
COMPLETE SAFETY SOFTWARE TESTING:
A FORMAL METHOD

by

JON R. LUNGLHOFER

B.S., United States Naval Academy, Annapolis, Md. (May 1994)

SUBMITTED TO THE DEPARTMENT OF
NUCLEAR ENGINEERING IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 1996

@ Massachusetts Institute of Technology, 1996.
All rights reserved

Signature of Author_
. /

Certified by:

Certified by:

Accepted by:

ASSAC;-HUSETTS INSTr1UTEU
OF TECHNOLOGY

APR 221996

Departnp-it of Nu#ear Engineering
January, 1996

Pes r Michael W. Golay
Thesis Sunervior .

PTfessor Dh*id D. Lanning
Thesis Reader

/..fes6r Jeffrey P. F*idberg
Chairman, DepartmeCinmin6 on Graduate Students

Wtencc

UBRARIES

COMPLETE SAFETY SOFTWARE TESTING:

A FORMAL METHOD

by

JON R. LUNGLHOFER

Submitted to the Department of Nuclear Engineering
on January 18, 1996 in partial fulfillment of the

requirements for the Degree of Master of Science in
Nuclear Engineering.

Abstract

In order to allow the introduction of safety-related digital control in nuclear power
reactors, the software used by the systems must be demonstrated to be highly reliable. One method
of improving software reliability is testing. A study of the complete testing of software was
performed based upon past research. The literature search found two complete testing methods,
only one of which, complete path testing, was feasible for use. The literature contained a practical
and nearly complete testing method known as Structured Path Testing, developed by Howden
(Howd77). Structured Path Testing was adapted here as the basis for a new testing method known
as Feasible Structured Path Testing (FSPT). The FSPT involves a five step formal method which
examines the code's data flow structure and develops test cases based upon the analysis. The
FSPT eliminates unfeasible paths from the test case which greatly speeds the testing process.

The FSPT was applied to several simple programs. Many of the test programs are written
in the 001 case tool language developed by Hamilton Technology (Hami92.). The ultimate
example test bed program, known as the Reactor Protection System (RPS) was written by M.
Ouyang (Ouya95).

The work reported here was restricted to the examination of software code testing. No
attempt was made to examine the reliability of corresponding hardware or human interactions. In
order to improve reliability of safety-critical software, one must assure that human interactions are
simple and that hardware is sufficiently redundant.

The results of the study presented here indicate that for simple programs, complete testing
is possible. If looping structures are included in a program, in most cases, the tester must sacrifice
complete testing in order to complete the testing process within the programs lifetime. While the
scope of this study was limited, there is no reason to believe the FSPT could not be used for much
larger tasks. The FSPT greatly enhances the reliability of software code.

Thesis Supervisor: Michael W. Golay
Title: Professor of Nuclear Engineering

3

Acknowledgments

I wish to thank my thesis supervisor, Professor Michael W. Golay for his continued
direction and support throughout this study. Without his financial, technical, and personal
assistance, this work could not have gone forward.

I wish to thank ABB-Cumbustion Engineering for their financial support which allowed
this work to go on. Special thanks go to Michael Novak, the primary contact at ABB-CE. His
feedback and clear focus helped to focus the goals of this research.

Hamilton Technology Inc. also deserves thanks for supplying the 001 system for use in
the project. Special thanks goes to Margaret Hamilton for her generous offer of the 001
evaluation system package; to Ron Hackler, Nils, and Zander for their continued technical
assistance, both on-line and off.

Thanks also go to Meng Ouyang for his patience, helpfulness, and companionship
throughout my stay at MIT. I enjoyed working with Meng and wish him the best of luck in his
future endeavors. Thanks also go to Chang Woo Kang for being a true friend, (Kamsa Hamnida).
Thanks to Rachel Morton for her continued support in drafting this thesis.

Finally, I wish to thank my family at home and away from home. Thanks Mom for all
your love, I couldn't have made it without you. Thanks go to David Fink for begin an excellent
room mate while at MIT. We shared some excellent time together. To all my friends at the Boston
Rock Gym, whom are too numerous to list, I thank you all for your companionship. To Tina
Burke, my true inspiration, I thank her for her constant love and support. Climb On.

5

Table of Content

A BSTRA CT .. 3

A CK NOW LEDG M ENTS ... 5

TABLE OF CO NTENT ... 7

LIST OF FIG URES .. 9

LIST OF TABLES .. 11

1. INTRO DUCTIO N...13

1.1 GENERAL 13
1. 2 BACKGROUND ... 14
1.3 M ETHOD OF INVESTIGATION... 16
1.4 SCOPE OF THE W ORK .. 17

2. LITERA TURE SEARCH ... 19

2.1 GENERAL .. 19
2.2 SOFTwARE DEVELOPMENT M ETHODS.. 20

2.2.] Structural Requirements... 21
2.2.2 Formal Development M ethods.. 36

2.3 SOFTWARE CODE TESTING M ETHODS... 37
2.3.1 Black Box methods... 37
2.3.2 ite Box M ethods... 39
2.3.3 An Overview of Testing Technique.. 55

2.4 LrTERATURE SEARCH CONCLUSION ... 56

3. SELECTIO N O F A TESTING M ETH O D .. 59

3.1 GENERAL .. 59
3.2 FEASIBLE STRUCTURED PATH TESTING .. 59

3.2.1 Method Overview... 60
3.2.2 Feasible Structured Path Testing: The Details.. 61
3.2.3 Feasible Structured Path Testing: General Testing Strategy..................................... 66

3.3 FSPT: AN EXAM PLE.. 68
3.4 FSPT: A SECOND EX AM PLE ... 71
3.5 FSPT: CONCLUSION .. 73

4. TH E 0 0 1 CASE TO O L ... 75

4.1 GENERAL .. 75
4.2 TYPE M APS (TM APS) .. 75
4.3 FUNCTION M APS (FM APS)... 78
4.4 00 1 SYSTEM REVIEW ... 82

5. FSPT: A TRIAL USE ... 83

7

5.1 INTRODUCTION 83
5.2 T'IiE REACTOR PRoTEcnoN SysTEm ... 83

5. 2 1 RPS 001 TM ap and FM aps ... 84
5.3 TBE FSPT OF TBE RPS ... 92

5.3.1 Testing the Operations ... 93
5.3.2 Testing the H igh Level Code, Update -State .. 106
5.3.3 Conclusion of the FSPT of the RPS .. 108

5.4 FSPT ERROR LOCAT[ON EXPERM ENT .. 109
5.5 CONCLUSION ... 113

6. CONCLUSION 115

6.1 RECOMm EgDAn om To DESIGNERS .. 115
6.2 FUTURE W ORK 6 ... 116
6.3 IZENM W .6 ... 117

REFERENCES 119

8

List of Figures
In Order of Appearance

FIGURE 2-1 PROCESS BLOCK DIAGRAM ... 25
FIGURE 2-2 DECISION BLOCK DIAGRAM .. 26

FIGURE 2-3 JUNCTION DIAGRAM .. 27
FIGURE 2-4 SIMPLIFIED EXAMPLE PROGRAMMING LANGUAGE ... 28
FIGURE 2-5 AUTOMATIC TELLER MACHINE (ATM) EXAMPLE CODE 29
FIGURE 2-6 ATM EXAMPLE CODE AND FLOWGRAPH ... 30
FIGURE 2-7 MCCABE METRIC EXAMPLE FLOWGRAPHS ... 32
FIGURE 2-8 EXAMPLE LOOPING PROGRAM FLOWGRAPH... 44

FIGURE 2-9 LOOPING EXAMPLE PROGRAM FOR ILLUSTRATING DATA FLOW TESTING........48
FIGURE 2-10 A FLOWGRAPH OF THE LOOPING EXAMPLE WITH DATA FLOW ANNOTATION......... 48

FIGURE 2-11 SUBMARINE DOOR EXAMPLE PROGRAM SPECIFICATION DOCUMENT 51
FIGURE 2-12 SUBMARINE DOOR EXAMPLE PROGRAM LISTING AND FLOWGRAPH 52
FIGURE 2-13 EXAMPLE FLOWGRAPH TO DEMONSTRATE ALTERED PATH TESTING METHODS 54
FIGURE 3-1 H ORRIBLE LOOPS...61
FIGURE 3-2 FOWGRAPH EXPANDED TO K ITERATIONS... 63
FIGURE 3-3 FLOWGRAPH EXPANSION: TRANSITIONAL VARIABLES.......................................65
FIGURE 3-4 SUBMARINE DOOR PROGRAM AND FLOWGRAPH FOR THE FSPT...........................68
FIGURE 3-5 STEP THREE EXPANDED FLOWGRAPH: SUBMARINE DOOR EXAMPLE 69
FIGURE 3-6 THIRD STEP EXPANDED FLOWGRAPH: LOOPING EXAMPLE.................. 72
FIGURE 4-1 TYPE MAP (TMAP) EXPLANATION... 76
FIGURE 4-2 EXAM PLE TM AP .. 77
FIGURE 4-3 FUNCTION MAP (FMAP) EXPLANATION... 79
FIGURE 4-4 001 REUSABLE CONTROL STRUCTURES... 80
FIGURE 4-5 EXAM PLE FM AP .. 81
FIGURE -1 R PS TYPE M AP ... 85
FIGURE 5-2 HIGH LEVEL FMAP UPDATESTATE... 86
FIGURE 5-3 OPERATION CHECKGLOK ... 86
FIGURE 5-4 OPERATION UPDATEINDI FMAP .. 87
FIGURE 5-5 STRUCTURE SETINDIUPDATE FMAP... 88
FIGURE 5-6 OPERATION UPDATEGL FMAP... 89
FIGURE 5-7 STRUCTURE SETTRIPCHECK FMAP... 90
FIGURE 5-8 OPERATION UPDATEUPONTRIP FMAP................................. 91
FIGURE 5-9 ORDER OF TESTING THE RPS .. 93
FIGURE 5-10 UPDATEUPONTRIP FLOWGRAPH..................................... 95
FIGURE 5-11 UPDATEUPONTRIP STEP 3 FLOWGRAPH ... 97
FIGURE 5-12 UPDATEGL FLOWGRAPH .. 100
FIGURE 5-13 UPDATEGL STEP 3 FLOWGRAPH .. 101
FIGURE 5-14 UPDATEINDI FLOWGRAPH .. 104
FIGURE 5-15 UPDATE_INDI STEP 3 FLOWGRAPH.. 105
FIGURE 5-16 UPDATESTATE FLOWGRAPH.. 107
FIGURE 5-17 SAMPLE INPUT TMAP TO OPERATION UPDATESTATE 108
FIGURE 5-18 SAMPLE OUTPUT TMAP FROM UPDATESTATE... 109
FIGURE 5-19 UPDATEGL WITH ERRORS... 111
FIGURE 5-20 UPDATEGL WITH AN ERROR STEP 3 FLOWGRAPH .. 112
FIGURE 5-21 TEST RESULTS: UPDATEGL WITH AN ERROR ... 113

9

10

List of Tables
In Order of Appearance

TABLE 2-1 THE LINEARLY INDEPENDENT PATHS OF THE ATM CODE.................... 34
TABLE 2-2 PATH COVERAGE OF THE ATM CODE... 42
TABLE 2-3 BRANCH COVERAGE OF THE ATM CODE ... 42
TABLE 2-4 FEASABLE TEST PATHS OF ATM CODE ... 43
TABLE 2-5 TEST CASES AND RESULTS FOR SUB DOOR EXAMPLE ... 52
TABLE 3-1 LINERALY INDEPENDENT PATHS OF THE SUBMARINE DOOR EXAMPLE 69
TABLE 3-2 TESTED CASES: SUBMARINE DOOR EXAMPLE ... 70
TABLE 3-3 LOOPING PROGRAM FOR EXAMPLE THE FSPT...71
TABLE 3-4 LINEARLY INDEPENDENT PATHS OF THE LOOPING EXAMPLE............................... 73
TABLE 5-1 TEST PATHS: UPDATEUPON_TRIP .. 98
TABLE 5-2 TEST CASES: UPDATEUPONTRIP .. 98
TABLE 5-3 UPDATEUPONTRIP TEST RESULTS... 99
TABLE 5-4 TEST PATHS: UPDATEGL ... 102
TABLE 5-5 TEST CASES: UPDATEGL .. 102
TABLE 5-6 TEST RESULTS: UPDATEGL .. 103
TABLE 5-7 TEST PATHS: UPDATEUPONTRIP .. 105
TABLE 5-8 TEST CASES: UPDATEUPONTRIP ... 106
TABLE 5-9 TEST RESULTS: UPDATEUPON TRIP 106
TABLE 5-10 TEST PATHS: UPDATESTATE .. 107
TABLE 5-11 TEST CASES: UPDATESTATE ... 107
TABLE5-12 TESTCASES: UPDATEGL wITHAN ERROR .. 112

11

1. Introduction

1.1 General

Due to the difficulties of verification and validation (V& V), the nuclear power industry

has lagged in the introduction of digital control software to regulate the safety systems of nuclear

power plants. The (V& V) process includes testing the software against design specification

performance requirements. Software designed for use in nuclear power plant safety systems should

be completely tested to prove its correctness. Without a method of verifying a software system, the

nuclear industry continues development without the advantages of modern digital control

technologies common to other industries.

Extensive methods have been developed to determine the reliability of the analog safety

systems currently being utilized in nuclear power plants. The debate over the introduction of

digital control software systems stems from the question of reliability. In order for digital control

software to replace the current analog systems, the software must be proven to be as reliable.

Given the complexity of the (V& V) process, this is a difficult task.

The development of highly reliable software systems has been of great interest to those

operating large, complicated, and expensive systems that are traditionally prone to human error.

Such systems include fly-by-wire aircraft and telecommunication systems. Due to the large size of

these programs, it is considered impossible to completely test them. These programs are tested

until the expected frequency of error detection is longer than the program's expected lifetime. This

13

method of testing does not offer an all together acceptable standard of reliability. The U.S.

Nuclear Regulatory Commission (NRC) holds the nuclear industry to a higher standard.

This work seeks to develop, or find, an existing method for completely testing safety-

critical software. Also, the work will, in the absence of a complete testing method, demonstrate

the best method available. The method of choice will be tested on simple pieces of safety software.

The art of software development will also be examined. The complexity of a piece of software

corresponds with its testability. It is possible to design software that it is easily testable, or nearly

impossible to test. This report examines methods for developing software that improve the ease of

testability. This work leads to an improvement in nuclear power plant safety by paving the way for

the use of modem digital technology.

1.2 Background

There are many ways in which softvare can contain errors, and many ways to test for

those errors. The ultimate goal is to locate every error in a piece of safety-related software to

allow for its use in a nuclear power plant. If safety-related software can be demonstrated as highly

reliable with very little uncertainty, it would likely become an integral part of the nuclear power

plants of the future. However, due to the nature of software systems, partial proofs with high

uncertainty will be insufficient. Software errors, unlike hardware faults, are always present and

waiting to be unearthed. Where hardware can be inspected to reveal faults, software must be

tested against the specification document to demonstrate errors. Since undetected software errors

often lie in rarely used sections of code, such as accident sequence responses, it is imperative that

all the errors be detected in the (V& V) phase of software development.

14

In order to test a piece of software for errors, one must first understand the types of errors

that can occur. Software faults can result from the following sources of error:

* Incorrect formulation of the program specifications.

" Operating system errors.

" Environmental errors.

* Input / output errors.

" Programming errors, such as:

" syntax errors

* logical errors

" numerical errors (division by zero, etc.)

There are many documented ways of searching for errors. The methods can be broken

down into two main categories, black box and white box testing. Black Box testing treats the

program as if it were a closed box. There is no examination of the code during the testing process.

Test cases are generated purely from the specification document. The results of these test cases are

compared with a database of correct results to determine if the correct output was obtained. This

database is commonly referred to as an oracle. The existence of an oracle is necessary for all types

of testing. The test cases generated during white box testing result from an examination of the

code structure. White box testing also requires an oracle to assure that the test results are correct.

Many other methods exist for improving software reliability. Some of these methods are

not based on testing and include:

15

" Developing two different programs on two or more different operating environments from the

same specifications. The two software systems are then compared to each other. Every

differences between the two codes is a potential sources of error and must be addressed.

" The code is checked independently line by line for syntax and conceptual errors.

* Graphic oriented formal development languages are used to develop the code which is

internally consistent and complete in capture of the specifications.

* Programs are modularized to decrease the complexity of the code. Small pieces of code are

less prone to errors.

There are many sources of error in the software development process. Even using the most

careful of development methods, errors pass into the final software code. It is necessary to test for

these errors. Only when a complete test of the software against its specification document is

completed can one be assured of correct performance.

1.3 Method of Investigation

The effort reflected in this work is the result of a literature search of all documents

pertaining to software testing. The search covers a broad range of software testing methods and

styles. The aim of the search is to identify, test, and possibly improve upon the most efficient and

complete testing method currently documented in the literature. Methods for developing reliable

software are also examined. The literature is discussed and summarized.

An examination of several simple safety-related programs is utilized to illustrate the

effectiveness of chosen testing methods. Other examples are used to demonstrate the performance

of other testing methods described in the literature.

16

1.4 Scope of the Work

There are many sources of software errors external to the software development process.

This work focuses upon the testing of the software code for programming errors. The testing of

the hardware, operating system, and environment are considered beyond the scope of this work and

will not be included. While these types of errors are quite common in complicated software

systems, it is assumed that the environment in which the software operates is in working order.

The benefits of designing simple and easily testable modular software is examined here.

Poorman's work (Poor94) demonstrates the usefulness of the software complexity metric. The

complexity metric offers a formal method of gauging the complexity of a piece of software. Using

a metric, one can assure that sections of software code do not become overly cumbersome and

difficult to test.

Although it is generally considered impossible to completely test a piece of complex

software, this work demonstrates that if software is written simply and correctly it can be

thoroughly tested. If the software specifications document is written incorrectly or incompletely,

one can not assure correct software performance. The testing method described in this report

requires the presence of an oracle. The development of an oracle is a topic deserving of a study

such as the one reported here. The presence of a proper specification and oracle is assumed.

17

2. Literature Search

2.1 General

This section summarizes the literature search of software testing methods used as the

starting block for this study. The literature search for the work reported here was broad in scope,

yielding many possible methods for testing software code. The goal of the search was to identify

all of the available testing methods, and assess the possibilities based upon completeness,

practicality, and overall usefulness. The research lead to many articles discussing reliable software

development methods. Even though they do not directly relate to testing, these articles were given

attention. A more reliable development process can only lead to less errors in the code which

simplifies the testing process. Experience shows that in many cases software can not be completely

tested, because of the over whelming number of test cases necessary. There are also hardware and

user interaction concerns. Finally, there is the concern that the specifications document may

include errors which can be passed on to the software. Since this study focuses only upon the

complete testing of software code, other concerns, such as hardware and human interaction, have

been eliminated from the search.

Thus, the search focuses on methods for testing software code and the development of

coding practices which ease the testing process. The results of the search include two complete

testing methods. One of these, exhaustive input testing, is applicable only in very simple

theoretical cases making it incompatible with this study's requirements. The other method,

complete path testing, is applicable in some simple cases which do not included looping structures.

19

In programs which involve loops, the Strucutred Path Testing technique sacrifices completness for

timeliness, but is an excellent compromise which greatly improves program reliability.

The search begins with a review of previous research work done at MIT, the initial focus

being the work of Poorman (Poor94) and Arno (Arno94). Both use a cyclomatic metric based

testing schemes to yield complete testing results. The cyclomatic metric, also known as the

McCabe metric for its developer T. J. McCabe, is explained in detail later in this chapter. The use

of the cyclomatic metric is very helpful in gauging the difficulty of testing a piece of code. While

helpful in determining the minimum number of tests needed for certain types of code testing, the

McCabe metric based testing technique used by Poorman and Arno does not reliably provide a

complete code test. The McCabe metric testing method does not test every possible execution path

through the code. Using the standard control flowgraph, the McCabe metric testing technique used

by Poorman and Arno guarantees branch coverage. It is possible that untested paths contain

errors. The concepts of branch and path coverage as well as the control flowgraph are covered

later in Section 2. The McCabe metric based technique is explained and its limitations fully

demonstrated later in this chapter. Recall that the focus of our search is to locate a complete

testing method. The results of Poorman and Arno do not yield a complete testing method. Thus,

our search expands to examine all types of code testing methods in hopes of locating a complete

method.

2.2 Sofbvare Development Methods

In recent years, the use of formal methods to develop software has become widespread.

The ad hoc development methods of the past have become obsolete as programs have increased in

20

size. For small and simple programs the ad hoc approach will never be replaced. However, for

safety critical software systems, it is necessary to have a highly reliable form of quality control.

The software development process begins with the establishment of a requirements or

specification document and continues through the design, testing, and documentation stages

(Poor94). While the main focus of the work reported here is upon the testing phase, the design

phase is also examined in Section 2.2.2. The software design process has been studied here in

hopes of identifying ways for decreasing the introduction of errors into the final testable piece of

software, thus easing the testing process. A broad range of topics can be classified as software

development methods and they are examined here.

In a report prepared for the Nuclear Regulatory Committee (NRC) concerning the

preparation of a severe reactor accident computer code, Sandia National Laboratories described a

method for the reliable management of a large software development project (Qual91). Described

within the report, is the management plan for treating situations which may be encountered during

software development. Such procedures are essential with large projects dealing with many

individuals. The main goal of the management plan is to deal with changes in the software as it is

being developed. The document says little about the specific development of the software system,

and focuses upon human interactions within a large programming team. While it is necessary to

have methods for the administration of large software projects, such managerial details are beyond

the scope of this study. The goal here is to develop methods which are specific to the coding

process itself.

2.2.1 Structural Requirements

21

It has been demonstrated that the number of errors in a piece of code is related to the

complexity of the section of code in question. A study was conducted by Lipow that demonstrated

the existence of a non-linear relationship between the size of the program and the number of errors

or bugs, found within the code (Lipo82). He demonstrated that smaller programs had a much

lower error rate than had larger programs. He found that as the number of lines of code increased

to around 100 the number of errors per line grew at a linear rate. However, in larger programs (>

100 lines), the number of errors per line increased in a non linear fashion. He concluded that

shorter programs have an advantage over larger ones in terms of the amount of errors found per

line. The practice of writing modular code takes advantage of these findings. However, in the

literature there are many different ideas addressing when a program should be broken into modules.

The differences stem from a general disagreement over how to measure the complexity of a piece

of code. The question is: "How ... [does one] ... modularize a software system so the resulting

modules are both testable and maintainable?" (McCa76)

The complexity of a piece of code is often measured by a software metric. A software

metric is a number generated by a method or technique that supplies information about the

complexity of the code in question. For his study, Lipow used the lines of code metric, which is

equal to the number of lines of written code. The lines of code metric is utilized by several

companies to govern the maximum allowable module size (Beiz90). This metric is the simplest,

but can often underestimate the true complexity of the code in question. Consider a twenty five

line program that consists of twenty five consecutive if . . then statements. This program contains

225 possible paths of execution. Merely measuring the number of lines of code is not enough to

judge the complexity. Many other metrics have been developed to aid the programmer in deciding

when to modularize.

22

These metrics are numerous and can be categorized as either linguistic metrics or

structural metrics (Beiz90). A linguistic metric is based upon measuring various aspects of the

program's text. For example, the basis of a linguistic metric could be the number of lines of

written source code. The linguistic metric is based upon any aspect or combination of aspects of

the physical text layout. The structural metric is based upon the structural relationship between

program objects. The structural metric is usually based upon understanding the programs control

flow graph. For example, a structural treatment may gauge the extent of recursive structures in the

code by examining the flow paths shown in the control flow graph. Two of the most useful metrics

Halstead's (a linguistic metric) and McCabe's (a structural metric) are discussed here. The

explanation of McCabe's metric is prefaced by a review of the control flowgraph.

2.2.1.1 Halstead's Metric

Halstead's metric is the best established of all linguistic metrics (Beiz9O). Halstead

developed the metric first by examining the patterns of errors in a large and diverse set of programs

(Hals77). Halstead then took two simple linguistic measurements from each program, the number

of program operators (e.g. keywords such as Repeat..Until and if..then), and the number of

program operands (e.g. variables and data types).

nI = the number of distinct operators in the program.

n2= the number of distinct operands in the program.

These two measurements were then used in a formula derived from an empirical fit to the actual

error data. The hope was that the number of errors in a program could be predicted with relative

accuracy using the metric. The metric gives a value designated as H

H = n, log2 n1+ n2log 2 n2 (2.1)

23

which Halstead called the "program length." The "program length" H should not be confused with

the number of lines of code in the program.

Halstead also defines two move parameters based on the total number of operator and

operand appearances in the program text.

N1 = Total operator count

N2= Total operand count

Halstead also defines a new metric

N = N1 + N2 (2.2)

known as the actual Halstead length (Beiz90). Halstead's claim is that the value of H will be very

close to the value of N. This has been confirmed by several studies. Thus, if the programs

makeup is known it is possible to calculate an estimated length of the finished program, before it is

written.

Halstead also developed a calculation to predict the number of errors present in a program

(Beiz90). The formula

Errors = (NI +N 2)l10 2(nI +n 2) (2.3)
3000

is based on the four values: ni, n2, N1, and N2.

For example, if a program has 75 data object and uses them 1300 times and 150 operators

which are used 1200 times, then according to Equation 2.3 there should be

(1300+1200)log2(75+150)/3000 = 6.5 errors in the code.

Halstead's metric is very useful for the management of a large programming project, but is

not such a useful tool with regard to completely testing that software. The metric does not supply

the user with knowledge of the true number of errors, only an estimate. There is of course no way

to have 6.5 errors in a piece or software. Thus the Halstead metric is a useful tool, but is unable to

24

help adequately with the complete testing process. One could use Halstead's error estimation

metric as a gauge of when to stop testing the code (Poor94) (e.g. stop testing after the estimated

number of errors are found). However, such a technique seems far from complete. Halstead's

metric is a useful tool for measuring and comparing the complexity of software codes being

considered for the same job. The simplest code should be used. Although Halstead's metrics are

useful, they do not facilitate the complete testing of a piece of software code, and is not used in this

study.

2.2.1.2 The Control Flowgraph

Understanding the control flowgraph is central to understanding much of the literature on

software testing. In general, the control flowgraph is a graphical representation of the control

structure of a program. Before the control flowgraph can be discussed it is first necessary to

introduce some standard terminology. The following terms are used to describe various aspects of

computer code:

Process Block

A section of code in which the statements are executed in order
from the entrance to the exit is known as a Process Block.

Figure 2-1 Process Block Diagram

The process block is composed of a group of statements which must be executed in the

25

order presented once the first statement is entered. In a less formal sense, a process block is also

Figure 2-2 Decision Block Diagram

known as 'straight line code.' The length of the process can vary from two to hundreds of

statements. There is no way to enter into a process block other than from the entrance.

The Decision represents a section of the code where flow can diverge into different paths.

The decision is often binary in nature, but can be multi directional. (e.g. a case statement) The

standard decision construct is the if..then..else statement which relies on conditions of certain

variables to decide which path will be executed.

26

Decisions

True

False

A decision is a section of the code where flow diverges, and is
ussually expressed in the following manor: If (condition) then
(execute the True path) else (execute the False path).

Junctions

When program paths merge together, a Junction is formed.

Figure 2-3 Junction Diagram

The Junction is a piece of code where flow paths can merge together. For example, when

the separate true and false paths end after an if..then statement, the flow can merge together again.

These merges are known as Junctions.

All programs can be broken down into some combination of these three elements. In some

cases statements can be both decisions and junctions, such as loop control statements. The

terminology used above is taken from the flowchart concept. The flowchart has become outdated

and is being replaced with the control flowgraph. The control flowgraph greatly simplifies the

flowchart concept. There are only two types of components to the flowgraph: circles and lines. A

circle is called a node and line a link. A node with more than one link entering is a junction and

one with more than one leaving a decision. The node with only one link entering and one link

exiting is a process node. All code structures can be expressed using the control flowgraph.

An example is used to illustrate the control flowgraph. For this example a written

program must be examined. To facilitate this, a generic and simple "programming language" is

adopted. The language used is based on that developed by Rapps and Weyuker in 1985

(Rapps85). Using this language should break down any language barriers other high level

languages might cause. The following statement types are included in the language:

27

The simple program detailed in Figure 2-5, written in the language illustrated in Figure 2-

* Begin statement: Begin
* Input statement: Read xi,. . . ,

(xI,. . , x.) are variables.
* Assignment statement: y <= f (x1,. . . , x.)

(y, xj, . . . , xn are variables) and f in a function.
* Output Statement: Print zi, . . . , z.

(zi, . . . , zn)are either littorals or variables.
* Unconditional Transfer Statement: Goto m

m is a label.
* Conditional Statement: If p(xi,... , x.) Then

statements executed if predicate p is true
Else

statements executed if predicate p is false
End If

p is a predicate on the variables (xi, . . . , x.). Conditional
Statements can be nested.

* End Statement: End

Figure 2-4 Simplified Example Programming Language

4, is used to illustrate the control flowgraph concept. The program reads the customers bank

account balance (b) and then queries the customer for an amount to be withdrawn (w). The

program then checks to see if the withdrawal amount is larger than the account balance. If so, no

withdrawal is made. If the withdrawal amount is equal to the account balance, then the user is

notified that the final account balance will be zero. If the withdrawal not more than the balance,

then the balance is reduced by the amount (w). The illustrative program is listed in Figure 2-5.

28

Elementary programming
language for exemplary use.

Begin
Read (b)
Print ("Enter amount to withdraw.")
Read (w)
withdraw <= true
If (w > b) Then

Print ("Amount to withdraw exceeds balance.")
withdraw <= false

Else
If (w < b) Then

Print ("Thank You.")
Else

Print ("Thank You, Your final balance will be $0.00")
End If

End If
If (withdraw)=true Then

b <= b -w This code is written in the language specified
in Figure 2-4 and is used as an example in

Else order to further the understanding of control
b <= b flowgraphs.

End

Figure 2-5 Automatic Teller Machine (ATM) Example Code

The simple program above can be broken down into its control flowgraph. Figure 2-6

illustrates the control flowgraph.

29

ATM Code Control Flowgraph Breakdown

Print ("Amount to withdraw exceeds balance.")
withdraw <= false

Else

If (w < b) Then

A

1C

I Print ("Thank You.")

Else

Print ("Thank You, Your final balance will be $0.00") E

End If
End If

If (withdraw)=true Then

b <= b - w

F

G

Else

I b<=b IH

Figure 2-6 ATM Example Code and Flowgraph

The statements which are represented by each node are contained in the labeled boxes on

the left. For example the node labeled C corresponds to the statement "If (w < b) Then." The

simple procedure for creating control flowgraphs from code should be clear. With practice,

generating control flowgraphs from written code becomes second nature.

30

Read (b) [tents]
Print ("Enter amount to withdraw.")
Read (w)
withdraw <= true
If (w > b) Then

Flowgraph

A

C

B

D E

F

G H

I

Many terms used in software engineering relate to the control flowgraph (Rapps85). The

links on the control flowgraph are also known as edges. An edge is a connection between nodes.

An edge from node] to node k is given the notation (f, k). Node] designated as the predecessor

of node k, and node k the successor to]. There can be only one edge between any two distinct

nodes. The first node of a program is known as the start node, and has no predecessors while the

last node is known as the exit node and has no successors.

A path orflowpath is a finite sequence of nodes connected by edges. A path is designated

by a sequence of nodes. For instance, a possible path through the ATM Code is Path 1 =

(A+B+F+G+I). Path 1 is a complete path because the first node is the start node and the last node

the exit node. Path 1 is also a loop-free path because none of its nodes are repeated. If any node

in a path is repeated, the path contains a looping structure. It is possible that such a path could

contain an infinite amount of nodes. Such a path never reaches an exit node and is the result of a

syntactically endless loop. There is no possible escape from such loops, and they often result from

program errors.

The control flowgraph, or flowgraph as it is termed hereafter, is the foundation of

structural metric analysis. This section should be reviewed if questions remain on the use and

construction of flowgraphs.

2.2.1.3 McCabe's Mefric

The McCabe's metric is a structure-based metric developed by Thomas J. McCabe

(McCa76). McCabe noted that many software engineering companies had trouble deciding how to

modularize there software systems. Many used the length-of-code metric, which seemed illogical

31

to McCabe. Some programs are much more complex that others of the same length. McCabe

hoped that his metric would give a more accurate measure of program complexity.

The calculation of McCabe's metric is a simple process. The McCabe metric is derived

from the flowgraph of the software in question. McCabe defines his metric v as

v= e-n+2p (2.4)

where

e is the number of edges or links,

n is the number of nodes,

p is the number of connected flowgraph components.

Edges and nodes have been explained previously, but the value p may be unclear. Consider the

following example (Figure 2-7 consisting of a main program (M) and two subroutines (A and B).

The flowgraph has three detached sections and thus the value of p is equal to three.

An Illustration of the McCabe Metric

M: A: B:

A

B

Figure 2-7 McCabe Metric Example Flowgraphs

Let us calculate the value of the McCabe's metric for each individual section in the

illustration. The main program M contains three edges and four nodes in only one section. The

metric for M takes the value

v(M)=3-4+2(1)=l . (2.5)

32

The McCabe metric values for sections A and B separately are

v(A)=6-5+2(1)=3 ,and (2.6)

v(B)= 3 -3 +2(l)= 2 . (2.7)

If A and B are considered sub operations of the main program M, then the value of the McCabe

metric of M including A and B is

v(MuAuB) = 12 -12+2(3)= 6 . (2.9)

Notice that in this case v(MuAuB) is equal to the sum of v(M), v(A), and v(B). In general, the

value of the complexity metric of a number of connected flowgraphs is the same as the sum of their

individual complexity metric values (McCa76).

McCabe's metric is based upon a calculation of the number of linearly independent paths

through the flowgraph in question. The complexity value 'v' is equivalent to that number. We can

see this in the example above. For instance, there are clearly only three paths from the start node

to the exit node in subroutine A, and the value of v(A) is equal to three. Suppose that we examine

the flowgraph from the ATM code in Figure 2-4. This flowgraph has a McCabe metric value of

four, as shown by the calculation

v(ATM)=11-9+2=4 . (2.9)

Inspection of the corresponding flowgraph reveals six different paths leading from the start node A

to the exit node I. Recall that the McCabe metric gives the number of independent paths from start

to exit. In the case of the ATM code, two of the six paths are linearly dependent upon the other

four. Although any four of the six paths can be selected as the independent ones, it is useful to

have a standard procedure.

A procedure for selecting the independent paths is documented by Poorman (Poor94).

First a basepath must be selected. In order to facilitate the ease of selecting subsequent paths, it is

convenient to select the path the with most nodes as the basepath. However, any path can serve

33

this purpose. In the ATM example, the path (A+C+D+E+G+I) is selected as the basepath. The

next step is to locate the first node along the basepath which contains a conditional split, and to

follow the alternate path, rejoining the basepath as soon as possible. This path is said to be

independent. If the first alternate path contains a conditional split before rejoining the basepath,

this second path is followed rejoining the first alternate or the basepath as quickly as possible.

This process is repeated until all of the branches of the first alternate path have been exercised, and

have rejoined the base path. In our example, by following the alternate route from the conditional

split at A, the next independent path would (A+B+F+G+I).

After the set of alternate paths has been exhausted, the basepath is followed to the second

conditional split where the process is repeated. The second conditional split is exhausted of

alternate paths and the process continues until there are no longer any new paths to follow. The

resulting set of paths should be equal in number to the McCabe metric. The set of paths is also

linearly independent. Thus, any other path through the flowgraph can be equated to some linear

combination of the independent paths. Let us continue the process of finding the independent

paths in the ATM example. At node C the alternate path (A+C+E+F+G+I) is found and at node F,

path (A+C+D+F+H+I) is found. Thus the complete set of independent paths is presented in Table

A The lineraly independent paths of the flowgraph illustrated in
Figure 2.6 are presented in Table 2-1. The flowgraph is

C printed to the left for the readers convinience.

D E

F

Table 2-1 The Linearly Independent Paths of the ATM Code

Path Number Flow Path
1 A+C+D+F+G+I
2 A+B+F+G+I
3 A+C+E+F+G+I
4 A+C+D+F+H+I

34

2-1.

Note that there are two other paths through the flowgraph which are not included in the list above.

These paths, path 5 (A+B+F+H+I) and path 6 (A+C+E+F+H+I) are dependent paths. They can

be represented as a linear combination of the other four paths. Path 5 = Path 2+ Path 4 - Path 1:

Path 5 = (A+B+F+H+I) = (A+B+F+G+I) + (A+C+D+F+H+I) - (A+C+D+F+G+I) .

Likewise, path 6 can be represented as a linear combination of paths one through four.

Path 6= (A+C+E+F+H+I) = (A+C+E+F+G+I) - (A+C+D+F+G+I) + (A+C+D+F+H+I) .

McCabe demonstrated that the value of 'v' closely correlates to the number of errors

present in a piece of code. As the value of the complexity metric v increases, the number of errors

in the code increases as well. McCabe also noted that, in general, longer programs have low

complexity and smaller ones have high complexity levels. This, he felt made program length

modularization techniques highly inadequate. Instead, McCabe suggested that every module that

had a metric value higher than ten should be further modularized. This he concluded would limit

programming errors, and would result in code which is more easily tested.

The basics of the McCabe metric should now be understood by the reader. For a more in

depth study of the topic see McCabe's paper "A Complexity Measure" (McCa76). The McCabe

metric gives a method of measuring the structural complexity of a piece of code in a standard way.

This allows one to set criteria for code modularization. The McCabe metric also gives the user a

method for locating the independent paths through a flowgraph. Work has been done which

utilizes the McCabe metric as the basis of a structural testing strategy. This testing method is

discussed in Section 2.3.2. Used as either a testing aid or a gauge for program modularization,

the McCabe metric is a useful tool for a software engineer.

35

2.2.2 Formal Development Methods

The use of formal development methods has recently become very prevalent in software

development. Formal development methods are replacing the ad hoc methods previously used in

software development. With the use of formal development methods, strong feedback is

incorporated between the different elements of the design process. The use of formal methods

improves the development process in two ways, according to Ouyang (Ouya95):

A complete and unambiguous specification is developed in a form which facilitates

mathematical validation.

* Verification of the software during the production process is much more effective.

The formal development method provides a mathematically based specification which

describes the concept of the program. This mathematical basis provides an excellent foundation

for verification and validation of the code. The use of a formal method has been shown greatly to

improve the software development process. The formal method requires an increase in time spent

on the early stages of a project, as the specifications are the main focus of the formal method. This

extra time is later recovered over in the lifetime of the software. When using informal methods,

much of the time spent developing software is devoted during the final stages of validation and

verification. Because of this, much of the software must be reengineered. The use of a formal

method greatly reduces the number of errors which are passed to the final testable code.

Ouyang's work includes a deep description of the many formal development methods

currently in use. By comparing the various development methods, Ouyang concluded that the

DBTF (Development Before The Fact) formal method was the most effective among those

available currently. DBTF is marketed by Hamilton Technology Inc. of Cambridge, Ma.

(Hami92a) The application of the DBTF method is aided by a CASE Tool Suite known as the

36

001 System. The 001 System is explained in this report. For a closer examination of the subject

of the formal development methods, one should review Ouyang's work.

2.3 Software Code Testing Methods

The main emphasis of the literature search of this report is upon code testing methods.

The goal is to find the most efficient, and complete method possible. In order to choose this

method, the literature is extensively reviewed, and each method is rated for completeness and

general usefulness. In the end, the most complete methods are incorporated into a formal testing

method. This formal method is then tested on several software codes.

A search of the literature of code testing reveals many different testing strategies. Some of

these methods are specific to certain program types or programming languages and are ignored due

to their lack of generality. The goal of the study reported here is to find a method which is useful

in general, and not in specific cases only. Many of the methods found, fit this criteria. Although

the methods are quite diverse, they can be broken down into two categories: black box testing and

white box testing. Black box methods are based purely upon the specification document of the

program in question. The code is treated as a closed box and is never examined. In white box

testing, the code is examined, and tests are formulated based on the some aspect of the code itself.

Black box testing methods are examined first.

2.3.1 Black Box methods

Black box testing methods, also calledfunctional testing methods, derive test cases from

the specifications and not the code itself. The tester is not concerned with the mechanism which

37

generates an output, only that the output is correct for the given input set (Myers79.) Simple

programs are often tested with black box methods. For example, a simple program's specification

document might indicate that two numbers (A and B) be taken from user input and their sum

(A+B) be displayed on the screen. To test this simple piece of code functionally, an input set is

chosen which represents the typical use of the code. The tester may wish to input several

combinations of A and B. For instance the cases where A is equal to B, A is greater than B ,and A

is less than B could constitute a test set. The tester may wish to use input data values which are

more likely to cause errors. For instance letters of the alphabet could be entered instead of

numbers. If all of these cases execute properly, the code is found to be satisfactorily tested

functionally. However, if one of the functional test cases yields an incorrect result, the code must

be examined for the error. Due to the nature of the strategy, black box testing is also known as

input / output testing.

Recall that the focus of this search is to locate a complete, yet practical testing method.

The only complete black box method is known as exhaustive input testing. For the example above,

every possible combination of the two numbers would be tested, resulting in an infinitely large test

set. Exhaustive input testing is very impractical. If any one of the input variables is a rational

number, an infinite amount of test cases must be considered. Despite the apparent impracticality

of complete black box testing, these methods should be mentioned. They are examined here as a

possible compliment to another more useful testing method. It may be possible to use them in

conjuncture with other testing methods to achieve a more complete result.

Myers identifies a method for decreasing the number of tests needed in the input / output

testing process. This method is called equivalence partitioning, and deals directly with the

specification document to decrease the number of test cases needed. Because of the unfeasibility of

exhaustive input testing, one is limited to a small subset of the allowable input values. With the

38

equivalence partitioning method, this small subset is put to the greatest use possible. There are two

considerations when developing test cases. The first is that the test case reduces the total number of

tests needed by more than one. The second is that the test covers a large range of other test cases;

i.e. it should test for more than one error type simultaneously (Myers79). Test cases are developed

from each condition given by the specification document. Myers gives several rules for choosing

test cases from the specifications. The process is a very subjective one with only a few loose

guidlines. The testing of erroneous input values is stressed. Equivalence partitioning testing is a

heuristic testing method, and is far from complete. For a more complete reference, one should

review Myers.

Black box testing methods can be very useful, as they simulate the actual usage of the

program. The program's targeted user will not examine the internal workings of the code during

each usage. Black box methods will always be useful in testing small pieces of code designed for a

simple and specific tasks. Exhaustive input testing is the only known complete black box testing

method, and is very impractical. Functional testing methods may not offer a viable complete

testing alternative, but could be used in conjunction with other methods of testing to achieve a

useful result, and thus they are mentioned here.

Black box testing methods represent just one of the many testing schemes in the literature.

All of the alternatives must be considered before a decision can be made as to which one is the

most effective. While, it is possible that black box methods can be used in parallel with other

methods to achieve an effective yet incomplete result, the heuristic approach which is so

fundamental to black box methods makes them a poor candidate for use in the work reported here.

2.3.2 White Box Methods

39

White box testing methods generate test sets by examining the inner workings of the

program in question. White box testing is also known as structural testing due to the basis of the

method upon the code structure. Many types of structural testing methods exist. This survey

reviews these numerous methods in order to decide which one is the most satisfactory for the job of

complete testing. Since we can not be certain of finding a complete testing method, many

incomplete testing methods are examined here. These incomplete methods may be used in

conjuncture with other methods or as the basis of a new method to improve software reliability.

2.3.2.1 Basic Structural Testing Methods

To understand the concept of structural testing, three testing methods must become

familiar. These techniques are statement, branch, and path testing methods, and they form the

base of understanding most other forms of structural testing methods. These testing techniques are

said to result in a certain coverage of the code.

* Statement coverage (known as C1) is a testing method which assures that every statement of

the code has been tested. In other words, the test set selected results in the execution of every

statement in the code. (Ntaf88)

* Branch coverage (known as C2) is achieved by testing every transfer of control from one

program statement to the next. To attain complete branch coverage, every direction at every

decision node must be executed at least once by a test case (Howd8 1). Statement coverage is

included in C2.

* Path coverage (known as C.) is attained by executing every possible control path through the

code. Path coverage includes both C and C2 (Ntaf88).

40

Statement coverage is the least rigorous structural testing method. It is often possible to

achieve statement coverage with relatively few test cases, even for a large piece of code. At the

end of the test campaign, the tester knows that all of the statements in the code are executable, and

that the program has yielded some correct results. However, the program tester can not concluded

that the code is error free. Complete statement coverage is a far too limited a testing criterion to be

used to indicate successfully complete testing.

Branch and path testing are very fundamental concepts to the study of structural testing

metrics. Paths have been introduced previously in the description of control flowgraphs (Section

2.2.1.3). Recall that a complete path is a sequence of nodes starting with the entrance node and

finishing with the exit node of a program. Path testing involves testing every possible path through

the flowgraph. This method can result in many tests. In the case of the ATM example code, recall

that there are six paths through the code. Recall Figure 2-6, the flowgraph of the ATM code. To

achieve path coverage, the six paths are those summarized in Table 2-2.

41

A test set resulting in Path coverage of the ATM example.

Table 2-2 Path Coverage of the ATM code

However, only four tests would be necessary to achieve complete branch coverage on

that same code.

Path Number Flow Path
1 A+C+D+F+G+I
2 A+B+F+G+I
3 A+C+E+F+G+I
4 A+C+D+F+H+I

A test set resulting in branch coverage of the ATM example code.

Table 2-3 Branch Coverage of the ATM Code

Path coverage is the more rigorous method. In fact, path coverage is the only complete testing

method. A piece of code which is path-tested is, by definition, completely tested (Myers79).

The path coverage method may be rigorous, but it also has many practical drawbacks.

Path coverage is often nearly impossible to attain in practice due to the enormous number of tests

required to achieve it. This problem can be illustrated by a short program which contains twenty

five consecutive if..then..else statements. To achieve path coverage one would require 225 or 33.5

million test cases. Branch coverage, however, could be achieved with as little as two tests, one for

all of the true branches and one for all of the false branches. It may not be possible to formulate

such perfect test cases in practice, as some paths may be infeasible.

42

Path Number Flow Path
I A+C+D+F+G+I
2 A+B+F+G+I
3 A+C+E+F+G+I
4 A+C+D+F+H+I
5 A+C+D+F+H+I
6 A+B+F+H+I

An infeasible test path can result from either branch or path coverage analysis. The reader

may have noticed already that of the six paths in Table 2-2, only three of them are executable.

Those paths are shown in Table 2-4.

Path Number Flow Path
1 A+C+D+F+G+l
2 A+B+F+H+I
3 A+C+E+F+G+I

Table 2-4 Feasable test Paths of ATM Code

For every test case, a set of input variables must be determined which will cause that flowpath to

be followed. In the ATM code example, the input variables are "b" and "w". An analysis of the

code reveals that the edge of node A divides the input variables into two distinct regions,

(w > b) and (w 5 b). The edge of node C further divides the input variables into the three regions

(w > b), (w < b), and (w = b). One can also notice that if either node D or node E is reached, then

the exit sequence will be (F+G+I). If node B is reached, then the exit sequence will be (F+H+I).

Thus, three of the possible paths through the code are infeasible, meaning that no input variable set

can be identified which will cause their execution. The possibility of infeasible paths adds to the

time consuming nature of path testing. Infeasible paths can also be a nuisance when branch

testing.

Looping path structures add great complexity to the process of software testing. Looping

structures are the most difficult to test completely. Any type of recursion can result in an

exponential growth in the number of paths in a piece of code. For example, consider Figure 2-8

depicting a section of code containing a looping structure which executes "n" times through. There

are three possible paths for each pass, or iteration through the loop.

43

For one iteration (n=1)
A

there are three paths, a

B
manageable number.

D E However, the number of

test paths increases very
F

quickly as the value of

G n increases, as 3". Ten

Example Program to illustrate the relationship between iterations result in
looping structures and structural testing techniques.

59049 paths, and 100

Figure 2-8 Example Looping Program Flowgraph iterations lead to

5.15* 1 4 paths. Path testing becomes very infeasible as the number of iterations increases. In

fact, for even 20 iterations a tester would have to execute one test every second for 100 years to

complete the testing process. Since software is often outdated in a matter of years, it is necessary

to find a more accommodating testing process.

"Branch testing ... is usually considered to be a minimal testing requirement (Ntaf8)."

This statement implies that errors can and do pass through branch coverage. Howden cited three

empirical studies which showed that many errors are undetected by branch coverage (Howd8 1). A

compromise must be found between the minimal approach of the branch coverage method and the

infeasible, but complete path coverage method. The goal of this report is to locate a complete, and

accommodating testing method. Path coverage is a complete testing method, but is not

accommodating in most cases. Let us examine the other types of structural methods in the

literature in hopes of finding a compromise.

44

2.3.2.2 Data-Flow Methods

Data-Flow testing methods are common in the literature and represent a possible

compromise to unfeasibility of complete path testing. There are many types of data-flow methods.

Only the most useful methods are summarized in this report. To understand data-flow testing

methods, one must be familiar with several concepts which are explained below.

Data-flow testing works with the flowgraph to support a search for data-flow anomalies.

Data-flow testing can lead to a selection of tests which represent a compromise between the rigor

of path testing and the minimal approach of branch testing (Biez90). An extensive literature exists

concerning the subject of data-flow testing. Much of this work was lead by Rapps and Weyuker

(Rapps85). Their premise behind the idea of data-flow testing is a simple one. Their statement, as

quoted by Biezure (Biez90), that ". . . one should not feel confident about a program without

having seen the effect of using the value produced by each and every computation," has truth to it.

Data-flow testing has its origins in the black box testing technique of exhaustive input

testing. In theory, every possible input value could be tested in order to satisfy the complete test

criteria, but as we have seen, this is impossible for all but the simplest of codes. Data-flow testing

is an intelligent method for selecting a small subset of the input domain for testing purposes (ie. for

equivalence partition testing). One hopes that the selected subset reveals all of the errors in the

program. In practice, such a subset is difficult, if not impossible to locate (Rapps85). However,

systematically locating as complete a test set as possible is the goal.

For every testing method other than complete path testing, one must assume that the errors

located in the code, also known as bugs, can be detected by the testing method of choice. In data-

flow testing, one must assume that the program bugs are a result of the incorrect use of data

45

objects. For instance, if the program's control structure is incorrect, data flow testing assumes that

this error is refected in the data objects. This is a key assumption.

Comprehending the terminology of data-flow testing is very important to understanding the

literature. Data-flow testing examines the process through which input data is transformed and

processed in order to achieve the end result of the program. A data object is any type or variable

which can be used by the program to alter either other program variables or the program's control

flow. Data objects can exist and function in a number of ways as defined by the following symbols

(Biez9O).

" d or def- defined or initialized.

* k - killed or destroyed.

" u - used in some manner.

" c - used in a calculation.

* p - used in a predicate. A variable used as a predicate controls the execution path of

the program. (ie. X is a predicate in the statement "IF X-true THEN Goto A ELSE

Goto B")

As data objects flow through a program, their states and uses can be traced using the

symbols above. For instance, a data object could be defined, used in a calculation, and then

destroyed. Such a combination of events would be denoted as dck. Some combinations of symbols

represent normal data-flow situations, while others represent bugs. For instance the combination

du is allowed and frequently encountered. The data object is first defined, and then used.

However, if the combination ku ever were to occur in a program, an error would be indicated, since

ku represents the destruction of a data object followed by its use. This sequence is logically

46

impossible. With these symbols in mind, data-flow testing techniques can be thoroughly

understood.

Rapps and Weyuker introduce a family of path selection criteria, based upon data flow

analysis (Rapps85). In order to understand the notation used to describe a family of paths, one

must first grasp the concept of a def-clear path. A def-clear path, which stands for definition clear

path, is a path which does not contain a definition of a particular variable (call it x) in any of its

interior statements. The following notation is given in further explanation of the concept of def-

clear paths. A path (i, nj , . . . , n. , j) where m > 0, is def-clear with regard to x from node i to

node j, if there are no definition uses of x in nodes n1 , . . . , nm. A path is a simple path if at most

one of its nodes is visited twice (Beiz9O). A simple path occurs when a looping structure is

involved. For example the path (A+B+D+F+E+B) in Figure 2.8 is a simple path.

Many types of test path selection criteria are introduced by Rapps and Weyuker, however,

the most complete set of selection criteria corresponds to the all du-paths method. A du-path (n,, .

. . , ni, nk) is defined, with respect to a variable x, as meeting one of the following criteria.

* nk is a c-use of x and path (ni, . . . , nj, nk) is a simple and def-clear path with respect to x.

* (nj, nk) contains a p-use of x, and the path (ni, . . . , nj) is both def-clear with respect to x and

loop free.

As well, the node ni must contain a definition use of the variable x. With the criteria in mind, one

can define the test strategy governed by the all du-paths method. Simply put, the all du-paths

method includes all paths which contain a du-path for every variable in the code. This is best

illustrated by an example. The following example program is written in the language illustrated in

Figure 2-4.

47

Begin
output <= 0
Print ("Enter an integer between 1 and 10"):
read (x) A

Print ("Enter an integer between 1 and 10"):
read (y)
w <--x -y .B.

....

[a] if w>1 then
output <= f(output, x, y)................................ C
w <= w - 1

goto [a].........---............
else E D

Print Output----

End
An Example Looping Program for the illustration of the all du-paths testing
procedure.

Figure 2-9 Looping Example Program for Illustrating Data Flow Testing

The program's flowgraph is annotated to show the uses of each of the variables in the code

on certain links. A separate flowgraph is constructed for each variables in the code as shown in

Figure 2-10.

A A A

d d d
C C

B B B

C p p
C C C

C

c d d
E D E D E D

x and y Output w

A flowgraph of the example program in Figure 2-9, annotated with data
flow actions for the four variables used in the program: x, y, Output, and
w.

Figure 2-10 A Flowgraph of the Looping Example with Data Flow Annotation

In order to demonstrate the all du-paths concept, the example program in Figure 2-9 is

described in flowgraph form in Figure 2-10. Figure 2-10 indicates the data flow uses for each of

48

the variables in the simple program. By examining the flowgraphs above, one can create a list of

du-paths for each of the variables in the example program. Variables x and y are used in the exact

same way, and thus share the same flow graph. The du-paths for x and y are (A+B) and

(A+B+C+D). The du-paths of output are (A+B), (A+B+E), (A+B+C+D) and, (C+D+B+E). The

du-paths for w are (A+B+E), (A+B+C) and, (C+D+B+E). It is important to note that a single test

case can satisfy multiple du-paths. In this simple case, all of the du-paths can be tested with just

two tests. The first test will be (A+B+E) and the second test (A+B+C+D+B+E). All nine of the

individual du-path segments are included in these two tests. This simple test case demonstrates an

important concept of the all du-paths testing scheme. Recall that a du-path must either be loop-

free or simple. Thus, looping structures need only to be iterated once through. The possibility of

an endless test path is eliminated. The test set generated by the all du-paths method is always

finite, an advantage over the complete path testing method.

The literature mentions many other types of data-flow testing methods (Rapps85). These

other methods are based on other types of path selection criteria. For instance, one of the testing

strategies includes all of the predicate uses of every variable, and is known as all p-uses. Many

other variations of data-flow testing exist. However, the other methods are less complete than the

all du-paths method, and are not summerized in this report. For an in depth look at data flow

methods see Rapps, Weyuker, and Frankl (Rapps85, Weyu93, Frank88, Frank93).

The all du-paths method is a rigorous one, which represents a compromise between

complete path testing and branch testing. Several studies have been completed which compare the

effectiveness of the all du-paths testing method with other testing methods. These studies indicate

that while the all du-paths method is one of the most time consuming data-flow analysis methods, it

yields the best experimental results (Weyu93) measured in terms of percentage of errors located for

each test program.

49

The use of data-flow testing can not lead to a complete testing result. However, the most

effective data-flow testing method, all du-path testing, is a viable compromise to complete path

testing. Complete path testing is a complete and rigorous method, which in the presence of loops

can take an unreasonable amount of time to achieve. All du-path testing circumvents the problem

with loops by limiting them to one iteration. However, an error could be introduced which only

surfaces after n loop iterations, and thus would not be found by the all du-paths method. All du-

path testing is a very complex and time consuming technique which may not be feasible for large

programs.

2.3.2.3 McCabe's Metric Based Methods

The works of Poorman (Poor94) and Arno (Arno94), explain the use of the McCabe

metric as the basis for a testing method. McCabe explains that his metric is an excellent measure

of the number of tests needed to achieve branch coverage. However, he also indicates that the

metric should only be used as what it is, a guideline. If one has a program G with a McCabe's

metric value of v, the number of test cases t should be greater than or equal to v. If t is less than v,

either the flowgraph is in error, or more test cases are needed to achieve branch coverage.

Poorman concluded that the McCabe metric ... is essentially a measure of the number of tests

required to completely test the structure of the code. (Poor94)" This is false, even in simple cases.

Consider the following example specification document and resulting program.

50

The following program is utilized to accomplish this task.

Figure 2-11 Submarine Door Example Program Specification Document

* The program will illuminate certain indicator lights by calling the function
TurnOnIndic (indicator number), depending upon the status of a submarine's
torpedo tube. The tube has two doors, an outer and an inner door. The table
below demonstrates which indicators are to be lit during each of the four
possible door configurations:

Inner Door Outer Door Indication Light Number
Closed Closed 10
Closed Open 9
Open Closed 8
Open Open 6

* The boolean variables innerdoorclosed and outerdoorclosed will be supplied.
These variables are true if the respective door is closed and otherwise false.

* Indicator Light Six is also attached to a warning siren, as opening both the
inner and outer doors could have arave conseauences.

The specification document for McCabe metric based testing example program.

51

Begin
read (indoorclosed)
read (outdoorclosed) - ---------
If indoorclosed=true Then A
signall <= 3

Else --
signall.<=1----- -

End If
If outdoorclosed-true Then D

signal<= signall+7 --- -
Else

signal <= signall + 6 -... E ... F

Endlf ---f
TumOnIndic(signal)
End

The resulting program, from the specifications document in Figure 2-11
with its flowgraph.

Figure 2-12 Submarine Door Example Program Listing and Flowgraph

The McCabe metric of the program is (v=8-7+2=3) three. Thus, under the assumption

that the McCabe metric equals to the number of test cases necessary for complete testing, only

three test cases are needed. The chosen test paths and the test results are listed below.

Path Inner Door Status Outer Door Status Resulting
I Indicator Number

A+B+D+E+G Closed Closed 10
A+C+D+E+G Open Closed 8
A+B+D+F+G Closed Open 9

Table 2-5 Test Cases and Results for Sub Door Example

The tests for the three chosen paths were successful. Therefore, if the McCabe metric represents

the number of tests required to completely test the code, the program is assumed to operate

correctly.

The reader may have noticed that the program is incorrect, and does not meet the

specification requirements. This is not discovered, because the error lies in the untested path

52

(A+C+D+F+G), the case where both doors are open. Failure to locate such a grievous error

demonstrates the shortcomings of Poorman's method.

2.3.2.4 Variations on Path Testing

Thus far, two complete testing methods have been found, exhaustive input testing, and

complete path testing. Of these two, complete path testing is the most feasible. In the case of

simple non-looping programs, complete path testing is attainable. Exhaustive input testing is

rarely achievable in any situation. It is apparent that complete software testing of reasonable sized

programs is only possible in theory. Path testing seems to be the best theoretical method for

attaining a complete test. In hopes of decreasing the sizable number of test cases in the most

beneficial way, an examination of the subtle variations of path testing follows. The goal is to

locate a testing coverage that can realistically be achieved, while retaining the path testing

approach.

Structured path testing and boundary-interior path testing seem to have the most

promise as a compromise to complete path testing. Both methods were pioneered by Howden

(Howd75). The methods only differ from path testing in the number of times that looping paths are

iterated. Both strategies limit the number of iterations. The more rigorous of the two methods is

Structured path testing, and it is discussed first.

Structured path testing is equivalent to complete path testing, except that the number of

loop iterations is limited to some number. To be more specific, all test paths P, are followed which

do not contain more than k repetitions of any subpath sp (Ntaff8). Thus, every loop is limited to k

iterations. As k approaches infinity, structured path testing becomes equivalent to complete path

testing.

53

Boundary-interior testing is closely related to structured path testing. Boundary-interior

testing involve separating the possible testing paths into two groups. One group, called the

boundary group, consists of all paths which do not enter loops. The other, known as the interior

group, consists of all of the paths which enter the program's recursive structures. The interior

group contains many paths which differ only in the number of times that a loop is iterated. From

the interior group, only the paths which contain one iteration of the loop are added to the test set.

Every path in the boundary group is included in the test set. Thus the flowgraph in Figure 2-13,

requires three tests using the boundary-interior method. The first path (A+B+G the boundary path)

does not enter the loop. The other two paths (A+B+C+D+F+B+G and A+B+C+E+F+B+G the

interior paths) follow the two alternate paths inside the loop. The loop is not iterated multiple

times. Boundary-interior testing, is equivalent to structured path testing when k is equal to one.

A

B

C

G D E

F

Figure 2-13 Example Flowgraph to Demonstrate Altered Path Testing Methods

2.3.2.5 Mutation Based Testing Techniques

A technique called mutation testing is also mentioned in the literature. Mutation based

testing is structurally based, but is unlike any technique which has thus far been discussed.

54

Mutation testing requires that a class of mutation transformations be applied to the program in

question, that will introduce errors of a certain kind into the code. The typical transformation

might involve altering variables in the control structure, altering calculations, and swapping

variables. A test set is said to be complete if it can distinguish between all of the mutated

programs and the original program (Howd81).

Mutation testing is very computationally intense and time consuming. No sure way of

determining the proper mutation transformations exists. It is estimated that there are on the order

of n2 mutations of an n line program. This necessitates a large number of tests for even a small

program. In fact, if there are t tests in the test set, the number of test cases necessary is somewhere

between n2 and t*n2 (Howd8 1). The use of mutation testing in the literature is limited. In the work

reported here, mutation testing is not used. Mutation testing is very time consuming as does not

attain a complete test of the softvare.

2.3.3 An Overview of Testing Technique

To this point, the emphasis of this report has been on the particular method of testing.

There are some general issues which should be discussed with regard to testing strategy. Once one

has decided upon a specific code testing method, for instance boundary-interior testing, there are

still several issues to be resolved. Perhaps the biggest of these issues is the question of how one

should attack the testing process. Modern software is often very large and modularized. Given a

very large software system, one may not want to attempt to run test cases for the entire code. It

may be more efficient to test each module individually. Such an approach is known as incremental

testing. An approach which tackles the entire code simultaneously is known an nonincremental

testing.

55

Each method has its advantages and disadvantages. Nonincremental testing is very

difficult for large programs. McCabe recommended that if a module had a metric value of greater

than ten, it should be further broken up. His motivation is as follows. It is very difficult for a

human to analyze and develop test cases for an entire piece of complex software. It is much easier

to divide and conquer. Incremental testing allow one to do just that. However, there is the

possibility of interface errors occurring between the modules. The incremental method does not

test for interface errors as rigorously as the nonincremental method does.

One must also be aware of a mechanism for determining the correct answer for each test

case. The result of a test case is worthless if one can not determine the correctness of the result. A

data base which contains the correct answer for every test case is known as an oracle. The

presence of an oracle is often assumed in the literature of software testing. In practice, this

assumption can be a costly one. It is often very difficult to determine if every test case achieves the

correct result. Often the tester will also act as the oracle. This practice is not recommended, as the

tester will be biased from having made an in depth examination of the code. Determining the

proper source and type of oracle to be used is a major problem in any software testing project.

2.4 Literature Search Conclusion

The goal of the literature search reported here was to locate a complete testing method,

with a focus on software development methods which make this feasible. The search was broad in

scope, with a focus on testing methods which are applicable in general.

Methods for developing reliable software have been examined. Both McCabe and

Halstead concluded that a shorter program is less prone to error. McCabe has developed a metric

for measuring the complexity of a piece of software code. Using this complexity measure as a

56

guide, McCabe recommends breaking a program up into modules with a metric value of no greater

than ten each. Experimentally, it has been shown that this procedure reduces the number of errors

in each module. Formal development methods, such as DBTF (Development Before The Fact)

have also been examined. These methods provide a mathematical basis for the program

specification, and assure an aided verification and validation process.

Two complete testing methods were found. One method, a black box method, is known as

exhaustive input testing. Implementation of exhaustive input testing results in an unreasonable

amount of test cases. The other complete testing method, a structural one, is known as complete

path testing. The literature regards complete path testing as being impossible for all but the

simplest loop free programs. The presence of a loop can result in an infinite number of test paths,

resulting in an infinite testing time. Because of the unfeasibility of these methods, other methods

are examined. Other forms of black box testing are inadequate for the task, and do not measure up

against the alternative structural methods. Of the structural methods, variations on path testing

known as structured path testing and boundary-interior testing, appear to have the most merit.

However, improvements can be made to either of these methods. Thus, it is evident that a practical

method for completely testing all except very small simple programs does not exist.

57

3. Selection of a Testing Method

3.1 General

Due to the lack of a feasible method for completely testing safety related software, a new

method of testing has been developed. This method is known as the Feasible Structured Path

Testing method and is designed to incorporate many of the favorable aspects of the testing methods

discussed in chapter two. The Feasible Structured Path Testing (FSPT) is a structurally based

testing method resulting from a mixture of data flow and path testing methods. The method differs

from those in Section 2, in several important ways. The FSPT systematically guides the tester

through the process of formulating test cases. The method is complete in many cases, but is not

overly time constuning. In the case of a looping program where complete path testing yields an

unfeasibly large amount of test cases, the FSPT limits the number of tests to a manageable

number. One important aspect of the FSPT is the removal of unfeasible test paths, which speeds

the testing process. The results attained from using the FSPT in several examples programs are

excellent. All errors within the example codes are located. Due to its structured nature the FSPT

could be automated, to greatly increase the efficiency of the testing process.

3.2 Feasible Structured Path Testing

The feasible structured path testing method is based upon the concept of structured path

testing. As stated in Section 2, structured path testing is equivalent to complete path testing aside

from limiting the number of loop iterations to a value, k. Every test path is limited to k iterations

of looping structures. The FSPT duplicates this strategy. If a looping structure exists in a section

59

of code, that loop is only executed k times through at most. This strategy prevents the occurrence

of an unreasonable and conceivably infinite number of test cases. This criterion also sacrifices

completeness, but as we have seen, this sacrifice must be made for testing to be practical. Also,

the FSPT prevents the testing of unfeasible test paths, by examining the program's data flow and

control structure to determine which paths are achievable. The FSPT consists of five steps. An

overview of the entire process is presented, followed by a detailed description of each step. This

chapter concludes with two example uses of feasible structured path testing.

3.2.1 Method Overview

Feasible structured path testing consists of a five step formal process. The goal of the

process is to take a program listing, and through analysis to, systematically produce test cases

which achieve structured path testing coverage involving no unfeasible test cases. This process is

as follows:

1. The first step is to draw the flowgraph of the program. This step is completed as demonstrated

in Section 2. The flowgraph is then altered to include only those paths which include k

iterations of any looping structures which may be present.

2. The second step of the process is to locate the data flow paths which lead from the input

variables to the output variables. Each variable that exists in the operational sequence of the

flow path from the input variables to the output variables is recorded in a list. These variables

are known as transitional variables.

3. The third step of the process utilizes the list of transitional variables generated in the second

step. The tester must reorganize the flowgraph to reflect every unique state of the transitional

variables.

60

4. The fourth step in the process is to measure the McCabe metric value of the altered flowgraph

to determine the complete set of linearly independent paths for the piece of code. The McCabe

metric can be used to achieve a complete result only because the flowgraph has been altered.

Poorman's method utilized the classic control flowgraph with no alterations and achieved only

branch coverage.

5. The fifth step in the process is to trace each test path to determine which input values

correspond to each path. The tester also systematically eliminates unfeasible paths.

Unfeasible paths can not be reached by any combination of input variables. The input values

for each feasible test path are recorded.

The tester then has all the information needed to proceed with the FSPT. Each of the steps listed

above is examined in detail below.

3.2.2 Feasible Structured Path Testing: The Details

1.1 The first step of the FSPT examines the program being tested and constructs the

program's flowgraph. This process is documented in Section 2. During the first step, the tester

should become familiar with the control structure of the

program being tested. In the case that looping structures An
example

are present in the code, one expands the flowgraph to of a
horrible

include only k iterations of any looping structure. There loop
structure.

are several implications of limiting the value of k. A

complete test occurs when k reaches infinity or the

maximum value of loop iterations possible. In many

instances, the tester does not have the facilities to test Figure 3-1 Horrible Loops

61

such a tremendous number of test cases. The tester should be familiar with the time needed for

each test. Comparing this time with-the total time alloted for testing, the tester can arrive at a

practical estimate of k. k should be choosen as to limit the number of test cases, so the testing can

be completed in a timely manner.

1.2 The first step assumes that no horrible loops exist in the code. Horrible loops are

described by Beizer as . . . code that jumps into and out of loops, intersecting loops, hidden loops,

and cross-connected loops.. .," (Beiz90). The FSPT assumes that the code contains no horrible

loops. Figure 3-1 contains an example of a horrible loop structure. The flowgraph developed in

the first step serves as a guide for steps two and three.

2.1 The second step involves an examination of the data flow of the program, and results in a

list of variable transitions. These transitions relate the input variables to the output variables. The

first step of the process is recognizing the input and output variables of the code. Any variable or

data object that attains its value from outside the piece of code being examined is considered an

input variable. Those variables which facilitate the ultimate use of the program are known as

output variables. To recognize the output variables, one must have some understanding of the

program's function. Output variables are produced in several ways. A function can be performed

and its products presented on an output device (e.g. a monitor), data can be stored in a memory

device (e.g. RAM) for later use, or in the case of testing a program module, variables can attain

values for use in other modules. Once the tester recognizes both input and output variables of the

code, the remainder of the second step can begin.

2.2 A list of every variable which directly affects the flow of data from the input to the output

variables is generated. This list contains the transitional variables. For a variable to be included in

the list of transitional variables, it must meet one of two requirements. The variable can directly

attain its value as a function of an input variable, or of another transitional variable. Also, other

62

variables are designated transitional variables by directly affecting the value of the output

variables, or by affecting the values of other transitional variables which affect the output

variables. Recall from the exemplary language, detailed in Figure 2-4, the assignment statement:

y <=f(x, , xn) where (y, x, .. .- . , x) are variables. In order for a variable to be included in

the transitional variable list, it must be created from an assignment statement involving either input

variables or other transitional variables already assigned to the list. The relationship also works in

reverse. If y is the output variable or another transitional variable, then x , x. are added to

the list of transitional variables. When all flow branches have been examined including as many as

k iterations of any looping structure, one should have a complete list of every transitional variable

leading from the input to the output variables. When this list is complete, one can move on to the

third step of the process.

Expanding a Flowgraph to Show k Iterations

A Expanded
General Flowgraph Flowgraph for

Case k=2.
B

A

a

B

b

C

Figure 3-2a c Figure 3-2b

The flowgraph in (Figure 3-2a) is exanded into two iterations of the
loop represented in the path A+B+A in (Figure 3-2a). In the case
above the value of k is two.

Figure 3-2 Fowgraph Expanded to k Iterations

63

3.1 The third step of the FSPT results in an altered form of the original flowgraph. From the

altered flowgraph, one designs the necessary test cases to complete the method. In the first step of

the FSPT, the flowgraph is altered to reflect only k iterations of each looping structure. See

Figure 3-2.

3.2 Starting from the top node, one systematically examines the state of the transitional

variables that exist in each node. If a node contains a transitional variable that has not reached the

end of its development, the transitional variable affects other transitional variables or the output

variables at some point further down the execution path. It is necessary to expand the flowgraph

into a parallel structure reflecting each possible unique state of that transitional variable. The

number of states produced depends upon the number of possible paths reaching the node in

question. For instance, in Figure 3-2, if at node C a transitional variable x exists that affects the

program's output variables, node C is expanded. If a unique value of the variable x arises from

each of the three paths leading into node C, node C expands into three separate nodes and a new

exit node is added. See Figure 3-3 for an illustration.

64

Once the flowgraph has .been

altered, the fourth step can be Expanding a Flowgraph to Show Unique
Transitional Variable States.

completed. A

A
4 The fourth step in the

B
FSPT finds the value of the B

a

McCabe metric of the flowgraph

altered in step three. This value b

b

is used to determine the number
C D E

of test cases needed to c

completely test the code. As Figure 3-3a F Figure 3-3b

The flowgraph on the left is expanded at node C to
described in Section 2, a base reflect the three unique states of the transitional

test path is selected, and a set of variable x which leads to the program output at node F.

linearly independent paths is

chosen from the code. These Figure 3-3 Flowgraph Expansion: Transitional Variables

paths represent the complete set of the FSPT test cases.

5. The fifth step in the method determines the values of the input variables that cause each

test path to execute. This is done by deducing those values from the test flowpath. In some cases,

a broad range of input values lead down a certain path. For example, consider that a predicate at

node a in Figure 3-3 states the function (if (x>30) then A, else B), then the variable x could take

all values 30 in the false path B and all values >30 in the true path A. In this case, the tester

chooses a value at random from within the range and, records the exact values of the input

variables that are used for each test case. The tester must also determine which test paths, if any,

are unfeasible. Unfeasible paths usually appear in a flowgraph because reaching a certain node in

the flowgraph predetermines the exit path segment. For instance, in Figure 3-3b, if at node A the

65

variables that control the predicate are always fixed to choose the finishing path D+F, then the

finishing path b+E+F can be eliminated as a test case. This entire process is demonstrated later in

this chapter. Proper record keeping is necessary to facilitate the location of any errors in the code.

3.2.3 Feasible Structured Path Testing: General Testing Strategy

The use of the FSPT is not limited to any type of program, and must therefore be adapted

for use in many complex situations. A simple ten line program is tested quickly and efficiently by

the FSPT. However, most programs are more lengthy with many code modules. The FSPT can

also efficiently test larger programs. A general testing strategy applicable to all types and sizes of

programs is given below.

Given a section of code to be tested using the FSPT, there are several important

procedures to be followed. One must be very rigorous in recording data associated with the test

cases. One should have a table indicating the exact values of the input variables associated with

each test case. There may be a case where input variables are passed to a section of code, but not

used in the tests. The values of these variables should still be recorded for each test case. In the

presence of an error, complete record keeping is vital. The tester records the value of every output

variable after each test case. These values can be compared with the oracle database developed by

the tester. The oracle data base contains the correct value of the output variables for every test

case. A comparison with the results from the oracle reveals any errors which are present in the

code. Should an oracle not exist, which is often the case, the record of the test results can be used

at a later time. The true goal of the FSPT is to demonstrate nearly every way the program could

possibly be used. This demonstration record is compared with the program's specification

document to locate any flaws in the code.

66

Feasible structured path testing should be utilized as an incremental testing method. As

stated in Section 2, incremental testing consists of the testing of each modular section of the code

separately. Doing this eases the burden upon the tester since smaller program is less cumbersome,

and often less apt to contain a unreasonable number of test paths. In fact, it is recommended that

the value of the McCabe metric of any module be no greater than ten. Experience indicates that

testing becomes increasingly difficult as the McCabe metric grows, and ten is found to be a

reasonable metric maximum. Given a program in modular form, the tester should examine the

program and organize it into a hierarchy of levels. The highest level code contains all the modules

in the first level. The first set of sub-modules could contain a second set of sub-modules. The

second set could contain a third, etc. Given a modules on the first level, testing should be

conducted as follows. The deepest sub-modules should be tested first. Once these are tested, the

next set can be tested using the FSPT, and so on until every module has been tested. At this point,

the high level code is tested, and the testing is complete.

Incremental testing methods can result in several problems. Often a specification

document is not written in the modular form reflected in the structure of the program spawned by

it. In such a case, it is difficult to compare the results of a modular test to the specifications, if the

specifications do not indicate clearly what a particular module is to accomplish. The FSPT is

effective in demonstrating the performance of a module, but relies upon the tester to determine if

errors occur. This problem is found throughout the literature of software testing, and is solved by

assuming the presence of an oracle.

67

3.3 FSPT: An Example

1. This first example of the FSPT involves the submarine door example program used in

Begin
read (indoorclosed)
read (outdoorclosed)
If indoorclosed'true Then

signal1 <= 3
Else

signall <= 1
End If
If outdoorclosed-true Then

signal <= signall + 7
Else

signal <= signal I + 6
End If
TurnOnIndic(signal)
End

A

B C

D

E F

G

Submarine door example program and control flow graph for use in
explaining Feasible Structured Path Testing.

Figure 3-4 Submarine Door Program and Flowgraph for the FSPT

Section 2.3.2.3. This simple program effectively illustrates the use of the FSPT. Figure 3-4 is

included for convenience. The diagram results from the first step of the FSPT in the five step

process. The first step is to draw the flowgraph and expand it in the presence of looping

structures. Since there are no loops in this case, the flowgraph in Figure 3-4 results from step one

of the process.

2. The second step of the process is listing of the transitional variables. This can be done

quickly for this simple program. The input variable set includes the variables, indoorclosed and

outdoorclosed. The output variable is signal. There are no transitional variables which result from

the input variables. However, the output variable, signal, gives rise to the transitional variable,

signal 1. With signall identified as the transitional variable, the third step can occur.

68

3. The third step of the FSPT is the most complex. The flowgraph is altered to reflect unique

states of the transitional variables. If one examines the flowgraph, one notices that at node D the

variable signalI is in a non-unique state. That node must be expanded to include the non unique

states of the transitional variable, signal. The value of signal can have a value of either 3 or 7,

depending on which flowgraph branch is taken at node A. Figure 3-5 illustrates this change.

Flowgraph A A Flowgraph B

A
B C

B C D E

D

F G H I
E F

C Figure 3-5a Figure 3-5b

Example of step three of the FSPT process. Node D on the left contains two
states of the transitional variable signall and is expanded into nodes D and
E to the right.

Figure 3-5 Step Three Expanded Fl

Step three is complete.

4. The fourth step of the process requires one

to compute the value of the McCabe metric of the

altered flowgraph. This results in a value of four

(v=12-10+2=4). The next step is to choose the

linearly independent paths through the flowgraph.

The result of this step is given in Table 3-1. The

Lowgraph: Submarine Door Example

Path Number Flow Path
I A+B+D+G+J
2 A+C+E+H+J
3 A+C+E+I+J
4 A+B+D+F+J

The linearly independent paths of
flowgraph Figure 3-5b.

Table 3-1 Lineraly Independent Paths
of the Submarine Door Example

69

given paths represent the complete test set for the example program.

5. The final step is to determine the value of the input variables, indoorclosed and

outdoorclosed. The values of these variables determine the flow path which is executed. In every

two way predicate branch the left branch represents a true path and the right branch represents a

false path. Thus, the repective values of indoorclosed and outdoorclosed are given in

Table 3-2 for each test path. The are no unfeasible paths in this example. The results of the test

Path Number Flow Path indoorclosed outdoorclosed
1 A+B+D+G+J True False
2 A+C+E+H+J False True
3 A+C+E+I+J Flase False
4 A+B+D+F+J True True

The value of the input variables indoorclosed and outdoordosed for each
test path.

Table 3-2 Tested Cases: Submarine Door Example

show that an error exists in path number 3 when the test outcome is compared with the oracle.

70

3.4 FSPT: A Second Example

Begin
output <= 0
Print ("Enter an integer between 1 and 10")
read (x)
Print ("Enter an integer between 1 and 10")
read (y)
w <= x - y

[a] if w 1 then
output <= f(output, x, y)
w <= w - 1
goto [a]

else
Print output
End

Example Program for the illustration of FSPT with looping structures.

Table 3-3 Looping Program for Example the FSPT

The example program of Table 3-3 is used to illustrate the FSPT with looping structures.

The following example, contains a looping structure, and may answer any remaining questions

about implementing the FSPT. The example program of Table 3-3 is also listed in Figure 2-6.

This code however, has no specification document attached to it. It is useful, none the less. It is

interesting to examine the testing process when loops are involved.

71

1. The first step in the FSPT process is to construct the flowgraph with a limit of k iterations

of any looping structures present in the code. In this case, the value of k is selected to be two. In

the case where k is equal to two, the

flowgraph is illustrated in Figure 3- A A

6b.
B B

2. The second step of the
bh

process is to capture the transitional

variables. One recognizes that the D C C b2

input variables are output, x and y. Figure 3-6a Figure 3-6b

The transitional variables in this case An example of the FSPT step one when loops are
involved. The flowgraph on the right represents

are w and output. It is true that the flowgraph on the left with a limit of two loop
B+C+B iterations.

output is also the output variable, it

Figure 3-6 Third Step Expanded
is not considered to be the Output Flowgraph: Looping Example

variable until it has reached its final state. With the flowgraph and list of transitional variables, the

tester is ready for the third step.

3. In this case, the third step of the FSPT is an interesting one. In this step, the flowgraph is

altered to reflect the unique states of the transitional variables. Also, the flowgraph is relieved of

any unfeasible flow paths. The transitional variables are output and w, as mentioned above. The

flowgraph in Figure 3-6b reflects every unique state of the input variables. Step three is quickly

completed.

72

4. In step four, the McCabe metric of the Path Number Flow Path

structure is calculated, and the test paths are 1 A+B+C
2 A+B+bl+C

chosen. The value of the McCabe metric of the 3 A+B+bl+b2+C

flowgraph is three (v=6-5+2=3). The linearly The linearly independent paths of
Figure 3-6b.

independent paths are listed in Table 3-4.

5. The final step of the process is to determine Table 3-4 Linearly
Independent Paths of

the values of the input variables x and y which the Looping Example

correspond to each of the paths. Each of the paths contains a unique set of input variables that

cause its execution. There are no unfeasible paths listed Table 3-4. The first path is executed

when w is less than unity. Equivalently, path one is executed when w O because integers are being

used. w is equal to x-y, and thus path one is followed when y>x. Path two is followed when y=x-1

and path three when y=x-2. Because the number of loop iterations was limited to two, these are

the only cases which are tested. Those cases between y=x-3 and y=x-9 are not tested. The results

of the tests are recorded, and compared with those of the oracle. Notice that it makes no difference

what the function f(output, x, y) consists of. It is only important to recognize that the transitional

variable output is directly affected by this function of the input variables x, y, and output.

3.5 FSPT: Conclusion

Feasible structured path testing is designed to attain complete testing coverage whenever

possible, in a systematic way. The method combines the structured path testing method with data

flow examination to achieve the desired result. The structured path testing method allows the tester

to eliminate data flow paths containing more than k iterations of an looping structure. This greatly

speeds the testing process of programs containing loops. Data flow analysis is used to eliminate

73

any unfeasible paths from the testing scheme. Data flow analysis also streamlines the testing

strategy by removing redundant test cases. The FSPT gives the tester a list of feasible and fairly

complete test cases to use in testing the program at hand. The goal of these tests is to locate every

error in the code. In most cases, this goal is achieved.

74

4. The 001 Case Tool

4.1 General

Programs written in the 001 case tool language are used to demonstrate feasible

structured path testing methods. The 001 tool is briefly discussed in Section 2 of this report. The

001 case tool is used to facilitate the Development Before the Fact (DBF) formal method. The

reader must have a general understanding of the 001 code structure to fully appreciate the

examples presented in the next chapter of this report. The goal of Section 4 is to give the reader

that understanding.

The 001 system is highly reliable. This reliability comes from the use of pre-defined

reliable systems. Only reliable pre-tested building blocks are used as mechanisms to integrate

systems. These building blocks can be classified into two catagories, types of objects and

finctions which operate upon the types. Types are essential to the 001 language and can be

arranged into a data structure known as a Type Map or TMap (pronounced T-map). Functions are

also arranged into maps known as Functional Maps or FMaps (pronounced F-map).

Understanding FMaps and TMaps is essential to understanding the 001 language.

4.2 Type Maps (TMaps)

Type maps are constructed of reliable and predefined data objects known as primitive data

types. These predefined data structures are built into TMaps. The relationship between types and

75

types maps is illustrated in Figure 4-1.

001 Type Map Structure

Primative Data
Types

Various Data Types

Predifined Data
Types and their
members come
together to form
data structure
hierarchies known
as Type Maps or
TMaps.

..............

Type Map (TMap)

--- - ..--- C-.

Members of Data Type

Relationships Between Types

Figure 4-1 Type Map (TMap) Explanation

Type maps can be used to create very complex data structures by specifying the relationship

between primitive types, or other TMaps previously defined by the user. Primitive data types

include strings, integers, Booleans, etc. Another data type exists, and is known as the

parameterized data type. The parameterized data type provides a mechanism to define a TMap

without a specific definition of the relationships between primitive data types. Examples of

parameterized data types are listed below.

The data type TupleOfis defined as a collection of different data objects which is fixed in

size. In Figure 4-2 (Ouya95) one can see an illustration of the TupleOf data type. The TupleOf

called RobotA describes a data structure that could be used by a program controlling a robot.

RobotA, located at the top of Figure 4-2, contains six members. Five of the members are natural

numbers (Nat), and the member called Ports is another TupleOf. Ports contains two members.

Both of the members are defined in sub-maps. The period at the end of the member IOPort. and

APortIds. indicate this fact. The variable IOPort., which describes the values given to the input /

76

output ports is an OSetOf type. The OSetOf type is explained next. The variable APortjds. is a

OneOf type which describes the the type of IOPort being used. The OneOf type is also explained

below.

The second parametrized type is known as a OSetOf (pronounced ordered set of). The

OSetOf is a collection of variables of the same type, similar to an array. The data type IOPorts is

and OSetOf the type IOPort. This means that IOPorts contains a list of every IOPort used in

robot being represented in this example.

Each individual IOPort is of the parameterized type OneOf This type indicates that only

one of the values listed below the IOPort type can be allowed at any one time. The type APortIds

is also a OneOf type. The identification of the 10 port in use can only be one of the five strings

listed below APortIds in Figure 4-2.

An Example TMap with Parameterized Data Types

RobotA(Tupleof)
MfgObject(Nat)

Ports(Tuple0f)
PickUpTime(Nat

PutDownTime(Nat) lOPorts. APortId.
TurnRate(Nat) Rotation(Nat)

IOPorts(OSetOf) APortId(One0f)

IOPort(Onef) Stock' Parts'

ConveyorB' Grinder'
Input(Nat) Output(Nat) ConveyorA'

Figure 4-2 Example TMap

77

4.3 Function Maps (FMaps)

FMaps control the manipulation of data types within the TMap. The FMap has the same

graphical structure as a type map. However, types are replaced with functions and the lines which

link them represent the relationships between the functions. Ultimately three primitive control

structures are used to manipulate TMaps and achieve the goal of the program. Those primitive

control structures are illustrated in Figure 4-3. They are Join (J), Include (I), and Or (0). These

reliable pre-tested primitive control structures remove the interface errors which can occur in other

program languages. Data flow for each of the primitive operations is indicated by arrows in

78

Figure 4-3.

Primative 001 Control
Structures

d P (a,b)J; Join (J) Control Structure
The Join control structure is used for

dependent relationships. The flow of data

c,d = Lef (xl,x2); xl,x2 = Right (ab); is indicated to the left.

Include (I) Control Structure
The Include control structure is 01, 02,03 = P1 (2,13 14)1;

used for independent relationships.
The flow of data is indicated to the
right. 01= Left (11, 12, 13); 02, 03 = Right (14);

01, 02= Parent I1,12)O:Partition Function(I1,2);

alse

01, 02= Left (11,12); 01,02= Right (11,12);

Or (0) Control Structure
The Or control structure is used for decision making. The Partition Function is used to

decide upon which branch is taken. The left branch is taken if the Partition Function is
true and the right branch if it is false. The Or statement is similar to the familiar
if..then..else statement.

Figure 4-3 Function Map (FMap) Explanation

More complex control structures are also possible, and are shown in the Figure 4-4. With

these six control structures, and a corresponding TMap, the programmer is able to construct any

code which is needed.

79

001 Reusable Control
Structures.

1, 02= Parent 1,12,13)CJ;

Co Join (CJ) Control Structure

01, 02= Left (Il,Al); Al= Right (12,13);

1, 02= Parent (Il,12)CO:PartitionjFunction(12);
Co Or (CO) Control se

Structure
01, 02= Left (12); 01,02= Right (11,12);

01, 02, 03 = Parent (11, 12, 13, 14)CI;

Co Include (CI)
Control Structure

01 , 02=Left (13, 12,14); 03 = Right (14, I);

Figure 4-4 001 Reusable Control Structures

The simple example in Figure 4-5 is perhaps the best way to illustrate the 001 coding

language. The FMap uses the TMap shown in Figure 4-2. The program checks to see if the 10

port identification [APortlds(OneOj)] has a value of Stock'. If it does, the rotation rate

[Rotation(Nat)] of the robot is updated. Otherwise, the robot's turnrate [TurnRate (Nat)] is

updated. The update is effected by the operations UpdateTurnrate, or UpdateRotation. The use of

external operations allows the programmer to modularize the program. Operations are designated

by the letters -op- at the end of the line. The name of the FMap in Figure 2-5 is Update. This can

be seen in line one of the FMap. Line one also contains the symbol CJ*3. This indicates that the

80

data flow relationship between the function Update and each of the three primitive operations

below in lines two through four is CoJoin.

A step by step examination of each line of the code facilitates a better understanding.

Example Program To
Illustrate FMap Concept

Input Variable ControlStructure I

NewRobotA=Update(OldRobotA)CJ*3; 0 /

Portemp=Moveto:Ports:RobotA(OldRobotA);/Q

P Pol 0 Lines are
Portname=Moveto:APortIds:Ports(Portemp); numbered for

/ exemplaryCheckName=Is:Stock:APortlds(Portname); / 0 purposes

NewRobotA=IsStock(CheckName,OldRobotA)CO:Copy:Boolean(CheckName); 0
NewRobotA=UpdateTurnrate(OldRobotA)-op-; 0

NewRobotA=UpdateRotation(OldRobotA)-op-;

Output Variable lprtios]

Figure 4-5 Example FMap

The first line includes the input variable OldRobotA. OldRobotA is of the type RobotA. This data

type is shown in Figure 2-2. In line two, the temporary variable Portemp is assigned to the value

of the Ports type included in OldRobotA. In line three, the variable PortName is assigned to the

APortIds section of OldRobotA. In the fourth line, the Boolean variable CheckName is set to true

if the value of APortIds is 'Stock and false if it is not that value. In line five (a Co Or function

named IsStock) the value of CheckName is used to determine whether the operations in line six or

in line seven is executed. If CheckName is true, then the operation UpdateRotation is executed. If

81

CheckName is false, then UpdateTurnRate is executed. In each case, the output variable is

NewRobotA which is of type RobotA.

4.4 001 System Review

The 001 system is used to illustrate the testing techniques previously discussed in this

report. The reader requires a basic understanding of the language. The descriptions above are

intended to give the reader that understanding. The FMaps and TMaps used in the next chapter are

much more complicated than the ones in Figures 4-2 and 4-5, and may initially be difficult to

understand. A brief review of the example presented in this Section should be of use. For more

detailed information upon the subject of FMaps and TMaps one should refer to Ref. (Hami93).

82

5. FSPT: A Trial Use

5.1 Introduction

In this section, a relatively complex program, known as the Reactor Protection System

(RPS), written in the 001 code system, is explained and then verified using the FSPT. The testing

process is described in detail, and the results for each test are listed. The code, unaltered in the

first testing phase, is then modified to included several errors, and the testing process is repeated.

Excellent results are achieved in both phases. The first phase is described in detail, while the

second phase is discussed only briefly. In both phases, the testing strategy remains the same:

FSPT. This section demonstrates the effectiveness of Feasible Structured Path Testing on a

relatively large modular system which contains looping structures. The FSPT proves to be

excellent for detecting errors within the code, as well as aiding in correcting the errors.

5.2 The Reactor Protection System

The modular system used in this section is known as the Reactor Protection System (RPS)

is based upon an algorithm printed by Bloomfield (Bloo86), and was developed in prior research

by Ouyang (Ouya95). Ouyang developed the RPS in the 001 specification language which is

reviewed in section four of this report.

The following is a summary of the specification document for the RPS.

83

" The system recieves up to 40 pairs of input signals. Each pair represents the trip condition of

a plant parameter (TRIP' or OK') and the veto condition (VETO' or OK') of that same

parameter.

" The system provides a guardline signal as output (TRIP' or OK'). If a non-vetoed trip

condition is present (when a signal is trip condition TRIP' and veto condition OK'), the

guardline signal is set to TRIP'. The guardline remains tripped until it is reset.

" A number of output signals (equal to the number of input signals) are attached to indicator

lights which provide information on the status of the input signals which correspond to trip

inputs. Regardless of the veto status, the lights are either (ON' or OFF') corresponding to the

status of the trip condition. If the light is ON', then the corresponding input signal is in the

TRIP' condition. The output signals are initiated with all signals in the OFF' state.

The specifications above are used to construct the 001 software system presented below in

Section 5.2.1.

5.2.1 RPS 001 TMap and FMaps

Recall that any system written using the 001 case tool requires a TMap and an FMap.

The RPS is no exception to this rule. The TMap of the code is presented below in Figure 5-1.

84

SglState Sgljnputs(OSetOf)

Indicators(OSetOf) Guardline(OneOf2) Signal

lndication(OneOf:2) OK' TRIP' TripCond(OneOf:2) VetoCond(OneOf:2)

ON' OFF' OK' TRIP' OK' VETO'

Type Map of the RPS Program. The SglState type represents the output
signals, and the SglInputs type the input signals.

Figure 5-1 RPS Type Map

One can see that the data structure matches the specifications given above. The SglState

type represents the output signal, and is broken into two parts. The first part is the Indicators, an

OSetOf type. The list of Indicators contains the type Indication(OneOf:2) which is either ON' or

OFF'. The output type SglState also contains the guardline which has the values of either OK' or

TRIP'. The input type is called Sgl_Inputs and is an OSetOf. The Sgljnputs list contains both

the Trip and the Veto conditions (TripCond and VetoCond). The trip condition can be either OK'

or TRIP' and the veto condition is either OK' or VETO'. This TMap is used to satisfy the

specification requirements along with the FMaps listed below.

The FMaps of the RPS are organized in a modular fashion. The first of the FMaps in

Figure 5-2 is the highest level FMap that binds all of the modules together. The FMaps are

annotated to aid the reader unfamiliar with the 001 system.

85

NewState=Update(PreStateNewSignals)CJ;

ChkGL=CheckGLOK(PreState)-op-;

NewState=RealUpdate(PreState,NewSigals,ChkGL)CO:Copy:Boolean(ChkGL);

Newftte=Update UponTrip(PreStateNewSignals)-op-;

NewState=UpdateUponOk(PreStateNewSigna1s)CJ;

Statel=UpdateGL(PreState, NewSignals)-op-;

NewState=UpdateIndi(StateI, NewSignals)-op-;

The RPS highest level FMap. It calls all of the operations listed in
the FMaps below.

Figure 5-2 High Level FMap UpdateState

The remaining FMaps are pieces of the RPS that all link to the high level code in Figure 5-2.

Chkl=CheckGLOK(PreState)J;

OldGL=Moveto:Guardline:SglState(PreState);

Chkl=is:OK:Guardline(OldGL);

Operation CheckGLOK
This operation check the status of the guardline and assigns a true to
the varaible Chk1 if it is OK' and a false if it is TRIP'.

Figure 5-3 Operation CheckGLOK FMap

86

NewState=UpdateIndi (Statel, NewSignals) J, CJ;

Indl=Moveto:Indicators:SglState(Statel);

Ind2=UpdatelndisOnly(Indl, NewSignals)SetIndiUpdateIndicators, Indication, SglInputs, Signal;

ThisIndState=CheckAndUpdate(E, E2) CJ*3;

InputTC=Moveto:TripCond:Signal(E2);

Chkl=Is:OFF-Indication(El); Chk1 is true if Indication
is OFF'. Chk2 is true if

Chk2=IS:OK:TripCond(InputTC); TripCond is OK'

ThislndState=Decisionl(El,Chkl,Chk2)CO:Copy:Boolean(Chkl);

I If Indication is ON', then copy the
ThisindState=Cone:Any(E 1); old indication into the new one. Plug-in

ThislndState=Decision_2(El, Chk2)CO:CopyBoolean(Chk2); Function

ThisIndState=PutON(E1) J, CJ*3, J;
If Indication is

IndOO=Moveto:Indicators:Indication(El); OFF' and
TripCond is TRIP',

CutOff, IndNew=Get:ndicators(IndOO 1); the new indication
is set to ON'

kill=D:Indication(CutOff);

Create=K:On:Indication(kill); Otherwise, the new
indication is a copy

IndO2=Put:Indicators(Create, IndNew); of the old one.

ThislndState=Moveto:Indicators(IndO2);

ThisIndState=Clonel-Any(ED);

NewState=Moveto:SglState:Indicators(Ind2);

Operation Update Indi
This operation updates the output indicators to relect their proper state as
indicated by the specifications. This operation is only executed if the guardline
isn't tripped. Note the user-defined structure call and the plug-in function. This is
further explained in the Figure 5-5.

Figure 5-4 Operation UpdateIndi FMap

87

Ind2=SetndiUpdate(Indl,NewSignals)CJ*2;

Ind01=Locate:SET1("1", Indi);

NewSignals0l=Locate:SET2(1T, NewSignals);

Look at the first signal and
incidation.

Ind2=DoA1lTillFinish(Ind0l, NewSignalsOI)CJ*2; 4

Chk=AtNuU:SET(Ind0l); If either OSetOf object is empty,
then set ChkI or Chk2 to true

Cbk2=AtNuli:SET2(NewSignalsOI); respectively.

Ind2=Forward-orStop(Ind0l, NewSignalsOl, Chki, Chk2) CO:Or:Boolean(Chkl, Chk2);

Ind2=DoNextElement(Ind0I, NewSignalsOI) CJ*7;

Ef=Moveto:SETI (Ind0l);

E2=Moveto:SET2(NewSignals0l);

ElII=CheckandUpdate(EI, E2)?;

IndO2=Moveto:SETI:ELEMENTl(El 1);

Ind03=Next:SETI("R", IndO2);

NewSignals02=Moveto:SET2:ELEMENT2(E2);

NewSignals03=Next:SET2("R", NewSignals02);

Ind2=DoAllTillFinish(IndO3, NewSignals03)-r-; 16

Recursive
Structure

Lines 12-15 are,
increment to the
signal and indi

Ind2=Clonel :Any(Ind0l);

User-Defined Structure SetlndiUpdate
This structure is used to traverse the entire OSetOf input signals and output
indications. It is used by both operations UpdateUponTrip and UpdateIndi.
The structure contains a "-r-" structure in line 16. This indicates a recursive
operation or a loop. The values of the variables IndO3 and NewSignals03 in line
16 are passed to the variables IndO and NewSignalsOl respectively for the next
pass. The recursion allows the structure to examine every field in the ordered
set. The "?" function in line 11 allows the operation using the structure to insert
unique functions into the structure at that point. These unique functions are
located below the structure calls in operations UpdateUpon_Trip and
UpdateIndi and are known as plug-in functions.

Figure 5-5 Structure SetIndiUpdate FMap

88

used to
next

:ation.

Statel=UpdateGL(PreState,NewSignals) CJ*2;

Guard=KFBoolean(PreState); srtef na

GLtrip=Update_1(Guard, NewSignals) SetTripCheck SglInputs, Signal;

Localtrip=CheckandUpdate(Guard, E) CJ*5;

Tc1=Moveto:TripCond:Signal(E)

Chktrip=Is:TRIP:TripCond(Tc1) s
I rpodis TRIP'.

Vcl=Moveto:VetoCond:Signal(E);

Chkveto is true if VetoCon d Pugn
ChkvetoVs:OK:VetoCond(Vcl); is VETO'. Function

Comb=And:Boolean(Chktrip, Chkveto); 4 Comb=Chktrip AND Chkveto

Localtrip=Updatel(Guard, Comb) CO:Copy:Bollean(Comb) ;

KLocaltrip=Copy:Boolean(Guard); Localtrip becomes true,
otherwise it becomes a

Localtrip=KT:Boolean(Comb); copy of the old value.

State I=Update_2(GLtripPreState)CO:Copy:Boolean(GLtrip);

[State I=Clone IAny(PreState);

Statel=Co_Switch(PreState) CJ*3;
Localtrip becomes the variable

GLI, State2= Get:Guardline:Sgl]State(PreState); GLtrip. If GLtrip is set to false, then
the guardline remains as it was. If

Bol =D:Guardline(GLl); GLtrip is set to true, ten the guardline
is set to TRIP'

GL2=K:TRIP:Guardline(Bol);

State l=Put:Guardline:SglState(GL2, State2);

Operation UpdateGL
This operation updates the guardline signal. It uses the user-defined structure
SetTripCheck. This structure is called in line 3 of the operation. The plug-in function
is contained in lines 4-12.

Figure 5-6 Operation UpdateGL FMap

89

User-Defined Structure SetTripCheck
This structure is used by operation Update GL to traverse the set of input signals to
check for the condition of trip condition TRIP' and veto condition OK'. Should this
occur, the guardline is tripped. This structure contains recursion and a plug-in
function. They are noted above.

Figure 5-7 Structure SetTripCheck FMap

90

Trip=SetTripCheck(Ok,SetO) CJ;

. setl =Locate:SET("I", SetO); ILook at the first Signal.

Trip=DoAllTillFinish(Ok, Seti) COAtNull:SET(Setl);

Trip=DoNexElement(Ok, SetI) CJ*4;

E=Moveto:SET(Setl); Plug-in

Localtrip=CheckAndUpdate(OkE)?; Recursion

Set2=Moveto:SET:ELEMENT(E);

Setn=Next:Set("R", Set2); When the end of the set of signals is

Trip=DoAflTillFinish(Localtrip, Setn)-r-; rset toa copy o utp variable is

which is used to trip the guaraime.Trip=Clonel:Any(Ok);

New=TripSideUpdate(PreState, NewInputs)J, CJ;
User-Defined

Indl=Movetoindicators:SglState(PreState); C

Ind2=UpdatelndisOnly(Indl, NewInputs)SetlndiUpdate:Indicators, Indication, Sgljnputs, Signal;

ThisIndState=CheckAndUpdate(El, E2) CJ*3;

InputTC=Moveto:TripCond:Signal(E2);

ChkI=Is:OFFIndication(E1);

Chk2IS:OK:TripCond(nputTC);

ThisIndState=Decision_1(E,Chk,Chk2)CO:Copy:Boolean(Cbk1);

ThiIndState=ConeI:Any(El);

ThisIndState=Decision_2(EI, Chk2)CO:Copy:Boolean(Chk2);

ThisIndState=PutON(EI) J, CJ*3, J;

lndO01=Moveto:Indicators:Indication(E1);

CutOff, IndNew=Get:Indicators(Ind00 1); Plug-in

V IndOI=MvetoIndiatorsIndiaciotEInkill=D:Indication(CutOff);
Fucntion

Create=K:On:Indication(kill);

Ind02=Put:Indicators(Create, IndNew);

ThisIndState=Moveto:Indicators(IndO2);

ThisIndState=Cone1:Any(E);'

New=Moveto:SglState:Indicators(nd2);

ODeration Ugdate Upon Trin
This operation updates the the output signals according to the specification
document. This operation also uses the user-defined structure SetIndiUpdate as
indicated above. The operation is nearly identical to UpdateIndi.

Figure 5-8 Operation UpdateUponTrip FMap

The presence of user-defined structures and their corresponding plug-infunctions may be

confusing as they were not explained in Section 4. User-defined structures are similar to

procedures or functions in other languages. They are reusable, and in the case of 001, contain

plug-in functions. A plug-in functions allow the user to make the user-defined structure into a

91

more versatile tool. The user-defined structures in the RPS, SetIndiUpdate, and SetTripCheck are

designed to examine each item in an OSetOf type. The Structures loop through each of the items

until there are none left, or a condition to exit early is met. The plug-in functions do the work by

examining the content of each item in the ordered set and acting accordingly.

A complete understanding of the RPS is not necessary in order to understand the process

of the FSPT. The FMaps are broken down into flowgraphs in Section 5.3. Examination of the

flowgraphs for each FMap should clear up any questions the user has about the control flow of the

FMaps.

5.3 The FSPT of the RPS

Using the FSPT for the RPS begins by determining the overall testing strategy. As

discussed in Section 3, this strategy is an incremental one. Examining the high level FMap, one

sees that the RPS is made up of the high level code, four operations and two user-defined

structures. Since the user-defined structures are executed differently for each operation, they are

tested with the operations. The testing strategy is as follows.

92

indicates testing High Level Code

order UpdateState

CheckGLOK Update UponTrip UpdatejIndi UpdateGL

SetlndiUpdate SetIndiUpdate SetTripCheck

The RPS incremental testing strategy is indicated on the diagram
above. CheckGLOK is tested first. The remaining operations are then
tested with their user defined structures. Finally, the high level code
Update-State is tested.

Figure 5-9 Order Of Testing the RPS

First, the tester tests operations CheckGLOK, UpdateUpon Trip, UpdateGL, and UpdateIndi

independently. Once these operations have been tested, the high level code UpdateState can be

tested.

5.3.1 Testing the Operations

Using the FSPT, the operations noted above are tested separately. This section is broken

down into five subsections: one subsection for each of the four operations. In each subsection, the

five steps of the FSPT are performed. Test cases are formatted, and the results of those tests are

given. In order to limit testing time, the k value for every test is equal to two. Thus, only two

looping iterations, at most, are tested for each loop present.

5.3.1.1 Operation CheckGLOK

93

(See Figure 5-3)

The first operation to be tested is CheckGLOK. This operation's code is in-line, meaning

there are no control branches. There are no functional variables, and the flowgraph is a single

node. It is not shown here. Only one test is needed to test CheckGLOK. Using the 001 testing

suite, the tester uses as input data the PreState input object of type SglState which has the

guardline either in the TRIP' or OK' position. The value of Chkl, the output variable, is then

recorded for later use. The value of PreState is recorded also. In case of an error, it is helpful to

know the value of every input variable. In this case there is only one indication which is set to

OFF' and the value of the guardline is OK'. The resulting value of the output variable ChkI is

true.

5.3.1.2 Operation UpdateUponrip

(see Figure 5-8)

Operation Update_UponTrip is also tested using the FSPT. The steps of the process are

listed below with explanations given where necessary.

Step One: Construct the flowgraph.

The flowgraph is shown in Figure 5-10. Since k has been chosen to be two, the flowgraph

in Figure 5-10 has been altered to reflect this fact.

94

0

Figre 5-10a

Figre 5-10b

The flowgraph of Operation UpdateUponTrip in
its original form above (Figure 5-10a) and altered to
included only two loop iterations to the right
(Figure 5-10b).

Figure 5-10 UpdateUponTrip Flowgraph

Step Two:

The second step requires that the tester recognize the input, output, and transitional

variables. The following list specifies the input variables:

Input Variables: PreState (Ind1, IndO1, El, IndOO1, Cutoff, IndNew)

NewInputs (NewSignals, NewSignalsOl, E2, InputTC, NewSignals02,

NewSignals03)

The input variables are listed in the first line of the operation. They are PreState and NewInputs.

PreState is of type SglState, and NewInputs is also of type SglInputs. Throughout the

operation, several variables are assigned to pieces of these variables by using Moveto statements.

For instance, in the second line of the operation, the variable IndI is assigned to the Indicators type

of the variable PreState. Thus, Indl is designated as an input variable and included in this list. In

95

the list of input variables given below, the variables listed in parentheses are variables which are

unaltered pieces of the original input variables: PreState and NewInputs.

The output variable for any operation is easily located in the 001 system. The left hand

side of the equality in the first line of code lists them. In this case, the variable is known as New

and is of type Sgl_State.

Output Variables: New

Location of the transitional variables is a bit more complex due to the presence of

recursion and user-defined structures. The transitional variables are recorded as follows:

Transitional Variables: Chkl, Chk2, Chkl, Chk2, (ThisIndState, Eli), kill, Create, IndO2,

IndO2, (IndO3), Ind2

These variables are chosen through use of the criteria listed in Section 3. The variables shown in

italics are variables used in the user-defined structure SetIndiUpdate. The variables shown inside

parentheses are variables passed between the user-defined structure to the plug-in function using a

different name. In this instance, ElI is passed to the plug-in function CheckAndUpdate as the

variable ThisIndState.

Step 3:

In this step, one develops the altered flowgraph which depicts the unique states of those

transitional variables which are not yet at the end of their development. This task is completed and

the results are displayed in Figure 5-11.

96

A

B
ChkI F

C D
Chk2 F

E F

chkl or chk2 = Tnie
G

Chkl F

H I
Chk2 F

L

Operation UpdateUponTrip
Step Three Flowgraph

The flowgraph above indicates the
value of the decision variables Chkl and Chk2
and Chkl and Chk2 (user-defined structure
variables) for certain branches. Use of this
flowgraph aids in the development of testing
cases.

Figure 5-11 UpdateUponTrip Step 3 Flowgraph

SIMp 4
The fourth step involves calculating the value of the McCabe metric of the flowgraph in

Figure 5-11, and then locating the complete set of linearly independent paths. The McCabe metric

of the structure shown above has a value of seven (v=17-12+2=7). Thus, there are seven test paths

necessary to test the operation. Those paths are listed in Table 5-1. It is determined that there are

no unfeasible test paths. This is done by tracing the six paths through the code to determine if they

are executable. This conclusion is further verified in the fifth step of the FSPT.

97

Test Paths for Operation Update_UponTrip

Path Number Sequence
0 A+B+C+F+G+H+K+L
1 A+B+L
2 A+B+D+G+H+K+L
3 A+B+C+E+G+H+K+L
4 A+B+C+F+G+L
5 A+B+C+F+G+I+L
6 A+B+C+F+G+H+J+L

Table 5-1 Test Paths: UpdateUponTrip

Step 5

In the fifth step of the FSPT, the values of the input variables are determined for each of

the selected test paths and unfeasible test paths are elimintated. The results are indicated in the

Table 5-2. Question marks denote that the test is indifferent to the value of the vaiable indicated.

However the values of such variables are recorded in order to aid in the location of errors.

Full Set of Test Paths for Operation Update Upon Trip

Path Indication_ _Trip_ Condition 1 Indication2 TripCondition 2
0 OFF' TRIP' OFF' TRIP'
I *ON' *NULL *OFF' *NULL
2 ON' ?TRIP' ON' ?OK'
3 OFF' OK' OFF' TRIP'
4 OFF' TRIP' * OFF' * NULL
5 OFF' TRIP' ON' ? TRIP'
6 OFF' TRIP' OFF' OK'

? - indicates that the value of the object is irrelevant for test case indicated.
* - indicates that one or both of the pair of indication and trip condition is null.

Table 5-2 Test Cases: UpdateUponTrip

It is necessary to record every value of the input variables, even if they are not relevant to

the execution of the path of immediate interest. Should an error be located, the tester must know

the value of every input variable used in each test case. In this case, the value of the Guardline is

always TRIP', and the value of the veto condition is always OK' except when the signal is null.

98

The results are listed in the Table 5-3. They are identical to the expected results obtained

from the specifications. If the indicator is OFF' and the trip condition is TRIP', then the indicator

should be turned ON'. In any other case, the indicator remains where it is set. Each test case

satisfies this specification.

Test Results From UpdateUponTrip

Path Indication 1 Indication 2
0 ON' ON'
I ON' OFF'
2 ON' ON'
3 OFF' ON'
4 ON' OFF'
5 ON' ON'
6 ON' ON'

Table 5-3 Update-UponTrip Test Results

The five step FSPT process has been successful in testing operation Update_Uponjrip.

It appears that the module works as specified. However, the specification document is not written

in modular form. One can not conclude that the operation is correct until the final test has been

done of the high level code. Only then can the tester conclude that the operation behaves according

to the specification document. Were the specification written in a more specific modular form, the

tester could consult the document to determine the correctness of the operation.

The remaining operations are not given such a detailed treatment. Much of the work is

presented without comment.

5.3.1.3 Operation UpdateGL

99

The purpose of operation UpdateGL (see Figure 5-6) is to update the guardline signal.

The operation checks to see if any of the input signals have a trip condition of TRIP' and a veto

condition of OK'. If this case occurs, then the guardline signal is tripped. Otherwise, the guardline

is left in its current state.

Step 1 Construct the flowgraph and alter it to include only two loop iterations.

0
Figure 5-12a

Flowgraph of Operation
UpdateGL in its original
version above (Figure 5-12a)
and altered to include only two
loop iterations to the right
(Figure 5-12b).

Figure 5-12b

Figure 5-12 UpdateGL Flowgraph

Step Two List the Input, Output, and Transitional Variables as follows:

Input Variables: PreState (GL1, State2)

NewSignals (SetO, Setl, E, Tcl, Vel, Set2, Setn)

Output Variable: State 1

Transitional Variables: Chktrip, Chkveto, Comb

Step Three Construct the new flowgraph which reflects only unique states of the input variables.

100

Figure 5-13 UpdateGL Step 3 Flowgraph

Step Four Calculate the value of the McCabe metric and choose the linearly independent paths.

The McCabe metric of the flowgraph above has a value of eleven (v=19-10+2=1 1). Table 5-4

contains the paths which are chosen as the set of linearly independent paths.

101

A
COMb(I) T F

B C
Comb(2) F F Comb(2)

D. E F G

Operation UpdateGL
Step Three Flowgraph

Values of the control variable Comb which
cause certain paths to be executed are noted
above. Unfeasable paths which have been
remove are indicated by dashed lines.

Test Paths for Operation UpdateGL

Path Number Sequence
0 A+B+E+H+J
1 A+J
2 A+C+F+H+J
3 A+C+G+I+J
4 A+C+J
5 A+B+J
6 A+B+D+H+J
7 A+B+D+I+J
8 A+B+E+I+J
9 A+C+F+I+J
10 A+C+G+H+J

Table 5-4 Test Paths: UpdateGL

Step Five Determine the values of the input variables which cause the executable paths above to

be executed.

The fifth step results in the removal of several unfeasible paths. The paths are indicated by dashed

lines in Figure 5-12. If at any time in the operation the value of Comb is set to true, then the

guardline signal is tripped. Node H is only reached if the value of Comb is set to true at some

point. The reverse is also true. If Comb remains false throughout the operation, then only node I

can be reached. Thus, the paths indicated with dashed lines are not feasible and have been

eliminated.

Test Cases for Operation UpdateGL

Path TripCond(1) VetoCond(1) TripCond(2) VetoCond(2)
0 TRIP' OK' ** OK' **'VETO
1 NULL NULL NULL NULL
2 * TRIP' * 'VETO TRIP' OK'
3 *0K' *0K' ** TRIP' **'VETO
4 * TRIP' * 'VETO NULL NULL
5 TRIP' OK' NULL NULL
6 TRIP' OK' TRIP' OK'

* indicates that the set of TripCond(1) and VetoCond(1) can be anything but TRIP' and OK'.
** indicates that the set of TripCond(2) and VetoCond(2) can be anything but TRIP' and OK'.

Table 5-5 Test Cases: UpdateGL

102

The guardline is always OK' when the program initializes. The trip condition is always OK' as

well.

Test Results from Operation UpdateGL

Path Guard Line
0 TRIP'
1 OK'
2 TRIP'
3 OK'
4 OK'
5 TRIP'
6 TRIP'

Table 5-6 Test Results: UpdateGL

This concludes the testing of operation UpdateGL. The output listed above is identical to

that expected based upon the RPS specification. The guardline should TRIP' if the veto condition

is OK' and the trip condition is TRIP'. This is the case in paths 0, 2, 5 and 6. In the other paths,

the guardline is left in the OK' setting.

5.3.1.4 Operation UpdateIndi

Note that operation UpdateIndi (see Figure 5-4) is essentially the same as operation

UpdateUpon_Trip. Thus, the flowgraph and testing steps are all the same in both cases.

Step One Construct the flowgraph and alter it to include only two loop iterations.

103

Figure 5-14 UpdatejIndi Flowgraph

Step Two List the input, output, and transitional variables as follows:

Input Variables: Statel (Indl, Ind0l, El, Ind001)

New Signals (New SignalsOI, E2, InputTC, New Signals02, New Signals03)

Output Variable: NewState

Transitional Variables: Sizel, Size2, Chksize, Chk1, Chk2, Ind2, Chkl(s), Chk2(s), E II

(ThisIndState, IndO2, IndO3)

Step Three Construct the new flowgraph which reflects only unique states of the input variables.

104

0
Figure 5-14a

The flowgraph of Operation
UpdateIndi in its original form
above (Figure 5-14a) and altered Figure 5-14b
to included only two loop
iterations to the right (Figure 5-
14b).

Figure 5-15 UpdateIndi Step 3 Flowgraph

Step Four Calculate the value of the McCabe metric and choose the linearly independent paths.

Test Paths for Operation Update_UponTrip

Path Number Sequence
0 A+B+C+F+G+H+K+L
1 A+B+L
2 A+B+D+G+H+K+L
3 A+B+C+E+G+H+K+L
4 A+B+C+F+G+L
5 A+B+C+F+G+I+L
6 A+B+C+F+G+H+J+L

Table 5-7 Test Paths: UpdateUponTrip

Step Five Determine the value of the input variables which cause the paths above to be executed.

105

A

B
CbkI F

C D
Chk2 F

E F

-chki or chk2 = True
G ..

Chk F .

H I
Chk2 F

J K

L

Operation UpdateIndi
Step Three Flowgraph

The flowgraph above indicates the
value of the decision variables Chkl and Chk2
and ChkI and Chk2 (user defined structure
variables) for certain branches. Doing this aids
in the devlopment of testing cases.

Full Set of Test Paths for Operation UpdateIndi

Path Indicationi _ Trip Condition 1 Indication.2 .Tri Condition 2
0 OFF' TRIP' OFF' TRIP'
1 *ON' *NULL *OFF' *NULL
2 ON' ? TRIP' ON' ?OK'
3 OFF' OK' OFF' TRIP'
4 OFF' TRIP' * OFF' * NULL
5 OFF' TRIP' ON' ? TRIP
6 OFF' TRIP' OFF' OK'

- indicates that the value of the object is irrelevant for test case indicated.
* - indicates that one or both of the pair of indication and trip condition is null.

Table 5-8 Test Cases: UpdateUponTrip

The value of the Guardline is always TRIP', and the value of the veto condition is always OK'

except when the signal is null.

Test Results From UpdateIndi

Path Indication 1 Indication 2
0 ON' ON'
1 ON' OFF'
2 ON' ON'
3 OFF' ON'
4 ON' OFF'
5 ON' ON'
6 ON' ON' J

Table 5-9 Test Results: UpdateUpon Trip

These results are identical to that expected based upon the RPS specification. The only

remaining code is the high level code UpdateState. which is tested next.

5.3.2 Testing the High Level Code, UpdateState

All of the operations have been completely tested. The high level code UpdateState can

be tested by considering the operation calls as single lines of code.

The testing set is therefore very simple. Upon inspection one can derive the test cases.

106

Figure 5-16 Update State Flowgraph

The code consists of a single decision which depends upon the variable ChkGL, which is the output

variable of operation CheckGLOK. There are two test cases for the Ground Level Code. A base

path A+B+D and path one A+C+D. The state of the input variables in the paths are as follows:

Test Paths for UpdateState

Path Pre State (GuardLine)
0 OK'
I TRIP'

Table 5-10 Test Paths: UpdateState

The value of the remaining data fields must also be recorded. There is only one Indication and it is

set to OFF'. There is also one Signal which is set to trip condition TRIP' and veto condition OK'.

These test cases include the test case for the CheckGLOK operation. Thus the ground level code

and CheckGLOK can be tested simultaneously. This removes one unnecessary test.

The results of testing the high level code are shown below.

Test Results for UpdateState

Path Pre State (GuardLine) Indication
0 OK' ON'
1 TRIP' ON'

Table 5-11 Test Cases: UpdateState

These test results are reflective of the specification document. The program has been Feasible

Structured Path Tested (FSPT) with a k value of two.

107

GhkGL= T F

B C

UpdateState Flowgraph

5.3.3 Conclusion of the FSPT of the RPS

The entire RPS code can be testing using the FSPT in 23 tests when only two loop

iterations are allowed. As the value of k increases, the number of test cases increases rapidly.

The RPS has been tested and the entire input / output set been exercised according to the FSPT

criteria. The tester must now examine the results to determine if they match the requirements of

the specification document. In this case, the tester develops an oracle directly from the

specification document. Each operation is tested over a wide range of input possibilities. The

integration of each operation with the high level code has also been tested. It is possible for the

tester to determine the output of any possible test set for the high level code. This is done in the

following manner. Suppose the input variables PreState and NewSignals are as indicated below in

Figure 5-17. The value of the output variable NewState is determined from the results of the

FSPT.

PreState NewSignals

Indicators(OSetOf) Guardline Signal

Indication(OneOf:2) OK' TripCond VetoCond

ON' OK' OK'

OFF' T=IP' VETO'

Sample input TMap for UpdateState.

Figure 5-17 Sample Input TMap to Operation UpdateState

There are two signals and two indications. The first operation called in ChkGL which check the

guardline field and sets ChkGL to true if the guardline is OK' and false if it is TRIP'. In this case

ChkGL is set to true. Thus the next operation called is UpdateGL. Examining the test paths and

the results achieved one can determine the value of the output variable State 1. The operation

108

follows test path three and results in a guardline signal of OK' for Statel (See Tables 5-5 and 5-

6). The final operation called is UpdatejIndi. The input variables Statel and NewSignals cause a

combination of test paths two and three to be executed. The first signal of path two and the second

signal of path three are of interest StateI (See Tables 5-8 and 5-9). The resulting indications are

both in the ON' state. Thus, the resulting data structure from the test case in Figure 5-17 can be

derived without executing a single test. It is shown in Figure 5-18.

NewState

Indicators(OSetOf) Guardline

Indication(OneOf:2) OK'

ON'

ON'

Ouput Variable from Update
State using input varialbes in

Figure 5-17.

Figure 5-18 Sample Output TMap from UpdateState

The FSPT of the RPS found no errors in the code. This is because there are none present.

FSPT gives the tester a list of input / output sets. It is the tester's job to analyze these sets to

assure that the results meet the criteria given in the specification document.

5.4 FSPT Error Location Experiment

The Reactor Protection System is tested error free in Section 5.3. An experiment was

performed subsequently to determine the usefulness of the FSPT for the location of errors.

Random errors were introduced into the RPS. These errors were capable of passing the 001

109

Analyzer, meaning that they can only be discovered during program execution. The Analyzer is

the compiler of the 001 system. In all, seven errors were introduced into the FMaps. The FSPT

was used in an attempt to locate and remedy these errors.

The procedure for locating the errors is no different from that used above. The code is

examined and tested in a modular fashion. The results of the tests are then compared with those of

the specification document. An example of testing one of the operations is given below. Operation

UpdateGL is listed in Figure 5-19 and contains one error.

110

I .

Statel=Update_GL(PreState,NewSignals) CJ*2;

Guard=KF:Boolean(PreState); -srtenal

GLtrip=Update_1 (Guard, newSignals) SetTripCheck; Sgljnputs, Signal;

Localtrip=CheckandUpdate(Guard, E) CJ*5; 4

Tcl=Moveto:TripCond:Signal(E);

Chktrip=ls:TRIP:TripCond(Tc1);

Vcl=Moveto:VetoCond:Signal(E); Plug-in

Chkveto=Is:OK:VetoCond(Vcl); Function

Comb=And:Boolean(Chktrip, Chkveto);

Localtrip=Updatel(Guard, Comb) CO:Copy:Bollean(Comb);

KLoaltrip=Copy:Boolean(Guard);

Localtrip=KT:Boolean(Comb);

State l=Update_2(GLtrip,PreState)CO:Not:Boolean(GLtrip);

State =Clone:Any(PreState);Inserted
State1=CoSwitch(PreState) CJ*3; It should read

GLI, State2= Get:Guardline:SglState(PreState); CO:Copy:Boolean(GLtrip);

Bol=D:Guardline(GL1);

GL2=K:TRIP:Guardline(Bol);

Statel=Put:Guardline:SglState(GL2, State2);

Operation UpdateGL with Errors

Figure 5-19 UpdateGL with Errors

The normal five step process is not shown here, as it is nearly identical to the one

demonstated in Section 5.3.2. The presence of the error shown in Figure 5-19 greatly changes the

program flowgraph. For convenience, the normal convention of the true branch being to the left

and the false branch to the right is reversed in the step three flowgraph shown in Figure 5-20.

111

Figure 5-20 UpdateGL with an Error Step 3 Flowgraph

The test cases and their results are given in the tables below.

Test Cases for Operation UpdateGL

Path TripCond(l) VetoCond(1) Tripnd(d(2) VetoCond(2)

0 TRIP' OK' ** OK' ** VETO'

1 NULL NULL NULL NULL

2 * TRIP' * VETO' TRIP' OK'

3 * OK' * OK' ** TRIP' **_VETO'

4 * TRIP' *,VETO' NULL NULL

5 TRIP' OK' NULL NULL
6 TRIP' OK' TRIP' OK'

* indicates that the set of TripCond(1) and VetoCond(1) can be anything but TRIP' and OK'.

** indicates that the set of TripCond(2) and VetoCond(2) can be anything but TRIP' and OK'.

Table 5-12 Test Cases: UpdateGL with an Error

112

A
Comb(l) F T

B C
Comb(2) T T Comb(2)

D E F G

H

Operation Update_.GL with Errors
Step Three Flowgraph

Values of the control variable Comb which
cause certain paths to be executed are noted
above. Unfeasable paths which have been
remove are indicated by dashed lines.

Test Results from OperationUDdate GL
Psth Cuard Line

0 OK'
1 TRIP'
2 OK'
3 TRIP'
4 TRIP'
5 OK'
6 OK'

Figure 5-21 Test Results: UpdateGL with an Error

If one assumes that the function of operation Update_GL is to update the guardline signal,

the results indicate a problem. The specification document requires that the guardline be tripped

only if a signal is in a trip condition of TRIP' and has a veto condition of OK'. Otherwise, the

guardline condition is to remain unchanged. In this case, the input value of the guardline is always

OK'. In every case where the guardline should TRIP', it remains OK' and in every other case has

a value of TRIP'. These results indicate that an error exists in the code. It is the responsibility of

the tester to locate this error and remedy the situation. Once this takes place, one then tests the

code again to assure that no errors remain.

The remaining six errors are found by the FSPT in each of the operations and in the high

level code. The details of this process are not given in this report as the process is identical to the

example given in Section 5.3.

5.5 Conclusion

The Feasible Structured Path Testing method is used to test the Reactor Protection

System. The RPS is defined in the 001 case tool language, and is a modular system consisting of

four operations, two user-defined structures and a high level code. The FSPT with a k value of

113

two is completed for the RPS in twenty three tests. The FSPT is a versatile method which

efficiently tests code and only sacrifices completeness when looping structures are present.

114

6. Conclusion

6.1 Recommendations to Designers

Safety-critical software, such as that used in monitoring nuclear power reactors, must be

highly reliable. In order to achieve high reliability, the software must contain no programming

errors. Testing the software is a crucial in locating programming errors. By locating the most

complete and practical testing method, this work reported here focused upon the use of testing

techniques to improve the reliability of the software. Through the course of the work, many

lessons were learned, which are applicable to software designers.

The design of software code begins with the drafting of a specification document. It is

from this document that programmers create software. The manner in which the specification

document is written can have a great effect upon the efficiency of the software coding process. A

well prepared specification document greatly improves the reliability of the resulting code. When

writing a specification, a modular and detailed approach should be taken. The programmer

determines the sections of the code and their purposes directly from the specification document.

The document should include lists of every data structure used in the code and precisely describe

how they are used to achieve the program's goal. Including specifications for each modular code

section allows the tester to test each module incrementally. Testing each module separately

improves the chance of locating errors by allowing a more in-depth testing strategy derived from

eliminating inter-modular error propagation..

Throughout the entire software development process, a formal development method should

be used. In this study, the development before the fact (DBF) method, and its supporting tool the

115

001 Case Tool language was used. The formal method removes many of the inconsistencies

introduced into programs by human errors. By using completely reliable building blocks, and

feedback between design phases, the formal method is far superior to the ad hoc methods, such as

have been commonly used in the past.

There are many design procedures, specific to the software code itself, which aid the

Feasible Structured Path Testing process. The FSPT sacrifices complete testing in the presence of

looping structures. Since this is true, the designer is advised to only include loops in programs

when they are crucial. A program without loops is, in general, completely testable. Removing

loops from a program greatly improves that programs testability.

The FSPT can also be used as a feedback tool to the designer. When an unfeasible path is

found on the flowgraph, the designer should consider removing this path. Eliminating unfeasible

paths, decreases testing time and makes for a more accurate test result.

With the FSPT, the detection of errors depends totally upon the presence of an oracle.

Recall that an oracle is a database of a complete set of input and corresponding output

combinations. The presence of an oracle is often assumed. In this report, the oracle was developed

directly from the specification document. The specification document must be correct in order for

the program to be correct. Should the specification contain an error, this error will be passed into

the program. The use of a formal design method aids greatly in reducing the likelihood of such an

occurrence.

6.2 Future Work

Future work with the FSPT should include an attempt to automate the testing process.

This could be done for any programming language. A further study into the feedback which the

FSPT gives the designer should be completed. The use of new programming styles which aid in

116

the testing process should be examined. Since, the possibility of a coincidentally correct test case

is always present, a false positive could cause an error to go unnoticed through the entire testing

process. The possibility of coincidentally correct test results is high when the output variable only

exists in a few states. An example is a complex program with a Boolean variable output. Such a

program would require the tester to have a method of tracing the path of execution for each test

case. If the execution path differs from the intended one, an error exists and should be repaired. In

future work, a method for tracing the path of execution is necessary to prevent coincidental

correctness. Finally, a study should be completed which examines a method of measuring the

reliability of software code when a complete test cannot be achieved, which is often the case. This

measure could be similar to those used in determining the reliability of safety critical hardware

components.

6.3 Review

The goal of the study presented here is the identification of a complete yet practical

softvare testing method. This method is intended to improve the reliability of safety-critical

softvare systems. The work began with a review of previous work and a literature search which

revealed two complete testing methods. Only one of the methods, complete path testing, was

feasible. However, in the presence of looping structures, the number of test cases needed to

achieve complete path testing was unfeasibly large. The great many test cases which are

sometimes needed cause the technique to be unfeasible for many program structures. A new

testing method, known as the Feasible Structured Path Testing method (FSPT) was developed in

this study. The FSPT is five step formal testing method based upon complete path testing. The

FSPT limits the number of test cases in the presence of loops to a reasonable number. The FSPT

117

was used on a piece of code written in the 001 specification language to search for errors. The

results of the testing are excellent. Every programming error was located by the FSPT. The FSPT

improves the correctness of software code examined in this work.

118

References

Arno94 Arno, Verification and Validation of Safety Related Software, Report No. MIT-ANP-
TR-022, Massachusetts Institute of Technology, June 1994.

Brown92 B. Brown, R. F. Roggio, J. H. Cross II, and C. L. McCreary, "An Automated Oracle
for Software Testing," IEEE Transactions on Reliability, Vol. 41, No. 2, pp.
272-280, June 1992.

Beiz90 Beizer, Software Testing Techniques. Van Nostrand Reinhold, New York, N.Y.,
1990.

Bloo86 R.E. Bloomfield, P.K.D. Froome, "The Application of Formal Methods to the
Assessment of High Integrity Software," IEEE Tras. on Software Eng., Vol.
se-12, No. 9, pp. 988-993, September 1986.

Ntaf88 C. Ntafos, "A Comparison of Some Structural Testing Strategies," IEEE
Transactions of Software Engineering, Vol. 14, No. 6 pp. 868-873, June
1988.

Howd75a E. Howden, "Completeness Criteria for Testing Elementary Program Functions,"
IEEE Trans. Comput., vol. C-24, No. 5, pp. 544-559, May 1975.

Howd75b E. Howden, "Methodology for the Generation of Program Test Data," IEEE
Transactions of Software Engineering, Vol. c-24, No. 5 pp. 554-559, May
1975.

Howd77 E. Howden, "Symbolic testing-design techniques, costs and effectiveness", NTIS
PB-268517, May 1977

Poor94 E. Poorman, On the Complete Testing of Simple. Safety-Related Software, Report
No. MIT-ANP-TR-019, Massachusetts Institute of Technology, February,
1994.

Frank88 G. Frankl and E. J. Weyuker, "An Applicable Family of Data Flow Testing Criteria,"
IEEE Transactions on Software Engineering, Vol. 14, No. 10, pp. 1483-1498,
October 1988.

Frank93 G. Frankl and S. N. Weiss, "An Experimental Comparison of the Effectiveness of
Branch Testing and Data Flow Testing," IEEE Transactions on Software
Engineering, Vol. 19, No. 8, pp 774-787, August 1993.

Hami92 M.H. Hamilton, Increasing Quality and Productivity with a "Development Before
The Fact" Paradigm, Hamilton Technology Inc. Document, 1992.

Hals77 H. Halstead, Elements of Software Science, Elsevier, North-Holand, 1977.

119

McCa76 J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering,
Vol. se-2, No.4, pp. 308-320, December 1976.

McCa9l J. McCabe, "Structured Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric," National Bureau of Standards special
publication 500-99, December 1991.

Myers79 J. Myers, The Art of Software Testing, John Wiley & Sons, New York, N. Y., 1979.

Rich94 J. Richardson, "TAOS: Testing with Analysis and Oracle Support," ACM 0-89791-
683-2, 1994.

Weyu93 J. Weyuker, "More Experience with Data Flow Testing," IEEE Transactions on
Software Engineering, Vol. 19, No. 9, pp. 912-919 ,September 1993.

Biem89 M. Bieman and J. L. Schultz, "Estimating the Number of Test Cases Required to
Satisfy the All-du-Paths Testing Criterion," ACM 089791-342-6, 1989.

Hoff9l M. Hoffman and Paul Strooper, "Automated Module Testing in Proglog," IEEE
Transactions on Software Engineering, Vol. 17, No. 9, pp. 934-943,
September 1991.

Weiss88 N. Weiss, and E. J. Weyuker, "An Extended Domain-Based Model of Software
Reliability," IEEE Transactions on Software Engineering, Vol. 14, No. 10,
pp. 1512-1524, October 1988.

Ouya95 Ouyang, "An Integrated Formal Approach for Developing Reliable Software of
Safety-Critical System", Report No. MIT-ANP-TR-035, Massachusetts
Institute of Technology, August, 1995.

Pete94 Peters, "Generating a Test Oracle from Program Documentation," ACM 0-89791-
683-2, 1994.

Roper93 R. Roper and A. R. B. A. Rahim, "Software Testing Using Analysis and Design
Based Techniques," Software Testing, Verification on Reliability, Vol. 3, pp.
165-179, 1993.

Rapps85 Rapps and E. J. Weyuker, "Selecting Software Test Data Using Data Flow
Information," IEEE Transactions of Software Engineering, Vol. SE- 11, No.
4 , pp. 367-375, April 1985.

120

