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Abstract

From the canopy scale to the blade scale, interactions between fluid motion and kelp

produce a wide array of hydrodynamic and scalar transport phenomena. At the kilo-

meter scale of the kelp forest, coastal currents transport nutrients, microorganisms

and spores. But, kelp forests exert a drag force on currents, causing the flow to decel-

erate and divert as it encounters the canopy, affecting the fate of species transported

by the current. We identify a dimensionless flow-blockage parameter, based on canopy

width and density, that controls both the length of the flow deceleration region and

the total flow in the canopy. We further find that shear layers at the canopy edges

can interact across the canopy, providing additional exchange between the canopy

and the surrounding water.

At the sub-meter scale, kelp blades are the photosynthetic engines of kelp forests,
but are also responsible for the majority of the fluid drag force on the plants and

for acquiring nutrients directly from the surrounding water. These blades are highly

flexible structures which move in response to the local fluid forcing. Recent studies

documenting changes in blade flexural rigidity in response to changes in flow demon-

strate a need for understanding the role blade flexural rigidity plays in setting both

drag forces, and nutrient flux at the blade surface. We create a model physical system

in which we investigate the role of blade rigidity in setting blade forces and rates of

scalar exchange in a vortex street. Using a combination of experimental and theoret-

ical investigations, we find that, broadly, forces are higher for more flexible blades,
countering the adage that "going with the flow" is beneficial. Below a critical value of

the dimensionless blade rigidity, inertial forces from the rapidly deforming blade be-

come significant, increasing the likelihood of blade failure. Nutrient transport is also

affected by blade rigidity. As blades deform, they alter the relative fluid motion at the

blade surface, affecting nutrient fluxes. We develop a novel experimental method that

simulates nutrient uptake to a blade using the transport of a tracer into polyethylene.

Through these experiments and modeling, we demonstrate that increased blade flex-
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ibility leads to increased scalar transport. Ultimately, blade flexural rigidity affects
both mass and momentum flux.

Thesis Supervisor: Heidi M. Nepf
Title: MacVicar Faculty Fellow, Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

In this thesis, I present a series of studies on hydrodynamic and transport phenomena

that occur at the interface between flow and aquatic vegetation. Throughout, I draw

motivation from coastal macroalga, or kelp, which are of vital importance ecologically

and of great significance economically. Charles Darwin once remarked in awe on the

vast number of species which thrive in kelp forests, "if in any country a forest was

destroyed, I do not believe nearly so many species of animals would perish as would

here, from the destruction of kelp." We now know the number of macro-organisms

that rely directly on kelp for food and for shelter to be in the hundreds, albeit less

than in tropical rain forests. The number of microorganisms that rely on kelp dwarves

this number, however, and we are just beginning to understand these microbial-kelp

interactions. Indirectly, kelp provides an essential habitat for breeding, foraging and

shelter for flora and fauna of all scales. Moreover, economically, kelp has been essential

in both traditional as well as modern cultures as a source of food, fuel and fertilizer.

The studies we present here span several important ecological and dynamical

length-scales: the kilometer scale of the kelp forest, the meter scale of kelp blades and

the millimeter scale boundary layer at the surface of kelp blades. At the largest scales,

ocean currents flow around and through kelp forests, replenishing nutrients, flushing

waste products, transporting microscopic organisms and dispersing spores. At the

scale of individual blades, the kelp must withstand enormous drag forces created by

waves and turbulence, while simultaneously maintaining basic biological functions.
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Meanwhile, kelp acquires nutrients and exchanges gases passively via a diffusional

process at the millimeter and sub-millimeter scale of the diffusive boundary layer.

By studying hydrodynamic and transport phenomena across these scales, we can

understand the ways kelp alters the local hydrodynamic environment in the coastal

ocean and we can understand the adaptations which allow kelp to thrive in this high-

drag, often nutrient-limited environment.

When abstracted, these problems can be framed in a manner applicable not only

to aquatic vegetation, but also to a wide range of both fundamental and applied sci-

entific problems. Phenomena at the scale of a kelp forest are analogous not only to

flow through natural terrestrial canopies, but to the movement of air in urban envi-

ronments as well. The dynamics of kelp blades, which are highly-flexible, elongated

bodies, can provide insight into the dynamics of other flexible flora and fauna as well

as flexible engineered structures. Finally, through studying the exchange of nutrients

at the surface of a moving model kelp blade, we can gain insight into the steady

diffusion and surface renewal models which are applied to gas, heat and chemical

exchange throughout science and industry. Throughout, we attempt to frame these

ecologically motivated studies in the broadest possible context in order to derive the

most fundamental understanding of the problems.

1.1 Outline

In a kelp forest, kelp individuals grow in close proximity to form a porous obstruction

with finite boundaries. Near shore currents bring fresh nutrients, plankton and larvae

to kelp ecosystems. These currents are altered by the step change in the drag force

at the kelp boundaries and flow through and around these forests in a manner set

by the drag and geometry of the forest. In Chapter 2, we examine the flow at the

leading edge and interior regions of a finite porous obstruction. we examine both the

steady and unsteady flow patterns that form at the porous obstruction and interpret

the results in the contexts of both aquatic and terrestrial obstructions.

In Chapter 3, inspired by the dynamics of kelp blades, we examine the problem of
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a flexible flag in a vortex street. In the ocean, kelp blades are subjected to unsteady

currents, waves and turbulence at a wide spectrum of scales. Rather than attempt

to replicate the oftentimes messy fluid environment in the coastal ocean, we select

a model flow field, the vortex street, for our experiments. A vortex street presents

a simple, unsteady flow field which we can use to perturb our model kelp blades at

a specific frequency and wavelength. Dynamically, a thin, flexible flag serves as an

appropriate model for a single kelp blade. Through a combination of experiments and

analytics, we demonstrate that a flag in a vortex street responds with two fundamental

regimes: a symmetric state about the flow centerline, and below a critical value of

rigidity, an asymmetric state trapped in half of the vortex street. The forces on the

flag are ultimately determined by the response state. In the symmetric state, the

force is proportional to the oscillation amplitude. In the asymmetric state, the force

increases with the contribution of inertial forces at the flag tip.

In Chapter 4, we further utilize our flag-in-flow model system to examine the rate

of scalar flux at a flexible surface with the use of a novel experimental method. We

first describe the design of this experimental method in which we measure the rate of

diffusion of an organic compound from the surrounding water into our model flexible

blades. We then describe the results of these experiments, which demonstrate how

scalar flux is affected by blade flexural rigidity. These results provide insight into the

mechanism of nutrient acquisition by kelp blades in the coastal ocean.

In Chapter 5, we examine recent morphological observations of kelp blades in the

context of blade drag force and nutrient acquisition. Studies have shown that blade

morphology adapts to its local flow environment primarily by increasing its flexural

rigidity. We demonstrate that increases in flexural rigidity in high-flow environments

effectively reduce the drag force on the kelp blades via altering the blades' dynamic

response to turbulent flow. These changes in flexural rigidity also effectively decrease

nutrient acquisition rates. In high-drag environments, however, blades can already ac-

quire sufficient nutrients from the flow such that the blade drag force is the overriding

environmental stimulus.

Finally, in Chapter 6, we summarize the results presented in this thesis. We
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discuss how, by treating kelp as a model system, we can gain insight into not only

physical phenomena in the coastal ocean, but can gain insight into a much broader

set of scientific questions.
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Chapter 2

Flow adjustment and interior flow

in a rectangular porous obstruction

In this chapter, we describe an experimental study on the flow through a finite porous

obstruction. This chapter begins with a scaling analysis for the upstream adjust-

ment region (§2.2.2), the interior adjustment region (§2.2.2), and the canopy interior

(§2.2.2). In the methods section (§2.3), we describe our experiments using a model

canopy in the middle of the experimental water channel. In §2.4, we compare our

experimental results with the theoretical scalings. This chapter has been adapted

from Rominger and Nepf (2011) [88].

2.1 Introduction and Motivation

There are many examples of flow encountering fixed, porous obstructions. For gener-

ality, we refer to all such obstructions as canopies. Man-made canopies include urban

areas with close groupings of buildings, and wind farms. Terrestrial and aquatic veg-

etation is often organized in canopies. Coastal ocean canopies include coral reefs,

seagrasses and kelp forests. Agricultural fields are porous obstructions, organized in

regular rows, and aquaculture, such as oyster farms, are dense underwater canopies

in estuarine zones.

When the height of these canopies is very small relative to the depth of flow,

21



and it is only of interest to understand the flow structure outside of the canopy, it

is sufficient to treat the canopy as surface roughness. However, when the canopy

is emergent or occupies a significant fraction of the flow depth, or when the flow

through the canopy has significant physical and/or biological implications, it becomes

necessary to describe the flow within it.

Many studies have looked at the effect of porous layers on flow characteristics,

such as mean velocity, turbulence level, and scalar and momentum flux. [7] described

laminar flow adjacent to a porous layer, and several authors have extended this work

to describe turbulent flow adjacent to more general arrays [83, 113]. In urban settings,

[10] predicted a steady-state value for the in-canopy velocity based on the element

density within the array and the exterior flow speed above the canopy. [83] showed

how the presence of a canopy creates an unstable shear layer that generates Kelvin-

Helmholtz vortices, which enhance transport between the layer and the adjacent open

flow. Other studies have described the parameters that set the length scale of mo-

mentum penetration from a free stream into a canopy and the size of the shear layer

[105, 113]. The above studies have all focused on fully-developed flow, or the devel-

opment of flow at the flow-parallel interface of an infinitely long canopy. However,

vegetation and man-made structures rarely exist as continuous canopies, but rather

are often organized in patches of finite dimensions and, specifically, have a distinct

leading edge perpendicular to the direction of mean flow. Where flow encounters the

leading edge of a finite-width canopy, a portion of the flow is diverted, and a portion

of the flow enters and advects through the length of the canopy. The fraction of flow

moving through the canopy can influence the water and air quality within the canopy,

as well as the ecosystem function of natural canopies.

In this chapter we consider the leading edge and the interior regions of an emer-

gent, rectangular canopy in uniform, shallow flow. In a region close to the leading

edge, the velocity responds to the step change in flow resistance from only bed friction

to the addition of canopy drag. This adjustment region has previously been described

by a balance between fluid inertia and the streamwise canopy drag force [53, 9, 19, 38].

We show that this balance is applicable in canopies with low flow-blockage in both
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terrestrial and aquatic flows. The canopy flow-blockage is a dimensionless param-

eter that is a function of the canopy solid volume fraction and the canopy width.

In this chapter we also describe the different flow behavior for canopies with high

flow-blockage, for which the simple balance of fluid inertia and drag does not apply,

and we define the expected transition between canopies that exhibit low and high

flow-blockage behavior.

The mean streamwise velocity in the interior of a canopy has been well-described

for terrestrial canopies with low flow-blockage [9, 10, 28], however it less well un-

derstood for canopies with high flow-blockage. We present new scaling arguments

for high flow-blockage canopies, and provide experimental data that clearly depict

different interior regimes for canopies with low and high flow-blockage. Finally, we

investigate the role played by the KH vortices that form at the two flow-parallel

interfaces in the transport of momentum and scalars to the canopy interior.

2.2 Problem description and scaling analysis

2.2.1 Patch geometry

We consider a finite rectangular canopy located in a fluid of depth h. The canopy

is emergent, i.e. its height is greater than or equal to the water depth, and the

canopy is uniform over the depth, such that the system can be approximated as two-

dimensional. The canopy length is parallel to the mean flow direction with velocities u

and v in the streamwise and transverse directions, respectively. The x-axis is parallel

to the mean flow and sits along the centerline of the array. The y-axis is at the leading

edge of the canopy and is perpendicular to the mean flow direction (Fig. 2-1). The

array is described by its half-width, b. The full width of the canopy perpendicular to

the oncoming flow is B = 2b. We restrict our analysis to canopies where the overall

length is much larger than the canopy width, and where the canopy width is much

smaller than the flow domain.

In these experiments the canopy half-width is geometrically similar to the height
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of urban, terrestrial or submerged canopies, for which the flow passes over the top

of the canopy and y = 0 is the impermeable ground. However, there are important

differences between terrestrial canopies and the shallow water configuration that we

study in this chapter. The upstream velocity profile for canopies in shallow water is

uniform (Fig. 2-1), while for terrestrial canopies the upstream flow profile is loga-

rithmic. Furthermore, shallowness inhibits large-scale three-dimensional turbulence,

while in deeply submerged aquatic canopies or in terrestrial canopies, this large-scale

turbulence can play a role in the transport of momentum and scalars. Submerged

canopies have been classified as sparse or dense based on the magnitude of canopy

drag relative to the bed shear stress. Dense canopies contribute sufficient drag to

transform the velocity profile into a mixing layer form [83]. In the limit of very sparse

submerged aquatic canopies or very sparse terrestrial canopies, the velocity profile

remains logarithmic and the canopy behaves like bed roughness [29, 9].

In this study, the model canopy elements have a diameter, d, and the mean spacing

between the centers of two adjacent elements is s. The solid volume fraction, 0, is

the volume within the canopy occupied by solid elements, which is the complement

of the canopy porosity, r = 1 - 0. The frontal area per unit volume of the canopy is

a = nd, where n is the number of elements per unit planar area. Within the array,

the flow is both unsteady in time and spatially heterogeneous at the scale of the

individual elements. A double-averaging method is used to remove the temporal and

element-scale spatial heterogeneity [40, 84, 75]. The instantaneous equations are first

averaged over a period of time longer than the timescale of turbulence or instabilities

in the flow. The time-averaged equations are then averaged over an area of size s2

including only area occupied by the fluid. The spatial average is denoted by the

angled brackets and the overbar indicates the time average. The parameter a is valid

only for length scales longer than the canopy spacing, s, and therefore in a small

region near the leading edge the definition of a breaks down. However, in all of the

arrays tested in this study, the element spacing, s, is much smaller than the length

scales of the array, and the definition of a is sufficient for our analysis.
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Figure 2-1: Plan view of a rectangular porous obstruction in a uni-directional current
with steady and uniform velocity, Uc, upstream.
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Figure 2-2: Plan view of the array elements, with diameter, d, and spacing, s.
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2.2.2 Canopy regions and governing equations

Governing Equations

The shallow water equations for continuity, streamwise momentum, and cross-stream

momentum are

Dh(U) h(u) -
Dx ± y

1 h(p)

1Dh(p)
p Dy

1

p

1

p

lxh(-T;;)Dx

[Dh(Tg)

+ Dy h Fx

"h(T) ] hFy

in which u, v are the fluid velocities in the x, y directions, respectively, h is the flow

depth, p is the fluid density, p is the fluid pressure and T is the shear stress. We define

Fj as the drag force exerted on the fluid in the direction i.

Outside the canopy:

h = (( 2 + (U)2) 1/ (2.4)

(2.5)Fy = Cf)(() 2 + (7U)2) 1/

Inside the canopy:

Fx = 1 CDa 2 2 1/2

2 (1 -0<)

(2.1)

()(U) ()(U)
Ox Oy

Dh(U) (T)
Ox

Dh( T) (T)
+ y

(2.2)

(2.3)
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F =I CDa 2 1/2

2(1 -0~)(~)( +

where Cf is the bed friction coefficient and CD is the drag coefficient of the array

elements. Outside of the canopy, q = 0. Measurements of Ah around the canopy

show the maximum values of Ah/h are O(10-3) and too small to affect continuity.

Therefore, from this point forward, we adopt a rigid lid approximation and assume

that h(x, y) = h = constant both outside of and in the interior of the canopy.

Upstream adjustment region

Far upstream, the flow is assumed to be uniform (u = U, and v = V = 0) and

unaffected by the canopy. At the canopy leading edge, there is a step change in the

flow resistance with the addition of canopy drag. In aquatic vegetation, canopy drag

is generally an order of magnitude or more larger than bed friction. Approaching the

leading edge, the fluid begins to decelerate in response to the increase in pressure

(Fig. 2-4). The pressure gradient causes lateral flow diversion in a region upstream of

the canopy termed the upstream adjustment region (equivalent to the impact region in

[9]). Based on measurements, the lateral divergence of turbulent stress in this region

is small and negligible compared to the remaining terms in the momentum equation,

and so they are dropped from the momentum equations. Within this region the flow

is governed by the following equations of continuity and momentum balance:

a (T) a (U)+ = 0 (2.8)
ax ay

(- a(U) + ((U)( 1 ) 1 ) ((U)2 + (U)2)1/2 (2.9)
ax ay ~ pax 2 h

(U) + ( u) ( a() ICf(7) ((7) 2 + ()2)1/2 (2.10)
ax ()y p ay 2 h
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Although, this region is upstream of the porous array, we employ a double average

notation for consistency with later equations describing the flow within the array.

Unlike flow near a bluff body, flow can move both through and around a porous

array, and the element density plays a role in determining how much of the flow goes

through versus around. For low flow-blockage canopies, the streamlines show very

little upstream diversion, while for high flow-blockage canopies, the streamlines show

significant upstream diversion (Fig. 2-3). Within the low flow-blockage canopy, the

spreading of dye is due primarily to turbulent diffusion, rather than divergence, based

on the observed velocity field. The visualization shown in Fig. 2-3 suggests that high

flow-blockage canopies affect upstream flow in a manner similar to bluff bodies, with

divergence beginning upstream of the body over a length scale proportional to the

canopy width. Therefore, similar to a bluff body, we expect that the pressure increase

at the leading edge of high flow-blockage canopies, Ap, scales on pUg. In contrast, for

low flow-blockage canopies, there is little upstream change in the flow velocity, which

implies that the pressure increase at the leading edge is small, and that Ap -± 0 as the

canopy flow-blockage approaches zero. The dependency of Ap on the flow-blockage

is verified through experimental observations discussed in @2.4.

To find the upstream adjustment length, LO, the governing equations, 2.8, 2.9

and 2.10, are scaled using the following characteristic values:

x ~ LO (2.11a)

y ~ b (2.11b)

u ~ U" (2.11c)

bU~
v ~ (from 2.8) (2.11d)

LO

-- ~ -- (2.11e)
ax LO

j8p Ap
- ~ -- (2.11f)

ax Lo
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Figure 2-3: Flow at the leading edge of a low flow-blockage canopy (left image) and

of a high flow-blockage canopy (right image). For the low flow-blockage canopy, the

dye trace released at the centerline shows little divergence upstream of the canopy,

while for the high flow-blockage canopy, the dye trace diverges significantly upstream

of the canopy. Within the low-flow blockage canopy, the spread of the dye trace is

due primarily to diffusion.

The scaled governing equations are then:

Cf
2h(1 -$)

U su b
LO Lo

U2 1 b 2 1/2

Lo_
(2.12)

(2.13)Cf U2 1 + (b 21, 2

P2h(1 - ) Lo Lo _

From these scaled equations we can infer that for all canopies, regardless of the mag-

nitude of the velocity and pressure changes, the pressure and inertial terms balance

only if

Lo ~ b. (2.14)

Interior adjustment region

The deceleration that began upstream of the canopy continues within the canopy.

However, the retarding force increases due to the addition of canopy drag which is

large enough to make bed friction negligible within the canopy. In addition, within
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Figure 2-4: (a) The streamwise velocity depicted along the canopy centerline. (b)
Plan-view of the flow adjustment at the leading edge of the canopy and the growth of
the shear layer and coherent structures along the flow-parallel edges. The flow begins
to decelerate upstream of the canopy (upstream adjustment region) and continues to
decelerate within the canopy (interior adjustment region). Following the adjustment
regions, the flow can enter two different uniform regimes in the canopy interior:
(Regime 1) a balance between the pressure gradient and the drag force, or, (Regime
2) a balance between momentum penetration from the canopy edges and the drag
force.
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(a)
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Figure 2-4: (a) The streamwise velocity depicted along the canopy centerline. (b)
Plan-view of the flow adjustment at the leading edge of the canopy and the growth of

the shear layer and coherent structures along the flow-parallel edges. The flow begins

to decelerate upstream of the canopy (upstream adjustment region) and continues to
decelerate within the canopy (interior adjustment region). Following the adjustment

regions, the flow can enter two different uniform regimes in the canopy interior:

(Regime 1) a balance between the pressure gradient and the drag force, or, (Regime

2) a balance between momentum penetration from the canopy edges and the drag
force.
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The scaled equations are

L - p 2 1+ ()] (2.18)PL L "2(l - #)L

U20 b Ap CDa 2 + (b ) 4 112 (2.19)

L L b - 2 (1 - 0) L L}_

Dividing by the inertial term in each equation, respectively, the equations simplify

to:

1 -_ - 1 [(CDaL)2 + (CDab)2]11 2  (2.20)
pU2 2(1- 0)

L ~ -p 1 [(CDaL)2 + (CDab)2]1 (2.21)
b2pU2 2(1 - 0)

This form of the scaled equations brings out an important non-dimensional param-

eter, CDab, which represents the non-dimensional flow-blockage of the array. The

parameter (CDa>1 , called the canopy drag length scale, represents the length-scale

of flow deceleration associated with canopy drag. The canopy flow-blockage factor

is therefore a ratio of two length scales: the canopy width, b, and the canopy drag

length scale. When this ratio is large, CDab > 1, canopies will be referred to as high

flow-blockage canopies, while those with a value of CDab < 1 will be referred to as

low flow-blockage canopies. The transition between these two regimes is expected to

occur when b ~ (CDa)-1 , or CDab ~~ 1. Measurements described later in the chapter

suggest that the threshhold is closer to 2, i.e. CDab > 2 fall in the high flow-blockage

regime. We will later show that CDab also describes the pressure increase at the lead-

ing edge, specifically for high flow-blockage Ap ~ pU20, and for low flow-blockage,

A p + 0.

Using the dual scaling for the pressure increase at the leading edge (Eq. 2.17), we

can now find the length scale of the interior adjustment region. For low flow-blockage
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canopies, CDab < 1, and to the first order we assume that Ap = 0, so that the

first and last terms on the right hand side of (Eq. 2.20) and (Eq. 2.21) drop out,

indicating L ~ 2(1 - q)/CDa. However, for these conditions, 0 < 1, and thus we can

simply write,

2
L ~ (2.22)

CDa

and therefore L > b. This result is equivalent to that reported by [9].

For high flow-blockage canopies, CDab > 1 and Ap ~ pUgc. The pressure term

must be 0(1) in both equations, which indicates

L ~ b (2.23)

and therefore L > 2/CDa. Taken together, (Eq. 2.22) and (Eq. 2.23) imply that L

scales on the maximum of 2(CDa)-1 and b, a dependency we can capture with:

L ~ 2) + (b) 2](2.24)
CDa_

which allows for a smooth transition between the two limits.

Canopy interior region

Downstream of the flow adjustment region, x > L, the flow can enter two differ-

ent uniform regimes. In the interior region, the streamlines become parallel to the

canopy edges, and the velocity within the canopy is less than the adjacent free stream

velocity, creating a shear layer at the canopy's flow-parallel edges (Fig. 2-4). When

CDab > 0 1, the velocity profile in the shear layer exhibits an inflection point [74] that

is unstable and promotes the growth of Kelvin-Helmholtz vortices [17, 25, 47, 37, 113].

Canopies in which ab < 0.1 are generally classified as sparse canopies, and those in
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which ab > 0.1 are called dense canopies [9, 19]. We are interested in canopies that

generate an inflection point in the shear layer, and therefore, with respect to this

classification, all of the canopies considered in this analysis are dense. Coherent,

Kelvin-Helmholtz vortices have been observed in many experimental settings, includ-

ing the interfaces of both terrestrial and aquatic canopies [83, 102, 92]. These coherent

structures penetrate a distance 6i into the canopy and dominate mass and momentum

exchange in this region. The lateral penetration of coherent structures into a canopy

is given by 6i - (CDa)- 1 [81, 113, 74]. The influence of the vortices on the canopy

interior depends on how this penetration length scale compares with the transverse

dimension of the canopy, i.e. the ratio:

~i - 1 (2.25)
b Cab

which is the inverse of the canopy flow-blockage factor. When this ratio is small, the

canopy interior is isolated from the turbulent stress generated at the canopy edges,

and we anticipate that the interior streamwise flow is governed by a balance between

the pressure gradient and the canopy drag:

1&(p) 1 CDa
0 = 1 - - - (,) (2.26)

p ax 2 (1 -0)

where the lateral velocity, (T) = 0. However, when 6i is equal to or greater than b,

turbulent stress penetrates into the canopy interior and is the dominant driving force

for the flow, resulting in a different momentum balance in the interior:

0 1 CDa 2 _a
2 (1- 0) ( y

where -p(u'v') is the Reynolds stress. The following scale analysis indicates that the

pressure gradient is negligible in this interior regime. If the vortices penetrate to the

center of the canopy, the Reynolds stress term will scale as
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8 UC2

( V'_)_ ) ~ ' (2.28)

Because the uniform upstream velocity is set by the balance between the pressure

gradient and bed drag, we can also write

- P - fU2 (2.29)
p Ox h

Combining (Eq. 2.28) and (Eq. 2.29), the ratio of the Reynolds stress term to the

pressure term is h/bCf, which is large (> 50) for every experiment in this study,

confirming that when the vortices penetrate to the canopy centerline, the Reynolds

stress gradient dominates over the pressure gradient and (Eq. 2.27) applies.

[9] also defines submerged canopies as shallow or deep based on the ratio of the

canopy height, defined he in that work, and the penetration of the shear layer into

the canopy. If the two length scales are comparable, the canopy is shallow, and if

the canopy height is much greater than the penetration length of the shear layer,

the canopy is deep. Using the fact that the penetration of the shear layer into the

canopy scales on (CDa)- 1 , and drawing on the geometric parallel between the canopy

height in submerged canopies, he, and the canopy width in shallow water canopies, b,

it is evident that the definitions shallow and deep are similar to the definitions of low

and high flow-blockage. Therefore, the canopy flow-blockage factor, CDab, governs

both the length scale of the flow adjustment regions (Eq. 2.24), and the influence the

turbulent stresses have on the interior velocity, downstream of the adjustment regions.

Experiments described below suggest that the transition between high and low flow-

blockage occurs near a threshold value of CDab = 2. To summarize, high flow-blockage

canopies, where CDab > 2, have an interior adjustment length proportional to the

canopy width, b, and an interior velocity driven by the ambient pressure gradient,

while low flow-blockage canopies, CDab < 2, have an interior adjustment length

proportional to the canopy drag length scale, (CDa)- 1 , and an interior velocity driven
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Table 2.1: A summary of the terminology

flow.

used to categorize porous obstructions in

by the lateral gradient in the turbulent stress. This scaling, and the transition between

low flow-blockage and high flow-blockage canopies will be tested and discussed in @2.4.

2.3 Methods

Experiments were conducted in the Environmental Fluid Mechanics Laboratory at

MIT in a 13 m long, 1.2 m wide recirculating flume. In this flume, a 25 hp pump

draws water from the tailbox and pumps it upstream to the headbox, where a large

baffle helps disperse the flow evenly across the flume width. A weir at the downstream

end of the test section sets the flow depth.

Several different model canopies were constructed and tested in this flume. The

canopies were placed at mid-channel and 6 m from the flume outlet. The canopies were

constructed of maple dowels, 6.4 mm in diameter and 15 cm high, in a flow of depth

h = 14 cm. The dowels were arranged in rectangular canopies in perforated PVC

boards which lined the flume bed. The two parameters of canopy geometry that were

varied were the half-width, b, and the density, a. The density was varied between 0 =

2.6% and 40%, or a = 0.053 to 0.8 cm 1 . The canopy half-width was varied between

b = 4 cm and b = 13 cm. The corresponding range of flow-blockage was CDab = 0.2

36

Dense & Sparse Dense ab > 0.1 Canopy contributes sufficient drag

Canopies to transform velocity profile into a

mixing layer form, with inflection

point at canopy edge.

Sparse ab < 0.1 Perturbed velocity profile does not

contain inflection point.

High and Low High CDab > 2 L ~ b. Interior velocity driven by

Flow-blockage pressure gradient

Low CDab < 2 L ~ (CDa 1 . Interior velocity

driven by turbulent stress



Table 2.2: The parameters of the twelve experimental canopies. The densities were
dictated by the board hole spacings. The asterisk (*) indicates a velocity profile
measured by L. Zong and reported in [116]. Although the drag coefficient varies with
velocity over the length of the array, it was defined as CD = 1 in the following table.

to 8.0, which covers many field canopies. For example, kelp forests have values of

CDab 0.5 to 30, based on parameters reported by [52, 89, 32]. [66] reports values

of CDab between 1 and 15 for seagrasses in the coastal ocean. [15] constructed model

marshgrass canopies of CDab = 0.19 and 3.1 which are representative of naturally

occurring canopies of emergent aquatic vegetation. [29] reports values of CDab = 0.2

to 1.5 for agricultural canopies, and CDab = 1 to 5 for terrestrial forests (note that

for terrestrial canopies, b is the canopy height). Large urban areas typically have

values of CDab between 0.1 and 0.3 [41]. In all of these reported ranges of CDab,

CD is assumed to be unity. In our experiments, to minimize the influence of the

flume walls, the canopy width was never larger than 26 cm, or _ 20% of the total

flume width. The canopy length was not a parameter expected to influence the flow

adjustment region, provided that the overall canopy length was much larger than the

adjustment length. The flowrate was held constant with a uniform approach velocity

of U,, ~ 10 cm/s for all experiments.

Velocities were measured along the x-axis upstream of the canopy and within

the canopy using a 3D Nortek Vectrino Acoustic Doppler Velocimeter (ADV). The

sampling volume of the ADV was located at mid-depth in the flow. At each point, the
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CDab a (cm-i) b (cm) 0(%)
0.21 0.053 4 2.6
0.53 0.053 10 2.6
0.58 0.096 6 4.6
0.96 0.096 10 4.6
1.2 0.20 6 10.3

1.25 0.096 13 4.6
2.0 0.20 10 10.3
3.0 0.20 15 10.3
4.8 0.80 6 40
8.0 0.80 10 40

8.0* 0.20 40 10.3



Figure 2-5: A photograph of the CDab = 2.0 patch from above with the capacitance-

based wave gauges visible on the left hand side of the photo.
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Figure 2-6: A detailed photo of the capacitance-based wave gauges and their place-
ment at the edge and at the centerline of the CDab = 2.0 patch.
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three velocity components (u,v,w) were recorded at 25 hz for 240 seconds. Upstream

of the canopy, velocities were measured at 10 cm intervals, starting between x =

-150 cm and x = -100 cm. Within the canopy, velocities were measured at intervals

proportional to the expected adjustment length of the individual canopy. For example,

for a canopy with a longer adjustment length, velocities were measured at intervals

of 10 cm or greater. For a canopy with a shorter adjustment length, measurements

were taken at intervals of between 3 and 5 cm. Within the canopies, the exact sample

spacing was determined by the dowel geometry and spacing.

At all of the sampling points, the ADV was placed in the same orientation relative

to the surrounding dowels. Consistency in placement and orientation was critical to

minimize the error introduced by spatial heterogeneity in the velocity through the

dowel array. The sampling volume was positioned as close as possible to the midpoint

between two dowels. The velocity at this position has been shown to be within 20%

of the spatially-averaged velocity, (F), for all of the array densities investigated here

(White and Nepf 2003). The error due to velocity variations in time was negligible

due to the large number of data points. Within the canopies of density a > 0.2 cm 1 ,

it was necessary to remove a few individual dowels to fit the head of the ADV probe

into the canopy. The ADV sampling volume is 6mm in diameter, 2.5mm in height

and is located 7cm below the probe head of the ADV. The instrument is designed to

produce minimal local distortion in the sampling volume.

At intervals of 10 cm along the canopy edges, two capacitance-based wave gauges

were used to monitor the displacement of the water surface. The displacement was

recorded at 25 hz for 240 seconds and was filtered to remove high-frequency noise. The

Kelvin-Helmholtz vortices create a small dimple in the water surface, which appears

as a small negative displacement. The filtered surface displacement signals are then

used to deduce the phase and period of the passing vortices.

Velocity profiles were also measured in the cross-stream direction for select canopies

in the fully-developed region of the flow (Fig. 2-4). The measurements were taken

at intervals of between 2 and 4 cm starting at the canopy centerlines and continu-

ing into the free stream. To investigate the interaction between vortices on the two
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flow-parallel edges, a second set of cross-stream velocity profiles were taken with a

thin splitter plate in place at the canopy centerline. This splitter plate prohibited

communication between the vortices at the two canopy edges.

2.4 Results and discussion

2.4.1 Flow adjustment regions

The streamwise velocity profiles exhibit a range of behavior both upstream of and

within the canopy (Fig. 2-7). We first consider the upstream adjustment region

and define the upstream velocity change as Au = U,, - u(,=o). The upstream ad-

justment length, Lo, was defined as the distance over which 90% of this velocity

change occurred, i.e. the upstream adjustment region begins at the point where

u U(x=O) + 0.9Au. This definition was chosen to remove the biases associated with

the magnitude of the velocity drop. The scaling of the governing equations suggests

that for both high and low flow-blockage canopies, LO ~ b. The observations support

this scaling even though the upstream deceleration is weaker for sparser canopies.

Across all of the canopies, LO = (4.0 ± 0.7)b, with no dependence on CDab, where

the uncertainty is the standard error of the normalized, measured values.

In the canopies with the highest solid volume fractions, a flow reversal is observed

within the canopy and near the leading edge (Fig. 2-7). In these canopies, the

upstream flow divergence is so strong that the velocity at the two leading-edge corners

(x = 0, y = ±b) is elevated above the free-stream velocity (see details in Fig. 4 of

[116]), such that a low pressure zone is created at these corners. For flow around

solid obstructions, a similar local pressure is associated with flow separation. In the

porous arrays studied here, this local adverse pressure gradient is sufficient, relative

to the low inertia of the flow within the canopy, to cause a flow reversal within the

canopy. This phenomenon has also been observed in dense terrestrial canopies [60].

A flow reversal was observed for two high flow-blockage cases, CDab = 4.8 ([) and

8.0 (<), which were also the narrowest canopies, b = 6 cm and 10 cm, respectively

41



S V* 0.21
0.53
0.8

0.8- * 000.58
0.96

V 1.24+ 0 1.25

0.6 -v 1.25
+ 2.0
A 3.0

~ 04 ~*V* ~> 4.80.4-* o A 8.0

02 * 8.0*
0 0 x

0: x

0.-0 -0 0 0 0 20

>XV ,*A 0
S+~ * ~ A 0

00

-0X0 V.7 04~ A-50 0 50 1050 20

Dist. from Leading Edge (cm)

Figure 2-7: The streamwise velocity profiles along the canopy centerline, starting

upstream of the canopies and through the length of the adjustment region. The

canopies begin at x = 0. The streamwise velocity (U) has been normalized by the

upstream velocity Uc.

(see (U7) < 0 at x ~~ 40 cm in Fig. 2-7). In wider canopies, flow reversals may also be

present, but may be found closer to the corners and not at the centerline, where our

profiles are made.

We can use the measured velocity profiles to examine the magnitude of the pressure

change, Ap, at the leading edge, and to confirm the scaling proposed in §2.2.2. For

bluff bodies, the pressure at the stagnation point is proportional to the kinetic energy

of the flow upstream, IpU2. We anticipate that canopies with high values of CDab

will approach this limit, but canopies with a value of CDab -4 0 will experience a

negligible elevation of pressure, Ap -4 0. According to Bernoulli, we can define the

scale of the pressure change using the change in kinetic energy between a position far

upstream and at the leading edge,

A~p pUd - (2.30)
pU2 pU2
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Figure 2-8: The measured kinetic energy change at the leading edge of the canopy for

the full range of values of CDab. The prediction of [9], valid only for canopies with

very low flow-blockage, CDab < 1, is plotted with a solid line.

When this value is a constant close to unity, it is reasonable to define the pressure

change at the leading edge as Ap ~ pUg. This scaling for Ap is valid for CDab > 2

(Fig. 2-8). For values of CDab < 2, the data shown in Fig. 2-8 suggests that Ap/pU.

increases with CDab and that Ap -+ 0 for CDab -> 0. These results support the

assumption of a dual scaling for the pressure as represented in (Eq. 2.17).

Within the canopy, the interior adjustment length is estimated from the data as

the point downstream of the leading edge at which the velocity reaches a minimum or

constant value. The measured interior adjustment length is the shortest for narrow

and dense canopies, and is the longest for wide and sparse canopies (Fig. 2-7). For

example, the canopy with b = 6 cm and a = 0.8 cm 1 (CDab = 4.8, >) has an interior

adjustment length of 30 cm, while the canopy with b = 10 cm and a = 0.053 cm-1

(CDab = 0.53, A) has an interior adjustment length of 150 cm. By normalizing

the x-coordinates by the length scale of the interior adjustment region, L, as given

in (2.24), the streamwise velocity profiles collapse, confirming the scaling argument

derived in §2.2.2. (Fig. 2-9). The mean and the standard error of the measured
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Figure 2-9: The streamwise velocity profiles along the centerline, normalized by the

length scale (Eq. 2.24) predicted from scaling the governing equations. Within the

canopy, L is given by (Eq. 2.24). Upstream of the canopy, the velocity profiles are

normalized by LO, which is given by (Eq. 2.14). The velocity has been normalized

by the difference between the upstream velocity, Uoo, and the minimum velocity at

the end of the flow adjustment region, Uo.
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adjustment lengths provide the scale constant for (Eq. 2.24), specifically

2 2 -11/2

L = (5.5 ± 0.4) (\C) + (b) 2 1 (2.31)
CDaI

The drag coefficient, CD, was set equal to unity for simplicity. For low flow-blockage

canopies, for which L reduces to L - (CDa>1 , this result is in agreement with the

adjustment length scale of [19].

Drawing on the work of [9], we can add a correction term to the scaling that

accounts for the small, but non-zero, pressure change at the leading edge of low flow-

blockage canopies. For sparse canopies, ab < 0.1, [9] found the velocity deficit at the

canopy leading edge to be proportional to CDab. This scaling is shown as a solid line in

Fig. 2-8. Utilizing this result, we can define the pressure change Ap/pU2 ~ (CDab)2
_

Thus for low flow-blockage canopies, the interior adjustment length with the small

correction term is

2
L ~ (1 + (CDab) 2) (2.32)

CDa

In Fig. 2-10, the data is separated into two different sets, low flow-blockage and

high flow-blockage, and compared against the appropriate scaling, either (Eq. 2.32)

or (Eq. 2.23). Based on the scaling (Eq. 2.24) and the data in Fig. 2-8, the transition

between low and high flow-blockage is expected to occur at CDab = 2, and this is

the threshold used to separate the cases in Fig. 2-10. This figure shows more clearly

how the higher values of CDab scale with canopy width, b, and how lower values of

CDab scale with the canopy drag length scale. Further, note that all of the low flow-

blockage canopies exhibit the same flow reacceleration behavior downstream of the

adjustment regions. In the low flow-blockage canopies, the refined adjustment length

(Eq. 2.32) is found to be

L = (3.0 ± 0.3) 2  (1 + (CDab)2)] (2.33)
CDa
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This scale constant is consistent with the observations reported in [19], who find

L = 3Lc, with Lc = 2(1 - q)/(CDa), where # < 1 for low flow-blockage canopies. In

the high flow-blockage canopies, the adjustment length is found to be

L = (7.0 ± 0.4)b (2.34)

In the results for both low and high flow-blockage canopies, the uncertainty reported

is the standard error of the normalized, measured adjustment lengths.

[8] reports that both the upstream and interior adjustment regions in low flow-

blockage canopies scale on (CDa)- 1 . Our observations do not support this conclusion.

While we find that the interior adjustment region of canopies with low flow-blockage

scale on (CDa)V 1 , the measurements and scale analysis indicate that the upstream

adjustment region scales on the canopy width, b. In high flow-blockage canopies,

our scaling analysis indicates that both the upstream and interior adjustment regions

share the same length scale, the canopy width b, and the results support this conclu-

sion. All of the canopies tested in this paper are considered dense (CDab > 0.1) using

the terminology of [9] and [19]. Canopies with very low flow-blockage (CDab < 0.1),

i.e. sparse canopies, were not tested in this study, and may exhibit different behavior.

The spread that remains in the normalized data (Fig. 2-9) can be attributed

to several factors. First, the half-width of a uniform, staggered array is not clear,

particularly for sparse arrays, as there is a staggered interface between the free stream

and the canopy. Second, there is uncertainty in the drag coefficient, CD, which is

described by empirical formulas as a function of 0 and velocity, and based on uniform

flow conditions. Finally, spatial error in the velocity profiles can also influence the

adjustment region. Although point measurements were taken with constant geometric

positioning with respect to the surrounding canopy elements, spatial deviations from

the mean velocity exist, and finer scale measurements would be unattainable within

dense canopies.

For the flow within the canopies to decelerate, fluid must be diverted laterally
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Figure 2-10: The streamwise velocity profiles along the centerline. (a.) Low flow-
blockage canopies normalized by (Eq. 2.32) within the canopy and by (Eq. 2.23)
upstream of the canopy. The values of 2/CDa range from 10 to 38 cm (table 2.2).
(b.) High flow-blockage canopies normalized by (Eq. 2.23). The values of b range
from 6 to 40 cm (table 2.2).

across a distance b to the canopy edges. The laterally moving flow also experiences

a drag force (the last term in 2.16). For high flow-blockage canopies, L~ b, (Eq.

2.lld) indicates that v u , and therefore the flow resistance in the lateral direction

is comparable to the streamwise flow resistance and provides an equal control on the

flow. That is for high flow-blockage canopies, the streamwise flow can adjust only as

rapidly as fluid can laterally evacuate the canopy interior. This is why the canopy

width is the controlling length-scale of flow adjustment. In contrast, for canopies

with low values of CDab, L >> b and v « u, and the lateral flow resistance is small

compared to the streamwise flow resistance. Fluid is able to evacuate the canopy

interior with negligible constraint on the lateral flow, and therefore the interior flow

adjustment length scale depends on the canopy drag, with very little dependence on

the canopy width. For canopies that fall in the transition region between these two

distinct regimes, the adjustment length is controlled by a combination of the canopy

width and the canopy drag (Eq. 2.31).

It was assumed a priori that within the adjustment region there is a negligible
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contribution from turbulent stress and that the governing equations for the flow re-

duced to (Eq. 2.15) and (Eq. 2.16). The experimental measurements confirmed this,

showing the Reynolds stress gradient was negligible within the region of streamwise

velocity deceleration. For this scaling analysis, the Reynolds stress gradient at the

centerline of the canopy is approximated as

O(U'V') (U'I ')y=b (2.35)
Dy Y=o b

Note that this estimate is quantitatively accurate when 6i > b, indicating stress can

penetrate to the centerline. Otherwise, (Eq. 2.35) overestimates the stress gradient at

the centerline. First-order, forward differences were used to approximate the inertial

term.

The estimated magnitudes of the inertial, stress and drag terms are shown in

Fig. 2-11 for a high and low flow-blockage case. The inertial term (dashed line) of

the momentum equation has non-zero values in the interior flow adjustment region

(x < L), where it is balanced by canopy drag. As assumed, the Reynolds stress term

(thin, solid line) is negligible within the interior adjustment region. Downstream of

the interior adjustment region, x > L, the inertial terms drop to zero. In the low

flow-blockage canopy (CDab = 0.53, Fig. 2-11a), the Reynolds stress and drag terms

are in balance. In the high flow-blockage canopy (Fig. 2-11b), 6i < b, such that (Eq.

2.35) is an overestimate of the turbulent stress gradient at the centerline. Indeed,

this estimator is clearly out of balance with the drag term in Fig. 2-11. The relevant

force balance is then between the canopy drag and the pressure gradient. These

two regimes of interior flow are discussed further in the next section. Measurements

of the lateral divergence of the Reynolds stress show that this term is negligible in

comparison to the inertial terms upstream of the array as well.
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Figure 2-11: Magnitudes of the inertial term (dashed line), the Reynolds stress term

(thin solid line) and the canopy drag term (heavy solid line) in the momentum equa-

tion. The inertial term shows non-zero values during the adjustment region. For the

low flow-blockage canopy, CDab = 0.53, the Reynolds stress term becomes significant

beyond the interior adjustment region and is balanced by the canopy drag term. For

the high flow-blockage canopy, CDab = 2.0, the Reynolds stress does not penetrate

to the centerline and the force balance is between the pressure gradient and canopy

drag. The adjustment length, L, is denoted on the x-axis.
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Figure 2-12: The streamwise velocity profiles through the interior adjustment region

and the canopy interior. (a) In the low flow-blockage canopy, CDab = 0.53, re-

acceleration occurs beyond the initial adjustment region, and the interior velocity is

set by a balance of turbulent stress penetration and canopy drag. The prediction (Eq.

2.37) is shown by the dashed line. (b) In the high flow-blockage canopy, CDab = 2.0,
the interior velocity is set by a balance of the pressure gradient and canopy drag. The

prediction (Eq. 2.39) is plotted with the dashed line.
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2.4.2 The shear layer and canopy interior regions

In Fig. 2-10, the velocity profiles were separated based on their values of CDab. The

canopies with low flow-blockage (CDab < 2) all show a clear reacceleration after the

adjustment region, while this behavior is absent in the high flow-blockage canopy

profiles. Two specific streamwise velocity profiles are shown in Fig. 2-12 for a repre-

sentative high flow-blockage and low flow-blockage canopy. For the low flow-blockage

canopy, CDab = 0.53, the streamwise velocity reaccelerates after the flow adjustment

regions and approaches a uniform interior flow velocity which is set by the balance of

turbulent stress penetrating to the canopy interior and canopy drag, as suggested by

(Eq. 2.27).

Using the estimator of the turbulent stress gradient shown in (Eq. 2.35) and the

definition,

U* = -( UV7)V-b (2.36)

the interior velocity of low flow-blockage canopies given by (Eq. 2.27) can be written

(U) 1 82(1 - ) 1 ul2(1 -#- - - -- ((1') (2.37)
U0 U0 By CDa U0 b CDa

Using CD = 1, (Eq. 2.37) closely predicts the interior velocity of the low flow-blockage

canopy (shown as dashed line in Fig. 2-12a). If measurements of u* are not available,

previous researchers have predicted the strength of the turbulent stress based on

canopy morphology and the free stream velocity profile [10, 9].

For the high flow-blockage canopy of CDab = 2, the uniform interior velocity is

set by a balance between the pressure gradient and canopy drag, derived from (Eq.

2.26),

2 Op (I - #
(U) = - p( (2.38)

p Ox CDa
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Figure 2-13: The cross-stream profiles of (a) streamwise velocity and (b) Reynolds
stress profiles in the fully-developed region of the flow for CDab = 0.53 (o, dashed
line) and 2.0 (*, solid line). The profiles were measured at streamwise distances of
x = 360 cm and x = 262 cm, respectively. The canopy centerline is at y/b = 0, and
the canopy edge is at y/b = 1. The error in the velocity data is ± 0.0025 m/s within
the canopy, and is negligible in the free stream (y/b > 1). The error in the Reynolds
stress is 4 - 10- 5 m2 /s 2 within the canopy, and is negligible in the free stream.

The background pressure gradient can be estimated from the momentum balance in

the free stream, i.e. the balance between bed friction and the pressure gradient shown

in (Eq. 2.29). Then, (Eq. 2.38) can be written

-= -- (2.39)
U0 h CDa

The interior flow velocity was predicted from (Eq. 2.39) using the known coefficient of

friction for the PVC baseboards, Cf = .006 and CD was set equal to unity. The pre-

diction, shown with the dashed line in Fig. 2-12b, is in agreement with the observed

velocity, confirming the force balance suggested in (Eq. 2.26). The near reversal in

the streamwise velocity at x = 100 cm for CDab = 2.0 is likely associated with the high

velocity/low pressure region at the leading corners, which was discussed previously

in §2.4.1.

Figure 2-13 shows the lateral profiles of the mean streamwise velocity and Reynolds
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stress in the fully-developed region of the two canopies described in figures 2-11 and

2-12. Note that Fig. 2-13 shows the stress profile over only half the canopy. The

outer-layer, which is the portion of the shear layer in the free stream is similar in

scale for both canopies because it is set by h/Cf [113]. The inner shear layer scale,

or penetration scale, is 8i/b = 0.5/(CDab) [113]. When CDab = 2.0, 3i/b 4 0.25

and turbulent stress does not penetrate to the canopy interior. The experimental

results show that the Reynolds stress is essentially zero, within uncertainty, over

the span from the centerline, y/b = 0, to near the edge, y/b a 0.8, so that the

gradient equals zero at the centerline. For these conditions, the mean streamwise

velocity at the centerline is driven by the pressure gradient (Eq. 2.26), as shown

in Fig. 2-12b. For CDab = 0.53, al/b _ 1, and the stress profile is approximately

linear from one canopy edge to the other, passing through zero near the canopy

centerline, consistent with the change in velocity gradient at the centerline. Based

on the measured stress profile, (u'v')/&y = .0024 m/s 2 at the centerline, which is

comparable to the estimator used previously, (Kuv)y=b/b = .0040 m/s 2 . For this

canopy (CDab = 0.53), the streamwise velocity increases after the flow adjustment

region (Fig. 2-12a) because turbulent stress can penetrate to the canopy interior, and

the streamwise velocity at the centerline is set by the balance of turbulent stress and

drag (Eq. 2.27).

2.4.3 Vortex organization and enhancement

Studies of canopies with a single flow-parallel edge have shown that the Kelvin-

Helmholtz vortices induce a pressure response beyond the scale of the vortex [30, 113].

The center of each vortex is a point of low pressure which induces a wave response

in the array beyond the penetration length, 6i. In this study, the canopy has two

streamwise interfaces separated by the full canopy width, B = 2b (Fig. 2-1). The

time-records of the surface displacement at the canopy edges suggest that the vortices

interact across the canopy width. Specifically, the vortices organize such that there

is a phase shift of 7r radians between the vortex streets that form on either side of

the canopy (Fig. 2-14). The resulting cross-canopy pressure gradient induces a trans-
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Figure 2-14: A time record of the surface displacement, Ah, just outside of the canopy

edges (x = 160 cm, y = 13 cm, thin solid line; y = -13 cm, heavy solid line) as well

as the response of the instantaneous in-canopy lateral velocity, (v) (dashed line), in

the fully-developed region of the canopy of CDab = 0.53. The surface displacements

show a phase shift of 7r radians while the velocity lags the low-pressure events by 7r/2

radians.

verse velocity (v) within the canopy that lags the pressure forcing by 7r/2 radians

(Fig. 2-14).

The vortex pattern evolves from the leading edge as shown diagrammatically in

Fig. 2-4. Figure 2-15 provides evidence that traveling vortices appear at x = 50 cm,

which is near the end of the adjustment region, x = L. Upstream of x = L, the flow is

diverting laterally and the shear layer has not yet formed. Once formed, the vortices

quickly organize, such that by x = 100 cm, there is a phase shift of i radians between

the vortex streets on either side of the canopy, which is evident in the cross-canopy

lag of 1/2 of the vortex period (Fig. 2-15).

The communication of vortices across the canopy not only results in self-organization,

but also in a significant enhancement of the strength of the vortices. The strength

of the vortices can be described by the magnitude of the peak Reynolds stress. This

magnitude was compared for conditions in which the vortices were able to commu-

nicate across the canopy, and conditions in which this communication was blocked
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Figure 2-15: The shift between the surface displacement at the two canopy edges

for CDab = 3.0, in seconds, normalized by the measured instability period. The

normalized phase shift converges to a value 0.5 downstream of the leading edge,

indicating that the two canopy edges are perfectly out of phase. Near the leading

edge, vortices have not yet formed and the turbulence is of a random nature and

therefore the two signals are uncorrelated.
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Figure 2-16: The lateral, root-mean-square velocity, vrms shown for both canopy

densities with (o) and without (*) a splitter plate at the canopy centerline. The

values of Vrms are greatly reduced in the presence of the splitter plate and approach

zero at the canopy centerline, y/b = 0. The error in the velocity data is ± 0.0025

m/s within the canopy (y/b < 1), and is negligible in the free stream (y/b > 1).

by a splitter plate placed at the canopy centerline. For both the low and high flow-

blockage canopies, there is a significant enhancement in stress at the interface when

vortices can communicate across the canopy (no splitter plate). For CDab = 0.53,

the vortices penetrate the full half-width into the canopy, 6i/b ~ 1, and the Reynolds

stress increases by nearly a factor of 5 between cases with and without the splitter

plate. For CDab = 2, the vortices penetrate a very small distance into the canopy,

i/b ~ 0.25, and yet the Reynolds stress at the edge increases by a factor of 7.

The cross-canopy organization of vortices greatly enhanced the lateral transport

of fluid across the canopies. This was most evident in the root mean square of the

lateral velocity, Vrms, in the canopy interior (Fig. 2-16). Within the low flow-blockage

canopy, CDab = 0.53, Vrms approaches 3 cm/s. Using half the period of a passing

vortex as the representative time-scale, the excursion amplitude is approximately

17 cm, a distance greater than the half-width of the canopy of 10 cm. Within the

high flow-blockage canopy, CDab = 2.0, Vrms approaches 2.5 cm/s and results in an

excursion amplitude of 14 cm, which is also comparable to the canopy half-width, b =
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10 cm. That is, despite a much smaller penetration length in the high flow-blockage

canopy, 6i ~ 2.5 cm, the cross-canopy velocity response to vortex passage has nearly

the same amplitude as that observed in the low flow-blockage canopy. These results

indicate that fluid parcels in the center of both the low and high flow-blockage canopies

containing spores, nutrients, pollution or small creatures can be drawn into the free

stream and vice versa, over half the period of a single passing vortex.

In a one-sided canopy, or a canopy with a splitter plate at the centerline (Fig. 2-

16), vrms is reduced over the entire canopy width and necessarily approaches zero at

the centerline. This reveals that two-sided canopies not only produce much stronger

vortices, but that their retention time can be influenced more strongly by the lateral

response to passing vortices. Indeed, in the two-edge canopies, vrms is nearly the

same magnitude as (T) in the low flow-blockage canopy, while vrms is larger than (U)

in the high flow-blockage canopy (figures 2-13 and 2-16). This result suggests that

lateral motions, rather than streamwise advection, can control the canopy residence

time. This is especially true when the aspect ratio of the canopy is greater than

one, which is typical in channel vegetation, e.g. [91] report typical length-to-width

aspect ratios of 2.5. The reduced retention time can have important implications for

plant fecundity, structural stability and habitat viability within canopies, as well as

the transport and fate of pollutants and contaminants in both aquatic and terrestrial

canopies.

As the canopy half-width, b, increases, there will be a width above which the

vortices at the two flow-parallel edges no longer interact in a sympathetic manner. We

anticipate that this transition occurs when the pressure perturbation at the canopy

edges cannot translate across the canopy within half the time period of a passing

vortex. Using the shallow water wave speed, gh, to describe the translation speed

of pressure perturbations, this threshold will occur at the point when 2b/gh > 0.5T,

where T is the vortex period. In the cases shown in Fig. 2-16, T = 10 s and 2b//'dh =

0.2 s, so it follows that vortices could communicate across the patch width. The vortex

period was measured using the zero-crossings in the surface displacement record. The

vortex period is largely set by the outer scale of the shear layer, 6o, and thus by the
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water depth and friction coefficient (see White and Nepf 2003). For the same flow

depth and bed conditions, and the maximum achievable flow speed of near 0.5 m/s,

we would need a canopy of width 10-20 m in order to test the predicted disconnection

of edge-vortices. Unfortunately, this was not possibly within the flume available.

2.5 Conclusions

In this study, we present a set of experiments on unidirectional flow through rectangu-

lar porous obstructions. Upstream of the canopy, the flow adjusts over a length scale

proportional to the canopy width. The length scale of the interior adjustment region

depends on the canopy flow-blockage, described by CDab. For high flow-blockage

canopies (CDab > 2), the adjustment length is set by the half-width, b. For low

flow-blockage canopies (CDab < 2), the adjustment length is set by the canopy drag

length scale, (CDa- 1.

Downstream of the adjustment region, shear layers form along the flow-parallel

edges. Shear layer vortices form and grow to a finite size within this layer. The

penetration of shear-layer vortices into the canopy scales with the drag length scale,

i.e. 6i = 0.5(CDa>1 . The ratio of the vortex penetration length to the canopy half-

width (Si/b = 0.5(CDab)>1) determines the dominant force driving the flow in the

canopy interior. If 6i < b (CDab > 2), the interior flow is governed by a balance

between the pressure gradient and canopy drag. If 6i > b (CDab < 2), the interior

flow is governed by a balance between the turbulent stress gradient and canopy drag.

Thus, the flow-blockage parameter CDab, the ratio of the canopy width to the canopy

drag length scale, controls both the behavior of the flow adjustment regions as well

as the behavior in the canopy interior region.

When a porous obstruction has two interfaces parallel to the mean flow direction,

the strength of the vortices that form on the flow-parallel edges is greatly increased

relative to vortices that form at a single interface. With two interfaces, the vortices

communicate across the canopy width and organize such that there is a phase shift of

-r radians with respect to each other. This organization enhances the vortex strength,
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measured by the Reynolds stress or vrms, relative to identical canopies with a single

flow parallel edge. The stronger vortices and the sympathetic response from both

interfaces results in much higher turbulence within the canopy and, potentially, a

significantly reduced residence time.
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Chapter 3

Forces on flexible blades in a

vortex street

3.1 Introduction and Motivation

Flexible structures in flow are pervasive throughout nature and the built environment.

Manifestations of this system are found in the modeling of flow through pipes and

in the design of aquatic and aerial vehicles [76]. In biology, simplified models of this

system are applied to study the adaptation of plants and animals to flow; plants adapt

their rigidity and buoyancy to modulate both light exposure and fluid drag force [67];

animals undulate their bodies to generate thrust and interact with vortices shed by

upstream neighbors [108, 86]. Recent studies have also looked to flexible structures

in flow as potential energy sources [5, 69].

The fluid forces on a slender body can be modified by its flexural rigidity. For

bodies oriented perpendicular to steady flow, flexural rigidity determines the degree

of mean reconfiguration, or streamlining: the process by which drag forces are atten-

uated via changes in the structure's frontal area [4, 39]. Flexural rigidity can also

induce surprising dynamic behaviors including vortex-induced-vibrations [114], regu-

lar and chaotic flapping in uniform flows [20] and the production of enhanced thrust

forces [82, 70, 2]. Furthermore, by allowing structures to rapidly deform, low values

of flexural rigidity can also introduce large inertial forces to a system [23].
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In aquatic environments, plants move in response to fluid forcing, which can

change the relative fluid velocity at the plant surface, change the frontal area of

the plant normal to the flow and create inertial forces as the plant accelerates. A

key parameter in controlling how the plant moves relative to the surrounding fluid is

the ratio of the fluid forcing to the plant's structural properties. This ratio largely

determines the dynamic response of the plant, which can modify the drag forces as

well as inertial forces on the structure. Specifically, this ratio can indicate when re-

ductions in drag force due to plant streamlining are outweighed by the presence of

inertial forces due to high plant accelerations

In this chapter, we develop a generalized model system which examines the re-

sponse of thin flags (a model for aquatic plants) in a model turbulent flow field. By

systematically varying the ratio of fluid forcing to the flexural rigidity of the flags,

we can experimentally find a relationship for the total force on the flags as a func-

tion of a single parameter. This ratio of fluid to structural forces can indicate when

changes in frontal area and relative velocity alter the drag force, and when inertial

forces become a significant component of the total force on the system. We then

construct a simplified theoretical model of this system to investigate the fundamen-

tal dynamic phenomena underlying the experimental data. In §3.2, we derive the

governing equation for the flag in our model system. We describe the experimental

methods used in this study in §3.3.1 and in §3.3.3, we discuss the theoretical model

we use to inform our experimental results. The results of both the experiments and

the theoretical model are presented in §3.4. In §3.5, we compare the experimental

and theoretical results and discuss the implications of this study. The experimental

results from this chapter, along with the results from Chapter 4, will be submitted

to the journal Limnology & Oceanography for publication.

3.2 Theory

We model the flag as a slender, inextensible beam of constant thickness h, width b,

length 1, elastic modulus E and density p. We define a curvilinear coordinate system
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Figure 3-1: A flexible flag of length I in a vortex street created by a bar of height
D. The bar spans the flume, which has width B. The flag has width b < B. Flag
position is described by ( = {x, z}. The fluid velocity upstream of the bar is U".

in which s is the distance along the flag, 0 is the angle formed between the flag and the

x-axis and ( {x, z} is the flag position vector (Fig. 3-1). To derive the governing

equations for the beam dynamics, we first construct a two-dimensional force balance

for a unit length of the flag (Fig. 3-2). The horizontal and vertical force balances on

this length of flag are:

-T cos 0+(T +Tds)cos (0 +Osds)+ S sin0 -(S+ Sds) sin(0 +Osds)+ Finerx = 0

(3.1)

-T sin0 - S cos 0 +(T + Tds) sin (0 +Osds)+ (S+ Sds) cos (0 + Osds)+ Finer.,z = 0

(3.2)

in which T is the internal tension in the flag, S is the shear force within the flag, 0 is

the angle formed between the flag and the x-axis, ds is the section length of the flag,

and Finer.,x and Finer.,z are the inertial reaction forces in the horizontal and vertical

directions, respectively. By expanding the trigonometric terms in a Taylor series, we

simplify the above equations to the following:

-T cos 0+(T+Teds)(cos 0-sin 00,ds)+S sin 0-(S+S ds)(sin 0+cos 00sds)+Finer.,x = 0

(3.3)
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-T sin 0-S cos 0+(T+Tds) (sin 0+cos 00,ds)+(S+Sds)(cos 0-sin 008 ds)+Finer.,z = 0

(3.4)

After expanding the terms in the above equations, we neglect small terms of order

(ds)2 . Multiplying through by 1/(ds) and collecting terms within the partial deriva-

tives gives

a a F _

[T cos0] - [S sin0] + ,= 0 (3.5)
as as ds

- [T sin 0] + a [S cos 0] + d'= 0 (3.6)
09s as ds

The shear force, S, can be related to the beam curvature through S = -EI0ss, in

which EI is the flexural rigidity of the beam. Utilizing this relationship and by replac-

ing Finer.,x and Finer.,z with the beam inertia, we find the following two-dimensional

equations of motion:

a [T cos 0] + a [EI0S, sin 0] = psbh a2 (3.7)as as at2

[T sin 0] - E IOSScos 0] = psbh a2Z (3.8)
as as at2

The unit normal and unit tangent vectors for the flag surface are n ={- sin 0, cos 0}

and t = {cos 0, sin 0}. With these vectors, Eqs. 3.7 and 3.8 can be written as a single

system of equations.

[Tt] - [E Issn] = psbh at2 (3.9)

In a moving fluid, the fluid will exert forces on the beam. By taking these addi-

tional forces into account, the non-dimensional, dynamic beam-bending equation for

large amplitude motion with arbitrary fluid forcing is [71, 70]:
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Finer.,z T +

0 + Ods

T 0

S
Figure 3-2: A schematic of the force balance on a unit section of the flexible flag, in

which S is the shear force the flag section, T is the flag tension, 0 is the local angle

formed between the flag section and the x-axis, ds is the section length, Finer.,x and
Finer. , are the reactive inertial forces on the flag section and the subscript s indicates

a partial derivative with respect to arc length.

2

j9"2= -i [Osn] + [Tt] + F
(3.10)

in which we have used the flag length, 1, as the characteristic length scale and the

advection timescale, l/U,, where U, is the upstream fluid velocity, as the character-

istic timescale, i.e. s = s/l, = (/1 and -r = tU/l. For small amplitude motion, flag

deflections can be approximated as one-dimensional, and the system can be simplified

to a one-dimensional (z direction) equatio. For more general large amplitude motions,

the full two-dimensional equations of motion must be retained. The dimensionless

flag tension T and fluid forcing F represent their dimensional forms scaled by pf Ut bl

and pfUtb, respectively, where pf is the fluid density and U, is the upstream fluid

velocity. The local unit normal and tangential vectors are denoted n and t, respec-

tively, and the subscript indicates 0/s. This form of the equation reveals two

governing parameters:
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1 = ph/pjl (3.11)

7 = EI/pf bUl 3  (3.12)

Physically, p represents a ratio of solid to fluid inertia; and 17 represents a ratio of

elastic to fluid forces [71]. The flag's boundary conditions are (0, r) = 0, 0(0, T) = 0,

03(1, T) = 0, 13 (1, r) = 0 and T(1, r) = 0.

3.3 Methods

3.3.1 Experimental Methods

We conducted experiments in a water channel of 38-cm width and 22-cm depth.

A regular Kirmin vortex street was created at mid-depth using a 1-cm thick bar

of height D = 2.5 or 5.0 cm that spanned the width of the channel. We chose

to use a regular Kirmin vortex street instead of simply open channel flow so that

we could have a predictable, periodic, coherent form of turbulence in our system.

Whereas the turbulence in open channel flow is broadly distributed over a range of

frequencies, the structures in the Kirmin vortex street are closely centered around a

specific frequency, which is a function of the mean flow speed and vortex street height

(discussed below). The sharp corners of the bar encourage the formation of stronger

vortices than those produced by a cylinder[12, 63]. We cut five slender, rectangular

model blades of width b = 3.0 cm and length 1 = 30.0 cm from polyethylene sheeting

(low-density, LDPE, and ultra-high molecular weight, UHMWPE) of thicknesses, h

= 50 pm, 100 pm, 150 pm and 250 pm (LDPE), and h = 500 pum (UHMWPE).

A sixth flag with thickness h = 1000 pum was cut from Aluminum 6061. The two

vortex street sizes allow us to examine the role that the ratio of flag length to vortex

size, l/D, (where the vortex size is known to scale with vortex street height) plays in

setting the flag response.

The flexural rigidity, EI, was measured for each flag with a cantilevered bending
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test. In these tests, for each flag thickness, we cut several small lengths of the flags

(between 3 cm and 8 cm) and placed the flag in a horizontal clamp, in air. The flag

sections deflect slightly under their own weight and the deflection at the free end of

the flag section is measured. The flag flexural rigidity can then be calculated from

Euler-Bernoulli beam theory with the following relationship:

ElI - qb sec (3.13)
86max

where qb = pobhg is the weight per unit length of the flag section, 1,,c is the length of

the flag section and 3 max is the measured deflection at the free end. This procedure

was repeated several times for each flag thickness and the results were averaged to find

EI for each flag thickness and the uncertainty in the measured EI for each thickness.

In the flume, flags were attached to a slender clamp, which held the flags hori-

zontally at the centerline of the vortex street and a distance AZx = 4D downstream

of the bar (Fig. 3-1). Below the channel false bottom, the clamp was attached to a

load cell (Futek LSB210) which recorded the streamwise forces on the clamp plus the

flag at 2 kHz for 300 seconds. The load cell was connected to a computer through a

National Instruments NI-USB 9237 bridge completion module. The strain data was

collected and recorded with NI Labview. The clamp force was measured separately

and subtracted from the total force to give the force on the flag alone. The load cell

strain measurements were calibrated with a series of known weights over the range

0 to 0.006 N, and responded linearly over this range with an error of approximately

9%.

To capture the response of the flags over the course of the experiments, we recorded

the instantaneous flag postures with a CCD camera (DALSA Falcon 1.4M100) at 40

frames per second for 30 s (Fig. 3-3). For these recordings, the flags were illuminated

with two 60W incandescent light fixtures mounted below the glass flume bottom.

A black canvas shroud was hung on the back side of the flume to provide a dark,

contrasting background to the color of the polyethylene flags.
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Figure 3-3: A photograph of the q = 4.4E - 6 model blade in flow.
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3.3.2 Experimental Flowfield

We characterized the flow using point measurements and planar particle image ve-

locimetry (PIV). The upstream velocity was U, = 0.20 m/s for all cases, and was both

steady and spatially uniform away from the channel perimeter (i.e. u(x, y, z, t) = U,).

For the PIV measurements, the flume water (total volume of 2.2 m3 ) was seeded with

25 g of Pliolite particles. The flow was illuminated from downstream with a laser

light sheet of a power between 2.6 - 2.9 W(Fig. 3-9). The light sheet was placed at

the centerline of the flume in the x - z plane. No flags were in place during the PIV

measurements. A CCD Camera (DALSA 1.4M100HG) recorded a 40 cm by 30 cm

window with a resolution of 1400 x 1024 pixels, giving a pixel density of 3.5 pixel/mm.

Images were were captured at 50 Hz, with a shutter speed of 15000 Ps. We used an

open source software package (PIVLab v. 1.32) which calculates velocities down to

a resolution of 8 x 8 pixel grids (2.3 mm x 2.3 mm). We measured the vortex street

wavelength, A, using the PIV images. For D = 2.5 cm, A = 6D ± 0.5D, and for

D = 5.0 cm, A = 4D ± 0.5D.

We measured the velocity deficit at the wake centerline using a Nortek Vectrino,

sampling at 5 cm intervals at 25 hz (Fig. 3-4). To characterize vortex strength,

we used wrms, the root-mean-square of the velocity in the z direction. Peak vortex

strength occurred at Ax ~ 3D downstream of the bar, or Ax ~ D upstream of

the flag's leading edge. Over the flag length, the longitudinal profiles of normalized

mean velocity, U/Um, and vortex strength, WrmS/U, measured for both D = 2.5 cm

and D = 5.0 cm were in close agreement (Fig. 3-4). At the flag leading edge, both

flags experience the same mean velocity, U(x = 0)/U, = 0.42, and vortex strength,

Wrms(x = 0)/U. = 0.51. By design, the difference between the two cases is only the

vortex street frequency (f(D = 2.5 cm) = 1.2 hz; f(D = 5.0 cm) = 0.8 hz) and the

size of the vortices, which scale with D. The Strouhal number increased from 0.15

(for D = 2.5 cm) to 0.20 (for D = 5.0 cm) due to the increased flow blockage.
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Figure 3-4: (a) The time-averaged streamwise velocity, 7, and (b) rms vertical velocity,

Wms, both normalized by U,), measured at the flow centerline over the length of the

flag's neutral position (x = 0 to 30 cm). The bar which produces the vortex street is

located a distance Ax = 4D upstream of x = 0.

Table 3.1: The experimental flow parameters for both vortex streets. The vortex

street wavelength and Strouhal number change due to the change in flow blockage,

which increases from 12.5% to 25% from D = 2.5 cm to D = 5.0 cm.

U (m/s) D (cm) A (cm) f (hz) St
0.2 2.5 15 1.2 0.15

0.2 5.0 20 0.8 0.20
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Figure 3-5: The time-averaged streamwise flowfield, normalized by Uo2, calculated
from the PIV images for D = 2.5 cm. Flow statistics in the white region were
unavailable due to errors in the PIV processing.
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Figure 3-6: The time-averaged streamwise flowfield, normalized by Uc, calculated

from the PIV images for D = 5.0 cm. Flow statistics in the white region were

unavailable due to errors in the PIV processing.
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Figure 3-7: The time-averaged vorticity field, normalized by l/U,,, calculated from
the PIV images for D = 2.5 cm. Flow statistics in the white region were unavailable
due to errors in the PIV processing.
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Figure 3-8: The time-averaged vorticity field, normalized by l/Uo, calculated from

the PIV images for D = 5.0 cm. Flow statistics in the white region were unavailable

due to errors in the PIV processing.
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Figure 3-9: The experimental setup for the PIV measurements of the flow field.

The laser probe head is submerged downstream of the flag's position in the vortex

street, illuminating the vortex street. The flag was not in place during the PIV

measurements.
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3.3.3 Numerical Model

To gain physical insight into our experimental system, we develop a theoretical model

of the model blade motion in a vortex street. We model the velocity at the flag surface

using the complex Kirmain vortex street velocity potential [90, 2]. The theoretical

vortex street model (Eq. 3.14), described in Saffman [90], provides a tractable model

which captures the essential characteristics of the vortex street, while eliminating

the stochastic component of the flow that is present experimentally. This model,

however, was not chosen to completely reproduce the experimental flowfield, notably

lacking dissipation of the vortex street. Assuming a vortex circulation strength of

' = -2.5U.D [68] and using the measured wavelengths of A = 4D and 6D (for

D = 5.0 cm or 2.5 cm, respectively), the dimensionless complex conjugate velocity at

the flag surface is described by:

az 2.5DI cot - i 2.5Di c+ 7ri

Z = + 2A ((l/D) 8 2A cot 8
(3.14)

where c = ±+ii, is the flag position vector in complex notation. The velocity vector

at the flag surface is then:

V = {R(8O/OZ), -a(OO/OZ)} (3.15)

From [2], the vortex advection speed is set at

U1U, = I - (5D/4A) tanh (7rD/A). (3.16)

To account for the singularity in the vortex cores, where cot(0) = oc, we set the

maximum magnitude of the local velocity vectors to be equal to U".

In the model, the fluid forcing terms are a combination of resistive and reactive

forces. The resistive forces are simply the fluid drag forces in the normal and tangen-

tial directions, both of which can be expressed by quadratic drag laws. The reactive

force is the inertial force caused by the acceleration of a volume of fluid adjacent at
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the flag. For a slender body of rectangular cross section, this fluid volume per unit

flag length is rb 2 /4 [11].

The resistive forces in the normal and tangential directions, modeled with a

quadratic dependence on the relative velocity at the blade surface can be written

as

12+!fj t 3.17)

where CD and Cf are the normal and tangential drag coefficients, set at CD= 1.9

[109] and Cf = 0.02 (close to the theoretical value of [93], however, we note that the

results in this range of Cf are not at all sensitive to the precise value of C1 chosen.

The results are sensitive to the choice of CD, however. This choice of coefficient is

discussed in §3.4.3). The reactive force in this system is commonly referred to as

the fluid added mass, and is a function of the relative fluid acceleration at the flag

surface:

7 baV 7 b 0
F bD = irbD 2  (3.18)

Fai 4 11 4T 10

The total dimensionless fluid force acting on the flags, F, is the sum of the pressure

and viscous drag acting on the flag surface as well as the effects of the fluid added

mass.

This fluid-structure problem has three parameters of interest. Along with P and

71, the dimensionless velocity potential (Eq. 3.14) reveals the parameter l/D, the ratio

of flag length to vortex size. With U,,, I and b held constant, varying flag thickness,

and thus flexural rigidity, produced values of 77 that spanned six decades: i ~ 4E-6

to r ~ 5.6E0. The six flags produced values of p, ranging from p = 1.7E-4 to 1y =

9E-3. When p < 1, however, the solid inertia can safely be neglected when compared

with fluid inertia. The two vortex street sizes produced values of l/D of 12 and 6.

Field observations of live kelp indicate that blades have values of 71 between iE - 5

and iE - 6 (discussed in detail in Chapter 5).
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Table 3.2: The experimental flag parameters for the six different flags. The upstream

velocity, U,,, flag width, b, and flag length, I were held constant for all of the flags.

Material h (pm) El/b (Pa m3 ) P 7

LDPE 50 4.8E - 6 ± 1.8E - 6 1.7E-4 4.4E-6
LDPE 100 2.5E - 5 ± 0.6E - 5 3.3E-4 2.3E-5
LDPE 150 4.1E - 5 ± 1.1E - 5 5.0E-4 3.8E-5
LDPE 250 5.6E - 4 ± 1.OE - 4 8.5E-4 5.2E-4

UHMWPE 500 8.3E - 3 ± 1.5E - 3 3.4E-3 7.7E-3
AL 6061 1000 6.0E0 ± 1.2E0 9.1E-3 5.6E0

We solved the nonlinear set of Eqs. 3.10 & 3.14-3.17 numerically utilizing a

Chebyshev spectral method and advanced the system through time semi-implicitly

using Broyden's method. This solution method is discussed in detail in Appendix

B. We make the assumption that in the limit of a slender body with negligible

solid inertia, this system can be approximated with one-way coupling between the

prescribed fluid flow (Eq. 3.14) and the resulting flag dynamics. We simulated values

of 27 between 1E-5 and 1E2 for both values of l/D. For all of the theoretical cases, p

was set at 1E-4. We initiated each simulation with the flag at rest in an un-deflected

position. The velocity potential (Eq. 3.14) and the vortex celerity were smoothly

ramped up to their long-time values using the function [1-exp (-T)]. Each simulation

was run until r = 60.

3.4 Results

3.4.1 Flow Field Comparison

The vortex street model accurately reproduces the experimental vortex street height,

wavelength and frequency, but there are notable differences between the theoretical

vortex street model and the experimental flow field. Statistics from the experimental

and theoretical vortex street flow fields are presented alongside each other in Fig.

3-10. The instantaneous snapshot of the vorticity field in Fig. 3-10a and b shows how

the experimental vortex street creates large interacting structures which extend over
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the full water depth, while in the Saffman model [90], the vortices remain discrete,

isolated and coherent. When the experimental vorticity field is averaged over more

than 30 vortex street cycles (Fig. 3-10c), much of the randomness is averaged out

and the characteristic bands of positive and negative vorticity are seen in the bottom

and top halves of the vortex street respectively. The time-averaged vorticity shows

that the experimental vortex street is much more diffuse than the theoretical model.

In the model, the vorticity is confined to narrow bands centered about h = ±D

(Fig. 3-10d). Further, the experimental vortex street dissipates downstream of the

bar (Fig. 3-4b), whereas the theoretical vortex street remains constant in strength.

There is similar disparity in the time-averaged component of the streamwise velocity,

u. The experimental velocity at the vortex street centerline increases with distance

downstream of the bar, approaching Um, as the vortex street loses its strength (Fig.

3-4a). The velocity at the center of the theoretical vortex street centerline remains

at a constant value (Figs. 3-10 & 3-11). The model also produces a step-change

in velocity at the vortex street height h = ±D, while there is a much more diffuse

vertical velocity gradient in the experimental velocity field.

3.4.2 Experimental Results

Amplitude

Using the image sequence of the flag response captured during the experiments (Fig.

3-12), we extracted the instantaneous flag postures from the series of images. As

77 decreases, the oscillation amplitude over a vortex cycle increases. For the most

flexible blades, i.e. 27 < 1E - 4, we observed instances where the model blades os-

cillate asymmetrically over a single vortex street period, either in the upper half or

the lower half of the vortex street, while for the more rigid blades, the oscillations

were primarily symmetric about the vortex street centerline. The asymmetric oscil-

lations are generally only observed as instances over 1 or 2 vortex periods, before

the blade reverts to oscillations that are approximately symmetric about the vortex

street centerline. Using the sequence of experimental flag postures and the theoretical
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Figure 3-10: A side by side comparison of the experimental and theoretical flow fields

for D = 2.5 cm. (a) An instantaneous snapshot of the experimental vorticity field from

PIV data, alongside (b) an instantaneous snapshot of the dimensionless vorticity field

from Eq. 3.14, normalized by 1/U,, with red representing positive vorticity and blue

representing negative vorticity. (c) The dimensionless, time-averaged experimental

vorticity over 30 vortex street periods and (d) the dimensionless, time-averaged

theoretical vorticity, normalized by l/U., with red representing positive vorticity and

blue representing negative vorticity. (e) The time-averaged experimental streamwise

velocity alongside (f) the time-averaged streamwise velocity component of Eq. 3.14,

both normalized by U,. Flow statistics in the white region of (a),(c) and (e) were

unavailable due to errors in the PIV processing.
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Figure 3-11: A side by side comparison of the experimental and theoretical flow fields

for D = 5.0 cm. (a) An instantaneous snapshot of the experimental dimensionless

vorticity field from PIV data, alongside (b) an instantaneous snapshot of the dimen-

sionless vorticity field from Eq. 3.14, normalized by l/U,, with red representing

positive vorticity and blue representing negative vorticity. (c) The dimensionless,

time-averaged experimental vorticity over 30 vortex street periods and (d) the di-

mensionless, time-averaged theoretical vorticity, in units of s-1, with red representing

positive vorticity and blue representing negative vorticity. (e) The time-averaged ex-

perimental streamwise velocity alongside (f) the time-averaged streamwise velocity

component of Eq. 3.14, both normalized by U,. Flow statistics in the white region

of (a),(c) and (e) were unavailable due to errors in the PIV processing.



0.1
= =4.4e-06 q =2.3e-05 q =3.8e-05 77 =8.4e-04 7 =7.7e-03 77 =5.6e+00

-0.1-
0.1

77 =4.4e-06 17 =2.3e-05 77 =3.8e-05 7 =8.4e-04 77 =7.7e-03 77 =5.6e+00

E .

01

0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2

x(m) x(m) X(m) x(m) x(m) x(m)

Figure 3-12: Selected instantaneous postures observed in the (top row) D = 2.5 cm

and (bottom row) D = 5.0 cm vortex streets overlaid for one vortex period. Below rc,

the dimensionless value of the bifurcation, the postures were selected to demonstrate

the asymmetric oscillation regime. The rms envelope of flag postures about the flag's

mean posture, based on the full 30 s record, is shown by the bold dashed lines. Note

that the vertical axis is exaggerated.

flag motion produced by our numerical model, we characterized the flag oscillation

amplitude using the rms value of the vertical distance from the flag tip to the vor-

tex street centerline (Fig. 3-13). Without any fitted parameters, the modeled flag

oscillation amplitude agrees well with the experimental data over the full range of 7.

The oscillation amplitude is largest for the smallest values of 7 and the amplitude de-

creases as q increases. Below r1 I E - 4, the oscillation amplitude no longer changes

with r/ and remains constant near the height of the vortex street. This behavior is

evident in both the experiments and in the numerical model. In the numerical model,

this transition point happens at the critical value of dimensionless flexural rigidity,

TIC = 8.85E - 5for l/D = 6 and at rc = 1.40E - 4 for 1/D = 12. When normalized

by the vortex street height, the flag's amplitude response is the same for both vortex

street heights.
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Because solid inertia is negligible compared to fluid inertia in this system (P < 1),

we can derive a scaling relationship between Azrms and 7 by balancing the fluid torque

(pjbl 2 U ) and the elastic bending moment (EI). The vortex circulation strength

is given by F = -2.5U.D [68], and the resulting vertical velocity component of

the vortex street has been shown to be directly proportional to U" [2]. It is this

vertical velocity component of the vortex street which is responsible for deflecting

the flag vertically. The scale of the vertical force on the flag is then pf Ut bl, which

exerts a torque that scales with pfbl2U2. If curvature is confined to a fraction of

the flag length, we scale 0, using a bending length-scale, 10 < 1, giving 0 ~ AZrms/lo

and such that Os ~ AZrms/l2. We consider whether the steady bending length-scale

defined in [4], lo = (EI/pfbU )1 / 3 , can be applied to this unsteady system. This

formulation yields AZrms ~ 7 1
1/

3, or Azrms/D ~ (l/D),-1/ 3 , which is plotted with

the experimental data in Fig. 3-13. For 7 > 1, the elastic bending moment is

sustained over the entire flag length, i.e. 1, = 1, and Azrms/D - (l/D)7 --1 . These

scaling relationships are consistent with the observed trends in Azrms versus 'q (Fig.

3-13) which suggests that unsteady responses in the low solid inertia regime are

governed by the same bending length-scale as steady responses.

Drag Force Measurements

The drag force also has a strong dependence on 77 and a clear transition in behavior

near %c. Broadly, drag force increases as 77 decreases (Fig. 3-14a). Above mc (denoted

by the vertical dashed lines in Fig. 3-14), the measured forces decrease gradually as

77 is increased, following the same trend as oscillation amplitude (Fig. 3-13). These

results suggest that above 7c, drag is primarily affected by flag frontal area, which is

proportional to oscillation amplitude. Below 71, the drag force increases more rapidly

as 7 is decreased. This occurs despite the fact that the amplitude of oscillation

remains constant below %, indicating that in this range drag is no longer correlated

to oscillation amplitude. To explain this behavior, we look to the inertial forces on

the flags. Notably, the time-averaged drag force measurements across the full range of

77 are independent of l/D. This is due to the similarity of the mean velocity profiles in
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Figure 3-13: The experimental (solid circles) and numerical (solid line with crosses)

flapping amplitude at s = 1 normalized by D, plotted against 77. The data for

D = 2.5 cm (l/D = 12) is plotted with the gray symbols and lines, and the data for

D = 5.0 cm (l/D = 6) is plotted with the black symbols and lines. A sharp change

in amplitude is clearly evident in the numerical results at Tc (vertical dashed lines).

The experimental and numerical results show good agreement across the full range

of q. The scalings predicted from the balance of fluid torque and the elastic bending

moment are shown with the solid lines. Below 71, ' zrms saturates near the vortex

street height. Above, 77, the data agree with the proposed scaling laws.
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Figure 3-14: (a) Measured drag force versus 71 for both vortex streets. The slope of
FD versus 71 shows a clear transition near 71 = 1E - 4, which is close to the calculated
values of rc (vertical dashed lines). (b) The rms stream-wise acceleration measured
at s = 1. The data for D = 2.5 cm (l/D = 12) is plotted with the gray symbols and
lines, and the data for D = 5.0 cm (l/D = 6) is plotted with the black symbols and
lines.

the vortex street wakes, when scaled by D. As the flag oscillation amplitude in both

vortex streets is the same when normalized by D (Fig. 3-13), the flags encounter the

same mean velocity profile, despite having different absolute oscillation amplitudes.

In response to the vortex street fluid forcing, the flag tip (s = 1) cyclically trans-

lates upstream and downstream at the vortex street frequency. The downstream

portion of the flag tip cycle, however, is constrained by the flag length and the flag's

inextensibility. As the flag reaches it's full length, rather than continue downstream

in the direction of the mean flow, streamwise motion at the flag tip is rapidly ar-

rested, creating a high negative acceleration and a high instantaneous tensile force

in the flag. Although there are large accelerations in the upstream portion of the

flag motion, the upstream motion is not constrained by the flag's inextensibility and

therefore does not produce a corresponding response in the flag's internal tension.

We characterize these inertial spikes with the rms of streamwise acceleration at the

flag tip (Fig. 3-14b). These inertial spikes lead to an increase in the time-averaged
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Figure 3-15: (a) A sample time record of the streamwise flag tip position and (b)

streamwise flag tip acceleration for 7 = 2.3E - 5 and D = 2.5 cm. Three examples

of downstream motions which are rapidly arrested, producing large negative acceler-

ations, and which translate into a tensile forces along the flag length are highlighted

with the red bars. The spikes occur at the vortex street period, except for occasional

periods of posture reorganization due to the flow randomness.
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Figure 3-16: The average peak force on the flag over several vortex street cycles as a
function of r7. The peak force follows the same trend as the mean drag force, however
the peak forces for D = 5.0 cm are uniformly larger than the peak forces for D = 2.5
cm. The data for D = 2.5 cm (1/D =12) is plotted with the gray symbols and lines,
and the data for D = 5.0 cm (l/D = 6) is plotted with the black symbols and lines.

force on the flag (Fig. 3-14a). In Fig. 3-15, we have plotted the streamwise position

of the blade tip (s = 1) and have highlighted the resulting spikes in acceleration.

Aside from occasional aperiodic behavior due to randomness in the flow field, these

acceleration spikes occur regularly at the vortex street frequency.

The instantaneous force on the blades is also an important force statistic to con-

sider. Kelp blades in the coastal ocean not only have to survive high time-averaged

forces, but also instantaneous forces due to high accelerations that could be much

larger than the mean force. These instantaneous forces can cause high mechanical

stresses and strains within the kelp blade that can lead to either blade breakage or

dislodgment of the entire kelp frond. In Fig. 3-16, we plot the average peak force on

the model blades over several vortex street cycles. The peak forces are significantly

higher than the time-averaged drag forces, however, the peak forces follow the same

broad trend as the mean drag forces. The peak forces for the larger vortex street are

uniformly higher than the peak forces for the smaller vortex street, indicating that
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the larger vortices create higher instantaneous forces.

3.4.3 Numerical Results

In our simple numerical model, we have removed the stochastic component of the

experimental vortex street and looked at the behavior of the flags in an idealized sys-

tem. In our model, we identified two stable response states for flags in a vortex street.

For large values of 27, the flag oscillates symmetrically about the vortex street center-

line (Fig. 3-17a). In this state, the flag motion closely resembles the first modes of

vibration of a flexible beam, and the oscillation amplitude increases as 77 is decreased.

Below a critical value of Tj, however, the system bifurcates, adopting an asymmetric

oscillatory state in which the flag is trapped in either the upper or lower half of the

vortex street and can deflect beyond z/D = 1 (Fig. 3-17b). In this asymmetric state,

the streamwise accelerations become much more evident. This numerical prediction

of a stable asymmetric state supports our observations of occasional periods of asym-

metric oscillation for the most flexible blades. Although we do not observe continuous

asymmetric oscillations in the experiments, in Fig. 3-12 we identified vortex street

periods over which the flag remained trapped in half of the vortex street. Further

experiments and simulations will be necessary to conclusively establish whether or

not this asymmetric oscillation state can stably exist in experimental flows.

The theoretical bifurcation value of T7 closely coincides with the experimentally

observed transition value qc. We identified the bifurcation as the value of 27 at which

the response state of the flag switches from the symmetric state to the asymmetric

state (Fig. 3-17a). For the range of parameters tested, we find that 'qc is weakly

controlled by the ratio of flag length to vortex size, i.e. qc increases with l/D. For

l/D = 6, the bifurcation occurs at 27c = 8.85E - 5. For l/D = 12, the bifurcation

occurs at 7c = 1.40E - 4. We believe that the transition to the asymmetric state is

linked to the point at which flag deflections are comparable to the scale of the wake,

i.e. z(s = 1) > D, which can occur at higher rigidities for smaller vortices. Because

the potential flow model includes no random perturbations (Figs. 3-10 & 3-11), once

the flag is trapped in the asymmetric state, it remains trapped for all time in the
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Figure 3-17: Numerical simulations depicting the symmetric and asymmetric oscilla-
tion states. (a) Above 7c, the flag oscillates in a symmetric state about the vortex
street centerline. (b) Below 71, the flag oscillates in an asymmetric state trapped in
either the upper or lower half of the vortex street. It has an equal probability of
becoming trapped in either half of the vortex street. For l/D = 6, ic = 8.85E - 5,
and we plot the postures at (a) n = 9.93E - 5 and (b) n = 7.89E - 5. In each plot,
we show the trace of the motion at s = 1 with the light gray line. The point in the
asymmetric cycle with the highest value of stream-wise acceleration is highlighted
with the bold flag posture.

model.

We plot the numerical drag predictions in Fig. 3-18. The numerical drag pre-

dictions are found by calculating the internal tension in the blade at the clamped

end, which is the sum of the total forces on the full blade length. The numerical

predictions are larger than the experimental measurements by approximately one or-

der of magnitude. We note that the drag and added mass coefficients are not fitted

parameters, which may explain the discrepancy between the measured and modeled

values. Tuning the added mass and drag coefficients may help bring the numerical

predictions closer to the experimental data. We plot the predicted values of the force

for CD = 1.0 and CD = 10.0 to demonstrate the sensitivity of the total force on the

blade to the drag coefficient (Fig. 3-18). In reality, the drag and added mass coef-
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ficients are a function of blade acceleration [58], and potentially, blade curvature as

well, and for unsteady drag the coefficients can be much larger than CD = 1.9 before

the pressure fully recovers in the wake. As an exercise, we calculate the oscillation

amplitude from the numerical model with three different values of CD (Fig. 3-19).

Notably, the oscillation amplitude remains largely unchanged over the full range of 77

for values of CD = 1.0 through CD= 10.0. For the largest values of 71, the predicted

amplitude is higher for CD = 10.0, however. Also, using a value of CD = 10.0 prevents

the appearance of the bifurcation over the range of 71 that we tested.

The reason that the oscillation amplitude results are largely insensitive to the

choice of CD is that the blade has low value of solid inertia relative to the fluid

inertia, exemplified by the low value of [t. The lack of solid inertia allows the blade

to respond passively to the fluid motion, with the force balance largely between the

fluid forces and the blade elasticity. For much of the range of rj that we are interested

in, the fluid forces tend to dominate the system, and the blade responds passively to

the flow. The blade responds in the same manner whether CD = 1.0 or CD = 10.0

because the change in drag coefficient does not change the amplitude of the fluid

forcing. For the largest values of eta, increasing the value of CD to 10.0 has the most

apparent effect. The choice of CD also affects the appearance of the bifurcation (Fig.

3-19). The parameters and the fundamental physical mechanisms that control this

phenomenon still remain poorly understood, and are largely beyond the scope of this

dissertation.

3.5 Discussion & Conclusion

Our results reveal how flag flexural rigidity, flag length and fluid forcing combine to

control flag motion and the resulting forces in a vortex street. Our experiments show

that below a critical value of flexural rigidity, flexible flags can experience inertial

forces that increase the total force on the system, greatly outweighing any poten-

tial benefits from drag reduction. Through a simple model, we have shown that an

idealized version of our system contains a previously unreported bifurcation, below
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Figure 3-18: The numerical drag force predictions from the numerical model. The

numerical drag predictions exceed the experimental predictions by approximately one

order of magnitude. The data for D = 2.5 cm (l/D = 12) is plotted with the gray

symbols and lines, and the data for D = 5.0 cm (1/D = 6) is plotted with the black

symbols and lines. The numerically predicted drag for CD = 1.0 and D = 2.5 cm is

plotted with the gray triangle. The numerically predicted drag for CD = 10.0 and

D = 5.0 cm is plotted with the gray circle.
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Figure 3-19: The numerical oscillation amplitude predictions from the numerical
model for l/D = 12 and three different values of the drag coefficient, CD.

which flags can oscillate asymmetrically, with high accelerations at the flag tip, which

greatly enhance the drag force. Above the bifurcation, the flags oscillate symmet-

rically and drag is closely linked to the oscillation amplitude. The position of the

bifurcation depends weakly on the ratio of flag length to vortex street size. These

modeling results support the transition in behavior seen in our experimental data.
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Chapter 4

Scalar Transfer at the Surface of a

Model Blade

4.1 Introduction

Kelp not only has to withstand large drag forces in the coastal ocean environment, it

must also simultaneously carry out essential biological functions such as growth and

reproduction. To carry out these biological functions, kelp must acquire light energy

for photosynthesis and exchange essential nutrients and gases with the surrounding

water via the kelp blades. Unlike terrestrial vegetation, kelp and other aquatic vegeta-

tion lack the ability to gather nutrients from their roots, and therefore they conduct

all nutrient and gas exchange at the blade surface. Due to the hydrodynamic no-

slip condition at the surface of kelp blades, there is a thin fluid layer (the diffusive

sublayer) adjacent to the kelp blade over which molecular diffusion controls scalar

transport. This diffusive sublayer exists within the laminar sublayer, the diffusive

sublayer thickness is set by the relative fluid velocity at the blade surface. Transport

across this layer is much slower than transport through the bulk ocean water, and

therefore this fluid layer often impedes the transport of gases and nutrients to and

from the blade surface. Importantly, the concentration of essential nutrients in coastal

ocean waters also varies both spatially and temporally, creating spatial regions and

seasons of the year in which kelp lives in nutrient-limiting conditions. In these condi-
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tions, the physical processes which control the transport of nutrients at the interface

between the surrounding water and kelp blades are important to understand.

Kelp has the ability to respond to its local environment in ways that may affect

nutrient and gas exchange. It has been widely reported that the morphology of

kelp blades changes in response to local hydrodynamic conditions [57]. Changes in

morphology, and specifically, changes in flexural rigidity, will change how the blade

responds to fluid forces in turbulent flow. The relative fluid velocity at the blade

surface is a function of both the fluid velocity and the blade motion. Therefore,

passive blade motion can alter the relative fluid velocity at the blade surface which

is a critical parameter in setting the rate of scalar flux at the blade surface.

In this chapter, we experimentally and theoretically test whether changes in flex-

ural rigidity, which alters the blade motion (Chapter 3), can alter the rate of mass

transfer for a model kelp blade in a vortex street. Furthermore, we investigate if flux

models based on a relative surface velocity scale can accurately predict mass transfer

at the interface of a passively moving model kelp blade. This information can be used

not only to better understand nutrient and gas transfer in kelp, but can also be ap-

plied more generally to scalar transfer at dynamic fluid-solid boundaries. Specifically,

over rigid boundaries, scalar flux and momentum flux (drag) are described in analo-

gous ways. We ask whether the similarity in momentum and scalar fluxes extends to

flexible boundaries.

In §4.2, we describe several recent studies which measured nutrient flux to kelp

blades, both in situ and ex situ, and both with live kelp blades and with models. In

§4.3, we describe our experimental methods used to measure the scalar flux at the

surface of a model kelp blade in a vortex street. In §4.5 we describe the theoretical

model we have built to model the scalar flux. This section utilizes velocity scales

extracted from the fluid-structure model described in §3.3.3. In §4.6, we present and

compare the experimental and theoretical results. Finally, in §4.7, we discuss the

validity of the theoretical model, the applicability of this model to other systems, and

the implications of changes in flexural rigidity for nutrient transfer to kelp and the

implications for differences in nutrient transfer along the length of kelp blades. The
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results of this chapter, along with the experimental results from Chapter 3, will be

submitted to the journal Limnology 6 Oceanography for publication.

4.2 History of Nutrient Flux Measurements

Many researchers have studied nutrient flux to kelp blades using a variety of experi-

mental methods, oftentimes using live kelp blades. Gerard [36] measured uptake rates

of NO into live kelp blades in situ by enclosing blades in a kelp forest with imper-

meable bags and measuring the decrease in nutrient concentration in the bag over

a period of several hours. Other studies have placed live kelp blades in laboratory

flumes and measured rates of NO- and NH' uptake to blades by monitoring the de-

crease in nutrient concentration in the flume [33, 49]. Koehl and Alberte [56] placed

live blades in a flume to measure carbon uptake rates, which help determine rates

of photosynthesis in flow. Hepburn and colleagues measured kelp growth rates and

tissue nitrogen concentrations in situ to determine the effects of waves on nutrient

uptake [45]. Hurd and Pilditch attempted to measure the thickness of the diffusive

boundary layer directly using 02 probes at different locations on the surface of a

kelp blade. One study created copper model blades and measured heat flux while

mechanically oscillating the blades at different frequencies [24].

These methods can provide a great deal of insight into the hydrodynamics that

control nutrient transfer, but they also contain many intrinsic drawbacks. The use of

live kelp blades introduces many biological factors into the nutrient uptake measure-

ments that are difficult to both measure and to model. First, kelp blades have the

ability to store nutrients for short periods of time until they are needed during times

of low nutrient acquisition. Therefore, studies with live kelp blades must be able to

account for the historical nutrient acquisition of the selected blades, as blades may

have accumulated different amounts of nutrients in the recent past. Second, both

temperature and light directly affect the rate of nutrient utilization by kelp blades

through inter-related processes such as photosynthesis [112, 34, 56, 55]. Finally, the

physiology of kelp blades is often adapted hyper-locally to position in the water col-
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umn or position in the kelp forest. Kelp blades from near the water surface have been

shown to have higher rates of nutrient uptake than their counterparts from deeper

in the water column, even when both were incubated simultaneously with the same

conditions [36]. The method of creating copper models of kelp blades has eliminated

several of the confounding factors that have been difficult to model, however, impor-

tant physical characteristics of kelp are lost with perfectly rigid models. Kelp blades

are highly flexible and respond passively to the surrounding fluid forces. This passive

response by kelp alters the relative velocity at the blade surface which is a key variable

in all nutrient uptake models.

Here we present a novel experimental method for measuring scalar flux at the

surface of a model kelp blade. In this method, we create model blades from a widely-

available polymer. This simple model allows us to eliminate biological factors such as

the nutrient history of the blade, the effects of sunlight and other physiological effects

that affect nutrient transfer. Furthermore, by retaining control over the structural

properties of the model blades, we can vary the flexural rigidity of our model blades in

a controlled manner, allowing us to measure differences in uptake rates that account

for the passive motion of the blades.

4.3 Methods

4.3.1 Application of the Passive Sampler Technology

We have developed and tested an experimental method which we use to measure scalar

transfer at the surface of the passively deforming, flexible flag. This method draws

on the technology of passive polyethylene samplers, which has been established in an

environmental sensing context over the past decade [13, 73, 1, 64]. When deployed,

passive polyethylene samplers accumulate organic compounds from the surrounding

fluid, ultimately reaching an equilibrium concentration that is proportional to the am-

bient environmental concentration of the compound. These passive samplers present

a cheap, low-maintenance approach to in-situ measurements of organic compounds in
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various water bodies and sediments. Furthermore, for many compounds, the equilib-

rium concentration within polyethylene can be between 104 and 105 times the ambient

environmental concentration, thus greatly increasing the sensitivity of the sampling

method over a direct measurement of environmental concentration.

The accumulation of mass of an organic compound over time within the polyethy-

lene can provide important information on not only the environmental concentration,

but also on the hydrodynamical conditions controlling transport of the compound of

interest. In a moving fluid, the no-slip boundary condition at a fluid-solid interface

produces a sharp velocity gradient at this interface. In a small layer near the inter-

face, called the diffusive sublayer, turbulent motions are damped out and scalars are

transported to the solid surface through molecular diffusion. Away from the fluid-

solid interface, the transport of scalars is controlled by the eddy diffusivity of the

fluid, which is much larger than the molecular diffusivity of the species. By measur-

ing concentrations within the polyethylene over time, one can determine information

about this dynamical layer and also about the hydrodynamical conditions in the bulk

of the fluid.

4.3.2 Laboratory Methods: Full Strips

For these experiments, we use a 24 m long, 38 cm wide recirculating flume, with

a water depth of 20 cm and a mean flow speed of 20 cm/s. The flume was filled

three days prior to the experiments to allow the water temperature to reach the room

temperature of 23.5 C. We inject 70 pL of dibromochloromethane (CHBr 2Cl) in the

flowing water and allow it to fully mix over the entire flume volume of approximately

2.2 m3 (Appendix C). Dibromochloromethane is a trihalomethane (THM) that occurs

naturally in the ocean and occurs in drinking water as a treatment byproduct. When

fully mixed, the concentration of CHBr 2Cl in the flume was 80 ppb. The top of the

flume was sealed with aluminum foil to prevent losses of the volatile compound from

the water (Figs. 4-1 & 4-2).

In the flume we create a vortex street of height D = 2.5 cm (Fig. 3-1). We

cut LDPE sheets into 3 cm by 30 cm strips: the same size and shape used in the
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Figure 4-1: Photograph of the flume covered in aluminum foil to prevent losses of

CHBr 2Cl from the flume water.

Table 4.1: The experimental exposure time intervals for the LDPE strips in a vortex

street, in the flume containing 80 ppb CHBr 2 Cl.
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50 pm LDPE times (s) 250 pm LDPE times (s)

15 60
30 120
60 180
120 300
180 600
300 900
600 1200



Figure 4-2: Photograph of the aluminum foil around the PVC recirculation fixtures
to prevent losses of CHBr 2Cl from the flume water.
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Figure 4-3: Photograph of an LDPE strip

in the flume.

9

(h = 50 pm) mounted in the vortex street



experiments in §3. We use two thicknesses of LDPE: 50 pim and 250 pm. These two

thicknesses were specifically selected from either side of the bifurcation predicted in

§3.4.3 because of their different oscillation amplitudes (Fig. 3-13), and thus different

relative velocities, in the vortex street (Fig. 3-13). We placed the LDPE strips in the

stainless steel clamp, then inserted the clamp and strip into the flow a distance 4D =

10 cm downstream of the bar (Fig. 4-3). The LDPE strip accumulated CHBr 2 Cl from

the surrounding water for a set amount of time (Table 4.1), then was quickly removed

from the flume. Using the model described in §4.5, we selected a series of exposure

times such that the total mass in the blade at the longest exposure time will be far

from the saturation portion of the mass equilibration curve, and will be close to 20%

of the equilibrium value. The blade was then removed from the clamp, wiped clean

with a Kimwipe to remove any residual flume water from the surface, then inserted

into clean 40 mL amber vials (Qorpak) which were filled with clean water (18 MQ at

25 C) and then sealed. In the sealed vials, the CHBr 2 Cl re-partitioned between the

LDPE and water phases, ultimately reaching equilibrium. The vials were left for at

least seven days on a shaker table to allow for equilibrium to be reached (this was

experimentally confirmed by comparing the measured concentrations in vials that

were left for seven days and twenty-one days, respectively, from which we found no

differences). This procedure was repeated for increasing time intervals of exposure in

the flume with a new LDPE strip used for each new exposure time (Table 4.1). At

each experimental time interval, a water sample was taken to account for any changes

in the flume water concentration.

The partition coefficient between water and the LDPE strips for CHBr 2 Cl was

measured with a preliminary set of equilibration experiments to be KPEW = 100 ± 15

for h = 50 mum and KPEW = 300 ± 30 for h = 250 pum, where KPEW is defined

CPE,oo = KPEWCWoO (4.1)

in which CPE,OC and Cw,o are the LDPE and water concentrations at equilibrium,

respectively. In these preliminary experiments, we placed clean model blades in 40

99



mL amber vials that contained a known mass of of CHBr 2Cl in the water phase.

Upon reaching equilibrium, we re-measured the concentration of CHBr 2Cl in the

water phase and calculated the amount of mass in the polyethylene phase. Because

the total mass of CHBr 2Cl remains constant throughout the partitioning experiment,

the partition coefficient was determined from the following equation:

CwiVw - CWmeas.VW

CWmeas.VPE

in which Cwj is the known, initial concentration in the vial water phase, Cw,meas. is

the measured final concentration in the vial water, Vw is the volume of water in the

vial and VPE is the volume of the polyethylene blade in the vial.

After the experimental samples were removed from the shaker table, we calcu-

lated the mass of CHBr 2Cl in the LDPE indirectly, through measuring the CHBr 2CL

concentration in the water (see Appendix E). Because the total mass of CHBr 2CL

remains constant in the sample vial both before and after equilibration between the

water and LDPE phases, the initial mass in the LDPE (i.e. the mass accumulated

during the experiment) is the sum of the final mass in the LDPE and the final mass

in the water:

MPE(t) = KPEWCWvialVPE + CWvialVW (4.3)

where we have used Eq. 4.1 to define CPE,vial =KPEWCWvial-

During each experiment, the CHBr 2CL concentration in the flume water sample

was analyzed as well. The mass in the polyethylene for each time interval was then

normalized by the theoretical equilibrium mass in the polyethylene, calculated using

the instantaneous flume water concentration:

MPE(t) _ MPE(t)

MPE,o W(t) CWo()KPEWVPE

where CwO(t)KPEWVPE is the theoretical equilibrium mass in the polyethylene, and

Cwo(t) is the measured flume water concentration at each experimental time point.

This normalization allows us to account for any losses of CHBr 2CL from the flume
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water to the atmosphere. The measured concentration in the flume water, Cw,0(t),

was found to decrease negligibly over the course of the series of experiments, and on

a timescale much longer than the experimental time points (Table 4.1). Specifically,

the concentration in the flume decreased by 2% over a period of 4 hours, while the

longest experimental time point was 20 minutes.

4.3.3 Laboratory Methods: Strip Sections

The relative velocity at the strip surface is a function of position along the length of

the strip. This relative velocity is a function of the amplitude of oscillation, which

varies as a function of length (Figs. 3-12 & 3-17), and a function of the phase between

the blade oscillation and the periodic vortex street flow. At the clamped end, the

oscillation amplitude is zero, and the relative velocity is entirely due to the vortex

street velocity. Away from the clamped end, the model blade can respond to the flow,

however it may not be in phase with the vortex street, creating a relative velocity

at the blade surface. The fact that there can be differences in relative fluid velocity

along the blade length indicates that different sections of the strip may accumulate

mass at different rates. Using the same experimental apparatus and experimental

parameters, we measure the differences in mass accumulation between the clamped

end of the strip and the free end of the strip.

In these experiments, LDPE strips are placed in the flume for the same durations

shown in Table 4.1. After the set time interval, the strips are removed from the flume.

The strips are wiped clean with a Kimwipe to remove any residual flume water from

the surface, then placed flat on a sheet of aluminum foil. Sections 2.5 cm in length

are cut from both the clamped end and the free end of the strip (Fig. 4-4). These

two sections are placed in separate vials which are filled with clean water and sealed

with negligible head space. The vials are then placed on a shaker table to accelerate

the equilibration process. The mass within the LDPE sections is then determined

following the same procedure described above.
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Clamp Clamped end
2.5 cm section

2.5 cm section

Figure 4-4: The schematic of a sample blade mounted in the clamp. The 2.5 cm
sections at the clamped and free ends are outlined with the dashed lines.

4.4 Flux Models

In this section, we introduce three different models that can be used to predict mass

transfer at a fluid-solid interface. We will refer to these models throughout this

chapter as the steady diffusive boundary layer model, the surface renewal model,

and the Ledwell model (or the relative normal velocity model). The steady diffusive

boundary layer model is a common model that is applied to a range of systems,

ranging from plants in flow [97], flat plates [93] and to the bed of the ocean [42].

For the application of a kelp blade in flow, we make the assumption that roughness

near the kelp leading edge will trip the boundary layer from laminar to turbulent and

base the discussion of the model on this assumption of a turbulent boundary layer.

Within the turbulent boundary layer at a fluid-solid interface there is a thin layer of

fluid with thickness 6, called the laminar sublayer, over which the diffusion of fluid

momentum is controlled by the kinematic viscosity of the fluid. Within this laminar

sublayer, there is a diffusive sub-layer, 6b. Transport across the diffusive sublayer

is controlled by molecular diffusion which is a much slower process than turbulent

diffusion in the bulk of the flow, and therefore this thin layer is the limiting step in

mass transfer to the solid interface. In a steady, uniform flow, the thicknesses of the

laminar sublayer [93] and the diffusive sublayer [14] can be modeled using the shear

velocity of the flow, u.
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6V = 5 (4.5)

6b -- 6,SC-1/3 (4.6)

The shear velocity is formally defined using the shear stress at the solid interface:

U* = (Tw/p)1/2, but can also be described empirically using the mean flow velocity as

U* = [1/20 to 1/5]Uoo [93]. The relationship between the diffusive sublayer thickness

and the laminar sublayer thickness as a function of the Schmidt number, Sc = vI/Dw,

Eq. 4.6, in which v is the kinematic viscosity of the fluid and Dw is the molecular

diffusivity of the species in water, comes from the behavior of the turbulent eddy

diffusivity near a solid interface. Close to a fluid-solid interface, the eddy diffusivity

scales cubicly with distance from the interface, E,(z) - z 3 . The height at which

Et(z) ~~ v is the top of the viscous sublayer and the height at which Et(z) ~ Dw is

the top of the diffusive sublayer. Because of the eddy viscosity's cubic dependence

on distance from the boundary , the ratio between the diffusive and viscous sublayer

thicknesses can be described through the Schmidt number, as in Eq. 4.6 [14, 48].

As the mean flow speed or the shear velocity increases, both the laminar sublayer

and the diffusive sublayer are compressed, resulting in a smaller layer of resistance to

molecular transport and thus higher rates of flux. The primary assumption of this

model is that this diffusive sublayer is steady in thickness and can be modeled with

simple system parameters. The transfer velocity for mass transfer across a steady

diffusive sublayer can be written as

KD.B.L. ( Dw 47)

For steady, uniform flows, the diffusive sublayer thickness can be modeled explicitly.

In unsteady flows, such as a vortex street, however, it can difficult to model the

diffusive sublayer thickness and, in these cases, other models such as the surface

renewal model or the Ledwell model (the relative normal velocity model) may be

better suited to model the mass transfer.
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There is a class of models termed surface renewal models which account for the

ability of turbulent motions in a fluid to periodically renew the diffusive sublayer

adjacent to a fluid-solid interface, and therefore to enhance interfacial transport over

transport through a steady diffusive sublayer. This model assumes that turbulent

eddies in the flow bring fresh fluid towards the surface, stripping the diffusive sub-

layer at a specific frequency. When the diffusive sublayer is completely renewed (i.e.

turbulent motions bring fresh mass directly to the fluid-solid interface) in a periodic

manner, the scalar transfer velocity at the interface can be written

KS.R. = 2 DW (4.8)
V7rTR

where TR is the surface renewal period, Dw is the molecular diffusion coefficient of

the species in water and KS.R. is the surface renewal transfer velocity [46, 21]. In

between renewal events, the diffusive boundary layer re-grows at the rate set by the

molecular diffusion coefficient. If TR/TD < 0.5, where TD is the time scale for the

establishment of the diffusive sublayer (TD = 62/Dw), then mass transfer can be well

approximated by Eq. 4.8. When the renewal period is long, i.e. TR/TD > 6, then

the turbulent motions that renew the boundary layer have negligible effect on mass

transfer and flux can be modeled using the steady diffusive sublayer model above (Eq.

4.7). For intermediate ratios of TR/TD, the transfer velocity can be modeled as in

[98].

Finally, mass transfer at a fluid-solid interface can also be modeled using the

relative normal velocity component at the fluid-solid interface (i.e. Ledwell 1984)

[62]. The normal component of velocity approaching the interface transports mass

from the bulk of the fluid towards the interface. At a fluid-solid interface, there is a

no-slip velocity condition, which means that the tangential and normal components

at the interface equal zero. Near an interface, however, the normal velocity can be

approximated by applying conservation of fluid mass at the interface and taking the

Taylor expansion of the normal velocity (Eq. 4.9),
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w'(z) = - (V - v'), O z - (OV - v'/Oz)z o z 2 + ... (4.9)

in which V - v' is the two-dimensional velocity divergence in plane parallel to the

interface, and z = 0 is the interface location. Higher order terms in the expansion have

been neglected. At a solid interface, the first term in Eq. 4.9 is zero, and the normal

velocity approaching the interface scales with z 2 . The eddy diffusivity in the fluid,

Dt, can be modeled as a product of the velocity scale, w'(z) - (DV . v'/Oz)z o z 2,

and a mixing length, taken to be the distance from the interface, z, giving Dt ~

(DV - v'/Oz)zo z 3 . Ledwell [62] used this result to derive the transfer velocity at a

solid-liquid interface in the following form:

K = (T- (V -v') D 2/. (4.10)
27 ( z )Z=O

We refer the interested reader to the full derivation in [62], which takes into account

only the normal velocity profile near the fluid-solid interface. This mass transfer model

was developed for a stationary boundary, but using the relative velocity instead of the

absolute velocity, this model can be adapted for use at a moving boundary. We make

the assumption that the same eddy diffusivity dependence applies to a moving bound-

ary as to a solid boundary. Ultimately, as this model depends only on the relative

normal velocity approaching the interface, it can be constructed independently of the

mean fluid velocity, U,,, the renewal frequency and the diffusive sublayer thickness.

4.5 Model

We model the transfer of mass from the flume water to the LDPE strip by solving the

one-dimensional (vertical, z dimension) diffusion equation inside the polyethylene (Eq.

4.11). We neglect lateral diffusion within the PE based on the fact that the lateral

(x) diffusion timescale is long compared with the vertical (z) diffusion timescale, i.e.

h2 /DPE « 12 /DPE. This simplification by dimensional reduction in heat and mass

transfer systems when there is a clear separation of length scales is commonly termed
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the "fin approximation" [22]. We first divide the length of the strip into 100 sections

and solve the diffusion equation independently for each section, allowing for different

transfer velocities along the strip length. For each section, we assume the following

boundary conditions: no net flux at the strip centerline due to symmetry (Eq. 4.12)

and a prescribed transfer velocity, K(s), at the strip surface (Eq. 4.13).

DCPE _ 2 CPE

at DPE 
(4.11)

09CPE
CP = 0 (4.12)

z=O

DPE 9CPE = J(s) = ACK(s) (4.13)
az z=h/2

In Eqs. 4.11 - 4.13, J(s), is the mass flux per unit area unique to section s of strip,

(h/2) is the half-thickness of the LDPE strip, z is the coordinate in the surface normal

direction, DPE is the molecular diffusion coefficient of CHBr 2 CL within the LDPE,

CPE is the concentration of CHBr 2 CL within the LDPE, AC is the concentration

difference between the surface of the strip and the bulk of the fluid, i.e. AC =

Cw,o - CWz=h/2, K(s) is the transfer velocity for section s of the strip and t is

the time coordinate. At the strip-water interface, the following condition is true by

definition of the partition coefficient:

CPEz=h/2 - = KPEW Cwz=h/2 + (4.14)

We do not model Cw(z > h/2), however. We non-dimensionalize the governing

equations in the following manner: z = z/(h/2), r = tDPE/(h/2)2 and OPE =

CPE/(KPEWCW,O). This results in the dimensionless form of the governing equation

and boundary conditions:

acPE _ 02bPE (4.15)
aT 22
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b

z =h/2

z

-- z=

Figure 4-5: A schematic of how the blade is broken up into sections along its length,
s. In each section, the 1-D (vertical, z) diffusion equation is solved with a unique

prescribed flux, J(s). The equation is solved between the blade centerline, z = 0, and

the blade surface, z = h/2.

OCPEZOP =0 (4.16)

i=O

OPE (h _ACK(s) (4.17)
a DPEKPEWCWo 0

z=1

We solve the above equations (Egs. 4.15-4.17) using an implicit finite difference (FD)

method. This script is included in Appendix F.

4.5.1 Transfer Velocity

To model the transfer velocity at the interface, K(s), we must select a model that

captures the physics of the transport in our experimental system. As was seen in

§3.4, there is a strong component of the flow normal to the surface of the strip which

drives the large-amplitude, vertical oscillations of the strip. This normal component

of the flow also transports dissolved species in the flow to the blade interface. The

oscillatory flow of the vortex street coupled with the dynamic response of the blade

107



suggests that the viscous sublayer at the strip surface is periodically disturbed and,

therefore, a steady diffusive sublayer model, in which mass flux at the interface is set

by the rate of molecular diffusion across a thin layer of steady thickness, would not

be appropriate to apply to this system. More appropriate to this system is a model

that accounts for the ability of normal component of the fluid velocity to transport

mass from the bulk fluid to the blade surface.

We model the mass transfer to the model blades using the Ledwell [62] model

for the relative normal velocity at the fluid-solid interface (Eq. 4.10). In these ex-

periments, rather than reconstructing the surface-normal velocity through the use of

continuity (Eq. 4.9), we extract the scale of the interface-normal velocity, Wrel,rms,

directly from the fluid-structure model described in §3.3.3. Using these velocities,

we can adapt the Ledwell model derived in [62] (Eq. 4.10), which uses the normal

velocity near the interface, and apply it to our experimental system (Eq. 4.18).

K = 32 1/3 D (4.18)

In Eq. 4.18, we make the physically motivated assumption that the characteristic

lengthscale of the velocity divergence is the blade width, b. It has been demonstrated

that the blade width, b, is the lengthscale for flow divergence upstream of a flow-

normal flat plate moving relative to the fluid [58]. We extract the interface-normal

velocities over the full length of the strip over several vortex street cycles (> 10) from

our model, take the rms of the time series and repeat this for both strip thicknesses.

This gives us a unique transfer velocity for each of the 100 sections over the length of

the strip for both strip thicknesses. These values are used in the diffusion model (Eq.

4.17) to calculate the accumulated mass within each section along the strip length,

we sum the total mass in the strip, normalize this value by the theoretical mass

in the strip at equilibrium and compare the model with our experimental data. We

repeated this procedure to predict transfer velocities and to create mass accumulation

curves for the 2.5 cm cut sections at the clamped and free ends of the blades. The

model-predicted transfer velocities for the full blades as well as for the cut sections
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Figure 4-6: The profiles of the rms of the relative velocity normal to the surface of

the LDPE strips, for both thicknesses.

from the ends of the blades are presented in Table 4.2. In §4.7 we compare this

model prediction and the experimental results with the steady diffusive boundary

layer model and the surface renewal model.

4.5.2 Diffusion Coefficient

The diffusion coefficient of CHBr 2 CL in the LDPE was calculated from a regression

of available experimental diffusion coefficients of polyaromatic hydrocarbons (PAHs)

[64]. The regression is a function of the molar volumes of the compounds, and is based

on data from experimentally derived diffusion coefficients. This information provides

the current best estimate of the diffusion coefficient of CHBr 2 CL in the LDPE as

there are currently no known measurements of this value. The regression calculated
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Figure 4-7: The profiles of the model-predicted transfer velocity as a function of

strip length for both LDPE strips. The average transfer velocity for 1/ = 5.2E - 4
is K = 3.87E - 6 m/s and for ij = 4.4E - 6, K = 4.10E - 6 m/s. The location of
the cuts are denoted with the thin gray vertical lines. Between s = 0 and the first
gray line is the clamped-end section. Between the second gray line and s = 1 is the
free-end section.

Table 4.2: The model-predicted transfer velocities for the full blades as well as for the

2.5 cm cut sections at the clamped and free ends of the blades. The transfer velocities

are presented in units of m/s.

h=50 pm h=250 pm
Full Blade Average 4.10E - 6 3.87E - 6

Clamped End 2.5 cm section 3.86E - 6 3.73E - 6
Free End 2.5 cm section 4.89E - 6 4.49E - 6
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from the data of PAHs provided in [64], with the 95% C.I., is

log DPE = {-0.0159 ± 0.0036}Vm + {-9.9655 ± 0.6909} (4.19)

The molar volume of CHBr 2 CL is 85.01 cm 3 /mol, and the molecular diffusion coeffi-

cient in LDPE with the 95% C.I. is

log DPE -11.3 {-10.3, -12.3} m2 /S. (4.20)

4.6 Results

4.6.1 Full Blade Results

At each experimental time point, we calculate the mass of CHBr 2 CL in the blade

using Eq. 4.4. We then find the experimental transfer velocity that best fits the full

experimental data set (Table 4.3) using the least squares method, i.e. the transfer

velocity that minimizes the sum of squares error with the measured mass accumula-

tion data time series is the best-fit experimental transfer velocity. This process was

repeated for the bounds of the 95% C.I. on the diffusion coefficient within the LDPE,

providing a different experimental transfer velocity for each modeled diffusion coef-

ficient. The experimental data and the calculated experimental transfer velocity are

shown in Tables 4.3 & 4.4 and Fig. 4-8.

The experimental transfer velocity for h = 50 pm was higher than for h 250 Pm

(Table 4.4). Recall that h = 50 pm corresponds to 7 = 4.4E - 6, and h = 250 pm

corresponds to 1 = 5.2E - 4, and therefore the more flexible blade, which responds

to the vortex street flow with larger amplitude oscillations (Fig. 3-13), has a higher

measured transfer velocity (Figs. 4-6 & 4-7). This result, that the transfer velocity

was higher for the more flexible blade was true for the entire 95% C.I (Table 4.4).

For each blade thickness, we calculate the theoretical transfer velocity that is pre-

dicted using the Ledwell model (Eq. 4.18) for comparison with the experimental data

sets. We input this theoretical transfer velocity into the finite difference (FD) model
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Table 4.3: The experimental mass accumulation data for the full blade experiments.
The uncertainty for the measurements is ~ 30% of the value of MPE/MPE,sat., and

is calculated based on the variability in the replicate measurements of concentration
both in the vial water and in the flume water (See Appendix D). The value of

MPE/MPE,sat. for h = 50 jim and t = 600 s is not included due to an experimental
error. The measured concentrations in the vial water and flume are tabulated in

Appendix D.

Table 4.4: The calculated best-fit experimental transfer velocities that minimize the

sum of squares error of the experimental time series. The transfer velocities were also
calculated for the bounds of the 95% C.I. on the LDPE diffusion coefficient.

D (m 2 /s) K (m/s) for h = 50 jim K (m/s) for h = 250 jim Kh=5Opm/Kh=2Opm

D = 10-10.3 5.OE - 6 1.9E - 6 2.6
D = 10-11.3 5.1E - 6 2.2E - 6 2.3
D = 10-12.3 6.2E - 6 4.6E - 6 1.4

112

50 pm LDPE 250 pm LDPE
times (s) MPE/MPE,sat. times (s) MPE/MPE,Sat.

15 0.030 60 0.023
30 0.029 120 0.047
60 0.041 180 0.044
120 0.109 300 0.053
180 0.127 600 0.088
300 0.154 900 0.121
600 Error 1200 0.163



(Appendix F) and use the FD model to produce the theoretical mass accumulation

curve for each blade. We repeat this procedure using the 95% C.I. on the diffusion

coefficient within the LDPE, as different values of DPE cause mass to accumulate at

different rates within the strip, despite having the same theoretical transfer velocity.

This procedure produces a 95% C.I. for the theoretical mass accumulation curve.

Importantly, our model captures the main result that the more flexible blade,

(h = 50 pm, q = 4.4E -6), accumulates mass more rapidly than the more rigid blade,

(h = 250 pm, 7 = 5.2E - 4) (Fig. 4-7). Furthermore, the model predictions and the

experimental data show good agreement for both blade thicknesses. The results are

presented in Figs. 4-9 & 4-10. We note that the theoretical model includes no fitted

parameters. For h = 50 pm, within uncertainty, the model agrees with half of the

experimental time points. For h = 250 pm, within uncertainty, the model agrees with

the full experimental data set. Specifically, for h = 250 pm, DPE = 1E - 12.3 m 2 /s,

the lower bound of the 95 % C.I., produces the most consistent agreement between

the model and the experimental data. For h = 50 pm, the 95% C.I. of the theoretical

prediction is more narrow, with effectively no difference in the prediction between

DPE = 1E - 10.3 and DPE = 1E - 11.3 m 2 /s. For h = 50 pm, the lower bound of

the theoretical mass accumulation curve, with DPE = 1E - 12.3 m2 /s, only captures

two of the six experimental data points in the set.

4.6.2 Blade Section Results

The experimental data series are presented in Tables 4.5 & 4.6 and Figs. 4-11 & 4-12.

We then used the finite difference model to find the transfer velocities that fit the

data series in a manner than minimized the sum of squares error between the model

and the measurements. These calculated best-fit transfer velocities are presented in

Table 4.6. The experimental data are far below the predictions of the model which

suggests either that the model fails to capture the flux to these sections of the strip

or a flaw in the experimental method.
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Figure 4-8: The relative mass
both blade thicknesses: h=50

accumulation within the LDPE blades versus
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Figure 4-9: The relative mass accumulation within the LDPE blades versus time for
h=50 pum (77 = 4.4E - 6) plotted with the diffusion model prediction (red solid line)
using the Ledwell model (Eq. 4.18) for the transfer velocity and 95% C.I. (red shaded
area) based on uncertainty in the diffusion coefficient within the LDPE.
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Figure 4-10: The relative mass accumulation within the LDPE blades versus time

for h=250 pm (r = 5.2E - 4) plotted with the diffusion model prediction (blue solid

line) using the Ledwell model (Eq. 4.18) for the transfer velocity and 95% C.I. (blue

shaded area) based on uncertainty in the diffusion coefficient within the LDPE.
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Table 4.5: The experimental data from the cut sections experiments. The value

of MPE/MPE,sat. for both the clamped and free ends is included in the table. The
uncertainty for the measurements is ~~ 30% of the value of MPE/MPE,sat., and is
calculated based on the variability in the replicate measurements of concentration
both in the vial water and in the flume water (See Appendix D). The measured
concentrations in the vial water and flume are tabulated in Appendix D.

Table 4.6: The best-fit values of the transfer velocities for the cut sections at the
clamped and free ends of the blades. To reflect the uncertainty in the LDPE diffusion
coefficient, DPE, three fits were done, using the predicted DPE and the bounds of the
95% C.I.
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50 pm LDPE 250 pm LDPE

times (s) Clamped Free times (s) Clamped Free

15 0.010 0.007 60 0.010 0.010
30 0.014 0.014 120 0.012 0.012
60 0.020 0.018 180 0.018 0.018
120 0.029 0.024 300 0.026 0.025
180 0.031 0.035 600 0.035 0.048
300 0.043 0.049 900 0.046 0.059
600 0.065 0.067 1200 0.069 0.081

h=50pm h=250pm
D Kciamp Kfree Kciamp Kfree

D 10-10.3 1.OE -6 1.OE -6 0.8E -6 0.9E- 6
D= 10-113 1.OE -6 1.OE -6 0.8E -6 1.OE -6
D= 10-123 1.OE -6 1.1E -6 1.OE -6 1.2E- 6
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Figure 4-11: The measured mass accumulation within the LDPE blade sections versus

time for h=50 pm (rj = 5.2E - 4) plotted with the diffusion model prediction (dashed

lines) using the Ledwell model (Eq. 4.18) for the transfer velocity. The clamped end

is plotted in black. The free end is plotted in red.
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Figure 4-12: The measured mass accumulation within the LDPE blade sections versus

time for h=250 pm (rq = 5.2E-4) plotted with the diffusion model prediction (dashed

lines) using the Ledwell model (Eq. 4.18) for the transfer velocity. The clamped end

is plotted in black. The free end is plotted in red.
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4.7 Discussion

The transfer velocity model derived by Ledwell [62] and modified to be applied to

this system predicts the mass flux to the blade within uncertainty for the full blade

experiments. The measurements from the cut blade sections, however, neither agree

with the model, nor are they consistent with the experimental full blade results.

Specifically, the measurements of flux to the cut sections are far below predictions of

the model, and are far below what is anticipated based on the full blade experiments.

Together, these two sets of results provide us important information about how mass

transfer occurs at the surface of a flexible, passively responding blade in flow. Specif-

ically, it is intriguing that in identical flow fields, the more flexible blade accumulated

mass more rapidly. Moreover, these results also provide us important insight into the

capabilities and limits of the design of our experimental method.

4.7.1 Flux is set by relative fluid motion

The primary conclusion we can draw from this set of experiments is that flux at the

surface of a flexible blade moving in flow is set by the relative fluid motion at the blade

surface. We measured the mass transfer to two different model blades, which differed

only in their relative motion in the flow, and found that the blade with higher relative

motion gained mass more rapidly. Using our model for the motion of a thin flexible

body in a vortex street (Chap. 3) in concert with a model for the transfer velocity at

fluid-solid interface (§4.5.1), we estimated the relative blade-normal velocities along

the full length of the blades. The estimated relative velocity was used to predict

the transfer velocity. The model indicates that more flexible blades have higher rela-

tive velocities along their length (Fig. 4-6), which corresponds with a higher average

transfer velocity at the blade surface (Fig. 4-7). This is indeed the result that we

find experimentally: the fitted transfer velocity of the more flexible blade is greater

than the fitted transfer velocity of the more rigid blade. In fact, we find that the flux

enhancement to the more flexible blade is slightly higher than that predicted by our

model. Specifically, the model predicts that Kh.5,mw/Kh=250im = 1.06, while we find
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Table 4.7: The back-calculated effective velocity scales based on the measured exper-

imental transfer velocities from Table 4.4 and using Eq. 4.18.

D (m 2 /s) weff. (m/s) for h 50 pm weff. (m/s) for h = 250 ,um
D = 10-10.3 0.20 0.01
D = 10-11.3 0.21 0.02
D = 10-12.3 0.38 0.15

Kh=Ojm/Kh=250m = 2.6 (using DPE = 10103 m2 /s), Kh=50pim/Kh=250pm = 2.3 (us-

ing DPE = 1011.3 m 2 /s) and Kh=50,,m/K=250j,m = 1.4 (using DPE = 10-12.3 m2 /s).

This confirms that the combination of our dynamic blade model with the mass trans-

fer model of [62] captures the essential features of our model system, despite under-

predicting the actual enhancement in transfer velocity. A possible explanation for the

under-prediction of the transfer velocity ratio could be our choice of parameterization

of the relative velocity at the blade surface. The relative velocity at the blade surface

varies in time, and therefore we used the rms of the relative velocity record as the

velocity scale in the flux model. It is possible, however, that the root mean square

of the velocity does not fully capture the effects of the unsteady velocity on mass

transfer. Infrequent, high-velocity events may impact flux in ways not captured by

the rms of the velocity record. It is possible, as well, that our transfer velocity model,

which we calculated using the modeled velocities rather than measured velocities,

fails to fully capture the relative velocity at the surface of the experimental blades.

Ultimately, though, the experimental results indicate that the relative velocity at the

blade surface is a key variable in setting the rate of mass transfer at the blade surface.

Both in these experiments and for kelp in the ocean, the relative velocity at the blade

surface can be a function of the blade flexural rigidity.

We can use the experimentally measured transfer velocity to back-calculate an

effective relative velocity scale for each model blade and each modeled diffusion coef-

ficient using Eq. 4.18. These effective velocity scales are displayed in Table 4.7. The

model predicted rms relative velocities (Fig. 4-6) are between 0.4U, and 1.5U,, while

the calculated effective velocities (Table 4.7) are between 0.01 m/s and 0.38 m/s, or
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0.05U, and 1.9U,. The difference between the effective velocities for the two blade

thicknesses is larger than predicted by the model. However, as we noted above, it is

possible that the root mean square of the velocity record does not adequately capture

the effect that the varying velocity at the blade surface has on mass transfer, and

that the calculated velocity scales in Table 4.7 are better representations of the flow.

Our experiments allow us to ultimately conclude that flux to a passively deforming

blade is a function of the blade flexural rigidity. This result is novel in that current

models for flux at a fluid-solid interface have not taken into consideration the role of

the structure's flexural rigidity. Below, we discuss the application of the three flux

models (introduced in §4.4) to our kelp blade system.

In the coastal ocean, kelp blades flap and flutter in the flow [56, 48], resulting in a

normal velocity at the blade surface. Therefore, successful modeling of nutrient flux

at the blade surface requires information about the relative normal velocity at the

blade surface, which is a function of both the blade motion and the fluid motion. We

acknowledge that constructing a numerical model to extract relative velocity informa-

tion at the blade surface is often prohibitively time-consuming and computationally

expensive. In §4.7.3, we develop a simple model that can be used to predict nutrient

flux in the field based basic knowledge of the blade and the fluid motion.

Thin film model

We can use the steady diffusive boundary layer model (§4.4) to calculate a transfer

velocity for our experimental system. For a mean flow speed U" = 0.20 m/s, u, =

0.01 to 0.04 m/s, and the laminar sublayer thickness, using Eq. 4.5, is 6, = 1.25E - 4

to 5E - 4 m. We assume that the leading edge of the blade trips the boundary

layer into a turbulent boundary layer state. Using the Schmidt number relationship

between the diffusive sublayer thickness and the laminar sublayer thickness (Eq. 4.6),

the diffusive sublayer is between 1.25E-5 and 5E-5 m thick. This thickness produces

a transfer velocity of between KD.B.L = 2E - 5 and 8E - 5 m/s. These values are

much larger than the measured transfer velocity for the h = 50 pm and h = 250 Pm

blades of between 2E -6 and 6E -6 m/s. (Table 4.4). Moreover, the steady diffusive
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Table 4.8: The calculated values of the diffusive boundary layer thickness, using the
measured transfer velocities reported in Table 4.4 and Eq. 4.7.

D (m 2 /s) 6 b,eff. (in) for h = 50 pm 6b,eff. (in) for h = 250 pm

D = 10-10.3 2.00E - 4 5.26E - 4
D = 10-113 1.96E - 4 2.55E - 4
D = 10-123 1.61E - 4 2.17E - 4

boundary layer model cannot differentiate between the two values of flexural rigidity,

and thus cannot predict the observed differences in flux.

Furthermore, in many systems, including the vortex street flow in our system,

the flow is unsteady, making accurate modeling of the diffusive sublayer thickness

very difficult. Indeed, in rapidly changing systems, where the timescale of the flow

unsteadiness is short compared with the timescale for establishment of the diffusive

sublayer, accurate modeling is often not possible, and use of the steady diffusive

sublayer model in a predictive manner is crude simplification, at best. Direct mea-

surements of unsteady diffusive sublayers are often possible at stable interfaces, such

as the ocean floor [42], however, these measurements are limited by the spatial and

temporal resolution of the sensor. Furthermore, for dynamic interfaces undergoing

rapid large-amplitude motion and high curvatures, measuring the diffusive sublayer

thickness is currently not possible. In our system, the unsteadiness of the flow vi-

olates the primary assumptions of the steady diffusive sublayer model and the flow

unsteadiness is likely the main cause of disagreement between the model predictions

and the experimental measurements. It is also possible that the boundary layer at the

blade interface is not fully turbulent, however, we cannot assume a laminar sublayer

model without treating the blade like a rigid flat plate, an assumption which violates

the fundamental nature of our experiment.

We can, however, use the experimentally calculated transfer velocities (Table 4.4)

to calculate an effective diffusive boundary layer thickness using Eq. 4.7. Although

the system is unsteady, this exercise allows us to calculate an average, effective dif-

fusive boundary layer thickness over the course of the experiment. These values are
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reported in Table 4.8. We find values of the effective diffusive sublayer thickness

between 1.6E-4 and 5.3E-4 m, which are physically reasonable values for this system.

Other authors have calculated the effective diffusive sublayer thickness on flexible

kelp blades in flow using flux measurements and found thicknesses between 1.5E-4

and 2.0E-4 m for free stream velocities near 0.20 m/s [97, 49]. Gundersen directly

measured the diffusive boundary layer thickness at the bed of the ocean and found a

mean thickness of 5.9E-4 m [42].

Surface renewal model

In turbulent systems with a single dominant frequency, the classic surface renewal

model developed by Higbie [46] and Danckwerts [21] is often successfully applied

[96, 97, 48]. This model has also been extended to accept a distribution of renewal

times, rather than just a single period [31]. In our system, the single dominant

frequency is the vortex street frequency, which is related to the mean flow speed

and vortex street height through the Strouhal number (§3.3.1). The coherent fluid

structures of the vortex street impinge on the blade surface and induce a dynamic

blade response at the same frequency as the vortex street. For the D = 2.5 cm vortex

street, f = 1.2 Hz, or TR = 0.83 s. For these parameters, the classic surface renewal

model predicts a transfer velocity of KS.R. = 3.92E - 5 m/s. This transfer velocity

is an order of magnitude larger than the measured transfer velocity and therefore

grossly fails to capture the actual rate of mass transfer at the surface of the flexible

blade. Through this comparison, it becomes clear that the actual mechanism of mass

transfer to the interface can not be a complete renewal of the diffusive sub-layer

every TR seconds, but is likely a slower process of diffusive sublayer compression (i.e.

thinning the boundary layer though not fully replenishing it) and the delivery of fresh

mass to the surface at a rate set by the local normal velocity. In addition, the surface

renewal model cannot differentiate between different blade flexural rigidities. The

two blades in our experiments oscillate at exactly the same frequency, which is set

by the vortex street. However, differences in rigidity produced differences in blade

motion that translated into differences in flux. These differences cannot be predicted
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Table 4.9: The calculated values of the surface renewal timescale, using the measured
transfer velocities reported in Table 4.4 and Eq. 4.8.

D (m 2 /s) TR,eff. (s) for h = 50 pim TR,eff. (s) for h = 250 pm

D = 10-10.3 51 353
D = 10-11.3 49 263
D = 10-12.3 31 60

by the surface renewal model.

Similar to the exercise in §4.7.1, we can use the experimentally measured transfer

velocity to calculate an effective surface renewal timescale from Eq. 4.8. These

calculated, effective renewal timescales are displayed in Table 4.9. The vortex street

frequency sets both the frequency of the fluid oscillation and the blade oscillation and

is narrowly centered around f = 1.2 Hz or T=0.83 s. The calculated effective renewal

time scales are between one and two orders of magnitude larger than the vortex street

period. As there is no physical basis for renewal timescales between 30 s and 350 s

in our experimental flow, this calculation further reinforces the fact that the classic

surface renewal model cannot be successfully applied to this system.

4.7.2 Similarity Between Mass and Momentum Flux

Drawing on our results from this chapter as well as our results from Chapter 3, we

can examine the relationship between the measured values of momentum flux (drag

force) and the measured values of mass flux to the model blades as a function of the

blade flexural rigidity. In §3.4.2, we reported the measurements of the drag force

on the h = 50 pjm and h = 250 pm model blades. The ratio of the drag force, or

momentum flux, for these blades was FD,h=50pm/FD,h=250pm = 1.8. The ratio of the

mass transfer velocities to these blades, as reported above in §4.7.1, was between

Kh=50pm/Kh=250pim = 2.6 (using DPE = 10103 m2/s) and Kh=5Opm/Kh=250pm = 1-4

(using DPE = 10-12.3 m2 /s), with a value of Kh=50pm/Kh=250/m = 2.3 (using the mean

regression value of DPE = 10113 m2 /s). Within the uncertainty of the calculated

ratio of mass transfer velocities, the ratios of mass flux and momentum flux for the
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two model blades are in agreement.

For a flat plate oriented parallel to the mean flow direction, we expect that the

mass flux and momentum flux to the plate should scale similarly. This concept

is called the Reynold's Analogy for heat and momentum flux [85, 22, 110]. The

Reynold's Analogy is specifically valid in cases where there is no form (pressure)

drag, and momentum flux is entirely due to friction. In our experiments, not only

is form drag present due to the large-amplitude oscillations which present a frontal

area normal to the flow, but inertial forces also contribute to the total measured force

on the model blades. The Reynolds Analogy has not been extended to cases where

there is form drag or inertial forces, and there is currently no theoretical support for

the similarity between scalar and momentum flux extending to this regime, either.

Our results, however, certainly provoke the possibility that there exists a similarity

between scalar and momentum flux for a flexible body moving in flow.

As we have shown above, the relative velocity at the model blade surface changes

with blade flexural rigidity. This change in the relative fluid velocity is responsible

both for the change in the drag force and the change in the mass flux to the blade

surface. If, in future research, it can be shown that the change in relative velocity

at the blade surface affects mass flux and the fluid force in the same manner, then it

may be possible to experimentally demonstrate an analogy between momentum and

mass flux for flexible bodies in flow.

4.7.3 Predicting Transfer Velocities in the Field

We have demonstrated that we can successfully predict the scalar flux using the

modeled surface normal relative velocity at the oscillating blade. We have further

shown that two simple models, the steady diffusive sublayer model and the surface

renewal model cannot account for the changes in flux caused by changes in flexural

rigidity. Accurately modeling the fluid-structure dynamics for dynamic flexible blades

and other structures in flow is often analytically intractable, however, and in many

instances, a simple flux model based on empirical relationships and flow observations

is desirable. In this section we develop a simple model that can be applied to blades
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in the field.

We can approximate the blade normal velocity using the blade oscillation ampli-

tude and the oscillation frequency. By fitting the scaling prediction derived in @3.4.2

to the observed oscillation amplitude (Fig. 3-13) we derived an empirical expression

for amplitude at the blade tip.

A Zrms = 17/3 (4.21)
258

Combining the above equation with the frequency of oscillation gives an approximate

average blade normal velocity: Wblade = (41/27-1/ 3f /258. The relative normal veloc-

ity at the blade surface is a combination of the blade normal velocity and the normal

component of the fluid velocity. These two factors do not sum linearly, however,

because of the potential for a phase difference between the blade and fluid motion.

We have shown that as the blade amplitude increases and the normal component of

the flow remains constant, the relative normal velocity at the blade surface increases

(Figs. 3-13 & 4-6). Therefore, to simply model the relative normal velocity at the

blade surface, we sum the blade normal velocity and the normal component of the

flow in quadrature:

Wrel,rms := IW blade f (4.22

where Wblade and Wf low can come either from observations or empirical models. For

our system, using the empirical expression for blade amplitude given above, and using

the obesrved normal component of the vortex street (~ 0.4U,; see Fig. 4-6), we can

write the model for Wrel,rms in the following form:

2l/r -1/3f 2
Wrel,rms 25 (.4U 0 )2  (4.23)

This approximation for wrel,rms is only an approximation as we are unable to model

the complex relationship between blade and fluid motion.

We can then use this velocity to form a transfer velocity at the blade surface using
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Eq. 4.18. This simple formulation gives transfer velocities of Kh=501im = 4.9E - 6

m/s and Kh=25Oym = 3.8E - 6 and a transfer velocity ratio of Kh=50pm/K=2Oftm =

1.3. In §4.7.1 we showed that using the modeled relative velocity at the blade

surface produced Kh=501 1m/Kh=250um = 1.06, while the experiments showed that

Kh=50m/Kh=25im = 2.3 (using DPE = 10-11.3 m 2 /s) and that Kh=5Opm/K=2Om =

1.4 (using DPE = 10123 m2 /s). Therefore, the simple model presented above gives

a flux prediction that is close to both the prediction using the fully-modeled relative

normal velocity at the blade surface and to the experimental results.

4.7.4 Cut blade sections discussion

The transfer velocities measured at the cut sections from the clamped and free ends of

the blades do not agree with the predictions from the model (Tables 4.5 & 4.6 and Figs.

4-11 & 4-12). These results, however, are also inconsistent with the measured values

of flux for the full blade experiments (Tables 4.3 & 4.4 and Figs. 4-9 & 4-10). The

cut section portion of the experiments was designed to compare the transfer velocities

from the portions of the blade with the most disparate relative normal velocities (Fig.

4-6). Specifically, we expect the transfer velocity at the free end of the blade to be

higher than the average transfer velocity of the full blade, and we expect the transfer

velocity at the clamped end of the blade to be less than the average transfer velocity

of the full blade (Fig. 4-7). What we find is that the measured transfer velocities at

both the clamped and free ends are much lower than the average transfer velocities

for the full blades. This repeated trend in the results suggests that there is a flaw in

the experimental method, rather than a random human or instrument error.

The only difference in the experimental method between the full blade experiments

and the cut sections experiments that could result in this consistent bias is the time

spent measuring and cutting the blades once they are removed from the flume (§4.3.2

& §4.3.3). The full blades are removed from the flume, rapidly dried and placed

directly in the clean vials which are then filled with clean water. The entire process

for the full blades lasts less than 20 s. The cut sections are removed from the flume,

rapidly dried, then placed on a sheet of aluminum foil where the 2.5 cm sections at
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either end are carefully measured and cut. After they are cut they are placed in

the clean vials which are then filled with water. The extra steps of measuring and

cutting the 2.5 cm sections adds between one and two minutes to the process during

which the blades are exposed to the air. A possible explanation for the discrepancy

in the experimental data is that mass of CHBr 2 CL is lost to the atmosphere in the

lab. The loss of mass from the blade sections during the processing of the sections

would cause the measured transfer velocity to be artificially low and could explain

the inconsistency in the results.

4.7.5 Mass Loss from Blades

We modeled the loss of mass from the model blades to the atmosphere using an

extension of the finite difference model described in §4.5. In this extended version of

the model, we first model the accumulation of CHBr 2 CL into the blade, as described

previously. We then model the loss of CHBr 2 CL to the surrounding air to account for

the time between removal of the blades from the flume, and sealing the blades in the

40 mL amber vials. To model the loss to the atmosphere, we solve the 1-D, vertical

diffusion equation inside the LDPE blade, with a no-flux boundary condition at the

blade centerline (z = 0), and a diffusive boundary layer (air-side boundary layer) flux

condition at the blade surface (z = h/2). The governing equation and these boundary

conditions are written as follows:

9CPE _ D 2CPE (4.24)
at az2

OCPE =0 (4.25)

DPE 9CPE = DA CPE
D z z=h/2 KHKPEW 4A

In Eq. 4.26, the product of the Henry's Law constant, KH, and the PE-water parti-

tioning coefficient, KPEW, is the PE-air partitioning coefficient. We select an air-side
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diffusive boundary layer thickness of 6A = 50E - 6 m. This choice of the air-side

boundary layer thickness is arbitrary and the results are completely insignificant to

air-side diffusive boundary layer thicknesses of any size less than a few millimeters in

thickness (which is unreasonably large). Loss to the atmosphere is not significantly

affected by the size of this layer thickness, however, because mass transfer is limited

by diffusion through the PE, rather than transport across the air-side diffusive bound-

ary layer. This fact is exemplified by the system's Biot number [22], which is larger

than 1E4 for this case, indicating that resistance in the polyethylene dominates the

system. We non-dimensionalize Eqs. 4.24-4.26 with the same scales used previously,

giving

0 CPE _ a (4.27)
aT 822

=CPE =0 (4.28)
z=O

DOPE _ hDAOPE,=(
82 2 DPEKHKPEW6 A

For each experimental time point listed in Table 4.1, we model loss to the atmosphere

for durations of 10, 20, 60 and 120 s. We also model loss to the atmosphere for

DPE = 1E - 11.3 m 2 /s as well as for the bounds of the 95% C.I. on DPE. These

results are reported in Tables 4.10 - 4.15. Across the three diffusion coefficients

and the two blade thicknesses that we modeled mass loss from, the blades with the

shortest time (e.g. 15 or 60 s) in the flume lose the most relative mass, while the

blades with the longest time in the flume (e.g. 600 or 1200 s) lose the least relative

mass. As expected, the model blades lose more mass the longer they are exposed

to the laboratory air. Using the model predictions with DPE = 1E - 11.3 m 2 /s as

an example (Tables 4.12 & 4.13), the model predicts that the h = 50 Pam blade that

spends 15 s in the flume loses 60% of the mass of CHBr 2CL after 10 s in the air,

while the same blade that spends 600 s in the flume loses about 30% of the mass of
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Table 4.10: The model predictions of the fractional mass of CHBr 2CL remaining in
the h = 50E - 6 m PE model blade after exposure to the laboratory air for times of
10, 20, 60 and 120 s, using DPE = iE - 10.3 m2 /s.

CHBr 2CL after 10 s in the air. The thicker blade, h = 250 pm, loses 40% of its mass

at the t = 60 s time point after 10 s in the air, while only losing 10% of its mass at

the t = 1200 s time point after 10 s in the air.

For the cut blade experiments, the blades can be exposed to the laboratory air for

up to 120 s, and can lose a significant amount of mass of CHBr 2CL. This loss to the

ambient can partially explain the large discrepancy between the cut blade experiments

and the full blade experiments. Again using DPE = iE - 11.3 m2 /s as an example,

between the experimental time points of t = 15 s and t = 600 s, the h = 50 pm blade

loses between 96% and 93% of the mass of CHBr2CL, respectively, when exposed to

the laboratory air for 120 s. The h = 250 pm blade loses 73% and 32% of the mass of

CHBr 2CL, respectively, when exposed to the laboratory air for the same durations.

The experimental measurements show that the cut blade sections have only 28% to

44% of the mass that the full blades do at the same experimental time points. The

only difference between the cut blade experiments and the full blade experiments is

the duration of exposure to the laboratory air. Although we cannot pinpoint the exact

time of exposure of the blades to the ambient air, the model predictions of mass loss

to the ambient over a range of exposure times are consistent with the observations of

mass loss to the cut blade sections.

Notably, this portion of the experiments, and the subsequent modeling of mass
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Atmosphere Exposure Times (s)

Exp. times (s) 10 20 60 120
15 0.10 0.01 0 0
30 0.11 0.02 0 0
60 0.11 0.02 0 0

120 0.11 0.02 0 0
180 0.11 0.02 0 0
300 0.12 0.02 0 0
600 0.12 0.02 0 0



Table 4.11: The model predictions of the fractional mass of CHBr 2CL remaining in
the h = 250E - 6 m PE model blade after exposure to the laboratory air for times of
10, 20, 60 and 120 s, using DPE = IE - 10.3 m2 /s.

Table 4.12: The model predictions of the fractional mass of CHBr 2CL remaining in
the h = 50E - 6 m PE model blade after exposure to the laboratory air for times of
10, 20, 60 and 120 s, using DPE = IE - 11.3 m2 /s.

Table 4.13: The model predictions of the fractional mass of CHBr 2CL remaining in
the h = 250E - 6 m PE model blade after exposure to the laboratory air for times of
10, 20, 60 and 120 s, using DPE = 1E - 11.3 m2 /s.
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Atmosphere Exposure Times (s)

Exp. times (s) 10 20 60 120
60 0.61 0.51 0.34 0.21
120 0.69 0.60 0.41 0.25
180 0.72 0.64 0.44 0.27
300 0.75 0.67 0.47 0.29
600 0.77 0.69 0.48 0.30
900 0.78 0.70 0.49 0.30
1200 0.78 0.70 0.49 0.31

Atmosphere Exposure Times (s)

Exp. times (s) 10 20 60 120
15 0.41 0.31 0.14 0.04
30 0.51 0.40 0.18 0.05
60 0.59 0.46 0.21 0.06
120 0.63 0.50 0.23 0.07
180 0.65 0.52 0.23 0.07
300 0.66 0.53 0.24 0.07
600 0.67 0.54 0.24 0.07

Atmosphere Exposure Times (s)

Exp. times (s) 10 20 60 120
60 0.60 0.50 0.35 0.27
120 0.69 0.61 0.45 0.36
180 0.74 0.66 0.52 0.42
300 0.79 0.72 0.59 0.49
600 0.85 0.80 0.68 0.60
900 0.87 0.83 0.73 0.65
1200 0.89 0.85 0.76 0.68



Table 4.14: The model predictions of the fractional mass of CHBr 2CL remaining in
the h = 50E - 6 m PE model blade after exposure to the laboratory air for times of
10, 20, 60 and 120 s, using DPE =1E - 12.3 m2 /s.

Table 4.15: The model predictions of the fractional mass of CHBr 2 CL remaining in
the h = 250E - 6 m PE model blade after exposure to the laboratory air for times of

10, 20, 60 and 120 s, using DPE = 1E - 12.3 m2 /s.
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Atmosphere Exposure Times (s)

Exp. times (s) 10 20 60 120
15 0.40 0.31 0.19 0.14
30 0.50 0.41 0.27 0.20
60 0.61 0.51 0.36 0.27
120 0.70 0.61 0.46 0.36
180 0.74 0.67 0.52 0.42
300 0.79 0.73 0.59 0.49
600 0.84 0.80 0.67 0.57

Atmosphere Exposure Times (s)

Exp. times (s) 10 20 60 120
60 0.55 0.46 0.32 0.25
120 0.65 0.57 0.43 0.34
180 0.71 0.64 0.50 0.40
300 0.77 0.70 0.58 0.49
600 0.83 0.78 0.68 0.59
900 0.86 0.82 0.73 0.65
1200 0.88 0.84 0.76 0.69



loss to the ambient, revealed an important flaw in the experimental design: the time

between removal of the blades from the flume and insertion into the vials must be

minimized. The laboratory atmosphere acts as a perfect sink and it is possible for a

portion of the accumulated mass in the polyethylene to be lost, artificially reducing

the measured transfer velocity. A possible technique to address this flaw in the

experiments is to have two people conduct each experiment. Processing time could

be saved with one person holding the blade in place with tweezers while the second

person makes the cuts, eliminating the difficulty of one person holding a flexible blade

in place along a meter stick while making precise cuts along its length. Cutting the

blades into precise sections will increase the processing time, regardless, and more

sophisticated modeling of the mass lost to the atmosphere may be necessary.

Ultimately, modeling the mass loss from the blades during the processing of the

model blades can provide important insight into the experimental method and can also

influence how the experimental data is fitted to calculate the experimental transfer

velocities. From Tables 4.10 - 4.15, it's clear that the h = 50 pim blade loses more

relative mass than the h = 250 pum blade over the same time period. Also, regardless of

blade thickness, more relative mass is lost for the shorter time durations. Controlled

experiments investigating the phenomenon of mass loss to the atmosphere during

processing are needed to confirm this model. With model confirmation, mass loss

adjustment factors could be applied to each experimental time point before fitting a

transfer velocity to the data. We note however that the elevated loss of mass from

the h = 50 prm blade over the loss of mass from the h = 250 pm blade does not affect

our overall conclusion that the more flexible blade accumulates more mass than the

more rigid blade. In fact, the mass loss modeling results suggest that the ratio of

transfer velocities between the h = 50 Pm and h = 250 pm blades could be higher

than calculated above.

4.7.6 Experimental method discussion

In this chapter we have developed an experimental method that extends the tech-

nology of passive polymer samplers and which can be used to measure rates of flux
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between the sampler and the surrounding medium. The method can be used to derive

information about the physical interactions between the sampler and the surrounding

fluid. Specifically, from measuring the rate of flux, and knowing a priori the target

compound's concentration in the fluid and its diffusion coefficient in the sampler and

in the fluid, we can gather information about the fluid velocity at the fluid-solid

interface and the boundary layer dynamics.

When used in this manner, this passive sampling method can be used as an analog

for nutrient and gas transfer in aquatic vegetation. Previous methods have modeled

scalar transfer between aquatic vegetation and flow using rigid structures such as

copper [24] and gypsum [65], and have therefore been unable to test the effects of

the plant's flexural rigidity on flux (copper and gypsum in flow are effectively in the

limit of a perfectly rigid body, 7 > 1). Many of the most abundant types of aquatic

vegetation are highly flexible, however, particularly seagrasses and macroalgae, and

the plants' flexural rigidity can modify the fluid motion near the vegetation surface,

affecting rates of flux. In these experiments, we carefully measure and control the

flexural rigidity of the sampler, treating this structural property as an independent

variable and measure the resulting transfer velocity. Indeed, in the set of experiments

presented in this chapter, we have not only demonstrated the efficacy of this exper-

imental method, we also show that the flexural rigidity of the structure can change

the rate of flux from the surrounding fluid.

Importantly, by demonstrating the capabilities of this experimental method, we

have opened the door to several new areas of investigation, with application not only

to aquatic vegetation but to our understanding of the fundamentals of scalar transfer

in different flow regimes. By directly extending the methods discussed in this chapter,

one can investigate the role of flexural rigidity on scalar transfer in unidirectional flow,

grid-generated turbulence and waves, and on scalar transfer to mechanically actuated

model blades. Extensions of this work can help us understand the meaning behind the

specific geometries and structural properties of different species of aquatic vegetation,

and how these morphological parameters relate to the local flow environment.
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Chapter 5

Kelp Blade Morphologies:

Implications for Drag Force and

Nutrient Flux

Using the experimental and theoretical results of the previous two chapters, in this

chapter we ask how documented changes in blade morphology that impact blade

stiffness may affect drag and nutrient flux to real kelp blades. In §5.1, we discuss the

typical morphology of many kelp blades and discuss some of the mechanisms by which

morphology can change. We also highlight specific measurements of Macrocystis blade

morphology. In §5.2, we examine how changes in blade morphology can affect blade

drag force and nutrient flux at the blade surface. In §5.3, we discuss an interesting

set of observations of kelp blade morphology from within a single kelp forest. Finally,

in §5.4, we take relative velocity estimates from the literature and construct a mass

transfer velocity for kelp which we compare with other published values. Portions of

§5.1 and §5.2 are included with the experimental results of Chapters 3 & 4 in the

paper to be submitted to Limnology & Oceanography.
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Figure 5-1: A schematic of a typical Macrocystis frond, which is composed of holdfasts

(akin to roots on terrestrial plants, but are purely structural), the stipe, and branching

off of the stipe are the blades. The closeup of the blade shows the separation of

geometric length scales, with h < b < 1.

5.1 Blade Morphology and Plasticity

Kelp blades are elongated, flexible bodies, that deform and oscillate in response to

the flow. Often, this elongation results in a clear separation of length scales between

the thickness, width and blade length (Fig. 5-1). Blades of Macrocystis pyrifera are

an ideal example of this elongated morphology: typically the blade thickness, h, is

less than 1 mm, the blade width, b, is approximately 9-10 cm, and the blade length, 1,

is near 50 cm. Species of Nereocystis and Laminaria are very similar in morphology,

although the overall blade length is longer than for Macrocystis.

Just as other species adapt to environmental stimuli, kelp, and specifically the

morphology of kelp blades, can adapt to its environment. The first mechanism by

which kelp blade morphology can adapt to its environment is the process of evolution

by natural selection. In this process, specific morphological traits that confer some

advantage to the kelp are selected for and passed on to future generations, gradually

causing a change in the blade morphology that is better suited to the coastal ocean

environment. The time-scale of morphological change by evolution is generally long,

between millenia and eons. Moreover, the process of evolution does not give rise to

the rapid morphological changes that can appear in kelp on the order of a single

growing season.
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The mechanism by which kelp can rapidly adapt its morphology to the local envi-

ronment is phenotypic plasticity. Phenotypic plasticity is the process through which

the manifested traits of an organism adapt to changes in environmental stimuli, such

as changes in light or nutrient availability, changes in mechanical stresses, changes

in climate and so forth. Phenotypic plasticity in kelp blades means that the length,

width and thickness of the blades, as well as the overall characteristics of the shape

(e.g. rectangular, tapered, undulatory, etc.) can change over the timescale of the kelp

life cycle in response to its environment [26, 57].

For kelp, one of the most important environmental stimuli is fluid drag, and the

resulting mechanical stresses and strains it causes in kelp blades. In the coastal ocean,

kelp blades can be exposed to strong currents and waves which can break kelp blades

or dislodge entire fronds from the substrate. For this reason, documented observations

of kelp blade morphology are traditionally grouped into two categories: "exposed"

and "sheltered," which describe the blades' general exposure to rapid flow and the

concomitant high drag forces from waves and currents, and to slow flow and reduced

drag forces, respectively [57].

Early observations of morphological differences in kelp blades come from [35],

who observed stark differences in blade thickness between flow-exposed and flow-

sheltered sites in Laminaria longicruris. The thickness of the flow-exposed blades

was more than three times larger than the thickness of the flow-sheltered blades. The

same trend of thicker blades at exposed sites has further been documented in the

following macroalgae genera: Agarum [27], Durvillaea [18], Ecklonia [111], Eisenia

[87], Gigartina [51], Laminaria [27, 101, 95, 77], Macrocystis [49] and Pachydictyon

[44]. Moreover, the same behavior has been observed in seagrass blades of various

species [78].

Changes in blade thickness can have significant effects on the mechanical proper-

ties of the blade. The blade stiffness in tension is directly proportional to the blade

elastic modulus and blade cross-sectional area: Ebh. Increasing the stiffness in ten-

sion reduces blade extension under a tensile load, such as a drag force, potentially

preventing excessive strains and breakage. Increases in blade thickness, however, have
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Figure 5-2: A simple schematic of the effects blade morphology has on a blade's
resistance to tensile and bending forces. The Young's, or elastic, modulus, E, is a
property of a material describing its stiffness.

a more pronounced effect on the blade bending rigidity. For a blade with a nominally

rectangular cross section, the bending rigidity is the product of the elastic modulus of

the material and the second moment of area. The second moment of area, or bending

moment of inertia, is a function of the blade width times the cube of the blade thick-

ness. This gives a bending rigidity, B = EI = Ebh3/12. By comparing the effects

of thickness on stiffness in tension and stiffness under bending, we see that changes

in thickness have a more pronounced effect on the structure's resistance to bending

(Fig. 5-2).

An interesting case study on phenotypic plasticity in kelp blades comes from

Macrocystis, commonly known as Giant Kelp. The blades of Macrocystis not only

have an increased thickness at exposed sites, but they also exhibit longitudinal corru-

gations (Fig. 5-4). At flow sheltered sites, studies have found that these corrugations

are either entirely absent [50] or greatly reduced in amplitude [49]. These corruga-

tions are very regular in amplitude and wavelength, and generally extend almost the

full blade length (Fig. 5-3).

Longitudinal corrugations in blades are an efficient way to increase blade bending
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rigidity. The bending rigidity for a corrugated sheet, which can effectively model a

Macrocystis blade, was calculated by Lau [61] as

EI E ( 2 + 8(22 (5.1)
2 8(A/2)2

in which a is the corrugation amplitude and A is the corrugation wavelength (Fig.

5-5). This equation reveals that for a thin blade, in which thickness is small compared

with corrugation amplitude (h < a), the bending rigidity scales with the amplitude

squared, times the thickness. Macrocystis blades generally satisfy this requirement

that the blade thickness is small compared to the corrugation amplitude. Impor-

tantly, corrugations present a method of increasing bending rigidity by simply chang-

ing shape, rather than adding material in order to increase blade thickness. This

change of blade shape has important effects for scalar transfer at the blade surface.

All of the nutrient transfer happens at the blade surface, and by increasing bending

rigidity with corrugations, blades maintain a high surface area to volume ratio. In-

creasing bending rigidity through increasing thickness decreases the surface area to

volume ratio, increasing the nutrient requirements for the plant, while decreasing nu-

trient acquisition surface area. Furthermore, there is an energy cost for adding more

blade material to increase blade thickness, whereas forming corrugations is simply a

reorganization of existing blade material.

Hurd and Pilditch [50] provided a complete set of morphological observations

(Table 5.1) that we can use to calculate the dimensionless blade flexural rigidity,

rj (Eq. 3.12), of real Macrocystis blades. Recall that T is a ratio of structural to

fluid forces, and for kelp is thus a function of both morphological parameters as well

as parameters of the fluid environment. At flow-sheltered sites, Hurd and Pilditch

report that the characteristic velocity is less than 6 cm/s [59, 50]. At flow-exposed

sites, Hurd and Pilditch do not provide a velocity value. We note that at flow-exposed

sites, the combination of wave orbital velocities and tidal currents makes it difficult to

determine whether the mean, rms or the maximum velocity during storms is relevant

to the kelp. For the purposes of this case study, we select a flow-exposed velocity
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Figure 5-3: A photo of a Macrocystis blade, showing the longitudinal corrugations

running the full length of the blade.

142



Figure 5-4: A cut section of a Macrocystis blade, showing the corrugation structure.
The cut-away shows the regularity of the corrugation wavelength and amplitude.

h

Figure 5-5: A drawing of a single corrugation and its length scales. The corrugation
has amplitude a and wavelength A. The blade thickness, h, remains constant over
the corrugations.
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Table 5.1: A summary of Macrocystis blade morphology observations from Hurd and
Pilditch [50] documenting the measurements of blades from flow-exposed and flow-
sheltered sites. The blades at the flow-sheltered sites had no corrugations. The elastic
modulus of algal material was reported by Hal [43].

Exposed Morphology Sheltered Morphology
blade thickness, h (mm) 0.470 0.425
elastic modulus, E (Pa) 5E6 5E6

blade length, 1 (m) 0.62 0.52
corrugation amplitude, a (mm) 1.37 -

corrugation wavelength, A (mm) 3.08

bending rigidity, El, formula E+ (I + r a 2 ) Ebh3 /12

bending rigidity/width, EI/b (Pa M3 ) 4.4E-3 3.2E-5

value of 0.50 m/s, but with an uncertainty of +0.45 m/s to account for possible high

velocity events [27]. For the flow-sheltered site, we use a velocity of 0.05 m/s with

negligible uncertainty, consistent with the observations from [50]. The fluid density

is set at pf = 1030 kg/m 3

In Table 5.2, we calculate the values of 77 for the exposed morphology at the

exposed flow velocity, as well as for the sheltered morphology at the sheltered flow

velocity. For the sheltered morphology, the flexural rigidity, EI = Ebh 3/12, while for

the exposed morphology, we calculate El using Eq. 5.1. For comparison purposes, we

also calculate the value of 71 for the sheltered morphology at the exposed flow velocity.

This calculation allows us to understand how a blade with the sheltered morphology

would respond in the flow-exposed velocities. We also calculate the values of ij at the

flow-exposed velocity of 0.95 m/s to account for possibility of high velocity events at

these sites. In the next section we consider what these values of 77 indicate about drag

and nutrient flux.
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Table 5.2: Calculations of the dimensionless blade flexural rigidity, 'q, based on the

observations of [50] summarized in Table 5.1. The exposed morphology value of q is

calculated using Eq. 5.1.

Exposed Morphology Sheltered Morphology

Exposed U, = 0.50 m/s 7.1E-5 8.8E-7
U. = 0.95 m/s 2.0E-5 2.5E-7

Sheltered U, = 0.05 m/s 8.8E-5

5.2 Benefits for Kelp from Morphological Plastic-

itiy

5.2.1 Drag Force Benefits

As we have demonstrated in Chap. 3, the drag force on a model kelp blade is a strong

function of the blade flexural rigidity. Specifically, for blades in a vortex street (an

ideal form of turbulence), as blade flexural rigidity decreases, the blade responds to

turbulence in the flow with oscillations of increasing amplitude (Fig. 3-13). Below

a critical value of the blade flexural rigidity, inertial forces on the blade become an

important component of the total force on the blade, and the resulting total force

increases more sharply with decreasing rj (Fig. 3-14). The experimental results show

that the critical value of q below which inertial forces become important is near

7 = 1E - 4 (Fig. 3-14). If a sheltered morphology blade is transplanted into an

exposed flow site, we have calculated that rj = 8.8E - 7, which is far below the

critical value of 7. Therefore, the sheltered morphology would result in high forces at

the exposed flow velocities. The exposed morphology results in a significantly higher

value of q at the flow-exposed velocities (rj = 7.1E - 5), which we have calculated

to be approximately two orders of magnitude larger than the sheltered morphology

at the exposed flow velocity, an adaptation that should reduce the total force on the

blade (Table 5.2 and Fig. 5-6). Interestingly, the values of 'q for both the exposed

and sheltered morphologies, at their respective flow velocities are nearly identical

in magnitude, suggesting that there may be an optimal ratio of blade stiffness to
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Figure 5-6: The measured drag force in the vortex street (from Fig. 3-14), plotted
on an expanded axis to show the potential reduction in drag caused by the shift from
the sheltered morphology to the exposed morphology. The drag data for D = 2.5
cm (l/D = 12) is plotted with the gray symbols and lines, and the data for D = 5.0
cm (l/D = 6) is plotted with the black symbols and lines. The vertical lines indicate
the calculated values of r7, (§3.4.3). The red arrow points from the value of 'q of the
sheltered morphology at the exposed flow speed (Sh.) to the value of 77 for the exposed
morphology at the exposed flow speed (Ex.) (r1 values from Table 5.2 indicated with
the vertical gray bars). As we can see from our experiments in Chap. 3, the increase
in blade flexural rigidity at the flow-exposed site prevents an increase in the drag
force due to enhanced flapping and inertial forces in response to turbulence.
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fluid forcing, towards which the kelp morphology adjusts. While lower values of ij

may indicate that blades have insufficient rigidity to survive the mechanical stresses

caused by high flow velocities, higher values of q could indicate unnecessary and

biologically-expensive structural strengthening.

With the presence of unsteady currents and waves, there is a wide spectrum of

turbulent fluctuations in the coastal ocean. In a vortex street, which is a periodic

form of turbulence narrowly centered around a single frequency and wavelength, blade

flexural rigidity strongly controls the forces, both pressure drag and inertial forces, on

the blade. We do not, however, believe that the introduction of inertial forces to the

system is unique to the vortex street system. Our experiments in the vortex street

indicate that the blade responds to each passing vortex. Therefore, we anticipate

that even in the presence of a single passing vortex, blades with low values of flexural

rigidity would be subjected to inertial forces. Plew and coauthors found that seagrass

blades responded most strongly to turbulent fluctuations that were near in scale to the

blade length, supporting this idea that our experimental conclusions could be seen in

the field [79]. By extension, it's possible that this same behavior could be observed for

blades subjected to wave orbital velocities. This idea needs further experimentation

before we can conclusively state how kelp blades respond to the wide range of flow

conditions in the coastal ocean.

5.2.2 Flapping Flag Instability

A second morphological consideration for kelp blades is the flapping flag instability.

The flapping flag instability is a phenomenon that happens to blades in uniform flow,

i.e. a steady, mean current lacking large scale turbulent structures. This phenomenon

is distinct from the phenomenon of forced oscillations in a vortex street. Specifically,

the flapping flag instability describes the point at which a streamlined flag (or blade)

in uniform flow becomes unstable and begins to undergo large, self-excited oscillations

[107, 115, 94, 6, 20, 71, 3]. The transition from the streamlined state to the oscillatory

state results in a step change in the total force on the flag of more than one order of

magnitude [103, 72]. Blades that are streamlined with the flow experience primarily
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frictional drag. Blades undergoing oscillations in uniform flow experience significantly

higher drag due to pressure and inertial forces.

The dynamics of this system and the location of the transition between the two

states have been extensively studied. We briefly summarize the methods and results

of these studies here. A flexible flag in uniform flow can be defined using Eq. 3.10,

reprinted here:

a2 a a
p 2 = -77- [Sn] + [Tt] + F (5.2)

a
8T 2  

N N mL

Different studies have described the fluid forcing, F, in different forms, ranging from

a pseudo-steady pressure and frictional drag formulation [107], to an incompressible,

irrotational potential flow formulation which is the sum of a non-circulatory flow and

circulatory flow due to vortex shedding from the flag trailing edge [6], to a vortex

sheet formulation [71, 3], to a fully-coupled solution of the flag dynamics with the

Navier-Stokes equation [20]. Despite the differing fluid formulations, the results of

each of these studies reveal the same physical phenomenon: below a specific threshold,

the stable, streamlined state of a flexible flag in uniform flow becomes unstable to

flapping, and large-amplitude oscillatory motions are initiated.

The location of the stability boundary, as a function of the two main system

parameters, p and 71, can be found with two methods. In the first method, a linear

stability analysis, the flag dynamics are linearized around the stable, streamlined

state and therefore assumed to be of small amplitude [20, 94, 6]. The flag posture is

then written in the form of a traveling wave perturbation, e.g.

((s, T) = Ae -(ksw) (5.3)

where A is an arbitrary amplitude function, k is the wavenumber and W is the fre-

quency of the traveling wave. Substituting Eq. 5.3 into Eq. 5.2 yields a dispersion

relationship between the wavenumber and frequency. The streamlined state becomes

unstable when, for the lowest dimensionless wavenumber of the system, k = 27r, and

for a given value of p, the traveling wave perturbation grows exponentially in time,
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i.e. the imaginary component of w in Eq. 5.3 is positive. The critical value of q that

produces instability can be solved for a range of values of P, producing the instability

boundary in p - q space [94]. This is the method used to produce the dashed bound-

ary, SVZ (2005), in Fig. 5-7. Alternatively, the instability boundary can be found

by direct simulation of the governing equation coupled with the fluid forcing model.

In this method, the flags are numerically perturbed with small amplitude oscillations

and the resulting dynamics are observed for a range of values of p and q. The critical

parameter values at the transition between the streamlined state and the oscillation

state are recorded as the stability boundary, e.g. the solid line, AS (2008) in Fig. 5-7.

The critical value of dimensionless rigidity, q, (above which the streamlined state

is stable, and below which the oscillatory state is stable) increases with p for both

sets of results that we plot in Fig. 5-7. This means that as flags become "heavier"

relative to the surrounding fluid, i.e. increasing p, or as flags become more flexible,

i.e. decreasing q, they become more unstable to flapping. In Fig. 5-7, we plot the

sheltered and exposed morphology parameters on the stability boundary curve. As

shown in Table 5.2, the values of q in both the flow-exposed and flow-sheltered sites

are similar. For comparison, we have also plotted the morphological parameters of

the flow-sheltered blade geometry at the flow-exposed fluid velocity. This comparison

shows that at flow-exposed fluid velocities, the sheltered morphology would be unsta-

ble to flapping, resulting in significantly higher forces on the blade. The flow-exposed

and flow-shelterd morphologies (gray triangle and black circle, respectively) cluster

near the instability boundary, again suggesting a possible optimal ratio of structural

properties to fluid forcing in both flow environments.

Interestingly, in our experiments, our model blades have values of 1 between 4.46E-

6 and 5.6E0, and cross the theoretical instability threshold shown in Fig. 5-7. In our

limited (unpublished) trials with our model blades in open channel flow, we did not

observe the flapping flag instability. It is not clear however, if this is due to the fact

that the actual instability boundary is different from the theoretical boundary, and

that, in fact, all of our model blades exist in the stable regime. It is clear that in the

vortex street flow, though, the assumptions that were used to construct the instability
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Figure 5-7: The flapping flag instability boundary in [ - r space. The dashed line,
SVZ (2005), is a reduced order model prediction from [94] and the solid line, AS
(2008), is a fully-nonlinear prediction calculated in [3]. The two lines show good
agreement over much of the range of p. We plot both predictions as experimentally
observed threshold values are not available for this y range. Above the stability
boundary lines, the streamlined state (low drag) is stable. Below the boundary, the
flapping state (higher drag) is the stable state. We plot the values of p and r; based
on the experimental observations in [50] (Table 5.2) for the exposed and sheltered

morphologies at the exposed and sheltered flow conditions, respectively. These points

fall at the same location on the stability diagram, within uncertainty, suggesting a

stiffening of the blade that is proportional to the fluid forcing. For comparison, we
also plot the calculated value of r for the sheltered morphology at the exposed flow

speed. The error bars for the flow-exposed velocity account for the possibility of
velocities up to 0.95 m/s (Table 5.2).
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boundary are violated (namely, uniform flow), and that the model blades move under

the prescribed forcing rather than a self-excited instability.

Together, our understanding of the blade response to turbulence (Chap. 3) and of

the drag forces resulting from the flapping flag instability indicate that morphological

changes in kelp are strongly related to hydrodynamic environmental stimuli. We

next consider how morphological changes relate to kelp's physiological requirement

for nutrients.

5.2.3 Nutrient Acquisition

Changes in kelp blade flexural rigidity have the ability to not only modulate fluid

drag forces, but also to affect the rate of nutrient uptake at the blade surface. By

modifying the passive response of the blade, flexural rigidity controls the relative

fluid motion at the blade surface, which is the key parameter in setting the rate of

flux at the blade surface (Chap. 4). From the observations of actual kelp blades,

we see that kelp blades become more rigid in the more flow-exposed environment.

This morphological adaptation effectively reduces the nutrient acquisition rate at a

specified velocity, by limiting the blade's dynamic response to the turbulence, and

reducing the relative fluid velocity at the blade surface as shown in Fig. 4-6.

It may seem counterintuitive that kelp would adapt in a manner that reduces its

ability to acquire nutrients from the flow. Based on previous experimental studies,

however, we find that in flow-exposed environments, kelp can already acquire nu-

trients at a rate that exceeds its nutrient requirements. Indeed, various studies on

uptake rates of different essential nutrients have found that uptake rates saturate at

velocities between 2 - 6 cm/s [36, 33, 56, 49]. This means that at high fluid velocities,

nutrients are delivered to the blade surface faster than the nutrients can be utilized

and/or stored by the kelp. This saturation of the uptake rate is not controlled by

hydrodynamics, but rather represents the transition of the uptake rate from hydro-

dynamic controls to physiological controls. The specific rates at which kelp utilizes

nutrients are a function of temperature, salinity, light availability, season and nu-

trient concentration and these physiologically controlled rates are largely still active
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areas of study. Understanding this, it is evident that kelp can undergo morphological

changes that decrease the rate of nutrient flux to the blade surface without suffering

any negative consequences. Altogether, these results indicate that in flow-exposed en-

vironments, nutrient requirements are already satisfied, and hydrodynamic forces are

likely the most important environmental stimulus affecting kelp blade morphology.

5.3 Kelp Blade Differences Across a Kelp Forest

Stewart and colleagues [100] reported a set of intriguing observations of differences

in kelp blade and kelp frond morphology between the canopy edge and the canopy

center in a single kelp forest. Using our combined understand of the spatial patterns

of currents through and around a kelp forest (Chapter 2) and our understanding of

nutrient uptake rates as they relate to fluid velocity (Chapter 4), in this section we

discuss the observations of Stewart et al. in the context of this thesis.

Stewart and colleagues specifically found differences in blade and frond morphol-

ogy, and blade and frond growth rates between the canopy edge and the canopy

interior regions. Current meters placed at the canopy edge and the canopy interior

regions documented a 25% reduction in the mean flow speed from the canopy edge to

the canopy interior. As we found in Chapter 2, the reduced interior flow in a canopy

is governed by the canopy drag force. The main difference between the canopy edge

and the canopy interior regions are the difference in current speed and the differ-

ence in light levels, which are higher at the canopy edge due to less shading from

neighboring blades. The blades and fronds, however, responded to these differences

in easily measurable ways. First, the blades at the canopy edges were both larger in

terms of overall surface area than their counterparts in the canopy interior, and the

blades at the edge also had a higher elongation rate. The fronds at the canopy edges

exhibited higher elongation rates and a higher density of blades per frond length than

the fronds at the canopy interior regions.

These morphological differences and the differences in growth rates are explained

by the ability of the blades at both the canopy edge and interior regions to acquire
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nutrients from the surrounding flow. Nutrient uptake rates are regulated in part by

light levels which control the rate of photosynthesis in the kelp blades, but nutrient

uptake rates are also limited by hydrodynamic constraints. The higher flow velocities

at the canopy edge result in a higher potential nutrient uptake rate at the canopy

edge.

Unfortunately, Stewart and colleagues did not report measurements of blade thick-

ness at the two different canopy positions. As we discussed above, differences in

exposure to flow at separate sites can induce morphological changes in blades, par-

ticularly in the blades' flexural rigidity. While it has not yet been documented, it is

possible that blades at different positions within a single canopy could exhibit phe-

notypic plasticity in response to the spatial differences in flow between the canopy

edge and interior regions. Interestingly, even if blades across a canopy do not exhibit

differences in thickness and flexural rigidity, the spatial differences in current speed

will produce variations in the dimensionless rigidity parameter rI, which can have

interesting implications for drag force and nutrient uptake.

5.4 Relative Velocity Measurements and Modeling

As we demonstrated in Chapter 4, the relative fluid velocity at the blade surface is an

important variable that sets the rate of mass transfer between a fluid and a kelp blade.

Direct measurements of the relative fluid velocity at a kelp blade surface currently

do not exist, however, this information would be very valuable to better understand

the process of nutrient transfer at the surface of a kelp blade. In our modeling, we

extracted relative velocities at the blade surface from a numerical model of the blade

motion in flow. Stevens, Hurd and Smith [99] extracted the relative velocities between

a kelp frond and combined wave and current flow from a dynamic model of the frond

motion. These authors chose a current speed of 0.05 m/s and a wave height of 0.25 m,

a wavelength of 51 m and a period of 7 s. Their results revealed an average relative

fluid velocity of near 0.05 m/s.

The authors did not include the motion of the kelp blades relative to the kelp
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frond in their model; they treated the entire kelp frond as a single body. We can,

however, use their model as a first approximation to the relative velocities found

at the surface of kelp blades in the field. This value of relative velocity can then

be used to construct an approximate transfer velocity at the blade surface, via the

transfer velocity model introduced in §4.5.1. We note that Stevens, Hurd and Smith

report the total relative velocity, rather than just the normal component of the fluid

velocity, and thus this estimate represents an upper bound on the transfer velocity.

Using Eq. 4.18, and a blade width of b = 0.09 m (typical of Macrocystis pyrifera

blades), the transfer velocity at the surface of a kelp blade in those wave and current

conditions would be K = 1.5E - 6 m/s. We know of no published values of transfer

velocities for mass transfer to a kelp blade in both waves and currents, however, this

value of K can be used as a comparison with other experiments. Hurd et al. [49

calculated the effective diffusion boundary layer thickness from a series of uptake

experiments in unidirectional currents. At a mean current speed of 0.05 m/s, the

back-calculated, effective diffusion boundary layer thickness was 0.2 mm. Using this

back-calculated thickness, we estimate a nitrate transfer velocity of K = 8E - 6 m/s

(using DNO- = 16.1E - 10 m2 /s [97]). We anticipate that the presence of waves

should enhance the transfer velocity over that of transfer in currents alone, however,

the process is certainly nonlinear and measurements of relative velocities and of mass

transfer in combined wave and current regimes are needed to answer this question.
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Chapter 6

Conclusions

Using a kelp forest as a model physical system, this thesis has investigated hydrody-

namic and transport phenomena at multiple scales, ranging from the scale of a kelp

canopy to the scale of a kelp blade. In this chapter, we review the key findings of

this thesis and discuss some of the related research questions provoked through these

studies.

In Chap. 2, we studied the flow adjustment and interior flow regions of a rect-

angular porous obstruction (a simplified model of a kelp canopy). We defined a

dimensionless parameter, the canopy flow-blockage, which classifies canopies as ei-

ther low or high flow-blockage based on the canopy width and frontal area per unit

volume. The flow adjustment length for high flow-blockage canopies is set by the

canopy width, while for low flow-blockage canopies, the adjustment length is set by

the canopy drag lengthscale. In §2.2.2, we demonstrate how the flow at the canopy

interior can either be set by a balance between canopy drag and the background pres-

sure gradient, or between canopy drag and the lateral penetration of the KH vortices

at the canopy edges. The magnitude of the canopy flow-blockage parameter predicts

which of these balances governs the interior flow.

Moreover, in §2.4.3, we identify the phenomenon of cross-canopy vortex synchro-

nization and enhancement. A canopy with two edges parallel to the flow, vortex

streets will communicate across the canopy width, enhancing vortex strength and

enhancing lateral transport across the canopy. In this section, we predict that lateral
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vortex communication is limited by the relative timescales of the shallow water wave

speed and the vortex period. Our experimental setup did not allow testing of this

limit, and to our knowledge there are no other studies that probe this limit. Detailed

field studies of flow through kelp forests would help to confirm if these phenomena

and lengthscales exist and are relevant in natural canopies.

We then transitioned our studies from the canopy scale and focused on phenomena

at the meter and sub-meter scales of the kelp blade. In Chap. 3, through theory and

experiments we studied the forces and motion of a flag (a model for a kelp blade) in

an ideal form of turbulence: the Kairmain vortex street. We found that the flag motion

and the resulting forces are a strong function of the flag flexural rigidity. Both drag

force and oscillation amplitude increase as flexural rigidity decreases. Below a critical

threshold, inertial forces on the flag become significant, affecting the total measured

force. Numerical simulations, absent the randomness found in the experimental flow,

showed a bifurcation in the response states of the flag. Below the critical thresh-

old, the flag adopted an asymmetric oscillation state. Further stochastic modeling

of this system may help reveal the mechanisms which prevent the bifurcation from

being consistently observed experimentally. Further, in our model of the system, we

assumed steady values of the drag and added mass coefficients. For a bluff body in

unsteady flow, the drag coefficient is initially large while the wake develops, then the

drag coefficient decreases, approaching its steady value. Experiments directly study-

ing the variation of these coefficients in highly oscillatory systems would be a valuable

contribution for studying these types of systems. Changes in these coefficients can

affect the amplitude of motion, the values of the relative velocity at the blade surface

and the position of the oscillation bifurcation. With robust estimates of CD, C and

the added mass coefficient as a function of acceleration and blade curvature, we could

more accurately numerically model this system.

While the experimental study and the simulations revealed the behavior of a

blade in our model system, there are remaining questions about blade behavior in

less ideal systems. In the coastal ocean, turbulence exists at many length-scales and

frequencies, as well as both currents and waves, which can all influence the dynamics
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of the blades. In these settings, however, we fully expect the same physics to apply,

specifically that fluid drag and inertial forces will be a function of blade flexural

rigidity. Another important difference between our lab-scale study and actual kelp

forests is the proximity between neighboring blades. In kelp forests, blades grow in

close proximity to one another, and the blade-blade interactions may affect blade

motion and drag force in ways not currently understood.

In Chap. 4, we studied how the passive response of model blades, a function of

the blade flexural rigidity, can affect scalar flux at the blade surface. We developed

an experimental method, based on the technology of passive polyethylene samplers,

that we use to mimic nutrient flux at the surface of a kelp blade. Our results revealed

that blade flexural rigidity does indeed affect scalar flux: more flexible blades move

more in response to the flow, creating higher relative velocities at the surface which

increases flux. These results agree with the theory developed for renewal at a solid-

liquid boundary. Moreover, the validation of the experimental method opens the door

to explore new phenomena at the interface between flexible solids and flow, including

the effects of waves, grid-generated turbulence and other flow phenomena.

We note that for scalar transfer at a solid boundary in unsteady flow, there exists a

no-slip boundary condition which can produce a diffusive sublayer. While comparison

between experimental flux data and flux models can provide some information on

this unsteady diffusive sublayer, direct visualization of this layer either through flow

visualization or scalar measurement can further confirm models. Development of a

method that can directly measure this layer at an unsteady boundary, either through

acoustic, optical or direct measurement of scalars, would be an invaluable asset for

studying the physics of flux at a dynamic fluid-solid interface.

Finally, in Chap. 5, we relate published morphological observations of kelp blades

to our laboratory studies on blade drag force and flux. Changes in blade morphology

between flow-sheltered sites and flow-exposed sites effectively reduce the drag force

on blades at flow-exposed sites. These same morphological changes have the potential

to reduce nutrient flux, though. Through a review of previous nutrient flux studies,

however, we find that kelp nutrient requirements are nearly always satisfied at flow-
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exposed sites, and therefore fluid drag is likely the overriding environmental stimulus

in these environments.

A species of Macrocystis exhibits corrugations as a technique for increasing blade

flexural rigidity. While these corrugations significantly affect flexural rigidity and thus

drag forces, they will likely have a secondary effect on the blade surface roughness

and the resulting friction drag. The effect that surface corrugations and other surface

geometries have on the drag force, both in kelp and in engineered structures, is a

phenomenon that is currently poorly understood.

Moreover, morphological measurements of kelp blades are often not accompanied

by detailed information about the flow environment, e.g. the mean, rms and maxi-

mum fluid velocities. Rather than simply grouping kelp blades into two groups based

on qualitative descriptions of the flow environment, a detailed set of morphological

data coupled with information about the local flow environment would be a great as-

set to understanding the role that phenotypic plasticity plays in the survival of kelp.

Furthermore, by combining our understanding of the flow through kelp canopies from

Chap. 2, we note that there can be significant differences in flow environment for

kelp blades within the same canopy, and that these cross-canopy differences could

themselves produce significant morphological differences among blades. A thorough

survey of kelp blades across a single kelp canopy, coupled with the local flow infor-

mation could also provide information as to how kelp adapts at the intra-canopy

scale.
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Appendix

Patch Experiments Data

In this appendix we tabulate the data from Chapter 2.
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Table A.11: Table of the Reynolds Stress data for the CDab = 0.53 patch.
x (cm) I (u/v/)=o (cm 2 /s 2 [ (u/v/)y=b/2 (cm 2 /s 2

-103.0
-83.0
-63.0
-43.0
-23.0
-13.0

-3.0
16.5
36.7
56.1
76.2
96.0

115.7
137.3
157.0
177.5
197.9
217.7
237.5
258.1
277.9
297.7
316.6
336.9
356.6
377.3
397.3

1.77E-02
2.27E-02
5.17E-02
9.08E-02
6.49E-02
2.13E-02
1.27E-02
4.60E-01
2.10E-01
2.94E-01
1.19E-01
1.11E-01

-2.58E-02
2.97E-02

-3.51E-02
1.84E-01
1.49E-01
3.21E-02
2.99E-01
3.15E-01
1.75E-01
5.61E-01

-5.61E-02
2.86E-01
1.09E-01
4.33E-01
9.64E-02

2.70E-02
-1. 16E-02
-3.25E-02
3.15E-02
2.55E-02
9.04E-02
2.51E-02
5.70E-01
3.93E-01
2.97E-01
2.67E-01
4.02E-01
5.70E-01

1.40E+00
1.82E+00
2.55E+00
3.18E+00
3.08E+00
3.81E+00
3.81E+00
3.71E+00
4.29E+00
4.30E+00
5.37E+00
4.80E+00
4.95E+00
5.22E+00

187

,



Table A.12: Table of the lateral transect velocity data for the CDab = 0.53 patch.
y (cm) u (m/s) (U/V/)x=360cm (cm 2/s 2 ) Vrms (m/s)

0 0.0336 0.7034 0.0292
4.2 0.0324 -0.2895 0.0276
7.4 0.0415 -1.9713 0.0284

10.4 0.0615 -5.8653 0.0274
13.4 0.0729 -4.5874 0.0232
16.4 0.084 -4.876 0.0253
19.4 0.0934 -4.3368 0.025
22.4 0.1031 -3.7899 0.0243
25.4 0.1152 -2.1075 0.0223
28.4 0.1194 -2.3658 0.0242
34.4 0.1307 -0.8064 0.0195
40.4 0.1291 -0.0874 0.0177
44.4 0.1291 0.0633 0.0119
49.4 0.1261 0.0354 0.011

Table A.13: Table of the lateral
for the CDab = 0.53 patch.

transect velocity data with a splitter plate in place

188

y (cm) u (m/s) (U/V/)x=360cm (cm 2 /s 2 ) Vms (m/s)
2.2 0.0078 -0.0446 0.0076

4 0.0121 0.0554 0.0085
7.4 0.016 -0.2405 0.0117

10.4 0.032 -1.0147 0.0178
13.4 0.0647 -1.21 0.0179
16.4 0.0808 -0.8194 0.0174
19.4 0.1028 -0.5023 0.0158
22.4 0.1147 -0.407 0.0143
25.4 0.127 -0.1407 0.0126
28.4 0.1325 -0.01 0.011
34.4 0.1339 0.0275 0.0101
40.4 0.1329 0.0772 0.0095
44.4 0.1301 0.0866 0.0098
49.4 0.1286 0.0191 0.0094



Table A.14: Table of the Reynolds Stress data for the CDab = 2.0 patch.
x (cm) (U/vf)=o (cm 2 /s 2 (u/v/)y=b/2 (cm 2 /s 2

-94.0 1.35E-01 2.06E-01
-84.0 1.57E-01 1.60E-01
-74.0 1.97E-01 9.87E-02
-64.0 5.90E-02 5.44E-02
-54.0 -2.02E-01 5.27E-02
-44.0 6.19E-02 9.70E-03
-34.0 1.36E-01 -3.80E-02
-24.0 4.02E-01 2.20E-02
-14.0 7.00E-04 -1.02E-02

-4.0 1.39E-02 6.30E-02
15.7 -1.45E-01 6.50E-01
22.4 3.04E-02 3.95E-01
29.1 5.25E-02 3.58E-01
36.0 -1.21E-02 1.74E-01
42.2 1.51E-02 1.48E-01
48.9 -1.95E-02 1.37E-01
55.4 2.22E-02 1.52E-01
62.7 -9.32E-02 2.73E-01
72.3 7.83E-02 3.67E-01
81.9 -5.13E-02 5.10E-01
91.3 6.81E-02 1.03E+00

100.0 1.77E-02 1.29E+00
111.5 1.65E-01 1.62E+00
121.4 4.62E-02 2.31E+00
129.5 2.53E-01 3.29E+00
139.7 1.20E-01 3.74E+00
149.0 1.42E-02 4.45E+00
159.4 1.70E-01 4.31E+00
169.1 -2.10E-03 4.77E+00
181.4 -6.81E-02 4.42E+00
191.1 1.1OE-01 3.79E+00
200.9 -5.96E-02 4.90E+00
209.0 1.65E-01 5.56E+00
220.7 1.60E-01 4.31E+00
230.3 5.81E-02 4.31E+00
240.9 1.78E-02 3.63E+00
250.8 2.07E-01 4.25E+00
260.3 2.74E-02 4.01E+00
270.2 -2.46E-01 4.55E+00
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the lateral transect velocity data for the CDab

Table A.16: Table of the lateral transect velocity data with
for the CDab 2.0 patch.

the splitter plate in place

190

y (cm) u (m/s) (U/V/)x=262cm (cm 2 /s 2 ) Vrms (m/s)
0 0.0064 0.0142 0.0225
2 0.0075 -0.1393 0.023

3.9 0.0082 -0.1176 0.024
6 0.0105 -0.613 0.0256

7.9 0.013 0.1588 0.0248
10 0.045 -6.8172 0.0294
12 0.06 -4.6126 0.0213
15 0.0748 -3.8494 0.0222
18 0.0869 -3.3325 0.021
21 0.0965 -2.6546 0.0229
25 0.1136 -2.0392 0.0222
29 0.1227 -1.204 0.0228
33 0.1322 -0.3007 0.0177
38 0.1319 -0.0995 0.0151
43 0.127 0.0646 0.0123
49 0.125 -0.0447 0.0118

y (cm) u (m/s) (U/V/)x=262cm (cm 2 /s 2 ) Vrms (m/s)
3 0.0032 -0.0055 0.008
6 0.0042 0.0066 0.0085

7.9 0.0046 0.0278 0.0108
10 0.0298 -1.0028 0.0187
13 0.0669 -0.8059 0.0174
18 0.1019 -0.6526 0.0166
23 0.1231 -0.2898 0.014
28 0.1298 -0.0204 0.0104
33 0.1296 0.0245 0.0099
38 0.1301 0.0061 0.0096
43 0.1287 0.0664 0.0093
49 0.1229 0.0849 0.01

Table A. 15: Table of -= 2.0 patch.



Appendix B

Numerical Solution of Dynamic

Flag Equation

We solved the dynamic flag equation using a Chebyshev spectral method and by

advancing the system through time implicitly using Broyden's method. We began by

incorporating the boundary conditions into the governing equation, such that they are

automatically satisfied at every time step. The alternative approach would require

manipulation of the differentiation and quadrature matrices in an ad hoc manner

that would introduce error into the system. We satisfy the free end (s = 1) boundary

conditions integrating Eq. B.1 over length, beginning from the free end. In this

method, the boundary conditions appear as constants of integration, which can be

easily satisfied through replacement with their known values.

[ = -r [Pssn + [Tt] + F (B.1)

We first integrate Eq. B.1 from s = 1 to s:

j (ds = -q [Og(s, T)n - Ogg(1, 7)n] + [T(s, 7)t - T(1, T)t] + Fds (B.2)

where Ogg(1, r) = 0 and T(1, T) = 0. We treat the flag tension as slaved to the
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flag motion, and therefore can uncouple the tension from the governing equation.

By eliminating the terms that satisfy the free end condition and by taking only the

normal component of Eq. B.2, leaves

1 j dsn = -rI [Ogg(s, )]j + Fdsn (B.3)

We then integrate Eq. B.3 from s =1 to satisfy the curvature condition.

j 9j 2 dsnds = -7 [O(s, T)] + j F ds n ds (B.4)

This leaves the governing equation in a form which we can solve iteratively, min-

imizing the residual error at each step:

2 2 n+1 ds n+1 ds + r7 [OT,+±(s, T) _ is isFn+1 ds n+ 1 ds

Each iteration is initialized with a guess for On+1. We then solve for On+1, (n+1, r+I

and nn+1

on+1 0j+1 ds (B.6)

(n+1 j 6n+ ds (B.7)

tnl COS On+1

sin+Qn±=
sin n+ 1

n n+1 o-sin n+

COS On+1

(B.8)

(B.9)

The fluid forcing term, Fn+i,

forces.

is the sum of the fluid added mass and the fluid drag
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n+ - b (g n+1 7 b a2 n+1
+=- -V -- 2  (B.10)

1 9T + __ DT+

n+ D (Vn±1 -an+ 1 n± - annl n+1

+1 C n+1 _ nl fn+1 _ n+l r+1
2 (r 97) (j - 9 )

The flag velocity and acceleration terms in the above equations are discretized

with second order accurate backwards differentiation schemes:

a +1 I (3n+1 - 4(n + 1(0) (B.12)
09T 2 A7

1n+= (2(n+l - 5(n + 4("-1 - (n-2) (B.13)
09T 2  

-AT
2 ((±

Following the integration of our governing equation (Eq. B.1), we must solve

a partial integro-differential equation in which there are no spatial derivatives (Eq.

B.5), only spatial integrals. We employ a specific type of spectral method to solve this

equation. Spectral methods are an alternative approach to spatial differentiation and

integration than the more widely used finite difference methods. The defining feature

of spectral methods is that rather than using local approximations to derivatives and

integrals, a sum of basis functions is used that is non-zero over the entire domain,

thus being a global approach.

Curtis-Clenshaw quadrature is a type of numerical quadrature that employs the

Chebyshev grid to evaluate an integral [16, 106]. We have constructed integration

matrices which spatially integrate functions from both the clamped end, s = -1, and

the free end, s = 1, of the flag, as seen in Eqs. B.5, B.6 and B.7. These matrices

operate in a manner identical to differentiation matrices. Below, we show the code

used to generate these matrices.

The iterative method we used to advance the solution through time, Broyden's
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method, works in the following manner. The system is started from rest. The flag

is initially at the undeflected posture along the i = 0 line and the velocity potential

and the vortex street celerity are ramped up smoothly from zero using the function

[1-exp (-T)]. At each timestep, we form an initial guess for on+1 based on a quadratic

extrapolation from the three previous time points. With this initial guess, we calculate

the residual of Eq. B.5 and form an initial finite difference approximation to the

Jacobian of the system. The Jacobian is inverted and we then proceed with Broyden's

method until the iterations arrive at a Qn+1 that brings the residual beneath a pre-

defined tolerance. The unique feature of Broyden's method is that within the iterative

loop, the inverse Jacobian is updated directly. This greatly improves computational

efficiency as inverting the Jacobian matrix is often the most computationally intensive

portion of Newton's method.
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%% scriptflagfinal.m

close all
clear all
clc

%% User Defined Parameters

% Number of points in the Chebyshev grid

N=100;

%Dan Tam's quadrature code, MintCC is integral from -1 to s

[x,sx,MintCC] = clencurt(N);

%initial condition is undeflected. K(:,1:3)=curvature at the three

% previous timesteps
% K(:,4) is curvature to be solved for

K(:,1:4)=zeros(N+1,4);

% Define parameters

T_end=60; % dimensionless time duration of simulation

dt=lE-4; % time resolution

T=dt:dt:T end;

TOL=lE-7; % convergence tolerance in iterative method

mu=lE-4; % solid/fluid inertia parameter

AR_bl=0.1; % Added mass parameter

eta exps=-4.5; % ETA = 10^etaexps

%% Advance Solution Through Time

for jjj=l:length(eta exps)
eta=10^(eta exps(jjj));

% eta=10^A(-4.0);

1D=6;

% Pre-allocate arrays for output

saveint=50;
x_save=zeros(N+1,(T_end*saveint)+1);

z_save=zeros(N+1,(Tend*save-int)+1);
T_save x=zeros(N+1, (Tend*save-int)+1);
T_savez=zeros(N+1,(Tend*save-int)+1);

theta=MintCC*K(:,1);

utheta=[cos(theta) sin(theta)];

zeta=MintCC*utheta;
x_save(:,1)=zeta(:,1);
z_save(:,1)=zeta(:,2);

its-save=zeros(size(T));

tic

% loop to advance through time

for jj=l:length(T)
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%initialguess is parabolic extrapolation using previous 3 times

IG=(3*K(:,3))-(3*K(:,2))+K(:,1);

K3=K(:,3);

K2=K(:,2);

Kl=K(:,1);

%solve for new curvature (k(:,3))

% use Lindfield and Penny's broyden matlab function modified

% pass an initial guess (IG) into broydenmod, along with a TOL

% solve for K(:,4)

[K(:,4),it,fp]=broyden_final(IG,N,TOL,K3,K2,K1,mu,...

eta,MintCC,dt,jj,T,lD,AR-bl);

% break code if broyden's method fails to converge

if it==100
elapsedtime=toc;
return;

end

itssave(jj)=it;
% save x and z positions at desired intervals

if rem(jj,(1/(save_int*dt)))==0
theta=MintCC*K(:,4);

utheta=[cos(theta) sin(theta)];

zeta=MintCC*utheta;

zeta_3=MintCC*([cos(MintCC*K3) sin(MintCC*K3)]);

zeta_2=MintCC*([cos(MintCC*K2) sin(MintCC*K2)]);

zeta 1=MintCC*([cos(MintCC*Kl) sin(MintCC*Kl)]);

flag accel=(1/(dt^2))*((2*zeta) -

(5*zeta_3)+(4*zeta_2) - zeta_1);

x_save(:,round(jj/(1/(save-int*dt)))+1)=zeta(:,1);

z_save(:,round(jj/(1/(saveint*dt)))+1)=zeta(:,
2 );

% calculate flag tension

n hat=[-sin(theta) cos(theta)];

T_tan=mu*(MintCCpl(flag accel,MintCC))+(eta.*...

[K(:,4).*n hat(:,1) K(:,4).*n-hat(:,2)]) -

MintCC_pl(fp,MintCC);

T_savex(:,round(jj/(l/(save-int*dt)))+1)=T_tan(:,l);
T_savez(:,round(jj/(1/(save int*dt)))+1)=Ttan(:,2);

end

%update old curvatures
K(:,1)=K(:,2);

K(:,2)=K(:,3);

K(:,3)=K(:,4);

end
elapsed time=toc;

% Save output and display simulation metrics
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save(['flagoutput initeta_' num2str(loglO(eta), '%-O.lf')...

'_mu_' num2str(loglO(mu)) '_lD_' num2str(lD) '_lamda6d.mat']

'elapsedtime','T','x_save','z save','T save_x ','T_save_z');
disp(jjj);
disp(elapsed time/60);

end
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%% broydenfinal.m

function [xv,it,fp,Br]=broyden-final(IG,N,TOL,K3,K2,Kl,mueta,...

MintCC,dt,jj,T,lD,ARbl)

% Broyden's method for solving a system of n non-linear equations
% in n variables.

% IG is initial guess for the curvature

% N is number of points in the Chebyshev grid
% TOL is user defined tolerance

% Kl,K2,K3 are curvatures at previous timesteps

% mu,eta, lD, ARbl are the physical parameters of the flag system
% MintCC is the integration matrix from -l to s

% dt is time step interval

% jj is time index in simulation
% T is time vector

% MODIFIED from Lindfield and Penny

% BY JTR 2012/10/09 to make broyden.m use ffunc to calculate residual

%% Form initial Jacobian
% define small delx for finite difference approximation for initial
% Jacobian
delx=dt/100;
delx=delx(:);
it=O; xv=IG;

% calculate initial residual
[fr,fp]=ffunc-final(xv,K3,K2,K,mu,eta,MintCC,dt,N,jj,T,lD,ARbl);

% calculate initial Jacobian
J_0=zeros(N+1,N+1);
for j=l:(N+1)

xv2=xv;

xv2(j)=xv(j)+delx;

[fr2,fp]=ffuncfinal(xv2,K3,K2,Kl,mu,eta,MintCC,dt,N,jj,T,lD,AR_bl);

J_0(:,j)=(fr2-fr)./delx;
end

% initial Br is inv of finite Diff Jacobian created above

Br=inv(J_0); %create initial J_vin,

%% Iterate until converges at new curvature
oldpr=0;
pr=10; %initial values of oldpr and pr to start iterations

while norm(pr-oldpr)>TOL
it=it+1;
if it==100

disp('convergence failed');
return;

end
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oldpr=pr;
pr=-Br*fr;
tau=1;
xvl=xv+tau*pr;
xv=xvl; %updates xvl and xv

%update "oldfr"
oldfr=fr;
%update fr with new xv
[fr,fp]=ffunc-final(xv,K3,K2,Kl,mu,eta,MintCC,dt,N,jj,T,lD,AR_bl);

%Update approximation to Jacobian using Broyden's formula
y=fr-oldfr; oldBr=Br;
oyp=oldBr*y-pr; pB=pr'*oldBr;
M=oyp*pB; %%%(N+i x 1) x (1 x N+i) = (N+i x N+1)
Br=oldBr-M./(pr'*oldBr*y);

end;
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%% ffuncfinal.m
function [foutput,fp]=f_func_final(IG,K3,K2,K1,mu,eta,...

MintCC,dt,N,jj,T,lD,AR-bl)

%% Calculate zeta, theta, n_hat and that from curvatures
%calculate theta, normal and tangential vectors based on IG for K(:,4)
theta=MintCC*IG;
n_hat=[-sin(theta) cos(theta)];
t_hat=[cos(theta) sin(theta)];

% calculate position vectors using known curvatures
zeta=MintCC*([cos(MintCC*IG) sin(MintCC*IG)]);
zeta_3=MintCC*([cos(MintCC*K3) sin(MintCC*K3)]);
zeta_2=MintCC*([cos(MintCC*K2) sin(MintCC*K2)]);
zetal=MintCC*([cos(MintCC*Kl) sin(MintCC*Kl)]);

%2nd order accurate back difference for velocity term
flagvel=(1/(2*dt)).*((3.*zeta)-(4.*zeta_3)+zeta_2);
%2nd order accurate accel term
flagaccel=(1/(dt^2))*((2*zeta) - (5*zeta_3)+(4*zeta_2) - zeta_1);

%% Calculate Fluid Velocity
% Define ramping function
Rampup=(1-exp(-T(jj)));
% U_v_U=(1-.2049).*Rampup; %for lambda = 4D (lD = 3)
UIvU=Rampup.*(0.9); % for lambda = 6D (lD = 6)

%define flag position in complex form at current and previous timesteps
z=zeta(:,1)+(li.*zeta(:,2))-(U_y_U*T(jj));

z-tl=zeta( :, 1)+(li. *zeta(:, 2)) -(U_v_U* (T(j j) -dt));
z-t2=zeta(:,1)+(li.*zeta(:,2))-(U_v_U*(T(jj)-(2*dt)));

% Fluid potential at current and previous timesteps
dwdzU=Rampup.*( 1+(li*5/24).*cot((pi/6)*z*lD - (li*pi/12)) -

(li*5/24).*cot((pi/6)*z*lD + (pi/2) + (li*pi/12)) );

dwdz_U-tl=Rampup.*( 1+(li*5/24).*cot((pi/6)*z-tl*lD - (li*pi/12))

(li*5/24).*cot((pi/6)*ztl*lD + (pi/2) + (li*pi/12)) );

dwdz_U-t2=Rampup.*( 1+(li*5/24).*cot((pi/6)*z-t2*lD - (li*pi/12))

(li*5/24).*cot((pi/6)*zt2*lD + (pi/2) + (li*pi/12)) );

% Define dimensionless threshold to account for singularity at vortex
% cores
% Thresh = 1 corresponds to U inf
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Thresh=Rampup*1;

% Apply threshold to velocities
u_U=real(dwdzU); uU(uU>Thresh)=Thresh; uU(uU<-Thresh)=-Thresh;
vU=-imag(dwdzU); vU(vU>Thresh)=Thresh; v_U(v_U<-Thresh)=-Thresh;

uU tl=real(dwdzU-tl); u_Utl(u_U_tl>Thresh)=Thresh; ...
u_Utl(uU-tl<-Thresh)=-Thresh;

v_U_tl=-imag(dwdzU-tl); v_U_tl(v_U_tl>Thresh)=Thresh; ...
v_Utl(v_U_tl<-Thresh)=-Thresh;

u_U_t2=real(dwdz_U_t2); u_U-t2(u_Ut2>Thresh)=Thresh; ...
u_U-t2(uU-t2<-Thresh)=-Thresh;

vU-t2=-imag(dwdzU-t2); vU-t2(v_U_t2>Thresh)=Thresh; ...

v_U-t2(v_U_t2<-Thresh)=-Thresh;

fluid_vel=[uU vU];
f_V_t1=[uU-tl v_U_ti];
f_Vt2=[uUt2 vU-t2];

%% Calculate fluid forcing
% Define normal and tangential drag coefficients
CD=1.9;
Cf=0.02;

%calculate fp based on IG
F_D=Ramp up.*(0.5.*CD.*(fluid vel-flagvel).*abs((fluid vel-...

flagvel).*nhat) + 0.5.*Cf.*(fluid vel-flagvel)...
.*abs((fluidvel-flagvel).*that));

% fluid acceleration part of the added mass term
% the solid acceleration part of the added mass term is wrapped up in
% mu=mu_0 + pi/4 * AR-bl, times the solid acceleration
F amtemp=(pi/4).*ARbl.*((3.*fluid-vel)-(4.*f-v-tl)+f-v-t2)./(2*dt);

F_amsolidaccel=(pi/4).*ARbl.*flagaccel;

% total added mass is the relative acceleration between fluid and solid

F am=F am temp-F_amsolidaccel;

% total fluid forcing is sum of added mass and drag forces

fp=FD+F-am;

% utilized MintCCpl function which integrates from +1 to s

AA=MintCCpl(flagaccel,MintCC);
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% define output
f_output = (mu) * (MintCCpl(dot(nhat,AA,2),MintCC))...

+ (eta)*IG ...
- MintCCpl(dot(nhat,(MintCCpl(fp,MintCC)),2),MintCC);
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% clencurt.m
% <http://www.mathworks.com CLENCURT: Computes weights and matrices for
clenshawcurtis int.
% x (Chebyshev points)
% theta (cos(theta)=x)
% Msin,Mcc,w: weight for clenshaw curtis int in diff cases.
% MintCC: Full integration matrix

function [x,sx,MintCC] = clencurt(N)
theta = pi*(O:N)'/N; x = cos(theta); sx = sin(theta);

% % Weights for Clenn Curtis integration of f(t)/sqrt(l-t^2)
% Msin = zeros(N+1,N+1);
% for i = 1:N+1
% Msin(i,:) = -sin(theta(i)*(O:N))./(O:N);
% end
% Msin(:,1) = -theta(:);

% % Weights for direct integration of the singular integral equation
% Mcc = zeros(N+1,N+1);
% for i = 1:N+1
% Mcc(:,i) = sin((i-1)*theta).*sin(theta);
% end

% % Weight for standart Clenn Curtis integration
% w = zeros(1,N+1); ii = 2:N; v = ones(N-1,1);
% if mod(N,2)==O
% w(1) = 1/(N^2-1); w(N+1) = w(l);
% for k=l:N/2-1, v = v - 2*cos(2*k*theta(ii))/(4*k^2-1); end
% v = v - cos(N*theta(ii))/(N^2-1);

% else
% w(l) =1/N^A2; w(N+1) = w(l);
% for k=l:(N-1)/2, v = v - 2*cos(2*k*theta(ii))/(4*k^2-1); end
% end
% w(ii) = 2*v/N;

% Integration matrix Clen Curtis + boundary condition.
% MintCC = zeros(N+1,N+1);
for i = 1 : N+1
% Compute ith column of the integration matrix.

Y = zeros(N+1,1); Y(i) = 1; % ith base vector
a = ChebProj(Y); % Cheb exp of ith base vector
MintCC(:,i) = a(1)*(1+cos(theta)) + a(2)/4*(-l+cos(2*theta));
for j = 3:N+1
MintCC(:,i) = MintCC(:,i) + a(j)*((-1)^(j)/((j-1)^2-1) ...

+ 1/2*(cos(j*theta)/j-cos((j-2)*theta)/
(j-2))); % ith column vector.

end
end
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%% MintCC_pl.m
function [output]=MintCCpl(input,MintCC)

if size(input,2)==1
output=MintCC*input-(MintCC(1,:)*input);

end
if size(input,2)==2

output(:,2)=MintCC*input(:,2)-(MintCC(1,:)*input(:,2));

output(:,2)=MintCC*input(:,2)-(MintCC(1,:)*input(:,2));

end
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Appendix C

Flume Mixing Test

To determine when the CHBr 2Cl is fully-mixed in the flume, we conducted a prelimi-

nary experiment using Rhodamine WT as a surrogate tracer. We make the physically

reasonable assumption that the mixing of Rhodamine WT and CHBr 2CL are gov-

erned by the same turbulent diffusivities and dispersion processes and are indepen-

dent of molecular diffusivities, allowing Rhodamine to be used a physical surrogate for

CHBr 2CL. In this experiment, we started the flume at U,, = 20 cm/s and injected a

3 mL slug of Rhodamine WT at the pump intake. We continuously measured the con-

centration of Rhodamine WT using a fluorometer. The concentration measurement

shows the characteristic passing peaks of the initial slug, which decay in peak concen-

tration as the plume recirculates through the flume. To determine when the initial

mass is fully-mixed over the entire flume volume, we calculate the moving-window,

temporal standard deviation of the concentration, using the flume recirculation period

as the window size. The flume recirculation period is simply the distance between

peaks in Fig. C-la. This temporal standard deviation vanishes when the flume is

fully mixed after 2000 s (Fig. C-1b).
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Figure C-1: (a) The measured voltage (a linear surrogate for concentration) over time
for the flume mixing test using Rhodamine WT. (b) The moving-window, temporal
standard deviation of the voltage, in which the moving window size is the flume
recirculation period.
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Appendix E

Measuring THM Concentration

E.1 Overview

In this appendix we describe in detail the method used to measure trihalomethane

(THM) concentrations in water and in the LDPE blades. The method consists of the

following steps: extracting the THMs from a water sample using purge & trap system,

separating the different THMs using a gas chomatograph (GC) and measuring the

THM concentration with an electron capture detector (ECD).

This method is used to directly measure the THM concentration in water, but

can easily be used to also measure THM concentrations inside LDPE. This is accom-

plished by inserting the LDPE in a volume of clean water with no head space. The

sample is then placed on a shaker table to allow the THMs to more rapidly reach

equilibrium between the polyethylene and water phases. Utilizing our knowledge of

the compound's partitioning coefficient between the polyethylene and water phases,

we can relate the measured water concentration to the original concentration in the

polyethylene.

E.2 Purge and Trap System

The THMs used in these experiments are extracted and concentrated from water

samples with the use of a Tekmar LSC 2000 purge and trap system. In this system,
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a 5 mL volume of the sample of interest is injected into the instrument. The sample

volume is then purged with helium gas for a user-specific amount of time. We describe

the choice of purge times below with the discussion of the calibration curves. The

total mass of the compounds extracted from the water sample is directly dependent

on the purge time. These purged gases then flow through a sorbent trap where they

collect and concentrate. After the purging cycle is complete, the gas flow is turned off.

The purged compounds are then removed from the trap through thermal desorption

over the "desorb preheat" cycle. At the end of the cycle, the flow is re-started, and

the entire volume of desorbed gases flows from the trap directly into the GC column.

After the purged portion of the sample flows from the trap into the GC, the trap is

baked to remove any residual sample which may interfere with subsequent samples.

E.3 Gas Chromatograph

The gas chromatograph that we use is a Perkin Elmer Autosystem XL. The column

is an Agilent DB-624 column with a 1.80 pm film and 0.320 mm bore and is 60 m

in length. As the purged portion of the sample flows through the GC column, each

compound present interacts with the column in a unique manner, thus separating the

sample components. The column length is designed to be long enough such that each

compound elutes completely separately.

At the end of the column is the detector, an electron capture detector (ECD). This

type of sensor is specifically used for halogenated compounds, such as CHBr 2Cl, and

other compounds with high electronegativities. As the purged compound molecules

flow through the detector, free electrons are captured by the sample molecules, chang-

ing the current between the detector cathode and anode. The voltage drop across the

detector is recorded continuously at 1 Hz and the sample concentration can then be

related to the integral of the instrument voltage-time curve.
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E.4 Concentration Calibration

We calibrate the output from the GC-ECD system with a set of concentration stan-

dards. Standards of CHBr 2Cl were prepared at the following concentrations: 80 ppb,

40 ppb, 20 ppb, 10 ppb, 4 ppb, 2 ppb, 1 ppb, 0.4 ppb, 0.2 ppb, 0.1 ppb and 0.04 ppb.

These samples were injected into the Purge & Trap, GC-ECD system at a range of

purge times, in order to extract differing amounts of CHBr2 C1 from the sample and

to create a series of calibration curves for different purge times. The calibrations are

run for purge times of 4.00 min, 2.00 min, 1.50 min, 1.00 min, 0.80 min, 0.50 min,

0.30 min and 0.25 min. These calibration curves, which are presented below, provide

a relationship between the time integration of the detector output (i.e. the area under

the curve in voltage-time space) and the concentration of CHBr 2Cl in the sample.
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P&T Settings

Standby Temp.

Preheat

Purge

Prepurge

Sample

Dry Purge

MCM Cooldown

Cap Cooldown

Desorb Preheat

Desorb

Inject

Bake

BGB

BGB Delay

Auto Drain

Valve

Mount

2016 Valve

2032 Valve

Line

Aux HTR

Line

Line

Cap Union

Runs Per Sample

Bakeout

MCM Heat

300 C

NI

Variable Times*

NI

NI

0.00 min

No

NI

2200 C

2.00 min @ 2250 C

NI min at NI 0 C

10.00 min A 230' C

Off

0 sec

On

150 C

1000 C

NI

NI

1250 C

NI

NI

NI

NI

1

Off

No
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GC Settings Value

Temp 1

Time 1

Rate

Cap 1

Flow 1

ECD 2

Int 1 Atten

Int 2 Atten

Auto Zero

400 C

0.50 min

100 C / min

1250 C

70 mL/min

2000 C

1

64

30 mV or lower
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Appendix F

Finite Difference Flux Model

In this appendix, we present the script used to numerically solve Eqs. 4.15-4.17

using a fully-implicit finite-difference (FD) scheme. This method can either be used

with a prescribed transfer velocity (as it is shown below) or with a range of transfer

velocities. When a range of transfer velocities are input into the model, one can

then find the transfer velocity that minimizes the sum of squares error between the

model and an experimental data set.
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close all
clear all
clc

% INPUTS

N=100; % number of nodes over flag thickness
L=1; % dimensionless blade thickness
dt=1O^-3; % dimensionless time step
T=10; % dimensionless time
Ks=[100 300]; % PE / H20 partition coeff.
hs=[250E-6 50E-6]; %dimensional thickness (m)

D_PE=(10^-11.3); % m2/s (log10 DPE = -11.3 +- 1.0)

D_H20 = 1E-9; % m2/s
C-inf=65; % ppb, Measured conc in Water

b=0.03; %m, width
1=0.3; % m, length

delta=1.9E-4;

dx=L/N; %dimensionless flag thickness coordinate
x_coord=dx:dx:L;

dl=0.01; %dimensionless length coordinate

lengthcoord=dl:dl:1;

etasof interest=[-2.4 -4.0];

lDs=[6];

for jjj=l:length(lDs)
lD=lDs(jjj);
T_renew=Trenews(jjj);

load(['Rel VelocityrmstiplD_' num2str(lD) '.mat']);
N_Cheb=length(rms normflux)-1; %different Ns for lD=3 and lD=6;

% get chebyshev nodes (x) from clencurt.m

[x,-,-] = clencurt(NCheb);

for jj=l:length(etas of interest)

etasind=find(round(etas*10)==round(etasofinterest(jj)*10));
h=hs(jj);
K=Ks(jj);
for kk=l:length(lengthcoord) %calculate flux over flag length

rmsnormfluxreggrid=interpl(((x./2)+0.5),...
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rmsnorm flux(:,etas_ind),lengthcoord(kk));

BJ_23=(h/(2.*DPE.*K)).*(3*sqrt(3)/(2*pi)).*...

((rms normflux reg grid.*0.2./(b^2)).^(1/3)).*...

(DH2O^(2/3));

%%%%%%%%%%%%%%%%%%%%%

%MATRIX A D^2/3 flux

aa_23=zeros(N,1)+(-1/dx);
bb_23=zeros(N,1)+((2/dx)+(dx/dt));

cc_23=zeros(N,1)+(-1/dx);

%modify "b" (the center diagonal) vector to account for
%boundary conditions
bb_23(1)=((l/dx)+(dx/dt));

bb_23(N)=((l/dx)+(dx/dt)+BJ_23);

abc_23=[aa_23 bb_23 cc_23];

%create SPARSE matrix, with a,b and c along diagonals 1,0,-1
%respectively
A_23=spdiags(abc_23,[1,0,-1],N,N);
%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%

%INITIAL CONDITION D^2/3 flux

C_23=zeros(N,1)+0;
%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%

% Build RHS Vector DA2/3 flux

BCs_23=zeros(N,1);
BCs_23(end)=BJ_23; % right boundary constant flux b.c.

%%%%%%%%%%%%%

t=dt:dt:T;

% Advance system through time
for i=l:length(t)

%%%%%%%%%%%%%%%%%%%%%%%

%Solve for B_23
% D^2/3 flux
B_23=(C_23.*dx./dt)+BCs_23;
C_new_23=A_23\B_23;
C_23=C new_23;
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%mass per unit width per unit length
Mass_dim_23(i)=sum(C_23).*dx;

%flux at z=1
dimlessflux_23(i)=BJ_23.*(l-C_23(end));

end

%dimensional flux
fluxactual_23(kk,jj,:)=dimlessflux_23.*(DPE.*K.*...

C_inf./(h/2));

% Dimensional mass per unit length inside half thickness of PE

% at all times D^2/3
Mass_23(kk,jj,:)=Massdim_23.*(C_inf.*K.*(h/2).*b);

end

% integrate mass over length

% dimensional mass
% Surface Renewal Flux
Massintegr_23(jj,:)=sum(Mass_23(:,jj,:).*dl,1).*0.3*

2 ; %sum over

% dimensionless length, multiply by dimensional length

% also multiply by two to account for both sides accumulating mass

% simultaneously

% average the flux over length

fluxavg_23(jj,:)=mean(flux_actual_23(:,jj,:),1);

% integrated mass in the clamped-end and free-end sections

Massintegr_23_origin(jj,:)=sum(Mass_23(1:8,jj,:).*dl,l).*O.
3 *2 ;

Massintegr_23_tip(jj,:)=sum(Mass_23(93:100,jj,:).*dl,l).*0.
3 *2 ;

end
end

% Massintegr_23=Massintegr_23.*1000;

Massintegr_23_norm(1,:)=Massintegr_23(1,:)./(Ks(1)*Cjinf*hs(1)*b*l);
Massintegr_23_norm(2,:)=Massintegr_23(2,:)./(Ks(2)*Cinf*hs(

2 )*b*l);

MassintegrSR-norm(1, :)=Mass integrSR(1, :) ./(Ks(1)*C_inf*hs(1)*b*l);

MassintegrSR-norm(2,:)=Mass integrSR(2,:)./(Ks(2)*Cinf*hs(2)*b*l);

% Normalize Origin and Tip sections

Massintegr_23_originnorm(1,:)=Mass_integr_23_origin(1,:)./(Ks(1)*...
C_inf*hs(1)*b*l.*(2.4/30));

Massintegr_23_origin_norm(2,:)=Massintegr_23_origin(2,:)./(Ks(
2 )*...

C inf*hs(2)*b*l.*(2.4/30));
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Massintegr_23_tip norm(1,:)=Mass-integr_23_tip(1,:)./(Ks(1)*Cinf*...
hs(1)*b*l.*(2.4/30));

Massintegr_23_tipnorm(2,:)=Mass-integr_23_tip(2,:)./(Ks(2)*Cinf*...
hs(2)*b*l.*(2.4/30));

225



226



Bibliography

[1] R.G. Adams, R. Lohmann, L.A. Fernandez, J.K. MacFarlane, and P.M.

Gschwend. Polyethylene devices: passive samplers for measuring dissolved hy-
drophobic organic compounds in aquatic environments. Environ. Sci. Technol.,
41:1317-1323, 2007.

[2] S. Alben. Passive and active bodies in vortex-street wakes. J. Fluid Mech.,
642:99-125, 2009.

[3] S. Alben and M.J. Shelley. Flapping states of a flag in an inviscid fluid: bista-

bility and the transition to chaos. Physical Review Letters, 100(074301), 2008.

[4] S. Alben, M.J. Shelley, and J. Zhang. Drag reduction through self-similar bend-
ing of a flexible body. Nature, 420(6915):479-481, 2002.

[5] J.J. Allen and A.J. Smits. Energy harvesting eel. Journal of Fluids and Struc-

tures, 15:629-640, 2001.

[6] M. Argentina and L. Mahadevan. Fluid-flow-induced flutter of a flag. Proc.

Nat. A cad. Sci, 102(6):1829-1834, February 8 2005.

[7] G.S. Beavers and D.D. Joseph. Boundary conditions at a naturally permeable
wall. J. Fluid Mech., 30:197-207, 1967.

[8] S.E. Belcher, J.J. Finnigan, and I.N. Harman. Flows through forest canopies in

complex terrain. Ecological Applications, 18(6):1436-1453, 2008.

[9] S.E. Belcher, N. Jerram, and J.C.R. Hunt. Adjustment of a turbulent boundary
layer to a canopy of roughness elements. J. Fluid Mech., 488:369-398, 2003.

[10] T. Bentham and R. Britter. Spatially averaged flow within obstacle arrays.

Atmospheric Environment, 37:2037-2043, 2003.

[11] R.D. Blevins. Formulas for natural frequency and mode shape. Krieger, 1984.

[12] R.D. Blevins. Flow Induced Vibration. Krieger Publishing Company, 2nd edi-

tion, 1990.

[13] K. Booij, H.M. Sleiderink, and F. Smedes. Calibrating the uptake kinetics

of semipermeable membrane devices using exposure standards. Environmental

Toxicology and Chemistry, 17(7):1236-1245, 1998.

227



[14] B.P. Boudreau and B.B. Jorgensen, editors. The benthic boundary layer. Oxford,
2001.

[15] T.J. Bouma, L.A. van Duren, S. Temmerman, T. Claverie, A. Blanco-Garcia,
T. Ysebaerty, and P.M.J. Herman. Spatial flow and sedimentation patterns
within patches of epibenthic structures: combining field, flume and modelling
experiments. Continental Shelf Research, 27:1020-1045, 2007.

[16] J.P. Boyd. Chebyshev and Fourier Spectral Methods. Dover, second edition,
2000.

[17] G. Brown and A. Roshko. On density effects and large structure in turbulent
mixing layers. J. Fluid Mech., 64:775-816, 1974.

[18] A.C. Cheshire and N.D. Hallam. Morphological differences in the southern
bull-kelp (durvillaea potatorum) throughout south-eastern australia. Bot. Mar.,
32:191-197, 1989.

[19] 0. Coceal and S.E. Belcher. A canopy model of mean winds through urban
areas. Quart. J. R. Met. Soc., 130:1349-1372, 2004.

[20] B.S.H. Connell and D.K.P. Yue. Flapping dynamics of a flag in a uniform
stream. Journal of Fluid Mechanics, 581:33-67, 2007.

[21] P.V. Danckwerts. Significance of liquid-film coefficients in gas absorption. In-
dustrial and Engineering Chemistry, 43(6):1460-1467, 1951.

[22] W.M. Deen. Analysis of transport phenomena. Oxford, 1998.

[23] M. Denny, B. Gaylord, B. Helmuth, and T. Daniel. The menace of momentum:
dynamic forces on flexible organisms. Limnol. Oceanogr., 43(5):955-968, 1998.

[24] M.W. Denny and B. Gaylord. The mechanics of wave-swept algae. J. Exp.
Biol., 205:1355-1362, 2002.

[25] P. Drazin and W. Reid. Hydrodynamic Stability. Cambridge University Press,
1981.

[26] L.D. Druehl and L. Kemp. Morphological and growth responses of geograph-
ically isolated macrocystis integrifolia populations when grown in a common
environment. Canadian Journal of Botany, 80:1409-1413, 1982.

[27] D.O. Duggins, J.E. Eckman, C.E. Siddon, and T. Klinger. Population, mor-
phometric and biomechanical studies of three understory kelps along a hydro-
dynamic gradient. Mar. Ecol. Prog. Ser., 265:57-76, 2003.

[28] I. Eames, J.C.R. Hunt, and S.E. Belcher. Inviscid mean flow through and
around groups of bodies. J. Fluid Mech., 515:371-389, 2004.

228



[29] J.J. Finnigan. Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32:519-

571, 2000.

[30] J.J. Finnigan and R.H. Shaw. A wind-tunnel study of airflow in waving wheat:

an eof analysis of the structure of the large-eddy motion. Boundary Layer

Meteorology, 96:211-255, 2000.

[31] C.S. Garbe, U. Schimpf, and B. Jaehne. A surface renewal model to analyze

infrared image sequences of the ocean surface for the study of air-sea heat and

gas exchange. J. Geophys. Res., 109:C08S15, 2004.

[32] B. Gaylord, J.H. Rosman, D.C. Reed, and et al. Spatial patterns of flow and

their modification within and around a giant kelp forest. Limnol. Oceanogr.,
52(5):1838-1852, 2007.

[33] V.A. Gerard. In situ water motion and nutrient uptake by the giant kelp macro-

cystis pyrifera. Marine Biology, 69:51-54, 1982.

[34] V.A. Gerard. In situ water motion and nutrient uptake by the giant kelp macro-

cystis pyrifera. Marine Biology, 69:51-54, 1982.

[35] V.A. Gerard and K.H. Mann. Growth and production of laminaria longicruris

(phaeophyta) populations exposed to different intensities of water movement.

J. Phycol., 15:33-41, 1979.

[36] Valrie A. Gerard. In situ rates of nitrate uptake by giant kelp, macrocystis

pyrifera (1.) c. agardh: Tissue differences, environmental effects, and predictions

of nitrogen-limited growth. J. Exp. Mar. Biol. Ecol., 62:211-224, 1982.

[37] M. Ghisalberti and H.M. Nepf. Mixing layers and coherent structures in vege-

tated aquatic flows. J. Geophys. Res., 107(C2):3011, 2002.

[38] M. Ghisalberti and H.M. Nepf. Shallow flows over a permeable medium: the

hydrodynamics of submerged aquatic canopies. Transport in Porous Media,
78:309-326, 2009.

[39] F. Gosselin, E. de Langre, and B.A. Machada-Almeida. Drag reduction of

flexible plates by reconfiguration. J. Fluid Mech., 650:319-341, 2010.

[40] W.G. Gray and P.C.Y. Lee. On the theorems for local volume averaging of

multiphase systems. International Journal of Multiphase Flow, 3(4):333-340,

1977.

[41] C.S.B. Grimmond and T.R. Oke. Aerodynamic properties of urban areas de-

rived from analysis of surface form. Jounral of Applied Meteorology, 38(9):1262-

1292, 1999.

[42] J.K. Gundersen and B.B. Jorgensen. Microstructure of diffusive boundary layers

and the oxygen uptake of the sea floor. Nature, 345:604-607, 1990.

229



[43] B.B. Hale. Macroalgal materials: foiling fracture and fatigue from fluid forces.
PhD thesis, Stanford University, 2001.

[44] R.N. Haring and R.C. Carpenter. Habitat-induced morphological variatoin in-
fluences photosynthesis and drag on the marine macroalga pachidictyon cori-
aceum. Mar. Biol., 151:243-255, 2007.

[45] C.D. Hepburn, J.D. Holborow, S.R. Wing, R.D. Frew, and C.L. Hurd. Expo-
sure to waves enhances the growth rate and nitrogen status of the giant kelp
macrocystis pyrifera. Marine Ecology Progress Series, 339:99-108, 2007.

[46] R. Higbie. The rate of absorption of a pure gas into a still liquid during short
periods of exposure. Trans. Am. Inst. Chem. Eng., 31:365-389, 1935.

[47] C. Ho and P. Huerre. Perturbed free shear layers. Ann. Rev. Fluid Mech.,
16:365-424, 1984.

[48] I. Huang, J.T. Rominger, and H.M. Nepf. The motion of kelp blades and the
surface renewal model. Limnol. Oceanogr., 56(4):1453-1462, 2011.

[49] C.L. Hurd, P.J. Harrison, and L.D. Druehl. Effect of seawater velocity on
inorganic nitrogen uptake by morphologically distinct forms of macrocystis in-
tegrifolia from wave-sheltered and exposed sites. Marine Biology, 126:205-214,
1996.

[50] C.L. Hurd and C.A. Pilditch. Flow-induced morphological variatoins affect
diffusion boundary-layer thickness of macrocystis pyrifera (heterokontophyta,
laminariales). J. Phycol., 47:341-351, 2011.

[51] J.J. Jackelman and J.J. Bolton. Form variation and productivity of an intertidal
foliose gigartina species (rhodophyta) in relation to wave exposure. Hydrobiolo-
gia, 204:57-64, 1990.

[52] G.A. Jackson. Currents in the high drag environment of a coastal kelp stand
off california. Continental Shelf Research, 17(15):1913-1928, 1997.

[53] G.A. Jackson and C.D. Winant. Effect of a kelp forest on coastal currents.
Continental Shelf Research, 2(1):75-80, 1983.

[54] D.L. Koch and A.J.C. Ladd. Moderate reynolds number flows through periodic
and random arrays of aligned cylinders. J. Fluid Mech., 349:31-66, 1997.

[55] E.W. Koch. Hydrodynamics, diffusion-boundary layers and photosynthesis of
the seagrasses thalassia testudinum and cymodocea nodosa. Marine Biology,
118:767-776, 1994.

[56] M.A.R. Koehl and R.S. Alberte. Flow, flapping, and photosynthesis of nereocy-
sis luetkeana: a functional comparison of undulate and flat blade morphologies.
Marine Biology, 99:435-444, 1988.

230



[57] M.A.R. Koehl, W.K. Silk, H. Liang, and L. Mahadevan. How kelp produce
blade shapes suited to different flow regimes: A new wrinkle. Integrative and
Comparative Biology, 48(6):834-851, 2008.

[58] P. Koumoutsakos and D. Shiels. Simulations of the viscous flow normal to
an impulsively started and uniformly accelerated flat plate. J. Fluid Mech.,
328:177-227, 1996.

[59] L.T. Kregting, C.L. Hurd, C.A. Pilditch, and C.L. Stevens. The relative impor-
tance of water motion on nitrogen uptake by the subtidal macroalga adamsiella
chauvinii (rhodophyta) in winter and summer. J. Phycol., 44:320-330, 2008.

[60] F. Krzikalla. Numerical investigation of the interaction between wind and forest
and heterogeneous conditions. Master's thesis, University of Karlsruhe, May
2005.

[61] J.H. Lau. Stiffness of corrugated plate. Journal of the Engineering Mechanics
Division, 107(1):271-275, 1981.

[62] J.J. Ledwell. The variation of the g as transfer coefficient with molecular diffu-
sivity. In W. Brutsaert and G.H. Jirka, editors, Gas Transfer at Water Surfaces,
pages 293-302, Dordrecht, Netherlands, 1984. Reidel.

[63] J.C. Liao, D.N. Beal, G.V. Lauder, and M.S. Triantafyllou. The kirmin gait:
novel body kinematics of rainbow trout swimming in a vortex street. J. Exp.
Biol., 206:1059-1073, 2003.

[64] R. Lohmann. Critical review of low-density polyethylene's partitioning and
diffusion coefficients for trace organic contaminants and implications for its use
as a passive sampler. Environ. Sci. Technol., 46:606-618, 2012.

[65] R.J. Lowe, J.R Koseff, and S.G. Monismith. Oscillatory flow through submerged
canopies: 1. canopy mass transfer. J. Geophys. Res., 110:C10017, 2005.

[66] M. Luhar, S. Coutu, E. Infantes, S. Fox, and H. Nepf. Wave-induced velocities
inside a model seagrass bed. J. Geophys. Res., 115:C12005, 2010.

[67] M. Luhar and H.M. Nepf. Flow-induced reconfiguration of buoyant and flexible
aquatic vegetation. Limnology and Oceanography, 56(6):2003-2017, 2011.

[68] A. Manela and M.S. Howe. The forced motion of a flag. J. Fluid Mech.,
635:439-454, 2009.

[69] S. Michelin and 0. Doar6. Energy harvesting efficiency of piezoelectric flags in

axial flows. J. Fluid Mech., 714:489-594, 2013.

[70] S. Michelin and S.G. Llewellyn Smith. Resonance and propulsion performance
of a heaving flexible wing. Physics of Fluids, 21(071902), 2009.

231



[71] S. Michelin, S.G. Llewellyn Smith, and B.J. Glover. Vortex shedding model of
a flapping flag. Journal of Fluid Mechanics, 617:1-10, 2008.

[72] M.T. Morris-Thomas and S. Steen. Experiments on the stability and drag of
a flexible sheet under in-plane tension in uniform flow. Journal of Fluids and
Structures, 25:815-830, 2009.

[73] J.F. Mueller, K. Manomanii, M.R. Mortimer, and M.S. McLachlan. Parti-
tioning of polycyclic aromatic hydrocarbons in the polyethylene/water system.
Fresenius J Anal Chem, 371:816-822, 2001.

[74] H.M. Nepf, M. Ghisalberti, B.L. White, and E. Murphy. Retention time and
dispersion associated with submerged aquatic canopies. Water Resources Re-
search, 43:W04422, 2007.

[75] V. Nikora, I. McEwan, S. McLean, S. Coleman, D. Pokrajac, and R. Walters.
Double-averaging concept for rough-bed open-channel and overland flows: the-
oretical background. J. Hydr. Eng., 133(8):873-883, 2007.

[76] M.P. Paidoussis. Fluid-structure interactions: slender structures and axial flow
Volume 2, volume 2. Elsevier, 2004.

[77] M. Parke. Studies on british laminariaceae. i. growth in laminaria saccharina
(1.) lamour. J. Mar. Biol. Assoc. UK, 27:651-709, 1948.

[78] G. Peralta, F.G. Brun, J.L. Perez-Llor6ns, and T.J. Bouma. Direct effects of
current velocity on the growth, morphometry and architecture of seagrasses: a
case study on zostera noltii. Mar. Ecol. Prog. Ser., 327:135-142, 2006.

[79] D.R. Plew, G.G. Cooper, and F.M. Callaghan. Turbulence-induced forces in a
freshwater macrophyte canopy. Water Resources Research, 44:W02414, 2008.

[80] D. Poggi, G. Katul, and J. Albertson. A note on the contribution of dispersive
fluxes to momentum transfer within canopies. Boundary Layer Meteorology,
11(3):615-621, 2004.

[81] D. Poggi, A. Porporato, L. Ridolfi, J.D. Albertson, and G.G. Katul. The effect
of vegetation density on canopy sub-layer turbulence. Boundary Layer Meteo-
rology, 111:565-587, 2004.

[82] P. Prempraneerach, F.S. Hover, and M.S. Triantafyllou. The effect of chordwise
flexibility on the thrust and efficiency of a flapping foil. 2003.

[83] M.R. Raupach, J.J. Finnigan, and Y. Brunet. Coherent eddies and turbulence
in vegetation canopies: the mixing layer analogy. Boundary Layer Meteorology,
78:351-382, 1996.

[84] M.R. Raupach and R.H. Shaw. Averaging procedures for flow within vegetation
canopies. Boundary Layer Meteorology, 22:79-90, 1982.

232



[85] 0. Reynolds. On the extent and action of the heating surface for steam boilers.

Proc. Manchester Lit. Phil. Soc., 14(7), 1874.

[86] L. Ristroph and J. Zhang. Anomalous hydrodynamic drafting of interacting

flapping flags. Physical Review Letters, 101:194502, 2008.

[87] L.M. Roberson and J.A. Coyer. Variation in blade morphology of the kelp

eisenia arboriea: incipient speciation due to local water motion? Marine Ecology

Progress Series, 282:115-128, 2004.

[88] J.T. Rominger and H.M. Nepf. Flow adjustment and interior flow associated

with a rectangular porous obstruction. J. Fluid Mech., 680:636-659, 2011.

[89] J.H. Rosman, J.R. Koseff, S.G. Monismith, and J. Grover. A field investigation

into the effects of a kelp forest (macrocystis pyrifera) on costal hydrodynamics

and transport. J. Geophys. Res., 112:C02016, 2007.

[90] P.G. Saffman. Vortex Dynamics. Cambridge University Press, 1992.

[91] K. Sand-Jensen and M.L. Pedersen. Streamlining of plant patches in streams.

Freshwater Biology, 53:714-726, 2008.

[92] M. Schatz, D. Barkley, and H. Swinney. Instability in a spatially periodic open

flow. Phys. Fluids, 7(2):344-358, 1995.

[93] H. Schlichting. Boundary Layer Theory. McGraw-Hill, fourth edition, 1962.

[94] M. Shelley, N. Vandenberghe, and J. Zhang. Heavy flags undergo spontaneous

oscillations in flowing water. Physical Review Letters, 94:094302, 2005.

[95] K. Sjotun and S. Frederiksen. Growth allocatoin in laminaria hyperborea (lam-

inariales, phaeophyceae) in relation to age and wave exposure. Mar. Ecol. Prog.

Ser., 126:213-222, 1995.

[96] A.V. Soloviev and P. Schluessel. Parameterization of the cool skin of the ocean

and of the air-ocean gas transfer on the basis of modeling surface renewal.

Journal of Physical Oceanography, 24(6):1339-1346, 1994.

[97] C.L. Stevens and C.L. Hurd. Boundary-layers around bladed aquatic macro-

phytes. Hydrobiologia, 346:119-128, 1997.

[98] C.L. Stevens, C.L. Hurd, and P.E. Isachsen. Modelling of diffusion boundary-

layers in subtidal macroalgal canopies: The response to waves and currents.

Aquat. Sci., 65:81-91, 2003.

[99] C.L. Stevens, C.L. Hurd, and M.J. Smith. Water motion relative to subtidal

kelp fronds. Limnol. Oceanogr., 46(3):668-678, 2001.

233



[100] H.L. Stewart, J.P. Fram, D.C. Reed, S.L. Williams, M.A. Brzezinksi, S. Mac-
Intyre, and B. Gaylord. Differences in growth, morphology and tissue carbon
and nitrogen of macrocystis pyrifera within and at the outer edge of a giant
kelp forest in california, usa. Mar. Ecol. Prog. Ser., 375:101-112, 2009.

[101] 0. Sundene. Growth in the sea of laminaria digitata sporophytes from culture.
Nor. J. Bot, 9:5-24, 1961.

[102] N. Tamai, T. Asaeda, and H. Ikeda. Study on generation of periodical large
surface eddies in a composite channel flow. Water Resources Research, 22:1129-
1138, 1986.

[103] S. Taneda. Waving motions of flags. Journal of the Physical Society of Japan,
24(2):392-401, 1968.

[104] Y. Tanino and H.M. Nepf. Laboratory investigation of mean drag in a random
array of rigid, emergent cylinders. Journal of Hydraulic Engineering, 134(1),
2008.

[105] A.S. Thom. Momentum absorption by vegetation. Quart. J. R. Met. Soc.,
96:414-428, 1971.

[106] L.N. Trefethen. Spectral methods in MATLAB. SIAM, 2000.

[107] G. Triantafyllou and C. Chryssostomidis. Stability of a string in axial flow.
Journal of Energy Resources Technology, 107:421-425, 1985.

[108] E.D. Tytell and G.V. Lauder. The hydrodynamics of eel swimming i. wake
structure. J. Exp. Biol., 207:1825-1841, 2004.

[109] S. Vogel. Life in Moving Fluids: The Physical Biology of Flow. Princeton
University Press, second edition, 1994.

[110] J.R. Welty, C.E. Wicks, R.E. Wilson, and G.L. Rorrer. Fundamentals of mo-
mentum, heat, and mass transfer. Wiley, 4 edition, 2001.

[111] T. Wernberg and M.S. Thomsen. The effect of wave exposure on the morphology
of ecklonia radiata. Aquat. Bot., 83:61-70, 2005.

[112] W.N. Wheeler. Effect of boundary layer transport on the fixation of carbon by
the giant kelp macrocystis pyrifera. Marine Biology, 56:103-110, 1980.

[113] B.L. White and H.M. Nepf. Shear instability and coherent structures in shallow
flow adjacent to a porous layer. J. Fluid Mech., 593:1-32, 2007.

[114] C.H.K. Williamson and R. Govardhan. Vortex-induced vibrations. Annual
Review of Fluid Mechanics, 36:413-455, 204.

234



[115] J. Zhang, S. Childress, A. Libchaber, and M. Shelley. Flexible filaments in
a flowing soap film as a model for one-dimensional flags in a two-dimensional
wind. Nature, 408:835-839, 2000.

[116] L. Zong and H. Nepf. Flow and deposition in and around a finite patch of
vegetation. Geomorphology, 116:363-372, 2010.

235


