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Abstract

This thesis studies a novel nonlinear spring mechanism that is comprised of a cantilever

wrapping around a curved surface as it deflects. Static force versus displacement tests

and dynamic "initial displacement" tests verified the spring theory for a large range of

oscillator parameters. Various human motion energy harvester configurations that use the

nonlinear spring were numerically optimized for power, robustness, and adaptivity. Based

on the optimization results, both the nonlinear and linear devices studied in this thesis

generate more power per volume and per mass when excited at one's hip while walking

than current commercial energy harvesters. The two degree-of-freedom (2DOF) nonlinear

oscillator is more adaptive to different excitation signals and resistant to power decay when

parasitic damping is present than the IDOF and 2DOF linear systems. These significant

advantages are caused by the 2DOF nonlinear system harvesting its optimal power at large

electromagnetic damping coefficients, whereas the optimal power generation for the linear

systems occurs at low electromagnetic damping coefficients. This thesis also examined what

electromagnetic damping coefficients can be generated by magnet-and-coil geometries that

satisfy the energy harvester constraints. The final chapter of this thesis investigates a load

cell that uses the stiffening spring to maintain high resolution over a large range of forces

and prevent large forces from damaging the load cell. Future work will include testing a full

energy harvester prototype and exploring other applications of the nonlinear spring.
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Chapter 1

Introduction

Several technological processes; such as energy harvesting from ambient vibrations, shock

absorption from external loads, and passive control or suppression of mechanical instabilities;

involve targeted energy transfer from one component of a structure to another. In particular,

energy harvesting is the process of using ambient energy sources to generate useful forms

of energy such as electricity. The energy in these ambient sources is usually spread over a

range of frequencies. Applications of energy harvesting range from MEMs sensors implanted

in the human body to monitor biological signs [27] to small electronics such as wireless

sensors in remote locations [16]. Shock absorption is the process of protecting a primary

structure from an ambient force or external pressure load. Shock absorption applications

include passive protection of buildings from earthquake excitations, offshore platforms from

water wave impacts, or delicate instruments from external loads [9] [25]. Passive control of

mechanical instabilities is another important area that has recently emerged in the context

of targeted energy transfer. Examples include the suppression of aeroelastic instabilities

on wings due to fluttering [7] and the elimination of aeroelastic instabilities in suspension

bridges [26].

This thesis focuses on energy harvesting from human motion vibrations for powering

macro-scale personal devices such as cell phones. This energy harvester should satisfy power

requirements and parameter constraints, and it should be competitive with currently avail-

able commercial energy harvesters. As discussed in Section 1.3, one way to increase the

energy harvester's efficiency is to use a nonlinear spring. Many different nonlinear springs

13



have been studied, and each has different advantages and disadvantages.

1.1 System Requirements and Constraints

The ultimate goal of this project is to fully power cell phones by walking or running. 2.5G

smartphones consume about 70 mW when in suspension mode (i.e. when the only power

consumed by the phone is checking for incoming signals). They consume about 800 mW

during a phone call. A typical cell phone's fully-charged battery stores 16 kJ; or, enough

power for 5.5 hours talk time or browsing time on a 3G network, 10 hours browsing time

on Wi-Fi, 40 hours of audio listening, or 225 hours standby. [1]. To make a cell phone self-

sustaining, an ambulatory energy harvester must convert at least 70-800 mW of the power

in human motion into electricity.

During motion, different parts of the body exert different amounts of power. An average

80 Kg male's center of mass exerts 0.5 J/step; the hip, 20 J/step; the knee, 25 J/step; and

the heel, 2 J/step. Some of this power is available for electricity without hindering human

motion; especially when the exerted power is "negative work" (i.e., the joint muscle absorbs

energy and converts it to heat) [14]. Zarrugh et al. [13] measured actual adult strides to

range from 1 step/sec (for an extremely slow walk velocity of 0.4 m/s) to 2 steps/sec (for

a brisk walk velocity of 1.6 m/s). According to the New York Times Health and Wellness

blog, the average American takes 5,000 steps per day, which equates to traveling about 2.5

miles or 4 Km [17]. If every step provides about 0.1 J of electricity, then up to 500 J may

be available for powering a cell phone, enough energy for a 10 minute phone call.

This thesis will assume that the energy exerted by a person to excite the oscillator is

significantly less than the energy normally exerted by the person to walk. Therefore, the

person's walking will not be affected by the energy harvester that he/she is carrying.

In addition to the human power available and phone power required, further design

considerations are ensuring that the device is not overly burdensome to carry around. That

is, one must limit the device's mass and volume. An oscillator's dissipated power tends to

be proportional to the proof mass and displacement amplitude. Therefore, the longest and

heaviest device that is not burdensome should be designed. As a general rule-of-thumb, it
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seems reasonable to think that the largest device people are willing to carry around is the

size and mass of a cell phone because many people already carry one in their pocket all day.

As a baseline, the largest cell phone found via an internet search was the Samsung Galaxy

S II. This device has the dimensions: 2.5 x 6.6 x 0.85 cm. It has a mass of 133 g. Thus,

the energy harvester should be constrained to a mass of about 133 g and total oscillator

displacement of 7 cm.

1.2 Current Energy Harvesters

Many low-frequency energy harvesting devices are already in existence, but they could be

greatly improved in terms of how convenient they are for the user or how much power they

generate. Most low-frequency commercial energy harvesters that are already on the market

use power inputs that are non-human, such as sunlight or spinning bicycle wheels; or require

the user's active motion; such as operating a manual crank, pull-cord, or shaker. Information

on these harvesters is shown in Table 1.1. Several commercial energy harvesters that use

passive human motion as their power source are: Seiko watches, the nPower Personal Energy

Generator, and the Bionic power knee-brace-like "PowerWalk". Some of these passive human

motion harvesters are listed in Table 1.2.

15



Table 1.1: General Commercial Energy Harvesters

Name Location Mechanism Power Output Volume, Mass, Cost, Source

Descrip- (W) cm 3  g
tion (in 3 )

Voltaic laptop PV panel Two 2.0 Watt 106 (5) 590 129 1
Solar bag solar panels

Charger charge a battery.

4.5 hours in the

sun will fully
charge a cell

phone.

K3 Wind anywhere impeller 1 hour of sun and 1472 300 100 2

and Solar outside and PV wind provides 30 (86)
Charger panel minutes talk time

Nokia bicycle dynamo Pedaling at 6mph 50 (3) 50 18 3, 4

Bike- wheel for 10 minutes

Powered spoke results in 30
Phone minutes talk time

Charger or 37 hours

standby (phone

power not

specified)

Shake hand magnet 30 seconds of 490 308 30 5

Flashlight through shaking provides (30)
coil up to 15 minutes

of green light (the

LED's consume

0.1 W)
Crank hand dynamo 2 minutes of 680 425 30 6

Flashlight cranking provides (41)
15 minutes of

light (the LED's
consume 1 W)

1http://www.voltaicsystems.com/
2http://www.kinesisindustries.com/products
3http://www.wired.com/gadgetlab/2010/06/nokia-anriounces-bike-powered-phone-charger/
4http://press.nokia.com/wp-content/uploads/mediaplugin/doc/nokia-bicycle-charger-kit-datasheet.pdf
5http://www.appliedinnotech.com/product/nightstar-green-led-flashlight/
6http://www.redflarekits.com/crank-lite?gclid
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Table 1.2: Passive Human Motion Harvesters

7http://www.seikousa.com/gallery/index.php
8http://www.gizmag.com/npower-peg-charger-for-hand-held-electronics/14 9 57/
9 http://www.pcworld.com/product/651107/tremont-electric-npower-peg.html

10http://www.designboom.com/technology/motion-powered-energy-harvester-fits-in-shoe/
1 1https://www.sciencemag.org/content/309/5741/1725.short
1 2http://www.bionic-power.com/index.htm
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Name Loca- Mechanism Power Volume Mass , Cost, Source
tion Description Out- cn3 g W/cm 3  W/Kg

put (in 3 )

(W)

Seiko wrist asymmetric 5e-6 16 (1) 150 3.1e-7 3.3e-8 300 [151,
Ki- rotating
netic proof mass
Watch with electro-

magnetic
generator

nPower near magnet 3e-2 490 396 6.1e-5 7.6e-5 150 8, 9,

PEG hip inside coil (33)
Instep foot reverse elec- 2 101 - 2e-2 - - 10

Nano trowetting (6.2)
Power (conductive

liquid
deforms)

Back- back bag contents 7.4 24e3 38e3 3.le-4 1.9e-4 -

pack load frame (1440)
via spring
and drive
pinion gear
on generator

Bionic knee high torque 12 - 750 - 1.6e-2 1000 12

Power knee joint
performing
negative
work drives
generator



1.3 Current Nonlinear Springs

For all energy harvester designs, one aims to design elements that are capable of transferring

the input energy irreversibly and efficiently. In typical energy harvesting applications, the

ambient vibration can be described as a stochastic, multi-frequency signal that is often

characterized by time-varying features [20].

However, traditional single degree of freedom linear vibration harvesters are efficient only

close to their design point; that is, when the excitation frequency matches the harvester's

natural frequency. Therefore, linear harvesters respond inefficiently to ambient vibrations

[21]. In order to absorb ambient vibrations effectively, it is essential for an energy harvester

to be characterized by adaptivity (i.e. the ability to adjust its resonance frequency/ies

depending on the input spectrum) and robustness (i.e. the ability to maintain its energy

harvesting performance even if the excitation varies significantly).

Methods for overcoming this mistuning problem include: designing systems that do not

use a spring, control theory of linear spring systems, 2 degree-of-freedom linear systems,

continuous linear systems, and nonlinear springs. Below, we give a critical overview of these

techniques, focusing on their different advantages and disadvantages.

Mitcheson et al [12] describe a micro-scale coulomb-force parametric generator (CFPG)

that absorbs ambient energy without using a spring. Instead, the CFPG uses a charged

capacitor plate that snaps away from a counter-electrode when excited by large accelerations.

Since the CFPG does not have a spring, it does not have a resonant frequency and responds

similarly to acceleration signals that have the same magnitude but different frequencies. The

CFPG, however, only functions well when the excitation displacement greatly exceeds the

allowable travel length of its sliding plate. Another shock absorption device that functions

without a spring is the MEMS-fabricated hydraulic valve that fits inside a shoe, as described

in [28]. A controller allows hydraulic fluid flowing in between two chambers to pulse on a

piezoelectric element. Resulting strain in the piezoelectic element converts the mechanical

energy into electric energy. Additionally, [16] discusses a device small enough to fit in a shoe

that consists of a clamshell made from two piezoelectric elements. The device flattens with

each heel-strike and toe-off. [16] also reviews other energy harvesting devices that absorb

18



ambient energy without vibrating.

The performance of energy harvesters with linear springs can be improved by using

control strategies to alter the oscillator's resonance frequency [21] or creating linear devices

with two or more degrees of freedom so that the system has multiple resonant frequencies

[24]. [21] and [24] present devices with better performance than traditional single linear

springs. However, the controlled devices consume some of the collected power, and the

multiple degree of freedom systems are bulky and have limited robustness.

Another approach is to use a nonlinear spring. Essentially nonlinear springs- that is non-

linear springs without linear stiffness components- do not have preferential linear frequencies.

Therefore, they are more robust to variations in the external excitation and preserve their

good performance level for a wide range of conditions [6], [18], [25], . The simplest form

of an essentially nonlinear spring is a cubic one. It may be implemented by linear springs

supporting the proof mass at nonperpendicular angles. For example, MacFarland et al. [11]

investigate the dynamics of a nonlinear oscillator realized by a thin elastic rod (piano wire)

clamped at its ends without pretension that performs transverse vibrations at its center.

To leading order approximation, the stretching wire produces a cubic stiffness nonlinearity.

Despite its success in various applications, this design can suffer from significant frictional

losses, especially in small scale applications, due to the guided motion of the moving mass

[25]. In addition, there are limitations related to the spring breaking or yielding when the

external forces become too large.

A different class of nonlinear springs are those with negative linear stiffnesses, which are

usually characterized by a bi-stable configuration. Cottone et al [2] describe a nonlinear

spring implemented by an inverted pendulum with a tip magnet that faces an opposing

static magnet. For a small enough gap between the magnets, the cantilever has two equi-

libriums. For small base input accelerations, the tip magnet oscillates linearly about one

of the equilibriums. For large enough accelerations, the tip magnet cycles between the two

equilibirums. Thus, if the ambient accelerations are sufficiently large, the device can resonate

in the presence of noise.

As described in [3], nonlinear springs may be physically implemented by helical springs

with thickening coil wires or changing overall diameters. Another way to achieve nonlinear
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behavior is by employing multiple linear components that interact more strongly the further

they deflect. For example, in the leaf springs of automobile suspensions, several layers of

arc-shaped spring steel are clamped together. As the center of the upper arc deflects, it

contacts the arc below it, and both springs further deflect in contact. As more and more

arcs deflect, the spring effectively stiffens. However, the many arcs of the leaf spring result

in a lot of friction [3].

Mann and Sims [101 describe an oscillator that is implemented by a magnet sliding in

a tube with two opposing magnets as the end caps. This configuration causes the stiffness

to be the summation of a linear and cubic component. Altering the magnet spacing affects

the linear term but not the nonlinear term. Consequently, while the ratio of the nonlinear

stiffness to linear stiffness can be adjusted, the linear stiffness cannot be completely removed.

Another disadvantage of this device is that it loses energy to friction as the center magnet

slides along the tube.

In [4], an ultra-wide bandwidth resonator is made out of a doubly-clamped piezoelectric

beam. The double-clamps cause the cantilever to stretch as it bends, resulting in a nonlinear

stiffness. However, the beams also have a linear stiffness. The linear stiffness is negligible

compared to the nonlinear stiffness when the beam's residual stiffness is minimized. Thus,

the linear stiffness component can never completely be removed, and efforts to minimize the

linear stiffness component hinder the system optimization.

In all of the the aforementioned devices there are important limitations having to do with

factors such as large friction, large volume, many parts which reduce the overall lifetime, or

important linear stiffness components that cannot be removed. The goal of this thesis is the

theoretical and experimental study of a new nonlinear spring design for the purposes of energy

harvesting that overcomes these limitations. Using a cantilever beam that oscillates between

two contact surfaces with carefully selected curvature, this thesis illustrates numerically and

experimentally that i) the resulting nonlinear spring has a negligible linearized component,

ii) the order of its nonlinearity does not remain constant but increases as the amplitude gets

larger, and iii) the spring achieves a theoretically infinite force for a finite displacement. The

last property is of crucial importance since it allows the device to act as a typical spring

with polynomial nonlinearity for moderate vibration amplitudes and to effectively behave as
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a vibro-impact spring for larger amplitudes. Additionally, the spring is designed so that it

does not break under large forces- an important feature for applications involving multi-scale

load cells.

21



Chapter 2

Nonlinear Spring Theory

The new nonlinear element is based on a cantilever beam that oscillates between two surfaces

of given geometry (i.e. curvature). In particular, it is a modification of Timoshenko's

design [22] that consists of a cantilever that wraps along a surface as it bends (Figure 2-1).

Timoshenko investigates a spring for which the surface has a constant radius of curvature

(i.e. a quadratic shape). In this case the cantilever-quadratic surface spring behaves linearly

until a critical force is applied (see below for details). Above the critical force, the cantilever-

quadratic surface spring behaves nonlinearly. However, during the initial regime (whose

extent cannot be reduced), the spring resonates primarily with a single dominant frequency

and therefore suffers from the lack of robustness that characterizes linear systems.

This project employs a contact surface with variable curvature along its length and

demonstrates that this modification can substantially change the behavior of the nonlinear

element. It is well known that the behavior of a free cantilever tip is linear for small displace-

ments or forces, and the cantilever radius of curvature is smallest at the root and infinite

(straight beam) at the tip. For this reason, the surface radius of curvature was made infinite

at the cantilever's root and decreasing along its length. That is, the second derivative of the

surface spatial function equals zero at the root and grows larger along the length. Accord-

ingly, contact between the beam and the surface begins immediately after the application of

even a very small force. As proven in this chapter, this choice in surface curvature eliminates

the linear regime that characterizes the original Timoshenko design and leads to essentially

nonlinear behavior of the element.
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Z'

S Contact surface, S= D(z/Ls5 -)-
.-------.------- .---- -------- Lsur ---------------------------------------------------

-----------. -------------- ---------- LC --------------------------------------------

Figure 2-1: Nonlinear spring implemented by a cantilever beam that vibrates between two
curved surfaces. The cantilever has length LCant, second moment of area I, and elastic
modulus E. The surface curve has the form S = D(z/Lsurf)n, where D is the gap between
the surface end and undeflected cantilever, and n is an arbitrary power greater than 1. The
axial coordinate z is measured from the surface root. The axial coordinate x is measured
from the contact point, zc.

The force versus deflection of both the original design and the proposed one follow the

same general derivation, given below. The schematic for both nonlinear springs is shown in

Figure 2-1. In the original Timoshenko design for a surface of constant radius, the surface

shape has the form:
z2 -2

S = D - = -(2.1)
L 2R

where D = L 2/2R is the gap between the surface and undeflected cantilever at the end of

the surface (z = L). L is the surface length, R is the surface constant radius of curvature

(1/R = d2S/dz 2), and z is the coordinate in the axial direction along the surface. To achieve

the desired infinite-valued curvature at the root of the beam, the surface shape is given the

form:

S = D - (2.2)
L

where D, L, and z are defined in the same way as in eq. 2.1. n is an arbitrary power greater

than 2. As described below, this constraint on n ensures that the surface radius of curvature

is infinite at z = 0 and decreases along its length, which is required to make the spring

essentially nonlinear.

The deflection of the cantilever tip, y can be approximated as the sum of three compo-

nents:

y = 61 + 62 + 63 (2.3)
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The first component, 61, is the beam displacement of the "free" part of the cantilever, i.e.

the part of the cantilever that in not in contact with a surface. The tip displacement of this

beam segment is found using the Euler-Bernoulli equation:

d~w
El dz = -q(z) (2.4)

dz4

where q(z) = 0 is the applied load along the beam length, E is the beam elastic modulus,

and I is the beam moment of inertia. Integrating eq. 2.4 results in the beam deflection

equation:

EIw = x 4 + (43 + C2c 4  (2.5)
24 6 2

where ci are the constants of integration, and x is measured from the contact point, as

shown in Figure 2-1. The boundary conditions for the free cantilever are: clamped at

z zc, so at x = 0, the beam has zero displacement and slope: w(0) = 0 and dw =) 0

(the displacement and slope of the surface are not considered in this component of the

displacement). The boundary conditions at the tip of the beam are a point force F and zero-

moment: d3
w(Lree) = -F/EI and d2 w(L ee) 0. Substituting these boundary conditions

into eq. 2.5 results in the following values for the constants of integration:

ci = -F; c2 = FL ree; c3 = c 4 = 0 (2.6)

Therefore, the resulting deflection component at the tip is:

F L 3

61 free (2.7)
3EI

For the cantilever/ surface spring, the free length is given by

Lfree = L - l(S(zc)) (2.8)

where z, is the contact point of the cantilever with the surface, S is the spatial function of

the surface curve, and I is the arc length of the surface from z = 0 to z = zc. In Section

2.1 below, we describe in detail the determination of the contact point z, and arc length of
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beam in contact with the surface, i(S(zc)).

The second component of the cantilever tip deflection is due to the cantilever slope at

the contact point. Because the cantilever is tangent to the surface while they are in contact,

the cantilever slope equals the surface slope at the contact point. This angle at the contact

point causes the added deflection 62 at the cantilever tip:

62 = Lfree (2.9)
dz

The third component of the cantilever tip deflection is due to the surface position at the

contact point:

63 = S(zc) (2.10)

Combining 61, 62, and 63, the tip deflection due to force F is:

FL3  dS
y = f + Ljree + S(zc) (2.11)

3EI dz

Alternatively, the total deflection, y, can be determined by solving the beam deflection

equation eq. 2.5 for the boundary conditions w(x = 0) = S(zc), dw(O) -
2 (:=Lfree) =

0, and d=
3 -F/EI. For these boundary conditions, the integration constants

affected by the tip boundaries, c1 and c2 remain equal to those given in eq. 2.6. The other

constants become c3 = and c4 = S(zc).

2.1 Determination of the contact point

The location of the contact point, zc, along the surface is the point at which the cantilever

curvature equals the surface curvature (surface contact condition):

d2 S d2'w (2.12)

dz 2  dz 2

where z is the axial coordinate along the surface.

This is the case because the curvature of a free cantilever decreases (i.e. the cantilever

gets flatter) along its length, while the surface curvature increases along its length (i.e. the
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surface gets rounder). z, is the point where the surface would no longer prevent the natural

deflection of the free cantilever. Alternatively, at z,, the curvature at the root of a free

cantilever of length Lfree subject to force F equals the surface curvature to which it is

tangent. The boundary condition defined by eq. 2.12 is required because the cantilever is

tangent to the surface at the contact point. Also, for static equilibrium, the beam curvature

equals the surface curvature (beam curvature is continuous) because no external moment is

applied.

The curvature at the root of a free cantilever is:

d2 w F

d 2  - L (2.13)dz2 EI

where Lfree is the free cantilever length. Substituting eq.s 2.2 and 2.13 into eq. 2.12:

( n-2 F

n(n - 1)D ~) = Lfree (2.14)
L ElI

The free cantilever length is defined as: LFree LCant -I(S(Zc)), where LCant is the entire

cantilever length and l(S(zc)) is the arc length of the cantilever segment in contact with the

surface. This assumes that the cantilever segment in contact with the surface follows the

surface curve exactly and does not detach from the surface. Therefore, the length of cantilever

in contact with the surface is equal to the arc length of the surface. The arc length of the

surface from z = 0 to zc is:

i(S(zc)) 1 + (/)dz. (2.15)

For small deflections, one can assume that (dS/dz)2 < 1. Then, l(S(zc)) = z, and LFree

L - zc. In this context, eq. 2.14 takes the form

zc n-2 F
(n - 1)D ( ) - (L - zc) (2.16)

For n = 2 Timoshenko's original design is recovered (see next subsection) while for larger

values of n the contact point has a different behavior.
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2.2 Force versus deflection for quadratic and general sur-

faces

If the spring uses Timoshenko's quadratic surface (n = 2) with the spatial equation given by

eq. 2.1 and the deflections are small, then eq. 2.16 can be explicitly solved for the contact

point z,:
2DEI EI

c L L 2 F RF

where the constant radius of curvature R = L2 /2D and the variables are defined as in eq.

2.1. Then, eqs 2.3-2.12 can be combined to find the tip deflection, y, as a function of F:

2 F if 0 < F < vfa
Y = 3V -- -- (2.18)

{ j 2- if F > (2.18)

where a = EI/VK3RL and / = 2R/L 2 = 1/D. The nonlinearity threshold force Fcrit

v/-a was determined by solving eq. 2.13 when Ljree = L since the cantilever will first begin

to wrap around the surface at their root. Solving eq. 2.13 with Lf..e = L shows that

Fcit = EI/LR = V/fa. Before contact (F < Fci or y < 2D/3), this spring deflects in the

same way as a linear cantilever beam. Eq. 2.18 also shows that y - = D as F - oc,

which agrees with what is expected to physically happen.

For n > 3 the cantilever begins to wrap around the surface for any small, non-zero force,

a property that causes essentially nonlinear spring behavior. Figure 2-2 shows the contact

point variation as a function of the load force for various orders of surface nonlinearity n.

Figure 2-4a shows the force-displacement curve for various orders of contact surface non-

linearity, n. In all cases, the force reaches unbounded values as the critical deflection value

I) is approached- a property of particular importance for design of nonlinear elements that

can withstand extreme loads (e.g. load cells). The surface curvature defines the smoothness

of the transition to very large force values. Specifically, for small values of n, the spring

force suddenly blows up very close to the critical value of deflection, D. For larger values of

ri, there is a smooth transition to the blow-up regime that is also associated with negligible

linear stiffness for very weak forces.
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Figure 2-4b shows the spring force versus deflection with a logarithmic force scale. For

a typical essentially nonlinear spring with polynomial nonlinearity, the slope of the log of

the reaction force is constant. In the proposed design, the slope of the log of the reaction

force increases, signifying that the order of the nonlinearity increases continuously with

increasing deflection. This feature of variable order of nonlinearity is inherently connected

with the theoretical blow-up of the reaction force for finite-displacement. This feature allows

the proposed nonlinear element to behave as an essentially nonlinear spring for moderate

excitation forces and as a vibro-impact element for very large excitation forces. The physical

reason for this blow-up is that at large enough forces, the cantilever fully wraps around the

surface, and the tip cannot deflect any further.

The stiffness of the spring at a given force is closely related to the contact point between

the cantilever and surface at that force. As shown in Figure 2-3, all of the springs have

contact point zc/LSUrf = 0 when deflection y/D = 0, and zC/LsUrf = 1 when deflection

y/D = 1. The figure also shows that for larger n, the value of the contact point in between

y/D = 0 and y/D = 1 is larger than the contact point of a smaller n surface at the same

y/D value. For the zC/LSUrf versus y/D curves to have these three qualities, the slope of

the curve for a larger-n-surface must be larger for small y/D values and smaller for large

y/D values. This makes sense because the interference of the surface with the cantilever's

deflection depends on the surface curvature. As n increases, the shape of the surface (with

all other parameters equal) is flatter near the root and rounder near the tip. Where the

surface is flatter (large n, near root), the contact point increases more for a given increase

in tip deflection. Where the surface is rounder (small n, near the tip), the contact point

increases less for the same increase in tip deflection.

One can think of the spring stiffness as the stiffness of the free cantilever length. Regard-

less of the surface n value, all cantilevers have the stiffness of a full-length free cantilever

when F = y = z, = 0- because the cantilever is unaffected by the surface. All cantilevers

approach infinite stiffness for large forces (F -- oc when y/D -- + 1 and zc/Lsurf -+ 1)

because the cantilever fully wraps around the surface: the free cantilever length is zero.

As described in the paragraph above; for in-between force values, the free cantilever length

shortens at varying rates for different n.
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For larger n surfaces and small deflections, y/D; the rate of change in the contact point,

zC/L, for increasing y/D is larger than that of a smaller n surface. This means that at a

given [small] y/D value, a larger n spring has a shorter free cantilever length and is stiffer-

so at a given [small] force F, the larger n spring has deflected by a smaller amount. For

larger n. surfaces and large deflections, y/D; the opposite is true: the rate of change in the

contact point, zc, (i.e. rate of change in free cantilever length) for increasing y/D is smaller

than that of a smaller n. surface. This means that at a given [large] force F, as the cantilever

deflects, the stiffness of a larger n spring does not increase as much as a smaller n spring.

In summary, for larger n surfaces: the spring is stiffer than smaller n surfaces for small

applied forces. The spring is weaker than smaller n surfaces for large applied forces. The

spring stiffnesses always blows up to infinity for very large forces. The rate of blow up is

slower for larger n surfaces at those large forces.

The relationship of the contact point, deflection, and spring stiffness for varying n de-

scribed above is in agreement with Figures 2-2 to 2-5.

Apart from dependence on the contact surface nonlinearity, rI, the resulting force versus

deflection curve also depends on several adjustable parameters: cantilever length, L, can-

tilever rigidity El, and surface maximum deflection D. This dependence is briefly explained

below: As shown in Figure 2-3, the relationship between contact point/surface length and

displacement/ maximum surface gap is independent of L, El, and D.

When a given displacement /surface gap results in a specific contact point/surface length,

the resulting free cantilever length is LFree L( - zc/L), where is is assumed that L =

LCant = LSurf. While the fraction LFree/Lyotal remains the same for a given deflection,

y/D; the effective cantilever has a longer dimensionalized length and is therefore a weaker

spring. Consequently, a longer cantilever length results in a weaker spring for all force values.

Similarly, the resulting free cantilever is more rigid when El is larger, so a cantilever with a

larger EI results in a spring that is stiffer for all force values.

For larger maximum surface gap D values, a cantilever can deflect to a larger value,

y before the surface interferes with its deflection. Thus, a spring with a larger maximum

surface gap, D, is weaker.
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Force versus contact point
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Figure 2-2: Tip force versus contact point (normalized by surface length) for varied spring
parameters. These plots are for a spring with the following constant parameters: cantilever

height h = 0.032in, cantilever base b = 0.1875in, cantilever length L = 15.7cm, elastic
modulus E = 160.6MPa, maximum surface gap D = 3cm. The surface curvature is varied
by changing the value of n in the surface spatial function S = D(x/L)". The circle in the
n = 2 curve is when contact between the cantilever and surface begins.

2.3 Safety factor against yield

For the spring to have a long life, it needs a sufficient safety factor against yield, SF

Umax/oyield, where omax is the maximum stress in the spring's cantilever and ayield is the

cantilever material's yield stress. In vibration applications, for example, a safety factor

against yield of 2 allows the oscillator to have a near-infinite fatigue life. The stress in a

cantilever in pure bending is:

- = -Ec (2.19)
dz2

That is, stress in the cantilever is proportional to its curvature. As described in section

2.1, for a given applied tip force, the maximum cantilever curvature occurs at the contact

point, and at this point, the cantilever curvature, I, equals the surface curvature, d
2

S

The surface curvature, d2 S, increases along the surface length. Also described in section 2.1,

the value of the contact point, z,, increases with larger applied tip force. Therefore, when

larger forces are applied, the maximum curvature (and normal stress) in the cantilever is

both larger and occurs at larger z values.

30



Contact Point versus Displacement
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Figure 2-3: Contact point (normalized by surface length) versus tip displacement (normalized

by maximum surface gap, D) for varied spring parameters. The surface curvature is varied

by changing the value of n in the surface spatial function S = D(x/L)n. The circle in

the n = 2 curve is when contact between the cantilever and surface begins. These curves

are independent of the cantilever length, cross-section and elastic modulus, and the surface

length and maximum surface gap, D. These curves assume that the maximum surface gap

is small (they do not account for arc length) and Lsrf = LeCnt.

Force versus tip deflection
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(a) Force versus displacement.

Force versus tip deflection
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0.025 0.03

(b) Force versus displacement, Log scaling.

Figure 2-4: These plots are for a spring with the following parameters: cantilever height

h = 0.032in, cantilever base b = 0.1875in, cantilever length L = 15.7cm, elastic modulus

E = 160.6MPa, maximum surface gap D = 3cm.. The surface curvature is varied by

changing the value of n in the surface spatial function S = D(x/L)". The circle in the n = 2

curve is when contact between the cantilever and surface begins.
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Figure 2-5: Tip force versus spring stiffness for varied spring parameters. These plots are for
a spring with the following constant parameters: cantilever height h = 0.032in, cantilever
base b = 0.1875in, cantilever length L = 15cm, elastic modulus E = 160.6MPa, maximum
surface gap D = 3cm. The surface curvature is varied by changing the value of n in the
surface spatial function S = D(x/L)'. The circle in the n = 2 curve is when contact between
the cantilever and surface begins.

This relationship between contact point location, stress, and applied tip force is illustrated

in Figure 2-6.

The largest stress in the cantilever occurs when the contact point is at the surface end,

zc = Isurf; that is, when the cantilever tip is deflected to the maximum value, D (assuming

that the fully-deflected cantilever does not overhang the surface).

Since the largest stress in the cantilever for any applied force is proportional to the

maximum surface curvature, one can design the spring to meet a safety factor against yield

by setting the maximum surface curvature, d z=LSf below a certain value.
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Figure 2-6: Simulated normal stress along the cantilever for different applied forces. The

spring had parameters: Lat = 15.7cm, elastic modulus E = 160.6c9IPa, cantilever base

dimension b = 0.187inches, cantilever height h = 0.032inches, surface length Lsurf = 15cm,
surface gap at surface end D = 3cm, and surface curve power n = . The peak in the stress
curves occurs at the contact point.
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Chapter 3

Experimental Verification

The theory was verified by performing static "Force versus Displacement Tests" and dynamic

"Initial Displacement Tests". In the initial displacement test, the end-mass attached to the

cantilever was given an initial displacement, and the resulting oscillation was video-recorded.

Other tests that can be used to verify the energy harvesting theory are the "Single Base Drop

Test" and the "Multiple Base Drop Test," for which the entire spring is raised and dropped

on a vertical rail one or multiple times, respectively, and the oscillator motion is video-

recorded. Exciting the spring in this way simulates real-life energy harvester excitation by

human motion (such as the foot or hip rising and falling during walking). The base drop tests

were not extensively studied for this thesis, and therefore cannot strongly prove or disprove

the theory. However, this section includes these test results to-date to demonstrate the

viability of the test set-up for simulating human motion excitation of the energy harvester.

All of the tests were performed on nonlinear springs configured as shown in Figure 3-1.

The tests used various cantilevers with lengths ranging from 8.7 cm to 16 cm, heights of

0.4-0.8 mm, and widths of 4.7 to 12.7 mm. The maximum gap between the cantilever and

surface ranged from 1 cm to 4.7 cm, and the cantilever overhang from the surface edge ranged

from 0-10% the surface length. The end-mass on the cantilever ranged from 25 to 120 g.
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(a) Raised set-up for "Base Drop" test

Figure 3-1: Dynamic test set-up. For the base drop tests, the entire oscillator slides along

the rail. The pneumatic cylinders reduce the table-top impact acceleration. For the initial

displacement test, the base cart is clamped to the steel block. Shown here is an oscillator

with cantilever length, 15.7 cm; width, 4.8 mm; height, 0.81 mm; spring steel cantilever

elastic modulus 160.6 GPa; The contact surface follows the curve S = D(x/Lsurf)'. It has

length, Lsurf = 15cm; maximum gap, D = 3cm, and curvature power, n = 3. The steel

end-mass is 60 g.
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3.1 Force versus Displacement Test

The force versus displacement experiments were compared to the theoretical force versus

displacement curves described in Section 2.2. For springs with small deflections, the tip

force versus deflection was measured by using an Admet force tester with a 10 N load cell in

compression mode, with a rigid probe applied to the cantilever tip. For springs with large

deflections, the Admet force tester was used in tension mode with the 10 N load cell. The

cantilever/surface spring was clamped to a horizontal sliding rail, which was clamped to the

table. The force was applied using a 10-cm wire with two loops at its ends. One wire end

was looped around a nut adhered to the cantilever tip. The other was looped around a hook

bolted to the load cell. This configuration was chosen over a traditional rigid force probe so

that only a vertical force was applied and measured at the cantilever tip. The tension-mode

test set-up is shown in Figure 3-2.

Figure 3-2: Experimental set up of Force versus Displacement test in tension mode. In later

versions of the experiment, the string was replaced with a wire.

Figures 3-3 to 3-5 show the test results for springs with surface curve powers n = 2,

n = 3, and n = 5. Other spring parameters are listed in the captions. These results verify

the theory and are repeatable for a large range of spring parameters.

Some of tests were performed after spreading thin layers of Elmer's Slide-All or Moly-

Lithium Grease over the surfaces, which reduce friction between the cantilever and surface.
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This was done in order to investigate how friction affects the experimental force versus

displacement curves. Additionally, for an energy harvester, it is desirable to minimize friction

in order to minimize parasitic losses. Figures 3-4 and 3-5 show that the lubricants had little

effect on the force versus displacement curves compared to the tests without the lubricants.

For the same reasons, Figure 3-5 shows the test results of surfaces with small sinewave teeth

cut along the edge. Figure 3-5 shows that the sinewave teeth did reduce the force required

to displace the tip.

For the n = 3, D = 3cm, EI = .0341Nm 2 spring shown in Figure 3-4, the largest error

between the experiment and theory occurs for mid-range applied forces. At this force, the

experimental displacement exceeds the theoretical displacement by 4.5%. This error, which

can be seen in the other springs as well, may be caused by the cantilever slightly lifting off of

the surface in between the cantilever root and the contact point (which causes the curvature

at the contact point cantilever to be less than theoretically predicted, and therefore less force

is required for a given displacement).

These experimental results highlight the singular property of this nonlinear spring: there

is a maximum tip displacement for which the force theoretically approaches infinity.
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Force versus Cantilever Tip Displacement
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Figure 3-3: Force versus displacement test results for a surface with n = 2. Other parameters

are cantilever length Lcant = 17cm., height h = 0.8mm, width w = 4.7mm, elastic modulus

E = 190GPa, surface length Lsurf = 17cm, surface radius R = im, maximum surface gap

D = Lsurf /2R = 1.42cm.
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Force versus Deflection
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Figure 3-4: Force versus displacement test results for surfaces with n 3.
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Force versus Cantilever Tip Displacement
9 ... - ......................................... .........

Theory

8 Smooth Surface, No Grease
Smooth Surface, With Moly Lithium Grease

7 . Surface with teeth, No Grease ..... .......
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6....... ..... .... .... .. . .... .. .....

6g................ ..... .. . . . .. . . .

0

...................... ............. ......... .............................. .... ..... .............

04......................................... ... ......

0 34 ............... ... ....

2 . . . .. ............................. ..... ..... .....

3 ......

0
0 1 2 3 4 5 6 7 8
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Figure 3-5: Force versus displacement test results for surfaces with T = 5. Parameters are
cantilever length Lcant = 11cm, height h = 0.8mm., width w = 4.7mm, elastic modulus

E = 190GPa, surface length Lsurf = 11cm, maximum surface gap D = 1cm. The "surfaces
with teeth" labeled in the legend refer to surfaces with 3mm-radius sinewave teeth cut along
the edge, which were tested to see if they reduced friction.

3.2 Initial Displacement Test

For these tests, a mass was attached to the nonlinear spring and released from an initial

displacement at t = 0 seconds. The mass was colored red and its motion was recorded at

480 frames per second with a Samsung TL30 camera. A Matlab program tracked the red

object's position in each video frame (the code is given in the Appendix). The damping

coefficient was determined by curve-fitting the oscillation amplitude envelope using Matlab
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eftool. The mass velocity and acceleration were calculated by numerically differentiating the

displacement time series in Matlab. Figures 3-6 to 3-12 show comparisons of the experimental

time series and wavelet transforms to the theoretical predictions for three different oscillators.

The qualitative trends in the experimental dynamics over time agree well with the theory

for the first two tests. The third test does not agree well with the theory, and it is included

in this section as an example of the limitations to the theory: that is, too heavy an end mass

causes higher modes in the cantilever, which are not accounted for in the theory. These

higher modes are not picked up by the camera because even though the end-mass wobbles,

the location of center of mass tracked by the camera does not significantly wobble.

The simulation assumes that the cantilever oscillates in its first mode only, so the higher

mode frequencies shown in Figure 3-7 reflect the nonlinear effect of the surfaces, rather than

the cantilever's higher vibration frequencies. The experimental frequencies are slightly lower

than the theoretical frequencies, and this might be a result of the experimental stiffness

being slightly lower than the theoretical stiffness for mid-range displacements (see the force

versus displacement test results in Figure 3-4).

The simulation models a point mass that equals the end-mass of the experimental oscil-

lator, with linear damping equal to the experimentally-determined damping. The simulation

uses the nonlinear spring stiffness predicted in Chapter 2, with a modification so that the

deflection of the center of the end-mass is calculated instead of the cantilever tip deflection.

This modification is described below.

For a given force, the end-mass deflection is calculated by multiplying half the mass length

by the cantilever tip slope. The cantilever tip slope equals the slope of the free cantilever if

its root had 0-slope plus the slope at the roots (i.e. the contact point):

dy FL re dS= e + .(3.1)
dz 2EI dz

Then, the mass deflection is defined as:

dy Lmass
rnaa = y+dz 2 , (3.2)
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where y is the cantilever tip deflection and Lmass is the mass length in the axial direction.

The first system test results are shown in Figures 3-6 and 3-7. This test used the nonlinear

oscillator shown in Figure 3-1, and the mass was released from an initial displacement of 3.4

cm. Figure 3-7 includes the constant frequency of a linear oscillator with the same mass and

initial energy as the nonlinear spring in the initial displacement experiment.

The initial energy in the nonlinear spring was found by integrating the product of the

incremental spring force and tip deflection. That is, the energy in the spring is defined as:

E = jF(Y) dY (3.3)

where Y is a dummy variable, F is the spring force at end-mass displacement Y, and y is

the final end-mass displacement.

Using equations 3.1 to 3.3 for the nonlinear spring shown in Figure 3-1 with an end-mass

displacement of 3.4 cm, the initial energy in the tested spring was 0.033 J. A linear oscillator

with this same displacement and initial energy has a stiffness of K = 57N/m. If this linear

oscillator had the same mass as the nonlinear oscillator (60 g), then the linear oscillator's

natural frequency would be 4.9 Hz. Figure 3-7 shows that the nonlinear spring oscillates

with multiple frequencies that exceed that of the linear spring's constant 4.9 Hz.
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Relative Displacement versus Time
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Figure 3-6: Initial displacement test for the first nonlinear oscillator. The system had pa-
rameters: mass = 60g, Lcant = 15.7cm, elastic modulus E = 160.6e9Pa, cantilever base
dimension b = 0.187inches, cantilever height h = 0.032inches, surface length Lsurf = 15cm,
surface gap at surface end D = 3cm, and surface curve power n = 3. The damping envelope
indicated that the viscous damping in the system is 0.007 Ns/m. A photograph of the system
is shown in Figure 3-1.
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Figure 3-7: Wavelet transforms for the initial displacement test for the first nonlinear oscil-

lator. Left: experiment results. Right: simulation results. The dashed line at f = 4.9Hz

represents the frequency of a linear mass-spring system for which the mass, initial en-

ergy, and initial displacement equals that of the cantilever/surface spring system. The

cantilever/surface spring system had parameters: 'mass 60g, Lcat = 15.7cmr, elastic

modulus E = 160.6e9Pa, cantilever base dimension b = 0.187inches, cantilever height

h = 0.032inches, surface length L,,f = 15cm, surface gap at surface end D = 3cm, and

surface curve power n = 3. The damping envelope indicated that the viscous damping in

the system is 0.007 Ns/m. A photograph of the system is shown in Figure 3-1.
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The initial displacement test was also performed on a system with a shorter cantilever

and lighter mass. A photograph of the system [with a mass 5 times heavier than what was

used in this test] is shown in Figure 3-10. The test results are shown in Figures 3-8 and 3-9.

Displacement versus time
I I

time, (se
Velocity versus time

I I

Experiment
Theoretical Simulation

Simulation that uses experimental F vs
T"T"-

c)

-Experiment
Theoretical Simulation
Simulation that uses experimental F vs 5

I
0

0.02

0.01
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2 -0.01

-0.02

2
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Figure 3-8: Initial displacement test for the second nonlinear oscillator. The system had
parameters: mass = 25g, Leant = 8.7cm, elastic modulus E = 160.6e9Pa, cantilever base
dimension b = 0.187inches, cantilever height h = 0.032inches, surface length Lsurf = 7.2cm,
surface gap at surface end (if Lsurf = Lcant) D = 2c'r, and surface curve power n = 3.
The damping envelope indicated that the viscous damping in the system is 0.02 Ns/m. A
photograph of the system [with a heavier mass] is shown in Figure 3-10.
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Figure 3-9: Wavelet transforms for the initial displacement test for the second nonlinear
oscillator. The system had parameters: mass = 25g, Lcant = 8.7cm, elastic modulus E =
160.6e9Pa, cantilever base dimension b = 0.187inches, cantilever height h = 0.032inches,
surface length Lsurf = 7.2cm, surface gap at surface end (if Lsf = Lcant) D = 2cm, and

surface curve power n = 3. The damping envelope indicated that the viscous damping in
the system is 0.02 Ns/m. A photograph of the system [with a heavier mass] is shown in
Figure 3-10.
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The third system tested did not agree with the theory. This system has the same param-

eters as the system of Figures 3-8 and 3-9, but instead of a 25 g end-mass, it had a 125 g

end-mass. The oscillator is shown in Figure

and 3-12.

3-10. The results are shown in Figures

Figure 3-10: Experimental set-up for the initial displacement test of oscillator 3. The spring
had parameters: mass = 120g, Lcant = 8.7cm, elastic modulus E = 160.6e9Pa, cantilever
base dimension b = 0.187inches, cantilever height h = 0.032inches, surface length Lsurf =
7.2cm, surface gap at surface end (if Lsurf = Lcant) D = 2cm, and surface curve power
n = 3. The damping envelope indicated that the viscous damping in the system is 0.012
Ns/m.
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Figure 3-11: Initial displacement test for the third nonlinear oscillator. The system had

parameters: mass = 125g, Lcant = 8.7cm, elastic modulus E = 160.6e9Pa, cantilever base

dimension b = 0. 187inches, cantilever height h = 0.032inches, surface length Lsurf = 7.2cm,

surface gap at surface end (if Lsurf = LCant) D = 2cm, and surface curve power n = 3. The

damping envelope indicated that the viscous damping in the system is 0.012 Ns/m. A

photograph of the system is shown in Figure 3-10.
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Figure 3-12: Wavelet transforms for the initial displacement test for the third nonlinear
oscillator. The system had parameters: mass = 125g, Lcant = 8.7cm, elastic modulus E =
160.6e9Pa, cantilever base dimension b = 0.187inches, cantilever height h = 0.032inches,
surface length L,,,f = 7.2cm, surface gap at surface end (if Lsrf = LCant) D = 2cm, and
surface curve power n = 3. The damping envelope indicated that the viscous damping in
the system is 0.012 Ns/m. A photograph of the system is shown in Figure 3-10.

3.3 Single Base Drop Test

The Base Drop test simulates the vertical motion of a single foot step. The experiment does

this by bolting the nonlinear spring surfaces to a cart (the "base") that slides along a near-

frictionless vertical rail, as shown in Figure 3-1. The time series of a foot's vertical motion

while walking is shown in Figure 3-16. The foot motion was recorded by attaching a Vernier

5-g accelerometer to a person's while she walked, as shown in Figure 4-1. During walking,

the foot has a vertical displacement range of 38 cm, maximum velocity of -1.4m/s (right
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before ground impact), and maximum acceleration of -40m/s 2 (also right before ground

impact). A more in-depth description of the human motion dynamics is given in Section

4.1. In the base drop test, the foot's maximum velocity was generated by dropping the

oscillator from a height of 10 cm (using kinematics, this is the height required for an object

in free-fall to reach a velocity of -1.4r7/s). The foot's maximum acceleration was gener-

ated by engaging pneumatic cylinders at the oscillator's impact. The pneumatic cylinders

decrease the oscillator's deceleration (as opposed to rigidly hitting the table-top). The rate

of deceleration can be adjusted by changing the size of the air nozzle in the cylinders.

As was done for the initial displacement test, the experiment was recorded at 480 frames

per second with a Samsung TL30 camera. The mass was colored red, and the base was colored

green. A Matlab program (given in the appendix) tracked the red and green objects' positions

in each video frame. The damping coefficient was determined by curve-fitting the oscillation

amplitude envelope from an initial displacement test using Matlab cftool. The mass velocity

and acceleration were calculated by numerically differentiating the displacement time series

in Matlab. The base acceleration was recorded using a Vernier 25-g accelerometer. In order

to minimize noise, the base motion plots show the base acceleration directly recorded by the

accelerometer, base velocity calculated by numerically integrating the acceleration, and base

displacement that was directly recorded by the camera.

The experimental time series and wavelet transforms are shown in Figures 3-13 to 3-15.

The experiment and theory somewhat agree.
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Base Displacement versus Time

Drop Experiment
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Figure 3-13: Base motion time series for base drop test. The base was raised to a height

of 10 cm and dropped so that the pneumatic cylinders compressed upon contact with the

table. The experimental set-up (for a nonlinear spring with different parameters) is shown

in Figure 3-1.
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Relative Displacement versus Time.. Experiment
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Figure 3-14: Mass motion time series for the base drop test, oscillator 2. The system had

parameters: mass = 25g, Lcent = 8.7cm, elastic modulus E = 160.6e9Pa, cantilever base

dimension b = 0.1871nches, cantilever height h = 0.032inches, surface length L,,,,, = 7.2cm,

surface gap at surface end (if Lsurf = LCant) D = 2cm, and surface curve power n = 3.

The damping envelope indicated that the viscous damping in the system is 0.02 Ns/m. A

photograph of the system [with a heavier mass] is shown in Figure 3-10.
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Figure 3-15: Wavelet transforms for the base drop test, oscillator 2. The system had parame-
ters: mass = 25g, Leant = 8.7cm, elastic modulus E = 160.6e9Pa, cantilever base dimension
b = 0.187inches, cantilever height h = 0.032inches, surface length Lurf = 7.2cm, surface

gap at surface end (if Lsurf = LCant) D = 2cm, and surface curve power n = 3. The damp-
ing envelope indicated that the viscous damping in the system is 0.02 Ns/m. A photograph
of the system [with a heavier mass] is shown in Figure 3-10.
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3.4 Multiple Base Drop Test

The "Multiple Base Drop Test" was performed in the same way as the "Single Base Drop

Test" (see Section 3.3 for a description of the experimental procedure and Figure 3-1 for

a picture of the set-up). For this experiment, instead of manually lifting and dropping the

oscillator once, it was manually lifted and dropped multiple times at a rate of roughly one

drop per second, which matches the frequency of one foot while walking. The experimenter

quickly raised the oscillator to the peak height by aligning the top of the cart to a marker

line on the rail with one hand and extending the pneumatic cylinders with the other hand.

Although manually lifting and dropping the oscillator is not a precise technique, the non-

uniformity of the excitation signal is similar to the non-uniformity of actual human motion.

The experiment does not require high precision and accuracy in the excitation signal.

Figure 3-16 shows that the cart's experimental peak velocity and acceleration agree well

with the foot's actual walking peak acceleration and velocity. Figures 3-17 and 3-18 show the

experimental mass time series and wavelet transform. The experimental oscillator relative

motion does not agree well with the simulated oscillator motion (the simulation used the

experimental base acceleration). The reason for this discrepancy might be errors in the

experimentally-measured damping, spring stiffness (e.g. the elastic modulus), and mass

(e.g. a scale with low precision).
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Relative Displacement versus Time Experiment
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Figure 3-17: Mass motion time series for the multiple base drop test, oscillator 2. The

system had parameters: mass = 25g, Lcant = 8.7cm, elastic modulus E = 160.6e9Pa,
cantilever base dimension b = 0.187inches, cantilever height h = 0.032inches, surface length

Lsurf = 7.2cm, surface gap at surface end (if Lsurf = LCant) D = 2cm, and surface curve

power n = 3. The damping envelope indicated that the viscous damping in the system is

0.02 Ns/m. A photograph of the system [with a heavier mass] is shown in Figure 3-10.
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Figure 3-18: Wavelet transforms for the multiple drop test, oscillator 2. The system had

parameters: mass = 25g, Leant = 8.7cm, elastic modulus E = 160.6e9Pa, cantilever base

dimension b = 0.187inches, cantilever height h = 0.032inches, surface length Lsurf = 7.2cm,

surface gap at surface end (if LSurf = LCant) D = 2cm, and surface curve power n = 3.

The damping envelope indicated that the viscous damping in the system is 0.02 Ns/m. A

photograph of the system [with a heavier mass] is shown in Figure 3-10.
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Chapter 4

Numerical Optimization and Comparison

of Linear and Nonlinear Energy

Harvesters Excited by Human Motion

The goal of this thesis is to design an energy harvester that maximizes the electric power

generated by human motion, a noisy signal. An optimized energy harvester will produce

the most power for a specific excitation signal. Additionally, the energy harvester should be

robust: the amount of power should not significantly decrease when the excitation frequency

slightly varies, such as when a person walks at a different pace. Furthermore, the energy

harvester should be adaptive: the power should not plummet when different people use the

same harvester or the same person runs instead of walks. Finally, the energy harvester should

have an electromagnetically-induced damping coefficient that greatly exceeds the mechanical

damping coefficient so that most of the dissipated energy is harvested instead of removed

from the system.

This thesis considers several energy harvester configurations and types of motion excita-

tion. All of the energy harvesters consist of magnets attached to springs that move through

or over coils. The total allowable peak-peak amplitude of the mass or masses with respect

to the base is 6.8 cm (that is a IDOF mass can travel 6.8 cm pk-pk. Each mass of the

2DOF harvester can travel 3.4 cm pk-pk). The amplitude constraints represent the har-

vester casing. When the mass travels the maximum distance, it elastically collides with the
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outer casing. The model for these collisions is described several paragraphs below. Please

note that the "linear" device is not actually a traditional linear oscillator because of the

amplitude constraints.

The springs may be linear (such as a helical coil or free cantilever) or nonlinear (such

as the spring described in Chapter 2). The energy harvester may be configured to have

one moving mass (one degree-of-freedom, or IDOF) or two moving masses (two degrees-of-

freedom, or 2DOF). The base of the energy harvester is excited by the foot's motion while

walking or running; or by the hip's motion while walking, walking quickly, running, or biking.

The energy harvester performance is predicted using a simulation that numerically solves

the energy harvester's equation of motion when the base is excited by the human motion

acceleration. The equation of motion consists of terms for the proof masses, electromagnetic

damping, and spring forces. All masses except the proof masses are considered negligible.

This assumption is valid because the spring steel cantilevers weigh only a few grams while the

proof masses weigh 60 or more grams. The oscillating magnets and nonlinear spring contact

surfaces are the proof masses. The simulations only consider the total energy dissipated:

the power optimization plots do not distinguish between energy dissipated by mechanical

damping and energy dissipated by electromagnetic damping. Experiments showed that the

mechanical damping from ranged from 0.007 to 0.02 Ns/m (see Chapter 3). The smallest

electromagnetic damping value considered in the simulations is 0.05 Ns/m, for which 0.007

Ns/m parasitic damping equates to a 14% power loss and 0.02 Ns/m parasitic damping

equates to a 40% power loss. The effect of different amounts of parasitic damping on the

optimized systems' harvested power is illustrated in Figure 4-40 in Section 4.5.4. If the spring

is linear, then the spring force is found according F = kx, where k is the spring coefficient and

x is the mass displacement from equilibrium. If the spring is nonlinear, then the spring force

is numerically solved according to the theory in Chapter 2, with a modification to account

for the end-mass deflection as described in Section 3.2. Additionally, the spring forces at

large deflections are modified to account for the harvester's outer casing constraints. The

simulation assumes that the cantilever of the nonlinear spring oscillates only in its first mode.

This assumption is verified (with limitations) in Section 3.2.

The final simulation uses Matlab's built-in function ode113 to numerically solve the dif-
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ferential equations of motion. Initially, we tried using the classical Runge-Kutta method

(RK4) to numerically solve the equations. RK4 was used instead of Matlab's built-in dif-

ferential equation solvers so that elastic collisions between the masses and the base could

be simulated. During a collision, the proof mass acceleration is temporarily undefined, so

the equation of motion cannot be used to determine the new acceleration, and then the

corresponding displacement and velocity. Our RK4 routine found the new mass velocities

and displacements after a collision by using the conservation of momentum and conservation

of energy principles. The RK4 routine produced consistent results for the IDOF simulated

systems. However, it did not produce consistent, reliable results for the the 2DOF systems,

for which the collisions occur more frequently and over smaller distances (the dynamics did

not converge for smaller simulated time steps). Switching to ode113, which is a good solver

for "nonstiff systems" and has "low to high accuracy," corrected these inconsistency issues.

1

To simulate elastic collisions using ode113, the spring forces were modified so that they

approached infinity for deflection values, x, near and exceeding the displacement constraints

between the masses and base, xcrit. The modified spring force was defined as:

FTheoretical + if X < Xcrit
Fsimulated -- Xri -41)

max (Fheoreticai + ) + if X > x)iit

where c is a sensitivity parameter that was set to le - 5Nm2 . See Figure 4-29 for a sample

modified force versus displacement curve.

This chapter first describes the human motion excitation signals used in the simulations.

Then, it compares the harvested power, robustness, and adaptivity of IDOF systems excited

by foot motion in Section 4.2. Section 4.2 shows that the IDOF linear system excited by foot

motion actually outperforms the nonlinear system in terms of peak power output, robustness,

and adaptivity. The good performance of the linear system agrees with the performance of

coulomb-force parametric generator (CFPG) described in [12]. The CFPG is a device for

which the proof mass oscillates between its constraints without a spring. Since the CFPG

'http: //www.mathworks.com/help/matlab/ref/odel 13.html
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does not have a spring, it does not have a resonant frequency and responds similarly to

acceleration signals that have the same magnitude but different frequencies. The CFPG,

however, only functions well when the excitation displacement greatly exceeds the allowable

travel length of its sliding plate.

This suggests that our linear 1DOF harvester might have outperformed the nonlinear

IDOF harvester because the foot displacement amplitude (30 cm pk-pk. See Section 4.1)

greatly exceeds the proof mass amplitude relative to the casing (6.8 cm pk-pk). For this

reason, the next step in this project was to investigate the energy harvester performance for

smaller excitation displacements, such as the hip motion (while walking, the hip has 4 cm

pk-pk amplitude. See Section 4.1). Although the hip motion has less available power than

the foot motion, being able to carry the energy harvester in a pocket or backpack might be

more practical or convenient than carrying it in the shoe. Furthermore, the higher efficiency

of a nonlinear device over a linear device is more important when the power source is less

powerful. Thus, the hip motion seemed like a promising new niche for our nonlinear energy

harvester.

However, as shown in Section 4.3, even when excited by hip motion, the IDOF linear

system outperformed the IDOF nonlinear system, and neither of them showed very good

adaptivity or robustness. A new approach for finding a powerful, adaptive, robust system

that used the nonlinear spring was to investigate the 2-degree-of-freedom systems. As de-

scribed in [25], the 2DOF nonlinear energy harvester can have higher peak power, robustness,

and adaptivity than the IDOF linear, 1DOF nonlinear, and 2DOF linear harvesters.

Section 4.4 describes the 2DOF linear and nonlinear systems. This thesis examines

2DOF nonlinear systems with a moderate (0.4 Ns/m) and large (1.6 Ns/m) amount of

electromagnetic damping in between the masses. For comparison, this thesis also examines

the 2DOF linear systems with low damping (0.05 Ns/m for each mass relative to the base;

no damping in between the masses), and with the same moderate (0.4 Ns/m) and large

(1.6 Ns/m) electromagnetic damping as the 2DOF nonlinear systems. While more damping

tends to decrease the system's optimized power for the walking hip motion, it tends to make

the harvester less susceptible to harvested power losses when parasitic damping is present.

All of the energy harvester results are summarized in Section 4.5.
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4.1 Excitation Signals

The energy harvester simulations used experimentally collected human motion acceleration

as the base input. A Vernier accelerometer was mounted to a person's foot while walking

and running, as shown in Figure 4-1. The walking data used an accelerometer that could

measure up to 5 gravity. The running data used a 25-g accelerometer. The hip motion data

was collected by putting the 25-g accelerometer in a person's pocket, a similar acceleration

to what a cell phone would experience. The accelerometer was connected to a laptop via

a Vernier LabQuest Mini sensor-computer interface. Vernier Logger Lite software recorded

the acceleration data at 1,000 Hz.

In Matlab, the acceleration data was truncated to one (for the hip) or two (for the foot)

periods. The acceleration at the first index of the truncated signal was added to the end of

the truncated signal to ensure that it was periodic. The acceleration data was transformed

to the frequency domain by taking the fast Fourier transform (FFT). The FFT components

were used to obtain the velocity and displacement time series. The inverse-FFT signals were

sequentially repeated in time to simulate a longer signal.

Figures 4-2 and 4-3 show the collected data on the foot and hip motions. The foot

maximum velocities occur right before ground impact, and the maximum accelerations occur

at impact (as impulses). The running foot dominant frequency is roughly twice the walking

foot dominant frequency because the raised foot accelerates when the opposite foot lands.

Similarly, the walking hip dominant frequency is roughly twice the walking foot dominant

frequency because the right hip accelerates when the left foot lands. The hip dominant

frequency slightly increasing as the travel speed increases agrees with the observations of [131.

Figures 4-2 and 4-3 also show that the distribution of power among different frequencies

has a longer tail for the foot motion than for the hip motion.

Table 4.1 summarizes each motions' vertical displacement range, maximum velocity, max-

imum acceleration, dominant frequency (based on the velocity FFT), average velocity time

signal squared, and ratio of power in the dominant frequency to total power. This table

includes the mean square of each velocity signal based on the velocity time series because

the signal's power is proportional to this value (Velocityms = mean[Velocity2 (t)]/2). The
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velocity signal mean squares can be used to compare the relative power in the motion. For

example, the running foot motion has about fifteen times the power of the walking foot

motion. This table also includes the velocity FFT's largest modulation squared divided by

the velocity time signal's mean square. This ratio represents the fraction of signal power

contained in the dominant frequency. For example, the last column of Table 4.1 shows that

the running foot and hip walking quickly motions have the least power concentrated in the

dominant frequency, while the hip running motion has the most concentration (least noise).

Table 4.1: Summary of Experimentally Recorded Foot and Hip Motions

Motion Displace- Maximum Maximum Dominant Mean (Power at
ment velocity accelera- Velocity square Dominant
range (m/s) tion Fre- velocity Frequency)

(cm) (m/s 2 ) quency ((m/s) 2 ) /(Signal
(Hz) Power)

Foot 27 -1.3 37 0.95 0.047 0.36
Walk
Foot 37 -1.7 170 1.5 0.71 0.35
Run

Hip 4.0 -0.38 9 1.9 0.012 0.36
Walk

Hip 6.3 -0.72 29 2.3 0.043 0.35
Walk
Quickly
Hip 9.5 -1.07 28 2.9 0.17 0.48
Run

Hip 2 ±.21 -5 2.2 0.0065 0.40
Bike

Figure 4-1: Experimental Set-up for collecting foot acceleration data
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Figure 4-2: Foot motion data. Here, the signal of several periods was repeated. The FFT
show the frequency components that sum to 90% the power in the motion, where power in
the motion is defined as mean[Velocity2(t)]/2, the mean square of the velocity signal.
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4.2 Comparison of IDOF Systems Excited by Foot Mo-

tion

This section studies the performance of IDOF energy harvesters with a linear spring, cubic

nonlinear spring, or cantilever-surface nonlinear spring. We hypothesized that an optimized

harvester with a cantilever-surface spring would harvest the same or more power than the

harvester with the cubic spring due to the similar force versus displacement curve shape for

small displacements and the blow-up of the force for large displacements [251. The 1DOF

energy harvester consists of a magnet with mass m attached to an outer casing (i.e. "base")

by a linear or nonlinear spring. The magnet motion is electromagnetically damped by a coil

that is rigidly attached to the outer casing. The base is excited by the human motion signal,

h. A CAD rendering and component diagram of the IDOF energy harvester are shown in

Figure 4-4.

The cubic spring oscillator was simulated with a mass of 125 g, the estimated maximum

mass that a person would not mind carrying around. The other two oscillators were simulated

with masses of 60 g. This lighter mass was used in the simulations because experiments with

the heavier mass showed higher modes and did not agree with the theory (See Chapter 2.

However, the power results of all three springs can be compared by considering "doubled"

versions of the energy harvesters with the cantilever-surface and linear spring. That is, if the

left-hand and right-hand sides of the equation of motion (Equation 4.2) are multiplied by

2, then the numerically simulated dynamics for the "single" EOM still hold. The "doubled"

system has twice the mass, twice the spring stiffness, twice the electromagnetic damping,

and twice the power as the "single" system. The parameters of the doubled system can be

physically implemented by doubling the magnet and cantilever width. Increasing the width

in this way should prevent the higher modes of the cantilever because the magnet mass will

remain centered on the cantilever.

The equation of motion for this system is:

mi = -F(X) - AX - mit - rg (4.2)
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Magnet with mass, m

Fs~'

A) CAD rendering B) component diagram

Figure 4-4: 1DOF nonlinear system CAD rendering and component diagram

where rn is the magnet mass, X is the magnet displacement with respect to the base, F

is the force exerted by the spring, A is the electromagnetic damping coefficient, and g is

the downwards acceleration due to gravity. For the linear spring, F = kX, where k is the

spring coefficient and X is the mass displacement relative to the base. For a cubic nonlinear

spring, F = kX 3 . For the nonlinear spring studied in this thesis, F is a function of X

and is determined using the theory described in Chapter 2. Collisions of the mass with

the base (which occur whenever the displacement of the mass wrt the base exceeds t3.4

cm) are simulated by modifying the theoretical F(X) to approach infinity for relative mass

displacements near and exceeding ±3.4 cm, as shown in Equation 4.1.

4.2.1 Cubic Nonlinear Spring Summary

The cubic IDOF oscillator was simulated for the walking and running foot motion for varied

parameters. The relative displacement constraints between the mass and base were varied

among no constraint, 3 cm, and 2 cm. All of the oscillators had a mass of 125 g. The

power optimization surfaces for walking and running are shown in Figures 4-5 and 4-6,

respectively. The optimal parameters are summarized in Table 4.2. These figures show the

steady state relative displacement of the oscillators without constraints. For the oscillators

with constraints, all of the optimal oscillators had maximum relative displacements equal to

the constraints.
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Figure 4-5: Power Harvested by iDOF cubic system excited at foot while walking for m =

125g. Please note that the mass is this simulation is twice the total mass of the other systems
described in this thesis.
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Figure 4-6: Power Harvested by IDOF cubic system excited by foot while running for m =

125g. Please note that the mass is this simulation is twice the total mass of the other systems

described in this thesis.
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Table 4.2: Simulated IDOF Cubic Oscillator Performance for m = 125g. Please note that

these simulations used a total mass of 125g, while all of the other simulations in this thesis

used a total mass of 60g.

Motion Displacement Spring Damping Maximum Average

constraints Stiffness, Coeffi- Relative Power

(m) C (N/n 3 ) cient, A Displacement Dissipated

(Ns/rn) (m) (W)
Walk none 5e4 0.8 0.06 0.48
Walk 0.03 Ic5 1.7 0.03 0.36
Walk 0.02 2e5 2.9 0.02 0.24

Run none 1e5 0.3 0.10 1.85

Run 0.03 5e5 2.3 0.03 1.7
Run 0.02 1e6 3.3 0.02 1.2

4.2.2 Walking

Figure 4-7 shows the power harvested by the IDOF linear oscillator and by the IDOF

nonlinear cantilever-surface oscillator when excited by the foot while walking. Figure 4-8

shows the time series of the linear and nonlinear energy harvesters that harvest the most

power for the foot walking excitation signal.
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(a) Nonlinear harvester that uses (b) Linear harvester

the cantilever-surface nonlinear spring.

The electromagnetic damping and can-

tilever rigidity are varied. Constant

parameters are Lcant = 15.7cm, sur-

face length Lsurf = 15cm, surface gap

at surface end D = 3cm, and surface

curve power n = 3.

Figure 4-7: Power Harvested by IDOF systems excited by the foot while walking. The base
of the system is excited by the walking foot acceleration shown in Figure 4-2. Both systems
have mass = 60g, and the displacement of the mass relative to the surfaces is constrained
to ±3.4cm.
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Figure 4-8: Dynamics of linear and nonlinear IDOF systems when excited by WALK-
ING. Nonlinear system has parameters: EI = 0.06845Nm 2 , electromagnetic damping

A = 0.3Ns/m, mass = 60g, Ln = 15.7cm, surface length Lsuf = 15cm, surface gap
at surface end D = 3cm, and surface curve power n = 3. The linear system has parameters:
mass = 60g, linear spring stiffness K = 10ON/m, and damping coefficient A = 0.3Ns/m.
Both systems have a maximum displacement of the mass relative to the surface/base of
±3.4cm. The nonlinear system harvests 0.0904 W. The linear system harvests 0.119 W.
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4.2.3 Running

Figure 4-9 shows the power harvested by the IDOF linear and nonlinear cantilever-surface

oscillators when excited by the foot while running. Figure 4-10 shows the time series of

the linear and nonlinear energy harvesters that harvest the most power for the foot running

excitation signal.

Power dissipated- NONUNEAR, RUN
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0.

0.OE

0.0E

0.01

0,0"

Damping (Ns/m)

Power dissipated- UNEAR, RUN

140

120

- 100

).5

).4

12

1O

(a) Nonlinear harvester that uses the
cantilever-surface nonlinear spring. The elec-
tromagnetic damping and cantilever rigidity
are varied. Constant parameters are Lcant =
15.7cm, surface length Lf = 15cm, surface
gap at surface end D = 3cm, and surface
curve power n = 3.

Damping (Ns/m)

(b) Linear harvester

Figure 4-9: Power Harvested by IDOF systems excited by the foot while Running. The base
of the system is excited by the running foot acceleration shown in Figure 4-2. Both systems
have mass = 60g, and the displacement of the mass relative to the surfaces is constrained
to t3.4cm.
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-- Nonlinear System

Relative displacement of mass to foot - Linear System
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Figure 4-10: Dynamics of linear and nonlinear 1DOF systems when excited by RUN-

NING. Nonlinear system has parameters: El = 0.06845Nm 2, electromagnetic damping

A = 0.3Ns/m, mass = 60g, Lcant = 15.7cm, surface length Lsurf = 15cm, surface gap at

surface end D = 3cm, and surface curve power n = 3. The linear system has parameters:

mass = 60g, linear spring stiffness K = 1OON/m, and damping coefficient A = 0.3Ns/m.

Both systems have a maximum displacement of the mass relative to the surface/base of

±3.4cm. The nonlinear system harvests 0.452 W. The linear system harvests 0.439 W.
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4.2.4 Comparison of Robustness and Adaptivity

Sections 4.2.2 and 4.2.3 numerically determined the nonlinear cantilever-surface and linear

harvesters that harvested the most power when excited by the foot motion while walking

and running, respectively. Here, those optimal systems are compared for robustness and

adaptivity.

Figures 4-11 and 4-12 illustrate the harvesters' robustness to small changes in the ex-

citation signal by showing the power harvested by each system when excited by a motion

with a rescaled time signal. The rescaled time range of 0.5-2 represents the range of human

walking frequencies described in [14]. Figure 4-13 illustrates the harvesters' adaptivity by

showing the numerically simulated power harvested by each system when excited by different

experimentally recorded foot accelerations.

Figure 4-11 shows that the linear systems harvest more power than the nonlinear systems

for time rescaling 1-2 of the foot walking signal. The nonlinear systems harvest more power

than the linear for time rescaling 0.5. Figure 4-12 shows that the linear and nonlinear systems

harvest roughly the same power for time rescaling of the foot running signal, with the linear

system harvesting slightly more power. Figure 4-13 shows that the linear and nonlinear

systems harvest roughly the same power for different motion excitation signals.

Figure 4-13 also shows the power harvested by a linear harvester with the same parameters

as the linear optimal walking parameters but without the displacement constraints. Without

the displacement constraints, the power harvested by the linear system while running greatly

decreases. This demonstrates the role that the displacement constraints play in changing the

dynamics of the linear harvester. As suggested by [12], the large ratio of foot displacement to

mass-base relative motion might cause the linear system to outperform the nonlinear system.

For this reason, Section 4.3 investigates the power harvested by the IDOF systems when

excited by the hip motion, which has a smaller displacement.
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Figure 4-11: Power harvested by the optimal IDOF springs when the time scale of the
walking foot excitation signal is rescaled (e.g. when the "Time Scale" equals 2, the steps

occur twice as fast).
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Figure 4-12: Power harvested by the optimal iDOF springs when the time scale of the
running foot excitation signal is rescaled (e.g. when the "Time Scale" equals 2, the steps
occur twice as fast).
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Power Harvested for different experimentally recorded signals
I I

.1

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
Average

Figure 4-13: Power harvested by the optimal IDOF springs when excited by different exper-

imentally recorded foot motions. "J." stands for the foot motion of this author. "D." stands

for the foot motion of another graduate student.
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4.3 Comparison of 1DOF Systems Excited by Hip Mo-

tion

These energy harvesters have the same configuration as the IDOF linear and nonlinear

cantilever-surface springs described in Section 4.2 (see the EOM, Equation 4.2; and the

harvester component schematic, Figure 4-4). Now, instead of the base being excited by the

foot motion, it is excited by the hip motion shown in Figure 4-3. Section 4.3.1 shows the

power and displacement amplitude for the linear and cantilever-surface harvesters when the

base is excited by the hip while walking. Section 4.3.2 shows these results for the running

hip motion.

The nonlinear harvester seems to show chaotic behavior for damping less than 0.06 Ns/In

for walking. The linear system does not seem to show any chaotic behavior. The reason for

this might be that the linear harvester resonates at low stiffnesses; so when its amplitude

is large, its frequency is too slow for the rapid collisions with the boundaries that lead to

chaotic behavior.
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4.3.1 Walking
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Figure 4-14: Power Harvested by iDOF harvesters excited by hip while walking. Both
systems have mass = 60g, and the displacement of the mass relative to the surfaces is

constrained to ±3.4cm. The nonlinear harvester has parameters: cantilever length Leg, =
15.7cm and surface length Lsurj = 15cm, surface gap at surface end D = 3cm., and surface

curve power n = 3. These simulations used simulated time steps of .0001 seconds, and

calculated the power in between 15 and 30 seconds.
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Figure 4-15: Dynamics of optimal linear and nonlinear 1DOF systems when excited by
hip walking motion. Nonlinear system has parameters: EI = 0.192Nrn2 , electromagnetic

damping A = 0.1363Ns/m, mass = 60g, Lcant = 15cm, surface length Lsrf = 15cm,

surface gap at surface end D = 3cm, and surface curve power n = 3. The linear system
has parameters: mass = 60g, linear spring stiffness K = 205N/m, and damping coefficient

A = 0.15Ns/m. Both systems have a maximum displacement of the mass relative to the

surface/base of ±3.4cm. Both the nonlinear and linear systems harvest 0.029 W.
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4.3.2 Running
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Figure 4-16: Power Harvested by iDOF harvesters excited by hip while running. Both
systems have m.ass = 60g, and the displacement of the mass relative to the surfaces is
constrained to t3.4cm. The nonlinear harvester has parameters: cantilever length Lcat =
15.7cm and surface length L,,,f = 15cm, surface gap at surface end D = 3cm., and surface

curve power n = 3. These simulations used simulated time steps of .0001 seconds, and
calculated the power in between 15 and 30 seconds.
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Figure 4-17: Dynamics of optimal IDOF linear and nonlinear systems when excited by hip

running motion. Nonlinear system has parameters: EI = 0.01182Nm 2, electromagnetic

damping A = 0.85Ns/m, mass = 60g, Lcant = 15cm, surface length L,,,f = 15cm, surface

gap at surface end D = 3cm, and surface curve power n = 3. The linear system has

parameters: mass = 60g, linear spring stiffness K = 25N/m, and damping coefficient

A = 0.8Ns/m. Both systems have a maximum displacement of the mass relative to the

surface/base of ±3.4cm. The nonlinear system harvests 0.19 W. The linear systems harvest

0.20 W.
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4.3.3 Comparison of Robustness and Adaptivity

Sections 4.3.1 and 4.3.2 numerically determined the nonlinear cantilever-surface and linear

systems that harvested the most power when excited by the hip motion while walking and

running, respectively. In addition to the optimal walking linear harvester, which has small

damping (0.05Ns/m), we are interested in the optimal linear harvester that has a minimum

damping of 0.13Ns/m because harvesters with larger electromagnetic damping lose a smaller

percent of harvested power when small parasitic damping is present. Here, the optimal

systems of Sections 4.3.1 and 4.3.2 are compared for robustness and adaptivity.

Figures 4-18 and 4-19 show the harvesters' robustness to small changes in the excitation

signal by showing the power harvested by each system when excited by a motion with a

rescaled time signal. The rescaled time range of 0.5-2 represents the range of human walking

frequencies described in [141. Figure 4-20 shows the harvesters' adaptivity by showing the

numerically simulated power harvested by each system when excited by different experimen-

tally recorded hip accelerations.

Figure 4-18 shows that the linear systems are more robust for time scalings of 0.5-1,

and the linear and nonlinear systems harvest roughly the same power for time scaling of 1-2,

with the linear system harvesting slightly more power. Figure 4-19 shows that the linear

and nonlinear systems optimized for running both harvest roughly the same power when the

running excitation signal time scale is varied.

Since the IDOF nonlinear harvester does not seem to perform better than the IDOF

linear harvester, Section 4.4 investigates the power harvested by 2DOF nonlinear oscillators,

which [19] suggests should perform better than IDOF harvesters.
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Figure 4-18: Power harvested by the optimal IDOF harvesters when the time scale of the
walking hip excitation signal is rescaled (e.g. when the "Time Scale" equals 2, the steps
occur twice as fast).
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Figure 4-19: Power harvested by the optimal iDOF harvesters when the time scale of the
running hip excitation signal is rescaled (e.g. when the "Time Scale" equals 2, the steps
occur twice as fast).
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Power Harvested for different experimentally recorded signals
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Figure 4-20: Power harvested by the optimal IDOF harvesters when
experimentally recorded hip motions.

excited by different

4.4 Comparison of 2DOF Systems Excited by Hip Mo-

tion While Walking

This section studies the performance of different 2DOF energy harvesters with linear springs

and cantilever-surface nonlinear springs. All of the 2DOF energy harvesters consist of two

magnets with masses m'Top and rnBmt, where mTp + mBot = 60g. The magnet motion

is electromagnetically damped by coils. The motion of each mass relative to the base is

restricted to t3.4cm. The harvester's outer casing (i.e. "base") is excited by the human

motion signal, h. A generalized component diagram of the 2DOF system is shown in Figure 4-
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21. The equation of motion is:

mTopX -KTopX - FS,Top(X) Kmid(X - Z) - FS,Mi(X - Z)

-ATopX - XMid(X - Z) - MToph - mnTopg (43)

l'tB otZ Kmid(X - Z) + FS,Mid(X - Z) - KBotZ - FS,Bot(Z)

~A~Bot I Mid -- - mBoth - mBotg

where mtop is the top magnet mass, mBot is the bottom magnet mass, X is the top

magnet displacement with respect to the base, Z is the bottom magnet displacement with

respect to the base, Ki are the coefficients of the linear springs, Ai are the coefficients of the

electromagnetic damping, and g is the downwards acceleration due to gravity. The collisions

of the masses with the base are simulated by large spring forces, as described in Equation 4.1.

This simulation assumed that the masses were spaced far enough apart that they did not

collide with each other.

FST, T.,

mTp

FS~hdt K~dr Xh.d 
9

MBot

Fsa~

Figure 4-21: General 2DOF system component diagram. The various energy harvesters in-

vestigated in this section set some of these spring and damper components to zero. mT0 P and

mBot are the proof masses, ATop, ABot, and AMid are the electromagnetic damping coefficients,
Ki indicate the linear spring stiffnesses, and Fsi indicate the nonlinear springs forces. The

position of the top mass is x. The position of the bottom mass is z. The position of the base

is h. Gravity acts downwards.

Each of the 2DOF energy harvesters described in this section have only some of the spring

components shown in Figure 4-21. The 2DOF energy harvesters examined are:
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" The Nonlinear Type 1: Moderate EM damping harvester has only the top nonlin-

ear spring, middle linear spring, and bottom linear spring. It has a middle damping

coefficient of 0.4 Ns/m, while the top and bottom damping are negligible (0.001 Ns/m).

" The Nonlinear Type 2: Large EM damping harvester has only the top nonlinear spring,

middle nonlinear spring, and bottom linear spring. It has a middle damping coefficient

of 1.6 Ns/m, while the top and bottom damping is negligible (0.001 Ns/m).

* The Linear: Small damping harvester only has the top and bottom (identical) linear

springs. It has top and bottom damping of 0.5 Ns/m, while the middle damping is

negligible (simulated as 0 Ns/m).

" The Linear: Moderate damping harvester has the top, middle, and bottom linear

springs. It has a middle damping coefficient of 0.4 Ns/m, while the top and bottom

damping are negligible (0.001 Ns/m), which matches the damping of the Nonlinear

Type 1: Moderate EM damping harvester.

" The Linear: Large damping harvester has the top, middle, and bottom linear springs.

It has a middle damping coefficient of 1.6 Ns/m, while the top and bottom damping are

negligible (0.001 Ns/m), which matches the damping of the Nonlinear Type 2: Large

EM damping harvester.

For the linear systems, decreasing the electromagnetic damping to a value near 0 tended

to increase the power harvested. The minimum acceptable damping for a harvester was set

to A = 0.05Ns/m because decreasing the damping to a lower value would make parasitic

damping losses (predicted to be on the order of 0.OlNs/m based on experiments) dissipate

more than 20% of the dissipated mechanical power.

These numerical simulations used time steps of 0.0001 seconds, for which we found that

the solution converged. The steady-state power was calculated between 2 and 8 simulated

seconds. Each of the 3 sections below shows the 2DOF harvester image, component diagram,

equation of motion, and sample optimization surfaces of the harvested power and relative

mass displacements.
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4.4.1 Nonlinear

Nonlinear Type 1: Moderate EM damping (0.4 Ns/m)

The first 2DOF nonlinear energy harvester examined has only the top nonlinear spring,

middle linear spring, and bottom linear spring. It has a middle damping coefficient of 0.4

Ns/m, while the top and bottom damping is negligible (0.001 Ns/m). An illustration of the

harvester and its component diagram are shown in Figure 4-22. The equation of motion for

the system is:

mTopX -Fs,Top(X) - Kmid(X - Z) - ATopX - AMid(X - Z) - mToph - MTopg (44)

mBot = KMid(X - Z) - KBot - ABOt - AMid(X-Z) mBot - mBotg

where mron is the top magnet mass, mBot is the bottom magnet mass, X is the top magnet

displacement with respect to the base, Z is the bottom magnet displacement with respect

to the base, Ki are the coefficients of the linear springs, Ai are the coefficients of the elec-

tromagnetic damping, and g is the downwards acceleration due to gravity. The collisions of

the masses with the base are simulated by large spring forces, as described in 4.1, whenever

the relative displacement between the mass and the base exceeded ±3.4cm. This simulation

assumed that the masses were spaced far enough apart that they did not collide with each

other.

The strategy for determining the optimal 2DOF harvester was to stack the optimal IDOF

nonlinear "half system" on top of the optimal IDOF linear "half system". "Half system"

refers to a system for which the total displacement constraints and masses are halved (i.e.

reduced to 3.4 cm pk-pk and 30 g). Figure 4-23 shows the optimization surfaces for the linear

"half" system. Figure 4-24 shows the optimization surfaces for the nonlinear "half" system.

Since the full 2DOF nonlinear system (60 g mass, 6.8 cm pk-pk displacement system) will

have negligible top and bottom EM damping and large EM middle damping, the most critical

performance measure of the IDOF "half" systems is large displacement, rather than large

dissipated power. Then, when the large middle damping is added to the "full" system, the

relative mass displacements is still likely to be large. In addition to simply combining the two

"half" systems into one full 2DOF nonlinear system (60 g mass, 6.8 cm pk-pk displacement
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system), the middle and bottom linear springs are reoptimized in Figure 4-25. The time

series for the motion of the system that harvests the most power is shown in Figure 4-26.

Magnet with mass, mBot

Magnet with
-- mass, mTOP

coils

KBot

A) CAD rendering

x

Kmid XMid 9

z

myt

In~ot

h

B) component diagram

Figure 4-22: Nonlinear 2DOF Typel: Moderate EM damping system CAD rendering and
component diagram. mTye and IBot are the proof masses, Ai are the electromagnetic damp-
ing coefficients, and F, indicates the nonlinear spring force. K are the linear spring stiffnesses.
The position of the top mass is x. The position of the bottom mass is z. The position of the
base is h. Gravity acts downwards.
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Figure 4-23:
straints, 30g

Power optimization for IDOF linear "half" system (±1.7cm displacement con-

mass) excited by walking hip. Displacement plots are pk-pk displacement.
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Figure 4-24: Power optimization for 1DOF nonlinear "half" system (±1.7cm displacement

constraints, 30 g mass) excited by walking hip. Displacement plots are pk-pk displacement.
m = 30g, cantilever height h and damping, A are varied. The cantilever has a length of 10
cm, base dimension 4.76 mm, elastic modulus 160.6e9 Pa, surface length of 10 cm, surface

maximum gap, D = 1.5cm, surface curve power n = 3. The mass overhangs the surface, so

that the pk-pk displacement constraints are ±1.7cm.
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Figure 4-25: Power Harvested by the 2DOF nonlinear type 1 system (moderate damping)
when excited at hip while walking. Displacement plots are pk-pk displacement. mnTop =

MBot = 30g, KT, = lOON/m. The stiffnesses of a middle and bottom linear spring are
varied. ATo -- Abot = 0.0Ns/m, AMid = 0.4Ns/m. Large values of linear spring stiffness
result in chaotic dynamics, so those systems are ignored.
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Figure 4-26: Time series of the second optimal 2DOF nonlinear energy harvester excited

by hip walking motion. The parameters are: mTop = mBot = 30g, hT0,= 0.40mm, Kbot =

63N/rm, no middle spring, damping ATop = Abot = 0.00lNs/m, AMid = 0.4Ns/m. Average
dissipated power is 0.021 W.
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Nonlinear Type 2: Large EM damping (1.6 Ns/m)

The second 2DOF nonlinear energy harvester examined has only the top nonlinear spring,

middle nonlinear spring, and bottom linear spring. It has a middle damping coefficient of

1.6 Ns/m, while the top and bottom damping are negligible (0.001 Ns/m). An illustration of

the harvester and its component diagram is shown in Figure 4-27. The equation of motion

for the system is:

MTopX= -Fs,Top (X) - Fs,Mid(X - Z) - A7jd( - Xid -- --) mopN - miTopg (4.5)

mBotZ FS,Mid(X - Z) - KBotZ - ABotZ -+ AMid - k) mBhot - mBotg

where mtop is the top magnet mass, mBot is the bottom magnet mass, X is the top magnet

displacement with respect to the base, Z is the bottom magnet displacement with respect

to the base, Ki are the coefficients of the linear springs, A2 are the coefficients of the elec-

tromagnetic damping, and g is the downwards acceleration due to gravity. The collisions of

the masses with the base are simulated by large spring forces, as described in Equations 4.1.

This simulation assumed that the masses were spaced far enough apart that they did not

collide with each other.

The strategy for determining the optimal 2DOF, Type 1 harvester was to modify the

parameters of the optimal IDOF linear harvester. The optimal IDOF linear system had

mass = 60g, linear spring stiffness K = 205N/m, electromagnetic damping coefficient A =

0.05Ns/m, pk-pk mass amplitude constraint wrt the base of 6.8cmi. The starting point for

this 2DOF nonlinear harvester was to set the bottom linear spring equal to the IDOF optimal

linear spring stiffness (205N/m), set the middle nonlinear spring to a very stiff value, and

set the top nonlinear spring to a very weak value. The top and bottom damping coefficients

were set to negligible values (0.001 Ns/m), and the middle damping coefficient was set to a

large value. Then, the 2DOF dynamics nearly matched those of the IDOF linear system.

The 2DOF system's middle damping coefficient and middle nonlinear spring stiffness were

then optimized in order to maximize the power dissipated by the middle electromagnetic

damper (see Figure 4-28). The optimal system harvested 0.015 W. The time series of the

system's motion is shown in Figure 4-30. Additionally, Figure 4-29 illustrates the nonlinear
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Figure 4-27: Nonlinear 2DOF Typel: Moderate EM damping system CAD rendering and

component diagram. mTo0 and mBot are the proof masses, Ai are the electromagnetic damp-

ing coefficients, and F, indicates the nonlinear spring force. K are the linear spring stiffnesses.

The position of the top mass is x. The position of the bottom mass is z. The position of the

base is h. Gravity acts downwards.

94

h

Middle Spring Contact surface, S- x/) coil

rnBet 
0



spring forces, modified to simulate collision at the deflections where the harvester casing is

located.
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Figure 4-28:

(d) Pk-Pk steady state displacement amplitude be-

tween bottom mass and base

Displacement plots are pk-pk displacement. mTn 0 = MBOt = 30g, hTop = 0.464mm, hmid =

1mm, (cantilever height ratios results in Top stiffness:bottom stiffness of 0.1), bottom linear

spring stiffness K = 205N/m, damping ATop - Abot = 0.001Ns/m, AMid = 1.6Ns/mr.

Average dissipated power is 0.0150 W.
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Force versus Tip Displacement

-0.005 0 0.005
spring displacement (m)

0.01 0.015

Figure 4-29: Modified force versus displacement curves for nonlinear springs in optimal
nonlinear system 1. the curves are modified so that the force increases to very large values

near and beyond the deflection values where an "elastic collision" occurs. These curves

continue to displacements up to 0.25 m, where the force is on the order of lelO N.
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Figure 4-30: Time series of the first optimal 2DOF nonlinear energy harvester excited by hip
walking motion. The parameters are: Mgve = MBt = 30g, nTp= 0.464mm, b:id =MM,

(cantilever height ratios results in Top stiffness: bottom stiffness of 0.1), bottom linear spring
stiffness K = 205N/m, damping Arop = Abot = 0.001Ns/m, Auid = 1.6Ns/m. Average
dissipated power is 0.0150 W.

4.4.2 Linear

The 2DOF linear systems consist of two 30g masses, three linear springs connecting the

masses to the base in series, and three electromagnetic dampers in between the masses

and base. An illustration and component diagram of the 2DOF linear system is shown in

Figure 4-31. The equation of motion of this system is given by:
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mTk - -KTopX - KMid(X - Z) - ATop - AMid( - Z~) - MToh - mTop (MTo, ) - A(4.6)
mBot = -K 2Z + K 3 (X - Z) - ABot + AMid( - -- m 2 h - mBotg

where mtop is the top magnet mass, mBot is the bottom magnet mass, X is the top magnet

displacement with respect to the base, Z is the bottom magnet displacement with respect

to the base, Ki are the coefficients of the linear springs, Ai are the coefficients of the electro-

magnetic damping, and g is the downwards acceleration due to gravity. The collisions of the

masses with the base are simulated by large spring forces, as described in the introduction

of this chapter. This simulation assumed that the masses were spaced far enough apart that

they did not collide with each other.

KT, xToP

x
mTO

KTOp

KMid XMid

Magnet with

mass, mip

h

Kmid mo

-Magnet with

mass, mBot 3. rIXt
coils h

KBOt

A) CAD rendering B) component diagram

Figure 4-31: Linear 2DOF system component diagram. m, and m 2 are the proof masses, A,
A2, and A3 are the electromagnetic damping coefficients, and Ki indicate the linear spring
stiffnesses. The position of the top mass is x. The position of the bottom mass is z. The
position of the base is h. Gravity acts downwards.

Three different optimized 2DOF linear systems are included in this thesis. The first opti-

mized 2DOF linear system was found by "stacking" two optimized "half" systems (systems
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with half the total mass and displacement constraints) on top of each other. The IDOF

linear "half" system optimization surface is shown in Figure 4-23. This 2DOF system har-

vests more power than any other 2DOF system described in this thesis, but it also has the

smallest damping, which makes it susceptible to large power losses when parasitic damping

is present. Figure 4-32 shows the times series of this system's dynamics.

The second optimized 2DOF linear system was found by setting the top linear spring

to the same value as the optimal IDOF linear "half" system, setting the top and bottom

damping coefficients to negligible values (0.001 Ns/m), setting the middle damping coefficient

to the same value as that of the 2DOF nonlinear type 1 harvester (0.4 Ns/m), and varying

the middle and bottom linear springs in order to maximize the harvested power. Figure 4-33

shows the optimization surface for the 2DOF linear harvester with 0.4 Ns/m electromagnetic

damping, and Figure 4-34 shows the time series of the optimized system.

The third optimized 2DOF linear system was found in the same way, but the middle

damping was set equal to the same value as the middle damping coefficient of the 2DOF

nonlinear type 2 harvester (1.6 Ns/m). Figure 4-35 shows the optimization surface for the

2DOF linear harvester with 1.6 Ns/m electromagnetic damping, and Figure 4-36 shows the

time series of the optimized system.

These methods were chosen in order to compare the power harvested by 2DOF linear

systems with the same damping coefficients as the 2DOF nonlinear systems. We predicted

that if the systems had the same amount of electromagnetically-induced damping, then they

would have the similar robustness to added parasitic mechanical damping. This prediction

is investigated in Figure 4-40 in Section 4.5.
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System with small electromagnetic damping: 0.05 Ns/m
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Figure 4-32: Time series of Optimal 2DOF linear energy harvester with low damping when

excited by hip walking motion. The parameters are: massTop = 30g, masSBottom = 30g,

KTo = 100N/rm, KBottom = 10ON/m, KMd = ON/rn, ATop = ABottom = 0.05Ns/m. AMid =

ONs/m. This configurations represents two "stacked" IDOF linear half-systems, for which

the optimization surface is shown in Figure 4-23. Allowable pk-pk relative displacement of

masses to the base is 3.4 cm. The masses do not collide with each other. The harvested

power is 0.031 W.
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System with moderate electromagnetic damping: 0.4 Ns/m
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Figure 4-33: Power Harvested by 2DOF linear system, with moderate electromagnetic damp-

ing when excited at hip while walking. m1 = m 2 = 30g. Top spring, KT0 p = lOON/m. The

top and bottom dampers have A = 0.001Ns/m. The middle damper has A = 0.4Ns/m.

Maximum allowable relative displacement between the masses and base: 1.7cm in each di-

rection. Displacement plots are pk-pk displacement.
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Figure 4-34: Time series of Optimal 2DOF linear energy harvester, with moderate damp-
ing, excited by hip walking motion. The parameters are: MI = m2 = 30g. Top spring,
KT0, = 10ON/m, middle spring, KMd i= ON/m, bottom spring, KBOt = 5.7N/m. The top
and bottom dampers have A = 0.00INs/m. The middle damper has A = O.4Ns/m. Maxi-
mum allowable relative displacement between the masses and base: 1.7cm in each direction.
Allowable pk-pk relative displacement of masses to the base is 3.4 cm. The masses do not
collide with each other. The harvested power is 0.010 W.

102

0.03

0.02

0.01

0

-0.01

-0,02

-n03 
1

0.

-0.

05- - - -- --- - ---

-10 5

0.2

0.15 -

0.1 Hi
a

0.06

0
0

'liii

-. .. -- -.. ... --- - ....-- .... .....-.

...-.. ... .. .

I '"ll W ANCIIIIIIII

.0
1 5

1

..-........- ... -.-.. ... -- ----- .- - ....



System with large electromagnetic damping: 1.6 Ns/m
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Figure 4-35: Power Harvested by 2DOF linear system, with large electromagnetic damping

when excited at hip while walking. mI = M2 = 30g. Top spring, KTO = 10ON/m. The

top and bottom dampers have A = 0.00Ns/m. The middle damper has A = 1.6Ns/m.

Maximum allowable relative displacement between the masses and base: 1.7cm in each

direction. Displacement plots are pk-pk displacement.
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Displacement versus time
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Figure 4-36: Time series of Optimal 2DOF linear energy harvester, with moderate damp-
ing, excited by hip walking motion. The parameters are: m1 = M2 30g. Top spring,
KTQ, = 100N/rm, middle spring, KMid = 61N/m, bottom spring, KBt 28N/m. The top
and bottom dampers have A = 0.001Ns/m. The middle damper has A 1.6Ns/m. Maxi-
mum allowable relative displacement between the masses and base: 1.7cm in each direction.
Allowable pk-pk relative displacement of masses to the base is 3.4 cm. The masses do not
collide with each other. The harvested power is 0.0176 W.

4.5 Energy Harvester Performance Summary

This section summarizes the optimal performance of all the different energy harvesters de-

scribed in this chapter. The optimal energy harvester should maximize the power harvested
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for a specific excitation signal (the hip walking signal, in this thesis). It should be adap-

tive to different people's different strides and robust to a person's slight changes in pace.

Additionally, the harvested power should not significantly decrease when parasitic mechan-

ical damping is present. This section also shows the progress that this thesis made toward

demonstrating that a nonlinear system harvests more power than a linear system when the

excitation signal has increasing amounts of noise.

The harvesters considered include: the IDOF linear and nonlinear harvesters optimized

for the walking foot, running foot, and walking hip excitations; and the 2DOF linear and

nonlinear harvester types optimized for the walking hip.

Figure 4-37 shows the powers harvested by the 8 energy harvesters optimized for hip

walking motions. Figure 4-37 also illustrates these harvesters' adaptivity to different walking

motions. Figure 4-38 shows the power harvested by these systems when the walking hip

motion frequency is rescaled. That is, Figure 4-38 illustrates the harvesters' robustness to

slight variations in the walking signal. Figure 4-39 shows the power per system volume of each

optimized system for the walking hip. Figure 4-40 shows how the power harvested is affected

by parasitic damping. Finally, Figure 4-41 shows the optimized system power normalized by

the excitation signal power versus signal noise for the 12 optimal harvester-signal pairs.

The conclusions regarding the five performance measures are as follows:

Adaptivity. Figure 4-37 shows that the IDOF linear system with low damping harvests

the most power when excited by the hip motion. However, when the excitation signal is varied

to different types of motion (i.e. hip, running or foot walking), then the 2DOF nonlinear,

type 2 system (top, middle springs nonlinear and AEM = 1.6Ns/m) is more adaptive than

any other system considered.

Robustness. The results regarding the robustness of the harvesters to time-rescaled

walking hip motion signals (figure 4-38) are mostly inconclusive, but the 2DOF nonlinear,

type 1 harvester (top spring nonlinear and AEM = 0.4Ns/m) generally harvests more power

than any other system for time rescalings of 1.3-2.

Power per Volume. Figure 4-39 shows that the nonlinear spring analyzed in this thesis

is very space-inefficient. A linear oscillator requires only about one-fourth the volume.

Power versus parasitic damping. Figure 4-40 shows that the power harvested by
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the 2DOF nonlinear harvester, type 2 (AEM = 1.6Ns/m), and the 2DOF linear harvester

with (AEM= 0.13Ns/m) decays the least when parasitic damping is present. Although this

2DOF linear harvester's power decays very little, it initially harvests the smallest amount of

power out of all the harvesters optimized for the walking hip motion excitation signal.

Power versus signal noise. Figure 4-41 shows that the IDOF linear harvester with

low damping optimized for the human motions of this thesis always harvests more power

than any other system. However, the difference in power harvested by the IDOF linear and

1DOF nonlinear harvesters decreases as the signal noise increases form foot walking to foot

running.

Based on these performance measures, the main advantages of the 2DOF nonlinear en-

ergy harvester over the IDOF linear energy harvester are that it can be designed to be

more adaptive to different excitation signals and resistant to power decay when parasitic

damping is present (the 2DOF nonlinear harvester, type 2 (AEM = 1.6Ns/t). These sig-

nificant advantages are caused by the 2DOF nonlinear system harvesting its optimal power

at large electromagnetic damping coefficients, whereas the optimal electromagnetic damping

coefficient for the linear system occurs at low electromagnetic damping coefficient.
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Table 4.3: Summary of human motion nonlinear energy harvesters studied in thesis. The
first column lists the systems' optimal parameters for base excitation by the hip walking
motion (the signal in Figure 4-3). For the 1DOF systems, the mass is 60 g. For the 2DOF
systems, each mass is 30 g. For all of the nonlinear springs, the nonlinear spring's surface
has the same length as the cantilever, and the surface's power curve is n = 3. For the 1DOF
nonlinear system, the spring's maximum surface gap, D is 3 cm (mass overhang allows the
mass to travel ±6.8cm wrt the surface). For the 2DOF nonlinear systems, each nonlinear
cantilever/surface spring has a maximum surface gap of 1.5
mass to travel ±3.4cm wrt the surface)

cm (mass overhang allows the

System CAD rendering Component diagram Volume

(cm3)
IDOF Nonlinear: A = 0.136Ns/m, 50.8
cantilever length 15.7cm, cantilever ~
rigidity EI = 0.192Nm2 FS k

2DOF Nonlinear: Type 1, - 22
Moderate Damping: F

AT 0, = ABot = 0.001Ns/m, Mc

AMid = 04Ns/m, top spring cantilever
length 10cm, EIT,0 = 4.08e - 4N/m 2,

KMid =ON/M, KBOt =63N/m

2DOF Nonlinear: Type 2, Large 49
Damping:
ATop ABot = 0.00INs/m,
AMid 1.6Ns/m, top spring cantilever
length 10cm, EITOp = 6.37e - 4N/m2 ,
middle spring cantilever length 10cm,
EIMid = 6.26e - 3N/m 2,

KBOt = 205N/mR

1DOF Linear: Low Damping x 12
(A= 0.05Ns/m. K = 205N/m). I2m  

1

Moderate Damping
(A = 0.15Ns/m. K = 205N/m) w

K/2

2DOF Linear: Low Damping 12
(ATOP ABot = 0.05Ns/m. K w

AMid = ONs/rn. KTp = KBot -

100N/m.Kmid = ON/m). Moderate h K

Damping
(ATop= ABot = 0.001Ns/m.
AMid 0.4Ns/m. KTp = 10ON/m, K2

Kmid ON/m, KBot = 5.7N/m).
Large Damping
(ATop ABot = 0.001Ns/m.
AMid 1.6Ns/m. KT,0 = 10ON/m,
KMid 61N/m, KBot = 28N/m).
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4.5.1 Adaptivity to different excitation signals

Figure 4-37 compares the harvesters' adaptivity by plotting the power harvested by each

system when its base is excited by different human motion signals, in addition to the hip

walking signal for which they were optimized.

Figure 4-37 shows that the IDOF linear system with light damping harvests the most

power when excited by the hip walking signal. The next system that harvests the most

power is the 2DOF linear system with low damping. As described in Section 4.5.4, however,

low damping makes the power harvested by the system significantly decrease when parasitic

damping is present. Out of the systems with electromagnetic damping coefficients that are

robust to parasitic damping (A > 0.05Ns/m), the IDOF nonlinear system harvests the most

power; slightly more power than the IDOF linear system with about the same damping.

Based on the average power harvested by these systems for the five different excitation

signals, the 2DOF nonlinear type 2 oscillator (top and bottom nonlinear springs, large damp-

ing, A = 1.6Ns/m) is the most adaptive system. While this system does not harvest the

most power for the actual hip walking signal, it harvests significantly more power than the

most powerful walking-hip-quickly linear system (15%) and most powerful hip-running sys-

tem (76%) when it is excited by the hip walking quickly and running, respectively. When

only the hip motions are considered (i.e. not considering the foot motion), then the 2DOF

nonlinear type 2 oscillator harvests an average of 71% more power than the IDOF harvesters.

When the foot motion is also considered, then the 2DOF nonlinear type 2 oscillator

harvests an average of 11% more power than the most robust linear harvester. The linear

harvester may be more robust than the nonlinear harvester for the foot motion because the

large ratio in base displacement to mass constraints with respect to the base causes the

system's vibro-impact behavior to dominate the linear spring behavior (this is discussed in

more detail in 4.2.4).
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IDOF Linear, )= 0.05 Ns/m
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Figure 4-37: Power harvested by different systems optimized for hip walking when excited
by different experimentally recorded motions.
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4.5.2 Robustness to an excitation signal's small frequency varia-

tions

Figure 4-38 compares the harvesters' robustness to variations in the hip walking signal.

Figure 4-38 rescales the frequencies of the hip motion to 0.5-2 times the experimentally

recorded rate (roughly 0.5-2 steps per second per foot instead of 1 step/sec/foot), which

[14] describes as typical human walking frequencies. Figure 4-38 does not show any linear

or nonlinear system consistently harvesting significantly more power than the other systems

over a range of frequencies. The plot does suggest that the 2DOF nonlinear, type 1 harvester

(with a top and middle nonlinear spring, and damping A = 0.4Ns/m) tends to harvest more

power than any other system over rescalings of 1.3-2 times the walking frequency.

Power Harvested when WALKING time scale varied 10- Average Power Harvested over time rescaings

-- IDOF Nonlinear, = 0.13 Ns/m
0.0375 - 2DOF Nonlinear Type 1: top spring nonlinear, = 0.4 Ns/m

0.035 **2DOF Nonlinear Type 2: top, middle sprinsg nonlinear, A= 1.6 Ns/m
-0- IDOF Linear, - 0.05 Ns/m (.05 Ns/m)

0.0325 - 0 IDOFIinear, =0.15 Ns/m

0.03- 
-U-2DOF Linear, 5= 0.05 N /n

0.073 -2DOF Linear- Same damping as 6-

. 4-2DOF Linear- Same damping as

0.025 --

0.0225- -
0.025 --
~' 0.02-4

0.0175 -

0.015 3

0.0125-

0.01 - . - - 2 = DOF Nonnear,0. 13Nsm
\ 2DOF Nnear Type : tp spng ...her, 4= 0.4 N/M

0.0075 - - -- *2DOF Nonhnear Type 2. Xomdl pmg oher = 1 6 Ns/m
a ,DOF.L .ar, =005 Na/m(.051Ncm)

0.005 _4 1 [ ~DOF Lme, 015Nslm
'-. It- 2DOF Liea, I=0 05 Nstm

M DOF L.-'U dao14W9cc

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8 1.9 2 System
T1ime Scaling

Figure 4-38: Power harvested by different 2DOF harvesters when the base is excited by a
time-rescaled hip walking signal (e.g. time scale of 2 indicates the steps occur twice as fast).
The left subfigure shows each system's average power for all of the time scales. The optimal
1DOF walking harvesters are included for reference.
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4.5.3 Power per Volume

Figure 4-39 normalizes the power harvested by each system when excited by the walking hip

signal versus rough estimates of the harvesters' volumes.

The volumes here are just rough estimates. For all of the linear systems, it is assumed

that the harvesters use helical springs with outer diameters of 1.5 cm. Then the volume is

estimated as the cross-sectional area of this spring x the pk-pk allowable mass displacement

(6.8 cm). The IDOF nonlinear harvester's volume is based on the cantilever's length x

width x mass displacement amplitude. The volume of the 2DOF nonlinear, type 1 harvester

(top spring is nonlinear, middle and bottom springs are linear) was estimated by adding

the volume of the top nonlinear spring to the volume of the helical springs with 6.8 cm

pk-pk displacement (Volume= cantilever length x width x top mass displacement (3.4 cm

pk-pk) - helical spring cross section x 6.8cm mass displacement pk-pk). The volume of

the 2DOF nonlinear, Type 2 harvester (top and middle springs nonlinear, bottom spring

linear) was estimated by adding the volume of a nonlinear spring with a small magnet mass

(Volume=- cantilever length x cantilever width x mass pk-pk displacement constraints) and

the volume of a nonlinear spring with a large-volume surface system as the mass (Volume=

cantilever length x cantilever width x (mass pk-pk displacement constraints-3.4 cm mass

height). Please refer to the 2DOF Nonlinear: Type 2 illustration in Table 4.3).

Since the helical springs require much less space than the nonlinear cantilever-surface

springs, their power/volume is much higher. Figure 4-39 underlines the necessity for future

work on this project to include redesigning the nonlinear spring to be more space efficient.

For example, the contact surface stiffening effect could be employed with a helical spring.
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Figure 4-39: Power harvested per system volume when the base is excited by the hip walking

signal (Figure 4-3 shows this excitation signal).

112

IDOF Nonlinear, I= 0.13 Ns/m
*2DOF Nonlinear Type 1. top spring nonlinear, I= 0.4 Ns/m
**2DOF Nonlinear Type 2: top, middle springs nonlinear, 9= 1.6 Ns/m

lDOF Linear, X= 0 05 Ns/m ( 05 Ns/m)
IDOF Linear, = 0. 15 Ns/m
2DOF Linear, = 05 Ns/m
2DOF Linear- Same damping as *

2DOF Linear- Same damping as **

- . . . . -.. . --.. . . . --.. . .- . . . .- ...- .. .

- - -.. .................. -.. .

- ...............-- -. .-.-. .- .- .

.......... -.. ..... -.. ... .

..........-. ..........--.-.-.-.-

.-. ..... -. .....---. ..-- -. . -.

- _ -. . -.. ..... -_ . ...........

- -.........-. .....- ...-. ..- - ...

-..... -.. . ............

-.......-. ..- ...- .

- -. .... .. ....... .



4.5.4 Power versus parasitic damping

Figure 4-40 shows the effect of mechanical damping on the power harvested by each system

that was optimized for the hip walking signal. The experiments show that the mechanical

damping for the IDOF havester can be on the order of 0.02 Ns/m.

For the IDOF systems, the harvested power was calculated by multiplying the optimal

harvested power by the fraction of electromagnetic damping to total damping (ATotal = AEM+

AMech, where the total damping was left equal the optimal damping that was previous found

to dissipate the most power from the system. That is, the systems were not resimulated, but

the power converted to electricity was reduced.

For the 2DOF systems, the systems were resimulated with the half the added mechanical

damping as additional damping in between each of the masses and the base (that is, the new

damping coefficients were ATop = ABot AEM AParasitic). For the 2DOF linear system with

small damping, these AEM = 0.05Ns/m. For the other 2DOF systems, AEM = 0.001Ns/m.

Then, the harvested power was the power harvested by the middle electromagnetic damping

coefficient, AEM,Middle. POwerHarvested AEM,MiddleU( - )2-

The left half of Figure 4-40 shows the power harvested by the systems when the parasitic

damping on the masses is increased from 0 Ns/m to 0.06 Ns/m (0.03 Ns/m on each mass of

the 2DOF systems). The right half of Figure 4-40 shows the fraction of theoretical power

(0 Ns/m parasitic damping) that is actually harvested when 0.06 Ns/m parasitic damping

is present.

Figure 4-40 shows that the IDOF linear harvester power reduces to 0 W when 0.05

Ns/m parasitic damping is present. The 2DOF linear oscillator with A = 0.4Ns/m has

the least power decay, but it harvests the least power for 0 Ns/m parasitic damping, and

when 0.06 Ns/m damping is present, it harvests the least nonzero amount of power. After

the 2DOF linear oscillator with electromagnetic damping A = 0.4Ns/m, the harvester that

has the least power decay at 0.06 Ns/m parasitic damping is the 2DOF nonlinear harvester

with 1.6 Ns/m damping: with this large amount of parasitic damping, it still harvests

77% its optimized power. It makes sense that the 2DOF nonlinear harvester with large

electromagnetic damping retains most of its power while the IDOF linear harvester loses
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most of its power when parasitic damping is present because 0.06 Ns/m parasitic damping

is only 4% the 2DOF nonlinear harvester's electromagnetic damping while that is more than

the IDOF nonlinear harvester's electromagnetic damping.

The power harvested by the 2DOF linear harvester with 0.05 Ns/m damping does not

decay as much as the IDOF linear harvester with 0.05 Ns/m damping. This might be an

effect of the significant vibro-impact behavior on the linear systems.

Power Harvested versus Parasitic Damping

0 .01 .02 .04
Parasitic damping coefficient (Ns/m)
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U- IDOF Linear, Low damping, 1- 0.05 Ns/m
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Figure 4-40: Effect of parasitic damping on optimal power harvested. Parasitic damping on
the order of 0.05Ns/m greatly decreases the power harvested by the 1DOF linear system
because this system requires total damping < 0.05Ns/m for effective energy dissipation (as
can be seen in Figure 4-14).
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4.5.5 Power versus signal noise

Figure 4-41 shows the optimized system power normalized by the excitation signal power

versus signal noise for the 12 optimal harvester-signal pairs of this thesis. The signal power

is based on the root mean square (RMS) of the human motion velocity. The signal noise

is based on the ratio of the dominant frequency signal's RMS velocity to the entire signal's

RMS velocity. These RMS values are listed in Table 4.1 in Section 4.1.

For this plot, the IDOF linear system represents the maximum power that can be har-

vested. The dip in normalized power for the foot motions might be related to the increase in

base displacement for the same mass constraints with respect to the base. That is the regimes

of base excitation are different between the hip and the foot. This difference is especially

highlighted by the different normalized powers harvested for the walking hip and walking

foot excitation, which have nearly the same noise. Also, even though the signals have nearly

the same noise, the IDOF linear system excited by the walking hip motion harvests 29%

more power than the IDOF nonlinear system, while the IDOF linear system excited by the

walking foot motion harvests 23% more power than the IDOF nonlinear system.

Since the regimes are different, the plot is mostly inconclusive when comparing the non-

linear and linear harvester performances across the hip and foot excitation signals. However,

the plot does show that as noise increases from the walking foot to the running foot, the

additional power harvested by the IDOF linear system over the nonlinear system decreases

from 23%, to 9%.
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Power Harvested by Optimized Systems Normalized by Signal Power versus Signal Noise

3.6
--- 1DOF Nonlinear: 9= 0.136 Ns/m

S 2DOF Nonlinear Type 1: top spring nonlinear, k= 0.4 Ns/m
3.2 A **2DOF Nonlinear Type 2: top, middle springs nonlinear, 9= 1.6 Ns/m

-+-1DOF Linear, Low damping k= 0.05 Ns/m

a- 2.8 - 0 1DOF Linear, larger damping: X= 0.15 Ns/m
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Figure 4-41: Optimized power (normalized by signal power) versus signal noise for the 12

optimized signal-system configuration pairs studied in this thesis. Future work on this project

may include investigating other system configurations excited by the foot motions.
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Chapter 5

Electromagnetic Theory

The energy harvester optimization in Chapter 4 simulated arbitrary electromagnetic damp-

ing coefficients without considering the electromagnetism theory. This chapter begins to

examine the electromagnetic damping coefficients generated by different magnet and coil

parameters. Future work for this project will include further theoretical investigation and

actual fabrication of the electromagnetic systems; ultimately leading to the test of a complete

energy harvester prototype.

This chapter describes the magnet-across-coil electromagnetic damping system with the

schematic shown in Figure 5-1. First, it describes the equations used to simulate the

electromagnetically-induced damping. Then, it describes the constraints on the electro-

magnetic system parameters. Thirdly, it shows several optimization surfaces of the electro-

magnetic damping produced by varied parameters satisfying the constraints.
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Figure 5-1: Magnet-Over-Coil System Diagram. The coil loops are in the Y-Z plane.

5.1 Theory

The theory is based on the Masters theses of Aparna Jonnalagadda [5] and Zach Trimble

[23]. An overview of the calculations and Matlab code is given below.

5.1.1 Calculate the magnetic field

The magnetic flux density in the x-direction, B, along z due to the magnet at the coil

surface is calculated. The magnetic field generated by the coil current is ignored because

the "magnetic potential created by the coil current is several orders of magnitude lower than

that created by the magnets" (Jonnalagadda, 62). The Matlab code calculates B. along z

when the magnet is centered at x = 0.

The first step is to calculate the magnetic charge density, aM, at the interface between

the magnets and air. The magnetic charge density depends on the magnet's # of poles,

width, and length. This theory assumes a two-dimensional electromagnetic field in the X-Z

plane, which is unaffected by LMag (LMag does affect the flux through the coil).

According to calculations in Aparna Jonnalagadda's masters thesis (page 32-36), the

magnetic charge density at the interface between the magnets and air can by represented by

Fourier coefficients. That is:
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aM = ao(m) +
00 ~ 2rk-z
k(M)COS(

k=1

27rkz
+ bk(, )Sinh( z

where Z = 2(2dpo0 es + Wmag) is the spatial period of the magnetic charge density function

and the Fourier coefficients are:

ao() = 0

akA) = 0

(5.2)

(5.3)

b { 4
bk(_A) 

0

Jnax cos ( ) rkd

where, O-max - Br. Other parameter definitions are listed in Table 5.1 in Section 5.2 and

depicted in Figure 5-1.

The magnetic charge density at the interface between the magnets and air (that is, where

x = 0) is shown in Figure 5-2.

The magnetic field is calculated as the sum of the sinusoidal charge densities as given

by Equation 5.1. For a sinusoidal charge density and a system with no current, Maxwell's

equations state that:

V x H =0

V - B =0

(5.4)

(5.5)

Therefore, the magnetic field H is equal to the negative gradient of some scalar magnetic

potential function V):

H = -VV).

Using B = polm in air and combining the above three equations:

V2V = 0.

Jonnalagadda solves the boundary problem of Equation 5.7 as:

27rk(x + XB) 27kz

k=1 2(Wmag + 2dpoies) 2(Wmag + 2dpoes)

(5.6)

(5.7)

(5.8)
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where
-bk sinh( 2lrkxA)

__=_ _ z (5.9)
2nk"o (sinh(2wk )cosh(2 FA B _ sinh( 2 xB)cosh(2 xA

where XA is the x-coordinate of the magnet-steel interface, 2dpoe is the gap between magnet

poles, yo is the magnetic permeability of air, Z is the spatial period of the magnetic charge

function [Z = 2(2dpoies +Wmag)I-

XB is the thickness of the x-coordinate of the coil-steel interface. As shown in Figure

5-1, XB= dair + t
coil, where tcOij is the coil thickness in the x direction. Zach Trimble's

downhole vibration energy harvester used a 3-phase coil where the "coil was designed in two

layers separated by insulation. By designing the coil in two layers, all the end turns can be

made in the same direction on each layer and in the opposite direction on the other layer.

This allows traces [a "trace"= a segment of coil turn on a layer] to travel in either direction"

(Trimble, 72).

For a 2-layer coil, the coil thickness is defined as:

tcojl = 2 t phase - 3tins. (5.10)

where tphase equals the wire diameter and the insulation thickness, tins is set to 0.0028 inches,

the value specified in Trimble's masters thesis.

A plot of the magnetic potential in the air gap is shown in Figure 5-3.

As stated above, the magnetic field, H is related to the magnetic potential function by

H = -VV. A plot of the magnetic field in the x-direction, H,, at the coil (x = XB) is shown

in Figure 5-4.
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at interface between magnets and air: magnet centered at z= 0

0 0.005
z (m)

0.01 0.015

Figure 5-2: Magnetic charge density at the interface between the magnets and air, when the

magnet is centered at z= 0. This Fourier sum used n = 200, Br = 1.2T, Wmag = 1.2cm,

Lmag = 3cm, tmag =3cm, #poles = 2.
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Magnetic Potential

...........

-.. ....2500-

2000 -

1500A

1000

5001

0 -

-500 -

* *
.. .. .. ..

+ *: *

2000

1500

1000

500

-500

-1000. 0.03 -1000

-1500 y 002
.-. -1500

-2000 -01

-2500 -

0.03 0.02 0,01 0 -001 -002 -0.03-2000

Figure 5-3: Magnetic potential (units: A). This potential plot is only accurate for x < tmag/2
because for x > lMag/2, the magnet polarity reverses. This plot shows the magnetic potential
for the magnet with the magnetic charge density shown in Figure 5.1. This figure includes
the location of the coil phases, which are in the Y-Z plane (the Y-axis is not shown in this
plot) and stay stationary as the magnet moves in the z-direction.
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Figure 5-4: Magnetic field in the x-direction at the interface between the coil and magneti-
cally permeable backing.
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5.1.2 Calculate the flux through each coil

The magnetic flux A through each coil phase as a function of magnet position is then calcu-

lated. The Matlab code stores the results as a table where each row is [m tagPosilion, FluXA,

FluxB, Fluxc.

The flux through each coil phase is found according to:

Aphase B3 Aphase (5.11)

where B = iOcoils. The Matlab code numerically integrates small elements of B - dA,

where dA = Lag dz.

5.1.3 Calculate the flux gradient through each coil

Next, the magnetic flux gradient with respect to magnet position z is calculated.

The magnetic flux gradient is:

dAphase dB phase
dz dz

(5.12)

The Matlab code determines the flux gradient by using the built-in gradient function.

5.1.4 Calculate the electromagnetically-induced damping and Power

to Load

Faraday's Law of Induction states:

(5.13)E = -U

where E is the electromotive force, u is the number of wire loops, A is the magnetic flux passing

through the loops, and t is time. For our calculations, Faraday's Law can be rewritten as:

dA dz

dz dt
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where z is the magnet's position along the z-axis.

The electromotive force is a voltage source for the circuit attached to the coils. As stated

in Trimble's masters thesis, "any device needing power will be connected in series and can

be reduced to an equivalent load resistance" (Trimble, 38). According to Jonnalagadda, the

inductive effects of a generator can be ignored when R >> wL, where W is the oscillation

frequency of the system. The circuit used in this model is shown in Figure 5-5.

Rcoil

Rtoad

Figure 5-5: Equivalent circuit

The internal resistance of the coil, Rcoil is:

Ro -Pwire 
1 wire (.5

N0021 = (5.15)
Awire

where Pwire is the resistivity of the wire, wire= uN(2WMag+2LMag) is the wire length, and

Awire is the wire's cross-sectional area.

Combining the above equations, the power to the load is related to the flux gradient by:

OwCT Load = U2 RLoad (dAtOta l)2 / 2  (5.16)
( Rcoi + RLoad) 2  dz

where veloc is the magnet's velocity.

The electromagnetically-induced damping coefficient, be, is related to the power converted

to electricity by:

Pelec = Pdiss = beveloc2 . (5.17)

Using the above equations, the equivalent mechanical damping of the system is is related to
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the flux gradient by:

be = U2  daz (5.18)
Rcoi + RLoad

where u is the number of turns per phase and dA>ota, is the summed magnitudes of the

flux gradient in all three phases.

The results of these calculations are shown in Figure 5-6.
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Figure 5-6: Numerically calculated magnetic flux, flux gradient, electromagnetically-induced

damping, and power normalized by magnet velocity squared versus magnet position. The

left y-axis of the bottom subfigure is the damping coefficient, while the right y-axis is the

power delivered to the load normalized by the magnet velocity squared. This simulation

used LMag = 3cm, WMg = 1.2cm, tMag = 3cm, wire diameter = 0.1 inches, number of turns

per phase u 3, number of coil loops [how many times coil repeats in the z-direction] = 5,

air gap = .03 inches, insulation thickness= .0028 inches, RLoad = RCoil = 0.0025Q.
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5.2 Parameter Constraints

The system parameter values are constrained so that the device is easy for a person to

carry (limit the mass and size), and machining tolerances are satisfied. These constraints

on the electromagnetic system parameters are listed in Table 5.1. Additional constraints are

that the number of magnetic poles is restricted to an even number in order to create full

magnetic circuits (Trimble, 34). Also, the coils must be at the same pitch as the magnet

width for maximum magnetic flux reversal (Trimble, 34). Finally, the theory assumes that

the magnetically permeable backing does not saturate. If the backing does saturate, then B

is no longer directly proportional to H. Trimble shows that the minimum backing thickness

to prevent saturation is tbacking WMag Braq (Trimble, 67).

Table 5.1: Electromagnetic System Parameters

Parameter Value Range
Lmag, magnet length (cm) 0.5-5

Wmag, magnet pole width (cm) 0.5-5
t mag, magnet pole thickness (cm) 0.5-5
dpoies, half the gap between magnet poles (cm) 0

m, magnet mass (Kg) 0.125

Pmass, mass material density (Kg/rn3 ) 7400
p, # magnetic poles 2,4
Br, magnetization flux density (T) 1.2

Pwire, wire material resistivity (Qm) 1.68e-8
N, # coil phases 3
u, # turns in each phase 1-30

6crit, amplitude of magnet motion (cm) 2
d, wire diameter (mm) 0.15- 4
dair, air gap between magnet and coil (mm) 0.25-5

Rload, load resistance (Q)

5.3 Optimization

The goal of the optimization is to determine parameters satisfying the constraints that pro-

duce a desired damping and maximize the power dissipated by the load resistor. Parameters

that can be adjusted are: Lmag, Wmag, tmag, # poles, # turns/phase, wire diameter d, dair,
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and RLoad-

The mass dimensions were determined so that the total oscillating mass (magnet and

required steel backing) equals 60 grams. The terms "width", "length", and "thickness" refer

to the labeled dimensions in Figure 5-1. Wmag and Lmag were set to arbitrary constants.

The steel backing length was set to L8t,,c = Lmag, and the steel backing width was set to

Wsteeiz= Wmag. The steel thickness, tstec, was chosen to the minimum value that prevented

the magnetic circuit from saturating (that is, tbacking = W Ba ). Then the magnet

thickness tmag was chosen so that the entire mass was 60g.

Unless stated otherwise, the simulations assume an airgap between the magnet and coil

of 0.76 mm. This is the valued used by Trimble in his thesis.

The number of coil layers was determined by fitting as many turns per phase into the

space allotted per phase on each layer. If more turns were required, then another layer was

added behind the first layer:

#layers = u/nWires (5.19)

where u is the number of wire turns per phase, and nWires is the number of wires that

fit in the width available to each phase (nWires =WPhase/(dwire + Wkerf). #layers is

rounded to the larger whole number. VKerf is the spacing between wires on the same layer.

The coil thickness was determined by:

tcoil = 2(#layers) (wire Diameter) + (2#layers + 1)(insulationThickness) (5.20)

The resistance of the load was set equal to the resistance of the coil.

This configuration matches those in the masters theses of Zach Trimble and Aparna

Jonnalagada. The dimensions of the magnet were varied. All of the masses were kept at 60

g.

Figures 5-7 to 5-10 show sample optimization plots of the electromagnetic damping co-

efficient produced by varied parameters.
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Figure 5-7: Electromagnetic Damping for varied coil turns per phase and wire diameter.
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Figure 5-8: Electromagnetic Damping
Total steel and magnet mass: 60 g, air

for varied coil turns per phase and wire diameter.

gap between magnet and coil: 0.02 inches.
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Figure 5-10: Electromagnetic Damping for varied coil turns per phase and wire diameter.
This plot has the same mass dimensions as in Figure 5-8 (total steel and magnet mass of
60g) but with an air gap of 0.02 inches instead of 0.03 inches, and a magnet with 4 magnetic
poles instead of 2 magnetic poles.
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Chapter 6

Energy Harvester Conclusions

This thesis investigated a novel nonlinear spring for the application of charging personal

electronics such as a cell phone from the energy of a person's walking vibrations. The goal of

this thesis was to show that the nonlinear spring increased the power efficiency of the energy

harvester when compared to current commercial energy harvesters. The results of this thesis

(see Section 4.5.3) suggest that optimal nonlinear harvester (2DOF nonlinear harvester, type

2, AEM = 1.6Ns/n, which is adaptive to different walking signals and robust to parasitic

damping) can harvest 0.017W, which equates to 3.3e - 3W/cm 3 , and 2.8e - 1W/Kg. The

optimal linear harvester (based on the IDOF linear harvester with AEM = 0.15Ns/m, which

is not nearly as adaptive to different walking signals) can harvest 0.026W, which equates to

2.2e-3W/cm 3 , and 4.3e-1W/Kg. While these numbers emphasize that further optimization

may be necessary for the nonlinear systems, they show that the harvesters studied in this

thesis harvest one order of magnitude more power per volume than current commercial energy

harvesters (the backpack harvests 3.1e-4W/cm2 and the nPEG harvests 6.le-5W/cm3 . See

Table 1.2), and three orders of magnitude more power per mass than the commercial energy

harvesters (the backpack harvests 1.9e - 4W/Kg and the nPEG harvests 7.6e - 5W/Kg.

See Table 1.2). Please note, however, that the simulated harvested power in this thesis does

not account for electrical inefficiencies. The harvester masses and volumes do not account

for the electrical components and casing.

Conclusions and future work for the different aspects of this project are described below.

For the nonlinear spring theory, this thesis described a spring that behaves similarly to
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a cubic nonlinear spring but with two advantages. First, the spring is designed to have

minimal frictional losses. Second, the force exerted by the nonlinear spring blows up for

large displacements. This blow-up causes vibro-impact, which [25j describes as useful for

energy harvesting.

This thesis experimentally verified the nonlinear spring theory by "initial displacement"

tests for oscillators with several different parameters. The experiments showed that the

theory is restricted to smaller end-mass:cantilever rigidity ratios and smaller end-mass vol-

ume:cantilever width ratios. The dynamics of oscillators for which these ratios are large

do not agree with the theory because the have non-negligible energy in higher cantilever

transverse and torsional modes. Future nonlinear spring experimental work may involve

increasing the agreement of the base drop tests, which simulate foot motion.

This thesis compared the performance of nonlinear and linear energy harvesters in terms

of optimal power output, adaptivity to different human motions, robustness to frequency

variations, space efficiency, and robustness to parasitic damping. We sought to verify the

theory that multi-DOF nonlinear energy harvesters outperform linear energy harvesters when

the excitation signal has a lot of noise, especially when the nonlinear energy harvester's

antisymmetric modes are excited.

Although optimization showed that the linear system always harvested more power than

the nonlinear system when excited by the signal for which they were both optimized, Fig-

ure 4-41 shows that the difference in power between the linear and nonlinear systems de-

creases as the signal noise increases. Future optimization work could include optimizing the

2DOF nonlinear system for noisier excitation signals, such as the foot running, for which the

nonlinear systems may harvest more power than the linear system.

For the excitation regimes investigated in this thesis, none of the systems seemed signif-

icantly more optimal over any other.

The main advantages of the 2DOF nonlinear energy harvester over the IDOF linear

energy harvester are that it can be designed to be more adaptive to different excitation

signals and resistant to power decay when parasitic damping is present (the 2DOF nonlinear

harvester, type 2 (AEM = 1.6Ns/m). These significant advantages are caused by the 2DOF

nonlinear system harvesting its optimal power at large electromagnetic damping coefficients,

133



whereas the optimal electromagnetic damping coefficient for the linear system occurs at low

electromagnetic damping coefficient.

We note that the "linear" system described in this thesis is not a traditional linear system

because of the displacement constraints.

As for volume efficiency, the nonlinear cantilever/surface spring is very inefficient com-

pared to the helical spring. Future work will include converting the one-dimensional can-

tilever/surface design into a more volume-efficient two-dimensional design (such as a helical

spring contacting a surface instead of a cantilever).

This thesis began to investigate the electromagnetic theory that could be used to design

the energy harvester. Future work will include finalizing this theory and perhaps simplifying

it for practical testing purposes. Other future work on the electromagnetic theory could

include considering different magnet-coil configurations, such as a U-shaped magnet, 0-

shaped magnet, and magnet in between two coils to balance the forces between the magnets

and coils. Then, a full energy harvester prototype could be fabricated and tested.

Some other future design directions for this project could include: investigating a different

spring mechanism. In addition to looking at the two-dimensional equivalent of oscillating

cantilever/ surface springs, more human motion power might be available in a mechanism

that bends at the knee or deforms in a shoe. Also, the project might investigate piezo-

electric transducers instead of electromagnetic transducers. The optimized nonlinear energy

harvesters of this thesis dissipate the energy in short bursts, and piezoelectric transducers are

more efficient at converting short bursts of dissipated energy into electricity. Finally, future

work of this project might consider applying this theory to different vibration applications,

such as medical device implants (scale down the project volume) or harvesting ocean waves

(scale up the project volume).
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Chapter 7

Nonlinear Load Cell

7.1 Introduction

The nonlinear spring that was studied in Chapters 1-6 for the application of an energy

harvester is also useful for measuring forces as a load cell. Load cells that use the nonlinear

spring are shown in Figure 7-19.

Common types of load cells are hydraulic load cells, pneumatic load cells, and strain

gauge load cells. For a hydraulic load cell, a load is applied to a piston that covers an

elastic diaphragm filled with oil. When a load is applied to the piston, the piston moves and

increases the pressure in the diaphragm. The pressure in the diaphragm is measured by a

bourdon tube. For a pneumatic load cell, a pressure gauge measures the pressure inside a

diaphragm filled with air. The most common load cell is the strain gauge load cell. The

load cell is a solid object that deforms or displaces when it feels a force. When the load cell

displaces, a strain gauge deforms. A typical strain gauge is flexible foil in a pattern. The

strain gauge is adhered to the load cell, and it deforms as the load cell deforms. As the strain

gauge is stretched, its electrical resistance increases. When it is compressed, its electrical

resistance decreases. A Wheatstone bridge circuit measures the change in resistance. Thus

the force applied to the load cell is converted to an electrical signal [8].

Commercially available strain gauge load cells come in many different shapes, such as

bending beams (a cantilever), S-beams (an "S"-shaped configuration of beams), single point

load cells (a double-clamped beam, for which the force measurement is insensitive to the
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position of the load along the beam), shear beam load cells (an I-beam produces a uniform

shear across its cross-section that can be measured by strain gauges), and "pancake" load

cells (round, flat beams) [8].

A load cell can be designed for almost any force capacity. For example, [8] indicates that

bending beam load cells can be used for force ranges of 50-25,000 (5.Oel-2.5e4) Newtons and

pancake load cells can be used for force ranges up to 2.5e6 N.

The load cell resolution- that is, the smallest force increment that it can measure- is

constant for a given linear load cells. The Omega load cell manufacturer lists accuracies

up to 0.03% full-scale load [8] . For example, if a load cell is designed to have a full scale

capacity of 2.5e6 N, then the smallest force increment it can measure is 75 N. (This analysis

assumes that the load cell resolution is limited by the mechanical component and not the

electrical instrument component).

Many of the load cells are designed to withstand a limited amount of force "overcapacity."

For example, the Omega LCCE-100 S-Beam load cell can be safely overloaded to 500% its

load capacity before breaking.

All of the commercial load cell discussed here have limitations on their force resolution,

maximum force capacity, and overcapacity due to their reliance on linear springs. A load

cell that uses the cantilever/surface nonlinear spring (see Figure 7-19) does not have these

limitations. The proposed nonlinear load cell has a force resolution that increases with

the force, which allows a high force accuracy over a large force range. Also, the geometry

prevents it from breaking for forces well beyond its designed range.

More specifically, the proposed device consists of four cantilever/ surface springs. The

hardening nonlinearity of the springs in the load cell allow the surface pairs to displace a large

distance for small forces and incrementally smaller distances for larger distances. For very

large forces, the cantilevers effectively do not bend further because they are already in contact

with the surfaces along the full cantilever length. The surfaces are significantly stiffer than

the cantilever and can be designed to negligibly deform themselves in all desired applications.

The top surface pair is connected to the object of interest while the bottom surface pair is

connected to the tabletop (or visa-versa). The displacement measurements of this proposed

load cell could be measured by an optical sensor that compares the displacement of the top
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surface set to the bottom surface set.

If the optical sensor can detect changes as small as 0.1 pm, then to achieve 1% accuracy

in the force measurement, then we require a change in displacement per force: dy/dF >

le - 7m/0.01F. For F= 0.01 N [1 gram], it is desirable to have a stiffness of K = dF/dy <

1000N/m.. For F= 400 N [40 Kg], it is desirable to have K < 4e8N/m.

This chapter describes the cantilever/ surface nonlinear spring theory for the load cell and

the experimental verification of this theory using aluminum load cells. Then, it simulates

spring steel load cell performance (e.g. stiffness and safety factor against yield versus force).

This chapter investigates a load cell for which the four nonlinear springs' cantilevers are

rigidly connected in such a way that the cantilever tip is restricted to 0-slope. It also

investigates a load cell for which the cantilevers are connected by rotational springs physically

realized by 2700 curved beams. The curved beams have the same base width (dimension

into the page) and height as the cantilevers to which they are attached. The presence of the

rotational springs reduces the stress on the cantilever beams caused by the first load cell's

0-slope requirement. The results of this investigation are summarized in Section 7.5.

7.2 Theory

The derivation of the force versus deflection of the load cell is similar to that of the oscillator

described in Chapter 2. The load cell is a 2x2 grid of the nonlinear spring where the left and

right elements are rigidly attached to each other as "surface pairs". The cantilever tips of the

top and bottom elements are also rigidly attached. Load cell deflection occurs between the

top and bottom surface pairs. The load cell theory differs from the oscillator theory in that:

the full load cell's deflection is twice that of the single nonlinear spring, the full load cell's

force is four times that of the single nonlinear spring (due to the 2x2 grid nonlinear spring

configuration), and the cantilever tip connections must remain vertical (due to symmetry).

When the cantilever tips are rigidly connected to these vertical connections (please refer to

Figure 7-19), then the cantilever tips must remain at 0-slope. When the cantilever tips are

connected to the vertical connections by rotational springs, then the 0-slope requirement is

relaxed. This section uses Castigliano's Theorem to derive the force versus displacement
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of the load cell with the rotational springs physically implemented by 2700 curved beams.

Setting the radii of the curved beams to 0 recovers the force versus deflection theory for the

load cell with rigid cantilever tip connections.

The theory presented in this section is for one-fourth of an actual load cell. That is, the

full load cell force would be the force derived in this section multiplied by 4, and the full

deflection would be the deflection derived in this section multiplied by 2.

Set Up

This chapter examines the force versus displacement of a cantilever with a rotational spring

attached to its end. As the cantilever bends, it wraps around a surface that has the shape:

S = D -(7.1)
L

where L = Lsurf = Lcant is the cantilever and surface length, z measures the location

along the length of the beam, and D is the gap between the surface and cantilever.

The deflection of the beam can be determined by solving the boundary value problem

for the "free" part of the beam. for the free part of the beam, x measures the distance along

the cantilever axis from the root. The free part of the beam is shown in Figure 7-1. The

boundary conditions on the free part of the beam are: w(x = 0) = S, dw/dX = S' at x=

0, downward force F applied at the top of the curved segment, and zero slope at the top

of the curved segment; where w is the deflection of the beam in the z direction, and S and

S' are the known deflection and slope respectively at the cantilever's contact point with the

surface.
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Figure 7-1: Problem Set-Up. The boundary conditions are: w(O) S, dw/dX S' at x=

0, downward force F applied at the top of the curved segment, and zero slope at the top of

the curved segment.

Free Body Diagram and Reaction Forces

The free body diagram of the entire beam is shown in Figure 7-2. The forces at the left

end of the beam are imposed by the contact surface and segment of the cantilever that is

already in contact with the surface. At the right end of the beam, the top of the curved

segment is attached to a rigid vertical bar. This vertical bar is allowed to move vertically

and horizontally, but it does not allow the top of the curved segment to rotate. Thus, the

top of the curved segment is subject to a reaction moment.

F

Fz 
B Y

F f AMA LFree, EI R X

Z"

Figure 7-2: Free Body Diagram

Using the free body diagram in Figure 7-2, the reaction forces and moments can be
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= F = 0 Fx = 0

= Fz+F = 0 F, = -F

= -F(R + LFree) + B + MA = 0 -MB + A1A = F( + LFree)

(7.2)

The reaction moments are statically indeterminate. To determine the reaction moments,

one can calculate the internal energy, U, in the "straight" segment and "curved" segment,

differentiate the internal energies with respect to the interface tip moment (which equals

the tip angle, according to Castigliano's Theorem: 0 Tip = aU/AfITi), and solve the two

equations for the unknown tip moment, MTip, and tip angle, 0 Tip. This procedure is given

below.

The tip moment is defined in Figure 7-3.

Fz

MA F
-------------------- +x MB

LFree, E
F B ,

'Z OJG--

Figure 7-3: Free Body Diagram Segments.

The internal energy in the straight segment is calculated in Equation 7.3.

jcantilever f L (Fx + MTjp - F(L))2 dx
Ucntleer=0 2E Idx (7.3)

Since this is a slender beam, the internal energy due to the shear force and normal force

is negligible compared to the internal energy due to bending. Integrating equation 7.3 with
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respect to dx and differentiating with respect to MTip, the tip angle is:

S_ F L2F' _MpLFree S/40 Cantilever Fe MTEL F (7.4)
2E1 E

The internal energy in the curved segment is calculated in Equation 7.5. Again, only the

bending energy is considered.

/ 37/2 (-FRsin(O) - FR - MTZP) 2

UUrVe = JO2I-RdO (7.5)
Jo 2Ff

Integrating equation 7.5 with respect to dO and differentiating with respect to AITip, the

end angle is:

0Curve - (37R 2 + 2 R 2 )F + 37r MTjpR (7.6)
2E1

Solving equations 7.4 and 7.6 for MTjP (by setting 0 Cantilever = OCurve), the result is:

MT2  (-3wrR 2 - 2R 2 + L 2ree)F + 2S'EI

3,rR + 2 LFree

The reaction moments MA and MB relate to MTip by:

MA= FLFree - Mrip (7.8)

MB = FR + MTjp (7.9)

Deflection and Rotation of the Straight Segment

The displacement of the straight beam segment tip is found using the Euler-Bernoulli equa-

tion:

EI = -q(x) (7.10)

where q(x) = 0 is the applied load along the free beam length, E is the beam's elastic

modulus, and I is the beam's moment of inertia. Integrating equation 7.10 four times with
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respect to x results in the beam deflection equation:

EIw = -x4 + X3 + x2 + c 3x + c 424 6 2
(7.11)

where ci are the constants of integration, q is the loading along the beam length (q = 0),

and x is the distance measured from the contact point. The boundary conditions for this

cantilever segment are:

w(x 0)

w'(x 0)

W"I/(x = 0)

w "(x = LFree)

= S(zc)

= S'(zc)

= IA/EI

-F/EI

[At root, beam deflection equals surface deflection]

[At root, beam slope equals surface slope] (7.12)

[interntal beding due to moment at cantilever root]

[Point force applied at beam tip]

Substituting these boundary conditions into

the constants of integration:

equation 7.11 results in the following values for

ci = -F

C2 = A

C3 = EIS'(zc)

C4 = EJS(ze)

(7.13)

The resulting beam deflection is:

-F x 3 FR2 -2FR 2 +3FLR+FL 2 -2S'EI 2 dS

6EI (67RR+4L)EI dz "

where x is measured form the cantilever root. The free length is:

Lfre C= L - l(S(zc)) (7.15)

where zc is the contact point of the cantilever with the surface, S is the spatial function of

the surface curve, and s is the arc length of the surface from z = 0 to z = z,.

Substituting in x = Lree, the deflection at the tip of the straight segment is:

-FL4 - 2F L 2 R 2 - 2FL3 R - 2S'EIL2 FL2 R FL3

EI = + + +S+S'L
6wEIR +4EIL 2EI 3EI

(7.16)
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where L is used in place of LFree so that the equation fits on one line.

When R = 0, equation 7.16 simplifies to:

FL + S'(x = 0)LFree + S(x 0) (7.17)
ori = reel4Fe

12EI 2

Equation 7.17 is the cantilever tip deflection of the load cell for which the cantilever tips are

rigidly connected to vertical bars.

When R = 0, S' = 0, and S = 0, equation 7.16 simplifies to:

FL3

i (7.18)
12EI

This result agrees with the deflection of a cantilever with a point load and 0-slope restriction

at its tip.

The effective stiffness of the rotational spring (implemented by the 2700 curved beam)

acting on the straight segment tip is Krot,eff MTip/OTip. Substituting in the equations for

AITip (Equation 7.7) and 0 Tip (Equation 7.4), Krot,eff is:

2EI(-3vFR 2 - 2F? 2 + FL2 + 2S'EI)KFree (7.19)Krot,eff= R(61FFLFreeR + 4FLFreeR + 37FL2ree + 6wS'EI) '

where El is the cantilever rigidity, F is the force acting down at the top of the curved

segment, R is the radius of the curved segment, LFree is the free cantilever length, and S' is

the surface slope at the free cantilever root.

Deflection of the Curved Segment

Castigliano's Theorem can be used to find the displacement of the top of the curved segment

with respect to the straight segment tip: 6 = OU/F. Using equation 7.7 to define MTjp and

differentiating the internal energy, U with respect to F, the deflection is:

277r
3FR5 +727FR5

+367r
2 FLR4 -967rFLR+4 +32FLR4 - 127rFL2

R
3 -32FL 2

R
3

4EI(37rI?+2L)2  
(7.20)

487S'EIR3 
+24uTFL

3 R2- 16FL3R2+24rS'EILR2-16S'EILR2+67F 4R+12rS'EIL2R

+ 4EI(37rR+2L)2
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7.2.1 Load Cell for Cantilevers With Rigid Connections

Below are the performance plots of an aluminum load cell with the following parameters:

cantilever and surface lengths, L = 10cm; cantilever height, It = 0.5nrmm; cantilever base,

b = 9.5mm; surface curve power n = 3; maximum surface gap, D = 5mm; elastic modulus,

E = 65e9Pa; maximum allowable stress, gal = 200e6Pa. All plots correspond to a single

cantilever/surface set (1/4 of an actual load cell). For a complete load cell, the displacement

of a single cantilever tip is multiplied by 2 and the force is multiplied by 4.

x 10 3 Deflection along Beam Length

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

axial distance from cantilever root, z (m)

Slope along Beam Length

20 0.01 0.02 0.03 0.04 0.05 0.6 0.7 0.08 0.09 0.1

axial distance from cantilever root, z (m)

Curvature along Beam Length
51

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.

axial distance from cantilever root, z (m)

Normal stress along top of Beam

0.01 0.02 0.03 0.04 0.5 0.08
axial distance from cantilever root, z (m)

-.-.-.-. -.... . . . ... . ...... U ....

Figure 7-4: Deflection along length for a single cantilever, F= 5 N. Load cell parameters are

D= 5 mm. L= 10 cm. b= 9.5 mm. h= 0.5 mm. E= 69e9 Pa.
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Force versus deflection
5

4.5 -

4 -

3.5 -

3-

2.5 -

2 

1.5 --

1

0.5

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Tip Displacement (m) X 10'

Figure 7-5: Force versus deflection for a single cantilever. Load cell parameters are D= 5
mm. L= 10 cm. b= 9.5 mm. h= 0.5 mm. E= 69e9 Pa.

x 10
4  K versus Force

2.5 _ _ _1_1_1
Actual K

Desired Maximum K for single cantilever: K 5*104F

2-

0.5

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Force (N)

Figure 7-6: Stiffness versus force for a single cantilever. Load cell parameters are D= 5 mm.
L= 10 cm. b= 9.5 mm. h= 0.5 mm. E= 69e9 Pa. The green line indicates the maximum
allowable stiffness such that an optical sensor that can detect deflection changes of 0. 1 um
could detect changes within 1% of the given force value.
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Figure 7-7: Contact Point versus force for a single cantilever.
5 mm. L= 10 cm. b= 9.5 mm. h= 0.5 mm. E= 69e9 Pa.
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Maximum Stress versus Tip Force
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Figure 7-8: Stress versus for a single cantilever. Load
cm. b= 9.5 mm. h= 0.5 mm. E= 69e9 Pa. The green
stress for this aluminum load cell, -= 200MPa.
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7.2.2 Load Cell for Cantilevers With Rotational Spring Connec-

tions

Below are the performance plots of an aluminum load cell with the following parameters:

cantilever and surface lengths, L = 10cm; cantilever height, h = 1mm; cantilever base,

b = 9.5mm.; surface curve power, n = 3; maximum surface gap, D = 5mm; rotational spring

radius, R = .01m; elastic modulus, E = 65e9Pa; maximum allowable stress oal = 200e6Pa.

All plots correspond to a single cantilever/surface set (1/4 of an actual load cell). For a

complete load cell, the displacement of a single cantilever tip is multiplied by 2 and the force

is multiplied by 4. As shown in Figure 7-11, the theory has a slight error for the curved

segment deflection. If you can fix this error, please contact this author at jociekQmit.edu.

0

5 -2

-4

-6

E 0
0

C-0.1

X 10-3 Deflection along Beam LengthK0 --
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

axial distance from cantilever root, z (m)

Slope along Beam Length

-. ..... ...... ...-. ......-.-.-.-.-.-.-.-

02
0 0.01 0,02 0.03 0.04 0.05 0.06 0,07 0.08 0L09 01

axial distance from cantilever root, z (m)

Curvature along Beam Length

0 0.01 0.02 0.03 0.04 0.5 0.06 0.07 0.08 0.09 0.1
axial distance from cantilever root, z (m)

Normal stress along top of Beam

S 0

Z5 0 0.01 0.02 0.03 0,04 005 0.06 0.07 0.08 0.09 0.1
axial distance from cantilever root, z (m)

Figure 7-9: Deflection, slope, curvature, and stress along beam length when F = ION. This
force and deflection are for a single cantilever/surface. Load cell parameters are D= 5 mm.
L= 10 cm. b= 9.5 mm. h= 1 mm. E= 69e9 Pa.
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Figure 7-10: Force versus deflection of cantilever tip, top of curved
spect to the cantilever tip, and combined total structure deflection.
are for a single cantilever/ surface. Load cell parameters are D= 5
mm. h= 1 mm. E= 69e9 Pa.

Stiffness versus Force
....... .... ...... '. . ..... ................... ............... ....... ....... ......... .......... ............................... .......... .......................... .... ........

...........- ....... ............ .................

....... .. ...... . ................. .......... ............... ..: ........... ................ ..... . ........... ...

........... ..... . ............... ........ ......-

............................... ............ ................. ........ ....... ........................... .. . ..... ... ..... .......... ........
... .. ......... .......... .....I .... ..............I .............. ..................... .. .....

............... .......... .......... ......... . .. .. . .. .. . ..

... . .. .. .. .... ........ ........
...............

......... ........ ...... ........ . ........

...............
.. ....... .... ..... ......... ........ ................ .......I ... .................. . ............ ....... ..................! ........... .............. ... . ....... ........
..... ..... .... .. .................... ........ ......
.... ...... ........ .. ..... ........ .......... .......... ........ .................

. ..... ..... .. ........ ....... .......... . ........ .......

........ ............... ..... ........ ..... ....... ....... .

Cantilever Tip
Curved Beam Tip wrl Cantilever Tip.... .. .... .. .. .. .....

........ ............... E ntire Structure ....
......................

Desired Maximum K: K=!5*j04F
................ ......... ................ ............... ................

1 2 3 4 5
Force (N)

beam (point B) with re-
This force and deflection
mm. L= 10 cm. b= 9.5

6 7 8 9 10

Figure 7-11: Stiffness versus force of cantilever tip, top of load cell (point B) with respect to
the cantilever tip, and combined. This force and deflection are for a single cantilever/surface.
Load cell parameters are D= 5 mm. L= 10 cm. b= 9.5 mm. h= 1 mm. E= 69e9 Pa.
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Figure 7-12: Contact point between surface and cantilever along surface axis versus force.

The y-axis is normalized by the surface length, 10 cm. Force are for a single cantilever/sur-

face. This force and deflection is for a single cantilever/ surface. Load cell parameters are

D= 5 mm. L= 10 cm. b= 9.5 mm. h= 1 mm. E= 69e9 Pa.

Maximum Stress versus Force
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Figure 7-13: Maximum stress in

at the top of the curved beam.
Load cell parameters are D= 5

the cantilever and curved beam segments versus force applied

This force and deflection are for a single cantilever/ surface.

mm. L= 10 cm. b= 9.5 mm. h= 1 mm. E= 69e9 Pa.
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Figure 7-14: Bending moment and stress along curved segment when F = ION. 0 corre-
sponds to the angle below the horizontal between the curve center and the cantilever tip.
This force and deflection are for a single cantilever/ surface. Load cell parameters are D= 5
mm. L= 10 cm. b= 9.5 mm. h= 1 mm. E= 69e9 Pa.
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Figure 7-15: Bending moments versus force. 0 corresponds to the angle below the horizontal
between the curve center and the cantilever tip. This force and deflection are for a single
cantilever/surface. Load cell parameters are D= 5 mm. L= 10 cm. b= 9.5 mm. h= 1 mm.
E= 69e9 Pa.
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Beam.Tip angle versus Force
0.16

Ufr 10 (
Tip force (N)

16 20 25

Figure 7-16: Cantilever tip angle versus force. 0 corresponds to the angle below the horizontal

between the curve center and the cantilever tip. This force and deflection are for a single

cantilever/surface. Load cell parameters are D= 5 mm. L= 10 cm. b= 9.5 mm. h= 1 mm.

E= 69e9 Pa.

Effective rotational spring stiffness versus versus Force: rot, eff= Mr1p/) 1i
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Figure 7-17: Effective rotational spring stiffness acting on cantilever tip versus force. KROt =

MTip/O corresponds to the MTjp and 0 shown in the two plots directly above. This force and

deflection are for a single cantilever /surface. Load cell parameters are D= 5 mm. L= 10 cm.

b= 9.5 mm. h= 1 mm. E= 69e9 Pa.
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7.3 Experimental Verification

7.3.1 Fabrication

Two prototype aluminum load cells were fabricated using the tilted-head Omax waterjet

machine in the Pappalardo Machine Shop. Both load cells had the following parameters:

cantilever and surface lengths, L 10cm; cantilever base, b = 9.5mm; surface curve power,

n = 3; maximum surface gap, 1) 5mm, elastic modulus, E = 65e9IPa; maximum allowable

stress Oal = 200e6Pa. The first load cell had rigid connections between the cantilever

tips, and a cantilever height of 0.5 mm. The load cell geometry prevents the load cell from

deflecting more than 8 mm in both tension and compression in order to keep the stress below

200e6'a. The second load cell had a cantilever height of 1 mm and rotational springs in

between the cantilever tips that were physically realized by 2700 curved beams with radii of

R = .01mrr. The load cell geometry prevents the load cell from deflecting more than 8 mm in

compression.

Although the theory assumes that the surfaces and cantilever roots meet at a point, the

Omax machine is unable to cut such points. The solution was to cut away rectangular holes

from the surfaces so that the minimum gaps required for the waterjet to cut inbetween the

cantilever and surfaces was 1mm, as shown in Figure 7-18. "Plugs" for these holes were

waterjetted with 0.1 mm clearance that could be adhered to the surface holes using epoxy.

The fabricated load cells are shown in Figure 7-19.
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Figure 7-18: CAD of both aluminum load cells. Top: load cell without rotational springs.
Bottom: Load cell with rotational springs. Included are 16 plugs to fill the rectangular holes.
The rectangular holes (or "root gaps") are required so that the minimum gap required for
the waterjet to cut is 1 mm.

Figure 7-19: Fabricated aluminum load cells. Top: load cell without rotational springs.
Bottom: Load cell with rotational spring.
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7.3.2 Experimental procedure

The force versus displacement test was performed using an Admet force tester machine with

a 2.2 lbf load cell with the set-up shown in Figure 7-20. The tests were performed for the

load cells with and without the "plugs", with compressive and tensile forces.

a) Load Cell with rigid connections, maximum compression

b) Load Cell with curved beam connections, maximum tension

Figure 7-20: Load cell force versus displacement experimental set-up

154



7.3.3 Results

Figure 7-21 shows the force versus displacement test results for the aluminum load cell

without rotational springs. Figure 7-22 shows the force versus displacement test results for

the aluminum load cell with rotational springs.

0

4

3

2

1

Force versus deflection
Load cell with rigid connections

Theory- Smooth Surface
Compression Test- with root gaps
Tension Test- with root gaps
Compression Test- with root plugs
Tension Gaps- with root plugs

/................. .................... ......

0 1 2 3 4 5 6 7 8 9
Displacement (mm)

Figure 7-21: Force versus displacement test results for the aluminum load cell with rigid
connections. The load cell parameters were: cantilever and surface lengths, L = 10cm;
cantilever height, h = 0.5mm; cantilever base, b = 9.5mm; surface curve power n = 3;
maximum surface gap, D = 5mm; elastic modulus, E = 65e9Pa; maximum allowable stress,
o-al = 200e6Pa. The terms "root gaps" (or "holes") and "plugs" are defined in Figure 7-18.
Performance plots (e.g. deflection versus axis position and stress versus force) are shown in
Section 7.2.1.
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Force versus Displacement
Load Cell with Rotational Spring Connection
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Figure 7-22: Force versus displacement test results for the aluminum load cell with rotational
spring connections. The load cell parameters were: cantilever and surface lengths, L = 10cm;
cantilever height, h = 1'mm; cantilever base, b = 9.5MM; surface curve power n = 3;
maximum surface gap, D = 5mm, rotational spring radius, R = 1cm; elastic modulus,
E = 65e9Pa; maximum allowable stress, aal = 200e6Pa. The terms "root gaps" (or "holes")
and "plugs" are defined in Figure 7-18. Performance plots (e.g. deflection versus axis position
and stress versus force) are shown in Section 7.2.2.

7.4 Spring Steel Load Cells Simulated Performance

This section shows optimization curves for load cells made out of spring steel. Section 7.4.1

shows sample plots of load cell stiffness at F = 0.01N, at F = lOON, and maximum stress

at F = lOON for a varied cantilever width ("base") dimension and maximum surface gap,
D, for the load cell with rigid connections. Section 7.4.1 then shows plots of displacement,

stiffness, stress, and contact point versus applied force for varied maximum surface gaps,

D. Section 7.4.2 repeats these plots for the load cell with rotational spring connections for
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varied in rotational spring radii, R and constant D. For all of these plots, F refers to the

total load cell force (4 nonlinear springs combined), and the displacement refers to the total

load cell displacement (2 nonlinear springs combined).

7.4.1 Load Cell with Rigid Connections

These optimization plots are for spring steel load cells with the following constant parameters:

cantilever and surface length, L = 15cm; cantilever height, h = 0.8mm; cantilever base

dimension, b = 9.5mm (unless otherwise specified); surface curve power, n = 3; cantilever

elastic modulus, E = 160.6e9Pa; and yield stress, ay = 1.2e9Pa. In all of these plots, the

force F refers to the total force applied to the load cell (4 nonlinear springs combined), and

the displacement refers to the total load cell displacement (2 nonlinear springs' displacement

combined).

Performance at F = 0.17 and F = WOON

K value at F= 0.17 N [N/m]
0.5

0.45

0.4
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0.3

3 0.25
E
m 0.2

0.15

0.1

0.05

1.5

Maximum surface gap (m)

Figure 7-23: Load cell with rigid connections: stiffness at F= 0.17N, total load cell force and
deflection. Load cell parameters are: cantilever and surface length, L = 15cm; cantilever
height, h = 0.8mm; surface curve power, n = 3; cantilever elastic modulus, E = 160.6e9Pa;
and yield stress, O, = 1.2e9Pa.

157

2

I



K value at F= 100 N [N/mj

E
co

U.UIt U.U2 U.Um U.Uj
Maximum surface gap (m)

Figure 7-24: Load cell with rigid connections: stiffness at F= 100N, total load cell force and
deflection. Load cell parameters are: cantilever and surface length, L = 15cm; cantilever
height, I = 0.8rm; surface curve power, n = 3; cantilever elastic modulus, E = 160.6e9P'a;
and yield stress, a- = 1.2e9Pa.
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Figure 7-25: Load cell with rigid connections:maximum cantilever stress at F= 100N, total
load cell force and deflection. Load cell parameters are: cantilever and surface length,
L = 15cm; cantilever height, h = 0.8mm; surface curve power, n = 3; cantilever elastic
modulus, E = 160.6e9Pa; and yield stress, o = 1.2e9Pa.
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Performance versus Force

Tip Deflection/Maximum surface gap

0
0.005 0.01 0.015 0.02 0.025 0.03

D, maximum surface gap (m)

Figure 7-26: Spring steel load cell with rigid cantilever connections: deflection
by maximum surface gap, D, for each nonlinear spring) versus force applied to
varied surface gaps, D. The load cell has constant parameters: L= 15 cm, h=-
9.5 mm, n= 3, E= 160.6e9 Pa, and yield stress is 1.2e9 Pa.

Spring Constant (dF/dy) in 4 cantilever beams (N/m)

(normalized
load cell for
0.8 mm, b=

UL-

0.015 0.02 0.025 U.UW
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Figure 7-27: Spring steel load cell with rigid cantilever connections: stiffness versus force
applied to load cell for varied surface gaps, D. The load cell has constant parameters: L=
15 cm, h= 0.8 mm, b= 9.5 mm, n= 3, E= 160.6e9 Pa, and yield stress is 1.2e9 Pa.
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Maximum stress in 1 cantilever beam (GPa)
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D, maximum surface gap (m)

Figure 7-28: Spring steel load cell with rigid cantilever connections: maximum stress in the
cantilevers versus force applied to load cell for varied surface gaps, D. The load cell has
constant parameters: L= 15 cm, h= 0.8 mm, b= 9.5 mm, n= 3, E= 160.6e9 Pa, and yield
stress is 1.2e9 Pa.
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Figure 7-29: Spring steel load cell with rigid cantilever connections: contact point between
each cantilever and contact surface versus force applied to load cell for varied surface gaps,
D. The load cell has constant parameters: L-= 15 cm, h= 0.8 mm, b= 9.5 mm, n= 3, E=
160.6e9 Pa, and yield stress is 1.2e9 Pa.
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7.4.2 Cantilevers with Rotational Spring Connection

These optimization plots are for spring steel load cells with the following constant parameters:

cantilever and surface length, L = 10cm; cantilever height, h = 0.8mM; cantilever base

dimension, b = 9.5mm (unless otherwise specified); surface curve maximum gap, D = 5mm;

surface curve power, n = 3; cantilever elastic modulus, E = 160.6e9Pa; and yield stress,

0- = 1.2e9Fa. The rotational spring has a radius, R is varied in all of the plots. The

rotational spring has the same base dimension and height dimension as the cantilever to

which it is attached. In all of these plots, the force F refers to the total force applied to the

load cell (4 nonlinear springs combined), and the displacement refers to the total load cell

displacement (2 nonlinear springs' displacement combined).

Performance at F = 0.01 and F = 800N

K value at F= 0.01 N [N/mi

ElI I k&-P1'

E

U.URTn U.Us

Rotational spring radius (in)

Figure 7-30: Load cell with rotational spring connections: stiffness at F= ON, total load cell

force and deflection. Load cell parameters are: cantilever and surface length, L = 15cm;

cantilever height, It = 0.8mm; surface curve power, n = 3; surface curve maximum deflection,
D = 0.005m; cantilever elastic modulus, E = 160.6e9Pa; and yield stress, o = 1.2e9Pa.
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Figure 7-31: Load cell with rotational spring connections: stiffness at F= 800N, total load
cell force and deflection. Load cell parameters are: cantilever and surface length, L = 15cm;
cantilever height, h = 0.8mm; surface curve power, n = 3; surface curve maximum deflection,
D 0.005m; cantilever elastic modulus, E = 160.6e9Pa; and yield stress, o-= 1.2e9Pa.

Maximum Stress at F= 800 N [Pa]

E

U.Uh U.U2
Rotational spring radius (m)

Figure 7-32: Load cell with rotational spring connections: maximum cantilever stress at F=
800N, total load cell force and deflection. Load cell parameters are: cantilever and surface
length, L = 15cm; cantilever height, h = 0.8mm; surface curve power, n = 3; surface curve
maximum deflection, D = 0.005m; cantilever elastic modulus, E = 160.6e9Pa; and yield
stress, O-% = 1.2e9Fa.
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Performance versus Force

Tip Deflection/Maximum surface gap

0
0005 0.01 0.015 0.02 0.025

R, curved beam radius (m)

Figure 7-33: Spring steel load cell with rotational spring cantilever connections: deflection

(normalized by maximum surface gap, D, for each nonlinear spring) versus force applied to
load cell for varied curved beam radii, R. The ratio exceeds 1 because the curved beam
deflects further than the cantilever tip. The load cell has constant parameters: L= 15 cm,
h= 0.8 mm, b= 9.5 mm, n= 3, D = 5mm, E= 160.6e9 Pa, and yield stress is 1.2e9 Pa.

Spring Constant (dF/dy) in 4 cantilever beams [N/mi
800 10^7.5

700 10A7

106.5
600

10A6

500

400 1 OA5

300 10^4.6
1 0A4.

10^4
200 10^3.5

100 1 30^

10A2.5
0. 005 0.015 0.02

R, curved beam radius (m)

Figure 7-34: Spring steel load cell with rotational spring cantilever
versus force applied to load cell for varied curved beam radii, R. The
parameters: L-= 15 cm, h= 0.8 mm, b= 9.5 mm, n= 3, D = 5mm, E=
stress is 1.2e9 Pa.

connections: stiffness
load cell has constant
160.6e9 Pa, and yield
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Figure 7-35: Spring steel load cell with rotational spring

the cantilevers versus force applied to load cell for varied

cell has constant parameters: L= 15 cm, h= 0.8 mm, b=
160.6e9 Pa, and yield stress is 1.2e9 Pa.

Contact point between cantilever and surface
normalized by surface length

7
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R, curved beam radius (m)

connections: maximum stress in
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Figure 7-36: Spring steel load cell with rotational spring connections: contact point between

each cantilever and contact surface versus force applied to load cell for varied curved beam

radii, R. The load cell has constant parameters: L= 15 cm, h= 0.8 mm, b= 9.5 mm, n= 3,

E= 160.6e9 Pa, D = 5mm, and yield stress is 1.2e9 Pa.
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7.5 Conclusions and Future Work

This chapter presented a novel nonlinear load cell design that can measure forces with ac-

curacies of 1% over nearly 5 orders of magnitude and will not break for forces several orders

of magnitude beyond that. (see Section 7.4.2). The accuracy range is achieved by designing

the stiffening spring's stiffness to remain below 10 5F, which allows an optical instrument to

measure deflections equal to or greater than 0.1im for a 1% change in force. Typical linear

load cells that can accurately measure small forces break or reach their maximum capacity

for large forces. Typical linear load cells that can accurately detect large forces cannot ac-

curately measure small forces. The proposed nonlinear load cell can withstand forces well

beyond its force measurement capacity because it can be designed so that beyond a certain

force, the cantilevers do not bend further. Instead, the additional stress compresses solid

blocks, which can be designed to withstand a desired large force.

The method of inserting "plugs" into the surface root holes so that the waterjet could

make the parts worked well. It was noted that the fabricated load cells were delicate in the

out-of-plane direction. The force versus displacement tests verified the theory for aluminum

load cells and small forces. The simulations showed that load cells made out of spring steel

can satisfy the maximum load cell stiffness (K < 10F) required for high force measurement

accuracy.

As for choosing the optimal parameters, there is a trade off between a low stiffness at F=

0 N and a safety factor against yield at very large forces (see Sections 7.4.1 and 7.4.2), which

limits the load cell performance (i.e. accuracy and ruggedness). For the load cell with rigid

connections, this is because when most of the cantilever length is in contact with the surface,

the slope of the free cantilever must change from the surface slope at its root to slope- 0

at its tip in a very small distance; causing a high curvature and stress at its right end. We

tried to solve this problem by adding rotational springs at the end of the cantilever tips,

implemented in the form of 270' arcs. This change does allow the cantilever to withstand

much larger forces and fully wrap along the contact surface. The load cell maximum force is

still limited by the maximum stress that can be withstood by the 270' arcs, which continue

to deflect after the cantilevers have fully wrapped along the surfaces. When the maximum
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allowable force is determined, the spring can easily be designed to stop deflecting due to

touching of the top and bottom surface sets in compression and contact of surface stopper

blocks with the vertical connections in tension (See Figure 7-19).

Future work will include:

-Fabricate and test spring steel load cells.

-Correct the theory for the load cell with the rotational spring curved beam. As shown

in Figure 7-10, the derivation using Castigliano's theorem has a slight error for large force

values where the curved beam deflection decreases before further increasing.

-Investigate a different type of rotational spring for which stress does not significantly

increase for increasing forces.

-Investigate a variable pitch helical coil version of the nonlinear cantilever/surface spring

load cell so that the load cell is more durable in the out-of-plane direction.
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Appendix A

Matlab Codes

A.1 Nonlinear spring force versus displacement

1 function [XI, FI, SF, Yc]= cantbeamforceAddSubDFinal_3cmFINALforTHESIS

(massA, E, h, EI, n, L, D, surfaceEndfraction, Pmax, numInt, XImax)

2

3 I= EI/E; %beam cross section moment of inertia

4

5 % massA= .0097; %length of end-mass that overhangs cantilever tip [m]

6 % E= 160.6e9; %beam elastic modlulus [Pa]

7 % h= .002*.0254; %cantilever height [m]

8 % b= .75*.0254; %cantilever base [m]

9 % I= b*h^3/12; %cantilever moment of inertia [m^4]

10 % EI= E*I; %cantilever rigidity

11 % n= 3; %surface curve power

12 % L= .1; %cantilever length [m]

13 % D= .015; %maximum surface end-gap (gap at surface tip) [m]

14 % surfaceEndfraction= .1/L; %fraction of surface length over cantilever

length

15 % Pmax= .02; %maximum power value to calculate

16 % numInt= 100; %number of force values for which to calculate deflection

17 % Dt= Dtop;

18 % XImax= .017;
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19

20 P= linspace(O,Pmax,numInt); %vector of force vlaues for which to calcualte

cantilevr tip deflection

21

22 % definition of surface geometry

23 xx=linspace(0,1,100); %Normalized by surface length

24 SStop=xx.An*D; % Surface geometry. given the contraints SS(0)=SS' (0)=SS

''(Q)=O amd SS(l)=D. Normalized by cantilever length [m]

25 SSgltop= D.*n.*xx.A (n-1); %surface slope [m/m]

26 SSg2top= D.*n.*(n-1) .*xx.^(n-2); %surface radius of curvature [m/m^2]

27

28 y=O; %initial contact point along axis between cantilever and surface [m]

29 sigma-y= 1.8e9; %spring steel yield stress [Pa]

30 c= h/2; %distance from neutral axis

31

32 Lsurf= L*surfaceEndfraction; %surface length [m]

33

34 %for each force value, calculate the contact point along the axis between

cantilever and surface

35 opts= optimset('TolFun',le-10, 'TolX', le-10);

36 for i=l:length(P)

37 i

38 ff= @(y, opts) interpl(xx,SSg2top,y) ./Lsurf.^2-P(i)/EI*(massA+L-L*y); %

find value of SSg2 that corresponds to y, a distance along

horizontal axis

39 y=fsolve(ff,y, opts);

40 yc(i)=y*Lsurf; %actual value of yc along axis.

41

42 %calculate maximum normal stress here

43 sigmaInContact= E.*c.*n.* (n-1).*D./Lsurf.^2.* (yc(i) ./Lsurf) .(n-2);

44 sigmaFree= c./I.*P(i).*(L-y); %max stress for free segment

45 sigmaMax= max(abs([sigmaInContact sigmaFree]));

46 SF(i)= sigma-y/sigmaMax;

47

48 end

49

168



50 endFreeL= L - yc; %free L correpsonding to each P [m]

51

52 %cantilever tip deflection based on force and BC

53 dl=(P.*(endFreeL).^3)./(3*EI); %dl= [P(L-yc)^3] /3EI

54 d2=(endFreeL).*interpl(xx,SSgltop,yc/Lsurf)/Lsurf; %d2= surface slope at yc

* (L-yc) <-- yc/L normalized in interpl function

55 d3=interpl(xx,SStop,yc/Lsurf); %d3= height of surface at contact point

56 dd=dl+d2+d3; %this is the deflection at cantilever tip

57

58 %ACCOUNT FOR END MASS DEFLECTION

59 endSlope= interpl(xx,SSgltop,yc/Lsurf)/Lsurf + (P.* (endFreeL).^2)./(2*EI);

60 ddmass= dd+ massA.*sin(atan(endSlope)); %this is the defleciton at the

mass

61

62 %if mass bent so far that NaN values are created, remove them

63 P(isnan(dd-mass))= [1;

64 SF(isnan(dd-mass))= [];

65 yc(isnan(ddjmass))= [];

66 dd-mass(isnan(dd-mass))= [];

67

68 %If extreme P values do not cause change in displacement, truncate XI

69 while dd_mass(length(dd mass)) > XImax %== dd-mass(length(dd-mass)-l)

70 ddmass(length(dd-mass))= [];

71 P(length(P))= [];

72 SF(length(SF)) [];

73 end

74

75 % figure(l)

76 % plot(dd-mass, P, 'b');%, dd-mass, .l.*dd-mass.^3, 'r');

77 % title ('Force versus tip deflection');

78 % xlabel('Tip Displacement (m)')

79 % ylabel('Force (N)')

80 % %legend('Actual', 'Desired- Weak Spring');

81 % grid;

82

83
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84 XI= ddmass; %table of displacements [m]

85 FI= P; %table of forces [N]

86 Yc= yc; %table of contact points [m]

87 SF= SF; %table to safety factors against yield

88

89 end

A.2 Load cell force versus displacement

i %This code outputs the total displacement versus force for 1/4 of a load

cell.

2 %To get the total load cell force, multiply FI by 4.

3 %To get the total load cell displacement, multiply resultDisp by 2.

4 function [resultDisp, FI]= loadCellForce

5 %%%%%%%%%%%%%%% INPUTS %%%%%%%%%%%%%%%%%%%%%%

6 plotIndividualP= 1; %set this equal to 1 if want to make plots of

performance for individual force value

7 plotIndividualCase= 1; %set this equal to 1 if want to see plots of

performance versus force

8

9 L= .1; % cantilever length [m]

10 h= le-3; % cantilever height [m]

11 b= .0095; % cantilever width [m]

12 R= .01; %radius of 270 degree curve at cantilever tip [m]

13

14 E= 160.6e9; %cantilever elastic modulus. Spring steel [Pa]

15 sigma-y= 1.8e9; %spring steel yield stress [Pa]

16

17 n= 3; %surface curve power

18 D= .005; %surface curve, maximum end gap [m]

19 surfaceEndfraction= 1; %ratio of surface length to cantilever length

20

21 Pmax= 10; %maximum force applied [N]
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22 numInt= 100; %number of force intervals between 0 and Pmax to compute

23 %%%%%%%%%%%%%%% END INPUTS %%%%%%%%%%%%%%%%%%%%%

24

25 Lsurf= L*surfaceEndfraction; %surface length [m]

26

27 A= h*b; %cantilever cross section are [m]

28 I= b*(h^3)/12; %cantilever second moment of inertia [m^4]

29 EI= E*I; %cantilever rigidity [Nm^2]

30 c= h/2; %distance from neutral axis to top hheight for straight beam [m]

31

32 P= linspace(0, Pmax, numInt); %forces for computations [N]

33

34 % definition of surface geometry

35 xx=linspace(0,1,300); %intervals along surface axis. Normalized by surface

length

36 SS=xx.^n*D; % Surface shape. given the contraints SS(0)=SS' (0)=SS' (0)=0

amd SS(1)=D. Normalized by cantilever length [m]

37 SSgl= D.*n.*xx.^(n-1); %surface slope. Normalized by cantilever length [m]

38 SSg2= D.*n.*(n-1).*xx.^(n-2); %surface radius of curvature. Normalized by

cantilever length [m]

39

40 y=O; %initial x-value point of contact between cantilever and surface.

unitless]

41 opts= optimset('TolFun',le-10, 'TolX', le-10);

42

43 Yt= linspace(0,Lsurf, 200); %dimensionalized intervals along surface axis

m]

44 SSG1= D.*n.*(Yt./Lsurf).^(n-1)./Lsurf; %dimensionalized surface slope [m/m]

45 SSG2= D.*n.*(n-1).*(Yt./Lsurf).A(n-2)./LsurfA2; %dimensionalized surface

radius of curvature [m/m^2]

46

47 %calculate contact point between cantilever and surface for each force

48 for i=2:length(P)

49 i

50 %find value of SSg2 that corresponds to y, a distance along horizontal

axis:

171



51 ff= @ (y, opts) interpl(xx,SSg2,y)./Lsurf.^2- ((3.*pi.*R.^2 + 2.*R.^2 +3

.*pi.*(L-L*y).*R +(L-L*y).^2 ).*P(i) -2.*(interpl(xx,SSgl,y)./Lsurf)

*EI)./(3*pi*R +2*(L-L*y))/EI

52 y=fsolve(ff,y, opts);

53 yc(i)=y*Lsurf; %dimensionalized value of yc along axis [m]

54 end

55

56 S= interpl(xx, SS, yc./Lsurf); %deflection at free cantilever root for each

applied force [m]

57 Sp= interpl(Yt,SSG1,yc); %slope at free cantilever root for each applied

force [m/m]

58 Spp= (interpl(Yt, SSG2, yc)); %radius of curvature at free cantilever root

for each applied force [m/m^2]

59

60 if (plotIndividualP== 1)

61 plotIndP(P, yc, L, Sp, R, E, n, D, Lsurf, EI, I, S, c, sigmay);

62 end

63

64 %Straight Beam Deflection

65 cl= -P;

66 Lfree= L- yc;

67 Ma= ( (3.*pi.*R.^2 + 2.*R.^2 +3.*pi.*Lfree.*R +Lfree.^2 ).*P -2.*Sp.*E.*I).

/(3.*pi.*R +2.*Lfree); %only include bending moment

68 c2= Ma;

69 c3= Sp*EI;

70 c4= S*EI;

71

72 dd= (cl./6.*Lfree.^3 + c2./2.*Lfree.^2 +c3.*Lfree + c4) ./EI;

73 angle= (cl./2.*Lfree.^2 + c2.*Lfree + c3)./EI;

74

75 %Straight Beam stress

76 sigmaFree-root= c/I.*(c2);

77 sigmaFree-tip= c/I*(cl.*Lfree + c2);

78 sigmaMax= max(abs([sigmaFree root; sigmaFree-tip ]));

79

80 XI= dd; %table of cantilever tip displacements [m]
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81 FI= P; %table of forces [N]

82 Yc= yc; %table of contact points [m]

83 SF= sigma-y./sigmaMax; %table of stress in cantilever [Pa]

84 Kinv= gradient(XI, FI(2)-FI(1)); %l/cantilever tip stiffness

85 K= 1./Kinv; %table of cantilever tip stiffness [N/m]

86 Mtip= -Ma +P.*Lfree; %moment applied at beam tip [Nm]

87

88 if (plotIndividualCase == 1)

89 figure(1)

90 hold off

91 plot(XI, FI);

92 title('Force versus Deflection');

93 xlabel('Displacement (m)');

94 ylabel('Force (N)');

95 grid;

96

97 figure(2)

98 hold off

99 KTemp= K;

100 bool= KTemp<O; %determine which elements are less than 0

101 ind= find(bool); %get index of first element less than 0

102 KTemp= KTemp(l:ind-1);

103 FITemp= FT(l:ind-1);

104 plot(FI, K, 'b');

105 title('Stiffness versus Force');

106 xlabel('Force (N)');

107 ylabel('K= dF/dz (N/m)');

108

109 %plot safety factor versus Force

110 figure(3);

ill hold off

112 plot(FI, sigmaMax./10^9, 'b');

113 hold on

114 xiabel ('Force (N) ');

115 ylabel('Stress (GPa)');

116 title('Maximum Stress versus Force');
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117

118 %plot contact point versus Force

119 figure(4);

120 plot(FI, Yc./Lsurf);

121 xlabel ('Force (N) ') ;

122 ylabel('Contact point');

123 title('Contact Point versus Force');

124

125 %plot cantilever tip (+surface) angle versus force

126 figure(5)

127 plot(P, angle);

128 title('Beam Tip angle versus Force');

129 ylabel('Tip Slope (m/m)');

130 xlabel ('Tip force (N)');

131

132 %plot Rotational spring stiffness versus force

133 figure(6)

134 plot(P, Mtip./angle);

135 title('Effective rotational spring stiffness versus versus Force: K_{

rot, eff}= Mi{Tip}/\theta_{Tip}');

136 xlabel ('Force (N) ');

137 ylabel('Rotation Spring Stiffness (Nm/rad)');

138

139 figure(9)

140 Mb= P.*R + Mtip;

141 plot(P, Ma, P, Mtip, P, P.*Lfree, P, Mb);

142 xlabel('Tip Force (N)');

143 ylabel('Moment (Nm)');

144 title('Moment versus Tip Force');

145 legend('Cantilever Root Moment, MA', 'Cantilever Tip Moment, M_{Tip}=

FL_{Free}-Root Moment', 'FL_{Free}','Curved Beam Tip Moment, MB');

146 grid;

147

148 end

149

iso % OUTPUTS: Kmin, Kmax, maximum stress, SFmin, F80PContact
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151 maxStressbeam= max(sigmaMax)

152 SFminbeam= min(SF); %sigmay/maxStress beam

153 Kminbeam= min(K)

154 Kmaxbeam= max(K)

155 %F80PContact= interpl(FI,yc,.8*L); %force when 80% of cantilever length

is in contact with surface

156

157 %deflection of top of curved segment- when Strain energy only includes

bending

158 deltaTop= (R.*(27.*pi.^3.*P.*R.^4-24.*pi.*P.*R.^4+36.*pi.^2.*Lfree.*P.*R.

^3-32.*Lfree.*P.*R.^3+36.*pi.*Lfree.^2.*P.*R.^2+32.*Lfree.^2.*P.*R.^2+24

.*pi.*Lfree.^3.*P.*R+...

159 16.*Lfree.^3.*P.*R+24.*pi.*Lfree.*Sp.*EI.*R+16.*Lfree.*Sp.*EI.*R+6.*pi.

*Lfree.^4.*P+12.*pi.*Lfree.^2.*Sp.*EI))./(4.*EI.*(3.*pi.*R+2.*Lfree)

.^2);

160

161 resultDisp= deltaTop+XI; %total sturcture displacement [m]

162

163 if plotIndividualCase== 1

164 figure(l);

165 hold on

166 plot(deltaTop, P, 'r', deltaTop+XI, P, 'g');%, deltaTop+XI, P, 'g');

167 legend('Cantilever Tip', 'Curved beam Top wrt Cantilever Tip',

Combined');

168 xlabel('Displacement (m)');

169 ylabel('Force (N)');

170

171 figure(2);

172 hold on

173 Kinvcurv= gradient(deltaTop, FI(2)-FI(l));

174 KinvTot= gradient(deltaTop+XI, FI(2)-FI(l));

175 Kcurv= 1./Kinv-curv;

176 KTot= 1./KinvTot;

177 plot(FI, Kcurv, 'r', FI, KTot, 'g');

178 plot(FI, FI.*5e4, 'k');
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179 legend('Cantilever Tip', 'Curved Beam Tip wrt Cantilever Tip', 'Entire

Structure', 'Desired K')

180 grid;

181 end

182

183 %stress versus angle

184 theta= linspace(0,3*pi/2, 100);

185 F= max(P);

186 MtipMax= Mtip(length(Mtip));

187 V= F.*cos(theta);

188 N= -F.*sin(theta);

189 Mb= -Ma(length(Ma)) +F*(R+L);

190 My= MtipMax +F*R.*(l-cos(theta));

191

192 Rn= h/log((2*R+h)/(2*R-h));%neutral radius: h/ln(rOut/rIn)

193 e= R- Rn; %e= R centroid - R neutral

194

195 sigma-bend-top= My.*(h/2)/ (A*e* (R+h/2));

196 sigma-bend-bot= My.*(-h/2)/(A*e*(R-h/2));

197

198 sigma-bend top-approx= My.*h/2./I;

199 sigmabend-top-approxvF= (Mtip+P.*R.* (2)) .*h/2./I;

200

201 sigma-normal= N./A;

202

203 %Q= b*H^2/2; %H is distance from neutral axis

204 Qtop= b*(R+h/2- R-n) ̂ 2/2;

205 Q_bot= b*(R-h/2- R-n)^2/2;

206

207 %sigma-xy= V*Q/I/b;

208 sigmaxy-top= V.*Q-top./I./b;

209 sigmaxy-bot= V.*Q-bot./I./b;

210

211

212 % sigma-eff= (sigma_x.^2 +3.*sigmaxy.^2) .^.5;

213 sigma-eff-top=((sigma bend top + sigmanormal).^2 +3.*sigma-xy-top.^2).^.5;

176



214 sigma-eff-bot=((sigma-bendbot + sigma-normal).^2 +3.*sigma-xy-bot.^2).^.5;

215 sigma-eff= max(sigmaeff_top, sigmaeff_bot);

216

217 if plotIndividualCase== 1

218 %plot normal stress versus theta.

219 %since R>>h, shear stress is negligible

220 figure(7)

221 subplot (2, 1,1)

222 plot(theta.*180./pi, My)

223 xlabel('angle (deg)');

224 ylabel('Moment (Nm)');

225 title('Internal Moment versus Angle for F= 10 N');

226 xlim([0 270]);

227

228 subplot(2,1,2)

229 hold off

230 plot(theta.*180./pi, -sigma-bend-bot./10^9, theta.*180./pi,

s igma-bend top-approx. /1 0^9 )

231 hold on

232 plot([0 max(theta).*180./pi], [sigma-y sigma-y]./10^9./2, 'g');

233 xlabel('angle (deg)')

234 ylabel('Stress (GPa)');

235 title('Stress versus angle along curved beam for F= 10 N');

236 legend('curved Beam Bending Stress Equation', 'Straight Beam Stress

Approximation', 'Maximum Allowable Stress');

237 xlim([0 270]);

238

239 %output location of maximum effective stress

240 [maxStresscurve, index]= max(sigmaeff);

241 maxStresscurve

242 maxStresscurvetheta= theta(index)

243

244 figure(3);

245 plot(FI, abs(sigma bend-top-approx vF)./10^9, 'r');

246 plot([FI(l) max(FI)], [.5 .5].*sigmay./10^9, 'k');

247 legend('Cantilever', 'Curved Beam', 'Maximum Allowable Stress');
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248 xlim([0 max(FI)]);% 0 10]); %axis([XMIN XMAX YMIN YMAX])

249 grid;

250 end

251 end

252

253

254 function plotIndP(P, yc, L, Sp, R, E, n, D, Lsurf, EI, I, S, c, sigmay)

255

256 F= max(P);

257 y= max(yc);

258 Lfree= L- y;

259

260 zInContact= 0:.0001:y;

261 zFree= y:.0001:Lfree+y;

262 xFree= zFree- y;

263

264 SpMax= max(Sp);

265 cl= -F;

266 Ma= ( (3.*pi.*R.^2 + 2.*R.^2 +3.*pi.*Lfree.*R +Lfree.^2 ).*F -2.*SpMax.

*E.*I)./(3.*pi.*R +2.*Lfree); %only include bending moment

267 c2= Ma;

268 c3= SpMax*EI;

269 c4= max(S)*EI;

270

271 sigmaInContact= E.*c.*n.*(n-1).*D./Lsurf.^2.*(zInContact./L).^(n-2); %

Bottom of beam that is deflecting upwards, positive tip force

272 sigmaFree= c./I.* ( cl.*xFree +c2 ); %at end: -F*Lfree + F*Lfree/2 =

F*Lfree/2

273

274 %subplots for maximum stress along beam length

275 figure(8);

276

277 DeflectionFree= (cl/6.*xFree.^3 + c2/2.*xFree.^2 +c3*xFree + c4) ./EI;

278 SlopeFree= (cl/2.*xFree.^2 + c2.*xFree +c3) ./EI;

279 CurvatureFree= (cl.*xFree + c2) ./EI;

280
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DeflectionInContact= (zInContact./Lsurf).^n.*D;

SlopeInContact= n.*(zInContact./Lsurf).^(n-1).*D./Lsurf;

CurvatureInContact= n.*(n-1).*(zInContact./Lsurf).^(n-2).*D./Lsurf^2;

%Deflection

subplot (4,1,1)

hold off;

plot([zInContact zFree], -[DeflectionInContact

hold on;

plot(y, -max(DeflectionInContact), 'r*');

xlabel('axial distance from cantilever root, z

ylabel('displacement, m');

title('Deflection along Beam Length');

grid;

DeflectionFree])

(m) ');

%Slope

subplot (4,1,2)

hold off;

plot([zInContact zFree], -[SlopeInContact SlopeFree])

hold on;

plot (y, -max (SlopeInContact), 'r*');

xlabel('axial distance from cantilever root, z (m)');

ylabel('Slope dy/dz, m/m');

title('Slope along Beam Length');

grid;

%Curvature

subplot(4,1,3)

hold off;

plot([zInContact zFree], -[CurvatureInContact CurvatureFree])

hold on;

plot(y, -max(CurvatureInContact), 'r*');

xlabel('axial distance from cantilever root, z (m)');

ylabel('curvature d^2y/d^z^2, 1/m');

title('Curvature along Beam Length');

grid;

179



317

318

319

320

321

322

323

324

325

326

327

328

329 end

A.3 Track objects in a video

i function trackRedandGreen-Object

3 redThresh =

4 greenThresh

.35; % Threshold for red detection

.03; %Threshold for green detection

7 vidDevice = VideoReader('shortjlight-manyDrops_0904.mp4'); %load video file

8 numFrames= get(vidDevice, 'numberOfFrames'); %get number of video frames

FS= 1/480; %1 / Frame Rate (Hz)

startInd= 7300; %frame index at which to start tracking motion

endFrame= 9660; %frame index at which to stop tracking motion

PixelsPerCm= 7.3771; %conversion factor of pixel:cm for red object [pix/cm]

xPixelEq= 173; %x-pixel value at which red object has 0 displacement

RELATIVE TO GREEN OBJECT
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%Stress

subplot(4,1,4);

hold off;

plot([zInContact zFree], -[sigmaInContact sigmaFree]./10^9);

hold on;

plot([0 L], [sigma-y sigma-y]./10^9./2, 'g', [0 L], -[sigmay sigmay].

/10A9, 'g');

plot(y, -max(sigmaInContact) ./10A9, 'r*')

xlabel('axial distance from cantilever root, z (M)');

ylabel('normal stress, sigma (GPa)');

title('Normal stress along top of Beam');

grid;

10

11

12

13
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15 yPixelEq= -7.8824; %y-pixel value at which red object has 0 displacement

RELATIVE TO GREEN OBJECT

16 PixelsPerCmBase= 6.508; %conversion factor of pixels:cm for green object

pixels/cm]

17 xPixelEqBase= 116; %x-pixel value at which green object has 0 displacement

18 yPixelEqBase= 101.409; %y-pixel value at which green object has 0

displacement

19

20 %declare vectors that will store object locations

21 dataX= []; %red object x

22 dataY= [];.%red object y

23 dataXBase= [; %green object x

24 dataYBase= []; %green object y

25

26 started= 0; %started= 1 if red object has been identified for first time

27

%Processing Loop

for nFrame= startInd:endFrame %numFrames

nFrame

rgbFrame= read(vidDevice,nFrame); %identify frame number

figure(1)

image(rgbFrame);

35 diffFrame = imsubtract(rgbFrame(:,:,1), rgb2gray(rgbFrame)); % Get

component of the image

36 diffFrameGreen = imsubtract(rgbFrame(:,:,2), rgb2gray(rgbFrame));

red component of the image

37 diffFrame = medfilt2(diffFrame, [3 3]); % Filter out the noise by

median filter

38 diffFrameGreen = medfilt2(diffFrameGreen, [3 3]); % Filter out the

noise by using median filter

red

% Get

using

39

40 binFrame = im2bw(diffFrame, redThresh); % Convert the image into binary

image with the red objects as white

41 binFrameGreen = im2bw(diffFrameGreen, greenThresh); % Convert the image

into binary image with the green objects as white
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42

43 figure(2) %show the green "blob" identified as the green object. Adjust

sensitivity of what is considered green by "greenThresh" value

44 image(binFrameGreen);

45 figure(3) %show the red "blob" identified as the green object. Adjust

sensitivity of what is considered green by "greenThresh" value

46 image(binFrame);

47

48 S= regionprops(binFrame, 'centroid'); %find red object centroid [pix]

49 sGreen= regionprops(binFrameGreen, 'centroid'); %find green object

centroid [pixels]

50 centroids= cat(1, s.Centroid);

51 centroidsGreen = cat(1, sGreen.Centroid);

52

53 blobArea= regionprops(binFrame, 'area');

54 blobAreaGreen= regionprops(binFrameGreen, 'area');

55 if isempty(blobArea)&& started== 0 %if blobArea is empty:

56 startInd= startInd+1; %add index number to startInd

57 started= 1;

58 elseif isempty(blobArea)

59 dataX(length(dataX)+1)= 0;

60 dataY(length(dataY)+1)= 0;

61 else

62 %determine the centroid of the larger blob, if there are multiple

blobs

63 if length(blobArea)>1

64 centroidArea= [blobArea.Area]; %take bottom centroid because

hand is on right

65 [value index]= max(centroidArea);

66 while (centroids(index,1)<170 11 centroids(index,1)>208)%if

centroid is too far to left

67 centroidArea(index)= 0; %delete element in centroidArea

68 [value index]= max(centroidArea); %determine next biggest red

blob

69 end

70 centroids= [centroids(index,l) centroids(index, 2)];
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71 end

72 if length(blobAreaGreen)>1

73 centroidAreaGreen= [blobAreaGreen.Area];

74 [valueG indexG]= max(centroidAreaGreen);

75 while (centroidsGreen(indexG,1)>150 11 centroidsGreen(indexG,1)

<122)%if centroid is too far down, don't count it

76 centroidAreaGreen(indexG)= 0; %delete element in

centroidArea

77 [valueG indexG]= max(centroidAreaGreen); %determine next

biggest red blob

78 end

79 centroidsGreen= [centroidsGreen(indexG,1) centroidsGreen(indexG

, 2)];

80 end

81 figure(3) %show the red object centroid

82 hold on

83 plot(centroids(:,1), centroids(:,2), 'b*')

84 hold off

85 figure(2) %show the green object centroid

86 hold on

87 plot(centroidsGreen(:,1), centroidsGreen(:,2), 'b*')

88 hold off

89

90 %add the centroid locations to the vector that track location

91 dataX(length(dataX)+l)= centroids(:,1);

92 dataY(length(dataY)+1)= centroids(:,2);

93

94 dataXBase(length(dataXBase)+l)= centroidsGreen(:,1);

95 dataYBase(length(dataYBase)+1)= centroidsGreen(:,2);

96 end

97 nFrame = nFrame+1;

98 end

99 time= [0:FS:FS*(endFrame-startInd)]';

100

101

102
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103 %Convert pixel data to displacement data. (Red object displacement relative

to green object)

104 PixelsPerMeter= PixelsPerCm*100;

105 dataXm= (dataX-xPixelEq)./PixelsPerMeter;

106 dataY= dataY - dataYBase;

107 dataYm= -(dataY-yPixelEq)./PixelsPerMeter;

108

109 PixelsPerMeterBase= PixelsPerCmBase*100;

110 dataXmBase= (dataXBase-xPixelEqBase)./PixelsPerMeterBase;

111 dataYmBase= -(dataYBase-yPixelEqBase)./PixelsPerMeterBase;

112

113 figure(4);

114 subplot(3,1,1) %Base Displacement (green object)

115 hold on;

116 plot(time, dataYmBase, '-g'); %experimental base disp

117 title('Base Displacement versus Time');

118 ylabel('Displacement (m)');

119 xlabel('time (sec)');

120

121 subplot(3,1,2) %Base Velocity

122 hold on;

123 veloc= gradient(dataYmBase, time (2)-time(l)); %Base Drop- veloc- camera

124 plot(time, veloc, '-r'); %experimental base veloc

125 title('Base Velocity versus Time');

126 ylabel('velocity (m/s)');

127 xlabel('time (sec)');

128

129 subplot(3,1,3) %Base Acceleration

130 hold on;

131 acc= gradient(veloc, time(2)-time(1)); %Base drop- acc- camera

132 plot(time, acc, '-r'); %experimental base acc

133 title ('Base Acceleration versus Time');

134 ylabel('acceleration (m/s^2)');

135 xlabel('time (sec)');

136

137
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138 figure (5)

139 subplot (2,1,1) %Mass Relative Displacement (red object)

140 hold on;

141 % relDisp= dataYm- dataYmBase;

142 plot(time, dataYm, '-r'); %experimental relative mass disp

143 % plot (tspan(1:length(tspan)-1), xhist, '-b'); %simulation mass disp

144 title('Relative Displacement versus Time');

145 ylabel('displacement (m)');

146 xlabel('time (sec) ');

147

148 subplot (2,1,2) %Mass Relative Velocity

149 veloc-m= gradient (dataYm, time (2)-time (1)); %Base Drop- veloc- camera (red

object)

15o plot(time, veloc_m, '-r'); %experimental base veloc

151 title ('Relative Velocity versus Time');

152 ylabel('velocity (m/s)');

153 xlabel('time (sec)');

154

155 end

A.4 Energy harvester simulation

1 % This code simulates the acceleration, velocity, displacement, and power

harvested by a 1DOF or 2DOF energy harvester excited at the base by an

input acceleration.

2 % Top to bottom system configuration is:

3 % Base

4 % nonlinear spring with htop, linear spring with K1, damper blM

5 % ml

6 % nonlinear spring with hmid, linear spring with KM, damper b3M

7 % m2

8 % nonlinear spring with hbot, linear spring with K2, damper b2M

9 % Base
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10 % Gravity acts downwards.

11 % The code outputs the time series or "optimization plots" of power and

displacement versus two varied parameters.

12 function optimalPower= simulateEnergyHarvester

13 global n hDot h startPowerCalcTime FI XI optimalsurfaces plotTimeSeries ml

m2 biM b2M b3M KM K1 K2 htop hbot hmid FITopFactorM FIBotFactorM

FIMidFactorM XImaxTop XImaxBot XImaxTopBot numCombos epsilon

14 %%%%%%%%%%%%%%%%%%%%%%%%% USER INPUT %%%%%%%%%%%%%%%%%%%%%%%

15 %NOTE: If want to vectorize two parameters and plot results, write the

parameter here as a vector.

16 %The first vectorized paramters listed always becomes the xVector, and the

second vectorized parameter always becomes the yVector in the plot.

17 %NOTE: colisions only occur it there is a nonlinear spring between the

masses. If the user desires collisions, but no nonlinear spring, then

set the cantilever height to a very small value (i.e. le-6 or le 4 m).

18

19 ml= .03; %top mass %UNITS: Kg

20 m2= .03; %bottom mass [Kg]

21

22 htop= .464e-3; %top nonlinear spring's cantilever height [m]

23 Kl= 0; %top linear spring stiffness [N/m]

24

25 hmid= le-3; %middle nonlinear spring's cantilever height [m]

26 KM= 0; %middle linear spring stiffness spring [N/m]

27

28 hbot= 0; %.le-4; %bottom nonlinear spring's cantilever height [m]

29 K2= 205; %28; %bottom linear spring coefficient [N/m]

30

31 blM= .001; %top damper [Ns/m]

32 b3M= 1.6; %middle damper [Ns/m]

33 b2M= .001; %bottom damper [Ns/m]

34

35 %THE 8 COMMANDS BELOW ONLY APPLY IF optimal surfaces. Change to ratio. Note

that one B ratio value must be 1 for calculations to not overrride each

other

36 B2Blyes= 0;
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37 B2Blratio= 1; %b2M/blM; %if bl is vectorized, specify b2 as ratio to bl

38 B3Blyes= 0;

39 B3Blratio= .5; %b3M/blM; %if bl is vectorized, specify b3 at ratio to

bl

4o B3B2yes= 0; %these values are 1 if want to use the ratios

41 B3B2ratio= .5; %b3M/b2M; %if b2 is vectorized, specify b3 at ratio to

b2

42 FlF3yes= 0; %keep Fl a ratio of F3

43 FlF3rat= .1;

44 % - - -

45 %for parameters that want to vectorize and plot: specify here axes for surf

command:

46 %NOTE: row must match first vectorized parameter. Column must match second

vectorized parameter

47 paramRow= hmid;

48 RowLabel= 'Middle nonlinear cantilever height (m)'; %label for 3-D plots

49 paramCol= b3M;

so ColLabel= 'middle damping coefficient (Ns/m)'; %label for 3-D plots

51

52 optimalsurfaces= 0; %optimalsurfaces= 1 if doing 2x2 minimum array -- > show

surfaces

53 plotTimeSeries= 1; %plotTimeSeries= 1 if want to plot time series (disp,

veloc, acc, dissipated power)

54

55 endTime= 8;% sec

S6 n= .0001; %time steps (sec)

57 numTimeSegments= 1; %NEED startPowerCalcTime to be an integer multiple of

endTime/numTimeSegments. Also speeds up code

58 startPowerCalcTime= 0; %time in seconds to start power calculation. NEED

startPowerCalcTime to be an integer multiple of endTime/numTimeSegments

59

60 fileName= 'a'; %name of data file of final outputs

61 powerFigName= 'b'; % name of the power surface

62 topDispFigName= 'c'; % name of the surface that shows top mass displacement

wrt base versus 2 varied parameters
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63 botDispFigName= 'd'; % name of the surface that shows the bottom mass

displacement

64 topbotDispFigName= 'e'; % name of the surface that shows the top mass wrt

bottom mass displacement

65

66 %If constraint does not apply, set the value to larger number (i.e. 5 m).

67 %CONSTRAINT MUST BE .017 IF NONLNEAR SPRING

68 XImaxTop= .017;%.017; %maximum displacement between top mass and base

69 XImaxTopBot= .017; %maximum displacement between top mass and bottom mass

70 XImaxBot= .017;%.017; %maximum displacement between bottom mass and base

71

72 D= .015; %surface curve end gap [m]

73 XImax= .0173; %maximum displacement value calculated for nonlinear spring

74

75 signal= 1; %indicate base acceleration signal (numbers are listed below)

76 timeScale= 1; %indicate multiple by which want to speed up acceleration

signal time scale

77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

78 base= .1875*.0254; %cantilever base dimension. [m]

79 q= 3; %surface curve: D*(x/L)^q

80

81 hBaseline= .032*.0254; %inches. All other spring stiffnesses are multiplied

by their relation to this height.

82 FITopFactorM= htop.^3./hBaseline^3;

83 FIMidFactorM= hmid.^3./hBaseline^3;

84 FIBotFactorM= hbot.^3./hBaseline^3;

85

86 E= 160.6e9; %spring steel elastic modulus

87

88 L= .1; %Cantilever length. UNITS: m

89 1= L; %surface length. UNITS: m

90

91 massA= .0097; %end-mass length (overhang from cantilever) [m]

92 surfaceEndfraction= l/L;

93

94 Pmax= 60; %maximum force for calculating spring force/disp table
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95 numInt= 600; %600; %number of intervals in table of spring force/disp table

96

97 %ACCELERATION DATA

98

99 % %SIGNALS

1oo if (signal==1) %hip walk

101 load('runforSimulationJociehip-walk-corrected-1114.mat');

102 %[tspanData, hDotDot, hDot, h]=

runforSimulationJocie-hipwalkcorrected;

103 elseif (signal==3) %hip run

104 %[tspanData, hDotDot, hDot, h]=

105 %run forSimulationJociejhip-runcorrected; %

106 load('run_forSimulation_Jocie_hip_run-corrected_1118.mat');

107 elseif (signal==2) %hip walk quickly

108 [tspanData, hDotDot, hDot, h]=

runforSimulation_Jocie-hip_walkFastcorrected;

109 elseif (signal==4) %hip bike

110 [tspanData, hDotDot, hDot, h]=

runforSimulation_Jocie-hipbikecorrected;

1il elseif (signal==5) %foot walk

112 [tspanData, hDotDot, hDot, h]= runforSimulationcorrected;

113 elseif (signal== 6) %foot run

114 [tspanData, hDotDot, hDot, h]=

runforSimulationHealRunningUp-corrected;

115 else %Free fall of base drop experiment

116 [tspanData, hDotDot, hDot, h]= runforSimulation-Drop_free_fall;

117 end

118

119 %select segment of data to use in simulation

120 tspanData= real (tspanData) .*timeScale;

121

122 hDotDot= real(hDotDot);

123 hDot= real(hDot);

124 h= real(h);

125

126 tspan= 0:n:endTime; %horizontal array. Use smaller time steps than data
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127 [minValue, startPowerCalcIndex]= min(abs(tspan-startPowerCalcTime));

128 numIntervalsinTimeSegment= floor(length(tspan)/numTimeSegments);

129

130 %create vectors that approximate the base acceleration, velocity,

acceleration at each of the smaller time steps

131 hDotDot= (interpl(tspanData, hDotDot, tspan))'; %YI = INTERP1(X,Y,XI)

interpolates to find YI

132 hDot= (interpl(tspanData, hDot, tspan))'; %these are horizontal arrays

133 h= (interpl(tspanData, h, tspan))';

134

135 %Vary the two chosen parameters, and specify number of combos

136 numCombos= length(paramRow)*length(paramCol);

137

138 % Determine the varied parameters

139 if optimalsurfaces==1

140 checkedVar= 0; %keep check of how many variables checked for as vectors

141 [ml, checkedVar]= createVectors(ml, checkedVar, paramCol, paramRow);

142 [m2, checkedVar]= createVectors(m2, checkedVar, paramCol, paramRow);

143 [FITopFactorM, checkedVar]= createVectors(FITopFactorM, checkedVar,

paramCol, paramRow);

144 [K1, checkedVar]= createVectors(Kl, checkedVar, paramCol, paramRow);

145 [FIMidFactorM, checkedVar]= createVectors(FIMidFactorM, checkedVar,

paramCol, paramRow);

146 [KM, checkedVar]= createVectors(KM, checkedVar, paramCol, paramRow);

147 [FIBotFactorM, checkedVar]= createVectors(FIBotFactorM, checkedVar,

paramCol, paramRow);

148 [K2, checkedVar]= createVectors(K2, checkedVar, paramCol, paramRow);

149 [blM, checkedVar]= createVectors(blM, checkedVar, paramCol, paramRow);

150 [b3M, checkedVar]= createVectors(b3M, checkedVar, paramCol, paramRow);

151 [b2M, checkedVar]= createVectors(b2M, checkedVar, paramCol, paramRow);

152

153 if B2Blyes== 1 % so that vector b2 is not affected

154 b2M= blM.*B2Blratio;

155 end

156 if B3Blyes== 1

157 b3M= blM.*B3Blratio;
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159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

%Declare arrays that will store each system's outputs

PharvestedBotAllSeg= [];

191

end

if B3B2yes== 1

b3M= b2M.*B3B2ratio;

end

if FlF3yes==1 %keep Fl a ratio of F3

FITopFactorM= FIMidFactorM.*FlF3rat;

end

end

%Calcualte the baseline nonlinear spring force

[XI, FI, SF, Yc]= cantbeamforce (ml, massA, E, hBaseline, E*base*

hBaseline^3/12, q, L, D, D, surfaceEndfraction, Pmax*base/.1875/.0254,

numInt, XImax);

% load nonlinSpring-oneSided.mat XI

% load nonlinSpring-oneSided.mat Fl

%append to XI and FI for x that exceeds XI

epsilon= le-5; %envelope parameter (bigger epsilon--> more XI values

affected by envelope

XI(length(XI))= [];

FI(length(FI))= [];

FItemp= FI + epsilon./(XI-XImax).^2; %assume that if nonliear spring is

used. Xlmax is the maximum value

%add additional large numbers

XItemp= linspace(1.01*max(XI), 1000*max(XI), 300);

FItemp2= FItemp(length(FItemp))+ le4.* (XItemp./XImax).^5;

XI= [XI XItemp];

FI= [FItemp FItemp2];

%create negative values

XI= [-fliplr(XI) XI(2:length(XI))]'; %table of displacements

FI= [-fliplr(FI) FI(2:length(FI))]'; %table of forces



190 PharvestedTopAllSeg= [1;

191 PharvestedMidAllSeg= [1;

192 PinAllSeg= [];

193 maxDispTopAllSeg= [];

194 maxDispBotAllSeg= [];

195 maxDispTopBotAllSeg= [1;

196

197 %initial state vector values

198 XO= zeros(1, numCombos); %X is displacement of top mass wrt base

199 XDotO= zeros(l, numCombos);

200 ZO= zeros(1, numCombos); %Z is displacement of bottom mass wrt base

201 ZDotO= zeros(1, numCombos);

202

203

204 for i= 1:numTimeSegments

205 i

206 tspanSeg= tspan(numIntervalsinTimeSegment*(i-l)+l:

numIntervalsinTimeSegment*i);

207 hSeg= h(numIntervalsinTimeSegment*(i-l)+l:numIntervalsinTimeSegment*i

-1);

208 hDotSeg= hDot(numIntervalsinTimeSegment*(i-1)+1:

numIntervalsinTimeSegment*i-1);

209 HPrimePrimeMatrixSeg= hDotDot(numIntervalsinTimeSegment*(i-1)+1:

numIntervalsinTimeSegment*i-1);%, :);

210

211 %ode45 settings

212 options = odeset('RelTol',le-4,'AbsTol', (le-5).*ones(4*numCombos,l));

213 YO= [XO XDotO ZO ZDotO]'; % initial conditions vector

214

215 [T,Y]= odell3 (@stateEqn, tspanSeg, YO, options, tspan, hDotDot); %call

differential equation solver

216

217 %extract displacements and velcoities from Y

218 X= Y(:,1:numCombos);

219 XDot= Y(:,numCombos+1:2*numCombos);

220 Z= Y(:,2*numCombos+1:3*numCombos);
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221 ZDot= Y(:,3*numCombos+1:4*numCombos);

222

223 if (tspanSeg(length(tspanSeg))> startPowerCalcTime) %if time is

greater than time to start calcualting power:

224 [PharvestedTopSeg, PharvestedBotSeg, PharvestedMidSeg, PinSeg,

maxDispTopSeg, maxDispBotSeg, maxDispTopBotSeg]=

calculatePerformance (X, XDot, Z, ZDot, hDot, tspanSeg); %fun

to calculate power in, out, maximum displacement, etc.

225 %add the average time segment values to the vectors that tra

average values for entire simulated time

226 PharvestedTopAllSeg= [PharvestedTopAllSeg; PharvestedTopSeg]

227 PharvestedBotAllSeg= [PharvestedBotAllSeg; PharvestedBotSeg]

228 PharvestedMidAllSeg= [PharvestedMidAllSeg; PharvestedMidSeg]

229 PinAllSeg= [PinAllSeg; PinSeg];

230 maxDispTopAllSeg= [maxDispTopAllSeg; maxDispTopSeg];

231 maxDispBotAllSeg= [maxDispBotAllSeg; maxDispBotSeg];

232 maxDispTopBotAllSeg= [maxDispTopBotAllSeg; maxDispTopBotSeg]

233 end

234 %define inititial values for new time segment

235 XO= X(length(X(:,1)),:);

236 XDotO= XDot(length(XDot(:,1)),:);

237 ZO= Z(length(Z(:,1)),:);

238 ZDotO= ZDot(length(ZDot (:,1)),:);

239 end

240 %average the average values of each time segment

241 if numTimeSegments>l %only need to sum PharvestedAllSeg if

numTimeSegments>l

242 PharvestedTop= mean(PharvestedTopAllSeg); %Pharvested= {Pl*

FirstTimeLength + [P2+...Pn]*timeSegLength } / (n-l)*

timeSegLength + firstTimeLength

243 PharvestedBot= mean(PharvestedBotAllSeg);

244 PharvestedMid= mean(PharvestedMidAllSeg);

245 Pin= mean(PinAllSeg);

246 maxDispTop= max(maxDispTopAllSeg); %maximum of each coulmn

247 maxDispBot= max(maxDispBotAllSeg);

248 maxDispTopBot= max(maxDispTopBotAllSeg);

193

ction

ck

;

;

;

;



else %there is only one time segment

PharvestedTop= PharvestedTopAllSeg;

PharvestedBot= PharvestedBotAllSeg;

PharvestedMid= PharvestedMidAllSeg;

Pin= PinAllSeg;

maxDispTop= maxDispTopAllSeg;

maxDispBot= maxDispBotAllSeg;

maxDispTopBot= maxDispTopBotAllSeg;

end

%convert row vectors into matrices where each row corresp

Each column to a C value

PoutTop= (reshape(PharvestedTop, length(paramCol), length

PoutBot= (reshape(PharvestedBot, length(paramCol), length

PoutMid= (reshape(PharvestedMid, length(paramCol), length

PoutAll= PoutTop + PoutBot + PoutMid

Pin= (reshape(Pin, length(paramCol), length(paramRow)))'

dispOutTop= (reshape(maxDispTop, length(paramCol), length

dispOutBot= (reshape(maxDispBot, length(paramCol), length

dispOutTopBot= (reshape(maxDispTopBot, length(paramCol),

onds to a b-value.

(paramRow)))'

(paramRow)))'

(paramRow)))'

(paramRow)))'

(paramRow)))'

length (paramRow)))

%%%%%%%%%%%%%%%%%%Plots%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if plotTimeSeries

%Plot 1: Force versus disp for spring

figure (3);

plot(XI, FI.*FITopFactorM(1), XI, FI.*FIBotFactorM(1), XI, FI.*

FIMidFactorM(1));

grid;

xlabel('spring displacement (m)');

ylabel('applied force (N)');

title('Force versus Tip Displacement');

legend('Top Nonlinear Spring', 'Bottom Nonlinear Spring', 'Middle

Nonlinear Spring');
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281

282 %Plot 2: displacement versus time

283 figure(2);

284 subplot(3,1,1)

285 plot(tspanSeg(l:length(tspanSeg)-l), hSeg, tspanSeg, X(:,l), tspanSeg,

Z(:,l), tspanSeg, X(:,1)-Z(:,1));

286 grid;

287 xlabel('time (s)');

288 ylabel('displacement (m)');

289 title('Displacement versus time');

290 legend('Base Displacement', 'Displacement of Top Mass wrt Base',

Displacement of Bottom Mass wrt Base', 'Displacement of Top Mass wrt

Bottom Mass');

291

292 %Plot 3: velocity versus time

293 subplot(3,1,2)

294 plot(tspanSeg(l:length(tspanSeg)-l), hDotSeg, tspanSeg,XDot (:,l),

tspanSeg, ZDot(:,1), tspanSeg,XDot(:,l)-ZDot(:,l));

295 grid;

296 xlabel('time (s)');

297 ylabel('velocity (m/s)');

298 title ('Velocity versus time');

299 legend('Base Velocity', 'Velocity of Top Mass wrt Base', 'Velocity of

Bottom Mass wrt Base', 'Velocity of Top Mass wrt Bottom Mass');

300

301 end

302

303

304 %output optimal power and displacement values

305 [optimalPower, colNum]= max (max(PoutAll));

306 optimalDispTop= max (max (dispOutTop));

307 optimalDispBot= max(max(dispOutBot));

308 optimalDispTopBot= max(max(dispOutTopBot));

309

310 %reduce size of file about to save
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311 clear tspanSeg tspanData tspan startPowerCalcInd plotTimeSeries

numTimeSegments numIntervalsinTimeSegment nNondim minValue maxDispTopSeg

312 clear maxDispTopMatrix maxDispTopAllSeg maxDispBotSeg maxDispBotMatrix

maxDispBotAllSeg i hDotSeg hDotDot hDot h figurel

313 clear dispTopFig dispBotFig b3M b2M b3 b2 bl axesl a ZDotO ZDot ZO Z XDotO

XDot XO X TMatrix T SFMatrixTemp

314 clear PinSeg PinMatrix PinAllSeg PharvestedTopSeg PharvestedTopAllSeg

PharvestedTop PharvestedMidSeg PharvestedMidAllSeg

315 clear PharvestedMid PharvestedBotSeg PharvestedBotAllSeg PharvestedBot

PdissTopMatrix PdissMidMatrix PdissBotMatrix KMatrix K3 K2 K1

HPrimePrimeMatrixSeg

316 clear FIBot FITop Pmax SF XI Yc ans maxDispBot maxDispTop powerLinFig

powerTopfig safetyfig signal startPowerCalcInd

317 clear hMatrix HMatrix hDotMatrix HPrimeMatrix hDotDotMatrix

HPrimePrimeMatrix

318 clear FITopFactorM FIBotFactorM maxDispTopBotAllSeg maxDispTopBotSeg

319 save(fileName);

320

321

322 if optimalsurfaces== 1 %create optimization surfaces

323

324 close all

325 figurel= figure(l);

326 axesl = axes('Parent',figurel,'FontSize',12,'FontName','Calibri', 'CLim'

,[0 max(max(PoutAll))]);

327 view(axesl,[-98 26]);

328 grid(axesl,'on');

329 hold(axesl,'all');

330 axis([paramRow(l) paramRow(length(paramRow)) paramCol(1) paramCol(

length(paramCol))]); % axis([xmin xmax ymin ymax])

331 % Create surf

332 surf(paramRow, paramCol, PoutAll')

333 zlabel('Power (W)','FontSize',12,'FontName','Calibri');

334 title(['Total Power Dissipated'],'FontSize',12,'FontName','Calibri');

335 colorbar('peer',axesl,'LineWidth',l,'FontSize',12,'FontName','Calibri',

'CLim', [1 64]);
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336 ylabel(ColLabel,'FontSize',14,'FontName','Calibri','HorizontalAlignment

'left');

337 xlabel(RowLabel,'HorizontalAlignment','right','FontSize',14,'FontName',

'Calibri');

338 view(0, 90);

339 set(gca,'xscale','log')

340 set(gca,'yscale','log')

341 saveas(figurel,powerFigName, 'fig');

342 saveas(figurel,powerFigName,'png');

343

344 close all

345 figurel= figure(l);

346 axesl = axes('Parent',figurel,'FontSize',12, 'FontName','Calibri','CLim'

,[0 max(max(dispOutTop))]);

347 view(axesl,[-98 26]);

348 grid(axesl,'on');

349 hold(axesl,'all');

350 axis([paramRow(l) paramRow(length(paramRow)) paramCol(l) paramCol(

length(paramCol))]); % axis([xmin xmax ymin ymax])

351 % Create surf

352 surf(paramRow, paramCol, dispOutTop')

353 zlabel('Maximum Pk-Pk relative displacement (m)','FontSize',14,'

FontName','Calibri');

354 title(['Pk-Pk Displacement of Top Mass wrt Base',],'FontSize',12,

FontName','Calibri');

355 colorbar('peer',axesl,'LineWidth',l, 'FontSize',12,'FontName','Calibri',

'CLim', [1 64]);

356 ylabel(ColLabel,'FontSize',14, 'FontName','Calibri','HorizontalAlignment

', 'left');

357 xlabel(RowLabel,'HorizontalAlignment','right','FontSize',14,'FontName',

'Calibri');

358 view(0, 90);

359 set(gca,'xscale','log')

360 set (gca,'yscale','log')

361 saveas(figurel,topDispFigName,'fig');

362 saveas(figurel,topDispFigName,'png');
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363

364 close all

365 figurel= figure(l);

366 axesl = axes('Parent',figurel,'FontSize',12,'FontName','Calibri','CLim'

,[0 max(max(dispOutBot))]);

367 view(axesl, [-98 26]);

368 grid(axesl,'on');

369 hold(axesl,'all');

370 axis([paramRow(l) paramRow(length(paramRow)) paramCol(l) paramCol(

length(paramCol))]); % axis([xmin xmax ymin ymax])

371 % Create surf

372 surf(paramRow, paramCol, dispOutBot')

373 grid;

374 zlabel('Maximum Pk-Pk relative displacement (m)','FontSize',14,'

FontName','Calibri');

375 title(['Pk-Pk Displacement of Bottom Mass wrt Base'],'FontSize',12,'

FontName','Calibri');

376 colorbar('peer',axesl,'LineWidth',l,'FontSize',12,'FontName','Calibri',

'CLim', [1 64]);

377 ylabel(ColLabel,'FontSize',14,'FontName','Calibri','HorizontalAlignment

', 'left');

378 xlabel(RowLabel,'HorizontalAlignment','right','FontSize',14,'FontName',

'Calibri');

379 view(0, 90);

380 set(gca,'xscale','log')

381 set(gca, 'yscale','log')

382 saveas(figurel,botDispFigName,'fig');

383 saveas (figurel,botDispFigName,'png');

384

385 close all

386 figurel= figure(l);

387 axesl = axes('Parent',figurel,'FontSize',12,'FontName','Calibri','CLim'

,[0 max(max(dispOutTopBot))]);

388 view(axesl, [-98 26]);

389 grid(axesl,'on');

390 hold(axesl,'all');
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391 axis([paramRow(l) paramRow(length(paramRow)) paramCol(1) paramCol(

length(paramCol))]); % axis([xmin xmax ymin ymax])

392 surf(paramRow, paramCol, dispOutTopBot')

393 grid;

394 zlabel('Maximum Pk-Pk relative displacement (m)', 'FontSize',14,'

FontName','Calibri');

395 title(['Maximum Displacement of Top Mass wrt Bottom Mass'],'FontSize'

,12,'FontName','Calibri');

396 colorbar('peer',axesl,'LineWidth',l,'FontSize',12,'FontName','Calibri',

'CLim', [1 641);

397 ylabel(ColLabel,'FontSize',14,'FontName', 'Calibri','HorizontalAlignment

'left');

398 xlabel(RowLabel,'HorizontalAlignment','right','FontSize',14,'FontName',

'Calibri');

399 view(0, 90);

400 set(gca,'xscale','log')

401 set (gca,'yscale','log')

402 saveas(figurel,topbotDispFigName,'fig');

403 saveas(figurel,topbotDispFigName,'png');

404 close all

405

406 end

407

408 end

409

410 %Calculate average power dissipated by each damper, maximum displacement of

each mass wrt base, and maximum displacement of bases to each other

411 function [averageDissipatedPowerTopss, averageDissipatedPowerBot-ss,

averageDissipatedPowerMid-ss, averagePower intoBase_ss,

maximumRelativeDisplacementTop, maximumRelativeDisplacementBot,

maximumRelativeDisplacementTopBot]= calculatePerformance (x, xDot, z,

zDot, hDotSeg, tspan)

412 global startPowerCalcTime plotTimeSeries blM b2M b3M ml m2

413

414 [minValue startPowerCalcIndex] = min (abs (tspan-startPowerCalcTime)); %

startPowerCalcIndex will be a number ~-= if this is the first interval
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and segment/startTime do not align. Otherwise, startPowerCalcIndex

should be 1

%variables x, xDot, and tspan that are steady state

xss= x(startPowerCalcIndex:length(x(:,1))-1,:);

xDotss= xDot(startPowerCalcIndex:length(x(:,1) )-1,:

zss= z(startPowerCalcIndex:length(z(:,1))-1, :);

zDotss= zDot(startPowerCalcIndex:length(z (:,1) )-1,:

tspanss= tspan(startPowerCalcIndex:length(tspan)-1);

hDotss= hDotSeg(startPowerCalcIndex:length(x(:,1))-1); %Base

hDotssMatrixSS= repmat(hDotss, 1, length(xss(1,:))); %matrix

elements are in xss

%create damping coefficient matrices with

steady state variable matrices

if numel(blM)>l

bMatrixlSS= repmat(blM, length(xss(:,1)),

are in tspanss

else

bMatrixlSS= biM;

end

if numel(b2M)>1

bMatrix2SS= repmat(b2M,

are in tspanss

velocity

with as many

as many elements as are in the

1); %matrix with as many elements

length(xss(:,1)), 1); %matrix with as many elements

else

bMatrix2SS= b2M;

end

if numel(b3M)>1

bMatrix3SS= repmat(b3M, length(xss(:,1)), 1); %matrix with as many

elements are in tspanss

else

bMatrix3SS= b3M;

end

if numel(m2)>1
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444 m2Matrix= repmat(m2, length(xss(:,1)), 1); %matrix with as many elements

are in tspanss

445 else

446 m2Matrix= m2;

447 end

448

449

450 %calculate dissipated power- when steady state

451 dissipatedPowerTop-ss= bMatrixlSS.*(xDotss).^2; %when steady state

452 averageDissipatedPowerTop-ss= sum(dissipatedPowerTop-ss)./length(

dissipatedPowerTopss(:,1)); %ROW VECTOR

453

454 dissipatedPowerBot ss= bMatrix2SS.*(zDotss).^2; %when steady state

455 averageDissipatedPowerBot-ss= sum(dissipatedPowerBotss)./length(

dissipatedPowerBot ss(:,1)); %ROW VECTOR

456

457 dissipatedPowerMid ss= bMatrix3SS.*(xDotss-zDotss).^2; %when steady state

458 average-DissipatedPowerMid-ss= sum(dissipatedPowerMid ss)./length(

dissipatedPowerMid ss(:,1)); %ROW VECTOR

459

460 powerjintoBase_ss= -(m2Matrix.*zDotss).*hDotssMatrixSS;

461 averagePowerintoBasess= sum(power-intoBase-ss)./length(

power-intoBase-ss(:,1)); %ROW VECTOR

462

463 % maximumRelativeDisplacement= max(abs(xhist)) %ROW VECTOR

464 maximumRelativeDisplacementTop= max(xss)- min(xss); %ROW VECTOR

465 maximumRelativeDisplacementBot= max(zss)-min(zss); %ROW VECTOR

466 maximumRelativeDisplacementTopBot= max(xss-zss)-min(xss-zss); %ROW VECTOR

467

468 % Plot 4: power harvested versus time

469 if plotTimeSeries

470 figure(2);

471 subplot(3,1,3);

472 hold on

473 plot(tspanss', power intoBasess, (tspanss)', dissipatedPowerTop-ss,

(tspanss)', dissipatedPowerBot-ss, (tspanss)',
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dissipatedPowerMid-ss);

474 xlabel('time (s)');

475 ylabel('Power (W)');

476 title('Power Dissipated versus time');

477 legend('Power into Base', 'Power Dissipated by Top Damper', 'Power

Dissipated by Bottom Damper', 'Power Dissipated by Middle Damper');

478 grid;

479 end

480

481 end

482

483 function [var, checkedVar]= createVectors(var, checkedVar, paramCol,

paramRow)

484 if length(var)>l %var is vectorized element

485 if checkedVar==O

486 var= repmat(var', 1, length(paramCol)); %ROW vector

487 var= reshape(var', 1, numel(var));

488 elseif checkedVar==1 %this is column element

489 var= repmat(var, 1, length(paramRow));

490 end

491 checkedVar= checkedVar+1;

492 end

493 end

494

495

496

497 function f= stateEqn(t, YO, tspan, hDotDot) %all three nonlinear springs

exist

498 global XI FI ml m2 blM b2M b3M KM Kl K2 FITopFactorM FIBotFactorM

FIMidFactorM numCombos

499 X= YO(l:numCombos);

500 XPrime= YO(numCombos+1:2*numCombos);

5o Z= YO(2*numCombos+1:3*numCombos);

502 ZPrime= YO(3*numCombos+1:4*numCombos);

503

504 f= zeros(4*numCombos, 1);
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505

506 f(1:numCombos)= XPrime; %return time derivative of X

507 f(2*numCombos+1:3*numCombos)= ZPrime; %return time rderivative of Z

508

509 W= X-Z;

510 f(numCombos+1:2*numCombos)= -Kl'./ml'.*X - interpl(XI, FI, X).*

FITopFactorM./ml' + KM'./ml'.*(Z-X) -interpl(XI, FI, W).*FIMidFactorM./

ml' - blM'./ml'.*XPrime - b3M'./ml'.*(XPrime-ZPrime) - interplq(tspan',

hDotDot,t) -9.81; %xDotDot (top mass). - SIGN CORRECT

511 f(3*numCombos+1:4*numCombos)= -K2' ./m2' .*Z - interpl(XI, FI, Z).*

FIBotFactorM./m2' - KM'./m2'.*(Z-X) + interpl(XI, FI, X-Z).*

FIMidFactorM./m2' - b2M'./m2'.*ZPrime + b3M'./m2'.*(XPrime-ZPrime) -

inLerplq(tspan', hDotDot,t) -9.81; %zDotDot (bottom mass). - SIGN

CORRECT

512

513 end

A.5 Electromagnetic Damping

1 %This function plots the electromagnetic damping and power [normalized by

magnet velocity squared] versus position of a magnet moving over a coil.

This code is based on the codes given by Zach Trimble and Aparna

Jonnalagadda in their masters thesis (references listed in this thesis's

appendix)

2 function ambulatoryElectromagneticDamping

3 wd= .1*.0254; %0017; %.07*.0254; %wire diameter. UNITS: m

4 u= 3; %number of turns in coil of each phase

5 m= .06; %0.125; %magnet mass. UNITS: Kg

6 % [Wmag, Lmag, tmag, Wst, Lst, tstj= magnetParameters(m);

7 Wmag= .012;

8 Lmag= .02;

9 tmag= .0127;

10
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11 plotOneSystem= 1;

12 plotOptimization= 0;

13

14 %%%%%%%%Constraints%%%%%%%%

15 %Magnet mass= 0.125. UNITS: Kg

16 %Number of magnet poles: 2

17 %Number of phases: 3

18 %center the coil phase centered over magnet

19 %other coil phases are shifted +/- 0.5*magnet pole width

20 %magnet displacement restricted to +/- .03 m

21 %Assume airgap thickness of .03 inches

22

23 %%%%%%%%Other Parameers%%%%%%%%

24 %Rc= RL

25

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27 global nZ airgap

28

29 deltaCrit= .03; %maximum allowable displacement of center of magnet

30 nZ= le-4; % le-5; %n is space step in pos and z.

31 pos= -deltaCrit:nZ:deltaCrit; %magnet range of motion. UNITS: m

32 Wdevice= 2*(deltaCrit+Wmag); %maximum width of device [coil]

33 n= 3; %number of coil phases

34 nLoops= ceil(W-device/Wmag - (n-1)/n); %number of loops

35

36 %constrained geometric parameters (could be changed)

37 rho= 7400; %density of neodynium. UNITS: Kg/m^3

38 airgap= 0.030*.0254; %air gap between magnets and front coils. UNITS: m

39 wresistivity= 1.68e-8; %copper resisitvity. UNITS: Ohms*m

40

41 %dependent geometric parameters

42 tphase= wd; %u*wd; %thickness of 1 coil phase

43

44 tins= .0028*.0254; %based on Trimble masters P. 95

45 WPhase= Wmag/3; %width available for each phase
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46 Wkerf= .006.*.0254; %[m], Minimum distance between traces (kerf) . Trimble

page 105

47 nWires= floor(WPhase/(wd + Wkerf)); %number of wires that fit in width

available for each phase

48 nLayers= ceil(u/nWires); %number of layers required to get u turns per

phase

49 tcoil= 2*nLayers*wd + (2*nLayers+l)*tins;

50

51 tgap= airgap + tcoil

52 A= Lmag*Wmag; %area of 1 phase. UNITS: m

53 lSingleTurn= 2*(Lmag+Wmag); %Assume wire is rectangle in shape of magnet

pitches align)

54 numTurns= n*u*nLoops; %number of coil phases * number of turns per phase

5s lwire=lSingleTurn*numTurns; %Assume wire is rectangle in shape of magnet

56 Awire= pi*wd^2/4; %wire cross sectional area. UNITS: m

57 Rcoil= wresistivity*lwire/Awire; %R= rho*l/A

58 Rload= Rcoil;

59

60 if -isinf(nLayers)

61 %Calculate and plot for first layer

62 %%%%%%%%%%Calculate dFlux through each phase%%%%%%%%%%%%%%

63 tLayer= airgap + wd + 1.5*tins; %FIRST LAYER- closest layer. positive

number here

64 [z, B]= calculateField(tmag, tgap, Wmag, tLayer, plotOneSystem); %

magnetic field in space when magnet is centered at z= 0

65 %inputs are (tmag, tgap, Wmag)= (xA, xB, 1)

66 fluxTable= phaseFlux(z,B, Wmag, Lmag, pos, W-device, nLoops, tgap,

plotOneSystem); %flux through each phase of coil as a function of

magnet position

67 %fluxTable is a table where each row is

magPosition FluxA FluxB FluxC]

68

69 dFluxTable= phaseDFlux(fluxTable, plotOneSystem);%dFlux through each

phase as a function of magnet position

70

71 uLayer= min(nWires, u); %number of turns in each phase in this layer
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72

73 fluxTot= uLayer.*sum(abs(fluxTable(:,2:4)'))';

74 dFluxTot= uLayer.*sum(abs(dFluxTable(:,2:4)'))';

75 dFluxSquared= dFluxTable.*dFluxTable;

76 dFluxSquaredTot= uLayer^2.*sum(dFluxSquared(:,2:4)')';

77 blah= 1

78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

79

80 %Just calculate for remaining layers

81 if (nLayers>l)

82 uLayer= nWires;

83 for p=2:nLayers-1

84 %00%%%%%%%%Calculate dFlux through each phase%%%%%%%%%%%%%%

85 tLayer= airgap + p*wd + 1.5*p*tins; %FIRST LAYER- closest layer.

positive number here

86 [z, B]= calculateField(tmag, tgap, Wmag, tLayer, 0); %magnetic

field in space when magnet is centered at z= 0

87 %inputs are (tmag, tgap, Wmag)= (xA, xB, 1)

88 fluxTable= phaseFlux(z,B, Wmag, Lmag, pos, W_device, nLoops, tgap,

0); %flux through each phase of coil as a function of magnet

position

89 %fluxTable is a table where each row is [magPosition FluxA Flux_B

FluxC]

90 dFluxTable= phaseDFlux(fluxTable, 0);%dFlux through each phase as a

function of magnet position

91

92 fluxTot= fluxTot + uLayer.*sum(abs(fluxTable(:,2:4)'))';

93 dFluxTot= dFluxTot + uLayer.*sum(abs(dFluxTable(:,2:4)'))';

94 dFluxSquared= dFluxTable.*dFluxTable;

95 dFluxSquaredTot= dFluxSquaredTot + uLayer^2.*sum(dFluxSquared

(:,2:4)')';

96

97 figure(l); subplot(3,1,1);

98 hold on;

99 plot(pos, fluxTot)

100 subplot(3,1,2); hold on;
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101 plot(pos, dFluxTot);

102 subplot (3,1, 3) ; hold on;

103 plot(pos, dFluxSquaredTot./ (Rcoil+Rload));

104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

105 end

106 %Last layer [farthest away from magnet]

107 uLayer= u - (nLayers-l)*uLayer;

108

109 tLayer= airgap + nLayers*wd + 1.5*nLayers*tins; %FIRST LAYER-

closest layer. positive number here

110 [z, B]= calculateField(tmag, tgap, Wmag, tLayer, 0); %magnetic

field in space when magnet is centered at z= 0

111 %inputs are (tmag, tgap, Wmag)= (xA, xB, 1)

112 fluxTable= phaseFlux(z,B, Wmag, Lmag, pos, Wdevice, nLoops, tgap,

0); %flux through each phase of coil as a function of magnet

position

113 %fluxTable is a table where each row is [magPosition FluxA Flux_B

FluxC]

114 dFluxTable= phaseDFlux(fluxTable, 0);%dFlux through each phase as a

function of magnet position

115

116 fluxTot= fluxTot + uLayer.*sum(abs(fluxTable(:,2:4)'))';

117 dFluxTot= dFluxTot + uLayer.*sum(abs(dFluxTable(:,2:4)'))';

118 dFluxSquared= dFluxTable.*dFluxTable;

119 dFluxSquaredTot= dFluxSquaredTot + uLayer^2.*sum(dFluxSquared

(:, 2:4)1')';

120 end

121

122 %totalDFlux= abs(dFluxTable(:,2) )+ abs(dFluxTable(:,3) )+ abs(dFluxTable

(:4));

123

124 be= dFluxSquaredTot. / (Rcoil+Rload);

125 PpV2= Rload/(Rload+Rcoil)^2 .* dFluxSquaredTot;

126

127 if (plotOneSystem== 1)

128 figure(l);
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129 subplot(3,1,3);

130 [AX,H1,H2] = plotyy(pos,be,pos,PpV2,'plot');

131 set(get(AX(l),'Ylabel'),'String','damping coefficient (Ns/m)');

132 set(get(AX(2),'Ylabel'),'String','power/velocity^2 (Ws^2/m^2)');

133 set(AX(l),'ycolor','k')

134 set (AX(2),'ycolor','k')

135 set(Hl,'color','k')

136 set(H2,'color','k')

137 set(AX(1),'YLim',[0 max(be)])

138 set (AX(2),'YLim', [0 max(PpV2)])

139

140 % plot (pos, be);

141 title({'Induced Damping and';'Power to Load Per Magnet Velocity^2'

} )

142 xlabel('magnet position (m)');

143 grid;

144 end

145

146 %print desired outputs

147 averageB= mean(be(floor(.25*length(be)):ceil(.75*length(be))))

148 rhocopper= 8960; %[Kg/m^3]

149 systemWeight= rho-copper*Awire*lwire + m

150 u

151 else

152 averageB= 0;

153 systemWeight= 0;

154 fprintf('WIRE DIAMETER EXCEEDS COIL PITCH');

155 end

156 end

157

158 function [z, B]= calculateField (xA, xB, 1, xLayer, plotOneSystem) %tmag,

tgap, Wmag

159

160 %From Jonnalagadda SM thesis page 92

161 %Fourier sum parameters

162 global nZ airgap
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163

164 - InputS

165 N= 40; %number of terms added in the fourier sum. REDUCE SUM FOR LARGER MAG

SIZES

166 res= 200; %number of points per coordinate array

167 ------ - - -End inputs

168

169 Br= 1.2; %T (N/(Am) magnetization flux density

170 s-max= Br;

171 mu_0= pi*4e-7; %Wb/ (Am) magnetic permeability of vacuum

172

173 %geometry parameters

174 % xA= .005; %xA is magnet thickness

175 % xB= 4e-3; %xB is airgap+coil thickness

176 np= 2; % number of magnets (poles)

177 d= 0; %le-3; % half the gap between magnets [m]

178 % 1= .01; %12.7e-3; %length of each magnet (pole) (in z-direction) [m]

179

18o %Coil Parameters

181 % t= .68e-3; %.08/3*.0254; %spacing between coils [m]

182 % g= (((1+2*d)/3)-t)/2; %half a coil length. { 1/2 phase length= (Wmag/3

183 % wd= .8e-3; %.8128e-3; %diameter of wire [m]

184 % nc= 3; %number of coils (per phase). Should be same as # magnets

185 % nt= 8; %number of turns per coil

186 % RO= 16.78e-9; % resistivity of copper [ohm-m]

187

188 xstep= (xA+xB)/res; %number of steps in the x-direction of grid

189 zstep= nZ; %(np*(2*d+l))/res; %number of steps in the z-direction of grid

190

191 xVector= [-xB:x_step:xA]; %vector of x-values between rear of magnets and

rear of coil

192 zVector= [0:zstep:np*(2*d+l)]; %vector of z-values between 0 and end of

magnets

193 x= repmat(xVector, length(zVector), 1); %matrix of x-values. Repeated for z

-values (each column- same #)
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194 z= repmat(zVector, length(xVector), 1); z= z'; %matrix of z-values.

Repeated for x-values (each row- same #)

195 %in matrices: z value changes in each row. x changes in each column

196

197 %Loop to calculate fourier coefficients and magnetic potential constants

198 for p= 1:N

199 k= 2*p-l; %even coefficients are 0, only calculate for odd values

200 w-m= pi*k/(2*d+l);

201 % w-c= pi*k/(3*(2*g+t));

202 b-m(p)= (4*sjmax/k/pi)*cos((k*pi*d)/(l+2*d)); % magnets' charge

density in fourier coefficients [T]

203 %JK ac(p)= (4*k/g/k/pi)*sin((k*pi*g)/(3*(2*g+t))); % coils' tangential

magnetic field fourier coeff's [A/m]

204 A(p)= (b-m(p)*sinh(w-m*xB))/(wm*mu_0*sinh(w-m*(xA+x_B))); %

constants for psiA calculation [A]

205 C(p)= (-bm(p)*sinh(wm*xA))/(w-m*mu_0*sinh(w-m*(xA+xB))); %

constants for psiB calculation [A]

206 %JK D(p)= ac(p)/(wc*sinh(wc*(xA+xB))); % constants for psi

calculation [A]

207

208

end

209 sigma= O*z; % magnets' charge density

210 psiA= zeros (length (zVector), length(xVector));

region A due to magnets

211 psiB= zeros (length (zVector), length (xVector));

region B due to magnets

%magnetic potential in

%magnetic potential in

212

213 for k= 1:N % loop to sum the fourier series terms

214 j= 2*k-1;

215 sigma= sigma + bjm(k).*sin(z.*(j*pi/(1+2*d))); % in T, magnet's charge

density

216 psiA=psiA + A(k)*sinh(pi*j.*(x-xA)/(l+2*d)).*sin(z.*(pi*j/(l+2*d)));

%in A, magnetic potential in region A due to magnets

217 psiB=psiB + C(k)*sinh(pi*j.*(x+xB)/(l+2*d)).*sin(z.*(pi*j/(l+2*d)));

%in A, magnetic potential in region B due to magnets

218 end

210



219 if (plotOneSystem== 1)

220 figure(2);

221 plot(z(:,l)-l, sigma, 'k');

222 title('Magnetic charge density at interface between magnets and air:

magnet centered at z= 0');

223 xlabel('z (m)')

224 ylabel('magnetic charge density (T)')

225 end

226

227 ml= ceil(length(xVector)*x_B/(xA+xB)); %m is fraction of z elements

where divide region A(magnets) and B(air+coil)

228 m2= floor(length(xVector)*xB/(x-A+xB));

229 psiA(:,l:m2)= 0; %zeroing out Region B where psiA is invalid

230 psiB(:,ml:length(xVector))= 0; %length(z))= 0; %zeroing out Region A where

psiB is invalid

231 psi-m= psiA + psiB;

232

233 %shift z--axis so that field is centered at z= 0.

234 %In above calculation: z= [0, 2*Wmag]. Desire z= [-Wmag, Wmag]

235 Z= z-1;

236

237 [Hm-x, Hm-z]= gradient(-psi-m, xstep, zstep); %in A/m, H in x and z due

to magnets

238 %H is the magnetic field

239

240 if (plotOneSystem== 1)

241 figure(4);

242 surf(x(1,:),z(:,1),psi-m, 'LineStyle','none');

243 hold on;

244 %draw box indicating magnets (region A)

245 plot([0 xA xA 0], [-1 -l 1 1], '-r', 'LineWidth', 3);

246 %draw box indicating air gap (part of region B)

247 plot([-airgap 0 0 -airgap], [-1 -1 1 1], '-b', 'LineWidth', 3);

248 %draw box indicating coils

249 plot([-xB -airgap -airgap -xB], [-1 -l 1 1], '-g', 'LineWidth', 3);

250 axis([-x_B xA -l 1])
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251

252 xlabel('x');

253 ylabel('z');

254 zlabel('magnetic potential (A)');

255 title('Magnetic Potential');

256 end

257

258 %determine column of xVector that corresponds to xLayer

259 [value, index]= min(abs(xVector + xLayer));

260

261 Hm_x_surf= Hmx(:,index); %Values of Hmx at the coils surface. (First

column is at x= -xB?)

262

263 if (plotOneSystem== 1)

264 figure(3);

265 plot(z, Hmxsurf);

266

267 xlabel('z (m)');

268 ylabel('magnetic field (A/m)');

269 title('Magnetic field in the x-direction at the coil');

270 end

271

272 %FUNCTION OUTPUTS

273 B= muO*Hmnx surf;

274 z= (z(:,index))'; % originally: z= (z(:,l))';

275 end

276

277 function fluxTable= phaseFlux (z, B, Wmag, Lmag, pos, W-device, nLoops, xB

, plotOneSystem)

278 %Inputs: z, B is Table of flux at coils along z-direction.

279 %z is horizontal position in space along the magnet, centered at magnet

center.

280 %Outputs: fluxTable is a table where each row is [magPosition Flux_A

FluxB FluxC]

281

282 %endpoints of A, B, and C phases
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%Acoil endpoints are

%Bcoil endpoints are

%Ccoil endpoints are

[-5/6*Wmag,

[-3/6*Wmag,

[-1/6*Wmag,

%Calculate phase flux when magnet

%sum the flux inbetween the start

%shift position of magnet

%sum the flux inbetween the start

1/6*Wmag]

3/6*Wmag]

5/6*Wmag]

is centered at 0

and end points

and end points

dS= Lmag*(z(2)-z(l));%incremental area: Lmag[dim into page] * dZ

%pos is magnet position

Aflux= zeros(length(pos), 1);

Bflux= zeros(length(pos), 1);

Cflux= zeros(length(pos), 1);

for i= 1:length(pos)

newZ= z-pos(i); %magnet moves right same as coil moves left

Loopmin= floor(nLoops/2)+1; %leftmost loop number

%determine endpoints for A phase. Put

%each element is loop start/end point

Aphase= []; Bphase=[]; Cphase= [];

for j= 1:nLoops+l

Aphase(j)= Wmag*(-Loopmin + j-1);

Bphase(j)= Wmag*(-Loopmin + j-2/3)

Cphase(j)= Wmag*(-Loopmin + j-1/3)

end

for j= 1:nLoops%-l

[value AstartIndex]= min(abs(newZ

[value AendIndex]= min(abs(newZ -

[value BstartIndex]= min(abs(newZ

[value BendIndex]= min(abs(newZ -

[value CstartIndex]= min(abs(newZ

these in a column vector where

%add 1/3

%add 2/3

- Aphase(j)));

Aphase(j+l)));

- Bphase(j)));

Bphase(j+l)));

- Cphase(j)));
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[value CendIndex]= min(abs(newZ - Cphase(j+l)));

Aflux(i)= Aflux(i) + abs(sum(B(AstartIndex:AendIndex)))*dS;

Bflux(i)= Bflux(i) + abs(sum(B(BstartIndex:BendIndex)))*dS;

Cflux(i)= Cflux(i) + abs(sum(B(CstartIndex:CendIndex)))*dS;

end

end

fluxTable= [pos' Aflux Bflux Cflux];

if (plotOneSystem== 1)

figure(1)

subplot(3,1,1)

plot(pos, Aflux, pos, Bflux, pos, Cflux, pos, abs(Aflux)+abs(Bflux)

+abs (Cflux))

title('Magnetic Flux through single turn versus magnet position');

xlabel('magnet position (m)');

ylabel('magnetic flux (Wb)');

grid;

legend('Phase A', 'Phase B', 'Phase C', 'Combined')

%add coil positions to figure 4 3D plot

figure (4)

hold on

%for first iteration: add to legend.

plot([-x-B -xB], [Aphase(l) Aphase(2)], 'k*') %plot 1

of phase

plot([-x-B -xB], [Bphase(l) Bphase(2)], 'r*') %plot 1

of phase

plot([-xB -xB], [Cphase(l) Cphase(2)], 'c*') %plot 1

of phase

legend('magnetic potential', 'region with magnets', 'air g

'region with coils', 'Phase A', 'Phase B', 'Phase C')

for j=2:nLoops %for each of the loops

plot([-xB -xB], [Aphase(j) Aphase(j+l)], 'k*') %plot

lines of phase

ines

ines

ines

ap',
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349 plot([-xB -xB], [Bphase(j) Bphase(j+l)], 'r*') %plot

lines of phase

350 plot([-xB -xB], [Cphase(j) Cphase(j+1)], 'c*') %plot

lines of phase

351 end

352 %adjust plot limits

353 ylim( [min (Aphase) max (Cphase) ]);

354 end

355 end

356

357 function dfluxTable= phaseDFlux(fluxTable, plotOneSystem)

358 %fluxTable is a table where each row is [magPosition FluxA FluxB FluxC]

359

360 % F is a vector, DF = GRADIENT(F, H). H is spacing between points

361 H= fluxTable(2,l) - fluxTable(1,l); %steps in z-direction

362

363 dFluxA= gradient (fluxTable(:,2), H);

364 dFluxB= gradient (fluxTable(:,3), H);

365 dFluxC= gradient (fluxTable(:,4), H);

366

367 dfluxTable= [fluxTable(:,l) dFluxA dFluxB dFluxC];

368

369 if (plotOneSystem== 1)

370 figure(1);

371 subplot (3, 1, 2)

372 plot(dfluxTable(:,l), dFluxA, dfluxTable(:,1), dFluxB, dfluxTable

(:,1), dFluxC, dfluxTable(:,1), abs(dFluxA)+abs(dFluxB)+abs(

dFluxC));

373 title('dFlux/dz through single turn versus magnet position')

374 xlabel ('magnet position, z (m) ');

375 ylabel('dFlux/dz');

376 grid;

377 end

378 end
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