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Gravitational waves emitted during the inspiral, plunge and merger of a black hole binary carry linear

momentum. This results in an astrophysically important recoil to the final merged black hole, a ‘‘kick’’

that can eject it from the nucleus of a galaxy. In a previous paper we showed that the puzzling partial

cancellation of an early kick by a late antikick, and the dependence of the cancellation on black hole spin,

can be understood from the phenomenology of the linear momentum waveforms. Here we connect that

phenomenology to its underlying cause, the spin dependence of the inspiral trajectories. This insight

suggests that the details of the plunge can be understood more broadly with a focus on inspiral trajectories.

DOI: 10.1103/PhysRevD.88.104004 PACS numbers: 04.25.Nx, 04.30.�w, 04.30.Db

I. INTRODUCTION

During the inspiral and merger of an asymmetric black
hole (BH) binary, the linear momentum that is emitted
results in a reaction, a ‘‘kick,’’ to the final merged black
hole. This kick can be strong enough to eject the merged
final black hole from its host active galactic nucleus. See,
for example, Refs. [1–5] for recent work discussing astro-
physical implications of black hole kicks. Observational
confirmations of the predicted ‘‘runaway’’ black holes are
now starting [6].

Theoretical predictions of kicks have been based largely
on supercomputer numerical computations of the nonlinear
equations of general relativity for black hole inspiral and
merger. These codes are now capable of evolving almost
any initial binary configuration. Explorations and good
guesses have been made that have led to ‘‘superkick’’
configurations with very large ejection velocities of the
final hole [7]. What is missing is a picture of the process
simple enough so that physical insights can be used, as
they usually are in physics. This has been a main motiva-
tion for the visualization project by the Caltech-Cornell
group [8] in which ‘‘tendex and vortex’’ lines are used for
visualization of the relativistic gravitational fields.

Here we give a simple and compelling picture of the
generation of at least some aspect of kicks, a picture based
on the idea that in binary inspiral main features of emission
are to be understood as manifestations of the details of
trajectories. What is perhaps most important about the
success of this picture is that it suggests that ‘‘trajectory
dominance’’ may be a key to a phenomenological under-
standing of binary inspiral emission more generally.

The remainder of this paper is organized as follows. In
Sec. II we briefly review the spin-dependent kick-antikick
cancellation for equatorial orbits, along with our phenome-
nological explanation of the cancellation and its spin

dependence. Section III then looks at inspiral orbits. It is
shown that the qualitative characteristics of these orbits
correlate with black hole spin in a way that suggests that it
is the orbital shapes that explain the different character-
istics of linear momentum emission for prograde vs retro-
grade orbits, and for different spins. In this section it is also
shown that the root of the different orbital characteristics
(and hence of the kick correlation with spin and orbital
direction) is the relationship of particle orbital angular
momentum and angular velocity in the spacetime of a
rotating hole. Section IV then ‘‘tests’’ the hypothesis of
trajectory dominance with two classes of numerical experi-
ments. In the first, it is shown that a Kerr particle trajectory
placed in a Schwarzschild spacetime gives substantially
the same gravitational wave emission as it does in the Kerr
spacetime for which it is a geodesic. The second class of
tests is limited to retrograde orbits in Kerr spacetimes. It is
shown that the burst of radiation from retrograde orbits
arises from the reversal of angular velocity of the inspiral
trajectory. We discuss the implications of these results in
Sec. V.

II. PHENOMENOLOGICAL EXPLANATION OF
THE KICK-ANTIKICK CANCELLATION FOR
QUASICIRCULAR EQUATORIAL ORBITS

During the BH inspiral-plunge merger (IPM) the gravi-
tational wave (GW) emission carries away linear momen-
tum, and a net linear momentum emission builds up in
some direction. A strange attribute of the linear momentum
was noted by Schnittman et al. [9] in their computational
studies of the IPM of comparable mass BHs, with spin
angular momentum perpendicular to the orbital plane (This
strange attribute had been predicted about a year earlier by
Damour and Gopakumar [10]). The net linear momentum
in some direction would grow during the inspiral phase and
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then start to decrease at the plunge. For certain models
the decrease removed most of the momentum emitted
earlier. Subsequently, Sundararajan et al. [11] studied the
phenomenon further with the flexibility and efficiency of
particle perturbation techniques. Their results, for ‘‘parti-
cles’’ orbiting in the equatorial plane of a spinning black
hole, included models in which 97% of the kick was
cancelled by a late term antikick. It was noted in these
studies that the extent of cancellation is strongly correlated
with black hole spin and strongly dependent on whether the
orbital motion is prograde (orbital and spin angular mo-
mentum aligned) or retrograde (antialigned). We shall call
this puzzling cancellation, along with its dependence on
the orbit and the BH spin, the ‘‘cancellation phenomenon.’’

This phenomenon was somewhat a paradox. The early
momentum emission comes from the nearly Newtonian
gradual inspiral, while the late emission is from the plunge
and the quasinormal ringing of the merger. It seemed re-
markable that the early process could somehow ‘‘set up’’ the
late process to generate just the right amount of linear
momentum so that for some models the late momentum
emission almost completely canceled the early emission.

As is so often the case for an ‘‘impossible’’ coincidence,
the explanation turns out to be simple, at least at one level.
For prograde orbits the component of linear momentum
flux in any direction, let us say the _Px in the x direction, is
an oscillating quantity. This oscillating quantity starts with
negligible amplitude in the distant past, in effect at time
t ¼ �1; it ends with zero amplitude at t ¼ þ1, when the
quasinormal ringing dies out. Thus, as a function of time,
_Px is an oscillation inside a modulation envelope that starts
and ends at zero, and it is largest around the plunge.
The net momentum Px radiated up to some time t is the

integral of _Px from early time up to time t. The total Px

radiated for the entire IPM process,
R1
�1 _Pxdt is the inte-

gral of an oscillating quantity. In that integral, the positive
phases and negative phases of the oscillation will tend to
cancel. Because of the changing amplitude of the oscilla-
tions the cancellation will not be complete; some net
momentum can be radiated. The more rapidly the ampli-
tude changes, the larger the result for the total momentum
radiated. The total momentum in fact is easily shown to be
a decreasing function of the characteristic time scale for
the change in the amplitude divided by the characteristic
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FIG. 1 (color online). The top row shows, as a function of time, the momentum flux components _Px and _Py for both a retrograde
(left plot) and a prograde (right) inspiral into the a=M ¼ 0:6 spinning hole. The bottom row shows the components Px, Py of the total

linear momentum radiated from t ¼ �1.
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period of the oscillations. (For details see Ref. [12],
hereafter Paper 1.)

For a very slowly varying amplitude, the components of
net momentum radiated (and hence of the net kick)R1
�1 _Pkdtmust be very small. Any net momentum radiated

in the early increasing amplitude part of the processmust be
canceled in the later part. This is not a consequence of any
feature of curved spacetime, but of simple mathematics.
The phenomenological explanation of the cancellation
phenomenon fits the results of the computations both for
comparable mass BHs and for extreme mass ratio inspirals
(EMRIs); the more gradually the amplitude changes, the
greater is the extent to which the late antikick cancels the
earlier kick. In the case of prograde equatorial orbits in
EMRIs, a more definitive statement can be made. The rate
of change of the envelope depends on the spin of the
BH. Larger spin BHs showmore slowly varying amplitudes
of momentum flux, and show a more nearly complete
cancellation of early and late linear momentum.
Retrograde equatorial orbits show the opposite correlation:
for the most rapidly spinning holes the linear momentum
flux oscillations have the most rapidly changing amplitude.

Figures 1 and 2 illustrate the connection between radi-
ated linear momentum, BH spin, and direction (prograde

vs retrograde) for equatorial orbits. In the top row of
each of these figures the flux of linear momentum is
shown in two arbitrary orthogonal directions x, y in the
asymptotically flat spacetime. In Fig. 1 the plots on the
left hand side correspond to a retrograde IPM. For these
retrograde cases the plots shows that the linear momen-
tum emission is largely concentrated in a burst. The net
linear momentum components (bottom row) grow sud-
denly upon emission of this burst, and the final linear
momentum is of order of the momentum flux times the
oscillatory time scale. The plots on the right, for a
prograde orbit, tell a very different story. Here the mo-
mentum flux is oscillatory inside an amplitude envelope
that is moderately smooth. The net momentum emitted
(lower plot) is oscillatory until the amplitude peak, at
which time a net momentum is built up, but—unlike the
retrograde case—this net momentum is an order of
magnitude less than the product of the momentum flux
and an oscillatory time scale. The features shown in
Fig. 1 for a=M ¼ 0:6 are also present in Fig. 2 for
a=M ¼ 0:9, but are significantly more pronounced. For
a=M ¼ 0:9, the jump in radiated momentum is more
sudden than for a=M ¼ 0:6 in the case of the retrograde
orbit, and the cancellation of the radiated momentum is
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FIG. 2 (color online). The same quantities as in Fig. 1 but here for retrograde and prograde orbits into a black hole with a=M ¼ 0:9.
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more nearly total than for a=M ¼ 0:6 in the case of the
prograde orbit.

In seeking an explanation for this cancellation, an im-
portant technical question must be asked. Linear momen-
tum cannot be generated in a single multipole mode. Its
emission therefore depends on delicate amplitude and
phase relations of different modes (in fact, the relations
of even modes with odd modes). We must ask whether the
BH spin dependence and the very different patterns for
retrograde and prograde orbits are the results of subtly
shifting mode interactions, or whether they are embedded
more robustly in the gravitational wave emission.

This question is answered in Fig. 3. Here the m ¼ 2 part
of the Teukolsky function �4 is shown for retrograde and
prograde orbits for both a=M ¼ 0:6 and a=M ¼ 0:9. It
is clear in these figures that what is seen in the linear
momentum flux is also true for the gravitational waves
themselves: For retrograde orbits the wave emission comes
in a burst, while for prograde emission the emission is a
smoothly modulated oscillation, and these characteristics
increase with increasing values of a=M.

We emphasize that the observations above are phenome-
nological and hence our explanation in Paper I of the kick/
antikick cancellation is a phenomenological one, one that
is clearly compelling, but that does not really explain the

cancellation, since it does not explain why the prograde
orbits have slowly changing oscillations and the retrograde
orbits have rapidly changing oscillations. We offer such an
explanation in this paper, and hence show the underlying
physical explanation of the linear momentum cancellation
phenomenon.

III. INSPIRAL ORBITS

The core of our explanation lies in the fact that a rotating
hole drags the spacetime alongwith it. In the Schwarzschild
spacetime, the angular velocity d�=dt of a particle of mass
� is proportional to L, the particle’s specific angular
momentum (p�=�), a constant of the motion. In the Kerr

spacetime, however,

d�

dt
¼ Lð1� 2M=rÞ þ 2EMa=r

Eðr2 þ a2 þ 2Ma2=rÞ � 2LMa=r
; (1)

where E is the particle’s specific energy (�p0=�), another
constant of the motion. Because of the terms linear in a in
this expression, a particle with no angular momentum
can be rotating, i.e., can have nonzero d�=dt. It is of
particular interest that for a particle with a nonzero L that
has a sign opposite to that of a, the numerator of Eq. (1) can
vanish and, since the two canceling terms have different r
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FIG. 3 (color online). Waveforms, i.e., the real and imaginary parts of the m ¼ 2 component of the Teukolsky function �4 for
prograde and retrograde orbits into Kerr holes with a=M ¼ 0:6 and 0.9.
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dependences, can change sign as the particle moves inward.
In short, the angular velocity can reverse direction.

It should be noted that the angular velocity d�=dt here
is based on the Boyer-Lindquist azimuthal angle �. With
another choice of the mixing of � and t, the angular
velocity of geodesics would be different. For this and other
reasons, our arguments here are qualitative, rather than
quantitative. More specifically, we note that the qualitative
nature of the orbits and of the radiation are correlated.
As the coordinate-dependent orbit winds more gradually,
the coordinate-independent pattern of radiation is more
gradually modulated. Without being too specific about
the meaning of ‘‘reasonable,’’ we believe that any reason-
able choice of coordinates must show the same qualitative
features as those given in Boyer-Lindquist coordinates.

This reversal is clear in Fig. 4. The figure presents the
equatorial orbits for particles in Kerr spacetimes with
various values of the spin parameter a=M. Positive
numbers are for prograde infall (same sign for L and a),
and negative numbers are for retrograde orbits (opposite
signs for L and a). The plots treat the Boyer-Lindquist [13]
r and � coordinates of Kerr spacetime as if they were two-
dimensional polar coordinates in flat spacetime. The dark
outer band in each case indicates the particle orbiting many
times near the radius RISCO of the innermost stable orbit
(ISCO). The empty circle at the center of each panel in-
dicates the radial coordinate location rhor of the horizon. It
should be noticed that both the ISCO and the horizon have
different coordinate radii in different panels since these
radii depend on the BH spin for a hole given mass M

(note the scales in use in different panels). The ISCO radius
is quite different for prograde and for retrograde orbits.
The trajectories are not particle geodesics. The results

here use the same radiation reaction modeling as in
Ref. [11]. For a particle of mass � moving in the space-
times of mass M, the loss of orbital energy and angular
momentum are second order in �=M. It is assumed that
these losses are slow enough that the orbits can be
described as geodesics in which the particle energy and
angular momentum decrease slowly in accord with radia-
tive losses. For all models reported in the current paper, the
mass ratio is �=M ¼ 10�4, so that the assumption of a
slow rate of change is justified.
Because of this radiation reaction, the particle gradually

spirals inward from the ISCO. Once it has been driven
well off the ISCO, the radiation reaction is unimportant.
Following a short transition from the earlier adiabatic
inspiral [14,15], the motion is negligibly different from
an infalling geodesic as the particle moves inward on a
spiral that ends at the horizon. This motion is associated
with the GW emission at t ! 1.
It is striking in Fig. 4 that the particle moving in the

prograde direction into the a=M ¼ 0:9 hole orbits many
times and slowly moves inward. This characteristic is less
dramatic in the a=M ¼ 0:3 case. The tendency is yet less in
the a=M ¼ 0 case, the orbit for a Schwarzschild hole. For
the retrograde orbits, quite the opposite applies; as the BH
spin magnitude increases, the orbit becomes less and less
dominated by circumferential motion and more and more
by radial motion.
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A simple quantitative exploration of this correlation is
possible. Since the radiation reaction at and interior to the
ISCO is much smaller than the secular gravitational forces
(i.e., since the trajectories are negligibly different from
geodesic orbits), it is a good approximation to set the L
and E parameters for infall to be those at the ISCO. These
are known to give a ratio [16]

L

E
¼ �M1=2ðr2 � 2aM1=2r1=2 þ a2Þ

r3=2 � 2Mr1=2 � aM1=2
; (2)

where the upper sign refers to prograde orbits and the lower
to retrograde. With this ratio put into Eq. (1) we can find,
for retrograde orbits, the approximate radial location rturn
at which d�=dt changes sign during the plunge. These
locations are presented, as functions of a=M in Fig. 5 along
with radial locations of the ISCO and the horizon.

If the angular velocity reversal occurs too close
(in some sense) to the horizon, gravitational redshift effects
dominate to suppress outgoing gravitational wave energy
and momentum. A crude index of the importance of the
angular velocity reversal is therefore the ratio of the
reversed-motion radial span rturn � rhor to the full radial
span rISCO � rhor. This ratio is shown, for retrograde orbits,
in Fig. 6. The implications of Fig. 4 are supported by the
results in this figure; the importance of the angular velocity
reversal for retrograde infall increases dramatically with an
ncreasing BH spin.

We have so far focused on the retrograde orbits, while it
had been the high spin prograde orbits, that produced the
most interesting cancellation phenomenon. We now under-
stand this to be due to the gradual orbiting for prograde
cases after the particle has detached from the ISCO and is
spiraling in toward the horizon. This gradual spiraling is
particularly clear for the prograde inspiral with a=M ¼ 0:9
shown in Fig. 4. A suggestion of the physical basis for this
can be seen in Eq. (1): for prograde orbits, in which L and a

have the same sign, the two terms in the numerator of
d�=dt have the same sign, while for retrograde orbits
they would have opposite signs. This suggests that
d�=dt is larger in the prograde case and that it increases
with increasing BH spin.
The situation is actually rather more complicated. For

one thing, d�=dt for the inspiral depends on the radius; the
particle whirls faster (as measured in coordinate time) as it
approaches the horizon. This is shown in Fig. 7, along with
the dependence of the angular velocity on a=M. We should
not lose sight of the fact that d�=dt by itself does not really
determine the kick/antikick cancellation. Rather, the
important point is the way in which the amplitude of the
linear momentum flux changes slowly for particle motion
after the plunge, i.e., inside the ISCO. Figure 7 is therefore
only mildly suggestive of the reason for the increase in
cancellation with increasing a=M.
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IV. TESTS OF THE ORBIT-DOMINANCE
EXPLANATION

A. Kerr orbits embedded in Schwarzschild spacetime

Here we test the hypothesis that the nature of the kick,
and of gravitational wave emission more generally, is
dominated by the nature of the trajectory, rather than by
the nature of the spacetime in which the gravitational
waves are generated and through which they propagate.
One way of investigating what dominates, trajectory or
spacetime, is to take a trajectory from, say, spacetime A,
put it as a source in spacetime B, and see whether the
emerging radiation is characteristic of the trajectory or the
spacetime. This procedure amounts to putting into space-
time B an orbit that differs dramatically from a geodesic
orbit in spacetime A. This configuration, then, cannot be
considered to be the extreme mass ratio limit of a process
in general relativity. Nevertheless, it is mathematically
consistent in linear particle perturbation theory, since
the specification of the source in such calculations is an
independent step.

The results of tests of this type are shown in Figs. 8
and 9. The plots show the components dPx=dt and
dPy=dt of gravitational wave momentum flux from equa-

torial Kerr orbits placed in a Schwarzschild spacetime.
In principle, one can start with the Kerr trajectory for a
hole of mass M and nonzero spin parameter a=M. One
then uses the coordinate functions rðtÞ and �ðtÞ in
Boyer-Lindquist coordinates as the specification of an
orbit in the Schwarzschild geometry of the same mass
M. In practice, this procedure encounters a problem at
the horizon, since the radial location of the Kerr horizon

r ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
is less than the radial position 2M

for the Schwarzschild geometry. The Kerr trajectory
coordinate specification would therefore extend inside
the horizon in the Schwarzschild geometry.
This problem is avoided by matching not the radii of

the two inspiral trajectories but rather their values of the
function �a ¼ r2 � 2Mrþ a2. Given a trajectory [rKðtÞ,
�ðtÞ] in the Kerr geometry, we map this to a trajectory
[rSðtÞ, �ðtÞ] by requiring that �aðrKÞ ¼ �0ðrSÞ at each
moment t. In this way the horizon location (at � ¼ 0) of
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one spacetime corresponds to the horizon (at � ¼ 0) in the
other. Though this is not the unique way of mapping the
coordinate ranges, it is the simplest and most direct way.
Any other way should make little difference far from the
horizon and no difference at the horizon. Any smooth
mapping of the coordinates will therefore give the same
qualitative orbit.

The resulting plots, shown in Figs. 8 and 9, strongly
support the notion of trajectory dominance. Figure 8 shows
the momentum flux components from a=M ¼ 0:6 and
a=M ¼ 0:9 orbits embedded in the Schwarzschild space-
time. For both spins there is a dramatic difference between
the prograde and the retrograde momentum fluxes. A com-
parison of Fig. 8 with Figs. 1 and 2 shows, moreover, that
the qualitative nature of the momentum emission from any
of the Kerr orbits in Schwarzschild is the same as that in the
Kerr spacetime in which the orbits are approximate
geodesics. Figure 9 makes the same comparison for the
gravitational waves, in particular for them ¼ 2 component
of the Teukolsky function �4. Again, the gravitational
wave emission for prograde orbits are dramatically differ-
ent from retrograde orbits, and the emission is qualitatively
the same for a Kerr orbit in the Schwarzschild spacetime
as it is in the spacetime in which it is an approximate
geodesic.

We have computed many additional examples of the
radiation from a geodesic trajectory of one spacetime
embedded in another spacetime. In particular, we looked
at the radiation from the rðtÞ, �ðtÞ of a retrograde orbit
embedded as a prograde orbit in a spacetime with the same
BH a=M, and vice versa. In all cases, the results were
minor variations of the results in Figs. 8 and 9: the radiation
pattern is determined by the trajectory.

B. Correlations of timing and angular direction

As a very different test of trajectory dominance we look
for features of the emerging radiation that can be correlated

with features of the orbits. In particular, a strong argument
for trajectory dominance was made in Sec. III based on the
postplunge reversal of angular velocity for retrograde
orbits. Here we look at evidence that the burst of gravita-
tional radiation, and especially of linear momentum, from
retrograde orbits really does come from that reversal event.
The results, shown Figs. 10–12 compare features of the

orbit, in the left two panels, with results, in the right panels,
for momentum flux observed at a Boyer-Lindquist radius
of 200M. In Fig. 10, for the retrograde inspiral orbit into a
Kerr BH with a=M ¼ 0:9, the left panel repeats the corre-
sponding panel in Fig. 4, showing a picture of the trajectory
and showing the angular velocity reversal occurring fairly
close to the horizon. The plots of azimuthal angle � and
angular velocity d�=dt confirm that reversal takes place
around� ¼ 80�, and indicate that this occurs at coordinate
time t � 2800M. The plot of 1=ðdt=d�Þ ¼ 1=� shows the
relationship of coordinate time and particle proper time,
and hence shows the development of the redshift factor �.
The story told by these plots then is that the relativistic
effects increase after the plunge, are fairly strong around
the time of angular reversal, and show the subsequent
redshifting away as the particle asymptotically disappears
in the horizon.
The right panel shows features of the linear momentum

flux from this orbit. The plot of momentum fluxes (as in
Fig. 2) show that the burst of linear momentum, starting
around t ¼ 3000M is in reasonably good time agreement
with the time of orbital angular velocity reversal at
t ¼ 2800M, when allowance is made for propagation
time to the observation radius r ¼ 200M.
The right panel also presents arctan ð _Py= _PxÞ, which

gives an estimate of the direction in which the linear
momentum is radiated. The direction of the momentum
differs substantially from the angle at which the reversal of
the angular velocity takes place. This is not too surprising,
bearing in mind that due to frame dragging and strong-field

FIG. 10 (color online). Trajectory and flux for the retrograde inspiral into a Kerr BH with a=M ¼ 0:9. See text for details.
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propagation effects the radiation does not proceed outward
in a constant � direction. What is telling is the time devel-
opment of the angle of the radiated momentum. That angle
increases monotonically to t � 3000M, which mirrors
(with an appropriate shift) the time at which the reversal
occurs. Beyond this, the angle associated with the flux is
roughly constant or even decreasing (bearing in mind that
the flux decays rapidly, and this angle is likely to be domi-
nated by numerical noise as we go forward in time).

Figures 11 and 12 show analogous results for the
retrograde inspiral into holes of a=M ¼ 0:6 and 0.3. The
discussion of the a=M ¼ 0:9 case applies to these as well.
The only differences are in a few of the details.

V. CONCLUSION

For particles in BH spacetimes, the spacetime itself has
two effects: it determines the trajectories of the particles,
and it governs the radiation emerging from the motion of

those particles. We have given evidence, evidence that we
consider compelling, that it is the trajectories that are cru-
cial to the nature of the emerging radiation. The case was
built in Secs. III and IV. In those sections it was argued that
aside from determining the particle trajectories, the main
role of the structure of the spacetime per se is to cut off the
particle generated radiation as the particle asymptotes to the
horizon. We have seen that especially in Figs. 10–12.
Although the work reported in this paper was originally

motivated by a phenomenon of prograde orbits, the kick/
antikick cancellation, it turns out that it is the retrograde
orbits that are the more interesting and provide the stron-
gest evidence for the dominant role of the particle orbits.
This is due, in particular, to the angular velocity reversal, a
feature of the orbit that can be directly connected to the
pattern of radiation.
An interesting working hypothesis is that in a broader

class of IPM models the radiation from a particle in
a BH background can usefully be broken down into

FIG. 12 (color online). Trajectory and flux for the retrograde inspiral into a Kerr BH with a=M ¼ 0:3. See text for details.

FIG. 11 (color online). Trajectory and flux for the retrograde inspiral into a Kerr BH with a=M ¼ 0:6. See text for details.
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spacetime ! trajectory ! radiation in which the space-
time plays a role in the last step only through the horizon
cutoff. Although such a simplifying picture is most appli-
cable to the EMRI limit, we note that the kick/antikick
cancellations exhibited for comparable mass holes in the
work of Schnittman et al. [9] indicate that this picture must
be at least partially applicable for comparable mass holes.

We are now using the idea of trajectory dominance to
look for a deeper understanding of the generation of radia-
tion during the plunge, the most important epoch of the
IPM, but the epoch that is most difficult to treat with simple
approximations.
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