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Abstract

The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about
individuals’ location, phone call logs, or web-searches, is collected and used intensively by organizations and big data
researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack of technical
solutions for personal metadata management is preventing metadata from being shared and reconciled under the control
of the individual. This lack of access and control is furthermore fueling growing concerns, as it prevents individuals from
understanding and managing the risks associated with the collection and use of their data. Our contribution is two-fold: (1)
we describe openPDS, a personal metadata management framework that allows individuals to collect, store, and give fine-
grained access to their metadata to third parties. It has been implemented in two field studies; (2) we introduce and analyze
SafeAnswers, a new and practical way of protecting the privacy of metadata at an individual level. SafeAnswers turns a hard
anonymization problem into a more tractable security one. It allows services to ask questions whose answers are calculated
against the metadata instead of trying to anonymize individuals’ metadata. The dimensionality of the data shared with the
services is reduced from high-dimensional metadata to low-dimensional answers that are less likely to be re-identifiable and
to contain sensitive information. These answers can then be directly shared individually or in aggregate. openPDS and
SafeAnswers provide a new way of dynamically protecting personal metadata, thereby supporting the creation of smart
data-driven services and data science research.
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Introduction

Personal metadata – digital information about users’ location,

phone call logs, or web-searches – is undoubtedly the oil of

modern data-intensive science [1] and of the online economy [2].

This high-dimensional metadata is what allow apps to provide

smart services and personalized experiences. From Google’s

search to Netflix’s ‘‘movies you should really watch,’’ from

Pandora to Amazon, metadata is used by commercial algorithms

to help users become more connected, productive, and enter-

tained. In science, this high-dimensional metadata is already used

to quantify the impact of human mobility on malaria [3] or to

study the link between social isolation and economic development

[4].

Metadata has however yet to realize its full potential. This data

is currently collected and stored by hundreds of different services

and companies. Such fragmentation makes the metadata inacces-

sible to innovative services, researchers, and often even to the

individual who generated it in the first place. On the one hand, the

lack of access and control of individuals over their metadata is

fueling growing concerns. This makes it very hard, if not

impossible, for an individual to understand and manage the

associated risks. On the other hand, privacy and legal concerns are

preventing metadata from being reconciled and made broadly

accessible, mainly because of concerns over the risk of re-

identification [5–7].

Here we introduce openPDS, a field-tested personal data store

(PDS) allowing users to collect, store, and give fine-grained access

to their metadata to third parties. We also introduce SafeAnswers,

a new and practical way of protecting the privacy of metadata

through a question and answer system. Moving forward,

advancements in using and mining these metadata have to evolve

in parallel with considerations of control and privacy [8–11].

openPDS and SafeAnswers allow personal metadata to be safely

shared and reconciled under the control of the individual.

Towards Personal Data Stores
While questions of data ownership and the creation of

repositories of personal data have been discussed for a long time

[12–20], their deployment on a large-scale is a chicken-and-egg

problem; users are waiting for compatible services while services

are waiting for user adoption. Revelations of the collection and use

of metadata by governments and companies [21–22] have

however recently drawn attention to their potential. The

combination of 1) a public interest in questions of control but

also use of their data, 2) political and legal support on data
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ownership [23–26] and 3) the scale at which metadata can now be

collected and processed, might trigger the large-scale deployment

of PDS.

openPDS fully aligns with these trends. It uses the World

Economic Forum definition of ‘‘ownership’’ of metadata [25]: the

rights of possession, use, and disposal. It follows policies of the

National Strategy for Trust Identities in Cyberspace (NSTIC) [24]

and strongly aligns with the European Commission’s reform of the

data protection rules [23]. Finally, it recognizes that users are

interacting with numerous data sources on a daily basis.

Interoperability is thus not enough to achieve data ownership or

address privacy concerns. Instead, openPDS implements a secure

space acting as a centralized location where the user’s metadata

can live. openPDS can be installed on any server under the control

of the individual (personal server, virtual machine, etc) or can be

provided as a service (SaaS by independent software vendors or

application service providers). This allows users to view and reason

about their metadata and to manage fine-grained data access.

From an economic standpoint, data ownership by the individual

fundamentally changes the current eco-system. It enables a fair

and efficient market for metadata [2,27] – a market where users

can get the best services and algorithms for their metadata. Users

can decide whether a service provides enough value for the

amount of data it requests, and services can be rated and

evaluated. Users are empowered to ask questions like ‘‘Is finding

out the name of this song worth enough to me to give away my

location?’’ Users can seamlessly give new services access to their

past and present metadata while retaining ownership. From a

business standpoint, such data ownership is likely to help foster

alternatives to the current data-selling and advertising-based

business model. New business models focusing on providing

hardware for data collection, storage for metadata, or algorithms

for better using metadata might emerge while software for data

collection and data management might be mostly open-source.

The proposed framework removes barriers to entry for new

businesses, allowing the most innovative algorithmic companies to

provide better data-powered services [2].

Other approaches have been proposed for the storage, access

control, and privacy of data. Previous approaches fall into two

categories: cloud storage systems and personal data repositories.

First, cloud storage systems, such as the ones that have been

commercially developed by companies like Dropbox [28] and

Carbonite [29], are a first approximation of a user-controlled

information repository for personal data. They however focus on

storing files and only implement the most basic type of access

control, usually on a file or folder basis. They do not suggest any

data aggregation mechanisms and, once access has been granted,

the raw data is exposed to the outer world, potentially

compromising privacy. Second, personal data repositories have

been developed in academic [12–17,30,31] and commercial

settings [18–20]. All of these repositories are however restricted

to specific queries on a particular type of data, such as interests or

social security numbers. They provide only a basic access-control

level, which means that once access to the data is authorized,

privacy may be compromised. openPDS differs from previous

approaches in its alignment with current political and legal

thinking, its focus on large-scale metadata, and its SafeAnswers

privacy-preserving mechanism.

On Privacy
There is little doubt that web searches, GPS locations, and

phone call logs contain sensitive private information about an

individual. In 2012, 72 percent of Europeans were already

concerned about the use of their personal data [23]. The recent

revelations are unlikely to have helped [21,22]. Addressing users’

legitimate privacy concerns will soon be a prerequisite to any

metadata usage.

Protecting the privacy of metadata is known to be a hard

problem. The risks associated with high-dimensional metadata are

often subtle and hard to predict and anonymizing them is known

to be very hard. Over the last years, numerous works have exposed

the risks of re-identification or de-anonymization of apparently

anonymous datasets of metadata. An anonymous medical

database was combined with a voters’ list to extract the health

record of the governor of Massachusetts [7] while the Kinsey

Institute database was showed to be re-identifiable using demo-

graphics [32]. Twenty million web queries from around 650,000

AOL users were found to be potentially re-identifiable thanks to

people’s vanity searches [33] while the Netflix challenge dataset

was de-anonymized using users’ ratings on IMDB (The Internet

Movie Database) [6]. Finally, mobility datasets of millions of users

were found to be potentially re-identifiable using only four

approximate spatio-temporal points [5].

Geospatial metadata, the second most recorded information by

smartphone applications [34,35], is probably the best example of

the risks and rewards associated with metadata [36]. On the one

hand, a recent report of the Electronic Frontier Foundation [37]

worries about potentially sensitive information that can be derived

from geospatial metadata. For example, geo-spatial metadata

behavior collected from mobile phones has been shown to be very

useful in predicting users’ personalities [38]. On the other hand,

the number of users of location-aware services, such as Yelp or

Foursquare, are rising quickly as these services demonstrate their

benefits to users.

Numerous ways of anonymizing personal data beyond the

simple removal of explicit identifiers have been proposed. Similar

to the original k-anonymity model [39], they aim minimize

privacy risks while keeping data utility as high as possible. All

anonymization models have however several major limitations.

Generic anonymization models have been designed for

relatively low-resolution data and cannot be easily extended to

high-dimensional data such as GPS location or accelerometer

readings. Through generalization and suppression, k-anonymity

makes every record in a given table indistinguishable from at least

k{1 other records, thereby making it impossible to identify an

individual in that table. Variations and alternatives include ‘-
diversity [40], which address attacks based on lack of diversity in

the sensitive data and t-closeness [41,42] which aims at

maintaining the distribution of the sensitive data. The reader is

referred to the surveys [43,44] for further details. In metadata, any

information that is unique to an individual can be used to re-

identify him. Unicity (E) has been used to quantify the re-

identifiability of a dataset [5]. Most rich metadata datasets are

expected to have a high E. This means that, even if they are

computationally tractable, generic privacy models are likely to

result in most data having to be suppressed or generalized to the

top-most values in order to satisfy the privacy requirement [45].

This curse of dimensionality led to the development of models

dedicated to the anonymization of mobility data.

Mobility-focused anonymization models protect individual’s

mobility traces but only for very specific data applications or

against specific re-identification attacks. The anonymization

models in [46–50] protect the current location of the user,

allowing him to anonymously perform accurate location-based

searches. They however prevent any uses of historical metadata or

side information, making them impractical for research and smart

services using historical data. Other models [51,52] allow for the

anonymization of short successions of geospatial locations with no

openPDS: Protecting the Privacy of Metadata through SafeAnswers

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e98790



associated timestamps or [53] protect an individual’s mobility data

against re-identification at certain given times. These models

however focus on anonymizing mobility data with a certain

purpose or specific type of data in mind (i.e., current location,

trajectory without timestamps or mobility data in given times).

This makes these models impracticable for most data-science

applications in academia and organizations.

Finally, all anonymization models, generic or mobility-focused,

assume a setting in which the whole database is anonymized and

published once. This makes it impractical, as (1) the same database

is likely to be used to address different research questions (which

might need specific pieces of information) and (2) smartphone

applications or researchers might need access to the very latest

pieces of information. Modifying existing anonymization models

to support multiple releases has been shown to be non-trivial [54].

Indeed, anonymizing each publication on its own is not sufficient,

since a violation of privacy may emerge as a result of joining

information from different publications. Anonymizing the whole

database once and successively releasing the relevant part of the

anonymized data is not a solution either, since newer data may

become available. Several dedicated models were recently

suggested to address the multiple publications setting [54–57].

While very interesting, these models are based on extensions of the

original one publication models and are thus very limited in the

number and type of publications that they can handle.

SafeAnswers, a new paradigm
The goal of SafeAnswers is to turn an algorithmically hard

anonymization and application-specific problem into a more

tractable security one by answering questions instead of releasing

copies of anonymized metadata.

Under the openPDS/SafeAnswers mechanism, a piece of code

would be installed inside the user’s PDS. The installed code would

use the sensitive raw metadata (such as raw accelerometers

readings or GPS coordinates) to compute the relevant piece of

information within the safe environment of the PDS. In practice,

researchers and applications submit code (the question) to be run

against the metadata, and only the result (the answer) is sent back

to them. openPDS/SafeAnswers is similar to differential privacy

[58,59], both being online privacy-preserving systems. Differential

Privacy is however designed for a centralized setting where a

database contains metadata about numerous individuals and

answers are aggregate across these individuals. SafeAnswers is

unique, as it focuses on protecting the privacy of a single individual

whose data are stored in one place by reducing the dimensionality

of the metadata before it leaves the safe environment. This

individual-centric setting makes it practical for mobile applications

or data-science researchers. It however introduces new privacy

challenges [see Analysis].

Combined with openPDS, this simple idea allows individuals to

fully use their data without having to share the raw data.

SafeAnswers also allows users to safely grant and revoke data

access, to share data anonymously without needing a trusted third-

party, and to monitor and audit data uses [Fig. 1 and 2].

Results

The openPDS framework
The Dataflow. Looking at Fig. 3, consider a usecase in which

a user uses a personalized music service such as PersonalizedMu-

sic. Every time PersonalizedMusic needs to decide which song to

play next on the user’s mobile phone or desktop, it sends a request

to the user’s PDS. The actual computation of what song to play

next is done by the PersonalizedMusic SafeAnswers module (SA

module) inside the PDS front-end. As part of this processing, the

PersonalizedMusic SA module accesses the back-end database in

order to retrieve the required metadata. The PersonalizedMusic

SA module would only access the raw metadata that it was

authorized to when it was installed and all the processing would

take place in a software sandbox. Upon completing its processing,

the PersonalizedMusic SA module would return the name of the

next song to play back to the front-end who will validate it and

send it back to PersonalizedMusic.

The Database. Metadata are currently stored in a CouchDB

database. CouchDB is a NoSQL store that stores data as a key to

document mapping, where documents are JSON objects.

CouchDB also provides a large range of existing functionality

that lends itself well to the type of analysis needed to compute

answers or reduce the dimensionality of the metadata. It has built-

in support for MapReduce through CouchDB-Views, as well as

data validation. All SafeAnswers modules share one unified

database, and each SA module has a corresponding key prefix.

The Front-End. The front-end ensures that no unauthorized

operations are carried out on the underlying metadata. SA

modules are restricted to reading from the data sources they have

explicitly listed as dependencies. CouchDB can also enforce access

based on metadata types, time of access, time of collection, etc.

The access control mechanism is implemented based on Django

users and a permissioning system, where each app is registered as a

user. We are working to decouple the access control mechanism

and the PDS using oAuth1.0 protocol [60]. This will allow an

authentication server to hand out tokens associated with a specific

service and set of metadata. In addition, SA modules are executed

in a sandboxed environment, and all communications are

encrypted using 256 bits SSL connections. In some implementa-

tions, PDSs can be managed from a web interface.

SafeAnswers is one key innovation of the openPDS framework.

SafeAnswers allows for computations on user metadata to be

performed within the safe environment of the PDS. Only safe

answers, the exact information needed to provide the service, leave

the PDS. SA modules are intimately tied to the notion of Design

Documents in CouchDB. A CouchDB design document is

intended to be a document that describes an application to be

built on top of an underlying CouchDB instance. Each access of

the SA module to the database has to be authorized and each SA

module executes inside a sandbox. We are now working to add

additional fields to the CouchDB design document specification to

allow additional functionality, like SA module dependencies and

permissions. These descriptions will be written in the SA module

manifest to be programmatically enforced and to be presented to

the user before installation.

In large-scale deployments, we expect that, instead of develop-

ing a SA module from scratch for each app, there will be common

libraries that can be leveraged by SA modules or directly through

a standard API. For example, there could be a library that

supports functionality, like returning the current city a user is in

[15], his radius of gyration in the past 7 days [61] or whether he is

currently running. In the future, we also hope to further develop

the SafeAnswers system to support sessions. This would allow for

some of the most advanced data-science uses.

Field-studies and user feedback
Our two initial deployments offer a first qualitative evaluation of

the system. The first field study is monitoring the daily behavior of

individuals with diagnosed mental problems (PTSD, depression)

and controls subjects for a month through their smartphones [62].

Data is used to reproduce the diagnoses of mental health

conditions, focusing on changes in speech and social behavior.

openPDS: Protecting the Privacy of Metadata through SafeAnswers

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e98790



Recorded activities include psycho-motor activity, occupational

activity, social interaction, and sleep behavior.

Fig. 4 presents ‘‘focus-group’’ results about the reaction of

individuals to the openPDS framework (N~21, 6 females and 15
males, median age category is 29 to 34 old). We consider the

Figure 1. Mockups of the proposed SafeAnswers settings presented to the user for approval. This screen shows the question answered,
examples of the possible responses, and the sensors used to compute the response.
doi:10.1371/journal.pone.0098790.g001
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deployment to be a success, as 81% of individuals say they would

use it in their personal life and, on a 1 to 5 scale (1: ‘‘Not at all

comfortable’’ and 5: ‘‘Extremely comfortable’’), are comfortable

with the data collection (mean: 4, sem: 0.27). From a privacy

perspective, we can see that the ability to delete data matters to

participants (mean: 4.10, sem: 0.27). We can qualitatively see that

users are generally comfortable sharing individual data with their

primary care provider and mental health specialist. However, they

seem to be less comfortable sharing such data with friends and

potentially their family members. We can also see that anonymity

matters to participants (mean:4 sem:0.30) and that they are

significantly more comfortable sharing anonymous, rather than

individual, data (p-value ,0.005 with a one-tailed, paired, non-

parametric Kolmogorov-Smirnov test on 4 specific sharing

questions, and mean:4 sem:0.25 when asked on the importance

of anonymizing shared data). All these emphasize the relevance of

the openPDS/SafeAnswers framework.

A second study, the mobile territorial lab, in partnership with

Telecom Italia, Telefonica, and the Fondazione Bruno Kessler, is

now underway. It is composed of 70 young parents living in

Trento and its premises. The aim here is to create a long-term

living lab to study user behavior and to perform user studies.

Participants’ behavior is recorded using an extended version of the

open-sensing framework FunF [63]. All collected metadata are

stored on users’ PDSs.

Discussion

Performance
openPDS may introduce a performance overhead caused by its

distributed nature, the added security and privacy mechanisms

and the group computation mechanism [see Analysis].

First, the distributed nature of openPDS requires services to

access the user’s PDS when an answer has to be computed. In

cases where computing the answer is fast, the latency it imposes

might make an openPDS-based solution impracticable. Solutions

such as precomputing some values and locally caching them might

help. However, in cases where computing the answer inside the

PDS dominates the total execution time, this might not

significantly impact the user experience. In fact, this might

actually introduce a performance boost, since it parallelizes the

computations that are being performed at a per-PDS level.

Second, the added security and privacy mechanisms described

below may also result in performance overhead. This overhead

needs to be taken into account when choosing the appropriate

mechanism. For example, the on-the-fly nature of openPDS/

Figure 2. Mockups of the proposed interface showing the
number of requests sent by a given app per day.
doi:10.1371/journal.pone.0098790.g002

Figure 3. openPDS system’s architecture. LBSinc web or mobile
app sent a request to the user’s openPDS. The request is passed on to
the LBSinc SA module, which requests access to the database in order
to retrieve the metadata needed to compute the answer. The SA
module computes the answer, which is then validated by the PDS
Front-End and send back to the web or the mobile app.
doi:10.1371/journal.pone.0098790.g003
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SafeAnswers may lead to inference of sensitive data if the results of

several queries are joined together. On the one hand, using

techniques such as the one suggested by [54] may be very efficient

in preventing such inference, but they are relatively expensive in

computation time. On the other hand, adding noise to query

results may not be equally efficient, but would result in a much

faster computation time. Advanced techniques might thus be

crucial when dealing with credit card or location data, but noise

addition might be sufficient to protect less sensitive data such as

accelerometer readings.

For many years, group computation has been of theoretical

interest only. Great improvements and actual field-studies in

domains such as electronic voting, actioning, and data mining

have recently made group computation–also called Secure

Multiparty Computation, or SMC–of practical interest [64].

Similar to network latency, the overhead of SMC might become

reasonable if computing the answer dominates the total compu-

tation time. SMC has furthermore recently been generalized into

belief propagation algorithms [65]. This means that every node of

the computation does not have to communicate with every other

anymore, thereby reducing the overhead.

Usage Experience
In this section we describe two short scenarios for a user and a

developer switching to an openPDS/SafeAnswers system for

mobile applications.

End-User. Suppose Alice wants to install and use a

smartphone app like LBSinc, a location-based check-in applica-

tion, without using a PDS. Alice downloads the app onto her

phone, authorizes LBSinc to access her phone’s network

communication and GPS coordinates, and creates a user account

with LBSinc. The LBSinc app starts collecting metadata about her

and stores it all in its back-end servers. Under this model it is

difficult for Alice to access the metadata LBSinc uses to makes

inferences about her, or to remove the metadata she does not want

LBSinc to access or use.

Alternatively, Alice could decide to download a PDS-aware

version of LBSinc. She installs it just like she would install any

other smartphone app and authorizes it to access only her phone’s

network communication. When used for the first time, the

smartphone app prompts her to enter her PDS URI. Alice then

sees exactly what metadata the LBSinc SA module will have access

to and examples of the answers [see Fig. 2], the relevant

summarized information that will be send back to LBSinc. If she

accepts, the LBSinc SA module is installed onto her PDS and she

can start using it.

App Developer. Suppose a developer now wants to imple-

ment MyMusic, a smartphone app that plays music to Alice based

on her preferences and current activity. Under the current model,

he would first have to develop a smartphone app to collect the

metadata on Alice’s phone, record it, and periodically send it to a

server. He would then develop a server with an internal database

to store the raw activity data he collects, a secured API for this

database to receive the metadata, and a way to anonymize the

metadata or at least separate the user account information from

the metadata. He could then start developing an algorithm to

decide which song or type of music to play. The initial picture he

would have of users would be very rough, as he would have no

prior metadata to work with. Finally, he would have to wait to

collect a sufficient amount of metadata before being able to

provide adequate recommendations.

If operating within the openPDS/SafeAnswers framework, the

metadata that the developer needs are likely to have already been

collected either by a metadata collection app [66] or by another

application or service. The developer would then spend most of his

time writing an SA module that would decide which song or type

of music to play and test it on development copies of PDSs. The

PDS front-end would take care of creating the API and of securing

the connection for him. The developer’s algorithm would be able

to access a potentially large set of metadata, including historical

metadata.

Analysis

The openPDS framework suggests several mechanisms for

enhancing the privacy and security of personal metadata: Safe-

Answers, access control, sandboxes, and network encryption. In

Figure 4. Individuals’ reaction to data sharing. The error bars are bootstrapped 95% high-density intervals. We can qualitatively see that users
are generally comfortable sharing individual data with their primary care provider and mental health specialist. They however seem to be less
comfortable sharing such data with friends and potentially family members.
doi:10.1371/journal.pone.0098790.g004
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this section, we discuss several cases where these might fall short

and discuss potential counter-measures.

Protecting aggregated answers of groups
A practical example would be a service, such as CouponInc,

which wants to execute a simple query to know how many of its

users are around a certain shop to send them a special coupon.

CouponInc might want to issue a query like ‘‘How many users are

in this geographical area at the current time?’’ or ‘‘How active are

these users during lunch time?’’

In a distributed setting, such computation falls under the well-

studied field of secure multi-party computation (SMC) [67], where

the querying agent never sees any individual user’s metadata but

can access information aggregated across users. User privacy is

preserved, as each PDS only sends cryptographically masked

messages to other nodes in the network.

Such a cryptographic technique fits elegantly into the PDS

model of computation [Fig. 5]. Rather than anonymizing and

computing over-complex data items, like GPS coordinates, the SA

modules could compute features locally to each user’s PDS,

reducing the dimensionality of the metadata. After the local

computation is done, the inferred facts–e.g. whether or not a given

user is in a given geographical area–can be aggregated in a

privacy-preserving way. This means that even the low-dimension

answer cannot be associated with a particular user.

Attacks in the case of well-behaved apps
Even in the absence of attackers, apps that behave as they are

supposed to might pose a risk to users’ privacy. We notice two

major challenges: (1) How can an openPDS/SafeAnswers

determine the required level of aggregation given that it only

has access to the metadata of a single user? (2) Well-behaved apps

could inadvertently collect data whose combinations may allow

others to infer sensitive information.

A potential solution to the first challenge might be found in [5].

The authors studied fifteen months of human mobility data for one

and a half million individuals, and found that one formula

determines the uniqueness of an individual’s mobility traces, given

the traces’ resolution (i.e., level of aggregation) and the amount of

background knowledge available to the adversary. If extended to

other types of data, such an equation could be used by

SafeAnswers to determine the required level of aggregation

needed when answering a query.

The fields of Privacy Preserving Data Publishing and Mining

aim to address a problem similar to the second challenge: how to

anonymize the current publication of a database so that the

combination of all past and current anonymized publications

respect privacy. These works suggest several interesting assump-

tions and techniques that could be adopted by the openPDS/

SafeAnswers framework. For example, the authors of [54] show

that the problem of accurately calculating the level of privacy

imposed by a set of three or more publications is NP-hard. The

authors then suggest a relaxed method for calculating the privacy

level in polynomial time. Their method is based on joining the set

of publications into a single table, which can then be checked

against some privacy requirement. They also suggest a supple-

menting algorithm for anonymizing the current publication so that

the required privacy level is obtained. Their methods might be

used by SafeAnswers in order to determine whether the current set

of queries and potential future queries might compromise privacy.

Work in statistical databases might also help address the second

challenge [68]. A statistical database aims to allow the execution of

statistical queries without compromising the confidentiality of any

individual represented in the database. Two approaches used in

this field could be useful for SafeAnswers: (1) A query restriction

rejects each query that could compromise a user’s privacy and

provides accurate answers to legitimate queries. The computation

of what is a legitimate query is usually based on the size of the

query’s results or the extent of overlap between queries. Note

however that the denial of a query may, in itself, provide

information to an an attacker. (2) Perturbation gives approximate

answers by adding noise to the answers computed from the

original metadata. Regardless of the specific perturbation tech-

nique, the designer must attempt to produce statistics that

accurately reflect the underlying database. Such perturbed

answers might however not be acceptable for all uses.

Attacks in the case of malicious apps
While well-behaved apps might inadvertently collect sensitive

information, apps that are voluntarily not playing by the rules pose

a serious threat to user’s privacy. The major risk we see here is

how to protect the metadata against an app that deliberately tries

to infer sensitive information by over-querying a user’s openPDS

or by colluding with other apps.

Technically, numerous techniques from anomaly detection may

help SafeAnswers detect suspicious behavior. For example, a

service that suddenly changes its query pattern; querying for

location every minute while it used to ask user’s location and speed

a few times in a row 3 times a day. The detection of anomalies,

outliers, or rare events, has recently gained a lot of attention in

Figure 5. Group Computation Overview. (1) A querying agent (like
CouponInc) passes a function that its wants a collaborative answer for,
along with a list of URI to PDSs. (2) PDSs all trade messages in order to
compute a collaborative answer. (3) The answer is reported back to the
querying agent.
doi:10.1371/journal.pone.0098790.g005
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many security domains, ranging from video surveillance and

security systems to intrusion detection and fraudulent transactions.

Accordingly [69], most anomaly detection methods are based on

the following techniques: classification, nearest neighbor, cluster-

ing, statistical, information theoretic, and spectral. Any of these

techniques, or their combination, can potentially be used by

SafeAnswers.

Anomaly detection could also be combined with reputation

systems to allow for a group of openPDSs to exchange information

about modules and services in real-time. The P2P reputation

systems literature considers different types of malicious behavior

that can be blocked with the help of reputation systems. These give

us a foretaste of potential risks. ‘‘Traitors’’ are services who initially

behave properly but then start to misbehave and inflict damage on

the community. This technique is particularly effective when the

service has become respectable and well installed. ‘‘Whitewashers’’

are services who leave and rejoin the system with new identities in

order to purge the bad reputations they acquired under their

previous identities. Finally, ‘‘Collusions’’ are a group of malicious

services acting together to cause damage. Such reputation systems

could be combined with other privacy mechanisms discussed here.

For example, an openPDS might decide to allow a service with a

medium rating to execute restricted or noisy queries but

temporarily block a service whose rating suddenly dropped.

Various UI mechanisms can also be used to warn users of

potentially malicious apps before they are installed. For example,

trust could be used to rate service providers. Adapting the

definition from [70], trust would reflects a user’s or a PDS’s

subjective view of a service, while reputation could be considered a

collective measure of trust reflecting a group view of that service.

Work by [71] shows that the reputation of the service provider

matters more than the specific data being accessed and hints at the

potential usefulness of a reputation system to help users decide

which services to trust. Various principles for computing

reputation and trust can be found in [72]. Besides a simple

summation or average of ratings, the authors mention discrete

models in which trust is a discrete value from a predefined set of

values, fuzzy models, bayesian systems, belief models, and flow

models.

Attacks compromising the host
Finally, openPDS is vulnerable to the traditional security and

privacy issues of any hosted system. Attackers could compromise

the authentication/control mechanisms or impersonate existing

users to gain access to the database or to corrupt the system. For

instance, in the case of virtual machines hosting openPDSs, an

attacker’s virtual machine can legitimately be located in the same

physical machine as openPDSs virtual machines. This is, however,

not specific to openPDS, and similar issues exist with any hosted

systems, such as SaaS, virtual machine and traditional servers.

Solutions include hypervisors [73] or data-at-rest encryption

[74,75] such as homomorphic encryption schemes [76]. The

main difference openPDS introduces is having the data distributed

across machines, systems, and implementations of openPDS.

While a full analysis is beyond the scope of this paper, one might

imagine that a distributed and heterogeneous system might be

harder to attack than some of the traditional centralized ones

especially if information is shared across machines [see previous

section].

Conclusion

Finally, as technologists and scientists, we are convinced that

there is an amazing potential in personal metadata, but also that

benefits should be balanced with risks. By reducing the dimen-

sionality of the metadata on-the-fly and actively protecting users,

openPDS/SafeAnswers opens up a new way for individuals to

regain control over their privacy.

openPDS/SafeAnswers however still face a number of chal-

lenges. Each challenges includes several potential directions for

future research: (1) the automatic or semi-automatic validation of

the processing done by a PDS module; (2) the development of

SafeAnswers privacy-preserving techniques at an individual level

for high-dimensional and ever-evolving data (mobility data,

accelerometer readings, etc.) based on existing anomaly detection

framework and potentially stored in highly-decentralized systems;

(3) the development or adaptation of privacy preserving data-

mining algorithms to an ecosystem consisting of distributed PDSs;

and (4) UIs allowing the user to better understand the risks

associated with large-scale metadata and to monitor and visualize

the metadata used by applications.

Acknowledgments

The authors would like to thank Hal Abelson, Fabrizio Antonelli, John

Clippinger, Alan Gardner, Dazza Greenwood, Bruno Lepri, Wei Pan,

Henrik Sandell, Jeff Schmitz, Brian Sweatt, Michele Vescovi, and the ID3

foundation for helpful conversations; Skyler Place for sharing data; and

Danielle Hicks, Jeff Schmitz, and Cody Sumter for help with the design.

Author Contributions

Analyzed the data: YdM ES. Contributed reagents/materials/analysis

tools: YdM ES SW. Wrote the paper: YdM ES SW AP.

References

1. Lazer D, Pentland AS, Adamic L, Aral S, Barabasi AL, et al. (2009) Life in the

network: the coming age of computational social science. Science (New York,

NY) 323: 721.

2. Schwab K, Marcus A, Oyola J, Hoffman W, Luzi M (2011) Personal data: The

emergence of a new asset class. In: An Initiative of the World Economic Forum.

3. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, et al. (2012)

Quantifying the impact of human mobility on malaria. Science 338: 267–270.

4. Eagle N, Macy M, Claxton R (2010) Network diversity and economic

development. Science 328: 1029–1031.

5. de Montjoye YA, Hidalgo CA, Verleysen M, Blondel VD (2013) Unique in the

crowd: The privacy bounds of human mobility. Nature SRep 3.

6. Narayanan A, Shmatikov V (2008) Robust de-anonymization of large sparse

datasets. In: Security and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE,

pp. 111–125.

7. Sweeney L (2002) k-anonymity: A model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10: 557–570.

8. de Montjoye YA, Wang SS, Pentland A, Anh DTT, Datta A, et al. (2012) On

the trusted use of large-scale personal data. IEEE Data Eng Bull 35: 5–8.

9. Palfrey J, Zittrain J (2011) Better data for a better internet. Science 334: 1210–

1211.

10. Abelson H, Ledeen K, Lewis H (2008) Blown to bits: your life, liberty, and

happiness after the digital explosion. Addison-Wesley Professional.

11. Rubinstein IS (2012) Big data: The end of privacy or a new beginning?

12. Bell G (2001) A personal digital store. Communications of the ACM 44: 86–91.

13. Want R, Pering T, Danneels G, Kumar M, Sundar M, et al. (2002) The

personal server: Changing the way we think about ubiquitous computing.
Ubicomp 2002: Ubiquitous Computing: 223–230.

14. Baden R, Bender A, Spring N, Bhattacharjee B, Starin D (2009) Persona: an

online social network with user-defined privacy. In: ACM SIGCOMM
Computer Communication Review. ACM, volume 39, pp. 135–146.

15. Mun M, Hao S, Mishra N, Shilton K, Burke J, et al. (2010) Personal data vaults:
a locus of control for personal data streams. In: Proceedings of the 6th

International Conference. ACM, p. 17.
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