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Abstract

Torsional collapase of thin-walled prismatic tubes is studied analytically and numeri-

cally. Simple torsional buckling models are developed to predict the plastic resistance

of square tubes under large plastic rotation using energy method. By considering the

combined effect of geometry and material, the onset of the sectional plastic buckling

is predicted and the critical twisting rotation for sectional buckling is obtained. Next,

an analytical expression is derived for the moment-rotation relation valid for nor-

malized rotation up to 0.393. The analytical solution is shown to compare well with

the numerical results. The solutions are then extended for rectangular and hexagonal

thin-walled tubes. Numerical simulations for rectangular and hexagonal tubes are also

carried out and the results are presented in this paper for the purpose of comparison.

Finally, torsional experiments are conducted on aluminum extrusion members and re-

sults are compared with analytical and numerical solutions with reasonable agreement.

Thesis Supervisor: Tomasz Wierzbicki

Titile: Professor of Applied Mechanics

Thesis Reader: Frank McClintock

Title: Professor of Mechanical Engineering
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Nomenclature

b column width

t wall thickness

1 column length

E Young's modulus

oT initial yield stress

v Poisson's ratio

uo plastic flow strength

V, dilatational wave speed

K bulk modulus

00 end twisting rotation

00 nomalized twisting rotation, Ao =1

0o rate of end twisting rotation

T physical twisting moment

T dimensionless twisting moment, T T2o-ob
2 t

64 time step in numerical simulation

Le characteristic length of element

p mass density
NQ membrane stress tensor

cao strain tensor

Cao strain rate tensor

07" stress tensor

C material constant in stress-strain relation

n exponent in stress-strain relation

k plastic flow constant

v displacement in y-direction

w displacement in z-direction

Uo axial displacement of column

r width-length ratio of tube, r = b/i

R equivalent width-length ratio in deformation-spreading

A geometrical parameter in the buckling model

6 geometrical parameter in the buckling model

0C critical twisting rotation (radian)

0m transitional twisting rotation

half length of the most-deformed area
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Chapter 1

Introduction

The problem of a large plastic collapse of cross-sections of thin-walled prismatic tubes

subjected to different loading conditions has received a great deal of attention over

the past twenty years. Theoretical predictions are available for bending and axial

crushing cases. For example, Wierzbicki and Abramowicz [1] developed a theory

for plastic resistance of a rectangular box tube undergoing a pure axial crushing

load. For bending deformation, theoretical solutions were derived by Kecman [2],
Abramowicz [3], and more recently by Wierzbicki [4].

The torsional behavior of thin-walled beams or tubes well beyond the maximum

torque is of interest in many applications. For example, in a side impact of a car, the

bending collapse of the B-pillar may induce twisting deformation on the roof rail (see

Fig.1.1, the space frame structure of Audi A8).

The maximum load under torsion or combined loading has been studied over the

past years. Baba [5] developed a finite element formulation for stress analysis of a

twisting bar with a solid or a thin-walled section. The formulation can be applied

to elastic-plastic pure-torsion or warping-torsion problems with small displacement.

Murray [6] studied a single rectangular plate subjected to pure torsion, bending and

compressive loading. The uncoupled solutions were later extended to combined load-

ing in the case of compressive and torsional moment [7], and torsion and bending

moment [8]. Grant [9] proposed a solution to the thin-walled sections undergoing

10



roof rail

B-pillar

Audi A b Aluminum
Space frame Structure

Figure 1.1: An illustration of Audi A8 space frame structure

uniform torsion. This reference information was reported by Santosa [10], but the

author can not locate the article. Ma [11] carried out an experimental study of the

static and dynamic plastic buckling of circular cylindrical shells under impact torque

using the Hopkinson torsional bar. The static and dynamic critical torque of the

shells were determined experimentally. All the aforementioned theorectical analy-

ses developed for the torsion problems were restricted to prectict the onset of local

buckling. Trahair [12] developed a method to analyze the plastic torsion behavior

of monosymmetric I-sections, lipped and unlipped channels, and equal flange lipped

angles, and of point-symmetric lipped and unlipped Z-sections. Recently, Santosa

and Wierzbicki [10] conducted numerical simulations for empty boxes and the tubes

with light metal filler using a nonlinear finite element code. Three parameters, which

are initial crushing moment, the stabilized torsional crushing moment and the critical

twisting rotation, were defined to characterize the torsional behavior of empty box

tubes.

In this thesis, a theoretical solution is proposed for the torsional behavior of thin-

walled square tubes in the range of large normalized rotation up to 0.393. Simple

torsional cross-sectional buckling models are developed, which capture the basic tor-

sional crushing mechanisms of thin-walled tubes. The pre-buckling, plastic buckling

and post-buckling behavior of square tubes are predicted using least upper bound

method. Approximate formulas for the torsional resistance are derived and the solu-

tions are compared with the numerical results. The analytical solution for the square

11



tubes is then extended to rectangular and hexagonal thin-walled tubes. Numerical

simulations for rectangular and hexagonal tubes were also carried out and the results

are presented for comparison with the analytical solutions. Finally, experiments were

conducted to test the analytical and numerical solutions.

It should be noted that the present research has been reported by the author and his

supervisor in references [13, 14, 15, 16].

12



Chapter 2

Numerical Solutions of Thin-walled

Square Tubes

The torsional crushing problem of thin-walled square tubes will be solved numerically

in this chapter by using the non-linear explicit finite element code PAM-CRASH. The

finite element modelling and simulation techniques are reviewed first. The twisting

deformation pattern of the tube and the sectional buckling mode are then illustrated.

Finally, the torsional plastic resistance of tubes with various length-width ratios are

revealed at large twisting rotations up to 1800. Santosa and Wierzbicki [10] conducted

numerical simulations for empty thin-walled box tubes undergoing torsion using non-

linear explicit finite element code PAM-CRASH. The numerical study is continued in

present research.

2.1 Finite Element Modelling

The considered tube has length 1, width b and wall thickness t, with i/b = 4 - 6.5 and

b/t = 50. The end twisting rotation is denoted by 00 (see Fig.2.1). The tube wall was

modeled with Belytschko-Tsay-4-node thin shell elements with reduced integration

points (see Fig.2.2). Clamped boundary condition was applied at one end of the

tube, while the other end was connected to a rigid body mechanism. The rigid body

13



was allowed to rotate about the x-axis and move in x direction. By connecting to

this rigid-body mechanism, warping at the end section was prevented. The velocity

of twisting rotation was applied at the center of gravity of the rigid body.

Z

Y

K T, 0,

x

1

Figure 2.1: A thin-walled square tube under torsional loading

Figure 2.2: Finite Element Model of the tube

Self impact contact (type 36 in PAM-CRASH) was utilized to simulate the contact

between walls of the tube during large twisting deformation.

The constitutive behavior of the thin shell element for the tube material was based on

the elastic-plastic material model with Von-Mises' isotropic plasticity algorithm. The

transverse shear effect was also considered by this material model. Plastic hardening

was described by a multi-linear curve, in which pairs of the plastic tangent modulus

and the plastic stress were specified.
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Table 2.1: Strain hardening data for AA6063 T7

Plastic Strain Plastic Stress [MPa] Plastic Modulus

[MPa]

0.00000 86.94 33390.0

0.00027 95.94 2913.0

0.00211 101.30 2200.0

0.00575 109.30 1959.0

0.01493 127.30 1460.0

0.02630 149.30 594.1

0.06939 169.50 18.0

0.15270 171.00 0.0

The material used in the calculation was the aluminum extrusion AA6063 T7, which

is commonly used for automotive structures, with mechanical properties of Young's

modulus E = 69GPa, initial yield strength o = 86.94MPa, Poisson's ratio v = 0.3.

The strain hardening data are given in Table2.1. The engineering stress-strain data

were converted to true stress-strain data for finite element calculation.

2.2 Quasi-static Simulation

There are two time integration algorithms in dynamic finite element analysis, namely,
explicit and implict. In the explicit approach, internal and external forces are summed

at each node, and a nodal acceleration is computed by dividing by nodal mass. The

solution is advanced by integrating this acceleration in the time domain. The maxiu-

mum time step size is limited by the Courant conditon, which requires that solution

spreading speed can not exceed the dilatational wave speed V in the material [17, 18].

3K(1 - v
VC p(1+v)

where K is the bulk modulus; p denotes mass density and v is Poisson's ratio.

(2.1)
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Therefore, the explicit algorithm typically requires many relatively inexpensive time

steps. In constrast, implicit simulation typically involves a relatively small number

of expensive time steps due to iterative process at each time step. The maximum

stable size of time step in an explicit dynamic analysis is imposed by above Courant

condition

At = e=Le P +(2.2)
VC 3K(1 + v)

where L' is the characteristic length of element.

While explict analysis is well suited to dynamic simulation such as impact and crash,
it can become prohibitively expensive to conduct long duration analysis. In order to

use explicit code such as PAM-CRASH for quasi-static analysis, a special numerical

technique has to be applied to simulate the process in a shortest time period while

inertia effect remains insignificant. In the current study, the mass scaling method was

utilized. In this approach, mass density of the material was scaled down by a factor

of n2 so that the inertial forces will be negligible. However, scaling down the mass

density results in a smaller time step, according to Eq.(2.2), by a factor of n. The

analysis will hence take many more time steps. To limit the number of time steps,
the loading rate has be be increased. In the current analysis, the material density was

decreased by 1000 times, while the loading rate was applied at an angular velocity of

w = 1007 rad/s.

Care has to be taken to ensure that the kinetic energy should be far smaller than the

internal energy over the period of simulation so that the process can be considered as

a quasi-static one. Moreover, hour-glass instability may appear in finite elements with

reduced integration points ( some deformation modes result in zero nodal forces when

the nodal forces are computed by a single point integration). Therefore, a sufficiently

fine mesh has be to used to avoid an hour-glass instability. Hour-glass energy needs

to be checked to ensure it is negligible compared to the internal energy of the system.

Although via the mass scaling method, the quasi-static problems can be solved effi-

ciently by explicit finite element code, caution must be taken in applying this method.

Both the kinetic energy and hour-glass energy must be well-controlled (one or two

16



order of magnitude smaller than internal energy ) to ensure the accuracy of the nu-

merical solutions.

2.3 Deformation Pattern

Square tubes with wall thickness t = 1mm, width-thickness ratio b/t = 50, and

length-width ratio i/b = 4 - 6.5 were considered in the numerical calculation. The

deformed shape of the tube with 1/b = 5 at 450 rotation is illustrated in Fig.2.3. The

evolution of the shape at the mostly deformed cross-section is shown in Fig.2.4. The

following conclusions can be drawn from the analysis of the above figures.

(i) In the pre-buckling stage, all sections rotate without sectional buckling. The

resistance is derived from shear stresses that increase because of first elasticity and

then strain-hardening with the increasing rotation angle.

(ii) After buckling, the walls deform inwards with an increasing amplitude wo of the

transverse displacement function w(x). This reduces shear stresses and changes the

geometry so that the torsional resistance drops by a factor of 2 to 3 relative to the

pre-buckling state.

(iii) At a certain deflection amplitude and rotation angle, internal touching occurs

which locally stiffens a given cross-section. From this point on, torsional deformation

spreads along the length of the tube causing a moderate increase of the torque.

Figure 2.3: Deformed shape of the thin-walled square tube at 450 rotation (normalized

rotation 0.0785)

17



Figure 2.4: Evolution of the shape at the mostly deformed cross-section

2.4 Plastic Resistance

The torsional plastic resistances of tubes with t = 1mm, b/t = 50 and i/b = 4

6.5 are plotted in Fig.2.5 at rotation angles up to 1800. It can be seen that the

twisting moment reached an ultimate value approximately at a twisting rotation

of 100. Subsequently, the torsional resistance dropped significantly with increasing

twisting rotation due to the plastic sectional buckling of the tube. At large rotations,

the twisting moment appeared to reach a constant asymptotic value.

E

E
0

300

250

200

1501

1001

50

0 20 40 60 80 100

Twisting Rotation [deg]

120 140 160 180

plastic resistance of thin-walled square tubes (To normalize,

O-o = 105.4MPa, t = 1mm and corresponding b and 1)
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4 - -
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Chapter 3

An Approximate Solution for

Thin-walled Square Tubes in

Torsion

The torsional crushing of thin-walled square tubes will be modelled analytically in

this chapter. A kinematic approach is utilized in the analysis based on the principle of

virtual work. Pre-buckling, cross-section deforming and deformation-spreading mech-

anisms are proposed as three phases of torsional deformation. A kinematically admis-

sible displacement field is established in each phase of deformation and a closed-form

solution for torque is obtained. By considering the combined effect of the geometry

and material, the critical twisting rotation to plastic buckling is determined analyti-

cally. Because the kinematic approach is applied in the current analysis, the obtained

plastic resistance establishes the upper bound of the limit load carrying capacity of

the tubes.

19



3.1 Theoretical Formulation

A kinematic approach is proposed in the present study based on assumed displacee-

ment fields and the principle of virtual work

T - 0 = j NoO .KaodS (3.1)

where T is the twisting moment applied at the end of the tube; NOp and c'. are

respectively components of the membrane stress tensor and strain rate tensor in the

tube wall. Two material models are introduced. For the analysis of the plastic

buckling load, the material is assumed to be rigid-plastic, strain-hardening obeying

a power law - = CP" and the Von Mises yielding condition, where - and are

respectively the equivalent stress and strain. The post-buckling analysis is based on

the rigid-perfectly plastic model. The components of the strain rate tensor in the

local in-plane coordinate system ce, 3 = 1, 2 are

where x is aligned with the longitudinal axis of the tube. Components Ezx and cry can

be evaluated from the assumed deformation modes and are related to the twisting

rotation (0o, 6o). The tensor of membrane stress N.0 is determined from the associated

flow rule. To take strain hardening effect into account in the rigid-perfectly plastic

model, the work equivalent flow strength is used in the calculation, [19], [20]

-0 = (3.3)
n +1

where ay and o are the yield and ultimate strength of the material, respectively; n

denotes the power law exponent of the material.

The Von Mises yielding condition in a plane stress field is

F X -- h +r 0-2 - OrXXOyy + 3 - O-2 =0 (3.4)

20



The strain rate can be calculated from the associated flow rule

Ec3 = k- (3.5)

where k is flow constant at one point (Eq.(3.7)) over different coordinates, but varies

in space and time.

The components of stress tensor c7, can be expressed in terms of the proportionality

constant k and the strain rate tensor e'p by inverting Eq.(3.5)

1
S = 3 (Cyy + 2exx)

3K1
ay, = -(exo + 2eg,) (3.6)

1

The constant k can now be determined by substituting Eq.(3.7) into Eq.(3.4)

V3 = 0 e ,+ e + eXxeyy +
3//50 yExy

(3.7)

The rate of plastic work per unit volumn is o-,geoO which can be expanded into the

following form

O-aQ3e/3 = Uxxxx + Uyyeyy + 2 Txysxy (3.8)

Substituting Eq.(3.6) and Eq.(3.7) into Eq.(3.8) leads to

2 ±+ + (3.9)

21



Therefore, Eq.(3.1) can be re-written as

T.- 2 cx= o; + Y. + exxyy + y dS (3.10)

where the integration is taken over the surfaces of the tube. It should be noted that

bending and warping resistances are neglected in the current analysis.

3.2 The Deformation Modes

As observed in numerical simulations, sectional buckling occurs when the end rotation

reaches a certain angle (critical twisting rotation) and an inward sectional deformation

mode is developed in the tube (see Fig.2.4), which reduces stresses and changes the

geometry so that the torsional resistance considerably drops. The amplitude of the

sectional buckling deformation increases with the increase of twist. At a certain

rotation angle, internal touching occurs at the most deformed cross-section which

locally stiffens the section. As a result, a most-deformed section is formed. From that

point on, this deformation will spread along the length of the tube and thus form a

most-deformed area. With these physical understandings, a three-phase deformation

mechanism is proposed in the current approximate analysis. The three phases are

namely, pre-buckling, cross-section deforming and deformation-spreading. They will

be described in the following.

In each phase, a velocity field is assumed and the principle of virtual work ( Eq.(3.10))
is applied to evaluate the torsional resistance of the tube. The shell of the tube is
assumed to be inextensible in the hoop direction. Thus, eyy = 0.

3.2.1 Pre-buckling

In this phase, all sections rotate as rigid bodies without sectional deformation. It is
assumed that the rotation angles at sections from the fixed end to the free end are

22



varying linearly from 0 to the end rotation angle 00. Therefore, the walls of the tube

become spiral surfaces, as illustrated in Fig. 3.1.

Figure 3.1: Pre-buckling deformation of a square tube under torsion

Consider the upper flange of the tube, the displacement at a cross-section with longitu-

dinal coordinate x can be found from the assumption of the spiral-shape deformation

u 0

b
w =2

cos (-x)
'CS00 X

cos (-x)
I

b .
+ b sin

2
00

(Ix)-y

00 b
- y sin (-x) - (3.11)

where 00 is the end twisting rotation; y denotes the coordinate in hoop direction.

The Lagrangian strain tensor can then be calculated

Ou

1 Ou

2 Oy

1 Ou-[( )2
2 Ox

Ov
+

Ov
+( )2+

Ox O )2]Ox

0 0y 2

212

b202
+ 812

812
Ou Ou Ov Ov Ow Ow b0

+ ( -+ + ) =
OxOy Ox~y Ox Oy 41

(3.12)

(3.13)

and the strain rates

23
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[(x= )2 + I (b)2]O.o6
1 41

exy = () -00 (3.14)

(3.15)

The other components of the strain and strain rate tensor are zero.

If the tube is axially free at the loaded end, there will be an axial displacement UO,
as shown in Fig.3.2.1. The strain and strain rate in X direction will become

A

I

z

T,Oox

Figure 3.2: An axially free tube with displacement Uo

0O0y 2  b2 02 U0

212 8!2 T

Xx = ( )2 + ( )2] 0 6-
i0
I (3.16)

(3.17)

Applying the principle of virtual work and substituting the above expressions of
strain rate into Eq.(3.10) finally results in the following expression for the torsional

24



resistance. The algebraic details can be found in Appendix A and more details in
reference [13].

T = 0.05r 2 02 + 0.58 (3.18)

where 0o is the end twisting rotation angle; r is the width-length ratio of the tube,

r = b (3.19)1

and r is the dimensionless twisting moment defined by

T
T -T (3.20)2ob 2t

where T is the physical twisting moment; o denotes the plastic flow stress of the
material; b and t are width and wall thickness of the tube, respectively. Note that
it will make more physical sense to normalize the twisting moment T by 2-ob 2t,
considering that the fully plastic shear stress is oo/v'/.

3.2.2 Cross-section Buckling

Sectional buckling will begin when the twisting rotation reaches a certain angle (crit-
ical twisting rotation). During buckling, the walls deform inward. This relieves
the membrane strains and reduces the load-carrying capacity of the tube. In the
present analysis, a sinusoidal sectional buckling mode is assumed (see Fig.3.3) and a
sinusoidal-spiral deformation is developed in the tube(see Fig.3.4 and Fig.3.5). The
sectional distortion is the largest at the mid-section of the tube and it decreases to
zero at the two ends. Meanwhile, the collapsing sections rotate with angles assumed
to vary linearly from one end to the other. The amplitude of the sectional deforma-
tion at each section is related to the rotation angle via the geometry of the problem
and an assumption of inextensibility in the hoop direction of the wall.
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Figure 3.3: Buckling deformation of the cross-section under torsion

Figure 3.4: Buckling deformation of a square tube under torsion

Consider a buckling section shown in Fig.3.3. The dotted lines denote a virtually

deformed section before twisting rotation. The solid lines represent the buckling

section with a rotation angle 0. From the geometry, the displacement of the upper

flange at this section can be obtained
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Figure 3.5: Deformed sections along the tube

where 0 is the rotation angle at current section, 0 = f0o; A and 6 are two param-
eters which can be calculated by considering the geometry of the section and the
deformation characteristics(see Appendix B for details):

= -(1 - )-,
4 2 w
b 2 

04 ( 2 7

(0 < X < -)2

2 - - )

and the amplitude A can be approximated by the expression(details can be found in
reference [13]):

A 4= 0.24(1 - -0 ) (3.23)
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The expressions for Lagrangian strain and strain rate tensor can be derived in the

same manner as in the pre-buckling phase. They are listed in Appendix C.

By employing Eq.(3.10), the torsional resistance in the buckling phase can be found

as a function of the twisting rotation Oo(algebraic details are included in Appendix

D):

r = 0.58 - 0.21r- 0 2 2O 3 4  (3.24)

where r is width-length ratio of the tube.

3.2.3 Deformation-spreading

At a certain transverse deflection amplitude and corresponding twisting rotation angle

(transitional twisting rotation), internal touching occurs at the mid-section of the

tube, which is the most-deformed section in this theoretical model. It is hypothesized

that the most-deformed section is formed when the twisting rotation 0 i .e.,the2'

transitional twisting rotation Om =. Fig.3.6 shows the most-deformed section. From

this point on, the most-deformed section will spread towards two ends from the mid-

section and a most-deformed area will be formed centering at the mid-section with

length 2 (see Fig.3.7).

From the point of view of energy, the tube in this phase is equivalent to a tube with

twisting rotation 0m and a most-deformed area 2 . With the increase of twisting

rotation, additional work is done by spreading the most-deformed area, the effect of

which is equivalent to the reduction of the length of the tube and thus the growth

of the width-length ratio r. Therefore, the effect of deformation spreading can be

considered by introducing an equivalent width-length ratio R

R =_ o =0 r(3.25)
LO - Om
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Figure 3.6: Most-deformed section

Hence the torsional resistance in the deformation-spreading phase can be evaluated

by replacing the original width-length ratio r in Eq.(3.24) with the above-defined

equivalent width-length ratio R

(3.26)m 0.21 O.56 -2
T = 0.58 - 0.21R-0 220 34 = 0.58 - 0.21 r- 22M 00.22

3.3 Critical Twisting Rotation for Plastic Buck-

ling

The torsional resistance obtained in the previous section shows the weakening geo-

metrical effect on torsional behavior assuming a constant flow stress of the material.

The twisting moment T drops significantly in the buckling phase. However, for a
strain-hardening material, the flow stress will be an increasing function of strains.
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Figure 3.7: Equivalent tube with spreaded most-deformed area when 00 > Om

Thus, the torsional resistance of the tube will be determined

of geometry and material, and the critical twisting rotation

buckling will be a minimum on the torque-twist curve.

by the combined effect

0, for sectional plastic

The stress-strain relationship of the material can be conveniently approximated by

the power law

Ueq = Cce6q (3.27)

Based on the assumed sinusoidal-spiral buckling mode described in previous section,
the average equivalent strain over one flange of the tube can be approximated assum-

ing small 00 and E,, = 0
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eeq = jExydxdy

0.28r60 - 0.13r02

0.5660o(1 - 0.93-)
r

(3.28)

where Ao = b is the normalized twisting rotation.21

By applying Eq.(3.10), a closed-form solution of dimensionless twisting moment T

valid for small 0o can be found

T = 0.65 - 1.18
r

(3.29)

The combined effect of geometry and material on the torsional resistance can now be

defined as a function F(0o)

F(0o) = orq - -F (3.30)

As argued above, the critical twising rotation 0, for sectional plastic buckling will be

such that the function F(0o) reaches a stationary point

dF= 0 (3.31)
dO

Solving the above equation for the critical twisting rotation 0,, one gets

_1.1( 1-+-2n -1)
0c 1 +2 (3.32)

where n is the power law exponent of the material; 0, is in radian.
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It is interesting to note that the critical twisting rotation for sectional plastic buck-

ling depends only on the exponent n of the stress-strain law. For a specific material

AA6063 T7 (n=0.2), Eq.(3.32) gives 0, = 9.80. This agrees very well with the pre-

diction of the numerical simulations, which gives the critical twisting rotation around

100. It should also be pointed out that the validity of Eq. (3.32) is limited to a certain

range of length-width ratio. It gives reasonably good prediction for the length-width

ratioes considered in the present study (i/b = 4 - 6.5). Beyond this range, the

equation should be used with caution.

3.4 Comparison Between Approximate Solution and

Finite Element Solution

In the previous section, analytical and curve-fitted expression for the torque in three

successive phases were obtained:

T 0.05r 2 0 + 0.58 (0 < Oo < 0c)

T - -0.21r- 2  0- 4 + 0.58 (0c < O < 0m)

+-0.21R-0220,;3 +0.58 (00 > Om) (3.33)

where 00 is the twisting rotation(in radian); 0m =; R is defined in Eq.(3.25); r

denotes the width-length ratio, r = b/l.

The critical twisting rotation for plastic sectional buckling can be evaluated by Eq. (3.32).
The physical twisting moment is related to the dimensionless twisting moment by

T = 2a 0b2tT (3.34)

Taking, for instance, that the tube material is AA6063 T7 with plastic flow stress

of cro = 105.4N/mm 2 , and taking b = 50mm, b = 50, the twisting moment in pre-t

buckling, post-buckling and deformation-spreading phase are plotted in Fig. 3.8(solid
lines) for tubes with length-width ratio varying from 4 to 6.5. The results of numerical
simulations are also shown in the figure for comparison (dashed lines).
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Figure 3.8: Plastic resistance of square tubes of alloy AA6063 T7 (Solid

lines:analytical model; dotted lines: FEM results. To normalize, plot T bOoI2o 0b2 t 15

with oo = 105.4MPa, t = 1mm and corresponding b and 1)

As can be seen in the figure, the analytical solutions agree well with the numerical

results. The torsional resistance reaches the ultimate value at approximately 100 at

which point the sectional buckling initiates. After that, crushing mechanism take

place at sections and the loading resistance drops considerably due to the plastic sec-

tional buckling. At large rotations, the twisting moments appear to assume constant

values, which correspond to a stablilized crushing.
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Chapter 4

Plastic Resistance of Thin-walled

Rectangular and Hexagonal Tubes

The analytical solution obtained in the previous chapter for a square tube will be ex-

tended to rectangular and hexagonal tubes. Numerical simulations will be conducted

for rectangular and hexaognal tubes and results will be compared with theorectical

solutions.

4.1 Approximate Solution

Now consider the torsional crushing of rectangular and hexagonal tubes (shown in

Fig.4.1). Due to the similarity in the geometry, we can expect that the torsional

behavior of these two tubes will be similar to that of a square tube. Thus, we can

assume for simplicity that the dimensionless twisting moments and the critical twist-

ing rotation of rectangular and hexagonal tubes are the same as those of square tube.

Therefore, Eq.(3.32) and Eq.(3.33) can be readily applied to the cases of rectangular

and hexagonal tubes, with a new width-length ratio r defined as bh for rectangular

tubes.

However, Eq.(3.34) should be revised to calculate physical twisting moment of non-
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Figure 4.1: Rectangular and hexagonal tubes subjected to torsion

square tubes. One can note that the b2 term in Eq. (3.34) represents the area enclosed

by the cross-section of a square tube [21]. Employing the counterparts of this in rect-

angular and hexagonal tubes, we can obtain the torsional resistance of a rectangular

tube

T = 2robht (4.1)

and hexagonal tube

T 3T/rob2 t (4.2)

where T denotes the dimensionless twisting moment expressed in Eq.(3.33) for pre-

buckling, cross-section deforming and deformation-spreading phases.

More generally, the torsional resistance of a prismatic tube can be calculated

T = 2ToAt (4.3)

where A is the area enclosed by the cross-section of the tube [21].

The foregoing analytical solutions of rectangular and hexagonal tubes with material

AA6063 T7 are plotted in Fig.4.4 and Fig.4.5, respectively. Numerical study was
conducted for comparison.
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4.2 Numerical Study

Rectangular tubes of b = 50mm, I = 250mm and t = 1mm with three different

aspect ratios b/h = 2; 1.5 and 1.25 were analyzed numerically using the non-linear

finite element code PAM - CRASHTM. Numerical simulations were also carried out

for hexagonal tubes of I = 250mm and t = 1mm with three different width of flanges,

b = 30mm, 40mm and 50mm respectively. In all cases, a clamped boundary condition

is applied at one end of the tube, while the other end is connected to a rigid body

mechanism (therefore no warping at the end section). which is allowed to move axially.

The twisting rotation is applied quasi-statically at the center of the rigid section. The

tube material is aluminum extrusion AA6063 T7, with tensile parameters of Young's

modulus E = 6.9 x 10 4N/mm2 and initial yield stress oy 86.94N/mm2 .

The plastic deformation of rectangular and hexagonal tubes at 900 twisting rotation

are illustrated in Figs.4.2 and 4.3 respectively. It can be seen that, similar to the case

of square tubes, inward sectional buckling mode is developed and propagated along

the length of the tubes. The moment responses are shown in Fig.4.4 and Fig.4.5,

together with the analytical solutions derived above.

Figure 4.2: Plastic deformation of a rectangular tube at 900 rotation

As can be seen from the figures, the torsional behavior of thin-walled rectangular and

hexagonal tubes can also be characterized by three distinct phases, as in the case

of square square tubes, namely pre-buckling, buckling and deformation-spreading

phases. In the pre-buckling phase, the tubes show high load resistance which drops
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Figure 4.3: Plastic deformation of a hexagonal tube at 900 rotation

significantly when tubes buckle and appears to assume a nearly constant value in the

deformation-spreading phase.

The analytical solution for rectangular tubes compares very well with the numerical

results, as can be seen from Fig.4.4, while for hexagonal tubes, it predicts smaller

pre-buckling response and critical twisting rotation than numerical results give. It

is due to the fact that the analytical solution is based on the geometry of a sqaure

tube. The rectangular tube deforms in a similar way as the square tube and the

deformation mode of a hexagonal tube is differed.

It should also be noted that, because a hexagonal section has larger corner angles(1200)

than a square section(900), it can deform inward more than a square section can. Con-

sequently, the deformation-spreading will be delayed in the hexagonal tube and the

transition angle Om (which defines a kink in the stabilized phase of response) will be

larger than -r/2. This can be observed in the numerical results shown in Fig.3.7 but

this property has not been taken into account in the present analytical solution.
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Chapter 5

Experimental Study

Torsional experiments on thin-walled square tubes have been performed to validate

the analytical and numerical solutions discussed earlier in this paper. The specimens
used in the test were provided by Norsk Hydro ASA, Norway. As a part of the whole
project, some foam-filled specimens were also tested and results are reported in this
chapter together with those of empty ones, even though the problem of foam-filled
thin-walled members is beyond the range of this paper.

5.1 Experimental Setup

Pilot tests were conducted with a torsional actuator with maximum capacity of
2kNm. But calculations of peak twisting moments showed that such a torsional
actuator was not sufficient for the current testing program. In addition, there was
not enough axial displacement available on the torsional actuator which is necessary
to compensate the shortening of specimen during twisting. Therefore, a completely
new testing rig was designed and manufactured, which uses a linear actuator.

Figs.5.1 and 5.2 show the testing apparatus. A simple lever arm design is applied
allowing an axial DOF of the loading end of the specimen using a ball bearing. On
the other end of the specimen, a clamped fixture represents the loading boundary
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condition. The linear actuator is connected with the top of a cardan joint and thereby

has all necessary DOFs for the kinematics. The lever arm itself is hinged with the

actuator. Care was taken to release any axial force that might have developed during

the process of large rotation.

Figure 5.1: Testing rig design

Figure 5.2: Design details of the lever arm

The force and displacement associated with the linear actuator are recorded by force
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Figure 5.3: Engineering stress-strain curve of AA6063 T7

sensor and displacement sensor, respectively. From the kinematics of the system,
these data can be easily converted to twisting moment acting on the specimen and

the corresponding twisting angle. The testing rig is integrated into a stiff frame. The
fixture of the specimen is mounted on a stiff plate horizontally. The linear actuator

is displacement-controlled and powered by a hydraulic supply. The maximum stroke

of the actuator is 600mm and its maximum loading capacity is 40kN. Fig.5.2 shows

the details of the lever arm. The range of the twisting angle of the lever arm is
-30" ~ +300.

The tests were run quasi-statically with an actuator velocity at about 0.8mm/s. The

data sampling frequency is 1Hz.

5.2 Specimens

The aluminum extrusions and aluminum foams were provided by Norsk Hydro ASA,
Norway. The extrusions are square sections with dimension 80mm x 80mm, thickness
3mm and length 270mm. The material is AA6063 T7. An engineering stress-strain
curve of this material is shown in Fig.5.3.

The aluminum foam has geometry 270 x 77 x 77mm and were filled into the extrusion
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Table 5.1: Specimen Summary

Specimen Type Foam Weight Foam Density Foam Crush-

No. [g] [g/cm3 ] ing Strength

[MPa]

S1 empty 0 0 0

S2 empty 0 0 0

S3 filled 220 0.14 1.78

S4 filled 240 0.15 1.97

S5 filled 300 0.19 2.81

S6 filled 300 0.19 2.81

S7 filled 380 0.24 3.99

S8 filled 380 0.24 3.99

sections. Four

information.

different foam densities were tesed. Table5.2 summarizes the specimen

5.3 Testing Results

The tests were run quasi-statistically. One end of the tube was clamped while the

other end was axially free and was subjected to twisting rotation up to 32". Some

interesting observations were made from the experiment:

(i) The twisting deformation and sectional deformation pattern of empty tube agree

generally with the numerical predictions and the analytical model(see Fig.5.4 and

Fig.5.5);

(ii) The torsional resistance responses of an empty tube obtained in the test is shown

Fig.5.6. The resistances predicted by numerical simulation and analytical solution
are shown in the same figure for comparision. It can be noted that the numerical re-
sult and analytical solution have reasonably good agreement while the experimental
result gives much smaller twisting resistance after the peak moment. This is due to

42



Figure 5.4: Torsional deformation shapes: experimental and numerical

Figure 5.5: Sectional deformation: experimental, numerical and model

an improper design of the end fixture plate of the specimen, which resulted in an un-

expected welding failure under large torque, as shown in Fig.5.11. The welding crack,

developed in all but one specimen, diminishes significantly the twisting resistance of

the specimen after the peak moment.

(iii) The sectional transverse deflection was retarded by the foam-filler, which resulted

in a smaller deflection amplitude. The sectional deformations of foam-filled tubes are

more localized than that of empty tube. Fig.5.7 and Fig.5.8 show the deformation

shape and sectional deformation pattern of one foam-filled tube observed in exper-

iment and predicted numerically. It is evident that the numerical simulation gave

fairly good prediction on the deformation;

(iv) Numerical simulations were carried out on two foam-filled tubes with foam filler

of density 0.14g/cm 3 and 0.24g/cm 3, respectively. The moment responses are shown

in Fig.5.9 together with testing results for comparison. As can be seen, two sets of

results agree fairly well up to the angle of the peak moment. After that, numerical

results predict an increasing resistance while the experiments were stoped because of

the fixture failure.
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experimental

(v) Torsional resistance of all tested tubes vs. twisting rotation are plotted in Fig.5.10.

Although the tubes lost much of their twisting capacity due to a premature weld-

ment failure during experiment, substantial increase in the energy absorption are

still achieved for the foam-filled tubes. This bears an important implication of the

attractive potential of the foam-filled thin-walled members as weight-efficient energy-

absorbing and force-maintaining structures in collision of a vehicle.

(vi) There are welding failures occuring at the end fixture plate of specimens (Fig.5.11),
which resulted in a considerable loss of post-buckling torque of the tubes. A careful

re-design of the end fixture for specimens is needed in later experiments of this kind.
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Figure 5.7: Deformation shapes of a foam-filled tube: experimental and numerical

Figure 5.8: Sectional deformation of foam-filled tubes: experimental and numerical
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Figure 5.9: Torsional resistance of foam-filled tube: experimental and numerical
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Figure 5.11: Welding failure of the end fixture of a tube
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Chapter 6

Discussions

An analysis by applying the principle of virtual work to assumed displacement fields
was used to predict the torsional behavior of thin-walled square tubes with large
plastic deformations. Three successive deformation phases, namely pre-buckling,
cross-section buckling and deformation-spreading phase were identified based on the
physical understanding of the torsional behavior of thin-walled prismatic tubes. The
analytical model was then extended to the cases of thin-walled rectangular and hex-
ognal tubes. Numerical simulations were carried out and the results are compared
with the analytical solutios, giving good agreement.

Torsional experiments on empty and foam-filled square tubes were carried out and
results were compared with finite element solutions, and analytical models. A new
testing rig was designed, which was able to convert the force on linear actuator to
twisting moment on specimen by a specially desgined lever arm. Although the end
platens of specimens were not properly designed and unexpected welding failure oc-
cured on those fixtures in testing, which diminished significantly the twisting of the
tubes, the deformation shape and sectional deformation pattern of empty tubes re-
vealed in the experiment agree well with the numerical predictions and analytical
models. The experimental results show increase in plastic resistance and energy ab-
sorption for foam-filled tubes compared to empty ones, thus offering potential for
thin-walled members with ultralight metal filler as weight-efficent energy-absorbing
structures.
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In the simple analytical model, the sectional buckling was assumed to initiate at the
center of tube and then propagate towards two ends. The most-deformed section
was also developed at the center of the tube (see Fig.3.4 and Fig.3.5). In contrast,
the finite element solution (see Fig.2.3) and experimental result (see Fig.5.4) exhibit
different deformation patterns, in which the initiation of sectional buckling and the
most-deformed section are shifted from the center of tube towards one end. Such an
assumption on the deformatin mode in the approximate model simplified the analysis
while sacrificing to some extent the accuracy of the solution.

More experiments are needed with re-designed end platens to ensure its integrity
under large twisting moment. Furthurmore, the present model is restricted to the
cases of torsional deformations without warping. In addition to the deformation
considered so far, a nonuniform axial displacement may give rise to a warping of the
cross-section.

In real applications, torsion seldom acts alone. Usually it is combined with compres-
sion and/or bending. The interaction of torsion with compression and bending should
be considered in the continuation of the present research.

Of particular interest in crashworthiness application is the effect of the light metal
filler, such as aluminum foam and aluminum honeycomb, on the peak and post-
buckling torque of a structural member.

48



Acknowledgement

I wish to thank Professor Tomasz Wierzbicki who as my thesis supervisor has provided

me research resources, encouragement and guidance throughout this study. Thanks

are also extended to my thesis reader, Professor Frank McClintock, for his inspiring

advice.

The present research was conducted for the Core Project of the "Ultralight" Consor-

tium of MIT. The financial support of all members of the Consortium is gratefully

acknowledged. Thanks are also due to Altair Computing and Engineering System In-

ternational for providing free academic licenses of the programs HYPERMESH and

PAM-CRASH.

49



REFERENCES

1 T. Wierzbicki and W. Abramowicz. On the crushing mechanics of thin-walled
strucutures. J. Appl. Mech. 50:pp. 727-739, 1983.

2 D. Kecman. Bending collapse of rectangular and square section tubes. Int. J.
Mech. Sci., 25(9/10), 1983.

3 W. Abramowicz. Simplified crushing analysis of thin-walled columns and beams.
Engng Trans, 29:pp.3-27, 1983.

4 T. Wierzbicki, W. Abramowicz, T. Gholami, and H. Huang. Stress profiles in
thin-walled prismatic columns subjected to crush loading-ii. bending. Computers
& Structures, 51(6):pp. 625-641, 1994.

5 S. Baba and T. Kajita. Plastic analysis of torsion of a prismatic beam. Interna-
tional Journal for Numerical Methods in Engineering, 18(6):927-944, 1982.

6 N.W. Murray. Introduction to the Theory of Thin-walled Structures. Clarendon

Press, Oxford Engineering Science Series, UK, 1983.

7 M. Mahendran and N.W. Murray. Ultimate load behavior of box-columns un-
der combined loading of axial compression and torsion. Thin-walled Structures,
9:pp.91-120, 1990.

8 R.H. White, G.J. Grzebieta and N.W. Murray. Maximum strength of square
thin-walled sections subjected to combined loading of torsion and bending. In-
ternational Journal of Impact Engineering, 13(2):pp.203-214, 1993.

9 C. Grant. Network analysis of thin-walled sections in uniform torsion. Proced-
ings of the Institute of Mechanical Engineers, Part C, Mechanical Engineering

Science, 209(2):pp.133-140, 1995.

10 S.P. Santosa and T. Wierzbicki. Effect of an ultralight metal filler on the torsional

crushing behavior of thin-walled prismatic columns. Impact & Crashworthiness

Laboratory, Technical Report 5, Masachusetts Institute of Technology, 1997.

11 H. Ma, S. Zhang, and Yang. G. Impact torsional buckling of plastic circular cylin-
derical shells: Experimental study. International Journal of Impact Engineering,
22(1999):531-542, 1999.

50



12 N.S. Trahair. Plastic torsion analysis of monosymmetric and point-symmetric

beams. Journal of Structural Engineering-ASCE, 125(2):175-182, 1999.

13 W. Chen and T. Wierzbicki. Simplified analysis of torsional crushing behavior

of thin-walled square columns. Impact & Crashworthiness Laboratory, Technical

Report 8, Masachusetts Institute of Technology, 1998.

14 W. Chen and T. Wierzbicki. Torsional collapse of thin-walled prismatic columns.

Thin-walled Structures, 36(3):181-196, 2000.

15 W. Chen and T. Wierzbicki. Torsional Collapse of Foam-filled Thin-walled

Columns. Impact & Crashworthiness Laboratory, Technical Report 19, Mas-

sachusetts Institute of Technology, 1998.

16 W. Chen and T. Wierzbicki. Torsional crushing of foam-filled thin-walled square

columns. Submitted to International Journal of Mechanical Science.

17 T. Belytschko, R.L. Chiapetta, and H.D. Bartel. Efficient large scale non-linear

transient analysis by finite elements. International Journal for Numerical Meth-

ods in Engineering, 10:579-596, 1976.

18 S.P. Santosa. Summary report on crush response of ultralight structures. Impact

and Crashworthiness Laboratory, Technical Report, Massachusetts Institute of

Technology, (24), 1999.

19 T. Wierzbicki and Abramowicz W. The mechanics of deep plastic collapse of thin-

walled structures. In Jones, N. and Wierzbicki, T. editors, Structural Failures,

John Wiley, 1989.

20 Abramowicz W. The macro element approach in crash calculations. In Ambrosio,
Pereira and Silva editors, Crashworthiness of Transportation Systems:Structural

Impact and Occupant Protection, Kluwer, 1997.

21 I.H. Shames. Introduction to Solid Mechanics. Prentice Hall, New Jersey, 1989.

51



Appendices

A Plastic Resistance Calculation in the Pre-buckling

Phase

Writing 71 = 0, and substituting Eq.(3.15) and Eq.(3.17) into Eq.(3.10) give a
dimensionless torque T

T 4 1 fO.5r

2ob 2t V3 r 2 _0.5r
V[(p2 + 0.25r 2)Oo - 71]2 + (0.25r) 2 dp

Because the tube can displace freely in X direction, the axial displacement UO should
be adjusted so as to minimize the plastic work and therefore the torque moment T.

Thus, r can be determined from

di-
= 0 (A.2)

Which gives

r/ = 0.250or 2  (A.3)

Therefore, T has the form

41+ ..5 r4_2]_ pO+ (O.25r)2dp (A.4)
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Integrating Eq.(A.4) numerically and curve-fitting the data result in the following
expression for dimensionless torsional resistance(details of curve-fitting can be found
in reference [13]):

T = 0.05r2 0 + 0.58 (A.5)

B Approximation of the Parameters A and 6 in the
Buckling Model

Fig.3.6 shows the most distorted section at 0 = Because of the assumed inexten-
4.

sibility of the geometry, the rotated vertices move inward by the amount 6

b 2
4 2 (B.1)

Assuming 6 at any section within 0 < x < is proportional to the twisting angle at
- 2

that section, and proportional to (Oo - 0) at section with < x < /, 6 can then be

estimated:

b V2_406 = -(1 - )-,
4 2 7
b (I v__4(0 )
4 2 7

(0 < X < 1)2

(- _ < 1)2

On the assumption of the inextensibility in width direction of the tube during the
collapse, the length of the cosine curve remains always constant b. The amplitude A
of the cosine curve is determined by the condition

(B.3)fb I(1 - Cos S )2 ( 2dyo = b
2
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6Writing y = p b, o =b and A = in Eq.(B.3) gives

1-0.5(1 - ar cos p7) 2 + (7r sin p) 2 dp = 1 (B.4)

By solving Eq.(B.4) numerically and curve-fitting the data with an exponential func-

tion, an approximate relationship between A, 6 and b is obtained:

A 406
-= 0.24(1 - -C ) (B.5)

C Lagrangian Strain and the Rate of Strain Ten-
sors in the Buckling Phase

In the following expressions, p = g and q x/1l.

0 < X0 < I

E .07126 02 r 2 2.0004 02 T2 cos(q 00)2 cos(1.571 p) 2 (-7.46o q Oo)

- .0005 02 r 2 cos(q 0o) 2 cos(1.571 p) %1 + .008712 O r 2 q2

- .08408 O3 r2 q sin(1.571 p) %1 cos(1.571 p) + .04660 02 r2 P

- .02238 02 r 2 cos(1.571 p) %1 sin(1.571 p) - .04660 03 r 2

- .04660 0 r2 p q sin(1.571 p) - .02238 03 r 2 cos(1.571 p) %1 q

+ .02444 02 2 cos(1.571 p) 2 - .004356 04 r2 q2 cos(1.571 p) 2

+ .4477 02 r 2 p %1 cos(1.571 p) + .4295 02 r 2 cos(1.571 P)2 (- 7.460 q Oo)

+ .02238 O02 r2 cos(1.571 p) sin(1.571 p) + .02238 03, 2 cos(1.571 p) q

- .05760 02 r 2 cos(1.571 p)2 %1 + .1250 02 r 2 p 2 + .2041 02 r 2 %1 cos(1.571 p)

- .1200 02 r 2 cos(1.571 p) - .04660 02 r 2 sin(1.571 p) (C.1)

%1 := (- 3 . 7 3 0 q Oo)

e =-.08177 r 00 sin(1.571 p) + .2500 r 0 0 - .1200 r Oo cos(1.571 p)
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- .07324 r0 cos(.571p) q - .1885 r 0o p sin(1.571p)

- .3377 r 00 %1 cos(1.571 p) sin(1.571 p) + .1885 r 0 p sin(1.571 p) %1

+ .3377 r 00 e(- 7 -460 qOo) cos(1.571 p) sin(1.571 p) - .03514 r 02 qg

+ .1200 r 00 cos(1.571 p) %1 - .01149 r 0 q + .01369 r 03q 2 cos(1.571 p)

+ .01369 r 02 sin(1.571 p) q cos(1.571 p) + .03514 r 0 sin(1.571 p) %1 (C.2)

%1 :=e(-
3 . 7 3 0 q Oo)

El = [-.2401 Oo r2 cos(1.571p) - .021 02 r 2 cos(q 00)2 cos(1.571 p) 2 (-7.4 q Oo) q
+ .8637 00 r2 cos(1.571 p) 2 C(-7.460 q 0) + .0007 02 r 2 cos(q 00)2 q %1 cos(1.571 p)

+ .00010 r2 cos(q 0)2 %1 cos(1.571 p)

- .2000 10- 0o r2 cos(q 0o) 2 cos(1.571 p) 2 - 3.161 02 r2 e(-7.460 Oo) cos(1.571 p) 2 q

+ .895900 r2 p cos(1.571 p) %1 - .1399 02 r 2 p sin(1.571 p) q

+ .3161 03 r 2 q2 sin(1.571 p) %I cos(1.571 p) + .03484 03 r 2 q 2

- .01742 03 r2 q2 cos(1.571 p) 2 - .1671 02 r 2 q sin(1.571 p) cos(1.571 p) %1

+ .2147 02 r2 %1 cos(1.571 p) 2 q - .04476 0o r 2 cos(1.571 p) %1 sin(1.571 p)

+ .08321 03 r 2 %1 cos(1.571 p) q2 + .044760o r 2 cos(1.571 p) sin(1.571 p)

+ .4070 00 r 2 cos(1.571 p) %1 - .1399 02 r 2 q - .1153 00 r 2 cos(1.571 p) 2 %1

- 1.671 0 p q %1 cos(1.571 p) + .250100 r2 p 2 - .8321 0 r 2 q %1 cos(1.571 p)

+ .06714 02 r 2 q cos(1.571 p) + .09327 00 r 2 p + .04891 00 r 2 cos(1.571 p) 2

+ .1424 00 r 2 - .0932700 r2 sin(1.571 p)I o (C.3)

%1 .__ e (- 3 .7 3 0 qO o)

[-.00004rcos(q 60) 2 q0o + .1311 rq2 02%1

- 2.521 r 00 q e(- 7.460 qOo) cos(1.571 p) sin(1.571 p) + .1886 r p sin(1.571 p) %1

.4475 r q 00 %1 cos(1.571 p) + .3374 r e(-7.460 qOo) cos(1.571 p) sin(1.571 p)

- .1311 r q 00 % sin(1.571 p) - .1886 r p sin(1.571 p)

- .7028 r q 0o p %l sin(1.571 p) + 1.260 r 0o q %1 cos(1.571 p) sin(1.571 p)

+ .04074 r q2 0 cos(1.571 p) + .03514 r sin(1.571 p) %1 - .07028 r 00 q %I

- .02298 r 00 q + .02737 r sin(1.571 p) 0o q cos(1.571 p)

- .3374 r %I cos(1.571 p) sin(1.571 p) + .2501 r - .1465 r 00 q cos(1.571 p)
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- .08174 r sin(1.571 p) - .1200 r cos(1.571 p) + .1200 r %1 cos(1.571 p)]Oo

%I := (-3.730 q Oo) (C.4)

<Xo <1

.49 02 ?r.2 e (- 7 .600 (740qO)P203 2
E0 6 .4295 0 e( 7.46  o) cos(1.571 p)2 - .04660 0 3 r2 p sin(1.571 p)

+- .008712 04 r 2 q cos(1.571 p) 2 - .01742 04 r 2 q

- .08408 03 r 2 sin(1.571 p) q e(-3 7 300 o) %1 cos(1.571 p)

-. 4477 02 r2 p c(- 3.7 300o) %1 cos(1.571 p) - .04660 03 r 2

+ .02238 02 T2 sin(1.571 p) cos(1.571 p) e(-3 7 30o) %1 + .07126 Or 2

+ .2036 02 r 2 e(-3.730 Oo) %1 cos(1.571 p) - .02238 03 r 2 (-3.73 0 Oo) %1 cos(1.571 p)

+ .02238 03 r 2 C(-3 7 30 00) %1 cos(1.571 p) q

+- .08408 03 r 2 sin(1.571 p) e(-3.730 o) %1 cos(1.571 p)

- .05760 02 r 2 cos(1.571 p) 2 c(- 3 .7 3 0 0o) %1 - .004356 04 r 2 cos(1.571 p)2

+ .008712 0 r2 + .008712 00 r2 2 - .04660 0 r p + .04660 0 r2 q

+ .04660 02 p q sin(1.571 p) + .02444 0 r 2 cos(1.571 p)2

.004356 04 r2 q2 cos(1.571 p) 2 + .4000 10- 5 04 r 2 cos(q 00)2 q

- .02238 02 r 2 cos(1.571 p) sin(1.571 p)

- .02238 03 r2 cos(1.571 p) q + .02238 03 r2 cos(1. 5 7 1 p) + .1250 02 r 2 P2

.1200 02 r 2 cos(1.571 p) + .0466 02 r 2 sin(1.571 p) (C.5)

%1 := c (3 .7 3 0 q Oo)

2 = .08177 r 00 sin(1.571 p) + .2500 r Oo - .1200 r 0o cos(1.571 p)

+ .07324 r 02 cos(1.571 p) q + .1885 r 00 p sin(1.571 p) e- 73 0 0 0 ) %1

.03514r02 (-3 73 0 Go) %1 - .02737r o0 cos(1.571 p) q

- .3377 r 00 e(-7. 4 600o) e( 7 .4 60 q Oo) cos(1.571 p) sin(1.571 p)

+ .03514 r 02 e(- 3 7 30 Oo) %1 - .01369 r 02 sin(1.571 p) cos(1.571 p)

+ .3377 r 0o e(-3 7 30 Go) %1 cos(1.571 p) sin(1.571 p)

+ .1200 r 0 cos(1.571 p) (-3.730 Oo) %1 - .1885 r 00 p sin(1.571 p)

- .03514 r 0 sin(1.571 p) (-3.730 0o) %1 - .07324 r 02 cos(1.571 p)
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+ .01369 r 03 cos(1.571 p) + .01149 r 02 q - .01149 r 00

+ .01369 r O q2 cos(1.571 p) + .01369 r 02 sin(1.571 p) q cos(1.571 p) (C.6)

%1 : e(3.730 q Oo)

S= [.003900 0 2 COS(q 00)2 e(-3.7300o) %2 cos(1.571 p) q

- 3.182 02 r2 e(-7.460 Oo) %1 cos(1.571 p)2 + .864300 r 2 cos(1.571 p)2 e(-7.460 Oo) %

- .24010o r2 cos(1.571 p) + .04476 0o r 2 cos(1.571 p) e(-3. 730 0o) %2 sin(1.571 p)

- .1153 0o r cos(1.571 p)2 e(-3. 730 o) %2 + .4070 r2 e(-3. 730 o) %2 cos(1.571 p)

+ .6321 03 r2 sin(1 .571 p) q e(-3.730 0o) %2 cos(1.571 p)

+ 1.671 02 r 2 p e(-3.730 o) %2 cos(1.571 p) + .03484 03 r2

+ .1671 02 r 2 sin(1.571 p) cos(1.571 p) e(-3. 730 0o) %2

- 1.671 02 r 2p e(-3.730o) %2 cos(1.571 p) q

- .1671 02 r 2 sin(1.571 p) q cos(1.571 p) C(-3. 73 o) %2 - .1399 02 r2

- .8314 02 r2  3.730 Do) %2 cos(1.571p) - .2147 08 r2 e(-3.730 Oo) %2 cos(1.571p)2

+ .08321 03 , 2 e( 3 730 00o %2 cos (1.571 p)

+ 3.182 02 r2 e(7.4 60 Oo) %1 cos(1.571 p) 2 q

- .3161 03 r 2 sin(1.571 p) q2 e(-3.730 0o) %2 cos(1.571 p)

+ .08321 03 r2 C(-3.730 00) %2 cos(1.571 p) q2

- .1671 03 r2 (3. 730 Oo) %2 cos(1.571 p) q

- .3161 03 r 2 sin(1.571p) e(3.7 30o) %2 cos(1.571p)

- .8959 0o r2 p cos(1.571 p) e(-3 730 Do) %2 + .2147 02 r2 cos(1.571 p) 2 e 3.73 0 Oo) %2

+ .8282 02 r 2 e(-3. 730 Do) %2 cos(1.571 p) q

- .1399 0 r2 p sin(1.571 p) + .1399 0 r2 psin(1.571p) q + .03484 03 r 2 2

- .01742 03 r2 q2 cos(1.571 p)2 + .03483 03 r 2 q cos(1.571 p)2 - .06966 03 r 2 q

- .04476 0o r2 cos(1.571 p) sin(1.571 p) + .1399 02 r 2 q + .2501 o r 2 2

- .06714 02 r 2 q cos(1.571 p) - .09327 0o r2 p + .06714 02 r2 cos(1.571 p)

+ .048910 o r2 cos(1.571 p)2 + .1424 00 r 2 - .01742 03r2 cos(1.571 p)2

+ .09327 0o r2 sin(1.571 p) - .02100 02 r 2 cos(q 0o) 2 e7. 4 60 Oo) %1 cos(1.571 p) 2 q]6o

%I := c (7.460 q Oo)

%2:= e(3. 730 q Oo) (C.7)
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2 =[.00004 r cos(q 0) 2 q 00 - .02298 r 00 - .1886 r p sin(I.571 p)
- .1465 r 00 cos(1.571 p) + .04074 r 02 cos(1.571 p) - .08212 r 02 cos(1.571 p) q

+ .04074 r q2 02 cos(1.571 p) + .02298 r O0 q

+ .02737 r sin(1.571 p) 0o q cos(1.571 p) - .02737 r sin(1.571 p) 00 cos(1.571 p)

+ .2501 r - .00004 r cos(q 60) 2 00 + .1465 r 0o q cos(1.571 p)

+ .4475 r 0o e(-3.730 o) %1 cos(1.571 p) q + .00004 r cos(q 00)2 cos(1.571 p) 2 0o q

+ .1311 r 02 q2 e(-3. 73 Oo) %1 + .08174 r sin(1.571 p) + .07028 r 00 q e(-3. 730 Oo) %I

+ .1886 r p sin(1.571 p) e(-3.730 0 o) %1 - .4475 r 0 e3.7 3 0 Oo) %1 cos(1.571 p)

- .1200 r cos(1.571 p) + .7028 r 0o p e(-3.7 30 0o) %1 sin(1.571 p) q

+ .1311 r 00 e (3.730 0o) %1 sin(1.571 p) - .07028 r 0o e( 3 .730 Oo) %I

- 1.260 r 00 e (3. 73 00o) %1 cos(1.571 p) sin(1.571 p)

+ .3374 r e(- 3 .730 0o) %I cos(1.571 p) sin(1.571 p) - .2629 r e02 C(-3. 73 0 o) %lq

- .1311 r 00 e (3. 730 o) %1 sin(1.571 p) q - .7028 r 00 p e(-3.730 o) %1 sin(1.571 p)

+ 1.260 r 0 0 e(-3.730 0o) %1 cos(1.571 p) q sin(1.571 p)

+ .1200 r e(-3.730 o) %I cos(1.571 p) - .03514 r sin(1.571 p) e(-3. 730 Oo) %1

+ .1311 r 02 e(-3. 730 Go) % 1

+ 2.521 r 00 e(-7.4 600o) e(7.460 o o) cos(1.571 p) sin(1.571 p)

- .3374 r e(- 7.4 60  e(7.4 60 q Go) cos(1.571 p) sin(1.571 p)

- 2.521 r 00 e (-7.4 60 0o) e(7.4 6 0 q Oo) cos(1.571 p) q sin(1.571 p)]6o (C.8)

%I := e (3.730 q Oo)
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D Torsional Resistance Calculation in the Buck-
ling Phase

The expression for dimensionless torque moment T = 2T can be written

T = j j (x x)2 + ( i)2dpdq+ j2f+ (,)2dpdq (D.1)

where p = b, q =

When axially free condition is considered, similar to the case of pre-buckling, assuming

an axial displacement Uo so that the total axial force at x = is zero. The expression
for u is given in Appendix E.

Applying Eq.(D.1) and substituting 6'x with (&x, - If), dimensionless torque moment
under axially free condition can be obtained. Fitting the numerical integration data
with a power function results in the following expression for T:

T = -0.21r- 2 2 03 4 + 0.58 (D.2)

E Calculation of Extension in the Buckling Phase

= [09750 0o r 2 - .07689 02 r 2 + .006536 03 r 2

+ .0004 00 r 2 cos(.5 0o)2 (-3.730 Oo)

- .0002 02 r 2 cos(.5 O0) e(-3.730 o) sin(.5000 Oo)

-. 0007460 0 r2 cos(.5 Oo)2 e( 3730O+)+.202200r 2 (-1 .s 5 Oo)

- .2100 0, 2 e(--1.65 o) + .42940 r 2 e(-3. 730 Oo) - .8008 0 r 2 e(-3.730 Oo)

- .0006366 00 r 2 cos(.5 0) 2e(-1.8 650o)

+ .0003183 02 r 2 cos(.5 0o) e(-1.865 o) sin(.5000 0o)

+ .0005936 0 r 2 cos(.5 O+)2e( 1 .65 Oo) + .01329 o r 2 e( 1 .s5 Oo)1o (E.1)
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