCS Algorithm

There are several software-based lock implementations that incorporate both local
spinning and queue-based locking. These locks attempt to achieve the benefits of the
early locks, but require more complex software algorithms. They typically require a
single atomic compare-and-swap operation.

Mellor-Crummey and Scott proposed the MCS queue lock [16]. We show pseudo-
code for MCS in Figure 3. Each thread that requests a lock appends itself to a global
queue by swapping a pointer to its own local node with a shared tail pointer to the
last node in the queue. If it is at the front of the queue, it owns the lock. If there is
a previous node in the queue, it modifies the previous node in the queue to create a
doubly-linked list. When the previous thread releases the lock, it sets a flag at the next
node to indicate the lock is available. Due to the queue, MCS offers fair, first-come-
first-served locking, unlike T&S and T&T&S. MCS also avoids a flood of invalidate and
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Algorithm 4: CLH Algorithm

line acquires, since the local flag used to pass ownership is only accessed by two threads:
the previous lock owner and the next lock owner in the queue. This means that the
handoff latency is equivalent to two cache line acquires, with invalidation.

Craig, Landin and Hagersten independently proposed a queue-based lock which is
now known as the CLH queue lock [6] [14]. We show pseudo-code for CLH in Figure 4.
In the CLH algorithm, a thread requesting a lock first creates a local queue node with
its own ID and a Boolean variable. When true, the thread either owns the lock or is
waiting to acquire the lock. When false, the lock has been released. After creating its
own node, the thread adds itself to the tail of the queue by swapping its node with
the current tail as in MCS. The thread then spins on the Boolean value of the previous
thread in the queue, which it knows from the tail pointer it swapped. CLH has a similar
handoff time to MCS. However CLH simplifies arbitration because a thread does not
need to modify the previous node in the queue before it begins local spinning. CLH is
also fair: locks are granted in the same order that threads add themselves to the tail of
the queue.

Magnusson proposed the M lock to improve upon the CLH lock [14]. This lock is
similar to the CLH lock except it reduces handoff latency when the lock is uncontended
by detecting when there is no queue. As a result, the code for the M lock is even more
complex than CLH. When the lock is indeed contended, the handoff time is slightly
longer.

Goodman et. al. proposed QOSB, a queue-based primitive which uses a coherence
protocol extension [9]. Invalidated lock cache lines are recycled as nodes in the queue,
using unused bits in the invalid line to store queue information. A requester first
adds itself to the queue, then spins on its own local queue node. The releasing thread
overwrites the node of the next thread in the queue to notify that the lock is available.
The algorithm must detect when one of the queue nodes is overwritten by another valid

myilock-addr;

lock() {
[my-lock-addr] = 1;
prev-addr = ATOMICSWAP(lock-addr,mylockaddr)

while([prev-addr] != 0) {

}
return;

}
unlock() {

[my-lock-addr] = 0;

return;

}

20 CHAPTER 2. RELATED WORK



cache line. In this case, the entire queue must be rebuilt.
Hierarchical locks transform existing lock algorithms by clustering groups of threads.

Each individual cluster can utilize a different locking algorithm. A higher-level lock al-
gorithm arbitrates the lock between clusters. The lock algorithms at each level and each
cluster can be different. Implementations include the hierarchical back-off locks [19],
and hierarchical CLH queue locks [12]. These algorithms exhibit better performance and
fairness for architectures with non-uniform communication containing multiple nodes.

* 2.1.3 Machine Learning Approaches

Eastep et. al. developed Smartlocks which uses application heartbeats [8] [10] to adapt
its internal lock implementation at runtime. The goal of Smartlocks is to determine
when the properties of a particular lock would be better suited for an application.
However, Smartlocks only utilizes a spin lock library and does not take advantage of
more sophisticated software locks such as those in Section 2.1.2.

Research has also been done to accelerate critical sections on heterogeneous archi-
tectures by migrating critical sections to large, complex cores with more resources to
compute the critical sections faster [21]. In this process, locks surrounding the critical
section are also located at the large cores to ease the handoff process.

* 2.2 Hardware Locks

Vallejo et. al. propose a hardware solution which utilizes a lock control unit (LCU) at
each core and a centralized lock reservation table (LRT) to handle lock requests [23]. As
locks are requested, a queue builds in the LCUs by allocating LCU entries to the threads.
The LCUs then communicate with the LRTs, located at the memory controllers, which
form the queue by maintaining head and tail pointers. If the lock is owned, the LRT
forwards the request to the last queued LCU, and when the lock is eventually released,
that LCU forwards ownership to the next LCU. Vallejo's proposal requires complex
hardware mechanisms to maintain cross-chip queues. When overflow at the LRT occurs,
the LRT begins to overflow entries into a pre-allocated hash table in main memory.

Zhu et. al. proposed the Synchronization State Buffer (SSB) which is a fine-grained
locking mechanism [25]. A small buffer at each memory controller maintains synchro-
nization state information for all active synchronized data. Systems dependent on SSBs
require careful programming in order to avoid deadlock, as locks are maintained at the
cache line granularity. When overflow occurs, the SSB traps to software and stores
overflowed entries in a software table.

While hardware approaches to synchronization often have faster arbitration and
handoff than software approaches, they are limited by finite resources. If the number of
active synchronizations in the system is greater than the available resources to monitor
them, then the system could deadlock. Thus, any hardware mechanism needs to support
overflow, which can be expensive in terms of performance and hardware. Also, both
centralized and distributed hardware synchronization mechanisms are prone to the same

Sec. 2.2. Hardware Locks 21



network traffic issues as software mechanisms.

* 2.3 System-on-a-Chip and Embedded Multiprocessors

While this thesis addresses only synchronization on chip-multiprocessors (CMPs), there
has been some research in synchronization for System-on-a-Chip (SoC) and embedded
multiprocessors. SoCs often run applications which require timing guarantees or pre-
dictability, which affects synchronization algorithms. Embedded multiprocessors also
have real-time performance requirements and prioritize energy efficiency.

Akgul et. al. proposed a SoC lock cache that distinguishes between tasks waiting
to perform a long or a short critical section [1].

Yu and Petrov proposed using distributed queues to synchronize embedded multi-
processors [24]. Their proposal assumes that each processor can monitor a common
memory bus to construct a state for each synchronization variable including the num-
ber of processors which are queued before a particular processor. Whenever a processor
wants to queue for a lock, it broadcasts its request onto the bus, allowing other proces-
sors to count how many processors are queuing for a particular lock. Upon releasing the
lock, the processor also broadcasts the release on the bus for all other processors to see.
This method effectively eliminates handoff time, because a processor can immediately
acquire the lock once it observes the same number of releases as there are processors
queued before it. However, this approach relies on access to a common bus, which is
not feasible for CMPs with dozens or hundreds of cores.
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Chapter 3

A Cycle-accurate Simulator for
Multicore Processors

B EFORE we describe and evaluate our lock arbiter design, we must first present our
evaluation framework. Due to the introduction of new hardware in our design and

the difficulty of integrating new hardware on existing platforms, we chose to evaluate
our system using hardware simulation.

There are some simulator properties that are highly desirable for lock evaluation.
First, the simulator must be able to model a multicore processor based on machines one
would likely find in use in the future. Second, cycle-accurate simulation is critical, due
to the fine-grain nature of locks. Locks are on the critical path of an application, and
a few cycles inaccuracy may lead to significantly different simulation results. Therefore
in order to compare lock implementations reliably, we need to have a simulator that
models them as accurately as possible.

Existing simulators often have to trade off accuracy and performance. Since simula-
tors model multicore processors that are different and often larger than those the sim-
ulator itself run on, simulators can take a long time to complete their tasks. Therefore
simulators often sacrifice cycle accurate simulation in order to complete faster simula-
tions. Some simulators, such as Graphite [17], can easily model hundreds of cores, but
are not cycle-accurate. Other simulators, such as HAsim [18], use field-programmable
gate arrays to speed up modeling. While simulating multicores can take a long time, and
a fast simulator can be more convenient, in the accuracy versus performance tradeoff,
we require better accuracy for some system components in our case.

To these ends, we developed a trace-driven, cycle-accurate simulator using the Ver-
ilog hardware description language. The simulator allows detailed and accurate analysis
of lock performance and overheads in a multicore processor. Verilog is a widely-used
tool to model hardware, and allows our simulator to accurately model both timing and
functionality of the circuits [22]. Our simulator is trace-driven in order to provide the
necessary cycle-accuracy in the network and memory subsystem, while maintaining a
reasonable run time by losing some detail in the execution of non-memory instructions.
The simulator is roughly modeled after the architecture of a Tilera multicore processor.

The simulator supports two modes: with the lock arbiter and without the lock
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arbiter. Except for the addition of the lock arbiter in the first mode, the simulator
is the same. This allows us to evaluate our design against locking schemes that rely
solely on the memory system to manage synchronization. In this chapter we describe
the design of the simulator with the lock arbiter.

U 3.1 Simulator Overview

Figure 3.1: A single node.

The system is comprised of homogeneous nodes, or tiles. The architecture of a
single node is shown in Figure 3.1. Each node contains an execution engine and core,
a private cache, a shared cache slice and directory, a lock arbiter, and a router. The
execution engine drives the simulation by reading in traces containing memory and
lock operations, as well as the number of arithmetic instructions between them, and
feeding them to the core model, which is detailed in Section 3.2. The core issues
arithmetic instructions at a steady rate, and issues memory and lock operations to the
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memory subsystem. The simulator has detailed memory and network models. The
cache hierarchy, described in Section 3.4, is comprised of a private cache and shared
cache slice at each node. A distributed directory maintains coherence across the private
caches. The nodes are arranged in a grid connected by a mesh network, as described in
Section 3.3.

* 3.2 Core Model

The core models an in-order processor. Before issuing a memory instruction from a
trace, the core issues any arithmetic instructions. Arithmetic instructions are issued
at a rate equal to the issue width of the core per cycle. We assume that arithmetic
instructions can be issued every cycle, except when waiting for a memory instruction
to complete.

Once all preceding arithmetic instructions have been issued, the memory or lock
instruction can be issued. Only one of these instructions can be issued per cycle. To
ensure that the simulator does not introduce any race errors in the original application,
and preserve in-order processing, the core stalls until it receives a response that the
memory or synchronization instruction has been completed. The only exceptions to
this rule is the unlock instruction, which does not need a response to continue correct
execution.

* 3.2.1 Memory Traces

We generate memory traces by running an application binary with Pintool [13]. Pintool
generates memory addresses, operation types (READ, WRITE, LOCK, UNLOCK),
and counts how many non-memory operations were executed since the last memory
instruction.

In lock arbiter mode, LOCK and UNLOCK operations are forwarded to the lock
arbiter mapped to the lock defined by their lock address. In normal mode, a finite state
machine intercepts these operations and replaces them with a sequence of READ and
WRITE operations dependent on the baseline software lock algorithm we are evaluating.

* 3.3 Network

The backbone of the multicore processor is the network, which connects the nodes
and allows communication across the processor. Our simulator uses a mesh network
topology in which n nodes are arranged as a log n by log n matrix, as shown in Figure 3.2.
Coherence requests and data, encapsulated as packets or flow control digits (flits), are
transported over the channels, or links, from their source node to destination node.
We describe how the path the packets take from their source to their destination is
determined in Section 3.3.1.
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Figure 3.2: The mesh network of a 16-node instantiation of the simulator.

N 3.3.1 Routing

Our simulator uses X-Y routing, a deterministic, deadlock-free routing protocol [7].
Each router has an ID based on its location in the mesh.The coordinates are calculated
from the ID based on the node's position in its row and column, respectively. Packets
entering the network have a destination ID < x, y >. Packets are routed either east or
west until they reach the router with the same x coordinate as the packet destination.
Then packets are routed along the north-south axis until they reach the router with the
same y coordinate as the packet destination. At this point, the packet is removed from
the network and sent to the core, cache, or lock arbiter, depending on the request.

Routing is prioritized in the following order: east, west, north, south, node. This
means that packets already in the network are prioritized over those not in the network.

The network has link-level flow control. Routers buffer each packet until the channel
on its destination path is available and it can proceed to the next link. Routers also
buffer incoming packets at their input until the output buffer is cleared.

* 3.4 Caches and Cache Coherence

Our simulator has a detailed memory model with a private cache and shared cache slice
per node. Coherence is maintained through a distributed directory.
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The first-level cache is a write-back cache. That is, the contents of a modified cache
line due to a write is only written back to the last-level class in case of eviction, whether
due to an invalidation request from the directory or thrashing.

While the capacity and associativity of the first-level cache is configurable, we as-
sume a large last-level cache that can fit the working set of any application for simplicity.

We use the MESI protocol to maintain cache coherence. MESI is a widely used
cache coherence protocol. Any line in the level 1 caches must be in one of the following
states.

1. Modified: Line can be read or written. Only one valid copy of the line is allowed
in all the first-level caches. A line in Modified state is dirty (i.e., has been written
to), and thus must be written back to shared memory if the line is invalidated or
evicted.

2. Exclusive: Line can be read. Only one valid copy of the line exists in all the first-
level caches. A WRITE to a line in Exclusive state causes the thread to transition
to Modified state.

3. Shared: Line can be read. Any number of copies of the line in Shared state is
allowed in all first-level caches.

4. Invalid: Line is not valid in this cache.

At the directory, a directory entry for each address maintains a record of requests for
various states from the different threads. If a line can be upgraded, it grants a request
to upgrade the line immediately. If necessary, the directory sends invalidation requests
to all the private caches with copies of the line. The directory then issues the upgrade
when all private caches have responded that their copies have been invalidated.

If a cache line misses in the first-level cache, a request is sent to the directory
and, if necessary, the data is fetched from the corresponding L2 slice. The node at
which the line is located in the shared structure is determined by the address. The
addresses are striped across the nodes by the log n lowest order bits of the address.
This allows accesses to be relatively evenly distributed across the cache slices. This
prevents performance bottlenecks at individual caches and on the network.
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Chapter 4

A Centralized, Fair and Fast Lock
Arbiter

N Section 1.3 we described the lock structure and identified arbitration, handoff, and
acquire time as areas in which lock algorithms can improve performance. In Chapter 2

we discussed existing lock implementations and their pro et contra with respect to the
lock structure. In this chapter we present a hardware lock implementation for multicore
systems and evaluate it against state-of-the-art software algorithms using the simulator
from Chapter 3.

Our design seeks to improve on the shortcomings of both software and hardware
lock algorithms. Software lock algorithms often result in high network traffic overhead
due to passing lock flags between cores. In addition the cache coherence overheads of
invalidating and writing back lock data result in high latencies. Software algorithms
also often experience high acquire times under low contention and high handoff latencies
under high contention due to code complexity. On the other hand, hardware locking
algorithms improve upon handoff latency and acquire times, but at the cost of hardware
overhead. To these ends, we designed a hardware locking algorithm that seeks to:

" Minimize handoff time

" Minimize network traffic

" Minimize hardware overhead

" Maximize fairness

N 4.1 Lock Arbiter

Our algorithm revolves around a hardware structure called the lock arbiter. The lock
arbiter processes LOCK and UNLOCK requests from cores across the processor. The
lock arbiter maintains information about each lock in order to process lock requests
quickly with minimal hardware overhead.

Each node in the system contains a lock arbiter, which communicates with the local
core, router, and shared cache slice. Each lock arbiter consists of a series of lock arbiter
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entries. A single lock arbiter entry is utilized by one lock system-wide. The lock arbiter
receives LOCK and UNLOCK requests from the thread running on the local core and
from remote threads via the router. Lock placement is determined by the same striping
scheme that maps memory addresses to shared cache slices. This means that locks
must be identified by an address, although the lock never enters the memory hierarchy,
except in case of overflow, which we will discuss in Section 4.1.2. Before we discuss
overflow, however, we will go into more detail about how the algorithm works.

* 4.1.1 Lock Arbiter Algorithm

Lock Request

No ety Yes
-hit?

No Yes

Yes No ownd

bit set?

Yes lock * Ye No qeeYes

in aaiable fu I?
boom?

fifter?

Fetch Entr fro vc nr

Yes No

Write owned
N eal es to cache

? Send GRANT

Send AIT)

Figure 4.1: Flow chart of LOCK process.

In this section we describe the arbitration algorithm, which we summarize in the flow
chart in Figure 4.1. When a thread needs to acquire a lock, it sends a LOCK request
to the lock arbiter at the node with the ID equal to the low order bits of the lock's
address, according to the address striping scheme. Once the LOCK request arrives at
the correct arbiter, the lock arbiter checks if it already has a lock arbiter entry allocated
for that lock address. Entries are fully associative, to fully utilize the capacity of each

P
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lock arbiter. To distinguish between locks, each lock arbiter entry has a tag, comprised
of the high-order address bits, uniquely identifies the lock for which it is allocated. If
there has been overflow, it is possible that the lock arbiter entry was evicted from the
lock arbiter and is stored in the memory system. We describe how the lock arbiter
entry is recovered in Section 4.1.2.

If no entry is currently allocated, the lock arbiter allocates a new entry for that
address by loading the upper bits of the address into the tag of an available lock arbiter
entry and resetting all components of the lock arbiter entry. When no entry is available
for allocation, the contents of a lock arbiter entry are evicted to the shared cache as
per the overflow mechanism in Section 4.1.2 and that lock arbiter entry is allocated to
the new lock.

If the lock is currently unowned, the lock arbiter sends a LOCKGRANT response
to the requester thread and sets the owned bit. If the owned bit is already set, the lock
arbiter enqueues the thread's ID in the lock arbiter queue to arbitrate locks as fairly as
possible. If the thread ID is enqueued, no response is sent yet to the thread.

When the lock arbiter receives a UNLOCK request, if that lock's entry's queue is
not empty, then the next thread ID is dequeued and a LOCKGRANT is sent to the
next thread. The owned bit remains set. If the queue is empty, the owned bit is cleared.

The lock arbiter queue promotes fairness by imposing a first-come-first-served order
on requesting threads. However, guaranteeing this strict fairness requires the queue to
be as long as the number of threads that can execute on chip, which is proportional to
the number of cores on chip. A queue that depends on the number of cores does not
scale well as the number of cores increases. To enable the lock arbiter to scale well,
it is desirable for the queue depth to be significantly less than the number of cores.
However, if a lock is highly contended, this may result in more LOCK requests than
can be handled by the queue and the queue may become full. When the queue fills, the
lock arbiter sends a LOCK_ WAIT response to the requester with a timestamp of when
the thread should try to lock again.

We utilize a timestamp so that threads do not send another LOCK request until it
is likely that it will queue for the lock successfully. This reduces network traffic caused
by retries. The time stamp is calculated based on the average critical section, since
after that amount of time has elapsed the current owner will likely have released the
lock and the next owner will have been dequeued, leaving an available queue slot.

The average critical section length is calculated at every UNLOCK request. First,
the total time spent in critical sections is updated, as depicted in Equation 4.1. Then
the average critical section length is calculated using the freshly-updated total critical
section time and the number of grants for this lock, as shown in Equation 4.2.

total _critical _section = total -critical-section + currenttime - lastgranttime (4.1)

total critical-section (2
average-critical _section = (4.2)

num-grants
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The timestamp for when the thread should return is calculated using average-critical-section
as shown in Equation 4.3.

time-stamp-return = average-critical -section + currenttime (4.3)

If a core receives a LOCK WAIT response, a small finite state machine loads
the time-stamp-return value. When the core's current time is greater or equal to
time stamp-return, the core re-issues the LOCK request to the lock arbiter.

* 4.1.2 Overflow Mechanism

As described in Section 4.1.1, when a lock request arrives at the lock arbiter, the lock
arbiter first searches among its entries for a lock with the same tag and allocates a
new entry if necessary. If no free lock arbiter entries are available (i.e., all lock arbiter
entries are currently used by other locks), the lock arbiter enters overflow mode.

In overflow mode, the lock arbiter entry with the longest average-criticalsection
is evicted, and the hardware resources are recycled for use by the new lock. However,
some critical information about the lock must be retained. For example, if information
about whether the lock is owned or which threads are queued is lost, the application will
experience race conditions or deadlock. Therefore, we store some of the data from the
evicted entry in the shared cache slice at the same node where the lock arbiter resides.
The lock address serves as the memory location where the overflow data is kept, which
is why lock locations are striped in the same manner as data on the multiprocessor.
This way the lock address can safely be used to handle overflow data, and the data can
be kept at the same node for fast recovery.

In order to keep all the data on one cache line, we only store data necessary to
continue processing lock requests. Therefore, we only keep one owned bit and the
lowest 31 bits of average-criticalsection. While the lock arbiter entry is in overflow
mode, the average-critical-section is not updated.

When overflow does occur, a bit called the overflow bit is set. The address of
all overflowed lock entries are also hashed into a Bloom filter [3]. The filter allows
overflowed lock entries to be accurately identified by address. Bloom filters guarantee
no false negatives, so if a lock address is added to the filter, it is guaranteed to be
overflowed. However, the Bloom filter may result in a false positive, which means that
it may say that a lock address that has not actually been placed in the shared cache
has overflowed. This rare case is naturally handled by the memory hierarchy. Although
false positives will result in a cache lookup, and subsequently a memory access, we
believe that this case is rare enough that this expense will be inconsequential.

If an UNLOCK request arrives at the lock arbiter, the lock arbiter first searches the
hardware lock entries for a match. If the corresponding entry is not found, the entry is
retrieved from the shared cache. The owned bit is updated and the line is written back
to the shared cache.

If a LOCK request arrives and the lock address tag does not match any hardware
entries, the lock arbiter looks up the address in the Bloom filter. If the address is a
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hit in the Bloom filter, the entry is fetched from the shared cache slice. In case of a
false positive, which is rare, the lock arbiter will still look up the lock address in the
L2 cache, which may result in a cache miss and subsequent memory access. However,
when the cache access does return, it will show that the entry is unowned, and the lock
arbiter will allocate a new lock entry for the lock.

When an owned lock entry is retrieved from the shared cache, the lock arbiter
checks if it can replace one of the existing hardware lock entries. If an entry has a
longer average-critical-section than the overflowed entry, that entry is overflowed and
the hardware lock entry is reallocated. The requester's thread ID is enqueued, the
average-critical-section register is loaded from the cache line, and the owned bit is set.
The register num-grants is initialized to 1 to enable average-critical-section updates.

U 4.1.3 Hardware Additions

Each lock entry contains several components to track and arbitrate locks.

1. Lock Queue - A queue of thread IDs who have requested the lock.

2. owned - One bit indicating if the lock is currently owned by a thread.

3. num-grants - Running total of the number of times a lock has been granted.

4. last-grant-time - Time stamp of the last time the lock was granted.

5. totalcritical-section - Running total of the number of cycles when the lock was
owned.

6. average-critical-section - Register with the average critical section length for this
lock.

Our system requires a static number of lock arbiter entries at each core. Each
lock arbiter entry has a queue of length lock-queue-length with width log n to store
requester IDs, where n is the number of cores. Each lock arbiter entry also requires 1 bit
to indicate whether the lock is currently owned. We use 32-bit registers for num-grants,
last-grant-time, total-critical-section, and average-critical-section.

Thus, every lock arbiter entry requires

lock _queue-length * log n + 1 + 4 * 32

bits.
We also use 100 bits for our Bloom filter, as well as 2 32-bit registers loaded with

random numbers used to calculate the hash function into the filter. Only one Bloom
filter is needed per node.

We also require a 32-bit register to keep time-stamp-return at the requester core
in case of a LOCK WAIT response. Therefore, for n nodes with e lock arbiter entries
per node, our system requires

n * 32 + n * (e * (lock -queue _length * log n + 1 + 4 * 32) + 100 + 2 * 32)
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Algorithm Operation READ WRITE Atomic Total

Operation

T&S lock 0 0 1 1
unlock 0 0 1 1

T&T&S lock 1 0 1 2
unlock 0 0 1 1

MCS lock 1 1 2 4
unlock 2 2 1 5

CLH lock 1 1 1 3
unlock 0 1 0 1

Table 4.1: Software locking algorithms used in evaluation with the minimum number
of operations.

bits. In a configuration with 16 cores, 4 lock entries, and a lock-queueilength of 4, this
results in 9956 bits extra hardware across the entire chip, or just over 1KB.

* 4.1.4 Instruction Set Architecture Additions

The lock arbiter requires two additions to the Instruction Set Architecture (ISA). Since
we have already explained how the lock arbiter handles these requests, we summarize
them here.

1. LOCK - An instruction that indicates that a thread would like to acquire the
lock at a particular address. LOCK returns either a LOCK-GRANT response or
a LOCK_ WAIT response. LOCKGRANT indicates that this thread is now the
owner of the lock and can continue execution. A L OCK- WAIT response indicates
that the lock arbiter could not queue the request, and the thread should resend
the LOCK request when the current clock time is greater than the return time.

2. UNLOCK - An instruction that indicates that a thread would like to release the
lock at a particular address, which is currently owns. UNLOCK does not receive
a response from the lock arbiter.

* 4.2 Evaluation

We evaluate our lock arbiter implementation using the trace-driven, cycle-accurate sim-
ulator from Chapter 3. We compare our results to several state-of-the-art lock imple-
mentations from Chapter 2 that rely on the cache coherence protocol to manage locks.
The locks we implement, along with the number of each kind of memory operation for
their LOCK and UNLOCK operations, are listed in Table 4.1. Pseudo-code descrip-
tions of MCS and CLH can be found in Figures 3 and 4, respectively.
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Paramter

Issue Width

Cache Line Size
Li Cache Capacity
Li Associativity
L2 Cache Capacity
Network Channel Delay
Flit size
Lock Arbiter Capacity
Lock Queue Depth

Value
3 instructions
(Max. 1 memory instruction)

32 bits
32 KiloBytes
4
Unbounded
1 cycle
72 bits
4 entries
4

Table 4.2: System configuration for evaluation

N 4.2.1 Simulation Setup

The default configuration we used for simulation are listed in Table 4.2. We chose
parameter values based on the Tilera Gx series of microprocessors [5]. We modify the
default parameters for some studies.

Microbenchmarks

Algorithm 5: Microbenchmark with short critical sections.

We use microbenchmarks to demonstrate some properties of our algorithm and the
basic performance and fairness of our system compared to other algorithms.

Our first microbenchmark, shown in Figure 5, is a simple multi-threaded program
in which all threads repeatedly lock the same lock, performing a short critical system
(incrementing a shared counter). The purpose of this microbenchmark is to demonstrate
the lock handoff and acquire times for a highly contended lock. The microbenchmark in
Figure 6 is similar to the first microbenchmark, except that delay is introduced to the

lock lk = 0;
counter = 0;
microbenchmark_00 {

for(int i=0;i<NUMLOCKS;i++) {

LOCK (lk);

count er++;

UNLOCK (lk);

}
}
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Algorithm 6: Microbenchmark with long critical sections.

Benchmark

dedup

fluidanimate

bodytrack-weight

streamcluster

raytrace

Description

parallel-pipelined kernel using
deduplication data compres-
sion
data-parallel application sim-
ulating fluids for real-time an-
imation
particle weight calculation
kernel in the bodytrack
application
clustering algorithm with
data streaming
tracks light in an image for an-
imation

Lock Density
low

high

low

medium

low

Distinct Locks
low

high

low

low

low

Table 4.3: PARSEC benchmark descriptions and lock properties.

critical section. This microbenchmark shows how the lock handoff and acquire times
differ when the cost of arbitration can be hidden by a longer critical section.

Our third microbenchmark, shown in Figure 7, has threads execute several different
critical sections of various lengths. This microbenchmark demonstrates how our lock
algorithm adapts to critical section length at an individual lock level to reduce network
traffic while still reducing lock handoff time.

Multi-threaded Scientific Benchmarks

We demonstrate the effectiveness of our system with real-world multi-threaded scientific
benchmarks. We use a selection of benchmarks from the PARSEC benchmark suite

lock lk = 0;
counter = 0;

microbenchmark_1() {

for(int i=0;i<NUMLOCKS;i++) {

LOCK(lk);

counter++;

for(int i=0;i<WAIT_TIME;i++)

UNLOCK (lk);

}
}
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lock lkl,lk2,1k3,1k4 = 0;

counter1,counter2,counter3,counter4 = 0;

microbenchmark_20 {

for(int i=0;i<NUMLOCKS;i++) {

LOCK(lkl);

counter1++;

for(int i=0;i<WAITTIME1;i++)

UNLOCK(lkl);

LOCK(lk2);

count er2++;

for(int i=O;

UNLOCK(lk2);

LOCK(lk3);

count er3++;

for(int i=0;

UNLOCK(lk3);

LOCK(lk4);

counter4++;

for(int i=0;

UNLOCK(lk4);

i<WAITTIME2;i++)

i<WAIT_TIME3;i++)

i<WAIT_TIME4;i++)

}

}

Algorithm 7: Microbenchmark with varied critical sections.

which demonstrate real lock usage
used and some of their properties.
instructions to other arithmetic and

[2]. Table 4.3 lists the selection of benchmarks we
Lock density indicates the relative number of lock
memory instructions. Distinct locks are the number

of unique locks useds by the application. In all benchmarks except fluidanimate, the
number of distincet locks was less than 4.

In our experiments we execute PARSEC benchmarks with test inputs for 500,000
cycles, except for dedup, which we ran to completion, and fluidanimate, which we ran
to 200,000 cycles.We only compare our lock arbiter algorithm to MCS and CLH in our
PARSEC experiments.

* 4.2.2 Performance

In this section we present the performance and analyze various aspects of our system on
our microbenchmarks and the PARSEC benchmark suite. We use the simulator from
Chapter 3 to perform our simulations.

In Figure 4.2 we compare the performance of our lock arbiter (LA) compared with
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Normalized Execution Time
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Figure 4.2: Performance of our system versus software lock algorithms.
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Figure 4.3: Performance of our system versus software lock algorithms for the PARSEC
benchmark suite.
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T&S, T&T&S, MCS and CLH on the first microbenchmark. We normalize the exe-
cution time to T&S, which takes the longest to complete the first microbenchmark.
As hypothesized in Chapter 2, T&T&S performas similarly to T&S. Our lock arbiter
performs best due to its fast handoff times. While MCS and CLH require several cycles
for cache coherence, the lock arbiter processes locks in a single cycle.

In Figure 4.3 we compare the instructions per cycle (IPC) of LA, MCS and CLH
for the PARSEC benchmarks. We use IPC to measure performance for the PARSEC
benchmarks because we do not run the benchmarks to completion, but rather only run
them for a predetermined number of cycles. We do not include instructions introduced
by software lock algorithms in the IPC calculation. Thus, the IPC is a measure of
real work accomplished by the system for the benchmark. Note that because most
benchmarks have few locks, the overall performance of most benchmarks is not severely
affected by the lock algorithm. An exception is streamcluster, which has high lock
density and contention compared to most of the PARSEC benchmarks. The lock arbiter
outperforms both MCS and CLH for streamcluster. Fluidanimate, the other PARSEC
benchmark with high lock density, does not see performance improvement with the lock
arbiter. This is because fluidanimate experiences lock overflow, which slightly degrades
performance.

Normalized Execution Time
1.005

1

0.995

0.99-

0.985

0.98 -

0.975

0.97 -_-

0.965
1 2 4 8 16

Lock Queue Length

Figure 4.4: Effect of lock queue length on performance.

Lock Arbiter Entry Queue Length In Figure 4.4 we observe how the lock queue length
affects the performance of the lock arbiter system when running 16 threads. While
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Average Cycles to Acquire Lock
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Figure 4.5: Effect of lock queue length on average acquire time.

execution time is similar for all queue lengths, we see subtle differences when we compare
them. To explain the differences, we examine the average number of cycles to acquire
each lock.

In Figure 4.5 we show how the average acquire time changes as the length of the
queue increases. Acquire time is defined by the time a thread takes from the time
the thread initially requests the lock to when the thread actually acquires the lock.
The average acquire time correlates well to the normaled execution time in Figure 4.4.
A lock queue length of 4 performs well because unlike shorter queue lengths, there is
always a thread waiting in the queue when a lock is released. Longer queue lengths
perform worse because they are more fair. Lock ownership is passed to threads across
the chip, introducing communication overheads to the acquire time and the overall
execution time. Lock arbiters with short queues, on the other hand, tend to grant locks
to the thread where the lock is mapped and its neighbors more frequently. We will
discuss fairness in more detail later in this section.

Handoff Time Figure 4.6 shows the average handoff time for the microbenchmark with
highly-contended short critical sections. In this experiment we use a queue depth of 4
for the lock arbiter. We observe from this data that the our lock arbiter mechanism
improves on the handoff time over MCS and CLH, which are each significantly better
that T&S and T&T&S. We can attribute the improvement in handoff latency to the
fact that in high contention, as is the case here, the lock arbiter's requester queue
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holds the next thread that will acquire the lock. Then the lock arbiter only requires a
single cycle to process a LOCK request and grant the lock to the next waiting thread.
Although MCS and CLH both form queues, each requires a data access which results in
a first-level cache miss in order for the owned flag to pass from one thread to another.

Figure 4.7 shows the average handoff time for a microbenchmark with highly-
contended, long critical section. The handoff times for LA, MCS, and CLH are ap-
proximately the same as the first microbenchmark. We attribute this to the fact that
queue formation is adequately hidden by the short critical section. T&T&S experiences
improved handoff time because contending threads are able to reset and obtain their
read-only copies of the lock data during the critical section.
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Figure 4.8: Short critical section acquire time.

Acquire Time Figures 4.8 and 4.9 show the average acquire time for the microbench-
marks with short critical sections and long critical sections, respectively. With short
critical sections, the lock arbiter has lower acquire times than any of the software al-
gorithms. In the long critical sections, the acquire time is dominated by the length
of each critical section. T&T&S appears to be far superior than any algorithm with
long critical sections. Closer observation reveals that this phenomenon occurs due to
T&T&S's extreme unfairness, which we will discuss later in this section.

We show the average acquire time for locks in the PARSEC benchmark suite in
Figure 4.10. As most of the applications do not have lock contention, the acquire times
are very similar for all benchmarks. We observe that, with the exception of fluidanimate,
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the lock arbiter consistently delivers better acquire times than either MCS or CLH. We
attribute this to the arbitration latency of MCS and CLH due to their code complexity
in comparison to LA. The lock arbiter has high acquire time for fluidanimate due to
overflow. Lock entries must frequently be fetched from the last-level cache, which adds
significant delay to the lock process even if the lock is not contended.
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Figure 4.11: Average lock acquire time by thread.

Fairness We observe fairness examining the average acquire time per thread. If the
average acquire times are roughly equal, then the lock algorithm is fair. If there is
significant difference between acquire times, the lock is not fair.

We see in Figure 4.11 the fairness of each locking algorithm when used by the first
microbenchmark with 16 cores and a lock queue length of 4. As expected, T&T&S and
T&S have quite variable acquire times. Both these algorithms have no mechanism to
control lock acquire order, so acquiring a lock is a free-for-all process every time the
lock becomes available. In this microbenchmark, the lock address was mapped to node
8. We note that the acquire time is significantly shorter for thread 8 and the threads
mapped close to 8, such as threads 4 and 9.

MCS and CLH are less variable, as we would expect from algorithms which form
whole queues for the lock. The lock arbiter has more spread than MCS and CLH,
but much less than T&T&S and T&S. The standard deviation between average thread
acquire times is 225 cycles for LA, compared with 93 and 89 cycles for MCS and
CLH, respectively. We would expect that increasing the queue length would lower LA's
standard deviation even more.

Figure 4.12 supports the thesis that fairness and lock queue length are proportional.
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Figure 4.12: Average lock acquire time by thread for different lock queue lengths.

That is, as queue length increases, the lock arbiter's fairness improves. We observe that
as the queue length increases, the spread between the thread acquire times decreases.
The standard deviation for queue length 16, which can hold all requesting threads' IDs,
is only 63 cycles. A queue length of 16 results in a more fair algorithm than MCS and
CLH.

* 4.2.3 Network Traffic and Contention

Cache Coherence Requests

Figure 4.13 breaks down the network traffic by request type and normalizes the pro-
portion of each kind of request for the first microbenchmark. We observe that T&T&S
has the most requests and is dominated by invalidate requests due to passing the lock
flag between cores. In Figure 4.14 we zoom in to LA, MCS and CLH. We see that
the lock arbiter significantly reduces network traffic due to cache coherence requests.
However, these requests are replaced largely by lock requests. We also observe that a
significant number of LOCK_ WAIT messages are passed due to the high contention. In
this simulation, the lock entry has only the 4 queue slots to service 16 threads, which
leads to many LOCK_ WAIT requests. While lock arbiter has similar network traffic to
MCS and CLH, it does not improve upon network traffic.

Figure 4.15 shows the network traffic breakdown for the PARSEC applications. Due
to the low number of lock requests in most benchmarks, we see little difference in total
network traffic.
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* 4.3 Analysis and Conclusions

As seen in our results from various experiments throughout this chapter, our locking
mechanism has several advantages over the software algorithms. First, the lock arbiter
only requires a single cycle to process LOCK and UNLOCK requests. This shortens
the arbitration period of the lock when the lock is uncontended, since the requester
receives a grant almost immediately. Compared to other schemes like CLH and MCS,
which make several cache requests, this is a large improvement. However, if the lock
is only requested by a single thread over and over again, CLH, MCS, and even T&S
and T&T&S have an advantage because all the relevant lock variables are cached in the
thread's private cache. On the other hand, in the lock arbiter case, the thread always
has to send a request over the network to the lock arbiter. Unless the thread shares
the same node as the relevant lock arbiter, acquiring the lock could cost a round trip
across the chip.

Our second advantage is the hardware queue. The queue improves fairness by im-
posing some order to the thread requests. However, as we saw in our results, our
mechanism trades off fairness and hardware overhead. A completely fair mechanism
would have a queue depth to support the number of threads on chip. However, that
proposition yields poor scalability. Therefore, we used shorter queues and instead sim-
ulated a queue by estimating when threads unable to queue at the time of the initial
request could queue successfully. As we observed in our results, this change did not
result in significant changes to acquire times. This means that, from the perspective
of the threads themselves, their request was serviced almost as fairly as if there were a
physical queue. The queue also has the potential to reduce network traffic. The soft-
ware algorithms require multiple memory requests, which, when the lock is contended,
result in increased network traffic. For example, CLH needs to pass around a copy of
the tail pointer and, when the previous owner releases the lock, it needs to recover its
lock flag from the other thread's cache. Our lock scheme handles this with a single
remote request while there is room in the queue.

Overall, we find in these results that our hardware lock arbiter has comparable
performance to the state-of-the-art software-based lock algorithms CLH and MCS and
imposes reasonable fairness levels with low hardware overhead, even while locks are
highly contended.
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Chapter 5

Future Directions for
Synchronization

T H IS thesis has examined several locking schemes that have different approaches to
synchronization. But what does the future have in store for synchronization? Is

the lock arbiter we proposed the future of synchronization?

* 5.1 Lock Arbiter Viability

In Chapter 4 we compared our lock arbiter algorithm against the most promising soft-
ware algorithms. We found that our algorithm stacked well against the leading software
algorithms in terms of overall performance, handoff time, acquire time, and fairness for
both contrived microbenchmarks and real applications. So if the lock arbiter performs
so well, what are the chances of it being adopted by chip manufacturers and integrated
into multicore processors?

One issue we have not addressed so far in this thesis is general-purpose process-
ing. Many servers manufactured today are designed to handle many different kinds of

workloads. Our lock algorithm performs well under high contention. Its performance
benefits are more easily apparent when locks are accessed frequently. However, many
parallel applications do not have highly contended locks, due to their natural tendency
to create bottlenecks and reduce the application to a serial execution. We observed in
Chapter 4 that most PARSEC benchmarks did not benefit from the lock arbiter due to
sparse lock usage.

Another issue is portability. Software locking algorithms are convenient because
they can be run on virtually any multicore processor. Therefore, an application that
uses these algorithms is highly portable. An application that is designed using the lock
arbiter API, on the other hand, is restricted to only processors which have built-in lock
arbiters.

The benefits of a hardware or hybrid hardware algorithm for locking is apparent in
our results in analysis. However they may only be realized in machines developed for
specific workloads.
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* 5.2 Other Synchronization Primitives

There are other synchronization primitives which this thesis did not investigate, but for
which the lock arbiter could be used to improve performance.

* 5.2.1 Conditional Wait

Conditional wait is a synchronization primitive that allows threads to wait until they
are signalled by another thread to continue execution. A thread enters a conditional
wait while it owns a lock. It then unlocks the lock and waits until another thread
signals that the threads can continue. All the threads waiting for that specific signal
then perform a lock operation, obtaining the same lock they had when they entered.
Thus, conditional wait is prone to high lock contention when a signal occurs.

Lock arbiter entries could be modified to implement conditional wait primitives. In
addition to maintaining locks, the lock arbiter could note which threads are waiting on
a certain condition with a queue of thread IDs or bit vector. When the condition is
signaled, the lock arbiter can automatically offload the threads into the lock queue to
wait for the lock. This avoids the frenzy of threads attempting to acquire the lock.

* 5.2.2 Barriers

A barrier is a synchronization primitive that prevents threads from passing the point in
the execution where the barrier is called until enough threads have reached that point.
It has two basic phases: collection and notification. In the collection phase, threads
that reach the barrier are counted. The method of counting depends on the algorithm.
For example, all threads can atomically update a centralized counter or the threads
could be arranged as a tree and as threads reach the barrier, each thread notifies its
parent until the root of the tree is reached. The notification phase occurs once the last
thread necessary to pass the barrier reaches the barrier. In this phase all the waiting
threads are notified that they can continue executing.

The lock arbiter could be modified to implement barriers as well. The lock arbiter
could assist in the collection phase by being a central point for accumulating threads
that have reached the barrier. The thread IDs could be added to a queue at the lock
arbiter until enough threads reach the barrier. Then, the lock arbiter could dequeue
the thread IDs and send each enqueued thread the notification that it can continue.
This implementation would mean that each lock arbiter entry that can support barriers
would need to have at least as many queue entries as the number of threads in the
system. The hardware for this implementation may not scale well.

A common barrier implementation is with a lock and a conditional wait. In this
implementation a thread that reaches the barrier executes a lock, increments a counter
for the number of threads, and checks whether all the threads the barrier expects have
arrived. If not, then the thread performs a conditional wait and releases the lock. If all
the threads have arrived, the thread signals the waiting threads, releases the lock, and
continues executions. The other threads then wake up, obtain the lock, then release it.

50 CHAPTER 5. FUTURE DIRECTIONS FOR SYNCHRONIZATION



Sec. 5.3. Smart Synchronization 51

This implementation would be more suitable to our lock arbiter mechanism.

M 5.3 Smart Synchronization

One key takeaway from the results in this thesis is that no one lock implementation is
overwhelmingly better than any other. Different lock algorithms suit different applica-
tions. Factors which affect lock performance are the length of the critical section and
the amount of lock contention. Therefore, as we look forward to a world with more
cores on chip and more general-purpose chip multi-processors, we need to use smarter
algorithms to adapt locks to applications or even phases of applications and individual
locks.
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