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Abstract

Enhanced oil recovery by displacing oil with solvents such as carbon dioxide requires
development of miscibility between the two fluids to maximize the displacement ef-
ficiency. Prevention of inadvertent triggering of earthquakes due to injection or pro-
duction of fluids in the underground requires understanding of coupling between flow
and deformation processes. In this Dissertation, we study flow through porous media
in two different contexts: effect of viscosity on mixing of fluids, and triggering of
earthquakes due to coupling between flow and deformation.

We show that miscible viscous fingering-the hydrodynamic instability that arises
when a less viscous fluid displaces the more viscous one-can be employed as an agent
for enhanced mixing in porous media flows. Based on results from high-resolution
numerical simulations, we derive a macroscopic model of mixing that captures the
delicate interplay between channeling of less viscous fluid and creation of interfacial
area as a result of viscous fingering.

The coupling between subsurface flow and geomechanical deformation is critical
in the assessment of the environmental impacts of groundwater use, underground
liquid waste disposal, geologic carbon dioxide storage, and exploitation of shale gas
reserves. We present a new computational approach to model coupled multiphase flow
and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in
a three-dimensional medium by using zero-thickness interface elements to accurately
model fault slip under dynamically evolving fluid pressure and fault strength. We in-
corporate the effect of fluid pressures from multiphase flow in the mechanical stability
of faults, and employ a rigorous formulation of nonlinear multiphase geomechanics
that is capable of handling strong capillary effects. We develop a numerical simulation
tool by coupling a multiphase flow simulator with a mechanics simulator, using the
unconditionally stable fixed-stress operator split for the sequential solution of two-way
coupling between flow and geomechanics. We validate our modeling approach using
test cases that illustrate the onset and evolution of earthquakes from fluid injection
and production.

Thesis Supervisor: Ruben Juanes
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

Flow through porous media is ubiquitous in natural and man-made systems. Ground-

water flow, recovery of oil and gas from underground reservoirs, geologic sequestra-

tion of greenhouse gases, drug delivery through microfluidics, flow through porous

fuel cells, and food processing are a few examples that highlight importance of un-

derstanding the influence of the porous structure of the medium on fluid flow. The

porous matrix plays a critical role in determining the flow behavior, such as pressure

drop across the medium, dispersion of particles carried by the fluid, and rate of mix-

ing and reaction between multiple fluids flowing through the medium. Conversely,

the flow of fluids through a porous medium alters the mechanical behavior of the

medium in response to externally applied loads, because the mechanical load is trans-

mitted through both the pore fluid and the solid skeleton. The interplay between

porous-media flow and deformation can have severe consequences, including large-

scale ground subsidence and failure of geologic faults leading to earthquakes. In this

Thesis, we explore two phenomena in the general field of fluid flow through porous

materials: mixing of fluids of different viscosities and triggering of earthquakes.

Fluid mixing from viscous fingering. Mixing of fluids is an important and com-

plex phenomenon. Several chemical [171], pharmaceutical [73, 16] and food process-

ing [59] operations require controlled mixing of fluids at low Reynolds numbers, a

notoriously difficult problem [198, 244, 241]. Mixing also plays a fundamental role

17
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Figure 1-1: Schematic of miscible CO 2 flooding after, or with, waterflooding in an
oilfield. CO 2 mobilizes the residual oil bypassed during the waterflood and increases
the ultimate recovery. Displacement efficiency is a function of pore scale sweep ef-
ficiency and field scale sweep efficiency. Field scale efficiency depends on reservoir
heterogeneity and viscous fingering. Alternating injection of CO 2 and water usually
leads to better displacement efficiency because of comparable viscosities of oil and
water, which inhibits viscous fingering at the displacement front. Solubility of CO 2
in oil and water at high pressures helps in pore scale efficiency.

in natural processes, including groundwater flows in heterogeneous media [69], man-

tle convection [195, 263], debris gravity currents [237], population genetics [120, 152],

mammalian digestion [23], and bacterial locomotion [123, 225, 238, 239, 161, 154, 131].

When the physical properties of the fluids, such as density or viscosity, are suf-

ficiently different, mixing may become heavily influenced by the formation of hy-

drodynamic instabilities. It has been shown, under controlled conditions, that such

instabilities can speed up the mixing process enormously [240, 31]. Viscous finger-

ing [125] is one such instability that ensues when a less viscous fluid displaces a more

viscous one. When the two fluids are miscible with each other, the instability is called

miscible viscous fingering. Miscible viscous fingering is important in enhanced oil re-

covery by CO 2 injection [242, 243, 81], where it can lead to a decrease in recovery

efficiency [153, 113] (Fig. 1-1). It is also important in other applications such as chro-

matographic separation, where it leads to an undesirable peak-broadening effect [87].

In the first part of this Thesis, we study the effect of viscosity contrast on fluid mixing,

and we develop a method to utilize viscous fingering for enhanced mixing in porous

media flows.

18



Reservoir

Figure 1-2: Triggering of earthquake due to underground injection and production.
A fault can get destabilized by drop in fault friction, increase in pore pressure, or
increase in shear traction due to differential depletion of pressure across the fault.

Fault slip and earthquake triggering. Triggering of earthquakes from anthro-

pogenic sources is a topic of public concern [231]. Earthquakes can be triggered by

reservoir impoundment behind large dams [169, 115], mine cavity collapse [205, 204],

controlled explosions [72], wastewater disposal [74, 261, 145], fluid injection and pro-

duction in oilfields [96], salt mining [94], geothermal energy extraction [176, 35],

underground gas storage [260], and hydraulic fracturing [191, 222]. Recently, it has

been reported that the number of earthquakes with magnitude M > 3 has increased

sharply since year 2001, a trend that can be attributed to human activities, such as un-

derground injection and production of fluids related to energy-development activities

(e.g. carbon sequestration and shale gas recovery) [74] (Fig. 1-2). Better understand-

ing of the physics of earthquakes may benefit society by guiding subsurface activities

to prevent inadvertent triggering of earthquakes that can cause damage at the surface.

In the second part of this Thesis, we focus on the role of coupling between flow and

deformation that can trigger earthquakes by destabilizing critically-stressed faults in

underground reservoirs.

The Thesis is organized as follows: Chapter 2 describes our approach for high-

resolution numerical simulation of viscous fingering and the mechanisms that control

mixing. We present a numerical scheme that is stable for arbitrarily high viscosity

contrasts, for which the traditional schemes become unstable. Chapter 3 describes

the macroscopic model of fluid mixing due to viscous fingering. Chapter 4 describes

19



mixing due to viscous fingering in an alternating injection flow, which is relevant

for miscible CO 2 floods as well as microfluidic applications and lab-on-a-chip sys-

tems. Chapter 5 describes our approach for simulation of coupled multiphase flow

and poromechanics of faulting in underground reservoirs. It also presents implemen-

tation details of our coupled simulator. In Chapter 6, we describe an application of

the coupled simulator for estimating rock properties in a real underground gas storage

field. In Chapter 7, we use the simulator to investigate the role of pore pressure in

triggering a real earthquake. The results in Chapters 2, 3 and 4 have been published

previously [136, 135, 137], while Chapters 5, 6 and 7 will each be the subject of a

separate future publication.
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Chapter 2

Numerical simulation of fluid

mixing from viscous fingering

2.1 Introduction

Miscible viscous fingering has been studied extensively in the past through laboratory

experiments [151, 14, 206] and numerical simulations [50, 249, 49, 279, 280]. Linear

stability analyses have explained the onset and growth of instabilities as a func-

tion of the viscosity contrast and the flow rate for rectilinear [248] and radial [214]

geometries. A number of experimental, theoretical and numerical studies have been

carried out to understand the effects of anisotropic dispersion [275, 279, 281], medium

heterogeneity [250, 252, 65, 66], gravity [251, 178, 157, 219, 89, 213], chemical reac-

tion [88, 67, 63, 189], adsorption [183], and flow configuration [203, 276, 45, 46, 211, 44]

on the viscous fingering instability.

It has long been recognized that viscous fingering leads to enhanced spreading of

the displacing fluid [28, 117]. A large body of literature, going back to the works of

Koval [153] and Todd and Longstaff [257], has focused on the development of fractional

flow formulations to predict averaged concentrations and breakthrough curves [82, 83,

84, 29, 30, 272, 158, 273, 139, 140, 184].

Despite the considerable work done, the effect of viscous fingering on fluid mixing

remains unexplored. It is not known how the degree of mixing evolves under vis-

21



Figure 2-1: Snapshot of the concentration field during the unstable displacement of a
more viscous fluid (dark) by a fully-miscible, less viscous fluid (light). The formation,
splitting, and nonlinear interaction of viscous fingers induce disorder in the velocity
field that affects the mixing rate between the fluids. The displacement corresponds
to a viscosity ratio M = exp(3.5) ~ 33 and P clet number Pe = 10 4 . See also Video 1
in [1].

cous fingering and whether optimum mixing can be achieved by varying the viscosity

contrast and the flow rate. In this chapter, we focus on answering these two questions.

2.2 Governing equations

We consider Darcy flow of two fluids of different viscosities 11i and p2, where pi < 12,

in a porous medium. We assume that the porosity <0 (volume of voids per unit

volume of porous medium) and the permeability k (coefficient relating flow velocity

and pressure gradient) are uniform and constant. This means that the porous medium

is homogeneous and isotropic. The two fluids are assumed to be first-contact miscible,

neutrally buoyant and incompressible. This means that the injected and the resident

fluids mix instantaneously in all proportions to form a single phase and, therefore,

surface tension effects are, by definition, absent. The diffusivity D between the fluids

is assumed to be constant, isotropic and independent of concentration. The length

and width of the domain are L and W, and the mean velocity is in the x-direction
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and of magnitude U. The governing equations in dimensional form are

- + V - (uc - DVc) = 0, (2.1)
at

k
u =- Vp, V - u = 0, (2.2)

pu(c)

in x C [0, L] and y E [0, W]. Eq. (2.1) is a linear advection-diffusion transport equa-

tion (ADE) for the concentration of the less viscous fluid c(x, t), that is, the mass of

the less viscous fluid per unit volume of the mixture. Eq. (2.2) is Darcy's law defining

the velocity of the mixture, which satisfies the incompressibility constraint. The vis-

cosity of the mixture, p(c), is assumed to be an exponential function of concentration,

P(c) = pieR(1-c), where R = log M and M p 2/pu is the viscosity ratio.

We express the equations in nondimensional form using characteristic quantities,

W, U and P2 = pieR, for length, velocity and viscosity, respectively. The character-

istic time and pressure drop are given by T = #W/U and P = P2UW/k, respectively.

Abusing notation, we write the governing equations in dimensionless form:

8c ( 1 '
+V. UC VC = 0 (2.3)

at Pe
1

u =- Vp, V - u = 0, (2.4)
p(c)

in x E [0, L/W], y C [0, 1], where c C [0, 1] is now the volume fraction of the least

viscous fluid, and p(c) = e-Rc is the dimensionless viscosity. Darcy's law and the

divergence-free condition in Eq. (2.4) can be combined to obtain the pressure equation

in explicit form,

V- - VP = 0. (2.5)

The system is governed by two nondimensional groups: the Peclet number Pe =

UW/D and the viscosity ratio M = P2/pi. A displacement of the high viscosity fluid

by the low viscosity fluid for high mobility ratio and high Peclet number leads to

aggressive viscous fingering (Fig. 2-1).
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2.2.1 Fluid mixing in a periodic field

Since viscous fingering instabilities are caused by viscosity contrasts, and therefore

by concentration gradients, the decay of a2 as mixing progresses is closely linked to

the decay of the flow disorder due to fingering. Indeed, a natural way to characterize

the interplay of mixing and viscous instabilities is to understand the decay of a fully

developed fingered flow away from the boundaries. We simulate this flow scenario

by considering the mixing of two fluids driven by a constant flow rate in a periodic

domain. After a short initial transient, the onset of fingering leads to a highly hetero-

geneous flow and intense mixing. At later times, the system evolves towards a more

homogeneous, synchronous decay of concentration gradients and velocity fluctuations.

We use the global variance of the concentration field, o2 = (c2) - (c) 2, to define

the degree of mixing,

X(t) =1 - U 2 (t)/Uoax, (2.6)

where (.) denotes spatial averaging over the domain volume V. The maximum vari-

ance, o1ax corresponds to a perfectly segregated state, hence a = 0.25 for a mean

concentration (c) = 0.5. In a perfectly mixed state, U2 = 0 and x = 1.

We first derive the evolution equation for the global concentration variance oa.

Multiplying the ADE [Eq. (2.3)] by c results in

ac + cV - (uc) = -cV2c (2.7)
at Pe

where V 2 denotes the Laplacian operator. Expanding the right hand side and aver-

aging over the domain,

S C2 + V - (uc2) = -(V . (cVc) - IVc12). (2.8)
2 at Pe
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Applying the Gauss divergence theorem gives

(V. (uc2 )) = c2u . ndS,
J 1 (2.9)

(V (cVc)) = I cVc - ndS,

where S is the surface bounding V, dS the element of boundary area, and n the

outward-pointing normal to the boundary. Assuming periodicity in x and y, these

two boundary surface integrals vanish and Eq. (2.8) becomes

= C2 (1Vc 2) (2.10)
dt Pe

Since the mean concentration (c) remains constant in a periodic domain, the evolution

of concentration variance under periodic boundary conditions becomes [209, 159],

da = -2cl (2.11)
dt

where

E = (1g1 2 )/Pe (2.12)

is the dimensionless mean scalar dissipation rate and g = Vc. In absence of any

source terms, Eq. (2.11) indicates that the global concentration variance monoton-

ically decays with time due to the dissipative action of E which is positive as long

as there are gradients in the concentration field. Eq. (2.6) and Eq. (2.11) together

identify degree of mixing as cumulative dissipation. Physically, E can be interpreted

as a mixing rate or, equivalently, as a rate at which scalar fluctuations are destroyed.

In the initial stages of a rectilinear displacement, under a quasi-steady-state ap-

proximation (QSSA) of the base state, linear stability analysis predicts the wavenum-

ber and growth factor of the most unstable mode [248]. In the nonlinear regime,

the length scale of viscous fingers arises from diffusion and nonlinear interactions,

including channeling, tip-splitting, merging, fading, and shielding [125, 279]. The

dissipation scale, also referred to as Taylor microscale for the scalar fluctuations [77],
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is defined as

s = u/o. 2 /EPe. (2.13)

Just like the finger width w, the scalar dissipation length s is a transverse length

scale in the problem. It is related to the diffusion of scalar gradients across the

flow, and can be interpreted as the thickness of the interface on which the scalar

gradients are localized. The Taylor microscale for mechanical energy is defined as

ATaylor = (vu2/6u)1/ 2, where v is the kinematic viscosity, and

c, = 2(VVSYmu: VsYmu), (2.14)

is the mean mechanical energy dissipation rate [209]. Superscript sym denotes the

symmetric part of the tensor.

Eq. (2.11) motivates us to study the evolution of c in time and understand its

dependence on the governing physical parameters, R and Pe. We obtain an evolution

equation for c by taking the gradient of the ADE, performing a dot product with

g and averaging over the domain (similar to the derivation of k-epsilon models in

turbulence [209]). Taking the gradient of the ADE in Eq. (2.3) and then dot product

with Vc yields

DVc 1
Vc - +Vc.V(u.Vc) = -Vc -V (V 2c), (2.15)

at Pe'

Using g =Vc and V. u = 0,

1a 8Vc1 2 ai 1 V U2 t + x 3g3' + 2 V-(ug)
i at axi (2.16)

1
S-Vc-V (V 2c)Pe

where u2 , xj and gi are components of the velocity, position and concentration gradient

vectors, respectively. Integrating over a periodic domain removes the divergence terms
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on the left hand side. Expanding the right hand side,

Vc-V (V 2 c)= gi =2g3  a i

( 2  - (a 2  (2.17)

Upon volume integration, the divergence terms in Eqs. (2.16)-(2.17) vanish under

periodic boundary conditions. The assumption of periodicity is usually valid in

fully-developed fingering flow away from the boundaries. Using the definition of E,

Eq. (2.16) becomes

+ dc = - 2  (1Vgi12 ) (2.18)

Alternatively, in direct tensorial notation,

de 2 2
-- + (Vu: g 9 g)= 2 (Vg: Vg), (2.19)
dt Pe Pe

where & denotes a dyadic product of two vectors resulting in a second-order tensor,

: denotes double contraction, and Vu is the gradient of the velocity field. The sec-

ond term in Eq. (2.19) is the rate of stretching of the square norm of concentration

gradient g and it is negative due to fingering. For a globally chaotic flow with steady

or time-periodic velocity fields, it is proportional to (Ig 2). For viscous fingering dis-

placements, where the velocity field is a function of concentration, the dependency

on g is stronger and there is an additional dependency on the viscosity contrast.

Eqs. (2.11) and (2.19) are exact evolution equations for the global concentration

variance o.2 and the mean scalar dissipation rate E, respectively. Clearly, closure rela-

tions are needed for this system of equations to be solvable, and the objective of this

work is precisely to propose a closure model, guided by direct numerical simulation of

the underlying partial differential equations. The form of Eq. (2.19), however, already

reveals that the heart of the problem lies in the interplay between velocity gradients

(flow disorder) and concentration gradients. Since gradients in concentration lead to
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contrasts in fluid viscosity, homogenization of the mixture through removal of the

concentration gradients also results in destruction of the viscosity contrasts, that is,

decay of viscous fingering. Eq. (2.11) reflects that the degree of mixing increases

monotonically in time. One could naively expect, in view of the right hand side of

Eq. (2.19), that the same be true for the scalar dissipation rate. However, this is not

the case: as we shall see, concentration gradients increase during the early stages of

viscous fingering before starting to decrease, resulting in a nontrivial behavior for the

scalar dissipation rate and the overall mixing process.

2.3 Numerical method

2.3.1 Streamfunction-vorticity method

The pressure equation, Eq. (2.5), is an elliptic PDE with a space- and time-varying

coefficient. Solving this equation is computationally expensive for large number of

grid cells, which is required to resolve the concentration gradients that ensue as a

result of the viscous instability at high Pe. To alleviate this computational burden,

the governing equations are usually cast in the so-called streamfunction-vorticity

formulation, and the "pressure" equation solved using a spectral method [249, 279,

45].

The streamfunction T is defined for an incompressible two-dimensional velocity

field as

= = - (2.20)
(9y ax

The magnitude of the vorticity vector normal to the plane of flow, W = IV x ul,

is related to the gradients in concentration field. Using the definition of the Darcy

velocity [Eq. (2.4)] and the exponential form of the mixture viscosity,

W = R IVc x ul = R 9C - -c . (2.21)
(ax Y y )
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Using the definitions of the streamfunction and vorticity, we obtain the relation

VX = -W. (2.22)

In the streamfunction-vorticity (SV) method, Eqs. (2.3) and (2.22) are solved se-

quentially under periodic boundary conditions. At a given time step, Eq. (2.21) is

used to compute the vorticity field from known concentration and velocity fields.

Then Eq. (2.22), which is a single algebraic equation in Fourier space under peri-

odic boundary conditions, is solved to obtain the streamfunction of the flow at the

next time step using the vorticity at previous time step. The velocity field is then

constructed from the streamfunction using Eq. (2.20).

This computational approach has been used successfully for the nonlinear simu-

lation of the viscous fingering phenomenon [249, 279, 45], with a degree of fidelity

and resolution that was not possible in early simulations [50, 49]. However, this for-

mulation is numerically unstable and fails to produce a solution for large values of

mobility ratio (M > 20 or R > 3), when the finger tip velocity is much higher than

the mean flow velocity. The underlying reason for the numerical instability is the

splitting of the fluid mobility in Eq. (2.22), which computes the streamfunction at

the current time step from the vorticity at the previous time step. This split is sta-

ble for moderate values of M, but becomes unconditionally unstable for large values

of M, irrespective of time step size.

2.3.2 Implicit mobility method

Obtaining a numerical scheme that is stable at high M requires an implicit mobil-

ity scheme. To this end, we solve Eq. (2.5) globally for the pressure field. This is

computationally more expensive because it entails building and solving a linear sys-

tem of equations at each time step, instead of one single equation in Fourier space

[Eq. (2.22)]. However, since the solution of Eq. (2.5) implies implicitness-the veloc-

ity at a time step corresponds to the mobility at the same time step-this scheme is

stable for arbitrarily high values of M. We use a finite volume method with two-point

29



flux approximation (TPFA) to discretize the Darcy flux between the grid cells [162].

We solve the linear system of equations resulting from discretizating Eq. (2.5) using

either a direct solver or an iterative multigrid solver. The concentration equation is

solved using a sixth-order compact finite differences and a third-order Runge-Kutta

time-stepping scheme [219].

We use a finite volume discretization of the divergence-free velocity condition in

Eq. (2.3). Integrating over the volume of the ith cell V' and using the divergence

theorem,

J V- u j -ndS= 0, (2.23)
V i Ji

where S' is the total surface area of the cell, comprised of interfaces S where j
denotes cells adjacent to the ith cell. Thus, fluid mass balance over cell i for an

incompressible flow becomes

U2i(t) = 0, (2.24)

where Ui is the integrated flux through interface 52. The pressure field p(x, y) is

approximated as a piecewise constant function, taking discrete values p' at individual

cells. Fluxes across interfaces are estimated from a set of neighboring cell pressures.

The TPFA method uses just two neighboring cell pressures, p' and pi, to approximate

the flux through the interface ij,

U = tjAj (pi - p3) , (2.25)

where A2i is the mobility at the ij-interface, estimated by a harmonic average of the

respective cell mobilities, l/p and l/pi, and 0i is the interface geometric transmis-

sibility, which for a regular 2D Cartesian grid is proportional to the length of the

interface and inversely proportional to the distance between cell centers. Thus, the

interface transmissibility Ti = OAJ, for a simple 2D Cartesian grid, is

hy 2 hx 2
TX1 = - - TY = -- + , i.2hx pi + pi ' hy Ai+p

30



for vertical and horizontal interfaces, respectively. Eqs. (2.24)-(2.25) result in a sys-

tem of linear equations to be built and solved at every time step,

TP = B, (2.27)

where P is the vector of unknown cell-center pressures and B is the vector of known

boundary fluxes. Generation and assembly of the mobility-dependent transmissibility

matrix, T, for the simple periodic boundary conditions as considered here, can be

completely vectorized.

2.4 Nonlinear simulations

2.4.1 Continuous injection

To illustrate the ability of the implicit high-resolution numerical method to simulate

viscous fingering for high viscosity ratios, we solve the governing equations on a

square domain with periodic boundary conditions in the y-direction, and uniform

flux on the left and right boundaries. Initially, the medium is filled with the more

viscous fluid, and the less viscous fluid is injected through the left boundary. For

high viscosity ratios (R = 4, corresponding to M ~~ 55), the invading fluid fingers

through the defending fluid aggressively (Fig. 2-2a), exhibiting well-known complex

nonlinear interactions such as finger merging, shielding, and tip splitting [249, 279].

Simulation of the flow for this viscosity contrast is outside the range of stability

of the streamfunction-vorticity method. For an even larger viscosity ratio (R = 5,

corresponding to M ~ 150), a new pattern emerges: channeling through the more

viscous fluid, with minimal interaction between channels and very low sweep efficiency

(Fig. 2-2b).
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(a) (b)

Figure 2-2: Snapshots of the concentration field from viscous fingering simulations
using the implicit mobility TPFA method (a: R = 4, Pe = 5000, b: R = 5, Pe =
5000). Channeling of the fingers of less viscous fluid at high R renders the explicit
mobility streamfunction-vorticity method unstable.

2.4.2 Mixing of randomized blobs

To understand the effect of viscous fingering on fluid mixing we numerically solve the

governing equations, Eqs. (2.3)-(2.4), on a square domain with periodic boundary

conditions. The periodic boundary conditions allow us to focus on the dissipative

nature of viscous fingering in absence of any boundary effects.

We investigate a scenario in which the two fluids are segregated as a set of

randomly-shaped blobs of the more viscous fluid surrounded by the connected, less

viscous fluid (Fig. 2-3). This flow set up is analogous to that used to study scalar

fields in decaying grid turbulence [268]. Each fluid occupies 50% of the volume and,

since the boundary conditions are bi-periodic, (c) = 0.5 throughout the entire simula-

tion. The characteristic diameter of the initial blobs is about one-sixth of the length

of the domain, and the system evolves under an imposed pressure gradient from left

to right. If both fluids had the same viscosity, the blobs would simply translate in

the x-direction and slowly diffuse into the ambient fluid. The situation is radically

different in the presence of a viscosity contrast.

Onset of fingering driven by advection creates new interfacial area through stretch-

ing and splitting of the initial interface around the blobs, thereby enhancing diffusive

mixing because both the interfacial area and the concentration gradients are larger.

The competition between fingering-induced stretching and diffusive forces yields a
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(a)A (b)

Figure 2-3: Snapshots of the concentration field at increasing time steps from a
numerical simulation of miscible viscous fingering. A set of more viscous blobs (dark)
is displaced through a less viscous fluid (light) under left-to-right flow and periodic
boundary conditions. Fingers of the less viscous fluid initiate at the unstable interface,
grow inside the more viscous blobs, split into multiple fingers, coalesce together and
connect across the blobs as the two fluids mix. The displacement corresponds to a
viscosity ratio M = exp(2) ~ 7 and P6eclet number Pe = 104.

non-monotonic time evolution of the scalar dissipation rate, which achieves a maxi-

mum precisely as a result of fingering-induced mixing (Fig. 2-4). Since less viscosity

implies higher mobility, fingering also causes channeling of the low viscosity fluid,

which bypasses large areas of the flow domain, thereby reducing the overall mixing

efficiency. At later times, the strength of the instability decays due to homogenization

of the mixture and, asymptotically, mixing is again controlled by diffusion. During

this regime, we find the scalings f ~ t 2 , U2 ~ t-1 , and s ~ t12

Heterogeneity and disorder induced by viscous fingering leads to flow fields with

statistical properties that resemble those of decaying turbulence (Fig. 2-5). Both the

mechanical energy dissipation rate and the scalar energy dissipation rate increase

with time synchronously due to viscous fingering, before beginning to decline due to

diffusion.

To illustrate that mixing under viscous fingering is strongly dependent on the flow

conditions, we simulate the scenario in which blobs of less viscous fluid are transported

and dispersed through a more viscous ambient fluid. Viscous fingers now emerge out

of the blobs and into the connected fluid. The initial interfacial area available for
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Figure 2-4: Decay of miscible viscous fingering. A binary mixture of initially seg-
regated fluids is driven at constant flow rate in a periodic domain. The variance of
concentration, ao2 (red), a proxy for the degree of mixing, decreases monotonically
with time. The mean scalar dissipation rate, c (blue), increases at early times due
to the onset of fingering, and decays monotonically at later times. The simulation
parameters are R = 2, Pe = 104. See also Video 2 in [1].
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Figure 2-5: The dissipative structure of viscous fingering. (a),(b) The mechanical
and scalar dissipation rates synchronize as mixing advances, as shown by the scatter
plots of mechanical (c) against scalar (E) dissipation rates at early (a) and late
(b) times. At late times we find , with an1. Inset, logarithm of the scalar
dissipation rate. (c),(d) Probability density function (PDF) of the derivatives of the
concentration field and scalar dissipation rate. (c) At early times, ac/ay exhibits
characteristic exponential tails. This behavior is similar to that of passive scalars in
turbulent flows [268]. (e) At late times, the PDFs tend toward a Gaussian behavior.
The skewness of ac/ax reflects the inhomogeneity of the flow, which is driven at a
constant rate from left to right.
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Figure 2-6: a, Evolution of mean scalar dissipation rate (blue) and concentration vari-
ance (green) for blobs of less viscous fluid in a more viscous medium. b, Comparison
of the two scenarios, when the initial blobs are either more viscous or less viscous
than the ambient fluid. The case with less viscous blobs leads to earlier and larger
hump in the evolution of the scalar dissipation rate c. This results in faster decay
of the concentration variance at early times. The simulations correspond to R = 2,
Pe = 104.

the initiation and growth of the fingers is larger in this case than in the previous

configuration (blobs of more viscous fluid). Moreover, the less viscous fluid must

initially penetrate through the more viscous fluid before it forms a connected 'phase'.

As a result of the earlier finger initiation and more aggressive tip splitting, the scalar

dissipation rate e exhibits a larger and earlier hump in the scalar dissipation rate

(Fig. 2-6), which translates into faster mixing.

2.5 Conclusion

We analyze the mixing process in viscously unstable laminar flows, by means of

high-resolution numerical simulations. We present a numerical scheme for the high-

resolution simulation of the viscous fingering process that is stable for arbitrarily

high viscosity contrasts, for which the traditional schemes become unstable. Using

the results from simulations, we characterize the evolution of the degree of mixing

between two fluids of different viscosities. We show that viscous fingering leads to

two competing effects. On one hand, it enhances mixing by inducing disorder in the
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velocity field, and increasing the interfacial area between the fluids. On the other,

it causes channeling of the low viscosity fluid, which bypasses large areas of the flow

domain-these regions remain unswept thereby reducing the overall mixing efficiency.

This competition between creation of fluid-fluid interfacial area and channeling results

in nontrivial mixing behavior.

Our results show that interfacial area and dissipation rate are the central variables

to understand mixing enhanced by viscous fingering. From a design perspective,

the viscosity contrast that provides optimum mixing time depends on the Peclet

number, and arises from a delicate balance between interface stretching due to flow

disorder, and channeling due to the higher mobility of the less viscous fluid. The use

of ideas from turbulence modeling, synthesized in our two-equation model, provides

a framework to upscale the dissipative effects of fingering in large-scale flow models.
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Chapter 3

Macroscopic model of mixing from

viscous fingering

3.1 Introduction

We are interested in developing an upscaled model to quantify the degree of mixing,

X, in a viscously unstable displacement by capturing the nontrivial interplay between

channeling and creation of interfacial area as a result of viscous fingering. The ob-

jective is to obtain a mixing model in terms of evolution equations for the global

variables, the concentration variance a.2 and the mean scalar dissipation rate c, that

incorporates their dependency on the governing physical parameters, the log-viscosity

ratio R and P~elet number Pe. We derive the model for a bi-periodic domain (pe-

riodic flow in both longitudinal and transverse directions) under the assumptions of

high Pdclet number and statistical homogeneity, which are used to provide closure

for the terms in the evolution equation of c, Eq. (2.19). We verify our assumptions

by observations in the high-resolution numerical simulations of the viscous fingering

process. We then use the a.2 - c model to predict the range of viscosity contrast that

maximizes mixing in a periodic domain.
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3.2 Mixing model

To arrive at such a macroscopic description, we must model the "advective" and

"diffusive" terms in the exact equation for evolution of the mean scalar dissipation

rate, Eq. (2.19). The advective term involves the interaction between velocity gra-

dients and concentration gradients. This interaction is responsible for stretching of

the interface between the less and the more viscous fluids, as well as tip-splitting and

channeling events. We capture the macroscopic effect of velocity gradients through

mean mechanical energy dissipation rate, E, which is strongly correlated to the mean

scalar dissipation rate in a statistically homogeneous and isotropic flow [173]. The

diffusive term in Eq. (2.19) is responsible for the removal of the fluid interfaces, which

arise due to the splitting and channeling events, or due to the initial configuration

(e.g. initial interfaces of the blobs in Fig. 2-3(a)).

3.2.1 Mechanical dissipation rate

We introduced the mean mechanical energy dissipation rate, E,, in Eq. (2.14). c, is

a macroscopic quantity defined in terms of the velocity gradients. It captures the

dissipation of mechanical energy due to changes in velocity correlations and changes

in intensity of the flow disorder (intensity of the viscous fingering process) in the

domain. E, is calculated from Vsu, which is the rate-of-strain tensor responsible for

interface stretching. From Darcy's equation [Eq. 2.4], we have

Vu = -I-- [RVc 0 Vp + V (Vp)] . (3.1)

In a viscous fingering process, RVc 0 Vp and V (-Vp) terms evolve similarly in time

(Fig. 3-1). Thus, we propose the scaling

Vu -p/ [RVc 0 Vp] ~ Ru 0 g. (3.2)

Therefore, assuming a spatially-averaged kinematic viscosity (v), cu can be approxi-
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Figure 3-1: Evolution in time of the terms (R IVc 0 Vp1) and (|V (-Vp)1) from direct
numerical simulations for Pe = 10' and two different values of R (R = 1, 2). The
time evolution of both terms is very similar.

mated as,

E, ~ 2(v)R 2  --2 (Vc 0 Vp)12(

~ 2(v)R 2 Ks g)S12)

Using the Frobenius norm of a tensor,

(u 2 [)s12 g12 + (u- g) 2 ] (3.4)

Hence,

EU ~ (v)R 2 Qu12 1gI 2 (1 + cos 2 0)) , (3.5)

where 0 is the angle between vectors u and g at the interface. Assuming homogeneity

of the viscous fingering process, we can split the average of the product as product of

the averages (as in the case of statistically homogeneous turbulence [254]). Neglecting

the cos2 0 term, which is small compared to the other term,
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Figure 3-2: Evolution of E and Eu/(PeR 2 ) from direct numerical simulation, for R = 2
and Pe = 104. The two variables evolve similarly, confirming the proposed scaling in
Eq. (3.7).

Taking the mean flow speed U as constant and using 6 - (Ig| 2)/Pe, we obtain,

EU ~ R2PeE. (3.7)

Thus, the mean mechanical dissipation rate and the mean scalar dissipation rate

evolve similarly during the viscous fingering process. We have verified this relationship

by means of direct numerical simulation (Fig. 3-2). This is an important result which

allows us to model the interface stretching due to velocity disorder in terms of scalar

gradients.

3.2.2 Scalar dissipation rate

Mean scalar dissipation rate, 6, controls the rate of mixing as is evident from Eq. (2.11).

Evolution of E is governed by a balance between higher-order advective and diffusive

flux terms in Eq. (2.19). From Eq. (3.2), we approximate the advective term in

Eq. (2.19) as,

(3.8)
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Figure 3-3: Effect of channeling on the evolution of (cos 0) and (cos2 0). a, channeling
of the less viscous fluid at high ft means that vectors 11 and Vc are approximately
orthogonal (0 ~~ ir/2) along the body of the channel except near the tip. This reduces
(cos 0) because channels dominate the flow (suppress tip-splitting) in the entire do-
main. b, c, Comparison of the time evolution of (cos 0) and (cos2 0) from the direct
numerical simulations and the proposed model (cos 0)=e-R/4 / 2 , for ft = 1, 3 and
Pe =i10.

Assuming, as before, statistical homogeneity at high Pe,

- (1R +| _. _ _ 0 . (1 - ( o s 6

Pe Pe(3.9)

~ 2RVP5(cosO63/2,

where we used the definition of 6. We take (cos 0)=e-R/4 /u 2 , a model that agrees well

with the simulations (Fig. 3-3). The effect of channeling at higher viscosity contrasts

is to reduce (fg|) (by reducing the total interfacial area) and realign the concentration

gradient vector to become orthogonal to the velocity vector. Hence,

-(Vu : g g)--2RvV Pe-R/4 .(310

10 -2 (3.10) 0- 1CP1

Now, we model the diffusive term in Eq. (2.19),
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2 V
2 (V9 : 9)Pe

2
e2 12)

2 (|Vg 2)
= 2  (-g) var(g),
Pe2 var (g)

(3.11)

where var(g) = (1g12) _ (Igl) 2. Under the assumption of a unique characteristic

transverse length scale in the problem,

(g2 ) (c2)

(1Vgi 12) (1,C 2)

(gi)
(I Vgi12)

(c)

(1Vc12)
(3.12)

Therefore, using the definition of the dissipation length scale s, we can write,

var(gi)

(IVgi 2)

var(c) 2

(Vc 2)
(3.13)

For the diffusive term, this means,

Vg) - (VC 2 )var(g) =
Pe2 var(c)

(3.14)2e c var(g).
Pe 52

If we can assume that (1g 2) _ (Igl)2, then var(g) - (1g1 2) = cPe, which leads to

2 e
2 (Vg : Vg) ~ 2 2.Pe 01

(3.15)

This scaling for diffusive decay of E provides insight into the relation among dE/dt,

E and U2 : the rate of decay of the mean dissipation rate due to diffusion follows the

non-monotonicity in 6, with its strength scaled by the variance, which is monotonic

in time. Using this insight, we can further improve the model for the diffusive term.

Using the ADE,

2
2 (Vg: Vg) - 2((tc + u . g) 2)

Pe (3.16)
~-2( (atC)2 + atC (U . g))

We model ((atc)2 ) 1L (do02 )2 2 2, and -((tc (u -g)) ~ ((U . g) 2 ) - Pee(cos 2 0).

From Fig. 3-3 and the scaling of the diffusive term with c and u2 found through
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numerical simulation, we obtain

2 (e )5/2

2 (Vg : Vg) - v/RPee-R/4 - . (3.17)
Peo

Using Eqs. (3.10) and (3.17), the model equation for E under viscous fingering (R > 0)

becomes

-d vE -R/4 5/ E )/pgR4 5/2 0dE ARv/Pee R24 + Bv/RPee-R/4 (-) 0,(318)

where A and B are two model parameters. Eq. (3.18) has two terms corresponding to

fingering-induced enhancement and diffusion-driven decrease in the dissipation rate.

The advection-driven term is negative and gives the rising behavior in 6 with time

whereas the diffusion-driven term is positive and gives the declining behavior in 6.

Above model is valid for R > 0.5, i.e., in presence of viscous fingering.

Eqs. (2.11) and (3.18) form a coupled system of first-order ODEs which can be

solved with initial values of a.2 and E. This two-equation model is analogous to the

k-epsilon models in turbulence [209]. We test the performance of the mixing model

by comparing the predicted decay of variance and scalar dissipation rate with results

from the direct numerical simulations (Fig. 3-4). Mixing times predicted from the

model compare well with those obtained from the simulations, reaching a minimum

around R = 2.5. Channeling of the less viscous fluid is persistent at high Pe, as shown

by the surface of mixing time as a function of mobility ratio and Pe [Fig. 3-5].

3.2.3 Mixing model for fluids of equal viscosity

When the viscosities are equal, there is no viscous fingering and the two fluids mix due

to diffusion only. The mixing model presented in Eq. (3.18) cannot capture evolution

of the mean dissipation rate, E, for fluids of equal viscosity as the modeled terms

become zero for R = 0. An alternative is to use Eq. (3.15) for the diffusive term, i.e.,

de 62
- -B- (3.19)

dt O-2
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Figure 3-4: Performance of the mixing model given by Eqs. (2.11) and (3.18). Com-
parison of the evolution of c and a2 in the simulation (DNS) and the proposed model
for different values of R and Pe. (a) R = 1, Pe = 10 4 . (b) R = 2, Pe = 104. (c)
R = 3, Pe = 10 4 . (d) R = 3, Pe = 4 x 10'. The same values of the two model
parameters were used for all cases: A = 0.76, B = 0.84.
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Figure 3-5: Mixing time, that is, time to reach 80% degree of mixing, plotted for
different mobility contrasts and Pe=104 , from both simulations and the a2 - E model.
Mixing time behaves non-monotonically with R, increasing at high R due to chan-
neling. Inset: mixing time surface from the model as a function of R and Pe.
A = 0.76, B = 0.84.
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The evolution of mean dissipation rate, and therefore mixing, may involve interactions

among the various interfaces in the domain if such interfaces are prescribed in the

initial configuration of the concentration field. Eq. (3.19) does not take into account

the effect of interactions among the interfaces into the evolution of mixing.

We derive an analytical model for evolution of c for R = 0. Let's consider a two-

dimensional square domain in x C [-0.5,0.5], y E [-0.5, 0.5], which has two fluids

of equal viscosity separated in the middle at y = 0 by a stable interface parallel to

the x axis. The dimensionless velocity field is u = [1,0] and the ADE can be solved

analytically to obtain the concentration field as c = [I - erf . In absence

of viscous fingering, there are no gradients along x and the mean scalar dissipation

rate in this configuration becomes

1 fdc'\ 2

= 2 dy, (3.20)
WPe J dy '

where W is the width of the domain. After substituting for c, we obtain an analytical

solution for c as
1 W Pe

= 2 erf( . (3.21)
2- /27rtpe 2 2 )

Now, let's increase the number of interfaces from one to four in a stripe configuration

(Fig. 3-6a), for which we can solve the ADE exactly to obtain,

c(x, y, t) = 1 + - [erf (/Y 0 Pe/t) - erf 2 Pe/t
2 2 2

- erf ( 2 0.3 /Pe/t) + erf ( 203 Pe/t) (3.22)

We can use Eq. (3.20) to calculate E. The evolution of the interface thickness, and 6,

transitions from power-law to exponential to an error-function-like behavior in time,

with transition times depending on the initial configuration of the fluid interfaces. E

decays with time as t-1/2e-C3t, where C3 is a positive constant. Assuming

Cie-C3t
6 = (3.23)

C2+V
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Figure 3-6: (a) Two fluids of equal viscosity in a stripe configuration at t = 0.
Mean flow is from left to right and boundary conditions are periodic in both x and
y directions. Pe = 10000. (b) Evolution of mixing quantities from the simulation

(solid lines), from the diffusive model in Eq. (3.19) (thin dash-dot lines), and from
the R = 0 model in Eq. (3.24) (thick dash lines). B = 50, C1 = 0.01, C3 = 0.02.

where C1 and C2 are also positive constants, we obtain the following model equation

for evolution of c,
de1 e2

- + C3E + = 0 (3.24)
dt 2C1 te-Cs:

where C1 = Pe-1/ 2. This model agrees well with the results from numerical simula-

tions of both the stripe configuration and the blobs configuration for R = 0 (Fig. 3-6b).

Blobs configuration was introduced in Sec. 2.4.2.

3.3 Effective average viscosity

As a result of the exponential dependence of fluid viscosity on solvent concentration

(Sec. 2.2), the average (effective) viscosity in the flow domain decreases as the less

viscous fluid starts to mix with the more viscous one. The rate of decrease is faster

at early times and slower at later times, giving rise to an inflection point in the

evolution of the average viscosity. Since the rate of change in viscosity is linked to

changes in interface length resulting from fingering, we hypothesize that c and d-/dt

are intimately related. Here, we present a relationship between the mean scalar

dissipation rate, c, and the domain average viscosity, ft.
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The average mixture viscosity 77 can be expressed as

7 = pdA, (3.25)

where dA is the area enclosed by contours c = c* + 6c* and c = c*, and P is the

mixture viscosity inside dA and At 1 is the total area of the domain. The area

(mass) occupied by the fluid in regions where c < c* at a given time t is also the area

enclosed by concentration isosurface c = c*, and is defined as

A(c*, t) -j dS, (3.26)

Since the A-c and A-p relations are one-to-one at any given time (Fig. 3-7), we can

replace the integral in A with an equivalent integral in At,

SjeR Adt. (3.27)

Differentiating with respect to time,

- = -jeRA dl,. (3.28)
dt At 1 at

Using the the divergence-free velocity condition and the identity [190]

I ( )dl = ( - ) dS (3.29)
c_e.* IVcl ac* c<C.

where the circuit integral is defined on the concentration contour c = c*, we obtain

A* t) = - j<a f V 2 cdS, (3.30)
at Pe ac* c<c.

which is a statement that the contour area changes only due to diffusive flux (from

fluid in c > c* region to the fluid in c < c* region) as pure advection conserves the

contour area. Using Eq. (3.29), the right-hand-side term in Eq. (3.30) can be written
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Figure 3-7: Evolution of the variables A(c*), p(c*) and * during the simulation of
mixing of blobs of more viscous fluid with R = 2, Pe = 10 4 (Fig. 2-3). (a) Plot of
A(c*, t), the area of the domain enclosed by the contour of c = c*, that is, satisfying
the inequality c < c* [Eq. (3.26)]. It is a monotonically increasing function of c* that
evolves in time due to mixing from a perfectly segregated state to a fully homogenized
mixture. (b) Relation between the average viscosity p(c*) and contour area A(c*),
which is a one-to-one relation at all times. High values of viscosity, in the range - eR,
are quickly suppressed due to mixing. (c) Plot of the conditional mean dissipation
rate E* as a function of the contour concentration c*, which satisfies that c* = 0 at
both c* = 0 and c* = 1.

as

V 2cdS = Vc- ndl =
ic--C*" 1_*

VC- Cdl
VC I

|Vc| 2 dS.

Hence Eq. (3.30) can be transformed into

& 1 at 2 A- A(c*, t) = (IVCI 2)c ,* a )Iat Pe8c* k ac*

where the average of a field on the tracer contour c = c* is defined as

Eq ( ).2 - -- ( - ) dS.
aA esC*

Eq. (3.32) can be expressed in terms of the mean dissipation rate,

aA a (J* A

at ac* ac* (3.34)
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where e* = I(IVC12)c. is the conditional mean dissipation rate of scalar variance for

C = c*. Integrating E* with respect to A,

I l0
*dA1

Pe C 0

Pe Ce e

d c<C* vC2dS)

- c*=1

I C12 dS ] C =
(3.35)

c2 dS = Ac,

and using Eq. (3.34), we obtain

dl-7 1
dt

( 0 68A')
-- 9c* ac*

(3.36)

For our viscosity model p(c) = eR(l-c), dp = -Rydc, so

dlt R
dtAt

J0 At c7 * *) dc

(3.37)
lid (E** 4)

Since c* = 0 at c* =0 and c* = 1 (Fig. 3-7),

d -I R *0A ) *=O 1O8A
dt = At [(/-E* *=O Ofl *A

=A j * Rdc = At *

~ T -E*dA.
At JO

Finally, using Eq. (3.35) in Eq. (3.28), we obtain the desired relation:

dt
dt~Rp,

(3.38)

(3.39)

or, equivalcntly,
dlo -

dt (d-%
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Figure 3-8: Relationship between the rate of decrease in average viscosity and the
mean scalar dissipation rate [Eq. (3.39)]. The inflection point in the average viscosity
curve, which corresponds to a minimum in the dy-/dt, occurs at the same time as c
reaches its maximum. The numerical simulations correspond to R = 2 and Pe = 10'.

Thus, our analysis suggests that the rate of decrease in mixture viscosity is directly

proportional to the mean dissipation rate and that, as a result, a maximum E corre-

sponds to a maximum (with negative sign) in d-p/dt. This result, which is confirmed

by direct numerical simulations (Fig. 3-8), could allow the determination of E in a lab

experiment where average viscosity is being measured at discrete time intervals.

3.4 Discussion and conclusions

Viscous fingering acts as an agent for enhanced mixing by creating additional in-

terfacial area and disorder in the flow field. The rate of mixing quantified through

the mean scalar dissipation rate, E, increases at early times as additional interface is

created through finger stretching and tip-splitting.

The impact of the viscous instability on mixing, however, is nontrivial. For mod-

erate viscosity contrasts (roughly M < 10, or R < 2.5), larger M implies a larger

increase in E due to fingering, and therefore faster mixing. However, as M is increased

beyond a value of 10, channeling of the less viscous fluid starts to dominate the flow,

leading to flow focusing across the entire flow domain and inhibiting the growth of

adjacent fingers. As a result of this channeling phenomenon, which slows down the
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Figure 3-9: (a) Evolution of the mean scalar dissipation rate E. (b) Evolution of
the degree of mixing X = 1 - 4a 2 . (c) Crossplot of oa-c, for different values of the
viscosity ratio, and Pe = 104. The largest hump in dissipation rate, which leads to
fastest initial mixing, occurs for R ~ 2.5.

creation of additional interface area, growth in E is not only delayed but also limited

in the magnitude (Fig. 3-9). Hence, in this regime of very large viscosity contrast,

mixing is less efficient. Fastest mixing is achieved at an optimum viscosity ratio that

maximizes the creation of fluid-fluid interfacial area across which diffusive mixing

takes place. Channeling and tip-splitting play an important role in this balancing

act, which makes degree of mixing a nonmonotonic function of the viscosity contrast.

We presented an upscaled model of fingering-driven mixing under the assumption

of statistical homogeneity. The model captures the characteristic stretching of the

material interface over which diffusive mixing takes place. It takes the form of two

coupled Ordinary Differential Equations (ODE) to be solved for the concentration

variance and the mean scalar dissipation rate and it reproduces accurately the evolu-

tion of these two quantities as observed in high-resolution numerical simulations. At

the heart of the model, which is inspired by turbulence modeling, is the recognition

that the properties of the velocity field (through modeling of the mechanical dissipa-

tion rate) are essential in the homogenization of concentration gradients. We guided

and validated the model by means of direct numerical simulations of miscible viscous

fingering over -a large range of viscosity ratios and Peclet numbers. For values of

the viscosity ratio larger than 20, the traditional (and very efficient) streamfunction-

vorticity formulation is numerically unstable. We used a high-resolution implicit

mobility numerical method that, while being computationally more expensive, guar-
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antees stability and allowed us to obtain fully-resolved simulations of the fingering

phenomenon.
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Chapter 4

Synergetic fluid mixing from

viscous fingering and alternating

injection

4.1 Introduction

Efficient fluid mixing at low Reynolds numbers is challenging, because one cannot

rely on either turbulence or inertial effects to induce disorder in the velocity field.

Several strategies have been proposed to achieve fast mixing in small devices such as

microfluidic cells [244, 198], including grooved walls [245], bubble capillary flows [102],

pulsating injection [106], electroosmosis [107], electrokinetics [210], and acoustic stim-

ulation [97]. Alternating injection of two fluids has also been proposed to enhance

mixing in laminar-flow conditions [174, 51].

Recently, we have shown that miscible viscous fingering-a hydrodynamic insta-

bility that takes place when a less viscous fluid displaces a more viscous fluid-can

enhance mixing in periodic Darcy flows, such as flows in Hele-Shaw cells or porous

media [135]. Enhanced mixing due to viscous fingering emerges from the velocity

disorder and the additional interfacial area created between the two fluids as a result

of the hydrodynamic instability. Creation of new fluid-fluid interfaces is accelerated
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by tip-splitting of the fingers and retarded by channeling, which are the two primary

mechanisms controlling the dynamics of viscous fingering [135, 125, 279, 184]. Fluid

mixing from viscous fingering is determined by the delicate balance of these two mech-

anisms. Such a balance results in nontrivial mixing behavior as the viscosity contrast

between the two fluids is increased. For periodic flows, high-resolution simulations

have shown that there is an optimum viscosity contrast for fastest mixing [135].

Periodic flows, however, while conceptually important to gain understanding, are

difficult to achieve in practice. Here, we study mixing of two miscible fluids of dif-

ferent viscosities in a microfluidic channel or porous medium due to the combined

effect of viscous fingering and alternating injection, and find that the two can act

synergistically to achieve rapid mixing at low Reynolds numbers and high P~elet

numbers, typical of microfluidic flows. We perform high-resolution numerical simula-

tions that elucidate the phenomenon and guide us to formulate a macroscopic model

that captures the universal signature of mixing from viscous fingering and alternating

injection. Previous studies of viscous fingering in alternating injection [47, 64, 184]

analyze spreading of a single slug as a result of viscous fingering, where the quantities

of interest are the transverse-averaged concentration and the longitudinal variance of

the concentration field. However, it is mixing, not spreading, that controls chemical

reactions and dilution of peak concentrations [69], a process that requires estimating

the variance of the concentration field [159, 32]. We then use our theory to address

important practical questions, such as: (1) what is the minimum streamwise distance

required to achieve a prescribed degree of mixing inside the channel; and (2) is there

an optimum viscosity ratio that exploits the synergy between viscous fingering and

alternating injection to promote mixing while hampering channeling?

4.2 Mathematical model

We consider flow of two fluids of different viscosities , and /2, where pi < 12,

through a homogeneous two-dimensional porous medium or a Hele-Shaw cell (two

parallel plates separated by a thin gap). We adopt a Darcy formulation, which is well
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Figure 4-1: Snapshot of the concentration field during the alternating injection of
more viscous (dark) and less viscous (light) fluids. Viscous fingering at the displace-
ment front promotes mixing of the two fluids. At high viscosity contrast, however, a
few dominating fingers coalesce to form persistent channels. These channels serve as
preferential pathways for subsequent slugs of the less viscous fluid, inhibit transverse
mixing, and shield growth of adjacent fingers. The displacement corresponds to a
viscosity ratio M ~~ 33 (R = 3.5) and P6clet number Pe = 2000. See supplementary
videos [1].

accepted for single-phase flows in porous media [18] and has been used extensively

to model flow in a Hele-Shaw cell for a range of P~elet numbers and viscosity ratios

[22, 125, 249, 279, 219, 63]. Although three-dimensional effects could play a role

in a viscously-unstable Hele-Shaw flow, these would require 3D Stokes simulations

that would incur a formidable computational cost, and likely would not introduce a

fundamental qualitative departure from our findings. The porosity q and permeability

k are constant. The length and width of the domain are L and W, respectively. We

define concentration c as the volume fraction of the less viscous fluid in the mixture.

We assume that the more viscous fluid completely fills the cell initially. We assume an

exponential viscosity model p(c) = pieR( c) where R = ln M and M = P2/A1 is the

viscosity contrast. We simulate alternating injection, in which one cycle corresponds

to a slug of the less viscous fluid entering the flow cell at constant rate from the

left boundary followed by a slug of the more viscous fluid at the same rate. Let

As = #Wl be the volume of the less viscous slug. The mean velocity is in the x-

direction and of magnitude U. The outlet is a natural outflow boundary. The two

fluids are assumed to be first-contact miscible, neutrally buoyant and incompressible.

First-contact miscibility means the fluids mix instantaneously in all proportions to

form a single phase and surface tension effects are absent. Like in many previous

studies on viscous fingering [45, 219, 63, 64], the diffusion coefficient D between

the fluids is assumed to be constant, isotropic and independent of concentration.

Although D likely is velocity-dependent, this effect appears not to play a major role
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on macroscopic features of viscous fingering at high Peclet numbers and late times

[279], and a hydrodynamic dispersion model for flows with large viscosity contrast,

especially in the pre-asymptotic regime, is still lacking [206, 219].

To non-dimensionalize the system, we choose the "slug length" i as the char-

acteristic length, U as the characteristic velocity, pi as the characteristic viscos-

ity, P = u1Ui8/k as the characteristic pressure, and T = #1,/U as the charac-

teristic time. The governing equations in dimensionless form are Eq. (2.3) [249]

in x E [0, L/l 8 ] and y E [0, W/18 ] where u [u, v] and p are the velocity and

pressure fields. The initial condition is clt=o 0. The boundary conditions are

cIy~O = cIy=wl,,(periodic in y), u - n I = -1 (inflow), PIx=Ly, = 0 (outflow) and

alternating injection

(u -n)clx=o if 0 < rem(t, 1/rs) < 1, (4.1)

0, if 1 < rem(t, 1/r,) < 1/rs,

where n is the outward unit normal and rem(.) is the remainder function. We fix

the aspect ratio L/W = 8 and the slug ratio rs = 0.5 (1 : 1 fluid volume ratio). The

slug ratio is also the dimensionless concentration of the perfectly mixed fluid. The

dimensionless parameters governing fluid mixing are the P6clet number Pe = Uls/D,

the log-viscosity contrast R in the viscosity law, and the dimensionless length L/11 of

the channel. The dimensionless diffusive timescale for mixing is tdiff = Pe.

We discretize Eq. (2.3) using sixth-order compact finite differences in the stream-

wise direction and the Fast Fourier Transform (FFT) in the transverse direction,

which is periodic [136, 219, 45]. We advance in time using a third-order Runge-

Kutta scheme. To gain numerical stability at high M, we solve the pressure equation

Eq. (2.4) directly using finite volumes with a two-point flux approximation, instead

of using the stream function vorticity approach [249]. Fig. 4-1 shows a snapshot of

the concentration field from an alternating-injection simulation.
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4.3 Three regions of mixing

Fluid mixing results in decay of the concentration variance, and the mean scalar dis-

sipation rate determines the rate of this decay [209, 159, 135, 124]. To investigate

mixing in a channel under alternating injection, we study the transversely averaged

profiles of the degree of mixing and the scalar dissipation rate. While these profiles

oscillate with time as the slugs of the two pure fluids enter the domain in alternating

fashion, time-averaging leads to slowly-varying longitudinal profiles. We define the

longitudinal concentration variance a2 (x, t) = C2 - 2, the longitudinal degree of mix-

ing T(x, t) 1-O2/oax, and the longitudinal scalar dissipation rate -(x, t) IgI2

where g - Vc. Overbar operator denotes averaging in the transverse direction and

in time,
Iw/l, t+t ,/2

( ) j:w/2 (.) dt'dy, (4.2)

where t' is a dummy variable for integration, and t,, is the time window of averaging.

We average over a time window of three injection cycles. We also verified that a time

window of one injection cycle gives similar results.

The fundamental observation is the development of three distinct mixing regions

along x (Fig. 4-2). Region I, closest to the inlet, is a region of active mixing as

a result of the vigorous interaction between fingers from intermittent injection of

the less-viscous fluid. Region II is a well-mixed region, whose extent grows over time.

Region III is a region of poorly mixed fluid ahead of the well-mixed region, dominated

by the presence of channels of well-mixed fluid that penetrate through the ambient,

more viscous fluid. We have confirmed with simulations (not shown here) that the

behavior of the system is qualitatively and quantitatively the same even if the effect

of Korteweg stresses [47] is included in the formulation.

The key descriptor of the flow is the location of the well-mixed front xf (t) separat-

ing Regions II and III, as a function of time. This front corresponds to the position at

which the average degree of mixing is maximum, xf(t) = max, T(x, t) [Fig. 4-2(e)]. It

also corresponds to the point at which the transverse average of the scalar dissipation

rate is minimum, Ef(t) = min, E(x, t) [Fig. 4-2(f)].
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Figure 4-2: (a) Concentration c, (b) degree of mixing X, and (c) scalar dissipation rate

loge from an alternating injection simulation with viscosity ratio M = exp(2) ~ 7
and Pbeclet number Pe = 2000 at time t = 18.6. The degree of mixing is high (red)
where mixing has already taken place. Scalar dissipation rate is high (red) at the
interfaces where the fluid is actively being mixed. (d), (e), and (f) are longitudinal

profiles of concentration c , degree of mixing T, and scalar dissipation rate T, averaged
over a moving time-window (of duration equal to 3 injection cycles, although the
same behavior holds for different averaging windows). T reaches a maximum where
fingering begins and a minimum where channeling begins, congruent with a non-
monotonic degree of mixing T with x. (g) The time-averaged PDF of concentration
evolves from two delta-like functions (segregated pure fluids near x = 0 in Region I) to
a Gaussian-like function (well-mixed fluids in Region II) to an anomalous distribution
(channeling in Region III). The vertical dashed lines indicate the boundaries of the
three mixing regions at time t = 15; xf denotes the position of the well-mixed front,
which is the position of the maximum longitudinal degree of mixing in the domain,
Tf, at a given time.
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4.4 Mixing model

We now formalize these qualitative observations and develop an analytical model of

the average degree of mixing in the channel. We formulate two submodels: one for

the channelized region (III), and one for the active-mixing and well-mixed regions (I

and II). Each submodel originates from the exact average equations of mean concen-

tration T, concentration variance o.2 and mean scalar dissipation rate T. For example,

we obtain the exact equations for T and 2 by premultiplying the advection-diffusion

equation (2.3) by 1 and c, respectively, integrating in y, making use of the divergence

theorem and incorporating periodicity in y:

tc + ax (c2 - - 2 -2. (4.4)Pe

4.4.1 Fractional flow model

Region III is characterized by channeling, where the less viscous fluid spreads lon-

gitudinally through fast-moving channels ahead of the well-mixed front. This dom-

inance of heterogeneous fluid displacement over mixing suggests that we can pose

a hyperbolic model by neglecting diffusion. The development of hyperbolic models

(also called fractional flow formulations) of average concentrations that capture the

fingering-enhanced spreading has a long history [28, 117, 153]. Here, we extend this

approach to develop a hyperbolic fractional-flow model of mixing, which of course

must involve higher-order moments of the concentration field. Neglecting diffusion in

Eqs. (4.3)-(4.4) (that is, taking Pe -* oc), we obtain a hyperbolic approximation for

the propagation of the mean concentration and the mean scalar energy: a9t+axi- = 0,

and &tc 2 + axuc2 = 0, respectively. Combining these equations we immediately obtain

a hyperbolic approximation for the avcrage degree of mixing -j:

8ty + ji8 = 0. (4.5)
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We provide closure for this equation with a fractional flow formulation, in which we

model EX as a function of X alone: the fractional flow function f(T). Different models

of the fractional flow function have been proposed for the mean concentration [153,

257, 82]. Here we use

f ( = (Meff _, Meff = (a + (1 - a)M 4r" )4 (4.6)
1 + (Meff - 1)X

where a is the mixing ratio, defined as the degree of mixing in the 'effective' displacing

fluid in the channelized region III, and Meff is the effective viscosity ratio of the more

viscous to the less viscous fluid in the channelized region, estimated using the quarter-

power mixing rule. Eq. (4.6) is based on Koval's model [153], modified for region III

where the less-viscous fluid in the channels-with average concentration c = r,-

displaces the more-viscous fluid with c = 0. The function (4.6) is concave, so the

solution to Eq. (4.5) is a rarefaction wave where the derivative ( = f'(T) is the speed

of propagation of degree of mixing T [60]. The solution at different times can therefore

be understood as a simple stretching of the characteristic velocity (.

We test the validity of this fractional flow model by comparing the model pre-

dictions with direct numerical simulations (Fig. 4-3). In the channeling region, the

averaged degree of mixing from simulations indeed behaves as a continuous rarefaction

wave that stretches with time, and this is captured nicely by the analytical model.

From the profiles of average degree of mixing at different times in the channelized

region we compute the numerical fractional flow function, which is well approximated

for a wide range of viscosity contrasts M by function (4.6) with a single value of the

mixing ratio, a = 0.5 (Fig. 4-3, inset).

4.4.2 Dissipation model

We now turn our attention to modeling Regions I and II. Because these are regions

of active mixing, one cannot neglect diffusion. We develop a mixing model from the

exact equations of average concentration variance U2 and average scalar dissipation

rate T. We obtain the former by combining Eqs. (4.3)-(4.4) and the latter by taking
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Figure 4-3: Time evolution of the profiles of average degree of mixing T, for R = 2 and
Pe = 2000. The results from averaging a high-resolution simulation in the channelized
region (large circles) are well captured by the hyperbolic mixing model (blue solid
lines). Shown are three different times (t = 7, 9 and 11) that illustrate the self-similar
x ~ t character of the degree of mixing in the channelized region. Inset: fractional
flow function obtained from averaging of the direct numerical simulations (symbols)
and from the proposed model (4.6) with a = 0.5, for R = 2 (black, circles) and
R = 3.5 (red, crosses).

the gradient of the advection-diffusion equation (2.3) and then the dot product with

Vc, integrating in y and exploiting periodicity in y:

atc.2 + (X (UC - I 2) - 2-Wx(;Uc) = -2T, (4.7)
Pe

12 2
8t +8 i 6 - -ax7 = VU : g @ - 2vg : Vg. (4.8)

Pe Pe 0g Pe

The advective terms (involving u) are responsible for creation and preservation of

fluid-fluid interfaces. Diffusive terms containing Pe in Eq. (4.7) and Pe2 in Eq. (4.8)

are responsible for decay of the interfaces, and they lead to a decrease in a2 .

From Figs. 4-2 and 4-3, it is clear that in Regions I and II the average degree of

mixing T reaches a steady-state profile, and therefore can be described as a function

of x only. The fundamental observation is that the flow approaches statistical homo-

geneity due to the many tip-splitting and finger-merging events and that the diffusive

component of the generalized flux is much smaller than the advective component,

o8x(-)/Pe < 9xu(.). As a result, tT + axIW = 0, and tC2 + OxUc 2 = -2T. The

spatial variation in average quantities (T, c2, T) can be understood as the temporal

variation of a parcel of fluid moving with mean velocity U (= 1 in the nondimensional
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t=0 2 4 6 8 10 12 14 16 18

Figure 4-4: Snapshots from a periodic-flow simulation at successive times for R = 2
and Pe = 2000. Notice the similarity with an alternating injection simulation (Fig. 4-
2), especially away from the inlet and outlet boundaries. The domain length in the
periodic simulation corresponds to one injection cycle: in this case, one-tenth of the
domain length in the alternating injection simulation.

equations). In other words, we can approximate Dt(-) + &1n(.) d(.)/dt. This is

illustrated in Fig. 4-4, which shows that a concatenation of snapshots from a simula-

tion in a periodic domain of length equal to one injection cycle, under the space-time

mapping x = t, closely resembles the concentration field in regions I and II in the full

simulation of alternating injection [Fig. 4-2(a)].

From our key observation of space-time duality, the final approximate equations

that require modeling are the average variance and scalar dissipation rate in a biperi-

odic domain.

do.2

dt -2T, (4.9)

di 2 2
d-= -VU:g&g- 2 2 Vg (4.10)dt Pe Pe

A macroscopic model of Eqs. (4.9)-(4.10), representing mixing due to viscous fingering

under periodic boundary conditions, was recently developed [135, 136]. The model

is a set of two ODEs governing the temporal evolution of U2 and T (Eqs. (2) and (8)

in [135]). The model provides closure of the higher-order terms in the exact equations

based on the insights from high-resolution numerical simulations. We have confirmed

that the predictions from this analytical model are in excellent agreement with direct

numerical simulations of alternating injection (Fig. 4-5), and we refer to [135, 136]

for the details of this mixing-dissipation model.

The space-time (x - t) duality between the alternating injection flow and the

periodic flow is valid for the entire length of the channel when R = 0 because viscous

64



0 U2 , alter-inj x -, alter-inj
-model -model

... -2 -periodic - -periodic

10

0 20

Figure 4-5: Average concentration variance (U2 , red) and scalar dissipation rate (E,
blue) from the alternating injection simulations (symbols), the analytical dissipation

model (thin solid lines), and periodic simulations (dashed lines) for R = 2, Pe = 2000,
at time t = 22. The results from the periodic simulation are computed by averaging

over the entire volume at every time step, and the x-axis for these curves is time t.

The values of the constants in the dissipation model [135] are: A = 0.89, B = 0.51.

The model departs from the simulations ahead of the well-mixed front xf, where the

hyperbolic model applies instead (Region III, Fig. 4-3).

fingering and channeling are absent. The slugs exit the domain just as they enter

except for smearing at the interfaces due to diffusion. The pseudo steady state degree

of mixing oscillates between 0 and 1 throughout the length of the channel. We can

obtain the mean behavior by averaging over a time-window and thereby removing the

oscillations due to the alternating injection inlet boundary. We plot the longitudinal

scalar dissipation rate, T, and longitudinal degree of mixing, ), in Fig. 4-6. In a purely

diffusive process, the average degree of mixing increases proportional to square root of

time. Because of the space-time duality, the longitudinal degree of mixing increases as

square root of the downstream distance, - ~ -x/Pe. For R = 0, we can approximate

T as a measure of the rate of change in T with x, because of the duality between the

periodic flow and the alternating injection flow. More precisely,

0.2 x
e= = 3.2 -- x < 0.Pe. (4.11)

v/xPe' Pie

The condition on the distance results from the fact that T < 1. For x > 0.1Pe, y ~ 1.

We can obtain the above relations from an approximate solution to the ADE, which

for R = 0 becomes a diffusion equation on a moving reference frame, with alternating-

injection boundary condition. Above model agrees well with the simulation, especially

away from the inlet as the effect of the alternating injection weakens (Fig. 4-6). The
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Figure 4-6: Profiles of the longitudinal dissipation rate (blue circles) and the longitu-
dinal degree of mixing (red crosses) along the length of the cell for R = 0, Pe = 2000.
Solid and dash black lines are the theoretical predictions (Eq. (4.11)).

model can also be expressed as
d =-2T, 

(4.12)
dx

where we have used the fact that the dimensionless mean speed in x is unity (l =

1). Notice the similarity with Eq. (2.11), which governs temporal rate of decay

of the volume-averaged concentration variance in a periodic domain. This further

confirms the space-time duality between alternating injection simulation and periodic

simulation.

4.5 Results

We now put the two submodels together: the dissipation model in Regions I and II,

and the hyperbolic model in Region III. As a function of downstream distance x,

the average degree of mixing increases monotonically (from 0) in regions I and II,

and decreases monotonically (towards 0) in region III. Therefore, for a given time,

the two curves given by each submodel will always cross. We define the location

of the well-mixed front xf as the point where X is maximum which is modeled as

the intersection of the two submodels. We use the analytical model to explore the

influence of the system parameters on mixing efficiency by considering two practical

measures: the minimum time to achieve a desired degree of mixing [Fig. 4-7(a)],

and the maximum degree of mixing at the outlet (that is, the degree of mixing of the

effluent mixture at long times) [Fig. 4-7(b)]. We find that a viscosity contrast between
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the fluids leads to a dramatic increase in mixing efficiency. Mixing from alternating

injection of equal-viscosity fluids (R = 0) is extraordinarily inefficient at all practical

Peclet numbers [Fig. 4-7(a)]. Our analysis provides a natural explanation for the

effect of slug size. Decreasing slug size i (that is, increasing alternating-injection

frequency) leads to both a decrease in Peclet number Pe = U1 8/D and an increase in

dimensionless channel length L/l, and therefore results in a higher degree of mixing

[Fig. 4-7(b)]. Mixing efficiency, however, does not necessarily increase uniformly with

viscosity contrast between the fluids. For a given P6eclet number and dimensionless

channel length, there is a viscosity contrast for which the attainable degree of mixing

of the effluent mixture is maximized. This optimum viscosity contrast promotes rapid

creation of interfacial area from viscous fingering while disallowing strong channeling

effects.

4.6 Conclusion

We have shown that the synergetic action of alternating injection and viscous fin-

gering leads to a dramatic increase in efficiency when mixing fluids at high P~elet

numbers-a notoriously challenging problem in the context of planar microfluidic de-

vices as lab-on-a-chip systems [122, 7]. Based on observations from high-resolution

simulations, we develop a theoretical model of mixing efficiency that combines a

hyperbolic mixing model of the channelized region ahead, and a mixing-dissipation

model of the pseudosteady region behind. Our macroscopic model quantitatively re-

produces the evolution of the average degree of mixing along the flow direction, and

can be used as a design tool to optimize mixing from viscous fingering in a microfluidic

channel.
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Figure 4-7: (a) Contours of the mixing time, t0 ut, as a function of the desired degree
of mixing at the outlet, Yout, and the log-viscosity contrast, R, for a domain of
dimensionless length L/1, = 5 and Pe = 4800. The white region beyond the outermost
contour indicates values of Tout that cannot be achieved for those flow conditions. The
inset shows the comparison of mixing time for -Xout = 0.5 between the mixing model
and the simulations. (b) Maximum attainable degree of mixing at the outlet, Tyrnta,
as a function of R for different slug sizes i. As is decreases, the P~elet number
Pe = U1,/D decreases and the dimensionless domain length L/1, increases, which
results in a higher degree of mixing. Shown are three cases: L/11 = 5 (triangles), 10

(crosses), 20 (circles); Pe = 4800, 2400, 1200 in the same order. Solid line is from the
mixing-dissipation model, and symbols from the numerical simulations. The insets
show snapshots of the concentration field at long times for R = 2 and different slug
sizes: L/11 = 5 (bottom), 10 (middle), 20 (top).
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Chapter 5

Coupled multiphase flow and

poromechanics of faulting

5.1 Introduction

Coupling between fluid flow and mechanical deformation in porous media plays a

critical role in subsurface hydrology, hydrocarbon recovery, and seismic activity in the

Earth's crust. Subsidence due to groundwater withdrawal continues to pose significant

challenges in many parts of the world and has been studied for decades [104, 100,

19, 187, 99, 101, 98]. Production and injection of fluids in oil, gas and geothermal

fields have also been associated with surface subsidence and earthquakes along pre-

existing faults [212, 274, 167, 232, 282, 93, 74, 35]. Earthquakes triggered due to

groundwater withdrawal [110], reservoir impoundment [41, 169, 116], and wastewater

disposal [145, 261] have been reported, as has been fluctuation in groundwater levels

due to earthquakes [217, 266]. Recently, coupled flow and geomechanics has also

gained attention due to its role in the long-term geologic storage of carbon dioxide

CO 2 in saline aquifers, which is widely regarded as a promising technology to help

mitigate climate change by significantly reducing anthropogenic CO 2 emissions into

the atmosphere [155, 199, 130, 196, 247]. Injection of CO 2 requires displacement

or compression of the ambient groundwater, and an overpressurization of the target

aquifer, which could fracture the caprock [25], trigger seismicity and cause shear slip

69



on pre-existing faults [220, 221, 48, 223, 185, 186, 39, 40], and potentially compromise

the caprock by activating faults [283]. A similar set of issues arises in the extraction

of oil and natural gas from low-permeability hydrocarbon reservoirs, and in particular

oil and gas shales. The extraction of shale-gas has undergone a revolution due to the

massive deployment of a technology called hydraulic fracturing, or "fracking" [58].

Concerns have been raised regarding whether fracking may lead to venting of methane

from gas shales [126] or to contamination of groundwater by fracking fluids [197,

132]. Therefore, understanding of the potential leakage through faults undergoing

slip from injection overpressure has become a cornerstone of the scientific discussion

surrounding the viability of CCS as a climate change mitigation technology [283, 141,

284] and the risks associated with the production of shale gas [269, 76, 270].

Despite the growing environmental, industrial and economic importance of cou-

pled flow and geomechanics, many aspects remain poorly understood. One of the key

unresolved issues is the ability to describe the mechanical and hydraulic behavior of

faults, and the influence of the full stress tensor and change in pressure on fault slip.

Injection and production of fluids from a geologic reservoir induce changes in the state

of stress, both within and outside of the reservoir, and these can affect the stability

of pre-existing faults. The effects of injection and production depend on the initial

state of stress, the elastic moduli of the geologic structures, and the fault frictional

properties. The effects are not always intuitively obvious, and should be quantified

using geomechanical models. This requires the development of a new generation of

geomechanical models that include coupling between fluid flow and fault motion.

Currently, geomechanical models typically treat faults as 'failure zones' that are

discretized as three-dimensional elements where the rheology is allowed to be different

(e.g., plastic with weakening failure) than in the rest of the domain (e.g., elastoplastic

with hardening law) [221, 39, 40]. This approach has several limitations, including

the inability to model actual slip along a surface of discontinuity, and the dependence

of the simulation results on the level of grid refinement. Other models represent faults

as surfaces using interface elements e.g. [91], but so far these models are uncoupled to

flow and they model fault slip using a penalty method [108]. Such methods require a
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priori selection of the penalty parameters for the fault, and therefore cannot represent

dynamically-evolving fault strength, such as slip-weakening or rate- and state-friction

models [71].

The interactions between flow and geomechanics have been modeled computa-

tionally using various coupling schemes [68, 134, 138, 175, 182, 233, 234, 256, 259,

258, 148, 149, 147, 150]. In the fully implicit method, one solves the coupled discrete

nonlinear system of equations simultaneously, typically using the Newton-Raphson

scheme [246, 201, 163, 166, 90]. The fully implicit method guarantees unconditional

stability if the mathematical problem is well posed, but the simulation of flow and ge-

omechanics for realistic fields becomes computationally very expensive [233, 256, 138].

Sequential approaches to modeling coupled flow and geomechanics are highly de-

sirable because they offer the flexibility of using separate simulators for each sub-

problem [86, 227, 182, 224]. The design and analysis of sequential methods with

appropriate stability properties for poromechanics and thermomechanics has a long

history [277, 10, 11, 9, 233, 175, 134]. Recently, a new sequential method for cou-

pled flow and geomechanics, termed the 'fixed-stress split', has been proposed and

analyzed [148, 149, 150]. Stability and convergence analyses have shown that the

fixed-stress split inherits the dissipation properties of the continuum problem and

is therefore unconditionally stable, both in the linear (poroelastic) and nonlinear

(poroelastoplastic) regime. The analysis has shown that the fixed-stress split enjoys

excellent convergence properties, even in the quasi-incompressible limit. It has also

been shown recently that the stability and convergence properties of the fixed-stress

split for single-phase flow carry over to multiphase systems if a proper definition of

pore pressure, the 'equivalent pore pressure' [53], is used [150].

In this Chapter, we present a new computational model for coupled flow and

geomechanics of faulted reservoirs. We couple a flow simulator with a mechanics

simulator using the fixed-stress scheme [149]. We employ a rigorous formulation

of nonlinear multiphase geomechanics [52] based on the increment in mass of fluid

phases, instead of the more common, but less accurate, scheme based on the change

in porosity [233, 182, 256, 259, 258, 224]. Our nonlinear formulation is required to
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properly model systems with high compressibility or strong capillarity [52], as can

be the case for geologic CO 2 sequestration [220, 221] groundwater extraction from

unconfined aquifers [100, 110], and shale gas production [76]. To account for the effect

of surface stresses along fluid-fluid interfaces, we use the equivalent pore pressure in

the definition of multiphase effective stress [53, 150]. We model faults as surfaces of

discontinuity using interface elements [3]. This allows us to model stick-slip behavior

on the fault surface for dynamically evolving fault strength.

5.2 Governing equations

5.2.1 Balance laws

We use a classical continuum representation in which the fluids and the solid skeleton

are viewed as overlapping continua [18, 54]. The governing equations for coupled

flow and geomechanics are obtained from conservation of mass and balance of lin-

ear momentum. We assume that the deformations are small, that the geomaterial is

isotropic, and that the conditions are isothermal. Let Q be our domain of interest

and 8Q be its closed boundary. Under the quasistatic assumption for earth displace-

ments, the governing equation for linear momentum balance of the solid/fluid system

can be expressed as

V -O+ pbg = 0, (5.1)

where o is the Cauchy total stress tensor, g is the gravity vector, and Pb = P O phase

S3 + (1 - )Ps, is the bulk density, po and S, are the density and the saturation of the

fluid phase /, ps is the density of the solid phase, # is the true porosity, and nphase

is the number of fluid phases. The true porosity is defined as the ratio of the pore

volume to the bulk volume in the current (deformed) configuration. Assuming that

the fluids are immiscible, the mass-conservation equation for each phase a is

dm + V . Wa = pfal, (5.2)
dt
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where the accumulation term dm,/dt describes the time variation of fluid mass rela-

tive to the motion of the solid skeleton, w, is the mass-flux of fluid phase a relative

to the solid skeleton, and f, is the volumetric source term for phase a. Balance equa-

tions (5.1) and (5.2) are coupled by virtue of poromechanics. On one hand, changes

in the pore fluid pressure lead to changes in effective stress, and induce deformation of

the porous material-such as ground subsidence caused by groundwater withdrawal.

On the other hand, deformation of the porous medium affects fluid mass content and

fluid pressure. The simplest model of this two-way coupling is Biot's macroscopic

theory of poroelasticity [24, 103, 52]. In the remainder of this section we provide

the mathematical description of poroelasticity, first for single-phase, and then for

multiphase fluid systems.

5.2.2 Single-phase poromechanics

For isothermal single-phase flow of a slightly compressible fluid in a poroelastic

medium with no stress dependence of permeability, the single-phase fluid mass con-

servation equation reduces to

dm±VWfdm+ V -W = p f, (5.3)
dt

where m is the fluid mass content (fluid mass per unit bulk volume of porous medium),

pf is the fluid density, w = pf v is the fluid mass flux (fluid mass flow rate per unit

area and time), and v is the seepage velocity relative to the deforming skeleton, given

by Darcy's law:

k
V= k (VP - pg), (5.4)

where k is the intrinsic permeability tensor, p is the fluid dynamic viscosity and p is

the pore-fluid pressure [18]. It is useful to define the fluid content variation (,

6 : ,(5.5)

Pfo
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where 6m = m - mo is the increment in fluid mass content with respect to the initial

reference state, and pf,o is the reference fluid density.

The self-consistent theory of poroelastic behavior proposed by Biot [24] links the

changes in total stress and fluid pressure with changes in strain and fluid content.

Following [52], the poroelasticity equations can be written in incremental form as

6a= Cd, : e - b6pl

1 (5.6)
= be + --6p,

M

where Cd, is the rank-4 drained elasticity tensor, 1 is the rank-2 identity tensor, e is

the linearized strain tensor, defined as the symmetric gradient of the displacement

vector u,

1
e : (Vu + VTu) , (5.7)

and Ev = tr(e) is the volumetric strain. It is sometimes useful to express the strain

tensor as the sum of its volumetric and deviatoric components:

e = --v1 + e, (5.8)
3

from which it follows that the volumetric stress o-v = tr(cr)/3 satisfies:

6-, = KdrEv - b6p. (5.9)

Equation (5.6) implies that the effective stress in single-phase poroelasticity, respon-

sible for skeleton deformation, is defined in incremental form as

6o,' := 6a + b+pl. (5.10)

Note that we use the convention that tensile stress is positive. Biot's theory of poroe-

lasticity has two coupling coefficients: the Biot modulus M and the Biot coefficient b.

They are related to rock and fluid properties as [52]
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1 b - $0  bl Kr,
I= OCf + , b = - , (5.11)

M Ks Ks'

where cf = 1/Kf is the fluid compressibility, Kf is the bulk modulus of the fluid, K,

is the bulk modulus of the solid grain, and Kdr is the drained bulk modulus of the

porous medium.

To set the stage for the numerical solution strategy of the coupled problem, it is

useful to write the fluid mass balance equation (5.3) (the pressure equation) in a way

that explicitly recognizes the coupling with mechanical deformation. Equations (5.6)

state that the increment in fluid mass content has two components: increment due

to expansion of the pore space and increment due to increase in the fluid pressure.

Assuming small deformations and applying linearization from the reference state to

the current state, we can write Eqs. (5.6) as

0 - CO = Cdr : E- b(p - po) 1, (5.12)

11 (m - mo) = bE, + (P - po). (5.13)
Pf,o M

Substituting Eq. (5.13) into Eq. (5.3), we obtain the fluid mass balance equation in

terms of the pressure and the volumetric strain:

l 8p Be
+ b + V =f. (5.14)

M at at

Linearizing the relation between volumetric total stress and volumetric strain with

respect to the reference state,

U- - -vO = KdrEg - b (p - po), (5.15)

allows us to express the change in porosity as the sum of a volumetric stress component

and a fluid pressure component. From m = pf 0 and Eq. (5.13),
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pf b b 2
0 - 00 = Kr(01V - 01V,0) + K-+ -)(p - po) .(5.16)

Pf,o K Kdr M

Using the effective stress equation, Eq. (5.15), we can rewrite Eq. (5.14) in terms of

pressure and volumetric total stress:

(b2 1\ap b &u,
_)+ + + V - V f. (5.17)

Kdr M Ot Kdr Ot

Note that Eqs. (5.14) and (5.17) are both exact and, therefore, equivalent. They

both recognize the two-way poromechanical coupling, but they lead naturally to dif-

ferent operator splits in a sequential solution method: the fixed-strain split and the

fixed-stress split, respectively [149, 147]. Note that, by virtue of the poromechan-

ical coupling, quantities like fluid compressibility and rock compressibility do not

appear explicitly in the equation. Instead, the fluid-rock compressibility behavior is

determined from the poroelastic coefficients Kdr, b, and M [149].

One-way coupled approach

Fluid mass balance Eq. (5.17) is coupled to the mechanics through two terms: mod-

ified compressibility, (b2 /Kd, + 1/M), and the source term, (b/Kr)or,/&t. When

the fluid compressibility is much higher than the rock compressibility, i.e., cf >>

1/Kd, > 1/Ks, and assuming cp = b/(#oKdr) + 1/K, where c, is the 'pore compress-

ibility' [233], we obtain
ap

(q0cf + 0cP) + V -v = f, (5.18)

where the coupling term corresponding to change in the mean stress is negligible

because pressure change is dominated by the high fluid compressibility. Eq. (5.18),

which is not coupled to the deformation field, serves as the single-phase fluid mass

balance equation in traditional reservoir simulators [13]. We obtain a similar pressure

equation under uniaxial strain and constant vertical stress because &ou/&t = 0, and

(b2 /K dr+ 1/M) becomes equivalent to the storage coefficient [267].

Pressure fields from solution of Eq. (5.18) can still be used in Eq. (5.1) to ob-
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tain displacement fields that evolve in time. This is called the one-way coupled

approach [267]. The mechanics problem is coupled to the flow problem, but not vice

versa. The one-way coupled approach is computationally less expensive than the

fully-coupled or two-way coupled approaches because the flow problem is solved inde-

pendent of the mechanics problem with no requirement of convergence between the

two problems. This leads us to the question: when do we need the fully-coupled (or

the two-way coupled) approach, or, when is the one-way coupled approach accurate

enough? As illustrated above, accuracy of the one-way coupled approach increases as

the compressibility of the fluid increases (e.g. pores occupied by air instead of water),

or conditions of uniaxial strain and constant vertical stress prevail. However, the

two-way coupled approach is more desirable when small changes in the pore pressure

can potentially trigger large-scale changes in the mechanical structure, e.g., faulting

and fracturing.

5.2.3 Multiphase poromechanics

In the multiphase or partially saturated fluid system, it is not possible to linearize

Eqs. (5.6) around a reference state because [52]:

1. Gases are very compressible,

2. Capillary pressure effects are intrinsically nonlinear, and

3. Phase saturations vary between 0 and 1 and, therefore, a typical problem sam-

ples the entire range of nonlinearity.

Therefore, following [52], we use the incremental formulation of poromechanics for

multiphase systems, which does not assume physical linearization of total stress from

the initial state to the current (deformed) state.

To make progress, we make a modeling assumption that allows us to express the

deformation of a multiphase porous material in terms of the increment in applied total

stresses and internal fluid pressures. Similar to the single-phase case (Eq. (5.6)), we

adopt an effective stress formulation in the multiphase poromechanics [26, 27] because
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constitutive modeling of porous materials is usually done in terms of the effective

stress. Under this formulation, we split the total stress on the porous material into

two parts: one that is responsible for deformation of the material (the effective stress),

and another component that is responsible for changes in the fluid pressures,

6U = Cdr : e - b36po1, (5.19)

where b, are the Biot coefficients for individual phases such that T, b> = b, where

b is the Biot coefficient of the saturated porous material. It is common to further

assume that bo are proportional to the respective saturations So [165, 56, 164].

The effective stress concept allows us to treat a multiphase porous medium as a

mechanically equivalent single-phase continuum [146, 193]. The appropriate form of

the effective stress equation Eq. (5.19) in a multiphase system is still an active area of

research [112, 55, 193, 264, 192, 150]. Here we use the concept of equivalent pressure

[55] in the effective stress equation (Eq. (5.19)),

PE = SOp, - U, (5.20)
'3

where U = E8 f padSa is the interfacial energy computed from the capillary pressure

relations [150]. The equivalent pressure accounts for the interface energy in the free

energy of the system, and leads to a thermodynamically consistent and mathemati-

cally well-posed description of the multiphase fluid response to the solid deformation

[150]. For a system with two phases, the wetting phase w and the non-wetting phase

g, the capillary pressure is

PC (SW) PW9 (SW) = Pg - Pw, (5.21)

and the interfacial energy is U = fK PwgdS. Assuming bo = bS3 [165, 56, 164], and

using Eq. (5.20) in Eq. (5.19), we obtain the stress-strain relationship for multiphase

linear poroelasticity:
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6o- = 6a' - b6 PE1, 6' Cdr E . (5.22)

Once we have a definition of the effective stress in multiphase systems, we now

express the change in the fluid mass in terms of the mechanical deformation and the

change in the fluid pressures. In the deformed configuration, the mass of phase a per

unit volume of porous medium is

ma = paSc$(1 + E&). (5.23)

Note that, by definition, the sum of all fluid phase saturations satisfies phaseS 1

Extending Eq. (5.13) for multiphase systems [52, 53], we have

(d)= badEv + Ndpo , (5.24)

where N = M-1 is the inverse Biot modulus. In a multiphase system, the Biot

modulus is a symmetric positive definite tensor M = [M 0/3], and the Biot coefficient

is a vector. To determine the coupling coefficients N3 as a function of the primary

variables (pressure, saturations, and displacement), and rock and fluid properties, we

develop an alternate expression for the differential increment in fluid mass. Using

Eq. (5.23),

dm,= d(p0 Sq5(1 + ) (5.25)

which can be expanded as

dm aso= 0 s dPaQ + #Socodpo + #SadE + Sod#, (5.26)
p ) 0z ap

where c, = L dP is the compressibility of the fluid phase a, and 0aS/aP,/3 is the
poz dpa

inverse capillary pressure derivative. Above, repeated indices do not imply summa-

tion and we have assumed infinitesimal deformations. We can express the increment

in porosity, d#, as a function of the volumetric effective stress, dou$, to obtain a
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closed-form expression of Eq. (5.26). Under infinitesimal deformation theory [52], the

volumetric dilation E can be partitioned into the matrix dilation, E, = U,,/Ks, and

the pore dilation,

(1 - )E (1 - )ES + (0 - q0 ), (5.27)

and the volumetric Cauchy total stress can be partitioned into the volumetric matrix

stress, as, and the fluid pressure as

Ov = (1 - #)Ous - #PE- (5.28)

Substituting os from Eq. (5.28) into Eq. (5.27) and differentiating, we obtain

d =b (da' + (1 - b)dpE), (5.29)
Kdr

where we assumed 1 + E, + (pE/KS) ~ 1. Equation (5.29) implies that an increment

in porosity is related to increments in volumetric effective stress and fluid pressures,

similar to Eq. (5.16) in the single-phase case. Substituting dEv from Eq. (5.22) and do

from Eq. (5.29) into Eq. (5.26) allows us to express the increment in the phase mass

as a function of the increments in the total volumetric stress and phase pressures.

Equating this to Eq. (5.24) yields the desired expressions for the coupling coefficients

NO, which for a water-gas system are

Ngg = -$Sg + Sgc + S N

N -N = #5 asw + SgSwN, (5.30)
wg

New= -$0ap + oScw + Sw2N,wg

where N - (- )and the subscripts w and g denote water and gas phases,

respectively.
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Finally, we obtain the multiphase flow equation for phase a in a poroelastic

medium by substituting the two constitutive relations, the effective stress equation,

Eq. (5.22), and the fluid mass increment equation, Eq. (5.24), in the mass balance

equation, Eq. (5.2):

a b b P 1 a=
t Pa E(Nap±+ Ka p +K ("bu)+vw = Va 1,... , npase.

(5.31)

The role of N and b as the coupling coefficients among different fluid phases and

the solid phase is evident from the above equation. The bulk density, Pb, in the

mechanical equilibrium equation, Eq. (5.1), also acts as a coupling parameter because

it is a function of the porosity and the phase saturations. Because we assume that

the fluids are immiscible, the mass-flux of phase a is w, = pav 0 , where we adopt the

traditional multiphase-flow extension of Darcy's law [188, 18]

Ve - kr (Vpa - pag), (5.32)
Pa

where p, and kr are the dynamic viscosity and the relative permeability of phase a

in presence of other fluid phases.

5.2.4 Poromechanics of faults

There are two basic approaches to represent faults in a three-dimensional medium:

either as a three-dimensional fault zone e.g. [221], or a two-dimensional fault sur-

face [91]. The advantage of representing faults as surfaces of discontinuity is that

they can more faithfully describe the localized (discontinuous) displacement at the

fault, and one can incorporate models of dynamic frictional strength (like the rate-

and state-friction model) capable of reproducing run-away fault slip characteristic of

earthquakes. Moreover, introducing discrete fault surfaces does not preclude modeling

an adjacent fault zone with appropriate rheology.

A central feature of our work is that we treat faults as surfaces of discontinuity
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fault surface, Pf

left-lateralI

openingA
' reverse

Figure 5-1: Schematic of a 2D fault surface in a 3D domain. Discontinuity in the
displacement across the fault is illustrated through slip on the fault. The fault coor-
dinate system is defined in terms of tangential and normal motion on the fault with
positive values associated with left-lateral, reverse, and opening motions. n is the
fault normal vector on the left side face of the fault.

embedded in the continuum, across which displacement is allowed to be discontinuous

to recognize the possibility of fault slip (Fig. 5-1). We use zero-thickness elements,

also known as interface elements or cohesive elements in the finite element literature

[111, 21, 160, 91], to represent the fault surfaces. Mathematically, the fault surface

is treated as an interior boundary between the two adjacent domains. The two sides

of the fault surface, which need not be planar, are designated as the '+' side and the

'-' side, and the fault normal vector, n, points from the negative side to the positive

side. Slip on the fault is the displacement of the positive side relative to the negative

side,

(u+ - u-) - d = 0 on ff, (5.33)

where u+ and u_ are the displacements on the two sides of the fault surface, de-

noted by Ff, and d is the fault slip vector (in the same coordinate system as the

displacements). Fault slip is governed by the effective traction on the fault, which is

a function of the effective stress tensors on both sides of the fault, the fault normal

direction, and the fault constitutive law. We impose the effective traction on the

fault by introducing a Lagrange multiplier, 1, which is a force per unit area required

to satisfy the equilibrium equation for a given relative displacement, d, across the

fault. The magnitude of the effective normal traction on the fault is -' = 1 - n. A

positive value of o indicates that a tensile effective stress is transmitted across the
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negative side, F-j positive side, 1f+

SPi, Si e La zero-thickness fault element
o Ub 0 Ub+

0 Ub.

Figure 5-2: Exploded view of our computational representation of a fault, illustrat-

ing different node types, locations of different variables, and the zero-thickness fault

elements. Fluid pressures and saturations are located at the element centers as they

are discretized using the finite volume method. Displacements and Lagrange multi-

pliers at the fault are discretized using the nodal-based finite element method. There

are two types of nodes in the domain: the regular displacement nodes and the fault

nodes. Regular nodes carry displacements Ub. Fault nodes carry three types of vari-

ables at the same location: the displacement on the positive side of the fault, Ub±,

the displacement on the negative side of the fault, Ub_, and the Lagrange multiplier,
La.

fault surface. The shear traction vector is, by definition, tangent to the fault surface

and its magnitude is

T = 1 - ' nj. (5.34)

Models of fault strength

Shear tractions on the fault are limited by fault friction, or fault strength. A fault

constitutive model is used to compute the frictional stress rf on the fault as

TY = nT p ' , ' < 0,(535)

7c, a' > 0,

where T, is the cohesive strength of the fault, and pf is the coefficient of friction, which

must be modeled as a function of displacement evolution on the fault. Commonly

used fault friction models are
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1. Static friction model, where pf is a constant.

2. Slip-Weakening model, where pf is a function of the slip magnitude Idl and

drops linearly from its static value, Ai, to its dynamic value, pd, over a critical

slip distance de,

p-- (Np - Pd)Ld, |d| < de,
Pf= {s d (5.36)

A, |d| > de.

3. Rate- and State-dependent friction model [71, 70, 218, 230, 179],

pf po + A ln + Bln,

dOVO d (5.37)
-= 1 -

dt dc

where V = Idd/dtl is the slip rate magnitude, po is the steady-state friction

coefficient at the reference slip rate V, A and B are empirical dimensionless

constants, and 0 is the macroscopic variable characterizing state of the surface.

In the Rate- and State-dependent friction model, which is based on laboratory ex-

periments of frictional sliding on rock surfaces and fault gouges, evolution of the

coefficient of friction is determined from the combined effect of the evolution of the

state variable, 0, and the slip rate or velocity, V. Here, 0 may be understood as

the frictional contact time [71], or the average maturity of contact asperities between

the sliding surfaces [215]. Evolution of 0 is assumed to be independent of changes

in the normal traction, of, that can accompany the fault slip due to changes in the

fluid pressure. The model accounts for the decrease in friction as the slip increases

(slip-weakening), and increase in friction (healing) as the time of contact or slip ve-

locity increases (Fig. 5-3). The two effects act together such that A > B leads to

strengthening of the fault, stable sliding and creeping motion, and A < B leads to

weakening of the fault, frictional instability, and accelerating slip. In this way, the

model is capable of capturing repetitive stick-slip behavior of faults and the resulting

seismic cycle [70, 230].
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I /1f d,
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lPf+(A-B)nV2

-- Slip

Figure 5-3: Rate- and State-dependent friction model. Coefficient of friction on the

fault, pf, evolves with the slip rate or velocity, V, and the state variable, 6, as per

Eq. (5.37). For a sudden increase in the slip velocity from V to V2 , the coefficient

of friction first increases sharply due to a sudden increase in resistance from contact

asperities, and then declines slowly due to slip-weakening. The final steady-state

value of the coefficient of friction can be lower than the initial steady-state value if

A - B < 0, as shown above.

We use the Mohr-Coulomb theory to define the failure criterion for the fault [133].

When the shear traction on the fault is below the friction stress, r < Tf, the fault

does not slip. When the shear traction is above the friction stress, T > Ty, the contact

problem is solved to determine the Lagrange multipliers and slip on the fault. The

Lagrange multipliers attain values that are compatible with the frictional stress.

Fault pressure in the failure criterion

Traditionally, in the Andersonian faulting theory [8], fault slip is modeled in a 'dry

environment', that is, in the absence of fluids. In some cases, presence of fluid was

recognized through the effective stress concept, however, dynamics of flow was not

considered for reasons of conceptual and computational simplicity, as well as for the

belief that fluid flow plays a secondary role in the release of tectonic stresses [127]. The

effect of pore pressure was accounted for by modifying the coefficient of fault friction,

pif [20]. In the case of mature faults, the fault permeability to flow can be very low

due to comminution of grains [37, 17], and therefore it may appear that flow has a

secondary role in determining the stability of these faults. However, precisely because
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of low permeability in fault zones, the fluid pressure can be highly heterogeneous in

space, with different values across the fault. A difference in fluid pressure across the

fault leads to a pressure jump Pjrf = p+ - p-, where p+ and p_ are the equivalent

multiphase pressures (Eq. (5.20)) on the 'positive' and the 'negative' side of the fault.

One of the key features of the 2D representation of faults is the ability to reproduce

a finite jump in the pressure, P~r,f across the fault. This pressure jump leads to

discontinuity in the effective stress across the fault, such that, the total stress is

continuous,

a-_ n - bp-n = a' - n - bp+n, (5.38)

a requirement for momentum balance on the fault. Then the question arises, how

can this pressure jump across a fault be incorporated in the formulation? This is

important because it dictates stability of the fault.

Fault stability can be assessed by evaluating the failure criterion on both sides of

the fault separately. The side of the fault where the criterion is met first, determines

the fault stability. Equivalently, this can be achieved by defining a fault pressure

that is a function of the pressures on the two sides, p+ and p. Introducing the

fault pressure allows us to uniquely define the normal traction on fault a$, which

determines the fault friction Tf (Eq. (5.35)). Since the failure criterion, T > Ff, is

first reached with the larger pressure, we define the fault pressure, pf, as

pf = max (p-, p+). (5.39)

5.2.5 Boundary and initial conditions

The mathematical model requires that initial and boundary conditions be defined

for both the fluid flow and mechanical problems. We consider one pressure, pa, and

nphase - 1 saturations, {S,, V0 # a}, as the primary variables of the multiphase flow

problem, where a is one of the fluid phases. Pressures of the remaining nphase - 1

phases can be uniquely determined from the nphase - 1 capillary pressure relations

(Eq. (5.21)). Saturation S, is determined from the constraint that the sum of all
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saturations is identically equal to 1.

Geologic reservoirs are located at depth, while the effect of coupled flow and

deformation, such as subsidence and earthquakes, are observed at the ground surface.

The weight of the overburden rock plays an important role in determining the ground

subsidence even when it is not part of the flow domain. The flow domain could also

be laterally confined due to sedimentary or stratigraphic features such as pinch-outs,

sealing faults, or other types of hydraulic barriers. As a result, the boundaries of the

flow domain and the mechanical domain may not coincide. The mechanical domain is

usually extended such that it encapsulates the flow domain [233], which also reduces

spurious boundary effects

Since the flow equation, Eq. (5.31), is a statement of balance of fluid fluxes with

fluid accumulation, the most natural boundary condition for the flow problem is a

flux boundary condition. It is a common practice to define the flow domain such that

it can be modeled as a closed system, in which case the normal component of the

fluid flux of each phase a across the boundary is zero,

v, -n = 0 on Fv, (5.40)

where n is the outward unit normal to the boundary F. Non-zero boundary fluxes can

similarly be prescribed. When the flow domain is in communication with an external

system with known pressure (such as an aquifer of known capacity), it is possible to

prescribe a mixed boundary condition, where a linear combination of pressure and

normal pressure gradient across the boundary, for a given phase, is expressed in terms

of the pressure outside the boundary

ap
C1  " + P, = P on F,, (5.41)

an

where C1 is a constant related to the boundary transmissibility and Y is the known

external pressure [42, 92]. The parts of the boundary with prescribed external pressure

and flux must be non-overlapping and cover the entire boundary, i.e., r, n r =

0, £Fp u r = (Q.
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For the mechanical problem, displacements are the primary variables. The bound-

ary condition can be prescribed either in terms of the displacements or the tractions

or a suitable combination of both along the boundary,

u = U on F,, or -n = t on F,, (5.42)

where U is a prescribed displacement, and i is a prescribed traction. Fu and I,

boundaries may overlap because a node can have a prescribed displacement in one

direction and prescribed tractions in other directions. However, they must satisfy

FU U F, =8 Q.

Initialization of a coupled multiphase poromechanics problem requires careful at-

tention. The common practice is to initialize the problem under the assumption

of flow and mechanical equilibrium. Pressures and saturations in the multiphase

flow problem can be initialized using the concept of Vertical Equilibrium [61], which

assumes that the fluids are distributed vertically satisfying capillary-gravity equilib-

rium. Since initialization is performed at a time before any well starts to flow, this

is usually a good assumption. Initial pressures are calculated based on hydrostatics,

using prescribed fluid contacts and a datum pressure in the flow domain. Initial sat-

urations are calculated from the initial capillary pressures, and they also honor the

fluid contacts. Since hydrostatic pressures depend on fluid densities, which in turn

depend on fluid compressibilities, which further depend on pressure, initialization is

done iteratively-two to three iterations are sufficient for most problems.

We initialize the mechanical problem with zero displacement field. Therefore,

initial stresses are prescribed such that they balance body forces and boundary trac-

tions.

5.3 Numerical formulation

In this section we discuss the numerical formulation and discretization of the coupled

multiphase flow and geomechanics problem. We first present the space discretization,
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followed by the time discretization and, finally, the fully discrete system of algebraic

equations.

5.3.1 Space discretization

We use the finite volume method for discretization of the flow problem [13], and

the nodal-based finite element method for discretization of the mechanics problem

[129, 278]. We use a single, unstructured computational grid for both the flow and

the mechanics problems. The pressures and saturations degrees of freedom are located

at the element center, and the displacement vector degrees of freedom are located at

the element nodes (Fig. 5-1). This space discretization is locally mass conservative at

the element level, yields a continuous displacement field, and enjoys excellent stability

properties [138, 207, 208, 147].

Elements with nodes on the fault surface deserve special consideration. Each node

on the fault is triplicated to create a 'b+' node on the positive side, a 'b_' node on the

negative side, and a Lagrange node 'a' in the middle. These nodes store the positive

side displacement u+, the negative side displacement u_, and the Lagrange multiplier

1, respectively. All three nodes are physically collocated in the initial grid, so elements

representing the fault are zero-thickness elements. Slip on the fault is related to the

positive and the negative side displacement fields through Eq. (5.33). The Lagrange

multipliers are the fault tractions required to satisfy both the equilibrium equation,

Eq. (5.43), and the friction constraint T < Tf with Tf from Eq. (5.35). We define

a fault coordinate system to relate the quantities commonly used in describing the

fault motion (reverse or normal slip, and left or right lateral slip; see Fig. 5-1) to the

global displacements. In three dimensions, the fault coordinate system is defined with

along-strike (lateral), along-dip (reverse or normal), and normal-to-fault (opening)

directions (Fig. 5-2). In the fault coordinate system, the fault normal vector in 3D is

nf = [0, 0, 1 ]T, where superscript T indicates transpose.
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Mechanics problem

Using standard arguments from functional analysis [34] that is, multiplying by the

test functions (which act as weighting functions in the integral form of the differen-

tial equation, and satisfy essential boundary conditions), integrating over the domain,

applying the divergence theorem, inserting the essential and natural boundary condi-

tions, and exploiting symmetry of the stress tensor, we arrive at the weak form of the

governing equations for the mechanics problem: Find (u, 1) belonging to appropriate

functional spaces satisfying the essential boundary conditions (u = u on ru) such

that

jV7i : (-' - bpE )dQ

+ j - (1 - bpfn)dF - j - (1 - bpfn)dF

n -PbgdQ - q -tdF = 0, (5.43)

j q - (u+ - U- - d)dF = 0, (5.44)

for all test functions q (ndim x 1 vector) belonging to the appropriate functional

space satisfying q = 0 on ]F. Here, we used the multiphase effective stress equa-

tion, Eq. (5.22). PE is the equivalent pressure (Eq. (5.20)), pf is the fault pressure

(Eq. (5.39)), and Pb is the bulk density, all of which depend on the phase pressures and

saturations, and, therefore, on the solution of the flow problem. For linear elastic and

isotropic material, the elasticity tensor Cdr is given in terms of the Young modulus,

E, and the Poisson ratio, v.

Let the domain be partitioned into non-overlapping elements (grid blocks), Q

Ungl",. where nelem is the number of volumetric elements. A fault is treated as

an interior boundary with its domain, Qf, partitioned into non-overlapping fault

elements, Q 3 = L1"" Qj, where the subscript f indicates variables associated with a

fault. The displacement, the Lagrange multiplier, and the slip fields are approximated
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as follows:
nnode

U Uh = bUb = 17b- Ub, (5.45)
b=1

nf,node

1~h = E naLa = 7a La, (5.46)
a=1

nf,node

d ~dh = I: ?aDa = 77a -Da, (5.47)
a=1

where subscript h indicates the finite element approximation, no"de is the number

of displacement nodes, and nf,node is the number of Lagrange nodes. Under the

summation sign, Ub are the displacement vectors at the element nodes (including the

displacements Ub, and Ub_ at the fault nodes), and La and Da are the Lagrange

multiplier vectors and the slip vectors at the Lagrange nodes of the fault. La and

Da are in the fault coordinate system (Fig. 5-1). Dot product in the rightmost

expressions denotes a matrix-vector product. Ub in the rightmost expression is a

global vector over all the nodes, hence, of size ndimnnode x 1. Similarly, La and Da

on the right hand side are global vectors over all the Lagrange nodes, hence, of size

ndimnf,node x 1. The interpolation functions, 77b and 77a, are the usual C0-continuous

isoparametric functions, such that they take a value of 1 at the respective nodes, and

0 at all other nodes. 17b is a ndim x ndimnnode matrix and in 2D it takes the form

7= 1 0 T72 0  . .. 7nnode 0 ] (5.48)
0 1 0 72 . . . 0 ?lflde

Similarly, Tia is a ndim x ndimnf,node matrix. After substitution of the finite element

approximations into the weak form of the problem [Eqs. (5.43)-(5.44)], we obtain the
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discrete equations in residual form:

0 = Bb: (or' - bpE,h1)dQ

+ j+ ?b+ 'a ' (La - bPf,hnf)dF - j -nb_ ' a a - bPf,hnf)dF

j 7b -Pb,h9dQ - j b -id, (5.49)

O=j 7a - (?b+ - Ub± - lb_ - U 6_ - 1a - Da)dF, (5.50)

where Bb - V8lb is the linearized strain tensor, which, in 2D, takes the form

Ox01 0 ax&2 0 ...

Bb = 0 ar,1  0 ay?2 ... j, (5.51)

[9y T1 Ox T1 yq2 0x72 ... .

corresponding to the compact engineering notation for stress and strain inside an

element as c-' = [or/, or, t, ]T and eh - [h,xx, Eh,yy, 2EhXy]T, respectively [129].

Identity tensor in the compact notation is I = [1, 1, 0 ]T. qb_, and 7 _ are ndim X

ndimnf,node matrices. Effective stress is computed as 6 = Deh = DBbUb, where

in 2D

1 01
E(- -

V
D E1" 1 0, (5.52)

(1 + v)(1 - 2v) 1-v
o0 0 1-2

_ 2(1-v)_

is the elasticity matrix, E is the Young modulus, and v is the Poisson ratio. With

these substitutions, the integrand in the first term in Eq. (5.49) becomes B TDBbUb -

bpE,hB T. Note that in the second and the third term of Eq. (5.49), it is assumed that

the fault pressure is collocated with the Lagrange multiplier node and, therefore, can

be interpolated identically. Eq. (5.49) results in ndimnnode equations, and Eq. (5.50)

results in ndimnf,node equations.
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We solve Eq. (5.49) subject to the slip constraint

6Da = 0, Ta < Tf,a, (5.53)
f (Ta, Tf,a, La), Ta > Tf,a,

where T and Tf are from Eq. (5.34) and Eq. (5.35), respectively. f(.) is a vector

function of fault tractions and fault friction that determines slip on the fault, and it

is determined by solving the contact problem.

Multiphase flow problem

The flow problem is discretized using the finite volume method on the same grid

defined for the mechanical domain, Q = UJ1' Q. For simplicity, let us consider two

fluid phases, water and gas. Note that in each element, S, +S = 1. We integrate the

fluid phase mass conservation equation, Eq. (5.31), for each phase over each element

i. For the water phase, this yields

pW Nww+Nwg + bi'pg- Nww+ PW9 dQ
Dt Ju \ K dr} ) W~KdrJ gd

+ a pwbw- dQ - - nidF pwfedQ, (5.54)
Kdratj 2, n an

where we used the capillary pressure relation, Pwg = pg - pw, to eliminate the water

phase pressure, the Biot coefficient relation, bg + bw = b, and integration by parts for

the mass-flux term to express it as a surface integral. ni is the outward normal to

the boundary of the element i. Similarly, we have a mass balance equation for the

gas phase:

a pg ((Nwg + Ngg + bbg) Pg - Nwg + jj") Pwg) dQ

+ pgbg-vdQ - Wj W nidf pgfgdQ. (5.55)
Kdr at an n

We approximate both the pressure and the saturation fields with a piecewise constant

interpolation function, p, such that pi takes a constant value of 1 over element i and
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0 at all other elements. Phase pressures and saturations are approximated as

nelem

Pa Pa,h = CPipa,i, (5.56)

nelem

Sa ~Sh = S SQ,i, (5.57)
i=1

where the discrete pressures, pa,i, and phase saturations, S,, are located at the center

of the element i (Fig. 5-2).

We can further express the mass flux term as a sum of integral fluxes between

element i and its adjacent elements j:

nface,i nface,i

ww -n i d = j ww -nijdF = 5 Ww,ij, (5.58)
Ja ~ j1 ij j=1

where nrface,i is the number of faces of element i, and ni3 is the outward normal at the

face Fij. The inter-element flux of water, Ww,ij, can be evaluated from Darcy's law

(Eq. (5.32)) as a function of the rock and fluid properties, pressures, and saturations

of the element i and its adjacent elements j, using a two-point or multipoint flux

approximation [162, 114, 5]. After substitution, the semi-discrete water phase mass

balance equation is

O = ,[VbiPw,i ((Nww + Nw, + "bW Pg,i - Nw + Kd Pgiat g Kdr~ + KdFr~~

a / 'b v \fc~
+ (Pw (wbev+ tpi kKdr ) V E Ww - pw,ifw,iVb,i, Vi = 1, ... , nelem, (5.59)

j=1

where subscript i refers to the value at element i. Similarly, we could write the

semi-discrete equation for the gas phase:

O = i Ngw + Ngg + _bg Pg,i - Nw+ bgbwP,i0=at Ijz~~\g Kdr, JKdr/ gjj

+t K d , Wg,2j - pg,ifg,iVb,i, Vi = 1,...., nelem, (5.60)
at Kdrj=1
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5.3.2 Time discretization

In quasi-static poromechanics, the time derivative appears only in the accumulation

term of the fluid mass balance equation (first two terms in Eq. (5.59)) which we

discretize using the fully implicit Backward Euler scheme,

n+1 _ gn

a -to nm = 6, (5.61)

where superscript n denotes the time level, and 6t is the time step.

5.3.3 Fully discrete coupled system

Introducing the time discretization in the semi-discrete finite element Eqs. (5.49)-

(5.50), we arrive at the following coupled system of algebraic equations

j= B : (Orn+1 -bpjl j1)dQ

+ 77b - 7a * (L +1 - bpnJnf)d]F - j+ - 77< (Lg+ 1 - bp~ 1 nf)dF

j7b -Pnb1 - j -1 tdF, (5.62)'qbba Jr ri

R, = na* (,7b- b+ - 77b_ U+ - 7 - D n+1)dF. (5.63)
f

to be solved at every time step for the displacements Un+1 at the regular nodes, and

the Lagrange multipliers Ln+ 1 at the fault nodes such that the above residuals are

zero. In vector form, the system of ndim(nnode + nf,node) algebraic equations of the

mechanical problem can be expressed as follows:

Ru 0 ti .
= ,, (.64)J

which needs to be solved subject to the constraint in Eq. (5.53) at every time step.
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For the water-gas multiphase flow problem, we have

R = - 6[ V (P Nww + Nwg + P - Nww+ ) Pwg)]

-w "face, i

+6 pI V - W [pwfwVob], (5.65)
=1

Ri =6t VP Nw+ Ngg+bbg Pg Nw+bb~Kdr /Kdr/J
"face,i

+o 6tPg OVV -J W [PgffgVac (5.66)

which must be solved at every time step for the element gas phase pressure Pgni, and

the element water phase saturation S"j 1 such that the above residuals are zero. The

water phase pressure is determined with the help of the capillary pressure relation

(Eq. (5.21)), and the gas saturation is determined from the constraint Sg + Sw = 1.

The system of nphase x nelem algebraic equations of the multiphase flow problem can

be expressed as follows:

]= . (5.67)
Rg 0

The mechanics problem is coupled to the flow problem through the inverse Biot

modulus N, the drained bulk modulus Kdr, the Biot coefficient b, and the bulk density

Pb. Further, N, b, and Pb are themselves functions of fluid pressures, saturations and

solid displacements.

5.4 Solution strategy

In this section, we discuss our scheme for solving the coupled system, Eqs. (5.64)-

(5.67). We use a sequential-implicit solution scheme [202, 277, 10, 9, 138, 147] to

solve the coupled multiphase and geomechanics problem. In this scheme, the two sub-

problems of multiphase flow and mechanics are solved in sequence such that each sub-

problem is solved using implicit time discretization. An outer iteration is performed

over the two sub-problems to ensure full convergence of the solution at every time step.
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As opposed to the simultaneous solution approach [165, 265, 134, 138], where all the

unknowns (displacements, pressures, and saturations) are solved for simultaneously

at each time step, the sequential iterative approach [202, 277, 10, 9, 138, 147] solves

the system separately for the mechanics (displacements, Lagrange multipliers) and

the flow (pressures, saturations).

5.4.1 Mechanics sub-problem

We solve the linear systems of equations of the mechanical problem using Newton's

method. Given an approximation [Un+1, L n+l](k) to the solution at tn+1, an improved

solution is obtained as [Un+1 , Ln+l] (k+1) = [Un+1, L n+l](k) + [6Un+ 1 , 6Ln+l](k), where

the correction is the solution to the system of linear equations:

[K CT] (k) [6U (k) (k)(568)

C 0 J Lai Rij

where the individual entries of the block matrix are

Kbb BTDBbdQ, (5.69)

Ca = j ? - ("b, - Tib )dF. (5.70)

In the equations above, K is the stiffness matrix and it is symmetric positive definite;

C is the part of the Jacobian associated with the slip constraint, Eq. (5.50), and

consists of direction cosine matrices to convert from the global coordinate system

to the fault coordinate system (vice versa for CT). Note that for a linear elastic

material with time-independent material properties and boundary conditions, the

Jacobian matrix does not change with time, although the residuals may change due

to coupling with the flow. To visualize the fault contribution to the linear system, we
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can write Eq. (5.68) as

- (k) (k) (k)
Kbb Kbb+ Kbb_ 0 6 Ub Ru

Kb~b Kbb+ 0 CT~ ~ Ru+Kb a 6 Ub+ (5.71)
Kb-b 0 Kbb -Ca Ub_

0 Cba -Cb-a 0 6La R,

where

Cb+a j 7a -rbdF, (5.72)

Cb-a = fa - bdF. (5.73)

Note that the fault slip, Da, is in the right hand side, R1 , and is, therefore, assumed to

be known. It is either prescribed as part of the problem definition, or if a constitutive

model for fault friction is given, it is separately computed from Eq. (5.53). In that

case, the mechanics problem is nonlinear because fault slip is a function of the fault

tractions (the Lagrange multipliers), which are limited by the fault constitutive model

and depend on the slip. Hence, an iterative scheme is employed to solve the contact

problem and determine the slip. The algorithm is as follows:

1. If T > Tf, or if T < Tf but the iteration has not converged due to overshoot in

slip from the previous iteration, compute the perturbation in the Lagrange mul-

tipliers, L+l, necessary to satisfy the fault constitutive model for the current

estimate of slip, DP, as follows

6L'tl = (1 - 6i,nfdaim)Lj P 1 < i < ndim, Va = 1,... ,fnode,

(5.74)

where p is the iteration number of this inner loop, and 8 i,ndim is the delta func-

tion ensuring that only the shear components of the Lagrange multiplier are

perturbed.

2. Compute the increment in fault slip, 6DP+, from increments in Up+ and

U_+1 corresponding to the perturbation in the Lagrange multipliers, assuming
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that the deformation is localized to the fault nodes only. Solve three linear

subsystems, extracted from Eq. (5.71), for the positive side nodes, the negative

side nodes, and the Lagrange nodes on the fault

Kb+b+6Up4i -= 6LP+l

Kb-bi6U+ 1 = CT a6LP+1 , (5.75)

6DP+1= Ca(6Ut41 -U+1

where the bulk deformation term, the body weight term, and the boundary

traction term from the Eq. (5.62) do not appear because they are assumed

fixed during solution of the contact problem.

5.4.2 Multiphase flow sub-problem

We solve the linear system of equations of the multiphase flow problem using Newton's

method. The correction vector is the solution of linear equations:

a~w a - (k) -p (k) - - (k)

[9pg 1 Pg _ [1 (5.76)
aRa a g [Rg

where the partial derivatives of the residuals are evaluated using the constitutive

equations (Eq. (5.30) and Eq. (5.32)) that relate rock and fluid properties to the fluid

pressures and saturations.

5.4.3 Fixed-stress sequential method

In this work, we use the fixed-stress sequential iterative method [149] to solve the

coupled multiphase geomechanics problem. In this method, the flow sub-problem is

solved first keeping the rate of the volumetric total stress fixed, then the mechanics
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sub-problem is solved keeping the fluid pressures and the saturations fixed:

Un U* Un+1

L A"flow A * mech Ln+1
-4 , (5.77)

where Aflow : Rw = 0, R9 = 0, 6t-, prescribed, is the multiphase flow sub-problem

with fixed rate of volumetric total stress, and Amech : 0, R, 0, P, S. =

prescribed, is the mechanics sub-problem with fixed flow variables. Superscript * in-

dicates intermediate solution. The volumetric total stress, or, appears in the accumu-

lation term, Vb (pg Vbof the multiphase flow equations, Eq. (5.65) and Eq. (5.66).

To keep the rate of a- fixed during the flow solve, this term is evaluated explicitly

using the value of 6t-, from the previous sequential iteration.

This sequential procedure is iterated at each time step until convergence of the

full solution, which is then identical to the solution obtained using the simultaneous

solution approach. Recently, it has been shown that the fixed-stress operator split

is unconditionally stable, it enjoys the excellent convergence properties compared

with the other unconditionally stable sequential iterative method (the undrained

split) [149, 147, 150].

5.5 Implementation

We developed a coupled multiphase flow and geomechanical simulator by coupling

Stanford's General Purpose Research Simulator (GPRS) [38, 200] as the flow simula-

tor, and PyLith [3, 2] as the mechanics simulator. Below we describe the major steps

in the development of this coupled simulator.
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5.5.1 The flow simulator

GPRS is a general purpose, object-oriented, reservoir simulator for multiphase/multi-

component subsurface flows. It treats element connections through a general connec-

tion list, which allows for both structured and unstructured grids. GPRS is capable

of handling complex production and injection scenarios in the field, such as wells

perforated at multiple depths and flowing under variable rate and pressure controls.

The original simulator [38, 200] does not account for coupling with the mechanical

deformation, and it models the mechanical behavior of the system through a user-

provided rock compressibility [13]. We modified and extended the original code to

implement the coupling with the mechanics simulator (Fig. 5-4). In particular, we

implemented the functionality to compute the modified accumulation term in the

fluid phase mass balance equations, Eq. (5.65) and Eq. (5.66). We also modified the

setup of the linear system to implement the flow step of the fixed-stress sequential

solution scheme, Eq. (5.77).

5.5.2 The mechanics simulator

PyLith is a finite element code for the simulation of static and dynamic large-scale

deformation problems [3, 271, 2]. Much of its development has been motivated by

the modeling of earthquake physics; however, its applicability extends to problems

at any other scale, such as the reservoir scale or the laboratory scale. Some of the

advantages of PyLith are: (1) It is an open-source code and can be modified for specific

purposes; (2) It is written using C++ and Python languages and is extendable; (3) It

is suitable for parallel computing; (4) It allows localized deformation along discrete

features, such as faults; (6) It is well integrated with meshing codes, such as LaGriT for

tetrahedral meshes [156] and CUBIT for hexahedral meshes [57]. Originally, PyLith

is not coupled to any fluid flow model. We modified the original PyLith code and

coupled it with the flow simulator, GPRS (Fig. 5-5). In particular, we implemented

a C++ class, iGPRS, to allow communication between the flow and the mechanics

simulators. iGPRS provides the functionality required for exchanging information
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Figure 5-4: Main modules in the GPRS flow simulator. Red color indicates that the
code for that particular module has been modified in the course of development of the
coupled simulator. Black-oil (BlackOil) and Compositional (Composit) are two types
of flow simulations. A Black-oil simulation does not consider changes in composition
of the flowing phases whereas a Compositional simulation does. 2P and MP denote
two-point flux approximation and multi-point flux approximation, respectively.
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Figure 5-5: Main modules in the PyLith mechanics simulator. Red color indicates that
the code for that particular module has been modified in the course of development
of the coupled simulator. iGPRS is a new module added in PyLith that provides
the functionality to interface PyLith with GPRS. It also serves as a datastore for
exchanging data between the two simulators.

(pressures, saturations, and volumetric total stress) between the two simulators.

PyLith supports distributed memory parallelization (Message Passing Interface

or MPI) whereas GPRS's parallelization is based on the shared memory architecture

(Multi-processing or OpenMP). We integrated the two such that we can run the

coupled simulator on a cluster with multiple compute nodes (distributed memory)

where individual nodes have multiple cores or processors (shared memory).

5.5.3 Grid

We use a single grid for both GPRS and PyLith. The grid is generated using CU-

BIT [57] or LaGriT [156] software. We define geologic surfaces, material regions,

faults, and pinch-outs during the geometry creation stage. Then we mesh the do-

main with hexahedral elements using a fine mesh in the reservoir domain and an

increasingly coarse mesh in the overburden, underburden, and sideburden regions.

We export the grid in a finite-element format such as the netCDF format [57], for

PyLith. We process the grid file using a MATLAB script to generate the equivalent

finite-volume grid in the reservoir domain with element centroid coordinates, element
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bulk volumes, and face transmissibilties in the Corner Point Geometry format [2291.

GPRS uses the finite-volume grid for simulating flow. The two simulators exchange

pressures, saturations, and volumetric stress information inside the flow domain.

5.5.4 Implementation of faults

To support relative motion across fault surfaces, PyLith modifies the grid topology to

create zero-thickness fault elements, and adds additional degrees of freedom to hold

the Lagrange multipliers and fault slip vectors at the fault nodes [2, 4] (Figs. 5-1-5-2).

PyLith solves the contact problem assuming that the deformation is limited to the

fault nodes (Eq. (5.75)). If this assumption is not met (for example, when the fault

slips over the entire domain), it leads to poor convergence of the iterative scheme used

to solve the contact problem. Also, if the fault friction coefficient changes significantly

with slip (for example, in Rate- and State- dependent models, Eq. (5.37)), it leads

to large changes in Tf,a at every iteration and the convergence may degrade. To

improve the convergence, a line-search routine is used as part of the iterative scheme

to find the optimum perturbation in the Lagrange multipliers [4] that minimizes the

combined mismatch between the fault friction and the fault traction at all the fault

nodes. We modified PyLith's original line-search routine such that the inequality

constraint, T < Tf, is always honored.

5.5.5 Initialization

The flow simulation is initialized under the assumption of Vertical Equilibrium (Sec. 5.2.5)

with the initial pressure and saturation fields calculated using the rock and fluid prop-

erties (depth, fluid density, capillary pressure, and fluid contacts). PyLith is initialized

with the initial displacement field calculated during an elastic pre-step calculation us-

ing initial and boundary displacements and stresses. Initial stresses and boundary

tractions are total stresses calculated with bulk densities that account for any fluid

contact in the flow domain.
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5.5.6 Linear solver

The mechanics problem, Eq. (5.68), leads to a saddle-point problem due to the use

of Lagrange multipliers to implement the fault slip constraint. Custom precondi-

tioners are required to solve the linear system efficiently. We solve Eq. (5.68) using

the Portable, Extensible Toolkit for Scientific Computation (PETSc [15])'s multigrid

preconditioner for the elasticity submatrix in conjunction with a custom fault pre-

conditioner for the Lagrange multiplier submatrix [4, 2]. We solve the flow problem

(Eq. (5.76)) using the SAMG multigrid preconditioner [226, 200].

5.6 Representative numerical simulations

We illustrate the validity and applicability of our modeling approach through a num-

ber of representative simulations. Some are benchmark problems and others are more

realistic scenarios. We conduct these simulations using our coupled simulator.

5.6.1 The Terzaghi problem

Our first example is a uniaxial compaction test under drained conditions, also known

as Terzaghi's problem [255, 267]. The purpose of Terzaghi's problem is to test the

accuracy of the numerical code for fluid-to-solid coupling. The model problem is a

laterally-constrained specimen, subjected to a uniform compressive traction applied

suddenly at the top surface (Fig. 5-6a). All sides of the specimen are no-flux bound-

aries except the top surface, which is open to flow. At t = 0+, the specimen compacts

and the pore pressure rises to its undrained value because of the sudden application of

the load, also known as the Skempton effect [236]. The undrained values of pressure

and total stress serve as the initial condition for the drained part of the consolidation

process. As time increases, the specimen consolidates vertically as the fluid leaks out

from the top permeable surface. It is a one-dimensional problem with a constant

total stress. Under these conditions, diffusion of pore pressure decouples from stress

and satisfies a homogeneous diffusion equation with known analytical solution [267].
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Figure 5-6: Terzaghi's uniaxial compaction problem. Model with boundary conditions

is shown on the left. Comparison of pressure evolution between numerical simulation

and analytical solution is shown on the right. Dimensionless pressure is plotted

against dimensionless distance at four different times.

Strain due to compaction is proportional to the pressure drop.

We used the following values of the relevant parameters: specimen length of 50

m, compression of 2.125 MPa, Young's modulus of 120 MPa, drained Poisson's ratio

of 0.3, Biot's coefficient of 1.0, porosity of 0.2, and hydraulic diffusivity of 1.9X 10-6

m 2/s. Our numerical simulation agrees well with the analytical solution (Fig. 5-6b).

5.6.2 The Mandel problem

Mandel's problem [177, 228, 6] has been used as a benchmark problem for testing the

validity of numerical codes of coupled poroelasticity. Its main feature, the Mandel-

Cryer effect, is that the pore pressure at the center of a loaded specimen rises above its

initial value because of the two-way coupling between fluid flow and solid deformation.

Mandel's problem involves a long specimen of rectangular cross-section pressed on one

side with an impermeable plate that applies a constant compressive stress Oo, and

fixed on two sides using impermeable roller boundaries (Fig. 5-7). The fourth side

of the cross-section is free from normal and shear stresses (traction-free boundary),

and is open to the atmosphere (constant pressure boundary). The porous medium

is saturated with a slightly compressible fluid, water, with initial pressure set at the

reference value, po = 0. Since the specimen is long, we assume plane strain conditions,

namely that the displacement and fluid flux vanish in the z direction (perpendicular
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Figure 5-7: Mandel's compaction test. The model dimensions are L, x Ly x Lz =
50 mx 10 m x 0.5 m, discretized with 100x20x1 hexahedral cells. A uniform and
constant compression of 1 MPa is applied on the left boundary while the right and
bottom boundaries are fixed in the normal direction. Top boundary is traction-free.
For the flow model, the top boundary is a drained boundary with constant pressure
p = 0, and other three boundaries are no-flow.

to the paper). With these boundary conditions, the three-dimensional equations of

poroelasticity reduce to one-dimensional equations for a, (y, t) and p(y, t), which can

be solved analytically [177, 6]. At t = 0+, a uniform undrained pressure is generated

by the Skempton effect, along with uniform stress UXX = -go. The specimen expands

towards the top boundary due to the Poisson effect. As time progresses, the pressure

on the top boundary decreases because of fluid drainage, which makes the specimen

more compliant there. If the hydraulic diffusivity is small, the effect of drainage

is not observed immediately near the no-flux bottom boundary. This results into

load transfer of compressive total stress towards the bottom boundary, in response to

which the pressure there continues to rise above its undrained value. At long times, all

excess pressure vanishes and a uniform horizontal stress, axx = -aO, returns. Hence,

the pressure evolution at points away from the drained boundary is non-monotonic,

a phenomenon not observed in a purely diffusive process such as that modeled by the

Terzaghi theory, where the pressure is uncoupled from the solid deformation.

We choose a Young's modulus of 18 GPa, drained Poisson's ratio of 0.25, undrained

Poisson's ratio of 0.49, reference porosity of 0.05, and hydraulic diffusivity of 2.2 x 10-7

m2/s. Fig. 5-8 compares the pressure from the analytical solution and the numerical

simulation along the width of the specimen near the right boundary at different times.

Notice the increase in pressure near y = 0 at early times, as per the Mandel-Cryer

effect, before it dissipates.
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Figure 5-8: Comparison of pressure evolution from the analytical solution and from
our coupled simulator for the Mandel test. Pressure is plotted along the AA' line
shown in Fig. 5-7. Pressure is non-dimensionalized with the applied compression,
and distance is non-dimensionalized with the width, Ly. Note that, near y = 0, the
pressure increases at early time in accordance with the Mandel-Cryer effect [177, 6]
before beginning to decrease.

5.6.3 PUNQ-S3 subsidence

For the third test of the coupled simulator, we choose the PUNQ (Production forecast

Uncertainty Quantification)-S3 reservoir model [95]. PUNQ-S3 model is inspired

from a real field in West Africa. It is a dynamic 3D model with multi-well production

history. Water support comes from north and west aquifers, while two faults close the

reservoir on east and south sides. It has a small gas cap in the center. PUNQ model

is commonly used in the oil industry as a benchmark problem for history matching

and uncertainty quantification methodologies.

We constructed a geomechanical model of the PUNQ-S3 reservoir by extending

the reservoir domain in all three directions to account for overburden, underburden,

and sideburden (Fig. 5-9). This allows imposing a reasonable mechanical boundary

condition of zero displacements on the five sides of the domain. Top boundary, which

is at ground surface, is treated as a traction-free boundary. Model dimension is 13.5

km x 15 km x 5 km, and it is discretized with 29 x 38 x 15 hexahedral elements with

average element size of 465 mx395 mx333 m over the entire domain. Reservoir

dimension is 3 km x5 km x 0.1 km, and it is discretized with 19 x 28 x5 elements with
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Figure 5-9: PUNQ-S3 grid. Geomechanical grid on the left and reservoir grid on the
right. Reservoir domain is in the center of the geomechanical domain and is hidden
from the view in the left grid. Mesh becomes coarser as one moves away from the
reservoir. Reservoir grid on the right is exaggerated 20 times in the vertical direction.

average element size of 184 mx 178 mx 11 m in the reservoir. We assume a linearly

elastic material with uniform Young's modulus of 82.54 MPa and Poisson's ratio of

0.3. A history period, simulating eight years of production from six wells located close

to the gas-oil contact (GOC), was generated followed by another eight years of forecast

with five additional infill wells. We obtain the pressure fields by simulating the PUNQ-

S3 flow model for 16.5 years in a commercial flow simulator, Eclipse [229]. Then the

mechanical deformation is calculated in a mechanics simulator assuming poroelasticity

and one-way coupling from flow to mechanics. In Fig. 5-10 and Fig. 5-11, we compare

the results from three different sources: our coupled simulator, industry-standard

simulator (Abaqus as the mechanics simulator [235]), and Geertsma's semi-analytical

solution [105]. Geertsma's semi-analytical solution takes into account the actual shape

of the depleting volume and the spatial distribution of the pressure depletion.

We also investigate the effect of two-way coupling (mechanics-to-flow as the second

coupling) in the PUNQ simulation since the compressibilities of the produced liquids

(oil and water) are closer to that of the rock matrix (Sec. 5.2.2). To create a valid

comparison between the one-way and the two-way coupled simulations, same amount

of liquid (oil and water) is withdrawn from the wells in both the simulations (Fig. 5-

12). As expected, subsidence is less in the two-way coupled case compared to the
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Figure 5-10: Comparison of subsidence above the center of the reservoir from
Geertsma's analytical solution with pressure drop from Eclipse, from commercial sim-
ulators (Abaqus- Eclipse), and from our coupled simulator for the PUNQ-S3 model.
Both the one-way coupled (only flow-to-mechanics coupling) and the more accurate
two-way coupled results are shown. Note the excellent agreement between Abaqus
and PyLith results. The small discrepancy between the Geertsma's analytical result
and one-way coupled results is due to the finite distance from the reservoir to the
fixed boundaries of the simulation domain. Effect of mechanics-to-flow coupling is
evident in this reservoir as 27% difference between the one-way and two-way coupled
results.

::Geertsma-Ecdipse
qj)Abaqus-Ecdipse

Py~ith-GPRs J

s000-

0-

-50000

-54000 -260 6 26M 46 600 80

Figure 5-11: Comparison of subsidence contours from Geertsma's semi-analytical so-

lution, from commercial simulators (Abaqus-Eclipse), and from our coupled simulator

(PyLith+GPRS) for the PUNQ-S3 model. Contours of the vertical displacement (in
cm) on the ground surface are plotted after 16.5 years of production. One-way coupled

results are shown.
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Figure 5-12: Oil saturation in Jul-1983 (t = 6025 day) from the two-way coupled
simulation.

one-way coupled case (Fig. 5-10) because compaction of pores resist further pressure

decline and compaction.

5.6.4 Faulting due to CO 2 injection: Plane strain

This is an example of CO 2 injection in a deep confined aquifer for the purpose of

geologic carbon sequestration [39]. The aquifer is hydraulically compartmentalized

with a sealing fault that cuts across it. Storage capacity of the aquifer is limited

by overpressurization and slip on the fault. As described in [39], we consider a two-

dimensional plane-strain model with the fault under normal faulting conditions, that

is, vertical principal stress due to gravity is the largest among the three principal

stresses (Fig. 5-13). We choose a value of 0.7 for the ratio of horizontal to vertical

initial total stress.

CO 2 is injected at a depth of 1500 m in the confined aquifer at a constant rate of

169,000 standard cubic feet per day (0.1 kg/s) to pressurize the aquifer and induce

fault slip. We use a slip-weakening model for the fault (Eq. (5.36)) in which the

coefficient of friction drops linearly from 0.6 to 0.2 over a critical slip distance of 5 mm.

The fault cohesion strength is 0 MPa. Permeability and porosity are as follows: 100

md and 0.1 (aquifer), 0.0001 md and 0.01 (cap rock), and 10 md and 0.1 (otherwise).

Young's modulus and Poisson's ratio are 10 GPa and 0.25, respectively. We use a van
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Figure 5-13: Geometry of the CO 2 injection plane strain case (adapted from [39]).
CO 2 is injected in the confined aquifer at a depth of 1500 m. The aquifer is bounded
on the top and bottom by a low-permeability caprock, and the fault is impermeable
to flow.
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Genuchten capillary pressure function [262], Pwg = pg - pw = Po((S.)-1/m - 1)1-r,

Sn = (SW - SWie)/(1 - Swic), SwiC = 0.1Sw, where Po is the entry pressure and Swi

is the irreducible water saturation. We choose irreducible saturations of Sw1 = 0.12

and Sgi = 0.001, for water and gas, respectively. We set P = 13.8 kPa and m = 0.5.

We use Corey type relative permeability functions [36], krw = (Sw)P, krg = (1 - )p

and Sw = (Sw - Swl)/(1 - SwI - Sgi). We choose an exponent p = 2. We take gas

and water densities as functions of pressure from [142].

After 20 days of injection, pressure in the aquifer increases approximately uni-

formly by 3.6 MPa (Fig. 5-14). Overpressure causes volumetric expansion of the
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Figure 5-15: CO 2 injection in the plane strain case. Displacement fields in the hori-
zontal and vertical directions (top row and bottom row, respectively) at two different
times: t = 20 day (left) and t = 60 day (right). Notice the discontinuity in the
displacement field across the fault at t = 60 day as a result of slip. The rupture prop-
agates along the fault, asymmetrically away from the nucleation point at 1550 m,
with the longer part below the nucleation point due to the imposed normal faulting
condition. After 60 days, the rupture spans over 300 m in length.

aquifer (Fig. 5-15). This, in turn, results in an increase in the effective normal trac-

tions throughout the aquifer, and an increase in the magnitude of shear tractions at

the top and bottom boundaries of the aquifer, namely, at depths of 1450 m and 1550

m (Fig. 5-16). There are two interesting observations:

1. The stress evolution (Fig. 5-17a) is such that the bottom of the aquifer at 1550

m reaches the failure line (ps = 0.6) first because of the applied traction boundary

conditions, which favors normal faulting. Downward slip at the 1550 m depth pulls

the 1450 m point down such that the direction of change in the shear traction at 1450

m depth slowly reverses until it also fails by reaching the p, = 0.6 failure line.

2. The complete rupture sequence (Fig. 5-17b) is a combination of both seismic

and aseismic slips along the fault, with multiple seismic events observed at the bottom

boundary of the aquifer.
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Figure 5-16: Profiles of overpressure, fault slip and change in fault tractions plotted
along the fault at three different times: day 20 is just before the first slip, and day
27 and 33 are after two other seismic events noted in Fig. 5-17. The overpressure
profile nicely outlines the boundaries of the aquifer. Notice the drop in the shear
traction inside the aquifer, and increase outside the aquifer, due to slip events near
the 1550 m boundary. Also, note that as points on the fault slip, there is an increase
in shear traction at the neighboring non-slipping points, which leads to downward

(respectively, upward) movement of the spike in the shear traction below (respectively,
above) the aquifer.
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Figure 5-17: Evolution of stress state (a) and slip (b) on the fault at three depths:
bottom of the aquifer (1550 m, circles), top of the aquifer (1450 m, crosses), and
below the aquifer in the rupture zone (1652 m, triangles). At t = 21 day, rupture
nucleates just underneath the aquifer at 1550 m depth, which reaches the failure
criterion ([t, = 0.6 line) before any other point on the fault. This leads to an increase
in shear stresses at points adjacent to 1550 m, which fail in succession. The point
at 1652 m depth fails at t = 38 day. There is only a small change in the effective
normal traction at 1652 m point because there is no overpressure below the aquifer.
Change in effective normal traction is not zero because of deformation-induced stress
changes. The top boundary at 1450 m ruptures at t = 45 day, and relaxes quickly to
almost zero shear traction. Notice multiple seismic events in the slip plot. The three
events marked with arrows are analyzed in Fig. 5-16.

5.6.5 Faulting due to CO 2 injection: 3D

This example is similar to the previous one except that here we consider a 4 kmx4

km x 2 km three-dimensional domain with a 200 m thick anticlinal aquifer (Fig. 5-18),

and we use the rate and state dependent model (Eq. (5.37)) for the fault friction. The

rate and state constitutive parameters are: A = 0.002, B = 0.08, d, = 1 cm, PO = 0.4,

and r, = 0. These values strongly favor unstable sliding on the fault. Rock and fluid

properties are identical to the plane strain case above. CO2 is injected at a rate of

30 million standard cubic feet per day (17.64 kg/s) leading to overpressurization of

the aquifer (Fig. 5-19). The anticline is off-centered in y leading to asymmetry in the

overpressure field. Rupture nucleates at the base of the aquifer at (x, y, z) =(2850 m,

2900 m, 1600 m) after 202 days of CO 2 injection, and propagates on the fault along the

bottom boundary of the aquifer. After approximately two months, a second rupture

sequence begins along the layer just above the base of the aquifer. At t = 320 day, the

underburden rock layer below the anticline reaches the failure criterion and slips, and

the rupture subsequently propagates in both up-dip and down-dip directions on the
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Figure 5-18: CO 2 injection in a 3D anticlinal aquifer. Left: geomechanical domain is
shown with the traction boundary conditions on the top and on the right boundaries.
Lateral compression is 0.7 times the overburden. Zero normal displacement is imposed
on all other boundaries. No-flow boundary condition is imposed on all the boundaries.
Flow domain is composed of the four layers marked as aquifer, and the injector is
located near the center of the anticline. The fault is impermeable to flow. Right:
plan view (top figure) and cross-section view (bottom figure) of the aquifer are shown.
Depth contours are marked in the plan view. The cross-section view is exaggerated
in the vertical direction.
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Figure 5-19: CO 2 injection in a 3D anticlinal aquifer. Overpressure (left figure) and
water saturation (right figure) in the aquifer layers at t = 202 day, when fault slip
begins.
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Figure 5-20: CO 2 injection in a 3D anticlinal aquifer. Slip (top) and slip velocity
(bottom) on the fault plane at t = 400 day. A video that shows the dynamics
of fault rupture from the coupled flow-geomechanics simulation is included in the
Supplementary Material.

fault with higher slip velocity in the down-dip direction (Fig. 5-20). Downward slip

is favored due to the imposed normal faulting condition. The rupture front adopts

an ellipsoidal shape following the profile of the aquifer, which is being pressurized.

In Fig. 5-21, we show the evolution of slip and traction on the fault at three points

directly under the anticline-base of the aquifer, top of the aquifer, and below the

aquifer in the underburden rock. Slip velocity at the base is small and constant

in the beginning resulting in stable sliding; then it increases sharply due to slip-

weakening before decreasing again back to a new stable sliding value that is higher

than the earlier stable sliding value (Fig. 5-21). Since the fault is represented as a

two-dimensional surface, we can compute the magnitude of the earthquake from the

actual rupture area. The earthquake magnitude is given by the expression, M" =

2 log10 MO - 6.0, where the seismic moment is given by MO = ff Gid~d', Idl is the

magnitude of the final slip vector at the end of the earthquake, and G is the shear

modulus [121]. Substituting the values, we obtain M. = 3.4 at t = 500 day. Note

that since this is a quasi-static simulation with very small slip velocities, earthquake

here refers to the seismic event producing equivalent amount of slip.
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Figure 5-21: CO 2 injection in a 3D anticlinal aquifer. Evolution of slip and state of
stress on the fault at three depths under the anticline: 1585 m (bottom of the aquifer),
1443 m (top layer of the aquifer), and 1681 m (below the aquifer in the underburden).
Slip, slip velocity, and shear traction are in the downdip direction along the fault.

5.7 Conclusion

We have presented a new computational model to simulate the coupling between mul-

tiphase flow and poromechanics of faults, and developed a two-way coupled simulator

that interlaces a geomechanics simulator (PyLith) with a multiphase flow simulator

(GPRS). Our approach enjoys the following features:

1. It is computationally efficient because it relies on a sequential solution of the

two-way coupled problem.

2. It is unconditionally stable, due to the use of the fixed-stress sequential split

between multiphase flow and deformation. The model accounts rigorously for

multiphase flow effects through a fully nonlinear poromechanics formulation.

3. It represents faults as surfaces embedded in a three-dimensional domain, there-

fore allowing for a discontinuous displacement field across the fault (fault slip).

Our approach elucidates the role of the pressure discontinuity across the fault

on the stability of the fault through the definition of a 'fault pressure'.
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4. It incorporates realistic fault constitutive behavior, such as the rate- and state-

dependent friction model, capable of simulating runaway fault slip typical of

earthquakes.

We assume quasi-static mechanical deformation by neglecting the inertial term in

the solid momentum balance equation, and we use an implicit time-marching scheme

for the coupled simulation. While this is an excellent approximation prior to fault

rupture, during fault slip the inertial term is not negligible due to propagation of

seismic waves. We are currently extending the capabilities of our simulation tool

to implement a dynamic implicit-explicit time marching scheme that can take small

time steps required to resolve the propagation of rupture on the fault, while taking

orders of magnitude larger time steps during aseismic periods.

Our framework allows us to investigate fault slip and earthquake induced in under-

ground reservoirs due to coupled processes of fluid flow and mechanical deformation

such as those encountered during groundwater withdrawal and geologic CO 2 stor-

age. In this work, we have demonstrated the effectiveness and applicability of our

approach through a few synthetic, but realistic, examples. We are currently applying

our computational model for the study of ground deformations detected from geodetic

measurements via GPS and InSAR [118, 85, 253], and for the post mortem analysis

of natural or induced earthquakes [110, 261, 145, 35].
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Chapter 6

Joint inversion of flow and surface

deformation data

6.1 Introduction

Inversion is the process of estimating unknown subsurface parameters such as porosity,

permeability, rock compressibility etc. by assimilating surface measurements such as

the ground displacements, well rates and pressures. Usually, measurements are avail-

able at different points in space and at different time steps whereas rock parameters

are assumed to vary only in space. Moreover, inversion is easier if we assume that spa-

tial variation in each parameter follows the Gaussian distribution, which is completely

defined in terms of a mean and a variance. The Kalman filter is a popular Bayesian

statistics approach to estimate model parameters (state of the model) by assimilating

measurements of model predictions at different points [80]. Ensemble Kalman Filter

(EnKF) is a Monte Carlo approximation of the Kalman filter suitable for large-scale

(many unknowns) problems such as the ones encountered in geophysical applications.

It requires the ensemble covariance matrix of the prior distributions, measurements

and their error covariance matrix, and a forward model to generate predictions of

the measurements. Simplification in EnKF comes from the assumption that the true

covariance matrix of model parameters can be substituted with the ensemble covari-

ance matrix when the ensemble is a large enough sample from the assumed prior

121



Predictions:
Define prior run forward
ensemble -+ model for each

(distribution of t, k) member of the Update
ensemble ensemble mean Posterior(PyLith-GPRS) and covariance (distribution of , k)

Measurements (EnKS)
(well BHP,

LOS displacements)

Figure 6-1: Inversion flow chart. LOS is an acronym for Line-Of-Sight and BHP is
an acronym for Bottom Hole Pressure.

distributions of the parameters. See Fig. 6-1. In case of inversion of rock properties

from flow and deformation data, the forward simulation model is a coupled flow and

mechanics simulator. We use PyLith-GPRS as our coupled flow and geomechanics

simulator.

6.2 Ensemble Kalman Smoother

We use the Ensemble Kalman Smoother (EnKS) for estimation and uncertainty re-

duction of the inversion parameters [78]. Let n be the number of model parameters, m

be the number of measurements, and N be the number of members in the ensemble.

Neglecting the uncertainty in the forward model, which is deterministic, ensemble

means of the model parameters are updated as [79, 78]

a =b + A' STC 1 (d - Hb) (6.1)

where ib a is the updated, and 0 is the prior matrix (n x N) of ensemble means of the

parameters, d is the perturbed measurement matrix (m x N), A' is the zero-mean

perturbation matrix (n x N) of the ensemble, S _ HA' is the matrix (m x N)

of ensemble perturbation predicted with the forward model operator H (m x n),

C SST + EET is the combined matrix (m x m) of auto-covariance of predicted

data, SST, and the measurement error covariance matrix, EET. E is the zero-mean

measurement error matrix (m x N) for the measurement vector dm (m x 1). The

perturbed measurement matrix d - Af(dm; EET) is created by perturbing dm N
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times. Note that H,0 is the predicted data matrix (m x N) obtained by running

the forward model N times. Here, instead of using the classical implementation of

Eq. (6.1) in [181] and [75], we used the square root implementation [79] in order to

avoid generating random fields to perturb dn. To tackle inversions of large matrices

involved, we used fast reduced-rank approximation to singular value decomposition

based on random matrix theory described in [119].

6.3 Lombardia dataset

We tested the geomechanical inversion methodology on the Lombardia dataset [253].

The Lombardia site is an underground gas storage (UGS) reservoir in Po River basin

of Italy. The permeable and geologically confined reservoir is used for storage of

the heating gas during summer months and for withdrawal during winter months.

Ground surface motion above the reservoir follows this seasonal cycle of storage and

withdrawal, i.e., the surface is uplifted during the injection months, and subsided

during the production months. The Lombardia site was selected for this inversion

exercise because it has relatively good dataset: well bottom hole pressure (WBHP) in

26 wells of the field for Jan-1981 to Nov-2007 period, and Line-Of-Sight displacement

measurements over the reservoir from the Envisat satellite for Jul-2003 to Feb-2007

period. The WBHP obtained from a previous simulation (history-match run of the

reservoir) is being treated as the WBHP measurements for this study. Envisat satellite

data was processed at MIT to generate smooth LOS surface displacement maps. Note

that there is also Radarsat satellite dataset in this region, which was processed by a

company (TRE).

We need to estimate the noise covariance or error covariance in the measurements.

Assuming independent pressure measurements, we use an identity matrix for the error

covariance of the pressure data. For the satellite data, the noise signals are primarily

due to the atmospheric variations (water vapor etc.) and they are spatially correlated.

Assuming that the noise is spatially stationary and isotropic, the covariance between

any two points depends only on the distance between them. We assume that the noise
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Parameter Distribution Mean Standard deviation
Reservoir porosity, # Normal 0.29 0.01
Poisson's ratio, v Normal 0.3 0.006
Intercept a in Normal -1.86433 0.234
Eq. (6.2)
Reservoir horizontal Normal 2.6 0.03
permeability, log kh,
Parameter Distribution Min Max
Vertical-horizontal Uniform 0.8 1.0
permeability ratio,
kvr/khr
Aquifer-reservoir per- Uniform 0.1 1.0
meability ratio, ka/kr II

Table 6.1: Inversion parameters of the Lombardia reservoir. cm is the uniaxial com-
pressibility and a' is the effective vertical stress.

covariance decays exponentially over some length scale Lc, i.e., the (i, j) element

of the error covariance matrix EET in Eq. 6.1 is exp (-L'j/Lc), where L is the

distance between the ith and jth measurement points [168]. This results in a block-

diagonal error covariance matrix, where blocks are the covariance matrices of the

individual measurements. We estimated the correlation length L, at each of the

18 timesteps of the satellite data from the Gaussian smoothing filter applied during

the data processing. Range of L, is from approximately 2 km on 21-May-2006 to

approximately 10 km on 29-Aug-2004.

6.4 Inversion parameters

Inversion parameters selected for this exercise are listed in Table 6.1 along with the

values used to generate their prior distributions. These values reflect prior information

or bias about these parameters. They can be derived from other independent sources

such as regional geology, analogous fields, literature, expert opinions etc. We selected

these values such that the range in predictions of measurements (WBHP and LOS

displacement from simulations based on the prior distributions) encompass the actual

measurements. We generate an ensemble of one hundred realizations by randomly

drawing from these prior distributions (Fig. 6-2). We run forward model simulations
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Figure 6-3: Geological model of the Lombardia reservoir with fluid contacts. Notice
the San-PE horizon with its gas-water contact and the pinch-out in the north.

(GPRS and PyLith) for each of these realizations.

6.5 Forward model

A forward model generates multiple predictions of the measurements based on mul-

tiple realizations of the inversion parameters. In this study, the forward model is a

one-way coupled flow and geomechanics model of the Lombardia field. The model

construction is divided into three stages: construction of the geological model, con-

struction of the flow model, and construction of the geomechanical model. An existing

geological model of Lombardia reservoir that was constructed based on the seismic

maps, petrophysical logs, and information about the regional geology was used for

this study. Fig. 6-3 shows three important horizons in the Lombardia reservoir: San-

PC, San-PD and San-PE. This study focuses on the San-PE horizon, which is the
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Figure 6-4: Top view of the GPRS flow model (bottom figure) and the gas-bearing
region of the reservoir (top figure). Corner point geometry is used to construct an
unstructured grid of the flow model. There are 10 layers in the flow model. The
grid cell sizes in x and y direction increase logarithmically away from the gas-bearing
region.

largest in terms of volume and has been active for the longest duration. Production

from San-PE started in 1981 with 12 wells near the top of the gas cap. In 1986, 14

new wells were added to support the underground gas storage (UGS) operation. UGS

operation follows the demand and supply of the heating gas, therefore, natural gas

is produced during the winter months (November to April) and injected during the

summer months (May to October). As shown in Fig. 6-4, the reservoir flow model

(139x82x 10, 56x54 km 2 ) includes the gas-bearing region and the aquifer in San-PE

horizon. The gas region is delineated by the gas-water contact towards the south

and the pinch-out towards the north. The extent of the aquifer in the south and the

aquifer strength were determined during a previous history-match study. Rock prop-

erties (porosity, permeability, net-to-gross ratio, and pore compressibility), fluid PVT

properties, relative permeability curves, gas-water contact, initial equilibrium pres-

sure, and irreducible water and residual gas saturations are taken from that study. All

the boundaries of the reservoir are designated as no-flow boundaries and the model

is driven with well gas production and injection rate schedule. Pressure field over

the entire reservoir and Well BHP (WBHP) are the two key output results from the

flow simulation. Porosity, permeability and pore compressibility are the inversion
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Flow model

Figure 6-5: PyLith geomechanical grid with a magnified view of the GPRS flow grid.
Grids are exaggerated in the vertical direction. Flow occurs only in the reservoir
domain, which appears sandwiched between the overburden and the underburden.
There are 10 layers in the overburden, 10 layers in the reservoir, and 15 layers in
the underburden. The grid cell sizes in x and y direction increase logarithmically
away from the central gas-bearing region. Wells are shown as vertical lines in the
gas-bearing region of the flow model.

parameters for the flow (Table 6.1).

The geomechanical model is an unstructured finite-element grid (149 x 92x 35,

90x90x5 kM3 ) created in CUBIT (from the imported ABAQUS grid) by extending

the flow model in all three directions to simulate the role of overburden, underbur-

den, and sideburden in reservoir deformation (Fig. 6-5). It also allows us to apply

zero horizontal displacement boundary conditions on the four side boundaries, zero

displacement on the bottom boundary, and a traction-free condition on the ground

surface. The rock is assumed to be elastic with its mechanical properties assigned

from an empirical relationship between the uniaxial compressibility and the effective

vertical stress,

log cm = a + blog a'er, (6.2)

as shown in Fig. 6-6. Depth varying effective stress is used to assign depth varying

compressibility and Young's modulus to the geomechanical grid. Poisson's ratio is

assumed to be uniform throughout the domain. The intercept a in the empirical

relationship and the Poisson's ratio are the inversion parameters for the mechanics

(Table 6.1).
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Figure 6-6: Empirical relationship between the rock compressibility cm and the ef-
fective vertical stress ofert [128]. Intercept a in Eq. (6.2) is one of the inversion
parameters. b = -1.16434.

6.6 Inversion methodology

Ensemble-based inversion approach requires a number of the forward model simula-

tions corresponding to different possible realizations of the uncertain parameters. In

this study, we ran 100 forward model simulations corresponding to 100 realizations of

the uncertain parameters. To save time, we run these simulations using the one-way

coupled approach. In the one-way coupled approach, we first run flow simulations for

each realization of porosity, permeability, rock compressibility etc. using GPRS fol-

lowed by poroelastic simulations in PyLith using the pressure field at every time step

obtained from the corresponding GPRS simulation. The coupling between the flow

and mechanics is provided by the fluid pressure, which changes the effective stress in

PyLith. There is no feedback from the mechanics simulation to the flow simulation in

this one-way coupled approach. One-way coupled approach is suitable for reservoirs

where the mechanics-to-flow coupling is weak e.g. in gas reservoirs (Sec. 5.2.2), where

the gas compressibility is much larger than the rock compressibility. The pressure

response of the reservoir is determined by the gas compressibility, reservoir perme-

ability, aquifer pressure support (aquifer permeability), reservoir porosity, and well

rates.

Inputs to EnKS are the prior distributions of the inversion parameters, predicted
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WBHP of 26 wells at 200 equally-spaced discrete time steps from all the GPRS runs

and predicted LOS displacements at 2436 ground locations (Persistent Scatterers) at

18 time steps from all the PyLith runs, measured WBHP and LOS displacements,

and the error covariance matrix for all the measurements. Outputs of the EnKS are

the posterior distributions of the inversion parameters. A narrower posterior distri-

bution means reduction in the uncertainty associated with that particular parameter.

Once the posterior distributions are obtained, we run the forward model again, with

realizations drawn from the posterior distributions, to confirm the agreement between

the predicted and the measured values of WBHP and LOS displacements.

6.7 Results

Quality of the EnKF solution depends on the rank and conditioning of the prior en-

semble matrix [79]. In other words, EnKF works best if the prior distributions of

inversion parameters capture the 'truth' scenario as well as the uncertainty around it.

In our case, it means that the variation in the WBHP and LOS displacements pre-

dicted from the simulations with values from the prior distributions should encompass

the WBHP and LOS displacement measurements. Fig. 6-7 shows the comparison be-

tween the predicted WBHP and the measured WBHP. We see that the spread in the

predicted curves indeed captures the measurement curve for the most part. Similarly,

Fig. 6-8 shows the comparison of the LOS displacement from the simulations and

the measurement at four locations. Fig. 6-9 shows the comparison in terms of 2D

maps of the LOS displacement. Values from one of the simulations and the satellite

measurement are shown side-by-side for the area recorded by the Envisat satellite.

We note that the comparison between the simulated displacement and the measured

displacement is poorer than the comparison between the simulated WBHP and the

measured WBHP. This can probably be attributed to higher noise in the satellite

measurement and its poorer resolution in time and space compared to the WBHP

measurement, which is obtained from a history-match simulation.

Once we have the prior predictions (from simulations with realizations from the
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Figure 6-7: Comparison of the Well Bottom Hole Pressure (WBHP) time series from
the prior predictions (blue lines) and from the measurement (black line with circles).
The WBHP from the history-match run is being treated as the measurement. There
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posterior distributions of the inversion
only the satellite data i.e. without the

prior distributions), we run the EnKS smoother as described in the Inversion Method-

ology section above. To evaluate the impact of satellite data on parameter estimation

and uncertainty reduction, we first run the smoother with only the satellite displace-

ment data and the predicted displacements. Fig. 6-10 shows the comparison between

the prior and posterior distributions for this case. Displacement is determined by

both the pressure drop and the elastic properties. When the inversion is conditioned

to displacements only, both pressure drop and elastic properties can vary to honor

the displacement measurements. Since the flow rates are fixed, variation in pressure

drop primarily results from variation in permeabilities. Therefore, there is no re-

duction of uncertainties in ka and k,. If it were an oil or water reservoir, we would

expect to see some reduction in permeability uncertainty because in that case flow is

strongly coupled to mechanics. There is only a small reduction in the uncertainty of

the parameter a.

Conditioning to displacement alone is not sufficient to reduce the uncertainty in

both the flow and mechanics parameters, especially in permeability which is a flow

parameter. Another reason for almost no reduction in uncertainties of the parameters

can be that the weights of the displacement measurement are too small in the EnKS

smoother. This can be confirmed by comparing the LOS displacements predicted
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Figure 6-11: Comparison of the prior and posterior distributions of the inversion
parameters with inversion performed using both the satellite data and the well bottom
hole pressure (WBHP) data.

using these posterior distributions, with the measured displacements. If the spread

in the predictions has not decreased compared to the prior displacements, it may

indicate that the weights are too small.

Next, we run one iteration of the EnKS smoother using both the WBHP data and

LOS displacement data. We used an identity matrix for the error covariance matrix

of the WBHP measurement, which assumes independence of the individual pressure

measurements. Fig. 6-11 shows the comparison between the prior and the posterior

distributions. Since the flow rates and gas compressibility are fixed for all the realiza-

tions, pressure response is determined by the porosity and permeability. Therefore,

we observe a significant reduction in the uncertainty of porosity and aquifer-reservoir

permeability ratio. Reservoir permeabilities (kvr, khr) are mostly unchanged because

prior uncertainties in them are already small. Uncertainty reduction in rock elastic

parameters, Poisson's ratio and parameter a, is due to the combined effect of condi-

tioning to both the displacement and pressure measurements, with the latter exerting

its control through the flow-to-mechanics coupling. However, we only see a minor re-

duction in spread of the displacement curves (compare Fig. 6-8 with Fig. 6-13). This

may suggest that the pressure measurements are disproportionately weighted higher

than the displacement measurements during the inversion.
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Figure 6-12: Excellent agreement between the Well Bottom Hole Pressure (WBHP)
time series from the posterior predictions (blue lines) and from the history-matched
run being treated as the measurement (black line with circles). Four wells are shown.
There are one hundred prediction curves corresponding to the ensemble size of one
hundred.

We again run the forward model simulations with one hundred realizations drawn

from the posterior distributions to observe the agreement between the predicted and

the measured WBHP and LOS displacements. Fig. 6-12 shows that the posterior pre-

diction of the WBHP has, indeed, improved drastically as all the prediction curves

cluster together around the measurement curve. Fig. 6-13 shows comparison between

the measured displacement and displacements predicted by the posterior. The agree-

ment between measured and predicted displacements is worse in the posterior than

in the prior. This may further suggest that the displacements are weighted less than

the pressures.

6.8 Discussion

We tested the geomechanical inversion methodology on the Lombardia dataset. Using

the Ensemble Kalman Smoother (EnKS) as the estimator and our coupled flow and

geomechanics simulator as the forward model, we have shown that it is possible to
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Figure 6-13: Comparison of the Line-Of-Sight (LOS) displacement time series from
the posterior predictions (blue lines) and the Envisat satellite data (black line with
circles) at four locations. The variability in the posterior predictions (spread of the
blue curves) has decreased compared to the prior predictions (Fig. 6-8). However,
the agreement between the measurement and the prediction has not improved signif-
icantly.

drastically reduce the uncertainty in the estimates of rock properties such as porosity,

permeability, and compressibility. It may be possible to further improve the satellite

data quality. In this study, we used data only from the ascending tracks of the

Envisat. Descending track data looks similar. We can assess the impact of merging

both the ascending and the descending tracks on inversion results. Also, there are two

timeseries for the Envisat: (1) 06-Jul-03 to 25-Feb-07 timeseries with 19 timesteps,

and (2) 05-Jun-05 to 25-Feb-07 timeseries with 13 timesteps. They were processed

separately with different reference dates, 07-Nov-04 for the former and 03-Sept-06

for the latter. Compared to the timesteps in the first timeseries, there are 5 new

and 8 repeat timesteps in the second timeseries. In this study we only used the

first timeseries (after changing the reference timestep from 07-Nov-04 to 28-Oct-O5

to better reflect the seasonal displacement profile). We did not merge the two series

together, which will provide more data and potentially improve the inversion results.

Another avenue to explore is to use the TRE processed Radarsat data for the

inversion exercise. It's coverage is smaller than Envisat but it has more PS stations
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Figure 6-14: Comparison of the vertical displacement among the one-way coupled,
the two-way coupled and the TRE processed data at one of the ground stations. The
two-way coupled results are more accurate than the one-way coupled results, which

neglect the coupling from the mechanics to the flow problem. The agreement between
the two-way coupled results and the measurements is better.

around the wells and the data quality is smoother (displacement oscillates smoothly

with the injection and production rates of well) as shown in Fig. 6-14. In the same

figure, we also plot results from a two-way coupled simulation using rock properties of

one of the realizations generated above. Notice that magnitude of the displacement

is smaller in the two-way coupled case compared to the one-way coupled case due to

the negative feedback from mechanics to flow.
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Chapter 7

Coupled poromechanical analysis

of the 2011 Lorca earthquake

7.1 Introduction

On 11 May 2011, a magnitude M, 5.1 earthquake struck Lorca, a small city in

southeast Spain (Fig. 7-1). The earthquake nucleated at a shallow depth of 3 to 5

km and caused significant damage in the city. The city is situated in the vicinity of a

seismically active regional fault, the Alhama de Murcia Fault (AMF), which strikes

south-west to north-east and dips north-west. The city is also close to an aquifer

in the Alto Guadalentin basin in the south, which was used for extraction of water

during 1960-2010. As a result of extensive pumping, the basin has experienced a very

significant drop in water table, and accompanying subsidence. Based on analysis

of the InSAR surface deformation data, modeling of slip on the AMF fault, and

correlation between slip area and pattern of Coulomb stress change corresponding

to crustal unloading due to water pumping, Gonzalez et al. [110] concluded that

the earthquake was likely triggered by long-term pumping of water from the aquifer.

They suggested that the drop in water table associated with groundwater pumping

led to unloading of the rock close to the AMF fault, which resulted in additional

compression on the fault bringing it closer to failure (Fig. 7-2).

The primary support for Gonzalez et al.'s claim comes from an estimation of
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Figure 7-1: (a) Geographical location map of the Lorca city (from Google Maps). (b)
Zoom-in view of a satellite image around Lorca (from Google Maps). The trace of the
Alhama de Murcia Fault (AMF) is shown as a solid black line, with the maximum
principal stress direction from tectonic compression on the fault shown as thick gray
arrows. The Alto Guadalentin aquifer is on the south-east side of the fault and Lorca
city is situated very close to the fault. The Guadalentin river is shown as a blue
line. The red asterisk indicates the epicenter of the 2011 Lorca earthquake. The dash
black line is the trace of an unmapped thrust plane in the region located from seismic
analysis of the Lorca earthquake data [62].

Dropping
Lorca water table

Figure 7-2: Conceptual model of the Lorca earthquake shown in a cross-section view
(inspired from [12]). Crustal unloading due to groundwater extraction from the
aquifer in the Alto Guadalentin basin led to rupture nucleation (red asterisk) on
the nearby Alhama de Murcia Fault (AMF, solid black line), or possibly on an un-
mapped thrust plane (dash black line). The two fault planes correspond to conjugate
nodal plane solutions of elastic dislocation model and surface deformation data, and
the actual rupture plane is uncertain [62]. Slip motion is reverse with some left-lateral
(AMF), or right-lateral component (the unmapped fault plane).
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the change in cumulative Coulomb stress on the modeled fault plane due to crustal

unloading [110], with positive values indicating favorable conditions for fault slip [20].

Gonzalez et al. show that the Coulomb stress change in their model is positive around

the hypocentral region. However, Gonzalez et al. used elastic loading models [33,

172] to calculate the Coulomb stress change on a segment of the AMF under the

assumption that pore pressure effects are unimportant for the timescales of interest.

Note that there is ambiguity regarding the geometry and position of the actual

rupture plane associated with the earthquake. There are two equivalent conjugate

nodal plane solutions from seismic analysis of the 2011 Lorca earthquake data-the

northwest dipping plane and the southeast dipping plane [62]. Since the regional

AMF fault system dips northwest, and there is no mapped fault in the region that

dips southeast, previous analyses of the Lorca earthquake [110, 170] selected the

northwest dipping plane as the earthquake-inducing fault. However, relocation of af-

tershocks at depth suggests that the aftershocks are oriented along a southeast plane.

Therefore, the geometry and position of the actual rupture plane is uncertain. Elastic

dislocation model and surface deformation data (InSAR and GPS) cannot resolve this

uncertainty [62]. Post mortem analysis of earthquakes, and forecasting of earthquake

triggering based on geodetic measurements such as InSAR and GPS, is an order-one

problem in geophysics. However, determination of the rupture plane from conjugate

nodal plane solutions, for a small (magnitude less than 6) and shallow earthquake

such as the 2011 Lorca earthquake, is difficult because surface deformations for both

nodal plane solutions are very similar.

In this Chapter, we investigate the role of fluid pressure in triggering of the Lorca

earthquake and in resolving the uncertainty in location of the rupture plane. We

use two different fault models based on two different nodal plane solutions proposed

in [62]. Using a three-dimensional model of the Lorca region, we simulate groundwater

withdrawal and subsequent unloading of the basin over the period of interest. Our

coupled flow and geomechanics approach allows us to take a fresh look at this seismic

event, which to-date has only been analyzed using simple elastic dislocation models

and elastic loading solutions [110, 62].
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reverse

Figure 7-3: Schematic of a fault plane and fault slip. The fault plane is shown as
striking along the x-axis. 6 is the dip angle, and V) is the rake angle. n and t are
the normal and tangent vectors on the fault plane, respectively. Three components of
fault slip motion in 3D are shown in terms of lateral, along-dip, and perpendicular-
to-fault directions.

7.2 Pore pressure effects on fault slip

A large volume of water was extracted from the Alto Guadalentin aquifer during

the period of 1960-2010 leading to an estimated Azwt = 250 m drop in the water

table. Ground level subsidence accompanying the pressure depletion is recorded at 2

m during the period 1990-2010 [110]. If we extrapolate at the subsidence rate of 10

cm/yr [109], total subsidence since 1960 could be higher, in the range of 3 to 5 m.

Groundwater extraction leads to a decrease in the overburden (weight of overlying

rock) acting on the basement as well as volumetric contraction of the aquifer. To

calculate the effect of unloading on fault stability, due to decrease in the overburden,

we evaluate the change in the Coulomb Failure Function, defined as

ACFF = Ar + pv Ao-', (7.1)

where Ar is the change in shear traction, Ao = Auo + bAp is the change in

effective normal traction, and pf is the friction coefficient of the fault. In 3D,

let 6 and b be the fault dip angle and the slip-rake angle, respectively (Fig. 7-

3). The fault normal vector is n = [0, - sin 6, cos 6], and the tangent vector is

t = [cos @, - cos 6 sin $, - sin 6 sin 4]. Assuming that the fault strikes along x-axis,
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fault tractions are calculated from the Mohr-Coulomb theory as [133]

Aor,= nr T- Ao- -n

= (Aoyy sin 2 6 + Aa-zz cos 2 6) - AUy, sin 26

AT tT - Aor--n

cos 4(Auzzcos 6 - AuzY sin 6) + (Aoyy - Au,,) sin 26 - AaYZ cos 26 sin4'.

(7.2)

In the fault coordinate system (Fig. 7-3), the fault traction vector is [TI, 72 , on] where

T1 is the left-lateral component of the shear traction, and T 2 is the up-dip component.

Equation (7.2) requires three inputs: changes in the total stress tensor, Ao, the

fault geometry (6, 4), and changes in the pore pressure Ap. Ao- is calculated as a

function of time using the rate of mass of water removed, #psist A, over an unloading

area A. Gonzalez et al. assumed q = 0.05 and wt = 5 m/year. They consider

different shapes for the unloading area, e.g. a homogeneously loaded rectangle, a

homogeneously loaded area bounded by a specific value of the subsidence contour,

and an area bounded by a specific value of contour with load pattern proportional

to the subsidence pattern (Fig. S11 in Supplementary Information of [110]). They

used Love's solution [172] for the rectangular shapes, and convolution of Boussinesq's

point source solution [33] for the irregular shapes. The important point to note here

is that the stress field in the porous medium, o-, is computed as the stress field in a

purely elastic medium with no fluid or fluid pressure effect. This is also known as the

decoupled approach for solving the stress field [216].

Gonzalez et al. used an elastic dislocation model [194] and inversion of the geodetic

deformation data to estimate the best-fit fault geometry (70' NW dip, N230E strike,

360 rake of the slip). They also calculated slip on the fault using an inversion method.

Evaluation of ACFF on the fault requires evaluation of Ap in the neighborhood of

the fault. Pumping of water from the aquifer leads to two kinds of changes in the pore

pressure in the basement rock around the fault: drop in pressure due to expansion of

pores under mechanical unloading, Apc, and drop in pressure due to leakage of water
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from the basement to the aquifer, APd. The former is related to the pressure drop

under undrained conditions (( = 0, Eq. (5.5)), i.e. BZau, where B is the Skempton

coefficient and a, is the mean volumetric stress. The Skempton coefficient is defined

as the ratio of induced change in pressure to change in mean stress under undrained

conditions, B = (Ap/Aa)(=o, or equivalently as the ratio of volumetric strain to

increment in fluid mass at constant mean stress, B = (Ev/()jA~O [267]. The latter

pressure drop, AP, can also be understood as diffusion of pressure drop from the

aquifer to the basement, and it requires hydraulic communication between the two.

Usually, the timescale for mechanical unloading is much smaller than the timescale for

pressure diffusion due to high compressional wave speed and low hydraulic diffusivity

in the basement. Such conditions favor undrained behavior during loading/unloading

and lead to higher values of the Skempton coefficient.

Gonzalez et al. compute Ap = APc+APd by solving the pressure diffusion equation

for single-phase poromechanics

a (Ap + BAo) - cV 2 (Ap) = 0, (7.3)

which is Eq. (5.17) with external source f = 0 and the hydraulic diffusivity c

(k/p)(KdB/b). Here, k is the basement permeability, p is the fluid viscosity, and Kd,

is the drained bulk modulus. Gonzalez et al. assume all rock and fluid properties to

be constant in space and time. Assumed values of the aquifer diffusivity, c = 0.1 - 10

m2/s, are high compared to reported values [43] of 0.02 - 0.04 m 2/s. Assuming

the decoupled approach, Gonzalez et al. use the analytical solution of Eq. (7.3)

from [143] to calculate Ap at two points in the basement at a depth of 4 km (close

to the hypocenter depth). Assuming B = 0.6 and pf = 0.5, the authors show that

ACFF varies between -10 kPa to 10 kPa over the fault plane with ACFF ~ 5 kPa

near the hypocenter.

Gonzalez et al. claim that pore-pressure diffusion and coupled pore pressure

changes are not relevant for the timescales of interest. This is based on the small

values of Ap they calculated for the assumed diffusivity, and the small sensitivity of
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Ap to variations in the Skempton coefficient. However, the ACFF values reported by

Gonzalez et al. are in the range of kPa, orders of magnitude smaller than the stresses

estimated to be released during the earthquake, as noted in [12]. The average static

stress released during an earthquake can be estimated as Ao-, = CMOL- 3 where C

is a geometric constant of order unity, Mo is the seismic moment, and L is the char-

acteristic rupture dimension [144]. Substituting Mo = 1 0 1.5(M.+6.07) and L = 3000

m [110, 170], we obtain Au, 2 MPa. In addition to the disparity in ACFF values

on the AMF fault, there is some uncertainty as to which fault led to the earthquake,

whether it is a segment from the AMF, or a blind thrust plane striking 5 km further

NW from the AMF and dipping SE at 500 [62].

We test the assumptions made by Gonzalez et al. by simulating the coupled

flow and deformation processes leading up to the Lorca earthquake. We build a 3D

geomechanical model of the Lorca region and simulate groundwater extraction in the

aquifer. We investigate the role of pore pressure in triggering of the Lorca earthquake,

especially as it relates to the pumping of water from the aquifer. We also test the

validity of the decoupled stress assumption by evaluating the sensitivity of ACFF to

hydraulic diffusivity and porosity.

7.3 The Lorca simulation model

We construct two models of the Lorca region to simulate groundwater extraction

and crustal unloading processes: Model 1 with the AMF fault surface dipping 540 to

NW [110, 170], and Model 2 with an alternate plane dipping 50' to SE (Fig. 7-4).

Both fault surfaces are obtained as conjugate nodal plane solutions during inversion of

the InSAR Line-Of-Sight displacement data with elastic dislocation model. Model 2

fault plane also satisfies Lorca earthquake aftershock relocation [62]. Although this

fault plane is currently unmapped in the region, the presence of SE dipping anti-

thetic faults in the AMF splay system have been previously noted using geologic and

paleoseismic data [180]. Using CUBIT, we construct a 20 kmxl6 kmxl0 km three-

dimensional domain with x-axis parallel to the Lorca segment of the AMF fault. The
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Figure 7-4: Two possible fault models for the Lorca earthquake.

Alto Guadalentin basin is south of the fault in both models. We follow [43] to model

the geology and stratigraphy of the basin. The high-permeability detrital aquifer is

300-600 m thick and is underlain by low permeability strata. We use an unstructured

grid to discretize the domain with very fine layering in the aquifer (10-20 m thick),

and coarse layering (400-500 m thick) outside (Fig. 7-5). This allows us to model

the drop in water table with time. The fault surface is truncated such that it does

not intersect any of the four boundaries (x+, x-, z+, and z-). The flow domain is

identical to the mechanics domain. We assume linear elastic mechanical response.

7.3.1 Model 1: Regional AMF fault

The fault surface in Model 1 bends to reflect the change in strike from the Lorca

segment to the La Tercia segment of the AMF (Fig. 7-5). The aquifer is confined on

the sides by the impermeable fault, y-, x- and x+ boundaries. In the z- direction

it is confined through low permeability layers in the basement. We distribute rock

properties such as the permeability k, the Young modulus E, and the drained bulk
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Figure 7-5: Geomechanical grid of the Lorca Model 1. The fault surface divides the
domain into two sides: the basin side and the mountain side. Normal compression
equal to twice the overburden, i.e. 2u_., is applied on the y+ boundary to simulate
the pre-stress and compression on the fault. Water is extracted from the aquifer with
wells located on the basin side. Rock permeability, which decreases with depth, is
higher on the basin side than the mountain side.

modulus Kd, as per the following empirical relationships

# = , + (#o - Or) exp (-aiz)

k = max kr , ko (-

3(1 - 2v)(1 + v)
(1 - V)Cm 

(7.4)

log10 cm = a3 + a 4 log10 (Kert)

avert = z(as + a6 ln z)

E
Kdr = E

3(1 - 2v)'

where subscript r denotes residual values (Or = 0.001, kr = 0.0001 mD), subscript 0

denotes surface values (#0 = 0.2, ko = 1000 mD, EO = 5 GPa), v = 0.25 is the drained

Poisson ratio, cm is the uniaxial pore compressibility (bar-1 ), z is depth (meter)

positive downward, a',ert is the effective vertical stress (bar), avert is the total vertical

stress (bar), and a1 = 0.002, a 2 = 15, a3 = -1.83, a 4 = 1.13, a5 = 3270.8771, a6 =

2415.588 are the constants in the empirical relations. The empirical relations as a
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Figure 7-6: Top row: permeability k and the Young modulus E as a function of
depth in Model 1. Values are calculated from empirical relations (Eq. (7.4)). On the
mountain side of the fault (Fig. 7-5), the permeability is set to a constant low value
of 0.0001 mD. Bottom row: relative permeabilities as a function of water saturation,
and air compressibility and air viscosity as a function of pressure.

function of depth are taken from [128]. We use the porosity relation above only to

compute permeability as a function of depth (Fig. 7-6), and fix the porosity in the

flow simulation to 0.1.

We consider two-phase flow with air and water as the two phases and assume zero

capillary pressure. The unknowns in the flow problem are the air pressure p9 and the

water saturation S,. The bulk density is given as Pb = (1-#)ps +(Spw+(1--S)pg),

where p, = 2600 kg/m 3 , pw = 1000 kg/m 3, and pg = 0.76 kg/m 3 are the solid, water

and air densities, respectively. Pb is calculated with constant # = 0.1. As the water

table drops and water in the pores is replaced with air, Pb decreases, which leads to

crustal unloading. The mechanics problem is initialized with tectonic stresses that

favor reverse faulting [180] (gray arrows in Fig. 7-1b): a,, = - fJ pbgdz, oyy = 2 ozz,

o, = 1.5azz, and zero shear stresses. With a static coefficient of friction pa8 = 0.47

on the fault, these initial stresses result in fault tractions such that the fault is stable,

albeit, close to failure. The initial displacement field is zero, u(t = 0) = 0. The

flow problem is initialized with the water table at z = 0, i.e., Sm(t = 0) = 1, and
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hydrostatic pressure pg(t = 0) = pw(t = 0) = pwYz. The mechanical boundary

conditions are: normal compression on y+ side, i.e., ou(y = 16 km) = -yy, zero

normal displacement on x-, x+, y-, and z+ boundaries, and zero traction on the

z- boundary. For the flow problem, no-flux boundary condition is imposed on all

boundaries. To model the constant pressure open boundary at z = 0, we place 30 air

injectors in the top layer operating under a maximum bottom hole pressure (BHP)

constraint equal to the atmospheric pressure. This ensures that the aquifer pore space

is filled with air as the water table drops. Water is extracted using 90 pumping wells

placed at a uniform spacing and producing at a constant rate of 8000 barrel/day (14.7

kg/s) with minimum BHP constraint of 16 psi (110.32 kPa). Although rough estimate

exist [110], actual production and rainfall data for the basin are not available.

Fig. 7-7 shows the pressure drop and the water saturation fields at t = 50 year.

With this set of rock and fluid properties, the average water table depth drops by

approximately 180 m, which is less than the expected value of 250 m. However,

the maximum subsidence is only 0.35 m (Fig. 7-8), which is much smaller than the

measurement value of 2 m. This discrepancy possibly indicates that the assumed

values of the Young modulus near the surface are larger than the true values. We

calculate ACFF to record the effect of pressure depletion on fault stability for Model 1.

From Fig. 7-9, we observe that, for this fault geometry, ACFF is negative around the

hypocenter depth suggesting that the fault actually becomes more stable as a result

of the pressure depletion. Crustal unloading induces down-dip shear underneath the

aquifer and higher compression on the fault (Fig. 7-10). This leads to a monotonic

decline in ACFF. Further below, the change in the up-dip shear traction, A7 2 ,

switches sign leading to an increase in ACFF (Fig. 7-9b).

7.3.2 Model 2: Unmapped antithetic fault

This model is similar to Model 1 with the main difference being that we replace the

AMF fault surface with an alternate fault plane, identified as a potential origin of

the Lorca earthquake in [62] (Fig. 7-4). The fault plane located between J = 14 and

J = 15, where J denotes the grid index along the y axis, strikes parallel to the Lorca
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Figure 7-7: Overpressure and water saturation fields at t = 50 year in Model 1.
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Figure 7-8: Vertical displacement field on ground surface for Model 1.
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Figure 7-9: (a) Cumulative change in the Coulomb Failure Function, ACFF, on the
AMF fault due to crustal unloading. (b) Depth profiles of changes in the Coulomb
stress (solid line), pore pressure Ap (dash line for pressures on the aquifer side, crosses
for pressures on the mountain side), and up-dip shear traction AT2 (long dash line)
at x = 10 km. Results correspond to t = 50 year. For z < 1 kin, the drop in
pressure on the basin side is higher than that on the mountain side, due to the higher
permeability on the basin side. Note that ACFF is negative below the base of the
aquifer, i.e. around 3 km depth, suggesting frictional locking of the fault. This is in
contrast with the positive ACFF estimated by Gonzalez et al. [110].
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Figure 7-10: (a) Temporal evolution of changes in the Coulomb stress ACFF (solid

line) and pore pressure Ap (dash line for the aquifer side, crosses for the mountain

side) on the AMF fault at a point (9.96 km, 10.33 km, 3.1 km) in the hypocentral
interval. (b) Evolution of change in the shear AT 2 and effective normal Ao' fault

tractions at three points on the fault: within the aquifer (0.3 km), below the aquifer

around the hypocenter (3.1 km), and in the basement (6.8 km). x = 9.96 km. The

arrows denote the direction of time from t = 0 to t = 50 year. At the hypocentral

depth, the effective normal compression -a' increases, and the up-dip shear traction

T2 decreases. This suggests stabilization of the fault at that depth.

segment of the AMF at a distance of approximately 5 km further NW and dips 500

to SE (Fig. 7-11). Similar to Model 1, the basin is confined in the y+ direction at

approximately y = 8 km by applying a y-transmissibility multiplier of value 0.0001

to the faces shared by elements with J = 9 and J = 10 indices. This ensures that

the fault is located on the mountain side, within the low permeability region. There

are 70 pumping wells and 24 air injectors placed in a configuration similar to that of

Model 1. We increase pumping rate for each well in four steps: 8000 bbl/d for t < 13

year, 12000 bbl/d for 13 < t < 26 year, 16000 bbl/d for 26 < t < 46 year, and 22000

bbl/d for 46 < t < 50 year. Note that the conclusions do not change if we use a

constant flow rate of 8000 bbl/d as in the case of Model 1. As the water table drops

(Fig. 7-12), and water is replaced with air in the aquifer layers, the overburden on

the basement rock decreases (crustal unloading), and there is negligible decline in the

pore pressure of the basement rock because its permeability is very low. This results

in expansion of the basement rock underneath the aquifer, which applies additional

compression on the fault. Since the fault is dipping to SE, from Eq. (7.2), this results

in up-dip shear on the fault (Fig. 7-14) and increase in ACFF between 3 to 5 km
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Figure 7-11: Geomechanical grid of the Lorca Model 2. The fault plane is entirely
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Figure 7-13: (a) Cumulative change in the Coulomb stress ACFF, on the antithetic
fault due to crustal unloading. (b) Depth profiles of changes in the Coulomb stress

(solid line), pore pressures Ap (dash line for the aquifer side, crosses for the mountain
side), and up-dip shear traction AT2 (long dash line) at x = 10 km. Results are shown
for t = 50 year. Note that ACFF is positive and with magnitude in the order of 100
kPa below the base of the aquifer, i.e. around 3 km depth, suggesting that the

conditions are favorable for failure of the antithetic fault.

depth (Fig. 7-13). This suggests conditions favorable for fault slip.

7.4 Conclusions

While straightforward interpretation of the 2011 Lorca earthquake seismic data and

regional (mapped) geology suggests that the earthquake nucleated on a segment of

the NW-dipping AMF fault [110], relocation of aftershocks at depth agrees better

with the conjugate nodal plane dipping SE [62]. Surface deformation data (InSAR

and GPS), by itself, is unable to resolve which fault was the origin of the earthquake.

In a previous modeling effort based on InSAR and GPS data in the Lorca region, and

the elastic dislocation theory, it was concluded that the earthquake nucleated on a

segment of the AMF fault [110]. However, that analysis neglected the role of pore

pressure and the two-way coupling between groundwater extraction and mechanical

deformation. The magnitude of the change in Coulomb stress associated with ground-

water extraction calculated on the AMF fault is too small, and can not explain the

stress drop accompanying the earthquake.

Here, we contend that a coupled analysis of flow and mechanics is required to
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Figure 7-14: (a) Temporal evolution of changes in the Coulomb stress ACFF (solid
line) and pore pressures Ap (dash line for the aquifer side, crosses for the mountain
side) on the antithetic fault at a point (10 km, 10.47 km, 3.02 km) in the hypocentral
interval. Notice the increase in the rate of decline in Ap at t = 27 and 46 years
corresponding to increase in the water pumping rate. (b) Evolution of change in the
fault tractions at three points on the fault: within the aquifer (0.3 km), below the
aquifer around the hypocenter (3.02 km), and in the basement (6.9 km). x = 10 km.
The arrows denote the direction of time from t = 0 to t = 50 year. At the hypocentral
depth, in contrast to Model 1, the effective normal compression -a' decreases, and
the up-dip shear traction T2 increases. This suggests destabilization of the fault and
conditions favorable for up-dip slip at that depth.

identify the fault that ruptured during the 2011 Lorca earthquake. In our model,

crustal unloading due to drop in the water table stabilizes a NW dipping fault, i.e.

the AMF, in the hypocentral depth interval because the normal compression on the

fault increases and the up-dip shear decreases. For a SE dipping antithetic fault,

the trend reverses, and the fault is destabilized such that thrust faulting is favored.

Moreover, the change in Coulomb stress on the antithetic fault is of the same order

as that of the stress drop estimated to occur during the earthquake. Therefore, it

appears that the 2011 Lorca earthquake was likely caused by rupture on a SE dipping

unmapped fault, and we conclude that coupling of flow and mechanics is required to

identify the earthquake-inducing fault.
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