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Learning About Meetings

Been Kim and Cynthia Rudin

Massachusetts Institute of Technology
beenkim@csail.mit.edu,rudin@mit.edu

Abstract. Most people participate in meetings almost every day, multi-
ple times a day. The study of meetings is important, but also challenging,
as it requires an understanding of social signals and complex interper-
sonal dynamics. Our aim this work is to use a data-driven approach to the
science of meetings. We provide tentative evidence that: i) it is possible
to automatically detect when during the meeting a key decision is taking
place, from analyzing only the local dialogue acts, ii) there are common
patterns in the way social dialogue acts are interspersed throughout a
meeting, iii) at the time key decisions are made, the amount of time left
in the meeting can be predicted from the amount of time that has passed,
iv) it is often possible to predict whether a proposal during a meeting
will be accepted or rejected based entirely on the language (the set of
persuasive words) used by the speaker.

1 Introduction

“A meeting is indispensable when you don’t want to get anything done.” [Kayser,
1990]

In the United States alone, an estimated 11 million meetings take place dur-
ing a typical work day [Newlund, 2012]. Managers typically spend between a
quarter and three-quarters of their time in meetings [Mackenzie and Nicker-
son, 2009], and approximately 97% of workers have reported in a large-scale
study [Hall, 1994] that to do their best work, collaboration is essential. Most of
us work directly with others every day, and want to be useful participants in
meetings. Meeting analysis (the science of meetings) can potentially help us un-
derstand various aspects of meetings, find ways to allow us to be more effective
participants in our meetings, and help us to create automated tools for meet-
ing assistance. Meeting dynamics can be complex; often proposals are implicitly
communicated and accepted [Eugenio et al., 1999]. Despite the plethora of meet-
ings that happen each day, and despite a body of work on meeting analysis [e.g.,
see Romano Jr and Nunamaker Jr, 2001, for a review], we still cannot claim
that we understand the topic of meetings well enough that these studies have
led to quantifiable improvements in the overall quality of meetings, nor useful
guidelines for more productive meetings. Perhaps if we step back and consider
a basic science approach to meeting analysis, we would quantitatively uncover
aspects of meetings that could eventually lead to true improvements.

In this work, we develop and use predictive modeling tools and descriptive
statistics in order to provide a data-driven approach to the scientific study of
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meetings. We provide preliminary answers to several key questions: i) Can we
automatically detect when the main decisions are made during the meeting,
based only on the frequency and type of dialogue acts in a given period of time?
In other words, based on the types of utterances people are making, can we
determine whether the most important part of the meeting is occurring? ii) Is
there any type of pattern of dialogue common to most or all meetings? We
would like to know whether there is a “quintessential” pattern of dialogue that
we can identify. iii) How long is a meeting going to last, in terms of “wrap-
up” time, beyond the time that the main decisions are made? Sometimes this
wrap-up time is substantial, and the meeting extends well beyond when the
main decisions are made. iv) Can we predict whether a proposal made during
a meeting will be accepted or rejected based entirely on the language (the set
of persuasive words) used by the speaker? There have been many studies and
commentaries focused on “persuasive words,” but do those persuasive words truly
correlate with successful outcomes during a meeting? Some of these questions
can be answered using current machine learning approaches, but others cannot.
For finding patterns in dialogue acts that are common to most/all meetings, we
design an algorithm to learn a sparse representation of a meeting as a graph of
dialogue acts, which yields insight about the way social dialogue acts intersperse
with work-related dialogue acts.

In our study, we use the most extensive annotated corpus of meetings data in
existence, originating from the AMI (Augmented multi-party interaction) project
[McCowan et al., 2005]. This dataset contains a large number of annotated meet-
ings (over 12,000 human-labeled annotations). In total, there are 108,947 dia-
logue acts in total number of 95 meetings, and 26,825 adjacency pairs (explained
below). This corpus is derived from a series of real meetings, controlled in the
sense that each meeting has four participants who work as a team to compose a
new design for a new remote control. Each participant takes a role, either project
manager, marketing expert, industrial designer or interface designer. The partic-
ipants are given training for their roles at the beginning of the task. Documents
used to train participants and annotators are publicly available. The interaction
between participants is unstructured, and each person freely chooses their own
style of interaction. The length of meetings ranges from approximately 10 min-
utes to 45 minutes, which overlaps with the most common lengths of meetings
[discussed by Romano Jr and Nunamaker Jr, 2001]. Here we provide detail on
the annotations provided with the corpus.

Dialogue Acts: A dialogue act marks a characteristic of an utterance, repre-
senting the intention or the role of the utterance. It is possible to use dialogue act
data to predict characteristics of future dialogue [Nagata and Morimoto, 1994],
or to do automatic dialogue act tagging [Stolcke et al., 2000, Ji and Bilmes,
2005]. Dialogue acts include questions, statements, suggestions, assessment of
suggestions (positive, negative or neutral) and social acts. Each sentence is of-
ten divided into pieces and tagged with different dialogues acts.1 A sequence of
dialogue acts looks like this:

1 More details of definition of dialogue acts can be found in [McCowan et al., 2005].
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A: Suggestion
B: Commenting on A’s suggestion
C: Asking questions
A: Answering C’s question
B: Accepting A’s suggestion

Decision summary : A summary of decisions made in a meeting and related
dialogue acts.

Discussion: A set of dialogue acts and their time stamps that support or
reflect decisions described in the decision summary annotation.

Adjacency pairs: An adjacency pair encodes the relationship between two
dialogue acts. It represents the reaction to the first dialogue act that is expressed
within the second dialogue act; e.g., the first dialogue act can be a suggestion
and the second dialogue act can be a positive or negative response to it, as
demonstrated in the sequence of dialogue acts above.

We note that meetings can have many purposes, [e.g., see Romano Jr and
Nunamaker Jr, 2001], however in this work we study only meetings where the
purpose is to make a group judgment or decision (rather than for instance, to
ensure that everyone understands, or to explore new ideas and concepts).

Our specific goal in this work is to contribute insights to the new scientific
field of meeting analysis. We provide tentative answers to the above questions
that can be used for constructing other studies. We do not claim that our re-
sults definitively answer these questions, only that they yield hypotheses that
can be tested more thoroughly through other surveys. Most medical (and more
generally, scientific) studies make or verify hypotheses based on a database or
patient study. Hypotheses based on these single studies are sometimes first steps
in answering important questions - this is a study of that kind, and we believe
our results can be tested and built upon.

Our more general goal is to show that ML can be useful for exploratory study
of meetings, including and beyond the questions studied here. This paper is not
focused on a specific machine learning technique per se, its goal is to show that
ML methods can be applied for exploratory scientific analysis of data in this
domain, leading towards the eventual goal of increasing meeting productivity.
We start with a question for which a simple application of machine learning tools
provides direct insight.

2 Question i: Can we automatically detect when key
decisions are made?

If we can learn the statistics of dialogue acts around the time when important
decisions are about to be made or being made, we can potentially detect the
critical time window of a meeting. One can imagine using this information in
several ways, for instance, to know at what point in the meeting to pay more
attention (or to join the meeting in the first place), or to use this as part of a
historical meetings database in order to fast forward the meeting’s recording to
the most important parts.
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In our setup, each feature vector for the detection problem is a time-shifted
bag-of-dialogue-acts. The feature vector for a specific timeframe is defined by the
counts of different dialogue acts (e.g., one example has 3 suggestions, 2 positive
responses and 10 information exchanges). Using this representation means that
the results do not depend on specific keywords within the meeting dialogue; this
potentially allows our results to hold independently of the specific type and pur-
pose of the meeting being held. Among dialogue acts, we use only a subset that
are known to be relevant to the group decision making process [Eugenio et al.,
1999], namely: action directive, offer, accept, reject, info-request, and informa-
tion. Action directives represent all elicit forms of dialogue acts — dialogue acts
that require actions from hearers. By limiting to these dialogue acts, we are now
working with a total of 53,079 dialogue acts in the corpus.

Using this definition, a timeframe of dialogue becomes one example, repre-
sented by a 6-dimensional vector, where each element is the count of a particular
dialogue act within the specified timeframe. The labels are 1 if the decisions are
annotated as being made in that timeframe of interest and 0 otherwise. We con-
sidered timeframes with average size 70 timestamps (roughly 5 minutes). This
choice of timeframe comes from the minimum meeting time considered in the
research done on meeting profiles by Panko and Kinney [1995].

We applied supervised and unsupervised classification algorithms to predict
whether important decisions are being made within a given block of dialogue.
The data were divided into 15 folds, and each fold was used in turn as the test set.
The supervised algorithms were SVM with radial basis function (RBF) kernels,
SVM with linear kernels, logistic regression, and Naïve Bayes with a Gaussian
density assumption on each class and feature. For the unsupervised algorithms,
which (purposely) discard the annotations, we used EM with Gaussian Mixture
Models and Kmeans. From the resulting two clusters, we chose the better of
the two possible labelings. The AUC, precision, recall, and F-measure for each
algorithm’s performance on the testing folds are reported in Table 1. The sam-
ple mean and sample standard deviation of AUC values over the test folds are
reported within the second column of the table.

Table 1. Results for predicting key decision times

Method AUC ± Std. Precision Recall F-measure
SVM-Linear 0.87 ± 0.05 0.89 0.87 0.88
Logistic regression 0.87 ± 0.05 0.70 0.56 0.62
SVM-RBF 0.86 ± 0.06 0.86 0.95 0.90
EM-GMM 0.57 ± 0.06 0.68 0.48 0.56
NB-Gaussian 0.56 ± 0.10 0.88 0.81 0.84
Kmeans 0.48 ± 0.24 0.69 0.34 0.45

The prediction quality, with respect to the AUC, is very similar for SVM-
Linear, Logistic Regression, and SVM-RBF. All three methods show high AUC
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values around 0.86 or 0.87. The three other methods do not perform nearly as
well. Naïve Bayes has very strong independence assumptions that are clearly
violated here. EM-GMM is a non-convex approach that has a tendency to get
stuck in local minima. Both EM-GMM and K-Means are unsupervised, so they
do not get the benefit of being trained on human-labeled data. We remark that
the predictive performance given by some of these algorithms is quite high given
that the imbalance ratio is only 3 to 1 (three “no decision made” examples for
each “decision made” example). Logistic regression performed well with respect
to the AUC, but not with respect to the other measures. AUC is a rank statis-
tic, whereas the other measures are relative to a decision boundary. Thus, if the
decision boundary is in the wrong place, precision, recall, and F-measure suf-
fer, regardless of whether the positives are generally given higher scores than the
negatives. (There is an in-depth discussion by Ertekin and Rudin [2011] on logis-
tic regression’s performance with respect to the AUC.) The opposite is true for
Naïve Bayes, where the decision boundary seems to be in the right place, leading
to good classification performance, but the relative placement of positives and
negatives within the classes lead to rank statistics that are not at the level of
the other algorithms. This could potentially be due to the choice of scoring mea-
sure used for the AUC, as the choice of scoring measure is not unique for Naïve
Bayes. We chose P (y = 1)

∏
j P̂ (x

j |y = 1), where the empirical probability is
computed over the training set. (Here y = 1 indicates decisions being made, and
xj is the jth feature value.) It is possible that even if an example scored highly
for being a member of the positive class, it could score even more highly for
being a member of the negative class, and thus be classified correctly. Thus, care
should be taken in general when judging Naïve Bayes by the AUC; in this case,
quantities computed with respect to the decision boundary (true positives, false
positives, etc.) are more natural than rank statistics.

Table 2. Feature ranking using SVM coefficient

Ranking Dialogue Acts λ ± Std.
1 Information 0.30 ±0.031
2 Information Request 0.11 ± 0.03
3 Offer -0.0076 ± 0.04
4 Action-directive -0.0662 ±0.04
5 Reject -0.20 ±0.03
6 Accept -0.27 ±0.02

We can use the SVM coefficients to understand the distribution of dialogue
acts during the important parts of the meeting. As it turns out, the important
parts of the meeting are characterized mostly by information and information
request dialogue acts, and very few offers, rejections, or acceptances. This is
shown in Table 2. We hypothesize that at the important parts of the meeting,
when the decisions have been narrowed down and few choices remain, the meeting
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participants would like to ensure that they have all the relevant information
necessary to make the decision, and that the outcome will fit within all of their
constraints.

This small experiment has implications for the practical use of machine learn-
ing for automated meeting recording and assistance software. First, it is possible
to obtain at least 0.87 AUC in detecting the time frame when decisions are made.
An algorithm with this level of fidelity could be useful, for instance, in searching
through large quantities of meeting data automatically (rather than manually
scrolling through each meeting). One could envision having software create an
alert that key decisions are being made, so that upper-level management can
then choose to join the meeting. Or the software could inform secretarial staff of
an estimate for when the meeting is done in order to facilitate schedule planning.
(To do this, however, it might be useful to incorporate knowledge from Section
4 about the expected length of the wrap-up time.)

3 Question ii: Is there a pattern of interactions within a
meeting?

There is often a mixture of social and work-related utterances during a meeting,
and it is not obvious how the two interact. In particular, we would like to study
the way in which social acts (positive or negative) interact with work-related
acts (i.e., acceptance or rejection of proposals). More abstractly, we would like
to know if there is a “quintessential representation” of interactions within a meet-
ing, where a representation is a directed graph of dialogue acts. If there is such
a representation, we would like to learn it directly from data. To do this, we will
present a discrete optimization approach that uses the notion of “template in-
stantiation.” The optimization will be performed via simulated annealing. First,
let us formally define the problem of template discovery.

3.1 Formalization of the Problem of Template Discovery

We define a template as a graph, where each node takes a value in the set of
dialogue acts, and the graph has directed edges from left to right, and additional
backwards edges. Formally, let Λ be the set of possible dialogue acts (Λn is a
string of length n). Specifically, define the set D as

D : (n ∈ {1, · · · , L})× Λn ×ΠB,n

so that D is a set of templates with length of size n ≤ L, where if the template is
of size n, there are n dialogue acts. There are forward edges between neighboring
nodes (i.e. dialogue acts). ΠB,n is the set of all possible backward arrows for the
template, containing at most B backward arrows. One can represent ΠB,n as the
set of n×n lower diagonal binary matrices, 1’s indicating backward arrows, with
at most B values that are 1. Let X be the set of meetings, which are strings
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consisting of an arbitrary number of elements of Λ. Define the loss function
l : D ×X → Z+ as

l(t, x) := min
tj∈instan(t)

[dist(tj , x)]

where dist is edit distance, dist : Λn1 × Λn2 → Z+ for strings of lengths n1 and
n2. We define instan(t) as the set of template instantiations tj of the template
t, where a template instantiation is a path through the graph, beginning or
ending anywhere within the graph. The path is a sequence of elements from Λ.
Consider for instance the example template at the top of Figure 1. Two example
template instantiations are provided just below that. The edit distance between
two strings is the minimum number of insertions, deletions, and/or substitutions
to turn one string into the other. Each meeting x is a string of dialogue acts,
and each template instantiation tj is also a string of dialogue acts, so the edit
distance is well-defined.

Fig. 1. Example template instantiations. The template is at the top, and two instan-
tiations are below.

We assume that we are given meetings x1, · · · , xm drawn independently from
an unknown probability distribution µ over possible meetings X. Define empir-
ical risk Remp(t) : D → R+ and true risk Rtrue(t) : D → R+ as:

Remp(t) :=
1

m

m∑
i=1

l(t, xi) and Rtrue(t) := Ex∼µ[l(t, x)].

We can bound the difference between the empirical risk and true risk for the
problem of template discovery as follows:

Theorem 1. For all δ > 0, with probability at least 1 − δ with respect to the
independent random draw of meetings x ∼ µ, xi ∼ µ, i = 1, ...,m, and for all
templates t in D with length at most L and with number of backwards arrows at
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most B:

Rtrue(t) ≤ Remp(t) +

√√√√√√√ log

L∑
n=0

|Λ|n min(B,n)∑
b=0

(
n(n− 1)/2

b

)+ log
1

δ

2m
,

where |Λ| is the number of elements in the set Λ.

The proof is in the Appendix.
This framework for macro-pattern discovery leads naturally to an algorithm

for finding templates in real data, which is to minimize the empirical risk, regu-
larized by the number of backwards arrows and the length of the template.

3.2 Macro-Patterns in Meetings

Let us explain the data processing. We selected the annotations that were mean-
ingful in this context, namely: socially positive act, socially negative act, negative
assessment act and positive assessment act. This allows us only to focus on as-
sessments (either social or work related), as they may have a generally more
powerful effect on the trends in the conversation than other dialogue acts. That
is, the assessments create a “macro-pattern” within the meeting that we want
to learn. Repeated dialogue acts by the same person were counted as a single
dialogue act. The selected data contain 12,309 dialogue acts, on average 130 acts
per meeting.

We would like to know if all or most meetings have something in common,
in terms of the pattern of dialogue acts throughout the meeting (e.g., a smaller
sub-conversation in which certain dialogue acts alternate, followed by a shift to
a different sub-conversation, and so on). If this were the case, a template for
meetings could be a directed graph, where each meeting approximately follows a
(possibly repetitive) path through the graph. Time might loosely follow from left
to right. We thus learn the directed graph by optimizing the following regularized
risk functional using discrete optimization:

F (template t)

=
1

m

∑
meetings i

min
tj∈instan(t)

[dist(tj ,meeting i)] + C1length(t) + C2backw(t), (1)

which is a regularized version of the empirical risk defined above. Intuitively, (1)
characterizes how well the set of meetings match the template using the first
term, and the other two terms are regularization terms that force the template
to be sparser and simpler, with most of the edges pointing forwards in time.
The smaller templates have the advantage of being more interpretable, also ac-
cording to the bound above, smaller templates encourage better generalization.
The length(t) is the number of nodes in template t. The value of backw(t) is the
number of backwards directed edges in the template graph. We chose C1 = 1
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and C2 = 0.1 to force fewer backwards edges than forwards edges, meaning a
graph that follows more linearly in time.

Template instantiations always follow paths that exist within the template,
whereas a real meeting will likely never exactly follow a template (unless the tem-
plate is overly complex, in which case the algorithm has wildly overfit the data,
which is prevented by validation). Our calculation for min

tj∈instan(t)
[dist(tj ,meeting i)]

in the first term of (1) is approximate, in the sense that the min over all templates
is calculated over all template instantiations that are approximately the same
length as the meeting i, rather than over all instantiations. As it is likely the
minimum would be achieved at an instantiation with approximately the same
length as the meeting, this is a reasonable assumption to make in order to make
the calculation more tractable.

We optimize (1) over templates using simulated annealing, as shown in Al-
gorithm 1. Simulated annealing probabilistically decides whether it will move to
a neighboring state or stay at the current state at each iteration. The neigh-
borhood is defined as a set of templates that are edit distance 1 away from the
current template under allowable operations. The allowable operations include
insertion of a new node between any two nodes or at the beginning or end of the
template, deletion of a node, insertion or deletion of backwards directed edges.
For the proposal distribution for simulated annealing, each operation is randomly
chosen with uniform probability. The acceptance probability of the new template
is 1 if the proposed objective function value is less than the current value. If the
proposed value is larger than the current value, the acceptance function accepts
with probability exp (−∆F/T ) where ∆F represents the difference in objective
function value, namely the proposed function value minus the current function
value, and T is the current temperature (lines 19-27 in Algorithm 1). The an-
nealing schedule is T = T0 ·0.95k, where k = 800 is the annealing parameter and
T0 = 1000 is the initial temperature. After every k accepted steps, we restarted
the optimization starting at the best point so far, resetting the temperature to
its initial value. The maximum iteration number was set at 4000.

We ran the algorithm starting from 95 different initial conditions, each initial
condition corresponding to one of the true meetings in the database. These
95 experiments were performed in order to find a fairly full set of reasonable
templates, and to also determine whether the algorithm consistently settled on
a small set of templates. The results were highly self-consistent, in the sense that
in 98% of the total experimental runs, the algorithm converged to a template
that is equivalent to, or a simple instantiation of, the one shown in Figure 2.
This template has a very simple and strong message, which is that the next
judgment following a negative assessment is almost never a socially positive act.
The converse is also true, that a socially positive act is rarely followed by a
negative assessment.

To assess the correctness of this template, we note that of the 1475 times a
socially positive act appears, it is adjacent to a negative assessment 141 times.
Of the 991 times a negative assessment appears, 132 times a socially positive
act is adjacent to it. One can contrast these numbers with the percent of time a
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Algorithm 1 Discrete optimization algorithm for learning meeting templates
1: Input: Starting template t0, m meetings, constants C1, C2, initial temperature T0.

2: Initialize t = t0, tbest = t0, iter = 0, k = 800, set F (to).
3: while (!converged) ∩ (iter < Maximum Iteration) do
4: if mod(iter) = k then
5: T ← T0 where T0 is initial temperature, t← tbest

6: end if
7: Nt ← get_neighborhood_templates(t)
8: choose t

′
∈ Nt uniformly at random

9: length(t
′
) ← number of nodes in template t

′

10: backw(t
′
) ← number of backwards edges in template t

′

11: for all meetings i ≤ m do
12: instan(t

′
) ← set of template instantiations (sufficient to use only ones with

length ≈ length of meeting i)
13: for all instantiations tj ∈ instan(t

′
) do

14: dt
′

ij = edit_distance(tj ,meeting i)
15: end for
16: dt

′

i ← min
j

(dt
′

ij)

17: end for
18: F (t

′
)← 1

m

∑
i

dt
′

i + C1length(t
′
)+C2backw(t

′
)

19: if F (t
′
) < F (t) then

20: t← t
′
, accept jump with probability 1, iter← iter+ 1, F (t)← F (t′)

21: if F (t
′
) < F (tbest) then

22: tbest ← t
′

23: end if
24: else
25: t← t

′
with probability exp (−∆F/T ) where

26: ∆F = F (t
′
)− F (t). If accepted, then iter← iter+ 1, F (t)← F (t′)

27: end if
28: T ← T0 ∗ 0.95iter (update temperature)
29: end while

positive assessment is adjacent to a socially positive act (68%), though there are
generally more positive assessments than either socially positive acts or negative
assessments, which intrinsically lowers the probability that a socially positive act
would be adjacent to a negative assessment; however, even knowing this, there
could be more powerful reasons why socially positive acts are associated with
positive assessments rather than negative assessments.

From a social perspective, this result can be viewed as somewhat counterintu-
itive, as one might imagine wanting to encourage a colleague socially in order to
compensate for a negative assessment. In practice, however, sometimes positive
social acts can sound disingenuous when accompanying a negative assessment.
This can be demonstrated using the following pairs of dialog from within the
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Assess 

Positive 

Socially 

Positive 
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Negative 

Socially 

Positive 

Assess 

Positive 

Assess 

Negative 

Socially 

Positive 
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Positive 
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Positive 
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Negative 

Assess 

Positive 

Socially 

Positive 

Assess 

Positive 

Assess 

Positive 

Converged Template (98%) 

Instantiation of the template 1: 41% 

Instantiation of the template 2: 14% 

Instantiation of the template 3: 43% 

Assess 

Positive 
Assess 

Negative 

Assess 

Positive 

Assess 

Negative 

Socially 

Positive 

Fig. 2. The template representing the interaction of social and work related acts.
Specific template instantiations and how often they occurred in the experiment are
also provided.

AMI Corpus (that are not truly side by side): 1) “But I thought it was just com-
pletely pointless.” “Superb sketch by the way.” 2) “Brilliantly done.” “It’s gonna
inevitably sort of start looking like those group of sort of ugly ones that we saw
stacked up.” 3) “It’d be annoying.” “Yeah, it was a pleasure working with you.”
4) “No, a wheel is better.” “All thanks to Iain for the design of that one.” In
these cases a positive social act essentially becomes a negative social act.

The algorithm introduced here found a macro pattern of assessments that is
prevalent and yields insight into the interaction between social and work related
dialogue acts. This demonstrates that machine learning can be used to illuminate
fundamental aspects of this domain. This knowledge is general, and could be
used, for instance, to help classify assessments when they are not labeled, and
to potentially help reconstruct missing/garbled pieces of dialogue. These are
necessary elements in building any type of meetings analysis assistant. To our
knowledge, the macro pattern we found has not been previously noted in the
literature.

3.3 Experimental Comparison with Other Methods

In this section, we compare our results with other methods, particularly profile
Hidden Markov Model (HMM) and Markov chain. We focus on comparison of
results in this section, however, further in depth discussion is provided in Section
6.

Profile HMM is a tool to find and align related sequences, and match a
new sequence to known sequences. The structure of a profile HMM has forward
arrows between match states, along with delete and insertion nodes that allow
any string to fit into the template. Profile HMM shares similar features with
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our algorithm, in that it finds a common sequence given sequences with different
lengths. To create a profile HMM, there are a series of heuristic steps. One way of
learning profile HMM, used to produce Table 3, is the following. First, we choose
the length of the HMM. Second, we estimate the parameters in the HMM model
using pseudo-counts for the prior. Third, we find the most likely string to be
emitted from each match state.

As mentioned above, the length of a profile HMM is generally specified by the
user. Table 3 shows profile HMMs with a variety of lengths specified. We were
not able to recover the full pattern with profile HMM that our method produced,
but we were able to see, for instance, that socially positive acts are often next
to positive assessments, which is one of the instantiations of the template our
method discovered.

Table 3. Profile HMM (SP: Socially positive, AP: Assess positive, AN: Assess negative)

Length
specified

Result

3 SP → AP → AP
5 SP → AP → SP → AP → AP
10 SP → AP → SP → AP → AP → AP → AP → AP → AP → AP
20 SP→ AP→ SP→ AP→ AP→ AP→ AP→ AP→ AP→ AP→

AP → AP → AP → AP → AP → AP → AP → AP → AP → AP

We note that a first-order Markov chain could be used to model transitions
between nodes, however, since a Markov chain records all possible transition
probabilities, it is not clear in general how to turn this into a template that
would yield insight. On the other hand, once we provide a template like the
one in Figure 2, it is easy to see the template within the Markov chain. The
first-order Markov chain for the meetings data, learned using maximum likeli-
hood estimation, is provided in Figure 3. This learned Markov chain supports
our learned template, as the four highest transition probabilities exactly repre-
sent our learned template — with high transition probabilities between socially
positive and assess positive, and between assess negative and assess positive.
The reason that socially negative did not appear in Figure 2 (as it should not)
is because the number of socially negative dialogue acts is much smaller than
the number of other dialogue acts (only 1%). This is an important difference
between a Markov chain and our algorithm — our algorithm picks the dominant
macro pattern, and has the ability to exclude a state (i.e. dialogue act) if there is
no strong pattern involving that state. The Markov chain, on the other hand, is
required to model transition probabilities between all states that exist within the
data. We also note that it is possible for our method to choose forward arrows
with very low transition probabilities in the Markov chain, so looking at only
the high probability transitions will not suffice for constructing a template that
minimizes our risk functional.
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Fig. 3. Learned Markov Chain

4 Question iii: How long is this meeting going to last
given that the decision has already been made?

Meetings sometimes last longer than expected. Even when all the decisions seem
to be made, it often takes some time to work out the details and formally end
the meeting. We would like to know whether it is possible to predict when the
meeting is going to be over if we know when the decisions are made.

Figure 4(a) displays meetings along the horizontal axis, ordered by total
meeting time. The annotated time when key decisions are all made (discussion
finishing times) are indicated by blue squares, and the total meeting times are
indicated by red squares for each meeting. Figure 4(b) shows the time between
when key decisions are made on the x-axis, and the wrap-up time on the y-
axis (this is the time spent after key decisions are made and before the meeting
finishes). With a simple piecewise linear formula, one can predict with relatively
high accuracy what the wrap-up time will be, given the time at which the key
decisions are finished being made. Denoting the time to complete key decisions
by x, the estimated wrap-up time is as follows: If x ≤ about 14 minutes, the
wrap-up time is about 0.923+4.78 minutes. If x > about 14 minutes, the wrap-
up time is −0.47x + 24.53 minutes. There are some interesting implications: if
the meeting was efficient enough to make all the decisions within 14 minutes,
then the team will also be efficient in wrapping up. Once the meeting has gone
about 14 minutes without all decisions made, then people also tend to spend
more time wrapping up. If the meetings runs very long without decisions being
made, then once the decisions are made, the meeting tends to wrap up quickly.

These results are specific to meetings whose length is less than an hour as
in the AMI corpus, which, according to Romano Jr and Nunamaker Jr [2001] is
true 26% of the time; it would be interesting for future work to see if a piecewise
linear model works well for meetings of other lengths, though this hypothesis
cannot currently be verified by any database that we are aware of.
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(a) Total meeting time (red) and discussion ending time (blue).

(b) “Wrap-up” time vs. time until decisions are made.

Fig. 4. Total meeting time and wrap-up time
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5 Question iv: Do persuasive words exist?

A “good” meeting might be one where we have contributed to the team effort.
We always want to suggest good ideas and want the team members to accept
those ideas. Numerous articles claim that how we package our ideas, and our
choice of words, is sometimes as important as the idea itself [Olsen, 2009, Carl-
son, 2012]. We are interested in understanding this hidden factor in the team’s
decision making process. Are there patterns in suggestions that are accepted
versus rejected? Can we use this to improve how we present ideas to the team?

To select data for this section, we chose a bag-of-words representation for
each “suggestion” dialogue act. We gathered a set of all words that occurred
in all suggestions, excluding stop words, leading to a 1,839 dimensional binary
vector representation for each suggestion. The labels were determined by the
annotations, where accepted suggestions received a +1 label, and rejected sug-
gestions received a −1 label.

5.1 Are published sets of persuasive words really persuasive?

We would like to know whether the persuasive words of Olsen [2009], Carlson
[2012] are truly persuasive. These words are not domain-specific, meaning that
they do not depend on the topic of the meeting, and could thus be more gener-
ally useful. Note that the data cannot tell us (without a controlled experiment)
whether there is a truly causal relationship between using persuasive words and
having a proposal accepted; however, we can study correlations, which provide
evidence. An important first question is whether the proportion of persuasive
words in accepted suggestions differ significantly from the proportion of persua-
sive words in rejected suggestions. We marked each suggestion as to whether or
not one of the words in Olsen [2009], Carlson [2012] appears. We also mark each
suggestion as to whether it is an accepted or rejected suggestion. Of the 139
times that a suggestion contained persuasive words from Olsen [2009], Carlson
[2012], 134 of these appearances were within accepted suggestions (96% of ap-
pearances). Of the 2,185 times a suggestion did not contain any of the words from
Olsen [2009], Carlson [2012], 1,981 of these appearances were within accepted
suggestions (90% of appearances). Using Fisher’s exact test, the difference in
proportions is significant at the 0.01 level (pvalue 0.0037); it appears that per-
suasive words do appear more often in accepted suggestions than other words
do.

On the other hand, we tested each persuasive word individually, to see
whether the number of accepted suggestions it appears in is significantly dif-
ferent than the proportion of rejected suggestions it appears in. The difference
between the two proportions was not significant at the 0.05 level for any of the
persuasive words, again using Fisher’s exact test for differences between propor-
tions. Perhaps this is because each word individually is rare, while the collection
is not. This begs the question as to whether there are words that themselves
show a significant difference in the proportion of accepted suggestions they ap-
pear in. A related question is which words are the most important, in terms of
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predictive modeling, for distinguishing accepted and rejected suggestions. We
will answer both of these questions below, the latter answered first.

5.2 Using SVM coefficients to tell us about persuasive words

In this section, we try to discover persuasive words from data alone, and after-
wards compare to the published lists of persuasive words. Specifically, we want
to know whether we can predict if a suggestion would be accepted or rejected
solely based on words that are used, not based on the idea within it. A standard
way to do this is to apply a linear SVM with cross-validation for the tradeoff
parameter, and examine the values of its coefficients; this provides a ranking
of features, and a rough measure of how important each word is to the overall
classifier [e.g., see Guyon et al., 2002]. The set of 2,324 suggestions with 1,839
features (one feature per unique word) was separated into 5 folds using each in
turn as the test set, and the SVM accuracy was 83% ± 2.1%. Note that the
SVM has no prior knowledge of what persuasive words are. Persuasive words
identified by the SVM are considered to be words with large absolute coefficient
value (normalized) over all 5 folds. These include “things,” “start,” “meeting,”
“people,” “yeah.” Many of the persuasive words concerned the topic of marketing
(“market,” “presentation,” “gimmick,” “logo”) and non-persuasive words included
“buttons,” “speech,” “LCD,” “recognition,” and more often words specific to the
topic of creating a remote control (“scroll,” “green”).

The next question is whether these learned persuasive words make sense.
To answer this, we checked whether the persuasive words from Olsen [2009],
Carlson [2012] had positive or negative SVM coefficients. The overlap between
our set of 1,839 words and the persuasive words from Olsen [2009], Carlson
[2012] is 29 words. Their average coefficient values over 5 folds are shown in
Table 4. The finding is consistent with the Fisher’s exact test result in Section
5.1 — not a single word has a large positive coefficient and all words have
relatively large standard deviations, showing lack of their individual connection
to persuasiveness.

In what follows we will explore a different method for feature ranking, where
the space is reduced to only words that occur in significantly different proportions
between accepted and rejected suggestions before applying an SVM.

5.3 Which words are individually persuasive?

We have 2,324 suggestions in an 1,839 dimensional space. Fisher’s exact test is
based on the hypergeometric distribution and has the benefit that it can be used
for features that are rarely present. It considers whether the suggestions contain-
ing the feature have significantly different proportions of acceptance and rejec-
tion. The selected persuasive words are shown in Table 5 with their associated
pvalues, where the most significant words are at the top of the list. We can also
find non-persuasive words that are significant according to Fisher’s exact test.
Together with the persuasive words, this gives us a set of important features to
use as a reduced feature space for machine learning. Some of the non-persuasive
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Table 4. List of persuasive words on which SVM and the articles [Olsen, 2009, Carlson,
2012] agree/disagree

Agrees Disagrees
Words λ ± Std. Words λ ± Std.
strength 0.006 ± 0.0026 inspiration -0.0002 ± 0.003
free 0.0054 ± 0.0031 drive -0.0002 ± 0.0011
good 0.0048 ± 0.0015 easy -0.0004 ± 0.003
power 0.0043 ± 0.0032 health -0.0005 ± 0.0022
avoid 0.0039 ± 0.0011 creativity -0.0016 ± 0.0021
offer 0.0036 ± 0.0035 guarantee -0.0017 ± 0.001
save 0.003 ± 0.0036 explore -0.0017 ± 0.001
safe 0.0028 ± 0.0015 safety -0.0017 ± 0.001
energy 0.0024 ± 0.0032 reinvent -0.0017 ± 0.0009
imagine 0.0024 ± 0.0016 approach -0.0019 ± 0.003
important 0.0023 ± 0.002 money -0.0025 ± 0.0035
confidence 0.0019 ± 0.0027 purpose -0.0027 ± 0.0008
wanted 0.0015 ± 0.0009
quick 0.0015 ± 0.0009
memory 0.0015 ± 0.0009
life 0.0006 ± 0.0029
hurry 0.0005 ± 0.0029

words include “recognition”, “speech”, “fair”, “selecting”, “flat”, “animals”, “mid-
dle”, and “bottom”. The total number of features we used is 244 (where persua-
sive words and non-persuasive words were selected under the same significance
threshold). After this feature reduction, we applied SVM and achieved an ac-
curacy of 87.2% ± 0.010%, which is higher than before. The SVM coefficients
for all of the words that we identified as being persuasive are positive, as shown
also in Table 5. These words are thus persuasive both individually and together:
they are each individually significant in predicting accepted suggestions, and
they have positive predictive coefficients.

Studying the most persuasive words from Fisher’s exact test, we find that
many of these words are not specifically tied to the topic of the meeting (design-
ing a remote control), but seem to be more generally persuasive. In fact, we can
make informed hypotheses about why these words are persuasive. Some of these
observations help us to understand more generally how language is used during
meetings. Let us consider the most significant persuasive words as follows:

• Yeah: Dialogue segments where the word “yeah” is used include: “or yeah,
maybe even just a limited multi-colour so it doesn’t look too childish,” “yeah,
if you had one of those, just coming back to your other point about pressing
the button and setting off the bleeper in the room,” “Yeah if you are holding
it in your hand you could do that.” Judging from these and similar dialogue
segments, our hypothesis is that framing a suggestion as an agreement with
a previous suggestion increases its chances of being accepted. That is, if the
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Table 5. List of persuasive words from Fisher’s exact test (higher ranking for smaller
pvalues). The second column contains the pvalue from Fisher’s exact test. The third
column contains the ratio of accepted proposals when the word appeared. The fourth
column contains the ratio of accepted proposals when the word did not appear. The
last column contains the SVM coefficients.

Words Pvalues Ratio of accepted
when appears

Ratio of accepted
when not appears

SVM λ ± Std.

yeah 0.012 1 (46/46) 0.90 (2069/2278) 0.011 ± 0.0021
give 0.020 1 (41/41) 0.90 (2074/2283) 0.010 ± 0.0015
menu 0.027 1 (38/38) 0.90 (2077/2286) 0.010 ± 0.0045
start 0.043 1 (33/33) 0.90 (2082/2291) 0.012 ± 0.0020
meeting 0.052 1 (31/31) 0.90 (2084/2293) 0.012 ± 0.0019
touch 0.085 1 (26/26) 0.90 (2089/2298) 0.0081 ± 0.00059
discuss 0.093 1 (25/25) 0.90 (2090/2299) 0.0092 ± 0.0024
find 0.093 1 (25/25) 0.90 (2090/2299) 0.0098 ± 0.0017
market 0.12 1 (22/22) 0.90 (2093/2302) 0.0094 ± 0.0023
yellow 0.12 1 (22/22) 0.90 (2093/2302) 0.0076 ± 0.0018
work 0.12 1 (22/22) 0.90 (2093/2302) 0.0097 ± 0.0031
good 0.13 0.97 (37/38) 0.90 (2078/2286) 0.0029 ± 0.0035
fruit 0.13 1 (21/21) 0.90 (2094/2303) 0.0065 ± 0.0032
logo 0.15 1 (20/20) 0.90 (2095/2304) 0.0073 ± 0.0019
people 0.15 0.97 (35/36) 0.90 (2080/2288) 0.012 ± 0.0024
side 0.16 0.97 (34/35) 0.90 (2081/2289) 0.0056 ± 0.0039
number 0.16 1 (19/19) 0.90 (2096/2305) 0.0059 ± 0.0027
presentation 0.18 1 (18/18) 0.90 (2097/2306) 0.0084 ± 0.0020
things 0.19 0.95 (45/47) 0.90 (2070/2277) 0.012 ± 0.0026
chip 0.20 1 (17/17) 0.90 (2098/2307) 0.0066 ± 0.0026
stick 0.22 1 (16/16) 0.90 (2099/2308) 0.0070 ± 0.0017
gonna 0.22 0.95 (42/44) 0.90 (2073/2280) 0.000063 ± 0.0057
information 0.24 1 (15/15) 0.90 (2100/2309) 0.0059 ± 0.0020
talk 0.24 1 (15/15) 0.90 (2100/2309) 0.0034 ± 0.0027
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idea comes across as if it were in line with previous thoughts by others,
the suggestion has a higher chance of being accepted. This applies either
when attributing the full idea to others, or just the line of thought. The case
where one attributes their full idea to others in order to increase its chances
of acceptance has been considered in popular books Carnegie [1936].

• Give: “Give” is used in at least three ways, the first one occurring the most
often: (i) giving with respect to the topic of the meeting, which here is either
the customer or the product (“so if you want to give the full freedom to the
user,” “You give it the full functions in here,” “We can give them smooth
keys”), (ii) giving to the meeting participants (“would give us a little bit
of a marketing niche”), and (iii) to indicate that suggestions are based on
previous data or knowledge (“given these parameters that we’re just gonna
sort of have this kind of uh non-remote remote”, “given speech recognition I
think you should go for the less fancy chip”).

• Menu: This word seems to be tied to the topic of remote controls (“Um and
one other suggestions I’d make is to in is to include in a menu system”),
without a general hypothesis for other types of meetings.

• Start: Our hypothesis is that the word “start” gives group members the
opportunity to agree, where agreement of basic suggestions provides an indi-
cation that group members want to be productive during the meeting; e.g.,
“Shouldn’t we start with the most important parts?” “I will start by the basic
one.” This type of agreement may help with alliance building early on in the
meeting.

• Meeting: The word “meeting” often appears in suggestions about what not
to discuss: “Or maybe this is something for the next meeting,” “I figure
we could get back to it on the next meeting actually,” “We take it to the
other meeting.” Our hypothesis is that suggesting that a topic belong to a
later meeting may be a way to gently change the topic or move the current
meeting along. It can be used instead of a negative assessment of a previous
suggestion.

• Touch: This seems to be tied to the topic of remote controls, “So we put a
touch pad on it,” “We can uh do a touch-pad on our remote.”

• Discuss: This word appears mainly in an organizational context for the meet-
ing: “And then we can discuss some more closely,” “I think we shouldn’t
discuss any points points that long,” “Maybe we should centralise the dis-
cussion here.” It seems that often, people tend to agree with organizational
suggestions about the meeting.

• Find: Our hypothesis is that “find” is often used in suggestions to gather
more information or do more work, and these are suggestions that are often
accepted: “we have to find out if it’s possible,” “um and I’m sure we can find
more goals for the product we are going to develop,” “but just try to find
out what they’re willing to pay for it.”

Having a collection of persuasive words can be immediately useful, assuming
that there is a causal relationship between persuasive words and accepted pro-
posals, rather than only a correlation. The hypothesis tested in this work (that
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persuasive words truly exist) can also be tested for this causal relationship, and
it would be very interesting to create a dataset for this purpose. If the hypothesis
does hold, it has the potential to allow ideas to be communicated more clearly,
and thus to make meetings more efficient overall. Already we have gained some
insight for how specific words are used within meetings, and why suggestions
containing these words are more likely to be accepted.

6 Related Work

The closest work to ours is that of the CALO (Cognitive Assistant that Learns
and Organizes) project [SRI International, 2003-2009], which takes a bottom-up
approach to designing a cognitive assistant that can reason and learn from users
using machine learning techniques. Although the CALO project’s focus (e.g.,
speech recognition, sentence segmentation, dialogue act tagging, topic segmen-
tation, action item detection and decision extraction) does not intersect with our
work, it is worthwhile to note that this multi-year project has made a definite
step towards improving meetings using machine learning techniques. However,
as pointed out by Tur et al. [2010], a number of challenges (e.g. extracting task
descriptions) still exist before this tool can be integrated into daily life. The
insights into meetings obtained through our work could be used as part of a
top-down approach to design such a tool.

We believe our work is the first to take a truly data-driven approach to finding
persuasive words; this is the first work to try to prove that a word is persuasive
using data.

Qualitative Work: Research on group decision making processes traditionally
appears in qualitative studies. Works along these lines attempt to understand
and model the course of agreement [Black, 1948], design features to track the
course of negotiation [Eugenio et al., 1999], develop theories for group decision
making [Davis, 1973] and study different group decision-making schemes [Green
and Taber, 1980].

Related Work for Question i: A few quantitative approaches have attempted to
detect when decisions are made. These methods use maximum entropy [Hsueh
and Moore, 2008], linear SVMs [Fernández et al., 2008] and directed graphical
models [Bui et al., 2009]. A common factor of these works is that they require
content information (audio and video data; prosodic features, position within
the meeting, length in words and duration etc.) that can potentially contain
sensitive information about what is being planned. Our approach requires only
dialogue acts (i.e. the actual meeting content is not required) to achieve the
same goal with relatively high accuracy. One benefit of using only dialogue acts
is that the algorithm allows our results to hold independently of the specific
type and purpose of the meeting being held and can be used in situations where
the meeting contains potentially sensitive information. It is also much simpler
logistically to require collecting only dialogue acts.
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Related Work for Question ii: To the best of our knowledge, our work is the first
to apply learning techniques to learn dynamical interactions between social and
work aspects in meetings. As discussed earlier, one could consider the method
we developed generally for learning a template from a sequence of data. Our
method has the following characteristics: 1) The loss function considers meetings
instantiated from the same template, but possibly with different lengths, to be
equally good. For instance: if a template is ‘A’ ‘B’ ‘C’ with a back arrow from
‘C’ to ‘A’, then ‘ABCABC’, ‘BCABCA’, ‘CAB’ are equally good instantiations
from this template. 2) An instantiation of the template can start at any position,
as demonstrated by the ‘BCABCA’ and ‘CAB’ instances in the template above.
3) By optimizing the loss function we provide in Section 3, the algorithm is able
to uncover a template of exactly the desired form, despite the existence of noise.
Let us compare this method to other graph learning techniques within related
subfields.

Petri nets are used (and were designed) to model concurrency and synchro-
nization in distributed systems. In learning Petri nets from data, and generally
in learning workflow graphs and workflow nets (see van der Aalst [1998]), all
possible transitions in the data must be accounted for within the learned net
(e.g., Agrawal et al. [1998]), which is the opposite of what we would like to do,
which is to create instead a more concise representation that is not necessarily
all-inclusive. The kind of templates we discover should be much simpler than
Petri nets - for us, there is only sequential and iterative routing, and no parallel
routing (no concurrency), there are no “tokens” and thus there is no underlying
workflow state, and there are no conditions involved in moving from one place
to the next (no conditional routing).

One major difference between our approach to learning macro-patterns and
learning probabilistic graphical models such as Markov models is that our ap-
proach is deterministic (not probabilistic). We do not model the probabilities of
transitions between states, as these probabilities are not of fundamental inter-
est for building the template (but could be calculated afterwards). As in other
deterministic methods (e.g., SVM), we aim to directly optimize the quality mea-
sure that the macro-pattern will be judged by on the data, in our case involving
edit distance. This allows us to handle noisy data, that is, meetings that do not
fit precisely into the pattern, without having to include additional nodes that
complicate the template. We do not then need a graph that handles all possi-
ble transitions and their probabilities (as is required in Markov models or Petri
nets). It is certainly possible to model a macro-pattern as a Markov chain, as
we demonstrated, but the resulting transition matrix would most likely provide
little insight. The full Markov transition matrix would be of size |Λ| × |Λ|, but
distilling this to a compact one dimensional graph with mostly forward arrows
would then be an additional task.

Hidden Markov Models aim to infer unobserved states, where in our case,
there are no natural unobserved states. Although we could artificially create
hidden states, it is more natural to directly model the observed sequence. One
exception to this is profile HMM’s, where hidden states are either “match” states,



22 Kim and Rudin

“insert” states, or “delete” states [Eddy, 1998]. Methods for fitting profile HMM’s
generally do not create backwards edges, and thus cannot easily accommodate
substrings being repeated arbitrarily within the template. Profile HMM’s are
designed for accuracy in aligning sequences, but they are not generally designed
for conciseness or to minimize, for instance, a count of backwards edges. Methods
for learning profile HMMs generally require the user to specify the length of the
HMM, whereas we purposely do not do this.

Profile HMM’s generally have a fixed initial state, whereas our method can
start anywhere within the template. The price of a fixed initial state and fixed
length with no backwards edges is high; for instance for a template ‘A’ ‘B’
‘C’ with a backwards arrow from ‘C’ to ‘A,’ we can equally well accommodate
patterns ‘ABCABCABC’ and ‘BCABCA,’ as well as ‘BC’, all of them being
perfect matches to our template. Profile HMM’s, with any fixed initial state, and
with no backwards arrows to allow repeats, would require insertions and deletions
for each of these patterns, and have difficulty viewing all of these patterns equally.
Note that in general, left-to-right HMM’s cannot have backwards loops as our
templates do.

One might also think of automata (Narendra and Thathachar [1974], Wikipedia
[2013]) as a way to model meetings. HMM’s are equivalent to probabilistic au-
tomata with no final probabilities (see Dupont et al. [2005]), where above we
discussed how our goals do not generally involve hidden states. There are addi-
tional characteristics of automata that contrast with our efforts. For instance,
probabilistic automata generally have a set of initial states and accepting or
final (terminating) states, whereas our meetings can begin an end anywhere in
the template, and there is no notion of acceptance or rejection of a meeting to
the template. Further, an important characteristic of Probabilistic Determinis-
tic Finite Automata (PDFA) is that for any given string, at most a single path
generating the string exists in the automaton, whereas in our work, we do not
require this uniqueness (Guttman [2006]).

Probabilistic Suffix Automata (PSA) [Ron et al., 1996] are probabilistic au-
tomata with variable memory length, that aim to learn an order-K Markov
model with K varying in different parts of state space. As with order-1 Markov
chains discussed above, is not clear how to construct a concise template of the
form we are considering. On the other hand, it would be an interesting extension
of our work to keep track of higher order patterns within the template like PSA
does.

One could think of our goal in Section 3 as solving a type of case of the
consensus string problem [Sim and Park, 2003, Lyngsø and Pedersen, 2002] with
consensus error, but with two major changes: (i) using edit distance between
meetings and template instantiations as a metric, rather than between pairs
of strings, which allows backwards loops, (ii) encouraging conciseness in the
template. Problems encountered when not including these aspects were provided
for the ‘ABC’ example above.

The goal of learning metro maps [Shahaf et al., 2012] is very different than
ours, since their goal is to learn a set of special paths through a graph (metro
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lines) that have specific properties. Temporal LDA [Wang et al., 2012] is also
very different than our work: its goal is to predict the next topic within a stream,
whereas our goal is to find a concise representation of a set of strings.

Related Work for Question iv: Identifying characteristics of persuasive speech
and discourse has been of great interest in the qualitative research community
[Sternthal et al., 1978, Scheidel, 1967]. However, there has not been much quan-
titative research done on this topic. Guerini et al. [2008] studied the relationship
between the choice of words and the reaction they elicit in political speeches
based on numerical statistics, including counts of words in each document and
how common the words are across all documents (tf-idf). To the best of our
knowledge, our work is the first work to apply machine learning techniques to
learn persuasive words from free-form conversational meeting data, to rank per-
suasive words, and to compare resulting persuasive words with qualitative studies
to gain insights.

Other meeting related work: Other studies that apply machine learning tech-
niques for meeting related topics (but not specifically related to any of the work
in this paper) include meeting summarization [Purver et al., 2007], topic segmen-
tation [Galley et al., 2003], agreement/disagreement detection [Hahn et al., 2006,
Hillard and Ostendorf, 2003, Bousmalis et al., 2009], detection of the state of a
meeting (discussion, presentation and briefing) [Banerjee and Rudnicky, 2004,
Reiter and Rigoll, 2005], and prediction of the roles of meeting participants
[Banerjee and Rudnicky, 2004]. In all of this work, machine learning techniques
are used as tools to classify a particular aspect of a meeting with a specific ap-
plications in mind. In addition to addressing different aspects of meetings, our
work uses machine learning techniques as a way to to learn and study meet-
ings scientifically in an attempt to bridge the gap between qualitative studies on
understanding meetings and quantitative application-focused studies.

7 Conclusion

The scientific field of meeting analysis is still in beginning stages; meetings have
not yet been well characterized, and this is one of the first works in this new
scientific arena. Several hypotheses made in this work cannot be tested further
with any current available dataset. We hope that by illuminating the poten-
tial of fully solving these problems, it will inspire the creation of new meetings
corpora. Elaborating further, if we are able to automatically detect when key de-
cisions are made, this could translate directly into a software tool that managers
could use to determine when they should join an ongoing meeting of their staff
without attending the full meeting. If we know common patterns of dialogue,
this might help us to understand social cues better for business settings, and
could potentially help reconstruct parts of dialogue that might not have been
recorded properly. If we can automatically detect when a meeting’s key decisions
are made, and can accurately gauge the meeting wrap-up time, it can give us
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something immediately valuable, namely an estimated time for the end of the
current meeting, which staff can use to plan ahead for the start of the next
meeting, or to plan transportation, in a fast-paced corporate culture. If we truly
knew which words were persuasive, we could use these words to help convey our
ideas in the most favorable light. Before we can do all of this, however, we need
to understand the science behind meetings, and make hypotheses that can be
tested, which is the goal of this work.
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Appendix

Proof of Theorem 1.

We will use Hoeffding’s inequality combined with the union bound to create a
uniform generalization bound over all viable templates. The main step in doing
this is to count the number of possible viable templates. Let us do this now.

Let Λ be the set of possible dialogue acts, and denote |Λ| as the number
of elements in the set. We will calculate the number of templates that are of
size less than or equal to L, which is the size of our function class in statistical
learning theory.

For a template of exactly length n, there are |Λ|n possible assignments of
dialogue acts for the templates. Also, for a template of length n, there are at
most

(
n(n−1)/2

B

)
possible assignments of B backward arrows, where B ≤ n. To see

this, consider the set of backwards arrows as represented by an n× n adjacency
matrix, where only the part below the diagonal could be 1. There are n2 total
elements in the matrix, n on the diagonal, so n(n−1) off diagonal elements, and
n(n−1)/2 elements in the lower triangle. If exactly b of these can be 1, the total
number of possibilities is at most

(
n(n−1)/2

b

)
. There can be up to B backward

arrows, so the total number of possibilities is at most

min(B,n)∑
b=0

(
n(n− 1)/2

b

)
.

Note that this number is an upper bound, as usually we cannot have more
than one backwards arrow leaving or entering a node. Finally we could have n
anywhere between 0 and L so the final number of possible templates has upper
bound:

L∑
n=0

|Λ|n
min(B,n)∑
b=0

(
n(n− 1)/2

b

)
.

Hoeffding’s inequality applies to arbitrary bounded loss functions. This, com-
bined with a union bound over all viable templates, yields the statement of the
theorem.
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