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Abstract 
 
We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B, 15, 1489 

(1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent 

magnetization flow, with a particular emphasis on the thermal consequence of the 

magnon flow driven by a non-uniform magnetic field. Working within the framework of 

Boltzmann transport equation, we derive the constitutive equations for coupled phonon-

magnon transport driven by gradients of both temperature and external magnetic fields, 

and the corresponding conservation laws. Our equations reduce to the original Sanders-

Walton two-temperature model under a uniform external field, but predict a new magnon 

cooling effect driven by a non-uniform magnetic field in a homogeneous single-domain 

ferromagnet. We estimate the magnitude of the cooling effect in yttrium iron garnet, and 

show it is within current experimental reach. With properly optimized materials, the 

predicted cooling effect can potentially supplement the conventional magnetocaloric 

effect in cryogenic applications in the future. 

 

  Spin caloritronics [1,2] is a nascent field of study that looks into the interaction between 

heat and spin. In addition to providing ways of thermally manipulating magnetization and 

magnetic domain walls [3–5] as supplements to conventional spintronics, it also holds 
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promise of novel energy harvesting and cooling applications owing to the recent 

discovery of the spin Seebeck effect (SSE) [6–10] and its reciprocal spin Peltier effect 

(SPE) [11,12] . Despite existing debates on details, it has been widely recognized that the 

aforementioned spin caloritronic effects are consequences of the interactions between 

phonons, electrons and spins [13–16]. From this perspective, spin caloritronics is a 

natural extension of both thermoelectrics and spintronics. Phonons are responsible for 

heat conduction in most solids; in metallic and semiconducting materials, electrons are 

carriers of charge, heat and spin; in magnetic materials, magnons [17] – the collective 

excitations of spins – also participate in transporting spin [18] and heat [19]. Coupled to 

these carriers are thermodynamic forces that drive their flows [20]: the gradients of 

temperature, electrochemical potential and non-equilibrium magnetization [21]. For 

conditions close to equilibrium, it is particularly convenient to treat the coupled transport 

phenomena within the phenomenological framework of irreversible 

thermodynamics [20], where the Onsager reciprocity relation serves as the link between 

concurrent flows. Routinely used in studying the coupled transport of electrons and 

phonons [20–22], the method of irreversible thermodynamics has also been utilized in 

analyzing the coupled transport of heat and charge with spins [21,23–26] . 

  In this paper we limit our discussion to ferromagnetic insulators without free conducting 

electrons. Further steps to understanding the spin caloritronic effects require microscopic 

models that provide quantitative information of the transport processes, for example the 

kinetic coefficients [20] that connect the driving forces to the corresponding fluxes. For 

studying thermoelectrics, the coupled transport processes are typically treated within the 

framework of Boltzmann transport equation (BTE) [22], which in the diffusion regime 



gives quantitative kinetic coefficients, and is capable of delineating ballistic 

transport [27] when solved with proper boundary conditions. It is particularly a natural 

way to describe thermally induced transport processes where coherent contributions are 

not important. On the other hand, the spintronics community often uses the Landau-

Lifshitz-Gilbert (LLG) [28] equation for the dynamics of magnetization. Compared with 

BTE, LLG adopts more a “wave-like” point of view, where the coherent dynamics is 

important and the thermal relaxation acts as a damping factor. Indeed the long 

wavelength magnons have been shown to exhibit macroscopic coherence lengths at room 

temperature [29], and LLG is necessary to account for their behaviors. For the thermal 

transport, however, magnons with a wide range of wavelengths and coherent lengths will 

be excited, and LLG seems no longer a particularly convenient description. A recent 

work by Hoffman et al. [30] applied a “semi-phenomenological” stochastic LLG 

equation to modeling the longitudinal SSE, where the temperature effect was 

incorporated via a thermally fluctuating Langevin field. Since a linear phonon 

temperature distribution was presumed in their work, it did not fully solve the coupled 

phonon-magnon transport problem. An alternative approach to this problem adopts a 

more “particle-like” picture. The pioneering work by Sanders and Walton [31] treated the 

coupled phonon-magnon thermal diffusion process with a two-temperature model, where 

phonons and magnons were modeled as two gases of bosons, each locally in thermal 

equilibrium with different temperatures, and the local energy exchange rate between them 

is proportional to the temperature difference. This model was later used to explain the 

spin Seebeck effect [13], and was recently extended to take into account the boundary 

heat and spin transfer [32]. It also served as a modeling tool for interpreting dynamic 



measurements of the thermal conductivity of spin ladder compounds [33,34] and the 

static direct measurement of the magnon temperature [35], and has been applied to other 

carrier systems such as electron-phonon [36] and acoustic-phonon-optical-phonon [37]. 

  In their original formulation, Sanders and Walton did not consider the associated 

magnetization flow with the magnon heat flow. On the other hand, Meier and Loss [38] 

showed that the magnon flow could also be generated by a non-uniform external 

magnetic field, but they did not look into the thermal aspect of this transport process. 

More studies also discussed the similarity between field-driven magnon transport and 

electron transport [39–43]. In a recent work by Kosevich and Gann [44], both quantum 

and semiclassical dynamics of a field-driven magnon flow was thoroughly studied. In the 

current paper we attempt to combine the two paths, one from the thermal perspective and 

the other from the magnetic perspective, and give a unified description of the coupled 

phonon-magnon diffusive transport of both heat and magnetization, which is also 

applicable when the external magnetic field is non-uniform, with a special focus on the 

thermal effect associated with the field-driven magnon flow. 

  Magnons are (in most cases [34]) bosonic excitations, and in equilibrium obey the Bose-

Einstein distribution:	
   

 

 

f0 r,k( ) = 1

exp !ω k( ) + gµBB r( )
kBTm r( )
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,  
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 where  !ω k( )  is the magnon energy [17,28] without external magnetic field, g  is the 

Landé g-factor, µB  is the Bohr magneton (−gµB  combined represents the amount of 

magnetic moment carried by a single magnon [38]), Tm  is the magnon temperature and 

B  is the external magnetic field. Here we neglect the magnetic dipolar interaction and 



magnetic anisotropy for simplicity. Although magnons can reach a quasi-equilibrium 

state with a finite chemical potential under parametric pumping [45], here we treat 

magnons with vanishing chemical potential for local equilibrium is assumed. Next we 

write down the steady-state Boltzmann transport equation with the relaxation time 

approximation (RTA): 

 − f − f0
τ m

= v ⋅∇r f0,  (2) 

where f r,k( )  is the non-equilibrium distribution function of magnons, v k( )  is the 

group velocity of magnons, τ m = 1
τ m−m

+ 1
τ m−p,ela

+ 1
τ m−imp

⎛

⎝⎜
⎞

⎠⎟

−1

 is a lumped relaxation time 

of magnons including effects of magnon-magnon scattering [46], elastic magnon-phonon 

scattering [47] and elastic magnon-impurity scattering [48]. The inelastic magnon-

phonon scattering is responsible for the local energy exchange between magnons and 

phonons [47], and in general cannot be written in a relaxation-time form [22]. Thus we 

follow Sanders and Walton [31] here and consider the energy exchange process 

separately in the conservation laws later. We emphasize the validity of this separation 

requires that phonon-magnon interactions be much weaker than magnon-magnon 

interactions. 

  After obtaining the non-equilibrium distribution function f r,k( ) , we can calculate the 

local magnetization and heat flows carried by magnons. The magnetization flow is

Jm = −gµB
d 3k
2π( )3

fv∫ , where the minus sign accounts for the fact that the excitation of 

magnons reduces the total magnetization [49]: M r( ) =Ms − gµBnm , where Ms  is the 



saturation magnetization, and nm  is the number density of magnons. To calculate the 

magnon heat flow, we start with the thermodynamic relation of a magnet [20]: 

dE = dQ + BdM = dQ − BgµBdnm , where E  is the total energy of the magnet and the 

interaction energy ( BM ) between the magnet and the magnetic field, and thus field-

independent [50], corresponding to  !ω k( )  microscopically (in contrast  !ω k( ) + gµBB  

corresponds to the field-dependent “spectroscopic energy” [50]). Differentiating the 

above relation with respect to time, we get the magnon heat flux 

 
Jqm = Je − BJm = d 3k

2π( )3
!ω + gµBB( ) fv∫ , where Jqm  is the magnon heat flux, Je  is the 

magnon energy flux. The term BJm  describes the transport of the magnetic interaction 

energy associated with the magnetization flow, analogous to ϕJc  in the case of electrons, 

where ϕ  is the electro-static potential and Jc  is the electrical charge flux. Combining the 

above expression with Eqs. (1) and (2), we arrive at the constitutive equations for the 

magnon transport: 

 −Jm = L11∇B + L12 −∇Tm( ),  (3) 

 Jqm = L12Tm∇B + L22 −∇Tm( ),  (4) 

with the kinetic coefficients given by (assuming an isotropic magnon dispersion): 

 
 
L11 = −

gµB( )2
3

τ mv
2 ∂ f0
∂ !ω( )D ω( )dω

ω
∫ ,  (5) 

 
 
L12 = − gµB

3Tm
!ω + gµBB( )τ mv2 ∂ f0

∂ !ω( )D ω( )dω
ω
∫ ,  (6) 

 
 
L22 = − 1

3Tm
!ω + gµBB( )2 τ mv2 ∂ f0

∂ !ω( )D ω( )dω
ω
∫ ,  (7) 



where D ω( )  is the magnon density of states. We can interpret L11  as the isothermal 

magneto-conductivity σ m  and L22  as the uniform-field magnon thermal conductivity κ m , 

and define L12  as a magneto-thermal coupling coefficient ςm . Note that the Onsager 

reciprocity relation manifests itself explicitly in Eqs. (3) and (4). It can be shown using 

Cauchy-Schwartz inequality that L11L22 ≥ TmL12
2
 (in the case of electron transport, this 

inequality implies a positive zero-current thermal conductivity [22]), which guarantees 

the net entropy generation in this system is non-negative [51]. Eqs. (3)-(7) are 

reminiscent of electron transport, and the external field B  seems to play a similar role as 

the electrochemical potential of electrons. We need to point out here, however, a critical 

difference between electrons and magnons. The number of electrons is conserved, thus 

the electrochemical potential includes the contribution of a finite chemical potential that 

can be “self-adjusted” during the transport process, whereas the number of magnons is 

not conserved, and the B  field does not contain a similar contribution as the chemical 

potential of electrons (given the magnetic dipolar interaction is negligible).   

  With the constitutive equations (3) and (4), we still need conservation laws to complete 

the formulation. We first look at the phonon system. At steady state, the phonon energy 

can either be transported by the phonon heat flux or transferred to the magnon system. 

Thus in the spirit of Sanders and Walton’s original work, the phonon energy conservation 

states: 

 ∇⋅ Jqp =
CmCp

Cm +Cp

Tm −Tp
τ mp

≡ gmp Tm −Tp( ),  (8) 

where Jqp  is the phonon heat flux, Tp  is the phonon temperature, Cm  and Cp  are the 

volumetric specific heat of magnons and phonons, τ mp  is a phenomenological time scale 



characterizing the inelastic interaction between phonons and magnons, and we define gmp  

as a lumped coefficient of phonon-magnon energy exchange. It is worth mentioning that 

Eq. (8) is the result of inelastic phonon-magnon scattering and in principle can be derived 

from a full version of BTE, similar as in the case of electron-phonon coupling [22]. 

Another conservation law has to do with the energy input from an external power source. 

The impression that a magnon flow can be generated by a non-uniform static magnetic 

field can be misleading because it violates the second law of thermodynamics: no energy 

is put into the system, while the magnon flow can potentially output work. In reality, 

when the magnetization of the magnet changes, an electromotive force (EMF) is induced 

in the electromagnet (e.g., a solenoid). To maintain the magnetic field, the current 

running through the electromagnet has to overcome this EMF and thus do work. It can be 

shown [50] that the work done by the current in this process is precisely equal to BdM . 

Hence the local creation and annihilation of magnons enables the energy exchange 

between the system (including the ferromagnet itself and its interaction with the field) 

and the external power supply. A local version of the above statement can be translated to 

∇⋅ Jqm + BJm + Jqp( ) = B∇⋅Jm , or more explicitly:  

 ∇⋅Jqm +∇B ⋅Jm = gmp Tp −Tm( ).  (9) 

Now combining Eqs. (8), (9) with (3) and (4), and the normal Fourier law for phonon 

heat conduction: Jqp = −κ p∇Tp  (κ p  is the phonon thermal conductivity), the governing 

equations for the temperature distributions of magnons and phonons read (considering 1-

dimentional situations): 



 −κ p

∂2Tp
∂x2

= gmp Tm −Tp( ),  (10) 

 −κ m
∂2Tm
∂x2

+ 2ςm
∂B
∂x

⎛
⎝⎜

⎞
⎠⎟
∂Tm
∂x

+ςm
∂2B
∂x2

Tm −σ m
∂B
∂x

⎛
⎝⎜

⎞
⎠⎟
2

= gmp Tp −Tm( ).  (11) 

Here we assume the applied temperature and magnetic field gradients are small and thus 

the transport coefficients are averaged values that do not explicitly depend on Tm  or B . 

Eqs. (10) and (11) reduce to the original Sanders-Walton model when the external 

magnetic field is uniform, even though in this case the magnetization flow is present (

Jm = −ςm∇Tm ). 

  More interesting phenomena emerge when non-uniform external magnetic field is 

applied. We expect a non-uniform external field will drive magnon flow, which is 

associated with a magnon heat flow, and cause temperature redistribution of both 

magnons and phonons due to the phonon-magnon coupling. Without a concise analytic 

solution with the coupling terms, we turn to numerical solutions for clarity, before which 

we first estimate the kinetic coefficients based on information in literature on yttrium iron 

garnet (YIG). Since the magnetic energy scale is pretty small ( gµB ≈1.3 K/T , for g = 2  

in YIG), we expect the predicted effect to be more pronounced at low temperatures. Thus 

we use the low temperature expansion of the magnon dispersion  !ω k( ) = Dk2a2 , where 

D ≈1.8 meV  [52], and the lattice constant a = 12.3Å for YIG  [53]. For a similar reason, 

we neglect the field dependence of the kinetic coefficients in the following discussion. 

Further assuming a constant relaxation time τ m , we obtain the ratio 

σ m

ςm
= gµB

kB

ξ 1.5( )
ξ 2.5( ) = 1.304 K/T  with ξ t( ) = xtex

ex −1( )2
dx

0

+∞

∫ , which is analogous to the 



inverse of the Seebeck coefficient in the electron case. The value of τ m  is highly 

controversial [13], and here we adopt a value of  τ m ∼1 ns , which leads to the calculated 

uniform-field magnon thermal conductivity κ m ≈ 8 W/mK at 20K with zero field that is 

at least of the reasonable order of magnitude compared with the experiment [54]. With 

the same relaxation time, we obtain σ m ≈ 0.25 W/mT2 , and ςm ≈ 0.19 W/mTK . For 

phonons, we choose κ p ≈ 50 W/mK  [54]. At 20K, the specific heat of magnons and 

phonons are on the same order (~104 J/m3K) [55]. Different claims on the value of τ mp  

exists, ranging from below a few nanoseconds [32,56] to longer than a few hundred 

nanoseconds [13,57–59] at 300K. At lower temperature, this relaxation time will be 

longer, and we tentatively choose τ mp ≈100 ns  due to the large uncertainty of available 

data.    

  Provided the above parameters, we study numerically an experimentally realizable case: 

a strip of YIG (100 um long) connected to a thermal reservoir at 20K with one end, and 

the other end isolated. If part of the YIG strip is covered by a magnetic shielding material 

with high magnetic permeability, a step-like magnetic field can be realized within YIG 

just by applying a uniform field. We model this step-like magnetic field as a smeared-out 

Fermi-Dirac function as shown in Fig. 1(a) (the length scale of the smearing is chosen to 

be much larger than the mean free paths of magnons to avoid the complication of ballistic 

transport, which in principle can still be fully captured by the BTE), and calculate the 

phonon temperature at the isolated end. In this case we apply adiabatic boundary 

conditions for magnons at both ends ( Je = Jqm + BJm = 0 ). A phonon-temperature-drop 

of ~56 mK is predicted under a step field varying from 0.5T to 1.5T, with the temperature 



distribution of both phonons and magnons shown in Fig. 1(b). This temperature drop can 

be further amplified by increasing the field gradient as illustrated in Fig. 1(c). We would 

like to emphasize that the estimation here is very rough due to the lack of information, 

and is only intended to demonstrate a probable order of magnitude of this effect. The 

calculation above indicates that this magnon cooling effect may be detected under 

currently available experimental resolution. In passing we note that the predicted effect 

differs from the conventional magnetocaloric effect [60], such as adiabatic 

demagnetization, in that the magnetocaloric effect utilizes thermodynamic properties of 

the magnet (i.e. the field-dependent specific heat) in equilibrium, and a uniform field is 

often applied.  

  We provide another example where the magnon cooling effect is set up in close analogy 

to a thermoelectric Peltier cooling unit and calculate the coefficient of performance 

(COP) and effective zT. In this example the YIG strip is sandwiched between two 

thermal reservoirs with temperatures Th > Tc , when a step field (as in Fig. 1(a)) is applied. 

The temperature profiles when Th = 20 K , Th −Tc = 30 mK  and B0,B1( ) = 0.5 T,1.5 T( )  

are plotted in Fig. 2(a), and it is clearly shown that heat is moved from the cold source to 

the hot source. The COP can be calculated via COP ≡ Qc

W
=

Jqp,cold
− B∇⋅Jm dx0

L

∫
, and is plotted 

in Figs. 2(b) and 2(c) against varying temperature and field difference. At the fixed 

temperature difference of 30 mK (Fig. 2(b)), the optimal COP is around 2, corresponding 

to an equivalent thermoelectric module with ZT=0.01. From Fig. 2(c), the maximal 

attainable temperature difference is ~60 mK when B0,B1( ) = 0.5 T,1.5 T( ) , where the 

COP drops to zero. 



  In summary, we have developed a semi-classical transport theory for coupled phonon-

magnon diffusion. The merit of this work lies in the fact that we apply the techniques 

widely used in the field of thermoelectrics to the study of magnetization transport, utilize 

the analogy between field-driven electron and magnon transport, and combine the 

thermal effect with the field-driven magnon transport in a natural way. Our theory takes 

into account that magnon flow can be driven by non-uniform magnetic field, and predicts 

that the heat carried by magnons associated with their flow can result in a cooling effect. 

In real materials, non-ideal effects such as magnetic dipolar interactions and the magnetic 

anisotropy need to be considered as a refinement to this work. We have estimated the 

magnitude of the magnon cooling effect in YIG, to show it can be verified by 

experiments. For practical uses, however, it is necessary to search for more suitable 

materials (preferably with lower thermal conductivities, and strong phonon-magnon 

interaction), and optimize the material properties via engineering efforts. We envision 

this new effect could supplement the conventional magnetocaloric effect in cryogenic 

applications in future. 
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Figure 1. (a) The step-like magnetic field, smeared out as a Fermi-Dirac function. B0  is 

fixed to be 0.5T in the following calculation. (b) The temperature distribution of phonons 

and magnons when B1 = 1.5 T . One end of the sample ( x = 0 ) is thermally connected to a 

reservoir at 20K, and the other end is isolated. (c) The dependence of the phonon 

temperature difference between the two ends on the difference of the magnetic field when 

B0  is set to 0.5T.  

 

 

   

 

 

 

 

 

 

 



 

Figure 2. (a) The temperature profiles of phonons and magnons when Th = 20 K , 

Th −Tc = 30 mK  and B0,B1( ) = 0.5 T,1.5 T( ) . (b) COP versus the change of magnetic 

field when the temperature difference is fixed at 30mK. The hot-side temperature is fixed 

at 20K. (c) COP versus the temperature difference when the hot-side temperature is fixed 

at 20K and the magnetic field is fixed at B0,B1( ) = 0.5 T,1.5 T( ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


