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Abstract

This paper presents an approximate method for
performing Bayesian inference in models with
conditional independence over a decentralized
network of learning agents. The method first
employs variational inference on each individual
learning agent to generate a local approximate
posterior, the agents transmit their local poste-
riors to other agents in the network, and finally
each agent combines its set of received local pos-
teriors. The key insight in this work is that, for
many Bayesian models, approximate inference
schemes destroy symmetry and dependencies in
the model that are crucial to the correct appli-
cation of Bayes’ rule when combining the lo-
cal posteriors. The proposed method addresses
this issue by including an additional optimization
step in the combination procedure that accounts
for these broken dependencies. Experiments on
synthetic and real data demonstrate that the de-
centralized method provides advantages in com-
putational performance and predictive test likeli-
hood over previous batch and distributed meth-
ods.

1 INTRODUCTION

Recent trends in the growth of datasets, and the methods
by which they are collected, have led to increasing interest
in the parallelization of machine learning algorithms. Par-
allelization results in reductions in both the memory usage
and computation time of learning, and allows data to be
collected by a network of learning agents rather than by a
single central agent. There are two major classes of paral-
lelization algorithms: those that require a globally shared
memory/computation unit (e.g., a central fusion processor
that each learning agent is in communication with, or the
main thread on a multi-threaded computer), and those that
do not. While there is as of yet no consensus in the litera-

ture on the terminology for these two types of paralleliza-
tion, in this work we refer to these two classes, respectively,
as distributed and decentralized learning.

Some recent approaches to distributed learning have in-
volved using streaming variational approximations (Brod-
erick et al., 2013), parallel stochastic gradient descent
(Niu et al., 2011), the Map-Reduce framework (Dean and
Ghemawat, 2004), database-inspired concurrency control
(Pan et al., 2013), and message passing on graphical mod-
els (Gonzalez et al., 2009). When a reliable central learning
agent with sufficient communication bandwidth is avail-
able, such distributed learning techniques are generally pre-
ferred to decentralized learning. This is a result of the con-
sistent global model shared by all agents, with which they
can make local updates without the concern of generating
conflicts unbeknownst to each other.

Decentralized learning is a harder problem in general, due
to asynchronous communication/computation, a lack of a
globally shared state, and potential network and learning
agent failure, all of which may lead to inconsistencies in
the model possessed by each agent. Addressing these is-
sues is particularly relevant to mobile sensor networks in
which the network structure varies over time, agents drop
out and are added dynamically, and no single agent has the
computational or communication resources to act as a cen-
tral hub during learning. Past approaches to decentralized
learning typically involve each agent communicating fre-
quently to form a consensus on the model over the net-
work, and are often model-specific: particle filtering for
state estimation (Rosencrantz et al., 2003) involves send-
ing particle sets and informative measurements to peers;
distributed EM (Wolfe et al., 2008) requires communica-
tion of model statistics to the network after each local it-
eration; distributed Gibbs sampling (Newman et al., 2007)
involves model synchronization after each sampling step;
robust distributed inference (Paskin and Guestrin, 2004)
requires the formation of a spanning tree of nodes in the
network and message passing; asynchronous distributed
learning of topic models (Asuncion et al., 2008) requires
communication of model statistics to peers after each local
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sampling step; and hyperparameter consensus (Fraser et al.,
2012) requires using linear network consensus on exponen-
tial family hyperparameters.

The method proposed in the present paper takes a differ-
ent tack; each agent computes an approximate factorized
variational posterior using only their local datasets, sends
and receives statistics to and from other agents in the net-
work asynchronously, and combines the posteriors locally
on-demand. Building upon insights from previous work on
distributed and decentralized inference (Broderick et al.,
2013, Rosencrantz et al., 2003), a naı̈ve version of this
algorithm based on Bayes’ rule is presented. It is then
shown that, due to the approximation used in variational
inference, this algorithm leads to poor decentralized pos-
terior approximations for unsupervised models with inher-
ent symmetry. Next, building on insights gained from the
results of variational and Gibbs sampling inference on a
synthetic example, an approximate posterior combination
algorithm is presented that accounts for symmetry struc-
ture in models that the naı̈ve algorithm is unable to cap-
ture. The proposed method is highly flexible, as it can
be combined with past streaming variational approxima-
tions (Broderick et al., 2013, Lin, 2013), agents can share
information with only subsets of the network, the network
may be dynamic with unknown toplogy, and the failure of
individual learning agents does not affect the operation of
the rest of the network. Experiments on a mixture model,
latent Dirichlet allocation (Blei et al., 2003), and latent fea-
ture assignment (Griffiths and Ghahramani, 2005) demon-
strate that the decentralized method provides advantages in
model performance and computational time over previous
approaches.

2 APPROXIMATE DECENTRALIZED
BAYESIAN INFERENCE

2.1 THE NAÏVE APPROACH

Suppose there is a set of learning agents i, i = 1, . . . , N ,
each with a distribution on a set of latent parameters θj ,
j = 1, . . . ,K (all parameters θj may generally be vec-
tors). Suppose a fully factorized exponential family distri-
bution has been used to approximate each agent’s posterior
qi(θ1, . . . , θK). Then the distribution possessed by each
agent i is

qi(θ1, . . . , θK) =
∏
j

qλij (θj), (1)

where λij parameterizes agent i’s distribution over θj .
Given the prior

q0(θ1, . . . , θK) =
∏
j

qλ0j
(θj), (2)

is known by all agents, and the conditional independence
of data given the model, the overall posterior distribu-

tion q(θ1, . . . , θK) may be approximated by using Bayes’
rule (Broderick et al., 2013) and summing over the λij :

q(·) ∝ q0(·)1−N
∏
i

qi(·)

=

∏
j

qλ0j (θj)

1−N∏
i

∏
j

qλij (θj)

∴ q(·) =
∏
j

qλj (θj)

where λj = (1−N)λ0j +
∑
i

λij .

(3)

The last line follows from the use of exponential family dis-
tributions in the variational approximation. This procedure
is decentralized, as each agent can asynchronously com-
pute its individual posterior approximation, broadcast it to
the network, receive approximations from other agents, and
combine them locally. Furthermore, this procedure can be
made to handle streaming data by using a technique such
as SDA-Bayes (Broderick et al., 2013) or sequential vari-
ational approximation (Lin, 2013) on each agent locally to
generate the streaming local posteriors qi.

As an example, this method is now applied to decentralized
learning of a Gaussian model with unknown mean µ = 1.0
and known variance σ2 = 1.0. The prior on µ is Gaussian
with mean µ0 = 0.0 and variance σ2

0 = 2.0. There are
10 learning agents, each of whom receives 10 observations
y ∼ N (µ, σ2). Because the Gaussian distribution is in the
exponential family, the variational approximation is exact
in this case. As shown in Figure 1, the decentralized pos-
terior is the same as the batch posterior. Note that if the
approximation is used on a more complicated distribution
not in the exponential family, then the batch posterior may
in general differ from the decentralized posterior; however,
they will both approximate the same true posterior distri-
bution.

2.2 FAILURE OF THE NAÏVE APPROACH
UNDER PARAMETER PERMUTATION
SYMMETRY

As a second example, we apply decentralized inference to
a Gaussian mixture model with three components having
unknown means µ = (1.0,−1.0, 3.0) and cluster weights
π = (0.6, 0.3, 0.1) with known variance σ2 = 0.09. The
prior on each mean µi was Gaussian with mean µ0 = 0.0
and variance σ2

0 = 2.0, while the prior on the weights π
was Dirichlet with parameters (1.0, 1.0, 1.0). First, the true
posterior, shown in Figure 2a, was formed using 30 data-
points that were sampled from the generative model. Then,
the decentralized variational inference procedure in (3) was
run with 10 learning agents, each of whom received 3 of the
datapoints, resulting in the approximate decentralized pos-
terior in Figure 2b.
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Figure 1: (1a): Batch posterior of µ in black, with histogram of observed data. (1b): Decentralized posterior of µ in black, individual posteriors in color and correspondingly
colored histogram of observed data.

The decentralized posterior, in this case, is a very poor ap-
proximation of the true batch posterior. The reason for this
is straightforward: approximate inference algorithms, such
as variational inference with a fully factorized distribution,
often do not capture parameter permutation symmetry in
the posterior. Parameter permutation symmetry is a prop-
erty of a Bayesian model in which permuting the values
of some subset of the parameters does not change the pos-
terior probability. For example, in the Gaussian mixture
model, the true posterior over π, µ given data y is invariant
to transformation by any permutation matrix P :

p(Pπ, Pµ|y) = p(π, µ|y). (4)

Indeed, examining the true posterior in Figure 2a, one can
identify 6 differently colored regions; each of these regions
corresponds to one of the possible 3! = 6 permutation ma-
trices P . In other words, the true posterior captures the in-
variance of the distribution to reordering of the parameters
correctly.

To demonstrate that approximate inference algorithms typ-
ically do not capture parameter permutation symmetry in
a model, consider the same mixture model, learned with
30 datapoints in a single batch using Gibbs sampling and
variational Bayesian inference. Samples from 5 random
restarts of each method are shown in Figure 3. Both al-
gorithms fail to capture the permutation symmetry in the
mixture model, and converge to one of the 6 possible order-
ings of the parameters. This occurs in variational Bayesian
inference and Gibbs sampling for different reasons: Gibbs
sampling algorithms often get stuck in local posterior like-
lihood optima, while the variational approximation explic-
itly breaks the dependence of the parameters on one an-
other.

In a batch setting, this does not pose a problem, because
practitioners typically find the selection of a particular pa-
rameter ordering acceptable. However, in the decentralized
setting, this causes problems when combining the poste-
riors of individual learning agents. If each agent effec-
tively picks a parameter ordering at random when per-

forming inference, combining the posteriors without con-
sidering those orderings can lead to poor results (such
as that presented in Figure 2b). Past work dealing with
this issue has focused primarily on modifying the samples
of MCMC algorithms by introducing “identifiability con-
straints” that control the ordering of parameters (Jasra et al.,
2005, Stephens, 2000), but these approaches are generally
model-specific and restricted to use on very simple mixture
models.

2.3 MERGING POSTERIORS WITH
PARAMETER PERMUTATION SYMMETRY

This section presents a method for locally combining
the individual posteriors of decentralized learning agents
when the model contains parameter permutation symme-
try. Formally, suppose that the true posterior probability of
θ1, . . . , θK is invariant to permutations of the components
of one or more θj . In general, there may be subsets of
parameters which have coupled symmetry, in that the true
posterior is only invariant if the components of all parame-
ters in the subset are permuted in the same way (for exam-
ple, the earlier Dirichlet mixture model had coupled permu-
tation symmetry in µ and π). It is assumed that any such
coupling in the model is known beforehand by all agents.
Because the exponential family variational approximation
is completely decoupled, it is possible to treat each coupled
permutation symmetry set of parameters in the model inde-
pendently; therefore, we assume below that θ1, . . . , θK all
have coupled permutation symmetry, for simplicity in the
notation and exposition.

In order to properly combine the approximate posterior
produced by each learning agent, first the individual poste-
riors are symmetrized (represented by a tilde) by summing
over all possible permutations as follows:

q̃i(·) ∝
∑
P

∏
j

qPλij (θj), (5)

where the sum is taken to be over all permutation matrices
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Figure 2: (2a): Samples from the true posterior over µ, π. Each particle’s position on the simplex (with π3 = 1 − π1 − π2) represents the sampled weights, while RGB
color coordinates of each particle represent the sampled position of the three means. (2b): Samples from the naı̈vely constructed decentralized approximate posterior, with the
same coloring scheme. Note the disparity with Figure 2a.
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Figure 3: Batch Gibbs sampling (3a) and variational Bayes (3b) approximate posterior samples from 5 random restarts. Comparison to Figure 2a shows that both approximate
inference algorithms tend to converge to a random component of the permutation symmetry in the true posterior.

P with the same dimension as λij . This process of approxi-
mating the true single-agent posterior is referred to as sym-
metrization because q̃i has the same parameter permutation
symmetry as the true posterior, i.e. for all permutation ma-
trices P ,

q̃i(Pθ1, . . . , . . . , PθK) = q̃i(. . . ). (6)

To demonstrate the effect of this procedure, the mixture
model example was rerun with batch variational Bayesian
inference (i.e. all 30 datapoints were given to a single
learner) followed by symmetrization. Samples generated
from these new symmetrized posterior distributions over 5
random restarts of the inference procedure are shown in
Figure 4. This result demonstrates that the symmetrized
distributions are invariant to the random permutation to
which the original approximate posterior converged.

It is now possible to combine the individual (symmetrized)
posteriors via the procedure outlined in (3):

q(·) ∝ q0(·)1−N
∏
i

q̃i(·)

=

∏
j

qλ0j (θj)

1−N∏
i

∑
Pi

∏
j

qPiλij (θj) (7)

=
∑
{Pi}i

∏
j

[
qλ0j (θj)

1−N
∏
i

qPiλij (θj)

]
,

where the outer sum is now over unique combinations of
the set of permutation matrices {Pi}i used by the learning
agents.

2.4 AMPS - APPROXIMATE MERGING OF
POSTERIORS WITH SYMMETRY

The posterior distribution in (7) is unfortunately intractable
to use for most purposes, as it contains a number of terms
that is factorial in the dimensions of the parameters, and
exponential in the number of learning agents. Therefore,
we approximate this distribution by finding the component
with the highest weight – the intuitive reasoning for this is
that the component with the highest weight is the one for
which the individual posteriors have correctly aligned per-
mutations, thus contributing to each other the most and rep-
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Figure 4: Samples from the symmetrized batch variational Bayes approximate posterior from 5 random restarts. Comparison to Figure 2a shows that symmetrization reintro-
duces the structure of the true posterior to the approximate posteriors.

resenting the overall posterior the best. While the resulting
distribution will not be symmetric, it will appear as though
it were generated from variational Bayesian inference; this,
as mentioned before, is most often fine in practice.

In order to compute the weight of each component, we
need to compute its integral over the parameter space. Sup-
pose that each approximate posterior component qλij (θj)
has the following form:

qλij (θj) = hj(θj)e
tr[λT

ijT (θj)]−Aj(λij) (8)

where hj(·) and Aj(·) are the base measure and log-
partition functions for parameter j, respectively. The trace
is used in the exponent in case λij is specified as a ma-
trix rather than as a single column vector (such as in the
example presented in Section 3.1). Thus, given a set of
permutation matrices {Pi}i, the factor of the weight for the
component due to parameter j is

Wj ({Pi}i) =

∫
θj

qλ0j
(θj)

1−N
∏
i

qPiλij
(θj). (9)

The overall weight of the component is the product over the
parameters, so finding the maximum weight component of
(7) is equivalent to finding the set of permutation matrices
P ∗i that maximizes the product of the Wj ,

{P ∗i }i ← arg max
{Pi}i

∏
j

Wj ({Pi}i) . (10)

Due to the use of exponential family distributions in the
variational approximation, the optimization (10) can be
posed as a combinatorial optimization over permutation
matrices with a closed-form objective:

max
{Pi}i

∑
j

Aj

(
(1−N)λ0j +

∑
i

Piλij

)
s.t. Pi ∈ S ∀i

(11)

where S is the symmetric group of order equal to the row
dimension of the matrices λij . Using the convexity of the
log-partition function Aj (·), the fact that the objective is
affine in its arguments, and the fact that the vertices of the
Birkhoff polytope are permutation matrices, one can refor-

mulate (10) as a convex maximization over a polytope:

max
{Pi}i

∑
j

Aj

(
(1−N)λ0j +

∑
i

Piλij

)
s.t. PTi 1 = 1, Pi1 = 1, Pi ≥ 0 ∀i

(12)

where 1 is a vector with all entries equal to 1. Global op-
timization routines for this problem are intractable for the
problem sizes presented by typical Bayesian models (Ben-
son, 1985, Falk and Hoffman, 1986). Thus, the optimiza-
tion must be solved approximately, where the choice of the
approximate method is dependent on the particular form of
Aj(·).

As mentioned earlier, this optimization was formulated as-
suming that all the θj were part of a single coupled permu-
tation symmetry set. However, if there are multiple subsets
of the parameters θ1, . . . θK that have coupled permutation
symmetry, an optimization of the form (12) can be solved
for each subset independently. In addition, for any param-
eter that does not exhibit permutation symmetry, the origi-
nal naı̈ve posterior merging procedure in (3) may be used.
These two statements follow from the exponential family
mean field assumption used to construct the individual ap-
proximate posteriors qi.

3 EXPERIMENTS

All experiments were performed on a computer with an In-
tel Core i7 processor and 12GB of memory.

3.1 DECENTRALIZED MIXTURE MODEL
EXAMPLE REVISITED

The AMPS decentralized inference scheme was applied
to the Gaussian mixture model example from earlier,
with three components having unknown means µ =
(1.0,−1.0, 3.0) and cluster weights π = (0.6, 0.3, 0.1),
and known variance σ2 = 0.09. The prior on each mean µi
was Gaussian, with mean µ0 = 0.0 and variance σ2

0 = 2.0,
while the prior on the weights π was Dirichlet, with pa-
rameters (1.0, 1.0, 1.0). The dataset consisting of the same
30 datapoints from the earlier trial was used, where each
of 10 learning agents received 3 of the datapoints. Each
learning agent used variational Bayesian inference to find
their individual posteriors qi(µ, π), and then used AMPS



to merge them. The only communication required between
the agents was a single broadcast of each agent’s individual
posterior parameters.

In this example, the AMPS objective1 was as follows:

JAMPS = − log Γ

 3∑
j=1

(βj + 1)

+

3∑
j=1

−
η2j
4νj
− 1

2
log (−2νj) + log Γ (βj + 1)

(13)

with

λiµ =

[
ηi1 ηi2 ηi3
νi1 νi2 νi3

]T
, i = 1, . . . , 10

λiπ =
[
βi1 βi2 βi3

]T
, i = 1, . . . , 10

λµ = −9λ0µ +
∑
i

Piλiµ ≡
[
η1 η2 η3
ν1 ν2 ν3

]T
λπ = −9λ0π +

∑
i

Piλiπ ≡
[
β1 β2 β3

]T
(14)

λ0µ =

[
0 0 0

−0.25 −0.25 −0.25

]T
λ0π =

[
0 0 0

]T
βij = αij − 1, ηij =

µij
σ2
ij

, νij = − 1

2σ2
ij

where αij was agent i’s posterior Dirichlet variational pa-
rameter for cluster j, and µij/σ2

ij were agent i’s posterior
normal variational parameter for cluster j. The objective
was optimized approximately over the 3 × 3 permutation
matrices Pi by proposing swaps of two rows in Pi, accept-
ing swaps that increased JAMPS, and terminating when no
possible swaps increased JAMPS.

The individual posteriors for 3 of the learning agents are
shown in Figure 5, while the decentralized posterior over
all the agents is shown in Figure 6 alongside its sym-
metrization (for comparison to the true posterior – this fi-
nal symmetrization is not required in practice). The AMPS
posterior is a much better approximation than the naı̈ve de-
centralized posterior shown in Figure 2b; this is because
the AMPS posterior accounts for parameter permutation
symmetry in the model prior to combining the individual
posteriors. It may be noted that the decentralized posterior
has slightly more uncertainty in it than the batch posterior,
but this is to be expected when each learning agent indi-
vidually receives little information (as demonstrated by the
uncertainty in the individual posteriors shown in Figure 5).

1The AMPS objective for each experiment was constructed
using the log-partition function Aj(·) of the relevant exponen-
tial family models, which may be found in (Nielsen and Garcia,
2011).

3.2 DECENTRALIZED LATENT DIRICHLET
ALLOCATION

The next experiment involved running decentralized varia-
tional inference with AMPS on the LDA document cluster-
ing model (Blei et al., 2003). The dataset in consideration
was the 20 newsgroups dataset, consisting of 18,689 doc-
uments with 1,000 held out for testing, and a vocabulary
of 11,175 words after removing stop words and stemming
the remaining words. Algorithms were evaluated based
on their approximate predictive likelihood of 10% of the
words in each test document given the remaining 90%, as
described in earlier literature (Wang et al., 2011). The vari-
ational inference algorithms in this experiment were ini-
tialized using smoothed statistics from randomly selected
documents.

In LDA, the parameter permutation symmetry lies in the
arbitrary ordering of the global word distributions for each
topic. In particular, for the 20 newsgroups dataset, decen-
tralized learning agents may learn the 20 Dirichlet distribu-
tions with a different ordering; therefore, in order to com-
bine the local posteriors, we use AMPS with the following
objective to reorder each agent’s global topics:

JAMPS =

K∑
k=1

JAMPS,k =

K∑
k=1

W∑
w=1

log Γ (αkw)− log Γ

(
W∑
w=1

αkw

) (15)

α = (1−N)α0 +

N∑
i=1

Piαi, α, αi ∈ RK×W

α0kw =
10

W
K = 20, W = 11, 175

where αikw is agent i’s posterior Dirichlet variational pa-
rameter for topic k and word w, and the optimization is
over K × K permutation matrices Pi, i = 1, . . . , N . For
the LDA model, the AMPS objective JAMPS is additive
over the topics k; therefore, JAMPS can be optimized ap-
proximately by iteratively solving maximum-weight bipar-
tite matching problems as follows:

1. Initialize the decentralized posterior parameter α ←
(1−N)α0 +

∑N
i=1 Piαi with a set of Pi matrices

2. For each agent i until JAMPS stops increasing:

(a) Deassign agent i’s posterior: α← α− Piαi
(b) Form a bipartite graph with decentralized topics

k on one side, agent i’s topics k′ on the other, and
edge weights wkk′ equal to JAMPS,k if agent i’s
topic k′ is assigned to the decentralized topic k

(c) Pi ← Maximum weight assignment of agent i’s
topics

(d) Reassign agent i’s posterior: α← α+ Piαi
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Figure 5: Samples from the individual posterior distributions from variational Bayesian inference for 3 of the learning agents. Note the high level of uncertainty in both the
weights (position) and cluster locations (colour) in each posterior.
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Figure 6: (6a): Samples from the decentralized posterior output by AMPS. Comparison to Figure 5 shows that the AMPS posterior merging procedure improves the posterior
possessed by each agent significantly. (6b): Samples from the symmetrized decentralized posterior. This final symmetrization step is not performed in practice; it is simply
done here for comparison with Figure 2a.
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(a) 5 Learning Agents
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(b) 10 Learning Agents
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(c) 50 Learning Agents

Figure 7: Plots of log likelihood on the test data for 5 (7a), 10 (7b), and 50 (7c) learning agents. The boxes bound the 25th and 75th percentiles of the data with medians shown
in the interior, and whiskers show the maximum and minimum values.

First, the performance of decentralized LDA with AMPS
was compared to the batch approximate LDA posterior
with a varying number of learning agents. Figure 7 shows
the test data log likelihood and computation time over 20
trials for the batch posterior, the AMPS decentralized pos-
terior, and each individual agent’s posterior for 5, 10, and
50 learning agents. The results mimic those of the syn-
thetic experiment – the posterior output by AMPS signif-
icantly outperforms each individual agent’s posterior, and
the effect is magnified as the number of agents increases.
Further, there is a much lower variance in the AMPS poste-
rior test log likelihood than for each individual agent. The

batch method tends to get stuck in poor local optima in
the variational objective, leading to relatively poor perfor-
mance, while the decentralized method avoids these pitfalls
by solving a number of smaller optimizations and com-
bining the results afterwards with AMPS. Finally, as the
number of agents increases, the amount of time required to
solve the AMPS optimization increases; reducing this com-
putation time is a potential future goal for research on this
inference scheme.

The next test compared the performance of AMPS to SDA-
Bayes (Broderick et al., 2013), a recent streaming, dis-
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Figure 8: Comparison with SDA-Bayes. The A × B in the legend names refer to
using A learning agents, where each splits their individual batches of data into B
subbatches.

tributed variational inference algorithm. The algorithms
were tested on 20 trials of each of three settings: one with
1 agent and 10 subbatches of data per agent; one with 10
agents and 1 subbatch of data per agent; and finally, one
with 10 agents and 10 subbatches of data per agent. Each
agent processed its subbatches in serial. For SDA-Bayes,
each agent updated a single distributed posterior after each
subbatch. For the decentralized method, each agent used
AMPS to combine the posteriors from its own subbatches,
and then used AMPS again to combine each agent’s result-
ing posterior.

Figure 8 shows the results from this procedure. AMPS out-
performs SDA-Bayes in terms of test log likelihood, and
is competetive in terms of the amount of time it takes to
perform inference and then optimize the AMPS objective.
This occurs because AMPS takes into account the arbi-
trary ordering of the topics, while SDA-Bayes ignores this
when combining posteriors. An interesting note is that the
AMPS10x10 result took less time to compute than the time
for 50 agents in Figure 7c, despite the fact that it effectively
merged 100 posterior distributions; this hints that develop-
ing a hierarchical optimization scheme for AMPS is a good
avenue for further exploration. A final note is that using
AMPS as described above is not truely a streaming proce-
dure; however, one can rectify this by periodically merging
posteriors using AMPS to form the prior for inference on
subsequent batches.

3.3 DECENTRALIZED LATENT FEATURE
ASSIGNMENT

The last experiment involved running decentralized varia-
tional inference with AMPS on a finite latent feature as-
signment model (Griffiths and Ghahramani, 2005). In this
model, a set of K feature vectors µk ∈ RD are sampled
from a Gaussian prior µk ∼ N (0, σ2

0I), and a set of fea-
ture inclusion probabilities are sampled from a beta prior
πk ∼ Beta(αk, βk). Finally, for each image i, a set of
features zi are sampled independently from the weights
zik ∼ Be(πk), and the image yi ∈ RD is sampled from

a Gaussian likelihood yi ∼ N (
∑
k µkzik, σ

2I).

Two datasets were used in this experiment. The first was a
synthetic dataset withK = 5 randomly generatedD = 10-
dimensional binary feature vectors, feature weights sam-
pled uniformly, and 1300 observations sampled with vari-
ance σ2 = 0.04, with 300 held out for testing. For this
dataset, algorithms were evaluated based on the error be-
tween the means of the feature posteriors and the true set
of latent features, and based on their approximate predic-
tive likelihoods of a random component in each test obser-
vation vector given the other 9 components. The second
dataset was a combination of the Yale (Belhumeur et al.,
1997) and Caltech2 faces datasets, with 581 32×32 frontal
images of faces, where 50 were held out for testing. The
number of latent features was set to K = 10. For this
dataset, algorithms were evaluated based on their approxi-
mate predictive likelihood of 10% of the pixels in each test
image given the remaining 90%, and the inference algo-
rithms were initialized using smoothed statistics from ran-
domly selected images.

The parameter permutation symmetry in the posterior of
the latent feature model lies in the ordering of the features
µk and weights πk. Therefore, to combine the local poste-
riors, we use AMPS with the following objective to reorder
each agent’s set of features and weights:

JAMPS =

K∑
k=1

JAMPS,k =

K∑
k=1

log Γ(αk) + log Γ(βk)− log Γ(αk + βk)

− ηTk ηk
4νk

− D

2
log(−2νk)

(16)

where α, β ∈ RK are the combined posterior beta natural
parameters, and η ∈ RD×K , ν ∈ RK are the combined
posterior normal natural parameters (combined using the
(1 −N) ∗0 +

∑
i Pi∗i rule as described in the foregoing).

The priors were αk0 = βk0 = 1, ηk0 = 0 ∈ RD, and
νk0 was estimated from the data. As in the LDA model,
the AMPS objective for the latent feature model is addi-
tive over the features k; therefore the optimization was per-
formed using iterative maximum-weight bipartite match-
ings as described in Section 3.2.

Figure 9 shows the results from the two datasets using batch
learning and decentralized learning. For the decentralized
results, the posteriors of 5 learning agents were combined
using AMPS or the naı̈ve approach (equivalent to SDA5×1
in the notation of Figure 8). Figure 9a shows that AMPS
discovers the true set of latent features with a lower 2-norm

2Available online: http://www.vision.caltech.edu/html-
files/archive.html
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Figure 9: (9a): 2-norm error between the discovered features and the true set for the synthetic dataset. (9b): Test log likelihood for the synthetic dataset. (9c): Test log
likelihood on the faces dataset. All distributed/decentralized results were generated using 5 learning agents.

error than both the naı̈ve posterior combination and the in-
dividual learning agents, with a comparable error to the
batch learning case. However, as shown in Figures 9b (syn-
thetic) and 9c (faces), AMPS only outperforms the naı̈ve
approach in terms of predictive log likelihoods on the held-
out test set by a small margin. This is due to the flexibil-
ity of the latent feature assignment model, in that there are
many sets of latent features that explain the observations
well.

4 DISCUSSION

This work introduced the Approximate Merging of Poste-
riors with Symmetry (AMPS) algorithm for approximate
decentralized variational inference. AMPS may be used
in ad-hoc, asynchronous, and dynamic networks. Experi-
ments demonstrated the modelling and computational ad-
vantages of AMPS with respect to batch and distributed
learning. Motivated by the examples in Section 3, there
is certainly room for improvement of the AMPS algorithm.
For example, it may be possible to reduce the computa-
tional cost of AMPS by using a hierarchical optimization
scheme, rather than the monolithic approach used in most
of the examples presented in the foregoing. Further, ex-
tending AMPS for use with Bayesian nonparametric mod-
els is of interest for cases when the number of latent param-
eters is unknown a priori, or when there is the possibility
that agents learn disparate sets of latent parameters that are
not well-combined by optimizing over permutations. Fi-
nally, while the approximate optimization algorithms pre-
sented herein work well in practice, it would be of interest
to find bounds on the performance of such algorithms with
respect to the true AMPS optimal solution.
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