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ABSTRACT

Free-form surface machining is a fundamental but time-consuming process in modern manufacturing. The
central question we ask in this thesis is how to reduce the time that it takes for a 5-axis CNC (Computer
Numerical Control) milling machine to sweep an entire free-form surface in its finishing stage.

We formulate a non-classical variational time-optimization problem defined on a 2-dimensional manifold
subject to both equality and inequality constraints. The machining time is the cost functional in this
optimization problem. We seek for a preferable vector field on a surface to obtain skeletal information on
the toolpaths. This framework is more amenable to the techniques of continuum mechanics and
differential geometry rather than to path generation and conventional CAD/CAM (Computer Aided
Design and Manufacturing) theory.

After the formulation, this thesis derives the necessary conditions for optimality. We decompose the
problem into a series of optimization problems defined on 1-dimensional streamlines of the vector field
and, as a result, simplify the problem significantly.

The anisotropy in kinematic performance has a practical importance in high-speed machining. The greedy
scheme, which this thesis implements for a parallel hexapod machine tool, uses the anisotropy for finding
a preferable vector field. Numerical integration places tool paths along its integral curves. The gaps
between two neighboring toolpaths are controlled so that the surface can be machined within a specified
tolerance. A conservation law together with the characteristic theory for partial differential equations
comes into play in finding appropriately-spaced toolpaths, avoiding unnecessarily-overlapping areas.
Since the greedy scheme is based on a local approximation and does not search for the global optimum, it
is necessary to judge how well the greedy paths perform. We develop an approximation theory and use it
to economically evaluate the performance advantage of the greedy paths over other standard schemes.

In this thesis, we achieved the following two objectives: laying down the theoretical basis for surface
machining and finding a practical solution for the machining problem. Future work will address solving
the optimization problem in a stricter sense.

Thesis Committee: Professor Sanjay E. Sarma, Chairman, Mechanical Engineering, MIT

Professor Samir Nayfeh, Mechanical Engineering, MIT

Professor Nicholas Patrikalakis, Ocean Engineering, MIT
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The advantage ofconfining attention to a definite group of abstractions, is that you
confine your thoughts to clear-cut definite things, with clear-cut definite relations.

... ... It was an ambitious enterprise, and they were completely successid. ... ...
Maupertuis'success in this particular case shows that almost any idea which jogs

you out ofyour current abstractions may be better than nothing. ... .... But this
would be a mere tautology. ... ... Thus nature is a structure ofevolving processes.

The reality is the process.

_Alfred North Whitehead in Science and the Modern World-

The process ofsolution is correct, but our answer is a = a, or x = x, or 0 = 0.

-Leo Tolstoy in My Confession-

So there is nothing new under the sun.

-Ecclesiastes 1:9-

But new wine must be put into fresh wineskins.

-Luke 5:38-
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I INTRODUCTION

In this thesis, we attempt to mathematically understand the Numerical Control (NC) milling process of
solid parts bounded by free-form surfaces in the finishing stages. Unlike conventional CAM (Computer-
Aided Manufacturing)t systems, which usually concentrate on the geometric aspects of machining, the
model we construct in this thesis includes the kinematics of a specific machine tool. There is another
significant deviation from the conventional approach: we model tool paths as a finite selection from the
streamlines of a vector field on the surface. We deal with tool paths as a whole rather than as individual
entities. Based on the established framework, the path-planning task is formulated as a constrained (non-
classical) variational time-optimization problem. In other words, given geometric tolerance, we seek to
finish, as quickly as possible, machining a given surface while respecting the kinematic limits of machine
tools.

Tool and die manufacture remains a bottleneck in product development today. In the automotive industry,
for example, dies often require tens of hours to machine. Reducing machining time is therefore of
considerable economic importance because the time to market is a crucial factor in today's competitive
economic environment. We propose a subtle but effective way to increase the productivity of NC machine
tools. We describe how the global geometry (as opposed to local geometries or feed rates) of tool paths
can be optimized for a specific machine tool just as computer programs are today compiled for specific
computers. Of all of tool paths possible, we will seek the one that minimizes a very important
performance metric: total cutting time.

Solving this problem is numerically-intensive but finding the quickest path would have been much more
intractable in the absence of our framework. We simplify the problem and suggest an approximate
solution that can be found utilizing only the local information on surface geometry and machine
kinematics. This approach shows promise for machining a surface with high-speed machine tools; in this

t We use the terminology, CAM, in its narrow sense-computer-aided NC part-programming or tool path
generation.
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case, such local information carries a strong implication on the best directions of cuts. The algorithms and
the concepts originating from this local approach provide a good basis of attacking more general
problems. Additionally, the algorithm shows promise for being highly automated while not sacrificing
machining efficiency.

We claim three main contributions in this dissertation work. First, we formulate a fairly general
optimization problem that captures the reality of machining. The formulated problem is amenable to
numerical analysis. This not only lays down a theoretical basis for the field of surface machining but also
potentially conveys the implications of future practical implementations. Second, we enlarge the scope of
path planning. The kinematics of a machine tool is now reflected in the formulation. This consideration
has a practical importance in the context of high-speed machining and in recent trends in parallel
mechanisms. Third, we develop an algorithm that finds approximate solutions to the formulation
presented.

The rest of this chapter briefly explains related work, the motivation for this work, and the scope of the
study. We introduce the problem of interest gradually while the next chapter takes care of more rigorous
definitions. Finally, we present an outline of this thesis.

10



1.1 NC Tool Path Generation: State and Scope

In this section, we provide a brief overview of CNC machining and tool path generation. We then describe
the problem that we deal with in this thesis.

HARDWARE

Machining has been one of the most important means of manufacturing processes in history. Based on the
century-old machine tool technology, together with the electronics and the emerging notion of computers,
the first NC machine tool was built in the 1950s. In the following decades, various types of NC machine
tools were successfully commercialized. With the advance in computer-technology, NC machines evolved
in the stage of DNC (Direct/Distributed NC) and CNC (Computerized NC). Milling machines, which we

consider in this study, were among the earliest NC machine tools [13]. They perform wide range of
operations. Milling machines equipped with a tool changer are called machining centers and are widely

utilized in everyday manufacturing practice. Today, besides being a backbone of the automotive and

aerospace industry, they play a crucial role in the manufacture of billions of dollars of consumer products,
made of metal or plastic, that require dies and molds.

Recently, the advantage of parallel mechanisms for machines/robots over serial mechanisms has been
widely investigated, even though it is an open question whether this new type of machine tools can easily
outperform the traditional structures that have been optimized for two centuries [11]. An innovation-the

metamorphosis of mechanical skeletons-has begun from the very bottom of this technology. We have
used a parallel mechanism called a hexapod for examples in this work. However, the theory is equally
applicable for all of mechanisms.

In recent years, the insatiable need for performance of machine tools has spawned the area of high speed

machining. The local approach developed in this work has special significance in this context. Today, high

speed spindles cut at 30,000 - 50,000 rpm and can sustain very high feed rates, on the order of 500 inch/

min - 1000 inch/min. Unfortunately, advances in actuation technology have not kept pace with advances
in spindle technology. The result is that motion actuation is often the bottleneck in machine performance.
Our research addresses an opportunity to squeeze better performance out of machine tools and enables
higher speed machining.

SOFrWARE

In the early days of NC, users communicated with the controller (MCU) directly in machine languages

consisting of G-codes and M-codes. In the 1970s, high-level part-programming languages such as APT
and ADAPT emerged, which were compiled into the machine languages. The advantage is similar to the
one achievable from high-level computer languages such as C over assembly languages, but the necessary

part-geometry had to be typed in the program files manually. Advances in CAD (Computer-Aided
Design) made it possible to use the CAD data in generating machine code, and the direct link between the
design task and the manufacturing task was established. Such systems are called CAD/CAM systems.

The ultimate goal of CAD/CAM systems, in its narrow sense, is seemingly simple: given a shape of a
part, generate "efficient" tool paths that produce the part within tolerance. However, this task turns out to
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be challenging if we require high quality and efficiency of generated paths for complex part-geometry.
The CAD/CAM problem is quite inter-disciplinary and has attracted many researchers from diverse fields,
including mathematics, industrial engineering, mechanical engineering, and computer science. In recent
years, a tremendous amount of programming effort has been devoted to solving this problem, and several
CAD/CAM systems have been commercialized. However, CAD/CAM systems are still user-intensive,
and users are responsible for recognizing and harnessing any advantages from a particular strategy of
path-generation. There is still room for improvement in systems available today, especially when the users
push the envelope of performance.

FREE-FORM SURFACES

For engineering and aesthetic reasons, non-prismatic parts, bounded by free-form surfaces, are becoming
increasingly common in engineering design. Examples include fuselages of planes, turbine blades, bodies
of automobiles and surfaces in molds. Manually designing and machining these parts require a
tremendous amount of human effort. Surface machining is the area where CAD/CAM is vital.

In today's CAD/CAM systems, free-form surfaces of parts are represented mathematically in parametric
form [1 and 2]. Examples of parametric surfaces include Bezier surfaces, B-Spline surfaces and NURBS
surfaces. The theory that is developed in this work is applicable to any parametric form, but the
implementation was made for the simplest form, Bezier tensor product surfaces.

A surface often consists of several patches [e.g. 3, 4 and 5]. It is also possible that a surface is trimmed off
for various reasons [e.g. 6 and 7]. We deal with a surface consisting of only one patch. Additional
handling for either trimmed or multi-patched surfaces is not covered in the current work, which is more
involved but possible by extension of this work.

GEOMETRIC TOLERANCES

Tool paths can be thought of as mathematical curves in the Euclidean 3-space. In physics, a time-
parameterized curve of a distinguished point is called a trajectory. In finishing, the cutter moves in
tangential contact with the surface. In path-planning literature [e.g. 19], such a point of contact is called a
cutter contact (CC) point. A trajectory of the CC-point can be thought of as a surface curve. A certain
nominal point irrespective of the surface, for example the tool tip, is selected as a cutter location (CL)
point for the purpose of commanding a machine tool. Proper discrete data of the trajectories of the CC-
point or the CL-point are needed for communicating with the controller in a finite period. They are called
CC-data and CL-data, respectively. Generating the discrete data from a trajectory is a relatively easy task
achieved through the consideration on the chordal deviation as shown in Figure 1-(a), [e.g., 17 and 18].
We do not cover this issue; fast block processing rate and the availability of higher order interpolations
makes this a minor issue in modern controllers.

In addition to the chordal deviation, the heights of cusps/scallops are a measure of the (macro) roughness
of a machined surface. Generally, cusps are not avoidable as shown in Figure 1-(b), but their heights are
reducible with fine path-intervals. Cusp heights vary from place to place. It is usual to prevent the cusp
heights from exceeding a certain value in order to achieve the required finish. The maximum cusp height
is called a cusp-height-limit. It is surprising that this requirement is not guaranteed by every CAD/CAM
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system. Sometimes, even when systems allow users to specify the cusp-height-limit, the condition is not

guaranteed [9 and 10].

The (micro) roughness of machined surfaces, the cutter marks [14] and the vibration of the machine tool

are related to various dynamic factors: machine tool power, cutting dissipation, machine inertia, machine

stiffness, feed rate, etc. We do not consider high order dynamics in the path-planning stage. As a rule, the

negative effect on both the roughness and the vibration is proportional to the cutting force. We simply

assume that a machine tool is rigid until the cutting force reaches a threshold value. In finishing stages,
the cutting force is quite negligible because a relatively small amount of material is removed. It is not

unreasonable that a (well-designed) machine tool can be considered to be an ideal rigid machine during

finishing.

FINISHING MODULE SPECIFICATION

The goal of this work is to find "efficient" trajectories. There are several other tasks that need to be

planned so that proper milling operation can be assured. Examples are spindle speed, tool selection, tool

change sequence, fixturing, tool wear, depth of cut and so on. We do not cover these topics in this work.

We assume that appropriate selection of some process variables is done in a higher level CAD/CAM

system or in a CAPP (Computer-aided Process Planning) system [8].

In the current work, we are interested only in a finishing. It is assumed that a roughing process generates

a near-net shape part that has only a small amount of uncut material. The objective of finishing is to

remove these remnants as quickly as possible and to sculpture the fine detail of designed surfaces. The

desired level of surface finish-the cusp-height-limit-is specified by users either in the design stage or in

the planning stage. Machine kinematics and actuator limits are specified to capture the anisotropy of

13



machine tool performance. This can be integrated into the system just as printing devices are specified in

today's word-processors or operating systems. Our system is asked to generate an efficient tool path for

the specified machine once other higher level details have been determined. This is shown in Figure 2.
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1.2 Motivation

We now show a few simple examples to explain how the geometry of surfaces and the kinematics of
machine tools come into play in machining performance. The consideration of the kinematics is a
substantial departure from the conventional geometric approach in today's CAM systems.

LENGTH VS. SPEED AND DIRECTION VS. OVERLAP

There are two intuitive approaches for reducing the machining time: one is to reduce the length of paths
and the other is to increase the feed rate. The two approaches have never been considered in a single
framework.

First, consider reducing the length of paths; to achieve this, it has been attempted either to move in the
directions of the widest cut [37, 36 and 38] or to avoid overlapping paths [18, 22 and 28]. These are quite
different strategies. For example, along Path (c) in Figure 3, the tool conforms to the cylindrical surface
better than along Path (d). Given a tool size and a cusp-height-limit, Path (c) allows wider cuts and
therefore will be shorter. Another example concerns the importance of avoiding the overlaps. When an
apple (a sphere) is peeled, it makes no difference locally whether one peels vertically or horizontally, in
other words, whether one chooses Path (e) or Path (/). However, Path (/) is shorter not because the
independent cuts are wider but because it does not overlap. Path (e) overlaps highly at the top of the
sphere. The question is then, whether we can achieve both objectives-both avoiding the overlaps and
moving in the most efficient directions-at the same time for general surfaces. The answer is "no" and the
underlying geometrical problem is subtle. In addition, neither of the two strategies, in general, leads to the
shortest path. It should also be pointed out that the pathological case, "spotting,"t is in a naive sense the
shortest because its length is zero. Some mathematical rigor is needed for constructing a problem that
yields practically acceptable solutions.

Second, the speed with which a surface can be machined is also of considerable importance. To improve
the speed, feed rate adjustment based on cutting physics has been studied in the past. The strategy is
basically to allow high feed rates when the cutting force is light and to reduce them when the cut is
aggressive. This approach is more applicable to high-force situations like a rough machining. In finishing,
especially in high-speed machining, it is more likely that the motion actuation, rather than the cutting
force, is the bottleneck. We, therefore, ignore cutting force related limits in this work.

KINEMATIC LIMITs

The motors in a machine tool have certain performance limits in terms of velocity and acceleration

tSpotting is to locate a cutting tool on the surface finitely-many times and cover a surface with its imprints.
The majority of time is spent on moving the cutter from a location to another location. The actual "in-cut"
time is zero; most of the time is spent out of the cut. This is analogous to removing a potato peel by small
(infinitesimal) spots as apposed to peeling it. The first approach yields a zero length, but is clearly impracti-
cal.

15
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Figure 3 Trade-offs in Tool Paths
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Figure 4 Kinematic transformations skew the performance envelope.

capabilities. As shown in Figure 4-(a), every motor has a torque-speed curve that determines the

maximum torque as a function of velocity. Velocity limits occur when the motors that drive the axes of a

machine reach their maximum velocities. Acceleration limits are a consequence of motor torque limits

and machine inertia at any posture in the workspace. The motors drive the cutting tool through a

kinematic mechanism such as a Cartesian 3-axis structure or a hexapod 6-axis structure as shown in

Figure 4. The performance limits of the motors are manifested in cutting performance through these

kinematic relationships. This has two implications. First, as one would expect, there are limits on the

maximum feed rate and acceleration achievable in any configuration. Second, and perhaps more

important, the kinematic transformations skew the velocity and acceleration limits in Cartesian space.

This makes the performance envelope of the machine tool extremely direction dependent. In the presence

of this anisotropy, some tool paths are significantly better than others. This fact, which has traditionally

been ignored in geometry-based path generation techniques, can be taken advantage of to produce time

optimal tool paths. We will show that the gains can be significant. The situation is especially pronounced

in 5-axis machines, in which there is a coupling between translation and rotation. In fact, the problem is

especially acute in machines which have a singularity in their workspace. C-axis machines exhibit this

problem.

TRADE-OFFS

The strategy is therefore to avoid slower tool paths and to move in the most effective direction. The slow

tool paths are those that figuratively "take the winding road" and hence force the NC machine to move

much more slowly. Two simple examples of the trade-offs in tool paths are presented in Figure 3. Cases

(a) and (b) show the importance of acceleration limits. When mowing a lawn for example, the mower has

limited traction, which limits the acceleration sustainable. Case (a) unnecessarily taxes this limit while

case (b) is efficient. We perform this type of optimization intuitively and continuously. Case (c) and (d)

show a slightly more subtle trade-off. Along Path (d), the tool conforms less to the surface and therefore

leaves a worse surface finish. As mentioned earlier, to improve the surface finish, finer path-intervals are

needed and, as a result, the length of the path increases. However, for most Cartesian B-axis machine

tools, motion along Path (c) will tend to be sluggish due to kinematic limits. In addition, in a hexapod

shown in Figure 4-(b), Path (c) generates higher inertial force because the heavy spindle head swings,

which is an unnecessary burden. Therefore, the analysis of which path is preferable is not trivial; the

trade-off must be examined and framed mathematically.
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1.3 Previous Work by other Researchers and Some related Optimal Path Problems

There is a massive body of previous work in the area of surface machining. The most basic role of a
CAD/CAM system is to produce geometrically feasible tool paths, where bulk of the emphasis lies. There
is also some work in geometric performance improvement. Separately, there is also considerable amount
of work on cutting forces and their considerations in path generation. Comprehensive lists of references
are available in [15, 16, 20 and 21]. We also explore the characteristics of the machining problem through
comparison with path problems in other fields such as robotics. It is shown that none of the previous
frameworks are suited for the machining problem.

BAsIc FEASIBILITY

Much previous work has dealt with basic issues of geometric feasibility such as: techniques for path
generation including iso-parametric, iso-offset, iso-planar, iso-cusp-height, iso-phote, iso-engagement and
projection schemes [20, 21, 49, 23, 18, 22, 24, 25 and 26]; issues of system integration [39, 40 and 41];
gouge-free tool paths and gouge correction [43, 48 and 49]; issues of accessibility and global interference
[45, 47, 46 and 50]; tool shape, tool orientation and surface finish prediction [52 and 53].

GEOMETRIC PERFORMANCE IMPROVEMENT

Once feasibility is ensured, it is possible to improve the efficiency of machining, and there has been work
in this area as well. Elber and Cohen, for example, try to reduce unnecessary tool path overlaps following
iso-parametric curves, where only tangential distance was regulated below a critical overlap value instead
of cusp height [27]. In iso-cusp-height schemes, one of the families of the curves, instead of iso-
parametric curves, is selected to avoid overlaps [18, 22 and 28]. With the assumption of constant feed
rate, such tool paths are "near optimal" although strict optimality is ensured only for flat surfaces. In [29],
the authors specify varying cusp-height-limits based on heuristics. The opposite approach is to move in
the most convex direction, which is sometimes called (optimal) principal-axis-machining (PAM) [37; 38
and 36]. Even though the widest area is swept from the viewpoint of an individual path, the neighboring
paths overlap and some regions are redundantly machined. However, it should be mentioned that the
focus of the authors' attention is not the path length or the finishing time but the subsequent grinding and
polishing period which is performed after surface finishing. These types of global issues are considered
by Choi et al. and Mullins et al. [19 and 32]. They adjust tool orientations to reduce cusp heights for a
given set of CC-points and, consequently, cut down the cost of manual polishing. Spatial global
optimization has also been studied. Elber divides a surface into convex, concave and parabolic regions
and suggests the use of a flat-end cutter for convex regions in order to sweep much larger area during the
same time [30]. This idea can be extended to gearing up a sequence of cutters of gradually diminishing
size [31]. For concave regions, a new, and interesting, scheme called multi-point machining (MPM),
developed by Warketin et al., shows promise [33, 34 and 35; 38]. They place a toroidal or flat cutting tool
on a surface such that multiple contacts are allowed. Global intersection problems are solved to
implement this idea. With this method, much larger area is swept because the effect is similar to using
multiple ball-end mills. For concave spherical surfaces, this method works extremely well because
infinitely many contact points can be found. The effect is similar to using a formed-tool.
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CUTTING PHYSICS

The idea of adjusting the feed rate to optimize tool paths for considerations related to cutting physics has
been studied by some researchers. A typical application is the reduction of tool deflection or vibration by
reducing the feed rate at points on a given path where the cut is too aggressive [55, 56, 57 and 58].
Parameters other than feed rates are also controlled to reduce the cutting force. In the iso-engagement
scheme, cutting force variation is reduced, which eliminates the most aggressive point itself [25], in other
words, the cutting force is almost constant along a tool path. The implication of the tool orientation on
cutting forces is discussed by Kruth and Klewais [38]. The most productive roughing path pattern is
identified for a given designed part based on fuzzy pattern analysis in [77]. Unlike other researchers, they
regard the cutting time, instead of the path length as the criterion of the optimality and consider the global
path pattern [78]. The idea of choosing preferable directions is discussed by Lim et. al. [59]. The authors
suggest following the directions that cause the minimum cutting force and tool deflection in order to
avoid machining error and chatter. Their work is very pertinent in high-force situations, where machine
deflection is an important issue. We seek tool paths for surface finishing, where motion actuation is
usually the bottleneck. The idea, however, is similar.

STAIRCASE FACE MILLING

The staircase face milling for flat convex polygonal surfaces is one of the most fundamental and simple
milling processes [73 and 74]. In this case, paths are mutually parallel except at the edges of the polygon
and the length is a function of only the direction of the paths. In [73], the authors developed an algorithm
to find the shortest staircase path. The length is procedurally evaluated through the construction of actual
tool paths for a given cutting direction, and then optimized. Even though one-dimensional optimization is
a relatively easy task, we reformulate the problem from the viewpoint presented in this dissertation as a
thought experiment. In our framework, the movements inside the polygon are called effective movements
and the movements along the edges are called non-effective movements. Instead of procedurally
evaluating the total length, we take an approximation assuming the "regularity" of paths. That is, we

assume that the space between the tool paths was set small enough to neglect boundary effects. Then, the
length of effective movements is irrelevant to the cutting direction because the length can be
approximated by (Area) /(Tool Space). It is also realized that the length of the non-effective movements is
approximated by half length of the perimeter, which is also a constant, unless the cutting direction
coincides with the direction of any edges. If so, the length of the non-effective movements is reduced by
the half of the length of the corresponding edge. Therefore, the path length is only piecewise continuous
(and, in fact, lower semi-continuous) staying in constant value except at the discontinuity. The
consequence is that the minimum occurs for the directions of the longest edge; this was presented as an
observation after intensive numerical analysis in [73]. Of course, for general surfaces, this kind of simple
analysis fails because of the complications mentioned in the previous sections. For sculptured surfaces,
we are largely involved in the situation in which the effective movements are dominant whereas in the
planar problem it was the non-effective movements that dominated. Besides, we need to add an additional
penalty term to the non-effective movements considering the inertia effect; at the end of each effective
movement, the tool needs to be decelerated, moved to the next path and accelerated again [75 and 76].
This additional penalty term is not proportional to the perimeter but rather to the number of tool paths. In
[75], it is proved that the number of tool paths are minimized by the tool paths that are parallel to one of
the edges of the polygon.
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OPrIMAL CONTROL

The problem of time-optimal path planning under actuator limits has been studied intensively by the
robotics community [83, 84, 85, 86, 87, 88, 89 and 91]. Difficulties in finding time-optimal paths are
often carefully described by authors as the words, from the articles of the participants, as "the curse of
dimensionality," "numerically-intensive," and "numerically-sensitive." Therefore, less ambitious goals are
set if real time control is required [83 and 86]. Nevertheless, optimal control is a well-established theory,
which is crystallized in Pontriagin ' maximum principle that was proved by Boltianskii [80, 81 and 82].
This theory extends the applicability of the classical (one-dimensional) calculus of variations for systems
that are (1) constrained by the state equations and (2) actuated by piecewise continuous control signals
confined in closed sets. Classical examples include finding the shortest path on a smooth surface. Given
two points on a surface, it is proved that a geodesic curve connects the two points with minimal length
[1101. This geometric problem is relatively easy to grasp, and helps us to intuitively understand the key
features of one-dimensional variational problems. Both the calculus of variations and Pontriagin's
maximum principle lead to what are known as 2-point boundary value problems (BVPs) of ODEs
(Ordinary Differential Equations), which are necessary conditions for optimality. On the other hand,
reasoning based on Bellman's dynamic programming results in a PDE (Partial Differential Equation),
called the Hamilton-Jacobi-Bellman equation [92, 97, 95 and 94]. Stronger smoothness is required for the
PDE and its applicability is, consequently, somewhat narrower [95]. The main strategy of all the
previously mentioned approaches is finding the solutions of the equations which are necessary, or even
"weaker", conditions for optimality. If we directly discretize the state equation, it is possible to apply
dynamic programming techniques for difference equations [93 and 96], which is known to be intractable
in high dimensional situations such as robot manipulator control. However, dynamic programming is
general reasoning and we can apply it in various ways if we alleviate the "curse of dimensionality" [90
and 98]. The direct (transcription) method is based on the fact that the unknown functions that we seek
are represented as points in a certain function space [98, 99, 100 and 130]. Thus, we attempt to treat the
functions as if they were points in a "usual" space. Approximating some unknown functions-usually, the
control signals-and the cost functional in terms of certain finitely-many pre-selected functions, we
reduce the dimensions of the problem from the infinity. Now, various standard or static optimization
techniques such as the steepest descent method can be applied in the reduced dimensional spaces. Instead
of searching discrete control signals as in the usual direct method, the space search method [85 and 87]
makes use of a well-established algorithm, called the Bobrow-Dubowsky-Shin algorithm (BDSA) [88 and
89]. The BDSA finds the minimum time tracking control for a pre-defined path connecting the two end
points. We search the optimal path by discretizing and varying the predefined path while the BDSA
evaluates the optimal tracking time of the given path at each stage. By this approach, the state-dependent
constraints on the control signals are conveniently dealt with, which is not straightforward with the
maximum principle. In general, the compromise between the search dimension, cost evaluation, stability
and convergence should be considered when a particular method is chosen. A brief history is found in
[101 and 102].

Unfortunately, the well-studied result of the optimal control theory cannot be directly carried over to the
realm of machining. This is due to one fundamental difference between path planning for machining and
for robots: while robotic paths seek at most to follow a given path, or go from point to point, machining
paths almost always seek to fill an area. The two problems differ qualitatively. For example, a villager
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(a) A villager's problem: Optimal Control/Calculus of (b) A postman's problem: Traveling Salesman
Variations/Geodesics/2-point BVP/Dynamic programming Problem. Machining problem?

Figure 5 Qualitatively different 2 path problems

who intends to visit a friend's house may have to solve the geodesic problem while a postman, whose

everyday task is to visit all the houses in a village, has to solve the traveling salesman problem (TSP),
which is a combinatorial optimization problem. This is shown in Figure 5. Planning robotic paths is

similar to the villager's problem while the TSP captures a crucial aspect of the machining problem in that

machining paths need to cover a whole surface properly. (This does not imply that the machining problem
is equivalent to the TSP in every aspect.)

GRAPH-THEORETIc APPROACH

The problem could be posed graph-theoretically. An intuitive strategy is to find a distribution of points on

a surface, whose mean distance is as small as the square root of the surface area covered by a tool, and to

formulate the machining problem as a TSP, by requiring the tool to visit all the points in the distribution.

Unfortunately, this does not solve the problem in a practical sense. First, the formulated problem is

conjectured to be highly intractable; the TSP is known to be an NP-complete problem [124]. Second, the

distribution biases the problem towards some directions in which the tool should move. In other words,
we cannot achieve arbitrary freedom/precision for the directions. If we add more points in the distribution

to allow more directions, the requirement that the tool should visit all the points will cause redundant

machining. In fact, the redundancy itself is determined by the distribution. Even though the TSP captures

an aspect of machining, the distribution commits too much before the problem is solved. That is, for the

machining problem, there is no obvious choice of the distribution of points like the locations of the houses

which are known to the postman. It seems that the problem was discretized at too early a stage by being

formulated as a TSP even though, after all, we need to introduce certain discretization to solve the

problem using digital computers. The discretization is deferred in this thesis until a proper continuum

model is established. Under the continuum model, we are, after all, required to solve problems similar to
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the TSP especially when we construct the non-effective movements, but the total cutting time will not be
sensitive to the construction as long as "reasonable" movements are made. That is, it is of no practical
importance to find the exact solution at great computational expense because the performance of cheap
approximate solutions is very close to the one of the exact solutions.

It should be mentioned that Chou [66, cf 67, 68, 69, 70, 71 and 72] considered similar kinds of
complexity of machining problems. He constructed an "adjacency graph" with the tessellation of a
surface. He formulated the machining problem as a series of known problems in graph theory: the
Hamiltonian path problem, the TSP, the Euler walk problem and the Chinese Postman Problem (CPP).t In
the context of the formulation, the tessellation was dominated by "large" polygons. He machined each
polygon with zigzag patterned paths and his concern was how to find movements that connect the
polygons. Since the requirement that either an edge or a vertex on the graph should be visited exactly
once is too restrictive, the Hamiltonian path problem and the Euler walk problem are not suitable for
general machining. Thus, the TSP and the CPP are considered. While the TSP is an NP-complete
problem, there is a known 4 ' order polynomial time algorithm for the CPP [126 and 127]. He converted
the TSP into the CPP by inverting the role of the vertices and the edges. Even though the formulation of
the machining problem as a CPP is reasonable in his context, the CPP loses some characteristics of the
machining problem largely because the tool is required to visit all the edges, and such paths will not form
streamlines but a grid. Thus, the TSP is closer to the reality of machining than the CPP; the TSP, however,
also loses some of the reality of machining due to the directional bias.

SPRAY COATING

A series of variational optimization problems related to spray-coating was formulated by Antonio and
Ramabhadran [62, 63, 64 and 65]. In their framework, either minimum painting time or uniform film
thickness can be pursued subject to various constraints. The authors sought curves in one piece. The spray
coating problem is different from the machining problem in that paint propagates on the surface and, as a
result, it accumulates at each point. The distribution of the accumulation rate is typically set to be "bell-
shaped" centered at the end-effector. An extreme case of this model is when the end-effector is held still.
By propagation, the whole surface will be covered eventually even though paint is not uniformly
distributed. On the other hand, only constant area of the surface is covered by a standing cutter. In this
sense, there is a fundamental difference between spray painting and machining.

UNIFORM SURFACE SCANNING

The question of how to uniformly cover a surface with scanning curves is asked by Tam [79]. This
question will also be answered in this thesis. However, Tam's measure of uniformity is dependent on his a
priori choice of surface partition based on parametric lines and lacks intrinsic meaning. We will resolve
this problem by employing a "conservation law" derived from differential manifolds.

t The CPP is to find the paths that visit all the edges with a minimum cost allowing repeated visits; the other
three problems are well known [124 and 127].
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CONCLUDING REMARKS

In general, there is little literature in the field of computational geometry on the consideration of cutting

time as a condition for optimality. Work in process physics is usually limited in focus to local feed rate

adjustment, and lacks a global view. Tool path generation is typically about suggesting a particular

scheme for feasibility. It is the users of a CAM system who determine the particular scheme to be used.
Well-developed time-optimal control does not apply in machining. Often, the objectives of algorithms for

surfaces are not intrinsic and depend on the parameterization of the surfaces, which is selected only for its
convenience. It is here that this work contributes: we seek to generate, automatically, "optimal" tool paths
based on a comprehensive mathematical model.
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1.4 Outline

In Chapter 2, we formulate the machining problem as a mathematical optimization problem. In Chapter 3,
we discuss the general consequences under this framework. In Chapter 4, we simplify the problem and
explain the way to find an approximate solution. In Chapter 5, we present some examples with the
necessary analysis. Finally, we conclude with the discussion on the future improvements of current work.
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1.5 Conventions

Many details are presented in the appendices in order to carry the essential ideas without confusion. If a

section (or a REMARK) is introduced just for completeness, its title is accompanied by a star sign. Footnotes

can be skipped safely. They are either for some references or for clarifying some minor subtleties. Instead

of presenting the most general case, we restrict the scope of the problem for simplicity. Simple notations

are chosen unless there is ambiguity. This is achieved mainly by avoiding the strict distinction between
tensors, matrices, transformations, vectors, column vectors (matrices) and points in multi-dimensional
spaces. Matrices and the column vectors, which are possibly tensors and vectors, are all typed in bold

letters. All vectors are treated as column vectors and, as a result, row vectors are denoted with the
transpose signature, which is the superscript T The distinction between "usual" functions and functionals
is made. Functionals are indicated with brackets. For example, F[x, y, z] means that F is a functional that

depends on the functions, x, y and z, which possibly depends on the derivatives of x, y and z, while

F(x, y, z) is a function of the independent variables, x, y and z. A function and its value are not

distinguished in the strict sense. Thus, we allow somewhat risky expressions such as f = f(x, y) and

g = g(x,y), to which many of us are accustomed. We state "a point f" or "a function f' to avoid the
confusion. Also, if two functions of different variables always have the same value, we sometimes do not

distinguish the two functions as long as it is not critical, e.g. we sometimes write f(x, y) = f(u, v) = f. The

firstfis a function, the second fis another function that should have been denoted by a different symbol,
and the lastfis a value or the dependent variable of the functions. We risk these hazards because we only

have 26 alphabetic characters in Roman alphabet [cf 136].
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2 FORMULATION OF THE MACHINING PROBLEM

In this chapter, we formulate a mathematical optimization problem that captures the machining process.
The final set of machining paths is a finite selection from the infinitely-many streamlines of a vector

field derived from the kinematics of the particular machine tool under consideration. The derived vector

field plays a role as a skeletal representation of machining paths; tool paths are chosen from its

streamlines through the consideration on the geometry of the surface and the tool. This viewpoint

constitutes the basis of the framework developed in this chapter: a "good" vector field, satisfying a certain

criterion, is found and tool paths are placed along its streamlines.

In Section 2.1, we briefly review the local geometry of a surface with respect to a tool, introduce the

general goal, and provide an overview of surface finishing. In particular, we introduce two geometric

notions, side step and its limit. From Section 2.2, we start to formulate the machining problem in a formal

way. That is, we mathematically state the objective and the constraints of the machining process. We

begin by constructing a comprehensive kinematic model of surface-cutter-machine interaction. We also
develop a differential equality constraint based on the "regularity" or "continuity" of tool paths. This
equality constraint must be respected to ensure proper coverage of area of a surface. We then develop an

expression for the cutting time, which we consider the cost function (or functional) in our optimization

problem. Finally, we describe the constraints of the process, including actuator limits and geometric cusp
height requirements.
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2.1 The Geometry of Tool Paths: a Brief Overview

The goal of surface finishing is to sculpt a part, or a component, to a required degree of surface finish as

quickly as possible. We briefly describe how this is typically achieved. Terms are loosely defined in this

section and rigorous definitions are provided in later sections.

CUSP HEIGHT AND SIDE STEP

If we are to prevent "over-cutting" or "under-cutting," a cutting tool must be placed on a surface in such a

way that the tool surface and the designed surface share a tangent plane. Furthermore, a ball-end mill that

has a smaller radius than the radii of (principal normal) curvatures of a designed surface does not cause

gouging as it prescribes its osculating path. For other tool geometries, more sophisticated but similar tool

placement strategies are necessary. In path planning literature, such a point of intersection of a surface

with a tool at an instant is referred to as the cutter contact point (CC-point). The CC-point moves on the

surface during a finishing process. A trajectory of the CC-point is called a surface tool path or simply a

tool path, which is a surface curve (or a curve on the surface) in mathematical terms [111].

Because a cutting tool cannot conform to every surface, scallops or cusps of finished parts are

unavoidable in general surface machining as shown in Figure 6-(a). Their heights can, however, be

reduced if we place more tool paths at finer intervals. The cusp height of a machined surface, which is

denoted by h in the same figure, generally varies from place to place. It measures how close a machined

surface and its designed surface are; it is necessary in machining to make sure that the cusp height is

below a certain limit value over an entire machined surface. We call such a limit value ho a cusp-height-

limit and we require that h ho .

To control cusps, we study the local geometry of a surface with respect to a tool-for example, a ball-end

mill. The conformity of the tool to a surface is best observed along a normal section at a surface point as

shown in Figure 6-(b); this particular normal section is perpendicular to the "averaged" tangent direction

of the neighboring two tool paths at the two CC-points shown in the figure. Loosely defined, the gap

between the two CC-points along the normal section, is called the side step and denoted by w. It is

observed that the cusp height h increases as the side step w becomes wider. That is, given the "averaged"t
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Figure 6 Cusps and side-step-limit corresponding a cusp-height-limit
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tangent direction at a point on the surface, there is established a one-to-one correspondence between the

side step w and the cusp height h (of course, for "small" cusps). Consequently, a side step corresponds to

the cusp-height-limit ho as shown in Figure 6-(c), which is referred to as the side-step-limit, and denoted

by w0 . The cusp height constraint, h ho, is now "equivalently" stated as the following inequality:
w!! w0 . This equivalent form turns out to be more convenient than its direct form. Note that the side-step-

limit depends on in which direction the cutting tool proceeds-the most convex direction is the most

preferable one from the viewpoint of an individual tool path in that it allows widest cut, in other words,
the largest side-step-limit.

Most CAD/CAM systems account for cusp-height-limits in their algorithms. We introduce two well-

known schemes for tool path generation and describe roughly how the cusp-height-limit constraint is

respected in them.

THE ISO-PARAMETRIC SCHEME

The iso-parametric scheme selects tool paths from the infinitely many iso-parametric lines on a surface

parameterized by a map r(u, v). For example, we choose a u-line as the first tool path; we choose

"enough" points on this first tool path for its discrete representation; at each point, into the direction

perpendicular to the first tool path, we mark a new point, whose distance from the original point is the

side-step-limit wo; we evaluate the v-value of each marked point; from the marked points, we select the

point which furnishes the minimum of the v-values; the u-line whose v-value corresponds to this

u-line (v = 1)

the next tool path

minimum v the first tool patl
overlapped region a u-line (v = 0)

v-line(u = 0)

(a) The iso-parametric scheme.

the next tool path

the first tool path

( o g

(b) The iso-cusp-height scheme.

Figure 7 The two well-known schemes of tool path generation

tNormal sections at a point on a surface are the intersections of the surface with the planes that contain the

surface normal. A normal plane is defined as the one that contains both the principal normal and the binor-

mal of a general curve. Normal sections, normal planes, principal normal lines, binormal lines, and surface

normal lines are frequently referred to in this work. The definitions can be found in most text books on dif-

ferential geometry [e.g. 112]. There are infinitely-many normal sections at a point on a surface because there

are infinitely-many planes that contain the surface normal line. A plane can be specified by its own normal

vector. This plane normal vector is aligned to the "averaged," tangent vector of the two tool paths. We used

somewhat vague term, "averaged" because there are no tool paths on the surface in the gap between the two

tool paths. This notion will be clarified in the next section, where we formulate the problem with more rigor.
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minimum is the next tool path; the steps are repeated until the surface is filled with tool paths. These steps
are shown in Figure 7-(a). In this scheme, tool paths generally suffer from redundant machining. Apart
from the simplicity of the procedure, there are no firm grounds for claiming any "efficiency" in iso-
parametric tool paths.

THE ISO-CUSP-HEIGHT SCHEME

The iso-cusp-height scheme maintains the height of each cusp equal to the cusp-height-limit, changing
the limit, hs ho or w < w0 , into an equality requirement, h = ho or w = w0 [18, 22 and 28]: a surface
curve is chosen as the first tool path; new points are found, being shifted from the first tool path by the
distance of the side-step-limit w0 as before; the interpolation of such a new set of points defines the next
tool path; the steps are repeated. This procedure is shown in Figure 7-(b). This scheme is an extreme case
that minimizes the amount of overlap of machined area. In this scheme, however, tool paths can be
aligned in inefficient ways. This happens, for example, in concave directions.
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2.2 Field Description of Tool Paths

From this section onwards, we start to formulate the time-optimal machining problem mathematically.

The problem we seek to solve is very general, and it is important to clearly state the objective and the

constraints with appropriately defined variables, parameters and constants. In terms of such descriptors,
we study the kinematics of a machine tool with respect to a surface. The essential idea that we propose in

this section is to postulate certain functions on a designed surface that contain enough information to

construct tool paths. We refer to this method as the field description method. By this way of description, a

convenient mathematical structure is imposed on the problem, without which stating the problem itself

would have been difficult. Based on the framework developed in this section, we complete a variational

formulation of the machining problem through the rest of this chapter. To explain the essential ideas

quickly, we consider simple cases only.

1. Pre-assigned Orientation Vector Field

The inputs to this optimization problem are as follows: (1) a definition of a designed surface in parametric

form with the cusp-height-limit being specified, (2) a definition of a machine and cutting tool and (3) an

orientation (or access) vector field. Parametric surfaces are well known, and examples include Bezier

surfaces, B-spline surfaces and NURBS surfaces as mentioned in the introduction. The definition of a

machine tool includes the kinematics, and although we do not necessarily consider them in practice, the

dynamics. In 5-axis machining, cutters (or cutting tools) such as flat endmills, filleted endmills and ball-

end mills are used widely. In the current formulation, only ball-end mills are considered for simplicity;

other tools are easily incorporated. The third point needs more elaboration. The orientation of a cutting

tool with respect to a surface is critical for two reasons: for controlling cutting conditions, and for

eliminating both local interference (or gouging) and global interference (or collision) [38, 43, 44, 45, 46,
47, 48, 49, 50, 51 and 52]. We assume that the orientation is pre-defined at every point on a designed

surface in such a way that interference is avoided. Thus, we treat the orientation as a known/specified

vector field on a surface. In theory, though, it is possible to pose an even more general problem and ask

what is the orientation field that minimizes the cutting time; of course, the expression for interference

avoidance is quite complicated.t

2. Designed Surface

A designed surface S is assumed to be given as a regular parametric form, r(u, v). In other words, the

map r is a smootht one-to-one map s.t. r:(T c R3) -+ (-W c RV), S = r(T) c 1W and r, x r # 0 for a

simply-connected compact set T and an open set W We call the domain T the parameter space and the

co-domain W the workpiece space. The map r is called a parameterization of the surface S and the

independent variables, u and v, are called the parameters of the surface. We sometimes say "a surface

r(u, v)" and "a curve r(u(t), v(t))." We denote partial derivatives with respect to the parameters by
subscription, e.g. ru = Dr/&u. A point in the parameter space, or a pair of the parameters, is denoted by a

tNote that our consideration of a known orientation field ignores feed-direction-dependent orientation
adjustment. For example, forward tilting is generally recommended [16].

A map is smooth if it is differentiable infinitely-many times or of differential class c-. The required degree
of the smoothness will be clear from the context where the map r is involved; we avoid mentioning the
required degree of differentiability explicitly.
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bold letter u, i.e., u = (u, v) E T. We write u <-> r(u) E S for the correspondence between the parameter
space T and the surface S. Because of this one-to-one correspondence, we do not distinguish the two sets
strictly. That is, a map on the surface S is considered a map in the parameter space . For example, both
f(u) and f(r) are written with the same symbol f strictly, the first f(u) is the composition map (f o r)(u).
The unit outside normal vector of the surface at (u, v) (or u e T) is denoted by n(u, v), n(u) or even

n (r). Without loss of generality, we assume that the surface is parameterized such that det[ru rV n] > 0 or

While the designed surface remains stationary in -W during an entire machining process, the workpiece
itself can be in movement with respect to an inertial reference frame. A change offramet between the
workpiece space W and the inertial reference frame needs to be established for mechanical analysis-in
other words, to establish the equation of motion of the mechanical system. We choose an orthonormal
basis {i,j, k} which is stationary in -W as shown in Figure 9. This is a basis moving with the surface.
When we represent a (position) vector as a matrix, the vector will be treated as a column vector and it will
be projected into the basis {i,j, k}, e.g. r = [r * i r ej r e k]T.

3. Tangent Spaces and Normal Curvatures of a Surface: Necessary Linear Algebra and Geometry*

This subsection provides the definitions for the tangent space and the normal curvatures at a surface
point. A tangent space is essentially a linear space. We introduce its coordinate systems, which we
frequently refer to. The definitions are well-known but we clarify the sign conventions and the notations
that we use in this thesis. They are also general; that is, there is no physics involved in this subsection.

THE TANGENT SPACE

At each point r on the designed surface S, a linear space TrS is spanned by the basis {ru, r,}, which and
referred to as the tangent space at the point r on S. This is a generalization of the classic notion, tangent
plane: {r(u, v) + a -ru(u, v) + b -r,(u, v) I (a, b) E V} for a point (u, v) E T or r(u, v) E S. Similarly, the

tangent space Tr W at a point r on the workpiece space -W is the linear space spanned by (a copy of) the
basis {i,j, k I. We treat a tangent space TrS of the surface as a subspace of the tangent space Tr W of the
workpiece space, namely TrS c Tr W for a point r E S c W.1

A vector v e TrS in the tangent space is identified by two real numbers t and i s.t.

v = a -r +'-r, or in matrix form, v=Aa (1)

tWe refer to [131] for the definition of the change offrame in mechanics.
I-In modem language, the workpiece space IV is a manifold and the designed surface S is one of its subman-
ifolds (with its boundary) parametrized by the immersion r. To each point p on a manifold 'W, a linear space
T'M is assigned, which is called the tangent space at p e Wt. The details of this topic can be found in most
text books on differential geometry and differentialforms such as [104 and 107].
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where i = [ai ]T and A = [ru rjI; the matrix A can be thought of as the Jacobian matrix of the map r.

This one-to-one correspondence is symbolized in the following way: 6 <-* v e TrS. We point out that the

dot symbols that appear in this definition do not have any relation to time derivatives upto this point; t

and ' are simply certain real numbers that should be interpreted literally. We, however, used the dot

symbol because, in Subsection 7, the vectors in the tangent space are related to the velocities of tool paths.

NORMAL CURVATURES

The normal curvature Ku(6 ) (or r(V)) in a direction d +4 v e TrS at a point u *- r E S is:

U TDd (2)u (0 Kr(V) TGd

where

r ru r r - rT n r n [
F 1 FU 1G - rr rr gi] and D L = [dir]n;

both matrices are evaluated at the given point u E T. In differential geometry, the matrices, G and D, are

referred to as the Jst and 2 nd fundamental (form coefficient) matrix, respectively. Both are symmetric and

the Is' fundamental matrix G is positive definite by the regularity of the surface. In general, the sign

convention of normal curvatures is not fixed because of the ambiguity of the sign of a surface normal

vector n used for the definition of the 2 nd fundamental matrix D. In our convention, the surface normal

curvature in a direction is positive for the "concavity" of solid parts, in other words, if a surface curve

tangential to the given direction turns towards the outside surface normal vector n. A way to see the

normal curvature ir(V) is to construct a plane at the given point r that is parallel to both the surface

normal vector n and the direction v. The intersection of the surface with the plane forms a surface curve,
which is a plane curve at the same time by construction. (The intersection is referred to as a normal

section in differential geometry.) The curvature of this intersection curve at the point r is the normal

curvature in the direction v.

It can be proved that the surface normal curvatures, as defined in Equation (2), are bounded and their

maximum K, and minimum K2 are respectively the maximum and minimum eigenvalue of the following

generalized eigensystem:

KGd = Di. (3)

Let its maximum eigenvectort be denoted by 6, and the minimum eigenvector by 6 2 . Let them be

normalized s. t.

diTGui = and dTGd2= -.

tHere, we somewhat misused the term, maximum/minimum. Correct expression for "the maximum eigen-
vector" is the eigenvector that corresponds to the maximum eigenvalue.
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From the correspondence (Equation 1), a unit vector it in the tangent space corresponds to the

eigenvector ii , namely i = A i e TrS where A is the Jacobian matrix of the map r at the point under

consideration. This is the most "concave" direction. The most convex direction corresponds to the

minimum eigenvector and it can be proved that the most concave direction is perpendicular to the most

convex direction, i.e., Ad 2 = n x i E TrS. The two directions, iu and n x iu, are referred to as the

principal directions at the given point and the two eigenvalues, K1 and K2 , are referred to as the principal

curvatures therein.

COORDINATE SYSTEMS FOR TANGENT SPACES

A tangent space of a surface is essentially a 2 dimensional linear space. At each point r e S, a pair of

numbers can be used to specify a vector in its tangent space TrS in various ways. Each such pair

constitutes a particular coordinate system of the tangent space. Here, we define coordinate systems of the

tangent space that we use in this thesis and show the transformations between the coordinates.

Each coordinate system is based on a particular basis that it refers to. We introduce three bases of the

tangent space TrS at a point r. The basis {ru, r,} is a skewed one by a parameterization. It is more

convenient to perform analysis in the tangent space using orthonormal bases. The basis

{r /jruII, n x ru/1ruII) and the basis {iu, n x iu} are the most frequently referred to, where ±iu is the

most concave direction at a point. It is a routine in differential geometry to find the principal directions,
iu and n x iu except, of course, at umbilical points. Using these three bases, a vector v e TrS is identified

by certain pairs (aiD, (4, ) and (,2) of real numbers s.t.

Finding the transformation of (, v) to (a, 2) and (i, 2) from the above equation is a matter of linear

algebra. The relation is defined by certain linear transformations, P and P:

6 = Pu = Pd (4)

where i [a ]T, [u vIT, d [ ]T,

P g J [, (1 I' 22--12J 12 and P =[ti 1d21
(gjj1g 22 - 12 011 -;1-

Note that ti and ti2 are the normalized eigenvectors from Equation (3) and g are the 1stfundamental

form coefficients as defined in Equation (2). Following the tradition of discrete dynamics, we call the

-The orthogonality in a symmetric eigensystem is well known. We only consider the case when the two
eigenvalues are different, i.e. IC,# K2 . By definition, (a) KJGdJ = Da, and (b) K2 Gd 2 = Dd 2 . If we multiply
(a) by j and (b) by di, we get (c) KJUdJGUJ = 4JD4, and (d) K2d4Gd 2 = dIDi2. Since G and D are symmet-
ric, the following equations hold: iTGdi = dfGd 2 and djDdJ = dITDd 2 . By the subtraction (c)-(d), we have

(K 1 - K2 )jGdi = 0. If KI# K2 , (e) djGd, = o. Note that G = ATA . Then, (e) is reduced to
JGN1 = (Ad 2 )T(Aij) = o. Therefore, A2. IAUi,.
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Figure 8 Coordinate Systems of a Tangent Space

matrix P the (rotated) modal matrix and the matrix P the (principal) modal matrix at a given point on the

surface. The following relation can be confirmed through routine manipulation:

PTGP = 1 and PTGP = 1. (5)

The pair (a, i) is considered as a point in a Cartesian plane which we call the (a, ) -space. In the same

manner, we define the (a, ) -space and the (a, i) -space. The angle r1 of a vector v e TrS from iu is

called its principal direction angle, i.e. a = 8 . [cos sing ]T, where =|1vil is its magnitude. The angle

r1 from ru is referred to as the direction angle of the vector, i.e. 6 = 4 - [cosi sin 1i] T. There is a relation

between them: q = rl + 7, where 71 is the angle of iu from ru. The angle rj and the magnitude can

be thought of as the coordinates of a polar coordinate system for the (fi, ) -space. These are shown in

Figure 8.

Finally, the relation between the pairs, (i, i) and (a, I), is

8 = Fv = 1a2 - rT r + 2ai rT r + 2 - -rT r juTG6

-ri ata2[{9- r (n x r,)}, {(i. rT r + -rT ,}

where G is the 1stfundamental matrix of the surface in differential geometry. Inverted at each point on

the surface, the pair (ii, i) is known in terms of the direction angle -r and the magnitude 8 as:

6 = 8. h(rj, u, v) or in component form, (6)

a = 89-h1 (n, u, v) and 4= - h2(, u, v)

where h: Kx P -> 1K can be derived to be:

h(q, u, v) = [h(i, u, v) h2 (T], u, v)]T = P(u, v) - a(T).

t-The angle , is found by the following system of equations: cosTIi = igr, /l|r,|| and sin 0 = nT(ru x iu)/BrIl.

35

T)
T1

710

UVOT



Note that a(1)= [cosrj sin r]T and P(u, v) is the modal matrix at the point (u, v) e ' as defined in
Equation (4).

We summarize the transformations between the coordinate systems that were introduced in this

subsection:

ii= Pdi = Pdi = 4 -h(TI, i, v) =3 -h(-q+ l,,u, v)

d [ f -cos Sin 1]T and i [cosTl sin]T.

4. Typical CNC code and Kinematics of a Machine Tool

A machine tool is essentially a robot. We need 3 translational and 2 rotational coordinates to describe the

configuration (or posture) of a machine tool in 5-axis machining. A classic way to describe a rigid body

motion is to apply a translation and a rotation about a specified point on the rigid body, which is called its
base point [132]. It should be pointed out that in 5-axis machining, the motion of a cutting tool worth

analysis is not a rigid body motion. There are two reasons for this. First, the spinning rotation of the

spindle base does not contribute to a milling process to a considerable extent because the last (spinning)
rotation provided by a "powerful" spindle motor is the far more dominant factor for the cutting process.

Second, the spinning motion is a minor factor for interference problems, too, because of the (pseudo)
symmetry of a cutting tool. Therefore, the motion that needs to be described is not the rigid body motion

of a cutting tool, but rather the motion of its centerline (or the line of symmetry).

We align a unit vector q (= q, -i + qY -j+ q, -k e TVW, jjqJJ = 1) with the centerline from the tool tip

towards the spindle base, and refer to it as the orientation (or access) vector as shown in Figure 9. The

orientation vector accounts for the rotational motion of the centerline. On the other hand, to account for

the translation of the centerline, we attach a point M to it, the position vector of which in the workpiece

space -W is denoted by rM (= rM i rM'.j+r j -k). This nominal point plays a similar role as the base

point of a rigid body motion. In short, the work space in interest for 5-axis machining is RK x S2 where
32 is a unit 2 sphere. In path planning literature [e.g. 16 and 19], the point M is called the cutter location

point (CL-point), and the (time) series of the 6-tuple (rM, q) is called the cutter location data (CL-data). It

is possible that the orientation vector q is specified by a pair (T, $) of two real numbers, for example, the

two angular coordinates in a spherical coordinate system. The details of this parameterization are

discussed in APPENDIX B.

The 5-tuple (r 1 , r, p, 4) determines the configuration of a cutting tool as well as the joint angles Oi
(i = 1, ... , N), where N > 5 is the number of actuators.t Typically, CNC G-codes of a machine tool for 5-

axis machining consist of a series of such 5-tuple location descriptors and feedrates. In robotics, the map

from the joint angles to the corresponding posture (rx , r;, rz , T, 4) is called the forward kinematics of a

t-5-axis machining is not necessarily performed by 5-axis machine tools. For example, a hexapod machine
tool has 6 axes. With such redundant machine tools, the redundancy can be resolved by a control law of
"holonomic" type [12]. If the control law is of "non-holonomic" type, the problem becomes fairly compli-
cated. For 3-axis machining, the two orientation parameters, <p and , are constants over the surface and we
require that N > 3.
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machine tool. It is inverted either by the controller of the machine tool or by a planner, which we call the

"(kinematic) control law" of a machine tool. For a non-redundant machine tool, this control law can be

thought of as its inverse kinematics.

5. Motion Restricted by the Designed Surface and the Surface Inverse Kinematics

After defining proper descriptors for surfaces and machine tools, we now study their interactions and

define a new concept, surface inverse kinematics.

To prevent the cutting tool from gouging the designed surface, we require the envelope of the cutting tool

to touch the designed surface tangentially at every instant. The trajectory of such a point of contact

(namely, CC-point) is referred to as the (surface) tool path, which is a surface curve. The time-series of

the CC-point and the corresponding access vector is called the CC-data. One way to program a CNC

machine tool is to first generate the CC-data in the parameter space and to convert it into the CL-data or

machine code. This conversion is made by the requirement that the cutting tool should osculate the

designed surface.

In the case of a ball-end mill, this requirement of tangency results in the following relation:

where R is the radius of the tool, 1 is the length from the ball center to the CL-point M, r e S is a CC-
point, rM is the position vector to the CL-point, q e TrW is the access vector and n is the outside unit

surface normal vector at r e S as shown in Figure 9.
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Then, the configuration (r', r', r, p, 4) of a machine tool, restricted by this condition, is described by 4

parameters (u, v, p, 4), which define the location and orientation of the cutting tool on the surface. The 4-

tuple, (u, v, (p, 4), is transformed into a machine code by a planning system using the requirement of

tangency. The machine code is further transformed into the joint angles Oi by the controller based on the

inverse kinematics of the mechanical system. In other words, we can establish a mapping f between the

parameters and the joint angles, i.e.

0i = fi(I, V, P, $), (i = 1, ... , N) (7)

which we call a surface inverse kinematics map.

At the outset of this formulation, we assumed that the orientation vector is given by a fixed vector field on

the surface, which implies that the two orientation parameters, T and 4, are known as functions of the

surface parameters u and v, i.e., T = 0,(u, v) and 4 = 0(u, v). Inserting these restrictions into the

surface inverse kinematics, we have a new map f s. t.

0i = fi(II, v, (P'(11, 0) , v)) =fi"(u, v)

which we call a restricted surface inverse kinematics map or simply a surface inverse kinematics. An

example for deriving a surface inverse kinematics is shown in APPENDix B.

6. Dynamics of a Machine Tool

It is possible to develop the equations of motion of a machine tool, taking its joint angles Oi as

generalized coordinates of a rigid body system, the machine tool under consideration. In general, the

equation of motion can be derived in the following form of equations:

i(1 .. ,d0l d 20
= d,

2. j .. (i ... N) (8)

where ci are the joint torques, dO9/dt are the generalized velocities, d 2O i/dt
2 are the generalized

accelerations. Of course, we would have to assume that the cutting forces could be derived in an

analytical form.t Especially, in high speed machining, the cutting forces are negligible. We point this out

here for completeness; we do not directly address forces and dynamics in this work.

tFor deriving the equation of motion of a mechanical system, readers are referred to standard texts on multi-
body dynamics or robotics [133 and 134]. Generally, a CL-data point or the 5-tuple (rrrg', r,<P, ) is not a
complete set of generalized coordinates [135]. A CL-data point is a complete set of generalized coordinates
only of a 5-axis machine tool. There are a massive body of research on cutting force prediction [e.g. 60].
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7. Field Description

A surface tool path is essentially a (time) parametrized surface curve r(u(t), v(t)) = r(t) (or r(u(t))),t
which corresponds to a curve (u(t), v(t)) = u(t) in the parameter space (given a map u:(Tc P.) -+ T in an
interval 7). The curve u(t) in the parameter space is called a (parameter) tool path. We construct a

parameter tool path u (t) and map it to a surface tool path r(t) through the surface parameterization r. Of
course, we can choose different parameters for the curves, for example, using the arc length s of the
surface tool paths.

The (time) series of CC-points, either in S or T, is a straightforward descriptor for tool paths. We explain,
however, another way to represent tool paths in this subsection. This indirect method conveniently deals

with families of tool paths rather than an individual tool path.

THE VELOCITY VECTOR FIELD

An important abstraction that we introduce in this work is the use of a vector field to capture the skeletal
information of a family of tool paths. The velocity of a tool path r(t) at an instant is evaluated by the time
derivative dr /dt at the given instant. Conversely, if we were to postulate a vector field v(r) on the
surface and to require that v(r) = dr /dt on tool paths, then it would be possible to integrate the vector
field (or the differential equation) and to generate tool paths, which are streamlines or integral curves of

the vector field. This is the procedure we will use in this thesis; we will find a "good" vector field and
then generate tool paths by integrating the vector field.

STREAMUNES

A streamline of the velocity vector field v(r) on the designed surface S is called a surface streamline and

the corresponding curve on the parameter space T is called a parameter streamline. Henceforth, the

symbols, t and s, are reserved exclusively for the time and arc length parameter of a surface streamline,
respectively. The unit tangent vector of a surface streamline of the velocity field is denoted by t, i.e.,
t = v /\|vI .

THE VELOCITY VECTOR FIELD IN THE PARAMETER SPACE

Because a surface is a 2-dimensional entity (or a manifold), it is more convenient to express the velocity

vector field with 2 components rather than using 3 components. We define a vector field 6(u) on the

parameter space T that is related to the velocity vector field v(r) in the following way:

v = ra +r, = Atd

where i(u) [a(u, v) (u, v)]T and A is the Jacobian matrix of the surface map r.

SThe statement r(u(t), v(t)) =r(t) is not without confusion. The 2nd r is in fact the composition map rou.
The terms v, 6 , 4 , a , n and a that are defined in Subsection 3 are general mathematical entities and do not

have any physical connection. From now on, those notations are used exclusively for the velocity vectors of
a tool path.
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Then this field value 6 (u) is proved to correspond to the time-derivative of the parameter streamlines
which we call the parameter velocity vector, namely,

4(u) = du /dt

where u(t) is a parameter streamline. Therefore, if we specify the (parameter) velocity vector field 4(u),
the above differential equation can be integrated to generate a parameter tool path. The parameter tool

path is finally mapped to the surface tool path r(u(t)). The transformation, 6 = Pd = Pa (as defined in

Equation 4), also shows two other coordinate systems for velocity vectors, which were covered in a

general setting in Subsection 2.2.3.

THE DIRECTION ANGLE

The velocity vector field v(r) or ti(u) can be specified also in terms of polar components as well as its

Cartesian components. The magnitude component is the cutting speed 4 and the angular component is

the angle -r with the u-lines (or iso-v-parametric lines) as shown in Figure 10-(a):

v = 4 . (cos-q .r/1ruiI + sinl -n x ru/1ruI|)

where n is the unit outside surface normal vector. The field il is called the direction angle or direction

field. The speed 8(u) and the direction angle 9(u) are related to the vector field a(u) on P by the

following relation: a(u, v) = &(u, v) -h(q(u, v), u, v) = 9(u, v) -P(u, v). [cos-q(u, v) sinm(u, v)]T as

explained in Equation (6) in a general setting, (where P(u, v) is the modal matrix at a point (u, v) e P and

h:XxP-> 72 is a map s.t. h(7, u,v)=P(u,v)-[cosi sinrt]T). Therefore, if we specify the two

functions, 4(u, v) and ri(u, v), it is possible to integrate the following differential equation from a "start

point" to get a parameter tool path u(t) and its corresponding surface tool path r(u(t)):

d (u, v) -h (, v),u) (9)

(or equivalently, du h(71(u, v), u, v) and d = (u, v)).
ds dt

In practice, we will adopt Cartesian components for specifying the vector field. In theory, we assume that

the vector field is specified by the polar components because the polar system allows us to state the

formulation rather conveniently.
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SIDE STEP FUNCTION

The vector field, v or 6 , which is specified by the speed 4(u, v) and the direction angle ri(u, v), carries

only the skeletal information on the family of tool paths. This vector field has infinitely-many

streamlines, or integral curves, each of which could potentially be used as a tool path. In addition, tool

paths must be spaced properly-after all, tool paths are separate swathes not a continuum. The missing

element is how to choose the tool paths from the streamlines, which is effectively described by the "start

points" or initial conditions (together with the final conditions or arc length) of these paths as shown in

Figure 10-(a). It is more convenient to devise a function on the surface that contains the information on

how wide the gap between two neighboring tool paths is. By treating the "gap width" as a (piecewise)

continuous function, we make the path planning problem amenable to convenient mathematical tools such

as calculus and differential geometry. This is a crucial mechanism in our attempt to tackle this

unstructured problem, which is analogous to continuum hypothesis in continuum mechanics. The devised

function w(u, v) is referred to as the side step (function) and the gap is "measured" in the direction

perpendicular to the tool paths as roughly shown in Figure 10-(a). The immediately following part shows

how we interpret the side step function "physically" and Section 2.3 defines a condition that the side step

function must meet with respect to a direction field.

CONSTRUCTION OF TOOL PATHS FROM THE FIELD DESCRIPTION

Suppose we have found a "good" triad (T(u, v), w(u, v), 8(u, v)) of functions on the parameter space.

From Equation (9 or 6), the vector field 6 is known. Then, we take a streamline of the velocity vector

field as the first tool path and follow the subsequent procedure:
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We say then that we shifted the point r(u0 ) to the point r(u,(W-)). Iteration of the same steps will fill the

surface with tool paths. (Of course, we can partition the surface and fill the surface by performing the

above shifting procedure in each region-along the partition line, "intermittent cuts" can happen.)

This procedure shows that from the triad of functions (71(u, v), w(u, v), 4(u, v)), it is possible to place

tool paths. These functions capture the essential information of reasonable, contiguous paths. Of course,
the side step function is an artificial device that imposes "regularity" on the problem. Roughly speaking,
Equation (10) declares that the "harmonic mean" of the side step in the gap between two neighboring

tool paths coincides with the arc length wv of the transverse curve r,(a) because Equation (10) can be

rewritten in the following form:

1 0 W I (a)

This equation shows how the "gap width" ii3 is measured with the side step function w(u, v).
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CLASSES OF THE PARTICIPATING FUNCTIONS

It is general enough to require such participating functions, 4(u, v), ri(u, v) and w(u, v), to be piece-wise

smooth and piece-wise continuous. In fact, we will refine this statement further in the next section.

8. Summary

Typically, tool paths have been specified as a time series of a certain nominal point. The field description

achieves the same objective by specifying the triad (4(u, v),il(u, v),w(u, v)) of functions, which are the
speed, the direction angle and the side step. They are the unknowns of our optimization problem. The
questions now we ask are what defines good triads and how we would find it.
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2.3 Compatibility: an Equality Constraint

In the preceding section, we have seen a procedure to pick tool paths from the infinitely-many streamlines

of a velocity vector field based on the field description. With the same piece of information, we can take a

different procedure. At first, we decide the first tool path as before.

(1) We shift "enough" points on the first tool path solving Equation (10).

(2) We "interpolate" the shifted points, and declare the newly interpolated curve as the next

tool path.

This procedure is shown in Figure 11 -(b). If the side step function is defined in an arbitrary way, there is

no guaranteeing that the interpolated (or shifted) curve is a streamline of the velocity vector field. This

shows that

the side step function w(u, v) and the direction field r(u, v) are not independent.

A condition that is imposed on the side step function with respect to a direction field is defined in this

section. In our optimization problem, this relation plays a role as an equality constraint. We refer to it as

the compatibility (equation).

In short, the compatibility requires that

CONDITION I:

given a velocity vector field (or direction field) and a side step function, there are finitely-

many mutually-disjoint simply-connected open sets VI cS (i = ],..., n) s.t.

iclosure(V1 ) = S and

in each region Vi, from any streamline in the region V, there is another streamline in the

same region that passes through all the shifted points. (We do not account for the points

which are shifted out of the region Vi but we require that at least one point on a streamline

in Vi is shifted to a point in V3.)

t
n x t

streamline 3 streamline? n

dr

a) The method defined in the b) Another way to find the c) The number of tool
previous section next tool path paths is conserved.

Figure 11 Compatibility Equation
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We start by deriving a differential relation which is sufficient for above CONDITION I. For non-smooth

direction fields, jump conditions are specified along boundaries between two regions in each of which

tool paths are smooth. Finally, a formal structure is constructed to effectively describe this rather

complicated constraint of the optimization problem under consideration.

1. Compatibility via a Stream Function

The following CONDITION 11 iS sufficient for CONDITION I.

CONDITION 11:

given a direction field (or velocity vector field) and a side step function, there are finitely-

many mutually-disjoint simply-connected open sets Vi c S (i = 1, ... , n) s.t.

Uclosure(V') = S and

in each region Vi, the differential 1-form

- (n x t)Tdr is exact, in other words,

there is a continuous function T s.t. dT = p (or T = Ji) (11)

where t is the unit tangent vector (field) of the given velocity vector field, n is the unit

outside surface normal vector (field), S is the designed surface, w is the side step function

and dr is a differential 1-form on the designed surface S, i.e. dr = rudu + rvdv.

We refer to the function T that appears in CONDITION II as the stream function of the given direction field,
borrowing a fluid mechanics term.

To see if CONDITION 11 guarantees CONDITION I, we first observe that, by definition,

1
V(t) -. (n x t)Tt = 0.

W

This implies that the integral fw J(t) - ds along every streamline vanishes. Therefore, the stream

function T is constant along a streamline of the velocity vector field. In other words,

level sets of the stream function T are streamlines.

Second, we observe that

t A differential I -form can be regarded as a function of tangent vectors. One way to define the integration of
differential 1-forms on a manifold is to regard the integration as a "usual" one of the pull-back of the differ-
ential forms. In our case, W(t) is the value of the differential 1-form at the vector t and v(t) -ds is the pull-

back of the differential form along the streamline. The general definitions and discussion on this issue can be

found in most text books on differential forms such as [103].
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xV (n x t)I - (n x t)T(n x t) = or

W do

j,_YxVj= f (n xt) -dL = JwA where C1 = {r ,(u.): ! o~cL ii3) (12)

That is, the integration Jq along an arc length parameterized orthogonal transverse curve r(oa) is
identical to the integration defined in the shifting procedure, Equation (10). Now, if we set the stream
function T along a first tool path to be zero, then, by definition, T = 1 at all the shifted points. This
allows us to conclude that a streamline (or a level set of T ) contains all the shifted points.

2. Compatibility as a Conservation Law

It is well known that if a differential 1-form T is exact then its integral f W is path-independent or its
cyclic integration vanishes, namely, f{xi = 0. [103]. To most engineers or physicists, this equivalent
statement is probably the most appealing form. We state that

- (n x t)Tdr = 0 (13)
aD

for all the open subsets V of each region Vi (as defined in CONDITION I and II). This integration can be
thought of as a flux integration and a physical interpretation of the equation is that "the number of tool
paths" (or the flux of the vector field t 1w ) into the region V must be "the number of tool paths" out of the
region as shown in Figure ll-(c). This compatibility only applies in regions where there are no
intermittent cuts. It is an analog of the principle of conservation of mass assuming no sources or sinks in
fluid mechanics terms.

3. Compatibility as a Partial Differential Relation: Generalized Stokes' Theorem (or Poincar6 Lemma)

We invoke generalized Stokes' theorem for Equation (13) and say that fj d[(n x t)Tdr /w] = 0, where by
the symbol d we denote the exterior derivative of a differential form.t By the arbitrariness of the domain
V, the differential 2-form, d[(n x t)Tdr /w] , itself should vanish, i.e.

d = d (n x t) Tdr = 0 (a.e.). (14)

This derivation is analogous to deriving the continuity equation in fluid mechanics using the divergence
theorem. (We can reach the same conclusion from CONDITION II using Poincare lemma [114],
d =- d(dT) = 0.) By applying the rules for the exterior derivative and the wedge product on a manifold,
the following, what we refer to as the differential continuity or type-0 compatibility, can be derived:

t We use exterior calculus here using differential forms and the generalized Stokes' theorem. This approach
is more natural for a curved space than elementary vector and tensor analysis [106]. They are described in
several books including [103-108].
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(a. e.) (15)

where

h = [h] h2 ]T = Pa, (as defined earlier in Equation 6)

h," -qui]P + ([0 1] (GP) -[1 0] (GP)) /Adet G]Ra, and R .0

Note that a = [cosr sinTI]T, G = [gij] is the 1stfundamental matrix of the surface as shown in Equation

(2), P was defined in Equation (4) and R is the 900 -rotation matrix. A step-by-step derivation is given in

APPENDIx A.1.

4. Jump Conditions

Just for convenience, we introduce the following term: for a direction field and a side step function,

A GRAIN is a simply-connected open set in the designed surface S, at every point of which the

differential continuity holds. (A formal definition is given in Subsection 6.)

If the direction field rj (u, v) is not C1 -continuous, the differential continuity as shown in Equation (15),

does not hold. This is one of the reasons why the modifier (a.e.), which stands for almost everywhere,

appears in the equation and also why we included somewhat technical conditions about the sets Vi in

CONDITION I and II. Along grain boundaries, another form of compatibility, which must be a "non-

differential" relation, should be specified (if we require the continuity of tool paths across the grain

boundaries).

THE CONTINUITY JUMP CONDITION

Consider the two neighboring grains, G and G2, as shown in Figure 12-(a). Let a unit tangent vector of

the grain boundary be denoted by I e TS. Of course, we assume that the boundary curve is at least

piecewise smooth. We resolve the ambiguity in the sign of the vector I by setting

lIT-(n x t)>0

The same condition can be stated in terms of vectors in (0, )-space:

bTRa > 0

where t = APa, 1 = APb and R is the 900 -rotation matrix. The limit values of the side step approaching

from G, and G2 to a point in the boundary ag, n aG2 are denoted by w1 and w2 , respectively. We say

that the compatibility is satisfied between the two grains if a side step function, defined in the combined

region GQ u G2 , satisfies the following condition for a given direction field:
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if a tool path in G, and a tool path in 02 are "connected" at a point in a boundary

OGI n 5G2 (for example, at the point A in Figure 12), the shifting procedure (Equation 10) in
each grain generates the next tool paths that meet at a point in the boundary Oci n OGQ (for
example, at the point B in the figure).

It is sufficient for this type of compatibility to require that a stream function in q, and a stream function
in G2 have the same (limit) value along the boundary 8Gj n OG 2 . Therefore, the following convergence
should be satisfied:

lim - (n x t)T. I = lim (nx t)T. I= lim dP(l)), Vroe G n aG2 -
(r E GI) - roW (r e 2 )-roW r - ro

Abbreviated,

W2 IT -(n x t2) bTRa2w2- =T (n 2TRa or "equivalently," (--W b TRa, = ( bTRa . (16)
wX IT.(nxt 1 ) bTRa w)

Note that the subscriptions indicate the domains of the limit processes, e.g.

a, = lim [cosri sin7 IT where ro e n q2-
(r e g) + ro

This condition is referred to as the continuity jump condition or type-I compatibility. We can also make a
"flux argument" to reach the same conclusion.

REMARK: The 2nd expression in Equation (16) is more appropriate in that it is bounded. By
the same token, it is better to treat the reciprocal 1/w(u, v) of the side step function as a
fundamental quantity rather than the side step function itself but we did not do in that way
because length is understood more intuitively.

THE COVERAGE JUMP CONDITION*

We now ask what the value of the side step w1 2 and the direction angle T1,2 at a point on the boundary

a!51 an 2 is (if a cutting tool moves from a grain G to another grain G2 continuously). We regard a
surface as its tangent space and a vector field as a parallel one and we require the condition derived under
this special circumstance to hold locally for general curved surfaces with non-parallel vector fields-this
is what we meant by "flux argument."

We refer to the area bounded by two neighboring tool paths as a tool path strip, for example, the hatched
area in Figure 12-(a). We require the following condition for proper coverage of a surface:

if we sweep the (approximated flat) surface along a streamline (which is a center line of two
neighboring tool paths) with a disk whose diameter is the maximum side step in the
streamline, the swept area [c.f, 118, Minkowski ' sausage] covers the tool path strip.
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LINE 11

Figure 12 Jump Conditions along a Grain Boundary

Let us tentatively assume that the value w12 of the side step on the boundary aG n c9G 2 is less than or

equal to the maximum (for example, w, in Figure 12-b) of the two limit values approaching from both

grains. There are two cases shown in Figure 12-(b). In the first case, when the streamline is deflected

through Line 1, which is orthogonal to the boundary, it is observed that the "sausage" properly covers the

tool path strip. However, in the second case, when the streamline is reflected by Line X,,, it is observed

that there remains a missed gap near the boundary and the coverage condition fails. [This is well known,

c.f 42]. To fill this gap, the diameter of the disk need be increased. Doing some plane geometry, we can

find the necessary size of the disk. The result is generalized on the surface as planned and we state what

we refer to as the coverage jump condition or type-Il compatibility as follows:

.bTRa = .bTRa2

I /max{w 1, w2}

if (bTa).(bTa2)<0

(17)

otherwise

where the symbols are as defined in Equation (16).

Just for convenience which will be evident in the next chapter, we require that the direction angle on the

boundary to satisfy the following condition:

±Rb

a 2

ai

if (bTa) .(ba29< 0

otherwise and if wi = max{w 1, w2}

where a12 =[cosr(u0 ) sinr(u )]T for r(u) e aGj n O 2 . For example, in Figure 12-(b), the direction
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angle of Line -L, is assigned on the boundary.

REMARK I*: A more complete model must allow multiple values for the side step w1 2 on the

boundary. This requires more general mathematical structure than we developed for this

thesis work. We do not consider the remaining task further.

REMARK II: We can reach the same conclusion with a limit process of the type-O
compatibility, Equation (15). That is, we construct a sequence of C' direction fields that
converges at a discontinuous direction field and observe what happens on the equation.

REMARK III: In the most outside grains or along the boundary of a surface, we need to specify
a similar condition. Along a part of the boundary of a boundary-grain G, we could require

that

bTRa
Wb Wlim

where wb is the side step at a point on the boundary of the surface and we, is its limit value

at the boundary point. It is possible to neglect this condition if we make a cut along the
boundary of a surface in the beginning of any finishing stage.

5. Pseudo-continuity, Matching Pairs and the Pseudo-coverage-condition

Consider Figure 13-(a). Intermittent cuts happen because the two grains, G, and G2 , are incompatible.

The distinction between the intermittent cuts and the "continuous" cuts is important in our modeling the

cutting time, our cost function. Unfortunately, the distinction is not that simplistic.

PsEUDO-CONTINUITY

Consider Figure 13-(a) again. It is observed that two tool paths can be connected at the center. This
phenomenon is observed better in Case (b), where tool paths are shifted slightly. We refer to this
phenomenon as the path matching or pseudo-continuity.

Modifying the continuity jump condition (Equation 16), we capture the path matching by

. . = -,') -).(L)bTRa2

for mutually prime positive integers F, and F2 . In the example, F, = 5 and F 2 = 7. The pair,

(1/f, 1/F 2) ( y), of the reciprocals of these two numbers are referred to as a matching pair. By
changing the conventions for the tangent vector of the boundary as shown in Figure 13-(b), we establish a
symmetric setting:

Y - Q bTRa+ . -Y( b2TRa2 = 0
IW
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where b = bI = -b 2 . (The boundary curve is oriented anti-clockwise viewed from outside.)

A topic of the next section is to model "the amount of intermittent cuts," which represents the inefficiency

of the discontinuity. Unfortunately, modeling "the amount of intermittent cuts" is quite complicated if we

consider all the possible matching pairs.

We decide to take account of very small portion of matching pairs in our optimization problem.

Henceforth, by path matching or pseudo-continuity, we mean that

L- bTRa+ L)- b2TRa 2 = 0, Vr e (0Gj n aQ 2)

where the matching pair (y1, y2 ) is thought of as a constant map on the boundary to the following set:

1' (0, 0), (1, 1), (1, ,) , 1)

i.e. (y1, Y2):(&Q r)8 2) ->Q'. Note that the case, (Y1, Y2) = (0, 0), corresponds to the incompatibility

while the case, (7, Y2) = (1, 1), represents the "true continuity." This setting allows us to express the

whole problem in a more compact way.

REMARK: Our choice of the set 0' of the feasible matching pairs is a "front" part of the

following denumerable set:

{(0, 0)) U {(1,

t = APb

(a) Along this line, the (differential) compatibility is not
satisfied and intermittent cuts happen along the
boundary for switching between tool paths.

Compatibility
L is satisfied in

- this region

12 = APb 2

Compatibility
is satisfied in -->>

_ this region _.y

G2

(b) Pseudo-continuity: Every fifth tool path in
g is connected to every seventh tool path in

Q2 without interruption.

Figure 13 Grains and the Pseudo-continuity
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In fact, this set is bijective to the set of rational numbers. As we include more pairs in our

consideration, the problem becomes more intractable.

THE PSEUDO-COVERAGE-CONDITION*

Like the coverage jump condition, we need to specify the value between the two neighboring grains

which satisfy the pseudo-continuity. We refer to this jump condition as the pseudo-coverage-condition.

We do not present the equation because of its similarity to the coverage jump condition.

6. A Path Structure, Path Continua and Grains: Compatibility Summarized

In the previous section, we stated that

the triad (,q(u, v) ,-(u, v) ,w(u, v)) of functions defines tool paths,

which forms our basis approaching the machining problem. In this section, we have seen

the compatibility conditions that relate the direction field q(u, v) and the side step function w(u, v).

This subsection constructs an additional mathematical structure that has more descriptive power. The

construction is necessary in order to state our optimization problem formally. The compatibility is

embedded in the new structure. In a sense, this subsection summarizes the compatibility (and even the

optimization problem itself). Therefore, all the terms, which were defined previously, are defined again in

this new setting.

Grains will be defined as basic building blocks of tool paths. Compatible grains are collected and form

what is referred to as a path continuum. We consider the path continuum independent of other path
continua in the sense of path generation. A collection of non-overlapping path continua is defined as a
path structure. Our optimization problem is then reduced to finding an optimal path structure. In a
grain, the compatibility in its strict sense should hold. In a path continuum, neither tool paths nor
participating functions are smooth but a cutting tool can move continuously from one grain to another.

The following series of definitions fulfill the mathematical construction as outlined above. The definitions

are repetitive in that the definition for a term contains some replicas of the preceding definitions. Readers

are advised not to be distracted by some technical provisos. The motivations and the context for the

following definitions have already been given in the previous subsections. The definitions are simply

generalizations from the 2-grain situation.

(GEOMETRIC) GRAIN:

A GRAIN is a 4-tuple (Q, 11, w, T) of a non-empty simply-connected open set G c S (or
Tc T ) in the designed surface S (or the parameter space V) together with smooth
functions, T , w and T, on 'Fs.t.

52



VT =_ = GPR COS" # 0 , V(u e 'Fc 'P)
TV w sin -qj

where G is the first fundamental matrix, P is the modal matrix and R is the 90* -rotation

matrix. We refer to the function w as the side step function, the function 'q as the direction

field and the function T as the stream function in G or 'rF Usually, we shall denote a grain

(g, -n, w, T) simply by g with the understanding that we are also considering the

underlying 3 functions when we speak of a grain.

An immediate consequence of this definition is that the differential continuity (Equation 15)

h](rI, u, v) - + h2(, U, v) ' = h3( 1 U, u V, U, v) - w

holds at every point in a grain.The above definition is redundant in that the direction field and the side

step function are uniquely determined by the stream function in a grain s. t.

COS ], RTPTVT and = (VT)TPPT(VT). (18)
sinJ (VT)TPPT(VT) W

We keep this redundant expression because the direction angle and the side step are more easily grasped

while the stream function is a more essential notion.

From grains, a path continuum is constructed as follows:

(GEOMETRIC) PATH CONTINUUM:

A (GEOMETRIC PATH) CONTINUUM is a 6-tuple (1, {(V g, (ye), T, w, 0) of a simply-

connected open set 1V= r(U) c S together with (I) a collection of finitely many mutually-
disjoint open sets qi= r('F) c T (i = 1, ...n ) that properly tessellate the set 12 (in that

cl(V) = ycl(Gi) and a'F r- 'rj are connected curves), (II) a series (-y ) of real numbers
y (i, j = 1, ... n ) and (III) the functions, - , w and q), on 'U c 'P that satisfy the following

conditions:

(1) GRAIN CONDITION

For each Gi= r(Fi), there is a continuous monotonic function cxi s.t. (G,, -i, wi, T;) is a

grain, where i i = w w , and T = c o CDJ. (By f$ , we denoted the restriction of a

mapfto 'F).

(2) CONTINUITY AND MONOTONICITY OF THE WEAVING FUNCTION (D

The function (D is continuous and monotonic in 'V (By monotonicity, we mean that any
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level line of D divides the continuum V into two simply connected regions.)

(3) COMPATIBILITY OF PATHS

IF i #j, 0G gr c9g# 0 and agi n a r-g aV = 0, then

for all uo e (ati -)T j) - a(aF n' FT),

I ±Rb.

ak

if (bjTa,).(b at)>0

otherwise and if wk = max{ w,', wj }

and there exists a pair (y y) e Q" - {(1, 1), (1, 1/2), (1/2, 1)) such that

(y/w,) -bTRa, t+(y /wj)-bTRaj+ = 0 andI3 1 1

mw b[Raw|}

1 /max{ wtf,I wj}

if (bTat) - (bfa) > 0

otherwise

b. (= -b.) e (ai, 0)-space such that APbi e Tr(u,)S is a unit tangent vector of
agj with respect to the "natural" orientation of the boundary ag,

at(u0 ) lim [cosrj(u) sinrj(u)]T, a .(u0 ) = [cosrj(u0 ) sinl](u0 )]T,
(u e 'F) -> U0

w t (uo) e lim w(u) and w. (u0) w(U) .

We refer to the function w as the side step function, the function 71 as the direction field and
the function 1 as the weaving function of the path continuum V or U. A pair (yij, yji) E Q"
is referred to as a matching pair. Sometimes, we shall denote a path continuum (V, { },
(yjj), TI, w, D) simply by V or (TI, w, V), of course, with the understanding that when we
speak of "a continuum T" we are also considering the underlying structure.

An immediate consequence of the GRAIN CONDITION (1) is that

a level set of the weaving function D is a streamline.
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In that sense, the weaving function is a generalization of the stream function while we have more freedom

in choosing its smoothness. By the function cc in the definition, a stream function in a grain can be

transformed to the weaving function (in a monotonic way). If we choose a smooth enough weaving

function, then in a grain

CosS14 R TP TV (19)
sinl VJ(V1f)TppT(Vq)

Unlike the stream function, the weaving function does not carry the information on the side step. Defining

the stream function in a grain and the weaving function in a path continuum is inevitable to capture some

global effects such as tool path loops-the direction angle and the side step carries only local information.

Finally, we gather path continua and construct a path structure.

(GEOMETRIC) PATH STRUCTURE:

A (GEOMETRIC) PATH STRUCTURE is a 6-tuple ({(Vk), f6 , (b ),m , w, q) (i,j = 1, ... n(k),
k = 1,...,K) of a collection {yk} (k = 1,...,K) of a finitely many mutually-disjoint
simply-connected open sets Vk= r('Uk) c S that properly partition the surface S (in that

S = Y 'Cl(,Vk)) together with (I) a collection of open sets = r('Fk) C S, (II) a series (yk-)
of real numbers y . and (I1) the functions, ii , w and 0, on P s. t.

for each k, ('Vk, , i = 1, ... n(k)}, (y , i, j = 1, ... n(k)), 11k, wk, (Dk) is a path continuum,
where - k 1  W k W k and pk = (1 |

We refer to the function w as the side step function, the function q as the direction field and

the function (D as the weaving function of the path structure. A pair (yb, yj) E Q" is referred

to as a matching pair. Usually, we shall denote the path structure simply by { Vk},

(11, w, {yTk)) or (TI, w), of course with some caution.

Note that the direction field and the side step function are defined in grains, path continua and path

structures. Context will clarify the domains for them. Figure 14 shows the following relations of inclusion

that summarize what we have defined in this subsection:

S D y g Q, in other words, (A Surface) D (A Path Continuum) D (A Grain)

and (A Path Structure) 3 (A Path Continuum).

REMARK: Throughout all the definitions, we assumed that the orientation field, P = PO(u, v)

and 4 = 40 (u, v), is of differential class C' in each path continuum and the surface inverse
kinematics is also of differential class C'.
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Figure 14 Grains, Continua and a Path Structure

7. The Kinematic and the Dynamic Path Structure

The geometric path structure takes account of only the relation between the side step function w(u, v) and

the direction field rq(u, v). In this subsection, we include the speed 4 (u, v) in our consideration and finish

our preparing the formal statement of the problem.

(KIEMATIC) PATH STRUCTURE:

A (KINEMATIC) PATH STRUCTURE is simply a geometric path structure together with a function

4: T -+ K that is continuous on each grain of the geometric path structure. The function 8 is

called the speed of the kinematic path structure. With a similar manner, we define a

KINEMATIC PATH CONTINUUM and KINEMATIC GRAINS.

(DYNAMIC) PATH STRUCTURE:

A (DYNAMIC) PATH STRUCTURE is a kinematic path structure that satisfies the following

conditions:

(1) the speed 4(u, v) is continuous in each path continuum of the kinematic path structure

(2) q(uo) = 0 if the direction field r(u) is discontinuous at u0 e T.

With a similar manner, we define a DYNAMIC PATH CoNTINUUM and DYNAMIC GRAINS.
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In our most general setting, we seek a dynamic path structure. If we ignore the limits on the acceleration

(See Subsection 2.5.2 Actuator Limits), we ask what is the optimal kinematic path structure. By

imposing a stricter constraint, e.g. 4(u, v) = const, we may seek the "shortest" path; in this case, we ask

what geometric path structure is optimal. All the definitions are simply a refinement of the following

loose statement: "the triad (4(u, v) , -(u, v), w(u, v)) of piecewise continuous functions defines tool paths."

8. Summary

The compatibility equation is based on our hypothesis that the surface is covered by a series of regions in

which tool paths are reasonably continuous or exhibit "enough regularity." The resulting Equation (15)

h](1, u, v) . + h2 (r, u, v) - = h3(i, U 1, U U, v) - w

captures what we meant by regularity in a local (differential) sense. The "flux argument" in mathematical

physics leads us to the same conclusion. This differential equation breaks down for non-smooth paths and

we postulate another regularity along curves in the surface, which results in the jump conditions

(including the pseudo-continuity). Finally, we defined a mathematical structure for stating our

optimization problem formally. Our optimization problem is now to find the optimal geometric/kinematic/

dynamic path structure.

The compatibility is regarded as an equality constraint in our optimization problem, which declares the

relation between the direction field and the side step function.
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2.4 Cutting Time: The Cost Functional

Until now, we showed how to define tool paths in our framework and introduced an equality constraint of
our optimization problem. Now, we define the cost functional in our optimization problem.

We make the argument that cutting time is today the major measure of machining performance and take
the cutting time as the cost functional in our optimization problem. In applications such as die-mold
machining, where time-to-market is the driving factor, other costs pale in comparison to the economic
benefits of producing a finished component rapidly.

The time T, that it takes to cut a surface can be divided into two parts, effective cutting time Te and non-
effective cutting time e

Tr = Te+ Te.

Effective cutting time is the period during which the cutting tool stays in contact with the surface of the
part and removes material. The tool must touch the surface tangentially not to over-cut or under-cut the
workpiece. While maintaining this tangential contact, the machine tool executes NC commands such as
GO], G02 and G03. During the rest of the time, the machine engages in activities not related directly to
cutting. We refer to this period as non-effective cutting time. A typical non-effective activity is rapid
motion between cuts in the GOO mode.

1. Effective Cutting Time

Effective cutting time is modeled in the following way:

ds =wi(s)ds (20)

T L (s) w s fw(u,v). (u,v)
i Ci () i Ci wp ?-S

where the dummy variable s is the arc length of tool paths; Ci is the i' tool path whose parameterization
is r(ui(s), vt(s)); T is the parameter space; ai(s) =(ui(s), vt(s)) is the cutting speed along the ith tool
path; wi(s) w(ui(s), v(s)); the side step w(u, v) and the speed 4(u, v) are the functions on ' as
explained in the preceding sections. Note that the sum for wi(s) -ds corresponds to the surface area
approximately and that surface area is defined as f fIru x rvJ -dudv in differential geometry.

Of course, the integration domain must include enough tool paths to make the approximation be valid. As
in continuum mechanics, the domains we look at must be of much larger scale than the features.

2. Non-effective Cutting Time

The rest of cutting time is referred to as non-effective cutting time. Non-effective cutting time is implied
by every break in the cut because the tool must be moved from the end of the previous cut to the
beginning of the next cut. Typically, the tool is lifted, moved and lowered again for the new path at the
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end of each tool path. Therefore,

non-effective cutting time is proportional mainly to the number of tool paths in the domain.

This subsection is about how to count tool paths in a surface given a path structure. We consider a simple

case first and proceed to the general case.

THE SIMPLEST MODEL

If there are no tool path loops and no intermittent cuts in the surface S, one of the simplest model for

the non-effective cutting time is

T e (- ) - (n x t)Tdr
as

where to is a constant of the proportionality and the integration is done along the boundary curve as. A

way to understand this equation is that fIdTI is the "number of tool paths" inside the surface, where T is

the stream function as defined in Equation (11).

VARIATIONS IN EACH MOVEMENT AND THE NON-EFFECTIVE PENALTY

In more detailed models, to becomes a function in the following form:

, = 10 1, , W, u, v) > 0.

This function to is treated as a known function in our optimization problem. It characterizes the time it

takes for a cutter to move from an end of a previous tool path to the next path. (The equation of motion, as

presented in Subsection 2.2.6, can be used to determine this function.) By postulating the existence of the

function co, we implicitly assume the regularity in the non-effective activities. We refer to this function

Ir as the non-effective penalty (NEP) term (or function) of the problem.

We have lots of freedom in choosing the NEP function co(a, 71, W, u, v) unless the definition hurts reality.

However, we specify the minimum requirement that the NEP function co must meet.

First, we require that

(SUB-LINEAR GROWTH) 0 5 ( ( W in other words,

REmARK: Of course, we can devise control schemes that break this "rule," quite artificially.

However, they are typically inefficient. Considering the initialization cost such as the one

related to the acceleration limit, this sub-linear growth condition is justified. Also note that

we are considering very short distance around I'm and the initialization cost is quite high.
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Readers will be pretty assured once they establish a physics-based model for the NEP term

by themselves.

The sub-linear growth condition produces the following intuitive consequence:

(WIDEST SIDE STEP PRINCIPLE)

for a given direction field, cutting time is reduced if wider cuts are made, in other words, if
the side step function w increases. Therefore, to minimize the cutting time, we maximize the

side step (not violating the constraints of the problem).

Second, if we pursue the dynamic path structure, which is the most general case, we require the
following condition:

(DYNAMIC CONDITION ON THE NEP)

related to the dependency on the "local speed" 8. This condition basically asserts that the faster an object

moves, the longer time it takes to stop it.

Besides, if we pursue the kinematic/geometric path structure (as opposed to the dynamic path

structure), we restrict the dependency further in the following way:

(KINEMATIC CONDITION ON THE NEP)

Loosely speaking, this condition prevents the kinematic structure from behaving irrationally due to the

infiite acceleration, which is not prohibited in the kinematic structure. In a geometric path structure, the
condition is trivial because the speed is not defined there at the first place.

REMARK*: The argument on the necessity of the kinematic condition on the NEP term is
convoluted. We only sketch the way to reach the condition. If (at, /a4) 0 in the kinematic

structure, it can be shown that the speed vanishes (8 = 0) at the boundary of its path

continuum for the optimal speed. However, the very reason why we define the function such

that (c9rO /&a) # 0 is to capture the acceleration effect which is ignored in the kinematic path

structure. If the speed vanishes, the inertia effect is lost. Therefore, we cannot account for the

(local) inertia effect by defining co such that (at0 /J3) # 0. Instead, we do in an averaged

sense ignoring the local effect. Suppose we have established a model, in a dynamic path

structure, for the NEP term tc using a function cD, namely, t0 = tD(8, 1, w, u, v). Then, in

a kinematic path structure, we set the function in the following form:

w = h, , pV)

where V is the speed averaged in a certain sense.

60



NON-EFFECTIVE CUTTING TIME FROM A PATH STRUCTURE

In reality, tool paths have loops (vortices) and intermittent cuts (sinks/sources). A path structure, as

defined in Subsection 2.3.6 and 2.3.7, captures the intermittent cuts and loops and it partitions a surface

into path continua. The boundary of each continuum is the place where the intermittent cuts are allowed

to occur because we did not impose any continuity of tool paths across it. If pseudo-continuity occurs in a

continuum, some grain boundaries are also the places where intermittent cuts are made. At those

boundaries, the cutting tool moves across the streamlines as shown in Figure 13 and Figure 14.

In a general sense, we write:

TneV4, T Iw,{ Vk) = ZTie[pk, Tk, wk, -Vk]
k

where (q, 11, w, { Vk}) is a path structure, -q is the direction field, w is the side step function, & is the

cutting speed, (,qk, qk, Wk, Vk) is the kh continuum, and Te is the non-effective cutting time for each
continuum. In our convention, brackets are used for functionals. The above statement is merely an

assertion that

we will generate tool paths in each continuum independently or separately (of course, after a

path structure is given).

A simple model for the non-effective cutting time for the h continuum is

Tnelfk, lk,WkVk -(n x t)Tdr|+ .n x t)Tdr+
2 igj aq n ark ayk 3k"

T(- (Number of Tool Paths) + (Length of the Contiuum Boundaries) (21)

where Gf is the ith grain of the h continuum, (y4, y) is a matching pair and V0 is a given function on

0vk that characterizes the allowable speed along the continuum boundary. The first two terms count tool

paths in a continuum and properly weight the number with the time c, per a non-effective movement.

Especially, the first term deals with the pseudo-continuity. The last term has a different origin, which is

largely proportional to the length of the continuum boundary because we make a cut along the continuum

boundaries in the beginning of any finish machining. By this, a boundary effect is neglected (see REmRK

III in Subsection 2.3.4). This term also prevents the path structure from being "granulated" or "layered,"

in other words, partitioning the surface into too small or narrow continua and violating our regularity (or

"continuum") hypothesis.
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HOMOGENEOUs NON-EFFECTIVE PENALTY MODEL

The NEP function t0o captures a "local" variations that might exist in a system. The sub-linear growth and
dynamic/kinematic conditions are the minimum requirements that must be imposed on it to ensure
"reasonable" behavior of our resultant tool paths. Partly because there are typically "many" tool paths in a

surface and partly for simplicity, we sometimes ignore the local effect taking a certain average. We refer

to the path optimization problem in which the local variations are neglected as a homogeneous NEP

model. That is, in a homogeneous NEP model, we dictate:

(HOMOGENEITY CONDITION)

It is easily verified that this model satisfies all the minimum requirements previously mentioned. In this

model, non-effective cutting time (as defined in Equation 21) is proportional to the number of tool paths.

PROCEDURAL ESTIMATION

The greedy approach will be introduced as an approximate solution in a subsequent chapter. The greedy
approach is to generate tool paths while pursuing directions that minimize a local measure neglecting non-

effective cutting time. For the greedy paths, we take a two-phase approach to evaluate the non-effective
cutting time: we account for the non-effective cutting time in a procedural way after the generation of the

effective movements of a cutting tool. We actually construct the non-effective movements and evaluate

the non-effective cutting time directly instead of using the formula (Equation 21).

3. Summary

Cutting time is the cost functional in our optimization problem. While a machine tool is engaged in an

effective activity, the cutting tool removes material within tolerance. The effective cutting time is

evaluated through the integration of the reciprocal of area removal rate over designed surface. Non-

effective movements occur at the boundary of path continua around which the cutting tool should be
decelerated and accelerated again for the next path. The non-effective cutting time accounts for how many

interruptions occur during the finishing period. It is largely proportional to the number of tool paths in the

surface.

We minimize the functional T, = T, + T,, as above explained by finding an optimal kinematic/dynamic

path structure (or, roughly speaking, the functions 4(u, v), -q(u, v) and w(u, v)) which are subject to the

compatibility equations, and some inequality constraints which follow.
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2.5 Inequality Constraints: Cusp Height Limits, Actuator Limits, Collision Avoidance,
Cutting Force Limits, etc.

The problem as it now stands is unbounded. We now consider the constraints that make the machining

problem a bounded optimization problem. They include an accuracy requirement and physical limitations

imposed on the milling process.

1. The Cusp Height Limit: Geometric Tolerance or Accuracy

In reality, every engineering product must be designed with some room for dimensional errors,
considering the limitations of a particular manufacturing process. Loose tolerance may hurt the

functionality of the product while demanding high accuracy results in high manufacturing cost. We show

how to accommodate this accuracy requirement in our framework.

CusPs, THEIR HEIGHTS AND LIMITS

It is a fundamental limitation in the free-form surface milling process that cusps (or scallops) are

unavoidable as shown in Figure 15-(a). This is because curvatures of a surface differ from the curvature

of a cutting tool. The cusp height h as shown in Figure 15-(a) determines how close the machined surface

is to the designed surface. We ensure that the cusp heights are kept below a certain limit value. This

maximum allowable cusp height is referred to as the cusp-height-limit and it is denoted by ho . We regard

this requirement, h ho, as an inequality constraint. In this thesis, we do not ask what the appropriate

value for the cusp-height-limit is; the cusp-height-limit h. is fixed as an input in our optimization

problem.

THE SIDE-STEP-LIMIT

The better conforms a cutting tool to the "local" shape of a surface at a point, the farther two adjacent tool

positions can be apart (along the normal section perpendicular to a streamline at the point). The

conformity is best observed in the normal plane of the streamline that passes the given point, which is
shown in Figure 15-(b). When the tool positions are arranged at a particular interval along the normal

section, the cusp height reaches the specified cusp-height-limit ho. We refer to the length w0 of the

interval as the side-step-limit. Instead of requiring h ho , we now require that w wo so that the

machined surface can be within a specified tolerance.t

APPROXIMATION OF THE SIDE-STEP-LIMIT

Deciding the value of the side-step-limit at a point involves us in solving a highly non-linear equation.

Simplifying the problem, the normal section is approximated by a parabola or a circle. Hence, it is only

the normal curvature of the surface in the direction of n x t (or 1 + 900 -direction) that determines the

t Our notion of side step w is close to the meaning of cross-feed [52], step-over [33], side-step [18], CC path
interval [22 and 28] and so on. Our notion of side-step-limit w. is close to the meaning of machined strip
width [53], allowable side-step [18] and so on.
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approximated normal section, (a parabola or a circle). Thanks to the parabolic (or circular) approximation,
given a point on the surface, the side-step-limit is treated as a known function of the direction t or -q of

the streamline, i.e.

wt = w (, u, v). (22)

REMARK: Clearly, the side-step-limit could be written as w,(71, u, v, h,, R) because it does in

fact depend on the cusp-height-limit and the tool radius. We choose not to write in that way

because ho and R can be seen as given constants as opposed to variables for a particular

instance of our problem.

FORMULA FOR THE SIDE-STEP-LIMIT

In practice, additional simplification is made. For example, we paraphrase the following approximation

for the side-step-limit that was originally introduced by Lin and Koren [22, c.f 54, 18, 52 and 28]:

8h 8h
w,(TI, U, v)~ 

-n"u Vx, - 4(K (b - K,) - sin2{1 - T(U, V)} + (K b - K2) -cos2{ q - (,v)
(23)

where ho is the given cusp height limit, Kb( =1 /R) is the curvature of the cutting tool, K, is the normal

curvature of the surface in the direction of n x t and KI /K 2 is the maximum/minimum principal normal

curvature at a given point. Note that K- Kr(U)(n x t) = K sin2T, + K2cos2 -q according to Euler ' formula
[115], where 1] (= rl -710(u, v)) is the principal direction angle of the vector t as defined in Subsection

2.2.3. In this case, both the normal section and the ball are approximated by parabolas. Furthermore, the

gap is measured as a Euclidean distance (instead of being measured along the normal section) and the two

parabolas are centered at the same point as shown in Figure 15-(c). The formula diverges when the

curvature K5 approaches the curvature Kb of the ball. We construct a more comprehensive formula for the

side-step-limit and it is given in APPENDIX C.

h s; ho

n x t

<:-> w(u, v) ; w0 (TI, u, v)

(I
n

n x t 

h

Designed
Surface

a) Cusp Height h b) Side-step-limit wo: gap between the
two paths along a normal section.

ho

c) Parabolic approximation of the
normal section and the ball.

Figure 15 Cusps and Coverage corresponding a cusp-height-limit
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SUMMARY

We treat the following condition as an inequality constraint of the optimization problem under

consideration:

w(u, v) - w,,(1(u, v), t, 0) (24)

where w(u, v) is the unknown side step function and w,(, u, v) is the side-step-limit, which is a known

function.

REMARK I: Consider Figure 15-(c), which explains Lin and Koren's approximation. This

shows that the side-step-limit can be thought of as a width of a cut by an individual tool path.

REMARK I*: Recall the shifting procedure, as defined in Subsection 2.2.7. The "gap" between

two neighboring paths was measured as the harmonic mean of the side step function along

the orthogonal transverse curve rc(a). For the side-step-limit, the interval is measured along

the normal section. The justification is that the orthogonal transverse curve and the normal

section share their tangent direction-they agree with each other upto their first order

approximation. Their second order approximations differ by the geodesic curvaturet of the

orthogonal transverse curve. (Considering this, we can conclude that the above condition

tends to be conservative.) Of course, we can refine the formula for the side-step-limit

including the derivatives of the direction field, i.e.

wo = w0 (q, , ,u, v).

It is possible to include even higher order derivatives to refine it. The first order

approximation valid as long as the side step w is small enough with respect to the geodesic

curvature KI of the orthogonal transverse curve r,(a). Specifically, the condition is

W -K << 1

2. Actuator Limits: a Physical Limitation

Recent advances in spindle technology opened the door to the area of high-speed machining.

Unfortunately, actuation technology has not kept pace with the spindle technology-often, machine tools

are equipped with the actuators that exhibit relatively-poor performance in comparison with their

powerful spindles. The result is that the motion actuation turns out to be the bottleneck in cutting

performance of high speed machining. In this subsection, we introduce inequality constraints that capture

the performance limits of actuators.

I Geodesic curvature of a surface curve is the curvature of its projection curve onto the tangent plane of the
surface [e.g. see 116].
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GENERAL ACTUATOR LIMITS

Every motor has a torque-speed characteristic curve that determines its maximum torque in terms of its
velocity. As shown in Figure 16-(a), the feasible combinations of torque t and speed o of the ith motor
are in some empirical set, namely,

(t, (O) E cA C .

It is general enough to consider the feasibility set A, a compact set. We explain below how to express the
torque and the speed of the motors in terms of the direction field -q (u, v) and the speed &(u, v) of a path
structure.

MOTOR (OR JOINT) VELOCITIES AND THE KINEMATICS

Recall the surface inverse kinematicsf (Equation 7) and the restricted surface inverse kinematics P'. The

restricted surface inverse kinematics maps surface parameters (u, v) to motor angles (or displacements)

0i i.e.

0i = fj(u, v, <p,(u, v), 0 (u, v)) = ff(u, v) (i = 1, ... , N)

where N is the number of actuators of the machine tool under consideration. The surface inverse

kinematics affects the performance of a machine tool, in effect, warping the space of the motor

displacements. The Jacobian matrix of the restricted surface inverse kinematics expresses this effect

locally, creating a linear transformation. If the Jacobian matrix is represented as C = [cij], then by

definition, cI= aff /au and ci2 afi /8v. At every point on the surface, this matrix maps the parameter

velocity t to the motor velocity o :

dO.
o;=c u-+c,2  = . (25)

Through a further transformation, (ai = 4 h(T, u, v) as shown in Equation 6), the motor velocity at a

point (u, v) E T can be expressed in terms of the speed and the direction angle as follows:

oi(u, v) =(u, v). {c; 1(u, v) - h,(,r(u, v), u, v) + ci 2 (u, v) - h 2(fl(u, v) u, v)} . (26)

MOTOR (OR JOINT) TORQUES AND THE EQUATION OF MOTION

Through one more differentiation, the joint accelerations d2O /dt
2 can be written in terms of the direction

angle, the speed and their partial derivatives. If we insert these joint accelerations into the equation of

motion (Equation 8) together with the joint velocities, we have the joint torques in the following form of

equations:

Ic = Ti (01, r, , S., aW , u, u, v). (27)
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REmARK: Generally, motor torques need to overcome (1) the inertia force and (2) the cutting

force to track a given path. We make the argument that the cutting force is quite low in our

case. We are considering a finishing stage using a high speed machine tool. The objective of

high speed machining is to move as fast as possible while taking light cuts. In addition, the

cutting force is low in a finishing stage because a relatively-small amount of material is

removed.

GENERAL ACTUATOR LiMITs IN TERMS OF THE SPEED AND THE DIRECTION

Thanks to Equation (26 and 27), the actuator limits, (ti, oi) e .4 c le, can be expressed in terms of &, r

and their partial derivatives where the direction field q and the speed 4 are smooth. Therefore, the

general actuator limits can be accommodated in our framework. In this general setting, the unknown of

the optimization problem is the dynamic path structure. Of course, solving the optimal machining path

problem is quite complicated under these general actuator limits. On the other hand, the following speed

limits result in a very convenient form. If we impose only the speed limits, we regard the kinematic path

structure as the unknown of our machining problem.

SPEED LIMITS

The speed limit in Figure 16-(a) is shown as the right-extreme of the torque-speed curve. We can say then

that: Io _ o) where o i is the speed limit of the ith motor (i = 1...N). If we now map these actuator

velocity constraints back on to the (, v) -space using the Jacobian matrix C (Equation 25, c.f 26), we

will see simple half-planes of feasibility:

= c (,v>0Av +ca )(~~ (28)

0)i)E ci C e cl + i2

N

N

KU

a) Torque characteristics of a motor

Figure 16 Actuator limits and a Velocity polygon
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The intersection of the inequalities forms a symmetric polygon in (i, i) -space as shown in Figure 16-(b).
By additional linear transformations, (i = Pu = Pu as given in Equation 4), the above equation also
forms symmetric polygons in (aj, ) -space and (a, ) -space. We refer to those symmetric polygons as
velocity polygons.t

3. Other Constraints and Simplifications:

Collision Avoidance, Cutting Force, Tool Wear, Acceleration, Torque, Band Width, etc.

There are several other constraints that reflect the reality of machining. There are cutting force limits
which arise from tool deflection limits. Like the actuator speed limits discussed in the previous
subsection, the force limiting constraints also form a feasible area in the (a, i) -space [59 c.f 61]. In the
context of high speed surface machining, we ignore them on the grounds that cutting forces are usually
low. Other constraints include structural stiffness limits, system band-width, tool wear considerations, etc.
We ignore these considerations in our initial analysis. We assume that the structure is rigid, and we
assume that band-width limits can be captured to some extent with actuator limits. And in the outset, we
assumed that the geometric feasibility is satisfied by defining the feasible orientation field.

There is a further simplification, which will be made in practice. The acceleration (or torque) limits result
in a quite complicated form. We mention here some ways to ignore them, even though solving the
problem with the acceleration limits is not entirely hopeless. We can respect the inertia effect indirectly
through the consideration on the non-effective cutting time. In this case, the function '0 should be "well"
defined. In the greedy approach, tool paths are generated in two phases. We ignore acceleration limits in
the first analysis, where we only consider the speed limits-we account for acceleration limits in the
second phase by smoothing the tool path locally, removing small circular motions and reducing the speed.
Another way is to set the speed limits o conservatively depending on the designed surface. Some of
those topics are interesting open questions. We do not cover them in this thesis.

4. Summary

We specify inequality constraints in the machining problem. They are expressed in terms of the
participating functions and their partial derivatives about the parameters, u and v, in our framework. They
capture the geometric accuracy requirement and the physical limitations imposed on the process. Among
many, we will consider the cusp-height-limit and the actuator speed limits in detail.

tA similar concept is found in the context of robot manipulability [137, c.f 138, 139 and 140].
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2.6 Summary: Formulation of the Time Optimal Machining Path Problem

We have now derived the final form of the optimization problem. Specifically, we have formulated the
objective function and the constraints in a form that is, at least in theory, amenable to numerical analysis.
The key elements in our model, which make this formulation compact, are: (1) our recognition that
families of tool paths can be captured as fields, which are defined over parameter space T as &(u, v) and
11 (u, v), (2) our decision to model the distance between tool paths as a function w(u, v), (3) our ability to
capture the actuator speed limits as geometric constraints on the tangent space, (4) the discovery of the
compatibility condition in the context of tool path generation and (5) the use of existing results from path
planning literature to express the cusp height limit as a function of tool radius and surface geometry
parameters.

THE FORMULATED PROBLEM IN ITS SIMPLEST FORM

With the quantities and the notions above introduced, we present the formulated optimization problem in
its simplest form. Loosing some accuracy of the statement, we attempt to present the key elements in a
"familiar" form, without mentioning the path structure and the jump conditions.

Find the (piece-wise continuous and piece-wise smooth) functions of the parameters, (u, v) e v c 7g2:

Unknowns: cutting speed &(u, v), direction angle 71(u, v), side step w(u, v)

(and the regions Vk c S (k = 1, ... , K) that partitions the designed surface)

which minimize the machining time (costfunctional):

|1 ru x rVII dudv
0(u, v). w(u, v)

subject to:

Ow Cvw
Compatibility: h](I, u, v) - + h2(U, v)'- = h3 (rt, T1 U u, v) - w (a.e.)

Cusp Height Limit: w(u, v) w 0(q(u, v), u, v)

Actuator Speed Limits: 9(u, v). c.(u, v)- h,((u, v), u, v) r , (i = 1, ... , N, j = 1, 2)

where w0, hl, h2 , h3 and c are usual functions which are known. cot are positive constants.

Tne[... is afunctional by which we mean that we can decide its value at least procedurally with the
functions in the square brackets being specified. We denote partial derivatives by subscripts, e.g.
71 = 0n /au.

69



PROBLEM STATEMENT IN TERMS OF THE PATH STRUCTURE

Of course, the accurate statement is:

Find the kinematic path structure ({yk l{}, a 8, , w, D)

which minimize the machining time (costfunctional):

= f fI|| r x rII dudv +k, Wk,
,v) w(u, v) + kZT(eiVk

subject to:

Cusp Height Limit: w(u, v) w(1(u, v), u, v)

Actuator Speed Limits: 4(u, v) - c .(u, v) -hj(1(u, v), u, v) o< , (i = 1, ... , N, j = 1, 2)

where the inequality constraints are not enforced on the vertices of the grains in the kinematic path

structure.

In the above formulation, the actuator torque limits were neglected. If we consider them, the problem is to

find a dynamic path structure. If we further ignore the actuator speed limits and set the cutting speed

,4(u, v) to be constant, the problem is reduced to finding the "shortest path" covering a surface. In this

case, we ask what is the best geometric path structure. Also, if we plug w(u, v) = wo(T(u, v), u, v) into the

compatibility equation, the compatibility turns out to be a partial differential equation about the direction

angle T1(u, v). Solving this PDE is equivalent to generating iso-cusp-height tool paths.

SUMMARY

Traditionally, tool paths have been considered a time-series of CC-points (together with the corresponding

orientation vectors). This serial description is suited for commanding a machine tool, but it is too

unstructured to deal with an optimization problem. Deviating from the conventional approach, we

introduce a new framework in this thesis. We capture a family of tool paths with a (velocity) vector field.
The streamlines or integral curves of the vector field are candidate tool paths.

The speed 4 (u, v) and the direction field r1 (u, v) can specify the vector field. The side step function
w(u, v) characterizes the "gap width" between two neighboring paths. The shifting procedure declares the

actual gap width to be the harmonic mean of the side step function along the orthogonal transverse curve.

We choose tool paths from the infinitely-many streamlines of the velocity vector field using the side step

function.

The side step function must satisfy a certain compatibility equation with respect to a direction field, at
least, locally. There are various ways to capture this compatibility equation mathematically. A way to see

the compatibility is to accept the existence of a continuous function over a region on the surface, whose
level sets we declare to be the streamlines of the velocity vector field. We refer to this function as the
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stream function. In the region where a stream function is defined, we do not allow any intermittent cuts.

Assuming enough smoothness of the stream function, we derive a partial differential relation between the

side step function and the direction field. When we weaken the smoothness of the stream function, we

have jump conditions. The jump conditions are limits of the differential continuity equation as the

underlying direction field approaches a non-smooth field. In a region on the surface, we allow tool paths

to disappear with certain regularity. For example, along a (transverse) curve in the region, we can remove

every other path. We refer to this phenomenon as the pseudo-continuity. On the region where the pseudo-

continuity occurs, we define a continuous function, which we call the weaving function of the region. The

weaving function is a generalization of the stream function in that the level sets of the weaving function

are the streamlines of the direction field. Weaving functions and stream functions are important to capture

global effects such as loops of tool paths.

Consequently, our basic viewpoint is that

the triad (4(u, v),rl(u, v),w(u, v)) of functions, which meet certain compatibility conditions,
defines tool paths.

We refine this basic idea to state our problem formally. We define the following terms, which essentially

partition a designed surface. We define grains as basic building blocks of tool paths, in which tool paths

exhibit enough regularity. In a grain, the compatibility in its strict sense must hold. Compatible grains are

collected and form what we refer to as a path continuum. In a path continuum, neither tool paths nor

participating functions are smooth but a cutting tool can move continuously across grains. We consider a

path continuum independent of other path continua in the sense of path generation. Finally, we define a

collection of non-overlapping path continua as a geometric path structure. A geometric path structure and

the speed (function) form a kinematic path structure. A dynamic path structure is a kinematic path

structure with some restrictions being imposed on the speed and the direction field. Typically, the

dynamic structure is smoother than the kinematic path structure. Our optimization problem is then

reduced to finding an optimal geometric/kinematic/dynamic path structure. What type of path structure

we seek depends on a particular set of constraints that we impose on the problem.

We regard cutting time as the cost in our optimization problem. Effective cutting time is the period during

which the cutting tool makes a tangential contact with the designed surface and cuts the part within a

specified dimensional tolerance. The rest of the time is non-effective cutting time. The effective cutting

time is modeled mathematically by the integral of the reciprocal of the area removal rate over the surface.

We evaluate the non-effective cutting time by literally counting the number of tool paths and assigning

proper weights to them.

The cusp height limit is an inequality constraint of our problem. It is the dimensional tolerance of a part to

be machined. We control the cusp height through adjusting the side step. The side-step-limit captures how

wide an area is covered by an individual path and depends on the direction of the path. The limited

capability of the actuators of a machine tool results in the actuator torque-velocity constraint. The general

form of the actuator limits are quite complicated. The speed limits of actuators are easier to be stated.

They form regional constraints in the tangent spaces of the designed surface. The Jacobian matrix of the

surface inverse kinematics plays an important role in this model. Generally, we specify the inequality

constraints in terms of the participating functions and their partial derivatives. Even though there are

many other constraints that reflect the reality of machining, we mainly consider the cusp height limit and
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the actuator speed limits. In fact, solving the very simple form of the time-optimal machining problem is
already challenging.

In summary, the time-optimal machining problem is to find a (kinematic/dynamic) path structure that

minimizes the total cutting time subject to the cusp height limit and the actuator limits.

CONCLUDING REMARKS

A contribution of this thesis is a general formulation of the tool path optimization problem. We have

theoretically considered geometric compatibility relations, machine tool kinematics, motor limits and
geometric finish requirements. Kinematics, surface geometry, surface finish, cost and path intervals are
seamlessly integrated into one formulation.

Our viewpoint is significantly different from others-a path is modeled as a streamline of a vector field.
This field description allows us to deal with families of tool paths conveniently. The most basic

requirement of surface machining is that the cutting tool should visit or cover all the points on the
designed surface. This requirement is hard to be stated mathematically in the conventional framework

while the field description expresses this requirement naturally.
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3 GENERAL CONSEQUENCES OF THE FORMULATION

-A QUALITATIVE STUDY ON THE PROBLEM-

We formulated the time-optimal machining problem in the preceding chapter. In this chapter, we provide
immediate consequences that can be drawn from the formulated problem. This chapter reveals the general

structure of the problem and prepares us to find the numerical solutions. Mainly, we study the

compatibility equation and the velocity polygons in detail. The results are "trivial" but we mention them
explicitly.

In Section 1, we show how to allow more freedom in constructing the tool paths from a known path

structure by generalizing the orthogonal shifting procedure. The compatibility equation makes this
generalization possible. In addition, we detail the procedure by introducing formulas for numerical

analysis. In Section 2, we show how it is possible to reduce the compatibility equation, which is a partial
differential relation, to a system of ODEs, presuming that the direction field is given. The characteristic
theory of PDEs plays a key role in this conversion. Interesting enough, we stated the problem mainly

using partial derivatives while ordinary line derivatives on a tool path are "more intuitive," but now, when
we "solve" the problem, the partial derivatives are converted back to ordinary derivatives. From this point
on, we develop our reasoning based on the assumption that the direction field of a continuum is known.

Section 3 shows that the (optimal) side step in a continuum is fixed once the direction field is given. In
Section 4, we see that the (optimal) speed is also known from the direction field. In Section 5, given a
direction field, we show that the optimization in a continuum is decomposed into the optimization
processes on individual streamlines. In Section 6, we show how to approach each decomposed problem to
determine all the unknowns along a streamline. Therefore, one way to see the problem is to think of the
direction field as the independent "variables" (or variations) of the optimization problem, which we
discuss in Section 7. The remaining task is to decide the direction field and the continuum (boundaries) of
a path structure. Finding the direction field inside a given continuum is relatively easy task; however, the
most difficult part in our problem is to find the optimal continuum boundaries.
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3.1 The Generalized Shifting Procedure

In this section, we explain how to select tool paths among the streamlines, given a direction field iq (u, v)
and a compatible side step w(u, v) in a continuum i c T or V c S.

THE ORTHOGONAL SHIFTING PROCEDURE

In Subsection 2.1.7, we defined the shifting procedure, essentially using Equation (10)

dot

where the integration was made along the orthogonal transverse curve u,(ca) parameterized by its arc
length cc . The next tool path was defined as the streamline that passes the point u1 (V) u

THE GENERALIZED SHIFTING PROCEDURE

The compatibility equation allows us to use other curves, which are not necessarily orthogonal to the
streamlines of the direction field.

The problem is to find a point uf on the next tool path from a point u0 on a previous tool path. Let a
curve on the parameter space T be denoted by u,( ), whose parameter is . We require that (1) the curve
uz( ) be centered at the point u0 and also that (2) it must not be parallel to the parameter velocity vector
field 6 that is specified by the given direction field q(u, v).t Such a curve uz( ) is called a transverse
curve. Let the value of the parameter 4 at the end point Uf be denoted by 4 , i.e. uzd = uf. Then, we
solve the following equation to find the end point parameter 4f of the transverse curve:

f (n x t)Tdr = 1 where Cz = {r(uz( )):0 4 !f}. (29)
'z

We pick the streamline that passes the point uz( f) as the next path as shown in Figure 17-(b).

(THE EQUIVALENCE)* The orthogonal shifting procedure (Equation 10) is equivalent to the
above generalized shifting procedure (Equation 29). Recall that the stream function, say T,
has the same value at all the points on a streamline. In our case, it implies that
T(u,) = T(uf). Therefore,

(T(u,)-(u 0 ) = jW d ) = (T(uf)- T(u0 ) = 1 -(n x t)Tdr) =

which asserts the equivalence. This is shown in Figure 17.

dut In equations, iT-R - '# 0 and uz(O) = u0 .

76



NUMERICAL DETAILS*

In detail, we solve

. d =1
0 where d T

GPRa , and a - COS(u)
W(U)Ju() L ISin--l1u)J

This is equivalent to Equation (29) (by definition). Note that G is the 1st fundamental matrix, P is the

modal matrix and R is the rotation by the right angle.

To avoid the iteration in solving the equation, the following Istand 2 "d order approximation can be used:

j= wz(O), f d W )0 WA) z

= Lw(O)+ 3. wz(3 z(O)) Err - 0 ( ) ,J where Aw= Iw|z(gf) - Wz(0)I.

Of course, the simplest choice for the transverse curve is a straight line in the parameter space.

SUMMARY

Thanks to the compatibility equation, it is possible to find the tool paths given a path structure, not

necessarily resorting to the orthogonal transverse curve. The necessary equations for the numerical

analysis were provided.
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3.2 (Differential) Compatibility as an ODE

In Section 2.3, we introduced a relation between the direction field ri(u, v) and the side step w(u, v) in

partial differential form. This differential relation is regarded as an equality constraint in our optimization

problem. It is similar to conservation laws in continuum mechanics as shown in Figure 18-(a). If there are

no intermittent cuts (or sinks/sources in fluid mechanics term) and the direction field is smooth, the

compatibility results in a partial differential relation (Equation 15):

h (Q, U, v) - a+ h2(1, U, v) ' = h3(r1, u, rv, u, v) .w

where h,, h2 and h3 are known functions. And we have seen the jump conditions which we specify

along the grain boundaries where the direction field T1 (u, v) is not necessarily smooth.

THE CHARACTERISTIC THEORY OF 1ST ORDER QuAsI-LINEAR PDEs

In this section, we further develop the compatibility relation, which consists of the partial derivatives, to a

system of ODEs, tentatively presuming the direction field - (u, v) to be given. If we insert such a

presumably known direction field into above Equation (15), we see a Is' order PDE about a side step

w(u, v). Using the characteristic theory of PDEs, which is well-known [e.g., see 119, 120 and 121], we

have a system of ODEs:

du dv dw ds (30)
hi h2  h3 .w

for a parameter s. The integration of first two terms (du /ds = h, and dv /ds = h2 , c.f Equation 9)

produces an integral curve (u(s), v(s)) in the parameter space . In the PDE theory, we refer to such

integral curves as (base) characteristic lines. Base characteristic lines are shown in the bottom of Figure

18-(b). If you compare Equation (30) with Equation (9), it is not difficult to realize that

the base characteristic lines are the parameter streamlines of the direction field and the

above parameter s is the arc length parameter of a surface streamline,

which might have been conjectured.

After getting a characteristic line (u(s), v(s)), we integrate the last equality:

(31)

where w(O) is the side step at a start point of the streamline.t Note that w(O) is not yet decided.

IOf course, the term h3(s) is the abbreviation of the following rather long expression:

h3s)= h~ 3(uMs), V(S)), T1,(00), v(S)), 11J(s), v(S)), U(S), vWs) .
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Figure 18 Characteristic Lines of the Compatibility

The integral curves (u(s), v(s), w(s)) in the abstract (u, v, w) -space are called characteristic lines, in the

PDE theory. This integration is visualized in Figure 18-(b).I

Therefore, once the direction field is known in a path continuum (together with the matching

pairs), it is possible to extract all the information on the side step w(u(s), v(s)) along a

streamline except for the "initial" side step w(O). By the repetition of the same process for

other streamlines, we construct the side step function w(u, v) in the continuum once (1) the

(initial) side steps along a transverse curve and (2) the direction fields (together with the

matching pairs) are known.

Of course, we apply (continuity and coverage) jump conditions across grain boundaries to integrate the

streamlines along the characteristic lines. It is inconvenient to mention this fact whenever the integration

appears. Henceforth, we regard the integration in Equation (31) as the one that is made together with the

jump conditions.

IThe integration for the radius of streamtubes in fluid mechanics is analogous to this integration [e.g. 155].
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3.3 The Widest Cut Principle

In this section, it will be shown how above Equation (31), combined with the cusp-height-limit inequality

constraint (Equation 24, w w0 ), decides the unknown initial side step w(O) after we find a "good"

direction field.

GENERALIZED SIDE STEP INTEGRATION

Once the direction field and the matching pairs are known in a continuum, it is possible to construct the

following graph:

(s, H(s)): Os & L} where H(s) in ( () fSh3(s)ds

and s is the arc length parameter of a streamline (or a characteristic line) r(u(s), v(s)). Figure 19 shows a

typical shape of the graph {(s, H(s))} and indicates possible jump conditions across grain boundaries. We

point out that the function H(s) is upper semi-continuous.

THE SIDE-STEP-LIMIT

In addition, once the direction angle is known especially along the streamline (u(s), v(s)), it is possible to

construct the following graph:

where H0 (s) = ln wo(s) ln w 0(r (u(s), v(s)), u(s), v(s

and wo(a, u, v) is the side-step-limit as defined in Equation (22, Section

height limit constraint, w(s) wo(s), the region above the function H0 (s)

which the graph

2.5.1). Because of the cusp

is the infeasible region into

(s, W(s)): W(s) _ ln(w(s)), 0! s L

is not allowed to intrude itself The infeasible region is shown in Figure 19.

THE WIDEST CUT PRINCIPLE

We write down the cutting time, as defined in Equation (20 and 21, Section 2.4), in abbreviated form:

r,||- dudv I

v)- (u, v) 2
(I - _y). I(n x t)Tdr| + .d

a grain boundaries J
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Figure 19 The Widest Cut Principle: move H(s) up as high as possible while remaining in the feasible region.

From the above equation, it is observed that the cutting time is reduced as the side step (function) w(u, v)
increases; (of course, this is because the NEP function c0 satisfies the SUB-LINEAR GROWTH CONDITION,

a (c0 /w) law 0, as defined in Section 2.4). In addition, if you read through the problem statement in
Section 2.6, it is observed that the cusp height limit constraint, w(s) wo(s), is the unique constraint that
limits the side step w(u, v). Therefore, we reach the following "trivial" conclusion: to minimize the
cutting time, we maximize the side step function subject to the cusp height limit constraint, for a specified
direction field (and matching pairs) in a continuum.

If we apply this principle for the streamlines in a continuum, the initial side step w(0) of each streamline
is decided by the following equation:

(33)

This is shown in Figure 19. Now, we realize that given a direction field (and matching pairs in a

continuum), the optimal side step is fixed by Equation (33 and 31), (resorting to the compatibility

equation and the cusp height limit constraint).

SUMMARY FOR THE OPTIMAL SIDE STEP

In short, a direction field decides a side step function. This conclusion is even stronger than the one we

stated in the previous section.
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3.4 The Fastest Cut Principle

As before, we assume that the direction field is presumably known in this section. We now ask a similar
question for the speed function 4(u, v) in a kinematic path continuum: what is the optimal speed of a
continuum for a specified direction field?

THE OPTIMAL SPEED UNDER GENERAL ACTUATOR LIMITs*

Given a direction field, the streamlines (u(s), v(s)) can be extracted by Equation (30) as before.
Assigning the optimal speed distribution &(s) = (u(s), v(s)) along a specified (robot) trajectory-in our
case, the streamline-is a problem that has been well-known in the robotics community. We can solve the
problem by invoking what we call the BDSA (Bobrow-Dubowsky-Shin Algorithm) [88 and 89]. Now,

we have the procedure to find the optimal speed function in a continuum for a given direction field,

at least, theoretically. In this thesis, we postpone discussing the general actuator limits on drawing this
general conclusion, (not because it is hopeless to deal with them but) because we have a lot to do for even
simpler cases. Instead, we will study the actuator speed limits in detail.
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VELOCITY POLYGONS

Recall that the actuator speed limits are captured by the velocity polygons in (a, i), (a, ) or (a, i) -space.

A velocity polygon in a (i, i) -space is shown in Figure 20-(a). Recall also that a pair (,, TI) is a polar

coordinate in the (a, P) -space. At a point on the surface, the boundary of the velocity polygon can be

captured by a piecewise smooth function ao: Nx T -* X, (, u, v) ->,9 0(ri, u, v) as shown in Figure 20-

(a), which evaluates the maximum speed for a given direction angle ii . Then, the actuator speed limits,

*c + ca . 11 s o as defined in Equation (28), are stated in the following inequality:

THE FASTEST CUT PRINCIPLE

By ignoring the actuator torque limits, we imply that we pursue the kinematic path structure (instead of

the general dynamic path structure). In Section 2.4.2, we dictated the kinematic condition to the NEP

function u'(O, T, w, u, v) (for a kinematic path structure), namely (0t0 /a&) = 0. Consider the formula

(Equation 20 and 21) for the cutting time as abbreviated in Figure 20-(b) and also notice that there are no

other constraints but the speed limits that limit the speed. Now, it is evident that given a direction field

T1 (u, v), we must maximize the speed at every point to minimize the cutting time subject only to the speed
limits, 9(u, v) !, 0 (r(u, v), u, v). Therefore, if we are (not subject to the actuator torque limits but) subject

only to the speed limits, it is necessary to satisfy

Therefore, for the purpose of determining the optimal speed distribution for a specified direction field, it

is not necessary to perform even a single integration (while the side step was determined globally through

the integration as seen in the previous section). This is because the "global" condition for the speed is the

acceleration limits but they are ignored in the kinematic path structure. However, we point out that our

overall problem is not purely local even for the kinematic path structure because we need global thinking

to determine the direction field itself, which was presumed to be known in this section.

SUMMARY FOR THE OPTIMAL SPEED

Like the optimal side step function, the optimal speed distribution is fixed for a specified direction field.

In an equation, we define: 4,(TI, u, v)= min o , i c(u, v) -h (T, u, v)I, i = 1, N}

And the boundary of the velocity polygon is
{(4 cos T, 9sin-q) : 9 = 0 (TI, u, v), 0 Ti 27c) c (0, i)-space.
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3.5 The Individual Cut Principle

In this section, we also assume that a direction field q (u, v) is given in a continuum and ask what the

remaining unknowns in a continuum must be. The unknowns include (1) the side step (2) the speed (3) the

grains and (4) the matching pairs of grain boundaries. This is an even broader question than what we

asked in the previous sections. This section essentially confirms that the unknowns in a continuum must

be optimal along an individual streamline in a continuum. Therefore, the optimal path problem in a 2-

dimensional continuum is decomposed into the optimization along each 1-dimensional streamline in the

domain, as soon as a direction field is given. More procedural or detailed form of this principle is given in

the next section when we attempt to find the optimal matching pairs and grains. We begin by recalling the

definition of matching pairs and defining few additional terms.

DEFINITIONS

A MATCHING PAIR is a pair of numbers that characterizes how many paths are connected (or disconnected)

across a grain boundary1 When we defined the path continuum,: we restricted the feasible matching pairs

(Yq., yg) to the set

The case (0, 0) is not included because we do not allow incompatibility inside a path continuum. The case

(1, 1) represents the "true continuity" and the cases, (1, 1/2) and (1/2, 1), are for pseudo-continuity.

A PSEUDO-COMPATIBLE GRAIN BOUNDARY is a section of a grain boundary along which pseudo-continuity

occurs. PSEUDO-COMPATIBLE POINTS of a streamline are the intersection of the streamline with pseudo-

compatible grain boundaries. We point out that finding the unknowns, (3) the grains and (4) the matching

pairs, is equivalent to finding pseudo-compatible points of every streamline (because the matching pairs

are (1, 1) in other locations).

THE REFERENCE SIDE STEP: We tentatively assume that the matching pairs are all (1, 1) in a given

continuum. That is, we presume that all the points are true compatible. Under this presumed condition, it

is possible to construct the (optimal) side step in the continuum by resorting to the widest cut principle as

presented in Section 3.3. The (optimal) side step that is decided under the assumption of true

compatibility is called a reference side step. We will refer to the reference side step at a point (u, v) E T

as wreI(U, v). In the strict sense, we should have denoted it by wrej10](u, v) since it depends on the

direction field.

THE CUTTING TIME PER A STREAMLINE: Let { (u(s), v(s)) : 0 5 s L} be a streamline in a continuum, where s

is the arc length parameter. We denote the arc length parameters at the pseudo-compatible points along the

streamline by s, e [0, L] (si < s 1 and i = 1, 2, ... N - 1). Of course, the positions si e [0, L] and even the

number N is not known yet. We add 2 end points in the sequence by setting so = 0 and sN = L. The

t See Subsection 2.3.5.
ISee Subsection 2.3.6.
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following term t ief called the cutting time of the streamline or the cutting time per a streamline:

(34)

where wreS) ( Wre(u(s), v(s))) is the reference side step along the streamline, 4(s) is the speed, w(s)

is the side step, T0 is the NEP term, yi + , is a component of matching pairs and s -+ s± represents the

right (or left) limit process to the pseudo-compatible points si. Just for convenience, we set the matching

pairs at the end points such that (y0 , y10) = (1, 0) and (YN,N+1' N+1,N) = (0, 1). In order to see the

origin of this term, it is recommended to compare the cutting time crez/ per a streamline with the cutting

time TC as defined in Equation (20, 21 and 32).

For example, suppose that there are no pseudo-compatible points. In this case, w = wref and, as a result,

the cutting time per a streamline (Equation 34) is reduced to

Tref _ ds- + I- +1 .
c 0 O(s) 2 s=0 0 s =

As seen here, it is not difficult to notice that the term r ref is the cutting time that it takes for a cutter to

move along a streamline from s = 0 to s = L. This cutting time is called the reference cutting time of a

streamline. Note also that, in each interval {s < s <S + I }, it is proved that the ratio wref /w is constant.

THE INDIVIDUAL CUT PRINCIPLE

It is possible to prove:

(THE INDIVIDUAL CUT PR1NCWPLE)- to mniize the cutting time T, we must -

minimize the cutting time _C rel along each streamline.

We defer the proof to the readers but we provide some hints to It. (SKETCH OF THE PROOF) At first, we show

that ds A wdT is an area-2-form, namely lir, x r,1| . dsdT, where s is the arc length parameter of a

streamline, w is the side step and T is the stream function. Also note that the following triviality

dT = (dT /dq)) d(D, where q) is a (weaving) function. Then, we transform the integration for the cutting

time Tc as defined in Equation (20 and 2 1) from the domain T or (u, v)-domain into the (s, (D) -domain.

Additionally, we show that there exist a weaving function, 0, such that wre /W = dT /d(D.

REMARK: The individual cut principle is physically appealing and even trivial in that the term

T ref is literally the cutting time per a streamline. On the other hand, the result is somewhat

"1surprising" or at least non-trivial considering that we used inexact expression in equation

(20) such as Z wi(s) ds -), A rea when we model the problem.

SUMMARY

To minimize the cutting time, it is enough to consider a series of independent optimization problems

along streamlines.
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3.6 Optimal Matching Pairs at Pseudo-Compatible Points

Until now in this chapter, we showed how to determine the optimal side step w(u, v) and the optimal
speed 4(u, v) in a given continuum presuming that (1) the direction field -ri(u, v) and (2) the matching
pairs ( ij, yji) have been known. Besides, the previous section showed that there is a measure tref on a
streamline that must be minimized for the optimality of the global cutting time T.. In this section, we ask
the following question: given a direction field in a path continuum, what are the positions of grain
boundaries where the matching pairs are either (1, 1 /2) or (1/2, 1)? Such positions were defined as the
pseudo-compatible points. The question is equivalent to finding the optimal matching pairs.

First, we show that there is an upper bound, (only in a practical sense), for the desired number of pseudo-
compatible points. Second, we show a "theoretical" approach that helps us to understand the structure of
the problem. Finally, we present a procedure to solve this problem approximately. As in the previous
sections, we assume that the direction field in a continuum is fixed throughout this section. The individual
cut principle allows us to consider streamlines of the direction field, one by one at a time.

1. An Upper Bound of the Number of Pseudo-compatible Points

Observing the cutting time gref (Equation 34) of a streamline, we recognize that its non-effective portion
(which is the right part of the equation) increases from the reference cutting time at least by

t if = inf{ . 0 ( J: s L

whenever a pseudo-compatible point is inserted. On the other hand, the effective portion (together with
the non-effective portion at the two end points) of the cutting time cannot be improved, from the reference
cutting time, more than

M max .L _ wregs ds +I . (U . r-e'(s +,10 .( re'(s)
C o w0 (s) ) (s) 2 " w(s) " WO) )

If the number (N - 1) of pseudo-compatibility points is greater than Armax/t/i'f, the total cutting time is
definitely greater than the reference cutting time. Therefore,

( ax)

tief

This limits the number of pseudo-compatible points along a streamline. Note that the upper bound is
computable once the direction field is given.

REMARK* If the reference side step converges zero at a point (s = so) on the streamline, the
upper bound NU diverges. In this case, we remove "small" interval including the point to
evaluate the term ci'f. The neighborhood can be found by
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|s - s,|< inf{ w,(q, u(s,), v(s')) 0 -q < 2n} /2.

This does not hurt the practicality because the exact information in such intervals cannot be
reflected in the realization of the tool paths by the shifting process.

REMARK: Below, we construct an analogous problem to help readers understand the trade-offs
between the effective portion and the non-effective portion of the cutting time along a

streamline.
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2. Optimal Matching Pairs for the General Case through the Individual Cut Principle

If we have the finite bound NU , the unknown positions can be set by NU - 1 variables s, such that

0 < S1 J S2 ... ! SN - 1 L.

Either equivalently, it is possible to change the unknown variables to new NU variables such that

ccjl cC2 .. CtNl,-I CCNU I jt= and cs.> ):

where we set s 1 - Si _ I = cxL.

For a set of fixed cc 's, we have only 3 possible cases to be assigned to the matching pair at each

corresponding position s, namely the elements of the feasibility set Q"= {(1, 1), (1, 1/2), (1/2, 1)} .

Therefore, we have 3 NU-I cases. For each case of the combination of matching pairs, it is possible to

evaluate the cutting time (Equation 34) of a streamline and to choose the best matching pairs (through

enumeration). Let the cutting time of the streamline minimized for the fixed c* 's be denoted by Cref(Cai).

By minimizing this function Cref(Xi), we obtain the pseudo-compatible points and their matching pairs.

Of course, this becomes a computation-intensive approach as the upper bound increases.

REmARK I: The continuity of the function t ref() is an open question at this point.

RERK II: Another approach is to pre-partition the interval [0, L] with finitely many equal

disjoint sub-intervals. This approach has the advantage in that the integration can be pre-

determined. The disadvantage is that the number of cases to be determined is quite high as

we require more precision.

3. An Example of Optimal Matching Pairs for a Simple Case

We outline this subsection below. At first, we define the notion of the overlap degree. And then, we set

the example what we will deal with. Finally, we present an algorithm, which, we claim, finds the optimal

grain boundaries (together with the matching pairs) for the special example.

THE OVERLAP DEGREE

We define the OVERLAP DEGREE Ap(u, v) at a point (u, v) E P such that

L = log 2

where w0 is the side-step-limit and w is the side step at a point on the surface. This quantity measures

how much two neighboring tool paths overlap "locally"; in a sense, it is a measure of inefficiency. Taking

"2" as the base of the logarithm is just for convenience, which will be evident soon.
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THE EXAMPLE

We here assume that (1) the side-step-limit is constant (along a streamline), (2) the overlap degree on the

streamline is piecewise linear (namely, dp /ds = const > 0), (3) the speed is constant and (4) the NEP term

is also constant, (which we call the homogenous NEP model). The example is shown in Figure 22.

Few characteristics of the example are that the side step is piecewise exponential and that the side step is

decreasing in each continuous section.

OPrIMAL PSEUDO-COMPATIBLE POINTS

We present the algorithm that finds the best set of pseudo-compatible points for the example that we have

just set; the restrictions must be well recognized.

Then, in the interval {s : n < Pre/s) <n + 1), we obtain the optimized side step w(s) and the optimized

overlap degree p(s) as follows:

w(s) = 2 - wre/s) and pks) = lrefs- n.

We would appeal to readers' intuition by showing the procedure in Figure 22, rather than provide the

proof. The figure also shows that the path matching procedure is analogous to removing sections of the

"reference" tool paths.t

t There are found similar ideas in the computer graphics community [See. binary thinning out technique in

157, cf 156, 158, 27 and 159].
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REMARK*: If we insert additional matching pairs, for example, (1 /2, 1 /3) and (1 /3, 1 /2),

into the feasibility set Q", the above algorithm does not work and the problem becomes

harder. However, we point out that this difficulty is not the reason why we restricted the

cases for matching pairs. The more fundamental reason is that we may develop very narrow

grains with such extended feasibility set. If grain width becomes too narrow, the path

matching cannot be regarded as a kind of regularity. In other words, the realization of path

matching is impossible with narrow grains. Devising a penalty term for narrow grains is ill-

suited for our framework, which was possible for narrow continua (c.f Equation 21). To

accommodate more feasible matching pairs, we need to operate a surgery on our framework.
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A SLIGHTLY EXTENDED APPLICATION

It is possible to devise an almost identical algorithm for a slightly general case. If a streamline is

partitioned into two intervals such that the front interval is exponentially diverging and the other interval

is exponentially converging, we have the optimal pseudo-compatible points by applying the same path

matching procedure in each interval. The case is shown in Figure 23-(a). However, the applicability of the

procedure breaks down for the inversed case as shown in Figure 23-(b) because the number of tool paths

increases.

4. A Heuristic Approach for Controlling Matching Pairs in the General Case

We now consider the general case: (1) the NEP function co is not homogenous, (2) the streamlines are not

necessarily converging or diverging exponentially and (3) the speed is varying from place to place. It is

recognized that the general case is even more difficult to solve than the Case (b) in Figure 23. The general

"combinatorial approach," as given in Subsection 2, becomes complex as the amount of local variation

increases. In this subsection, we present a heuristic approach that is "extrapolated" from the simple

example presented in the previous subsection.
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5. Summary for Matching Pairs

Once a direction field is given in a path continuum, the optimal matching pairs and the optimal grain

boundaries are obtained, at least, in theory. This is because the individual cut principle reduces the
optimization problem defined in a 2-dimensional path continuum to the one on a 1-dimensional
streamline. However, the problem is computation-intensive as the variations of the local speed, the NEP
function and the side step along the streamline increase. We also presented a heuristic approach to find an

approximate solution.
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3.7 Concluding Remarks: Structural Knowledge on the Problem and Search Methods

All the cumulated results, which we presented in this chapter, reveal the structure of the problem: once a
direction field is given in a path continuum, all other unknowns are fixed in it. In this section, we discuss
the implication of the results that were presented in this chapter, towards finding the numerical solutions
through discretizing the problem. We make few suggestions on the search spaces that are suited for
machining path optimization. In other words, we show how it is possible to proceed towards solving this
rather difficult optimization problem. Of course, there are many alternatives for the discretization of our
problem.

(1) The Direction Field together with Continuum Boundaries

We presuppose the continuum boundary and the direction field. Then, it is possible to evaluate the cutting
time through the procedures given in this chapter. Of course, varying the continuum boundary and the
direction field, we attempt to find the optimal paths. We need certain discretization of the direction field
with a chosen basis functions. To give the variations on the continuum boundary, we need, at least, a
heuristic criterion.

(2) The Direction Field, the Side Step and the Grain Boundaries

We tessellate the surface into "small" regions, each of which we regard as an (approximate) grain. On
every edge of the tessellation, we assign variables that represent matching pairs. We assign variables in
the grains to represent the direction field, too. (Of course, stream functions or weaving functions can serve
this purpose). By including the case (0, 0) for the matching pairs, we set the grain boundaries and the
continuum boundaries in an equal footing. The compatibility equation is used to represent the relation
between the side step and the direction field across the grain boundaries in a certain discretized form. The
cutting time must be expressed with such discrete variables. And then, we use various techniques in
mathematical programming to solve the problem. In this case, we use only the fastest cut principle to
reduce the number of independent variables. Other principles are not invoked directly.

(3) Approaching From Continuous Vector Fields

We may even search for a continuous vector field ignoring the discontinuity of the optimal solution
hoping that a continuous vector field could approach the solution within a certain resolution (in finitely
many steps). In this case, finding the (best) continuum boundaries with a given vector field emerges as an
auxiliary problem. (The algorithms for extracting the vector field topology are related closely to this
problem, but not directly.) Even with this crude method, our framework is able to construct a diminishing
sequence of cutting time rather practically, which is not straightforward in the conventional framework.

SUMMARY

We use the structural knowledge on the problem for devising various numerical techniques that solve the
machining path problem. We briefly sketched few approaches here. Each technique is characterized by
how much such structural knowledge is used to set the (discretized) independent variables.
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3.8 Summary

In this chapter, we presented the consequences that are drawn from the variational formulation of the
machining path problem.

The realization of the actual tool paths from a given path structure is done resorting to the (generalized)
shifting procedure. Across the direction field, we construct a transverse curve and find the intersection of
the transverse curve with the next tool paths.

The characteristic theory for PDEs converts the compatibility equation to a system of ODEs. Given a
direction field, the "relative side step" is determined along a streamline. In addition, the cusp height limit
changes the side step into an "absolute scale." Therefore, the (optimal) side step in a continuum is fixed
completely once a direction field is given. We call this the widest cut principle.

The actuator speed limit constraint fixes the (optimal) speed for a given direction angle. The velocity
vector must be on the boundary of the velocity polygon in a tangent space of the surface. The relation is
defined in a pointwise manner. We call this the fastest cut principle.

The optimization of the 2-dimensional continuum is decomposed into the optimization processes along
individual streamlines. The cutting time per a streamline is the cost function of this 1-dimensional
optimization problem. We call this the individual cut principle.

The three principles are "intuitively correct." Our variational formulation is converted back to the ODE
form from PDEs, mathematically. The equivalence between them can be proved and it shows that the
"continuum hypothesis", which we have made, is reasonable. Especially, the compatibility equation plays
a critical role in keeping this kind of consistency.

Finding the pseudo-compatible points and their matching pairs in a given continuum is the most
numerically-intensive subproblem. We solve the problem effectively for small number of pseudo-
compatible points. Of course, we resort to the individual cut principle in solving this problem.
Additionally, we presented a heuristic procedure, which we call the path matching procedure. The
heuristics is that we remove tool paths in a region where tool paths clog too much.

Therefore, if (1) a continuum boundary and (2) a direction field are given, other unknown variables are
determined there, either exactly or approximately. An intuitive approach is to regard them (or their
discretized variables) as independent variables of our optimization problem. Giving variations on the
continuum boundary is less straightforward. Besides the approach that uses the whole structural
knowledge on the problem, it is possible to devise other methods that convert our variational problem to
finite dimensional optimization problems. We briefly introduced a few of them.
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4 GREEDY ToOL PATHS

-A FIRST CUT FOR THE TIME OPTIMAL TOOL PATH-

The general problem formulated in Chapter 2 is the focus of long term research. It is challenging to solve

analytically or numerically. The greedy approach, described below, attempts to find an approximate
solution using certain local information. The idea is to pick, at an array of sample points on a surface,
directions in which the tool path performs best from a material (or area) removal rate point of view while
respecting the actuator speed limits, and to generate streamlines by integrating the direction field.

In Section 1, we define what the locally best directions are and show how to find them at each point on
the surface. We make the analysis on the tangent space at a point on the surface, where velocity polygons

and local normal curvatures of the surface reside. In Section 2, we generalize the notion of the stream

function (or the weaving function) and define the generating function. We use it to fit a direction field to
the sampled "best" directions. In Section 3, we define the notion of maximal basins. Continuum

boundaries must be extracted after finding the desirable direction field to find the "start points" of

streamlines. Finding the "best" locations for continuum boundaries is the least straightforward part in our

problem. Instead of solving the problem exactly, we use maximal basins as the continua. After

partitioning the surface into basins, it is straightforward to generate the tool paths. We briefly explain how

it works in Section 4; we basically use the principles and procedures developed in the previous chapter.
Finally, we show an example of greedy tool paths.

Greedy tool paths are not necessarily optimal because we neglected the compatibility (and acceleration
limits) in finding the locally best directions. The study on how well the greedy tool paths work is the topic
of the next chapter. At least, the greedy tool paths prune the general search and tend to outperform

arbitrarily generated tool paths.
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4.1 Generating a Greedy Direction Field

In this section, we define what the greedy directions are, and describe how we find them. We also show a
piecewise continuous vector field that the greedy directions form.

1. Greedy Directions

A local measure of material removal rate is what we define as the sweep rate: the product of the speed
and the side-step-limit. The sweep rate is denoted by F, namely F0  w0 . The direction of maximum
sweep rate is also the direction of greatest area coverage locally, and effectively, greatest material
removal. (We will discuss the implications of locally maximizing this performance index in the next
chapter.)

The localized problem, which we will solve for the best directions, is stated as follows:

MXMuM the, sweep-rate f',( W .w) SUBJECT T6 the speed limit constraint's

As discussed in Subsection 2.5.2, the speed limit constraints ( :o! I<co' ) form a velocity polygon in the
(a, v) -space, (and at the same time, in (a, _) space being transformed by the modal matrix P). As shown
in Figure 24, we need to find the point on the velocity polygon with the highest sweep rate. Such points
on the boundary of a velocity polygon are called binding points and the corresponding directions are
called greedy directions. We will refer to the greedy directions as 719. By symmetry, there is always at
least one pair of greedy directions as shown in Figure 24. The ellipse or dumbbell shaped curves, shown
in Figure 24 and Figure 25, are iso-sweep-rate contour lines, namely F0 = const on them. In terms of the
polar coordinates of the tangent space at (u, v) e ', the equation for an iso-sweep-rate contour line is
4 = FO /w 0 (r, u, v). To find the binding points, we seek for a point on the velocity polygon, whose iso-
sweep-rate contour line encloses the velocity polygon.
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Edge Velocity Polygon directions.

Figure 25 Velocity polygons, iso-sweep-rate contour lines and a greedy direction field

NOTE: In the drawings above, we transformed velocity polygons and the iso-sweep-rate contour lines from the
(a, i) -space into the tangent plane (or the (a, ) -space) of a surface through the linear transformation (or
the modal matrix) P; in the transformed space, the norm (distance from the origin) corresponds to the speed.
The directions of the principal curvatures are also shown; the iso-sweep-rate contour lines keep mirror
symmetry about the principal axis. Notice how anisotropic the performance envelope (velocity polygon) can
be. The data shown is for a Hexapod machine Tool. All 5-axis machines have anisotropy.

2. Finding Greedy Directions Efficiently

As shown in Figure 25, iso-sweep-rate contour lines tend to look flattened along the most convex

direction. At "very hyperbolic" points [113], where Gaussian curvatures KI K2 are negative, the distortion

can be severe and it is possible that iso-sweeprate contour lines have inflection points as shown in Figure

25-(b). If an iso-sweeprate contour line is convex as shown in Figure 25-(a) and (d), only vertices are

candidate binding points. If it has inflection points, the binding point can be on an edge of the velocity

polygon as shown in Figure 25-(c). Typically, inflection is rare and the binding at an edge is even more

infrequent. We therefore first determine whether the iso-sweeprate contour lines are convex; only if they

are non-convex, we search the concave range for candidate binding points on edges. This strategy yields

an efficient way to determine the binding points or the greedy directions. More on this procedure is found

in APPENDIX C.
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REMARK AND REVIEw:* By the fastest cut principle (as explained in Section 3.4)., the speed 49,
if it is optimal, must satisfy the following equation:

4 = 4 0(71, U, V)

where rj is the direction angle and 4 is the function that returns the maximum speed for a
given direction angle as defined in Section 3.4. Also, recall that the side-step-limit w0 is
defined as a function in the following form (Equation 22):

(71, U, v) -+> W,(q, u, v).

Therefore, maximizing the sweep rate FO subject to the speed limit is equivalent to
minimizing

FO 0(11, U, v)=3 0(0, U, v) - w, (7, U, v)

with respect to the direction angle -q for a given point (u, v) e T. We didn't explain the
problem in that way because the geometric approach, as presented in this section, provides
more insights.

3. The Greedy Direction Field

A sampling of greedy directions is shown in Figure 25-(e). The greedy directions -99 as determined above
can form a piece-wise continuous vector field

[h, (T E(u, v), u, v), h2(11"(u, v), U, v)]T

on the parameter space T, where h, and h2 were defined in Equation (6). The basic idea now is to
construct its streamlines by numerical integration. We will choose from these streamlines to define tool
paths, appropriately spaced to satisfy the cusp height limit constraint. In the following sections, we
describe how this is achieved.

REMARK: We point out that we have freedom in choosing one direction from the two equally
preferable greedy directions, -qg and -q8 + 7r.
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4.2 Fitting a Continuous Vector Field to Sampled Directions: Generating Functions

In the previous section, we discussed how to generate a field of preferable cutting directions using the
greedy local approximation. Streamlines of the field will yield tool paths.

Unfortunately, it is not straightforward to generate streamlines of a piecewise continuous field that is
generated by the greedy directions. There are two reasons for this. First, finding a right set of initial (and
final) positions for the integration is complicated. In other words, a direction field on a surface is not
enough for specifying a path structure that also includes the continua, the side step, the speed and the
weaving function in its definition. Especially, it is a difficult problem to find reasonable continuum
boundaries for a given discontinuous direction field. Second, more fundamentally, there are two directions
that are equally preferable; the tool can move either forward or backwards in the greedy direction. The
question, now we ask, is how the greedy direction field -1g can be approximated by a convenient field.t

To circumvent these difficulties, we fit a continuous vector field to the greedy direction field using a least
squares approximation. By squaring directional discrepancies, we suppress the ambiguity in the two
equally preferable directions. We present the simplest way to achieve the fit among many possible
alternatives. We further restrict the fitted field requiring the streamlines of the fitted field to be the contour
lines of a continuous function on T, which we call a generating function. This approach of fitting a field
with level sets of a generating function is convenient because the algorithms for finding the level curves
of a function are well developed in the field of computational geometry [e.g., 150 and 151]. There is,
however, a limitation on the classes of vector fields that can be generated by this method; for example,
spiral paths are excluded from the candidate paths.

We define the generating function in the immediately following subsection. In Subsection 2, we describe
linear combinations of bi-cubic Bernstein polynomials, which we will use as our generating function. In
Subsection 3, we describe a weighted least-squares procedure for fitting.

1. The Generating Function in a Conservative Path Structure

We define the notion of generating functions as follows:

A CONSERVATIVE (geometric/kinematic/dynamic) PATH STRUCTURE is a (geometric/kinematic/
dynamic) path structure whose weaving function is smooth and continuous on the surface S,
or equivalently, on the parameter space P The weaving function in the conservative path
structure is called its GENERATING FUNCTION. We denote the generating function by V(u, v).

By definition, generating functions keep all the properties of a weaving function. First of all, their level
lines must be streamlines of the path structure, namely

t This problem is seemingly similar to vector field interpolation that has received some attention in the fluid
mechanics community, where discrete vector data are often generated from experiments or simulations and
fitted to continuous vector fields [146, 147, 148 and 149, c.f 160 and 161].
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COS _ RTPTVV where VV= " (35)
sinlT J VVTPPTVV VVJ

P is the modal matrix and R is the rotation by the right angle (c.f Equation 18, 19 and A-43).

A conservative path structure has limitation in that it cannot represent "point sinks" in a fluid mechanics

term. Especially, spiral paths are not accommodated in a conservative structure. Just for its simplicity, we

fit a generating function to the greedy directions and attempt to find a conservative path structure.

2. Generating Functions spanned by Bi-cubic Bernstein Polynomials

We reduce the degree of freedom of the generating function with finitely many Bernstein basisfunctions.

For simplicity, we consider only bi-cubic cases. The method is, however, readily applicable to the cases of

other orders and even to non-polynomial bases.

We presuppose the form of the generating function:

(i, j = 0, 1, 2, 3, Vije ')

where B, 3(u) 3C-- (1 - u) 3 - i. That is, a generating function is represented by the 16 parameters,

V.. e K.

It should be pointed out that neither translation nor dilation of a generating function that is built from

polynomials changes the direction field. To prevent the generating function from floating up and down,

we fix a parameter: VOO = 0. This is equivalent to fixing V(0, 0) = 0. To prevent arbitrary dilation, we

fix a norm. Specifically, we add the following two constraints:

jzV = 1 and V00 = 0.

3. A Weighted Least Squares Method

In this section, we show how we can fit a continuous direction field to the greedy directions using the

Bernstein polynomials as approximants. Any fitting or approximation procedure must be based on a

measure of discrepancy. Least-squares methods are well known in the approximation of data. Here, we fit

fields generated from a Bernstein basis, and use the angular deviation A71k as the measure of error at the

/kt sample point Uk. We weight the deviations with a weighting ctc at each sample point. Below, we

sketch briefly the rationale for the formulation of these two terms, and the aggregated objective function

to be minimized.
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WEIGHTED LEAST SQUARES ERROR

For small values, we use the approximation An1k; sinArlk. The weighted error can then be viewed as:

kak(Afk)2 Zkaksin2Ak~ =E.

Ek akZk N

Since sin2 Arnk = I - cos 2 Allk, the objective can be rewritten as that of maximizing 1 - E, which is given
by:

X =-E = k ackcos2A71k (36)

This is merely a manipulation to simplify the final form.

WEIGHTING FACTOR Ock

The criteria for ak are first, that it be positive, and second, that it lead to a convenient final form. Without

derivation, we state the following expression for ak:

exk = VVT. PPT.VV~U

where P is the modal matrix, V V ( [ V V,]T) is the "gradient" of the generating function and Uk is the

/h sample point in the parameter space P.

HINT: This term is the square of the denominator of the unit velocity vector as shown in

Equation (35). It allows the terms in our objective k., as shown in Equation (36), to be

summed into a convenient form.

FINAL FoRm OF THE OBJECTIVE

It can then be shown that the objective function to be maximized is given as a Rayleigh quotient:

where v = [V0 1 V02 ... V33 ]T. The matrices I and H are given by

Z,[(VB)T(bbT)(VB)]u , Z k[(VB)T(PPT)(VB)]u=Uk,
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[h;1 1q8(u, v) + 9Q0 ,u, v)~1B,().B,()
b - , VB [VBy01 VB01 VB3] V B 3(u) B, B 3 (v).

[h2 (r1 (u, v)+ 900, u, v) _ ,

where we denoted the derivatives by primes.

MINIMIZATION OF THE ERROR

It is well known that the maximum of the Rayleigh quotient X(v) is the maximum eigenvalue of the
following eigen-system:

I-v = -II.v.

By finding the eigenvector corresponding to the maximum eigenvalue, we solve our problem. We can
always normalize an eigenvector satisfying the constraint jlvi = ZYVZ = 1. This is a standard
procedure in optimization.

4. Summary

In this section, we have described the mechanism of fitting a vector field to the greedy directions with a
least squares approximation. The use of Bernstein bases, the error measures and the manipulations shown
reduce the problem to a form for which standard tools are applied, reducing it to a tractable problem.

Below, we show an example of this fitting method. A bi-quadratic and a bi-cubic generating function were
used. Note that the level lines of the generating functions are the streamlines.
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4.3 Extracting Basins From A Generating Function: Optimal Continua

In this section, we assume that a direction field ri(u, v) has been generated as described in the previous
section. Streamlines of the direction field are only the skeletal guidelines for the tool paths. They do not,
however, completely define the tool paths (or the path structure) because the path continua and the side
step w(u, v) remain undecided. We need boundaries of the path continua when we place tool paths with
the shifting procedure. Finding the "exact" optimal continuum boundary is a complicated problem.
Instead, we will use maximal basins as the continua, which we define in this section. In a loose way,
basins can be related to basins ofattraction in dynamic systems. In fact our terminology draws inspiration
from the field of dynamics.

We start by defining notions of basins, a partition into basins, a minimal partition into basins and maximal
basins. All the definitions are made with the understanding that a generating function (and, as a result, a
direction field) is known. And we briefly mention how we find the maximal basins for a given generating
function. Finally, we explain how it is possible to extend the individual cut principle in this situation (of a
conservative path structure) to find the optimal path continua. It is observed that we greatly simplified the
problem by considering only conservative path structures even though the problem still remains
"combinatorial."

1. Maximal Basins

Streamlines have start points and end points. Start points may occur at the boundary of the surface being
considered, or at line (or point) sources inside the boundary. End points too can occur at the boundary or
at line (or point) sinks. Given a direction field 71(u, v), we refer to connected curves formed by "start
points" of its streamlines as inlets. Start points occur at the boundary of the region within which the tool
path is being generated. Outlets are the curves where streamlines stop. Choosing inlets and outlets in a
certain way, we partition a surface. Each region is characterized by a connected inlet and a connected
outlet, and it is each such region that we refer to as a basin. We refer to a collection of basins, which
partition a surface, as a partition into basins. When the basins in a partition are selected so that no two
basins can be combined to create another basin, we call the partition minimal and the basins in it maximal.
In a more formal way, we define maximal basins by the following series of definitions:

A BASIN B (subordinate to a direction field 1i (u, v) or a generating function V(u, v)) is a
simply connected open set on the parameter space P (or the designed surface S) which
satisfies the following two conditions:

(1) The subset of boundary OT of the basin B through which streamlines of the direc-
tion field (or the level lines of the generating function) flow into the basin B is
connected. Such a subset of the boundary is called the INLET of the basin. Simi-
larly, we define the OUTLET of the basin and it must be connected.

(2) The length of the streamlines is continuous along the inlet of the basin.

A PARTITION (iNTo BASINS subordinate to a direction field) is a class { Bj, i= 1... N) of basins
Bi (subordinate to the direction field) that partition the surface (in that u cl(Bj) = P and
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A REDUCTION OF A PARTITION { 'B, i= 1... N) (INTO BASINS subordinate to a direction field) is
another partition { B', i=1... N' (into basins subordinate to the direction field) that can be
generated from the partition {B , i= 1... N} by one of the following two operations:

(1) Combine two basins in {'B, i= 1... N) and let the combined region be a basin in
the new partition. Of course, the combined region must be a basin. By this opera-
tion, the new partition has one less element than the original partition.

(2) Divide a basin in {B, i=I...N} by a streamline into two regions, keep one of
them as a basin and combine the other with another basin in such a way that the
combined region is a basin in the new partition. By this operation, the number of
basins does not change.

A MINIMAL PARTITION into basins is a partition whose reduction is impossible to be made.

Finally, we define maximal basins simply in the following way:

MAXIMAL BASINS are elements of a minimal partition.

2. The Critical Points and Turning Points of a Generating Function

The basins shown in Figure 27-(a) are maximal. Inspecting the figure, we realize that the critical points
and the turning points of the given generating function are the important cues for finding the minimal
partition into basins. We do not go into detail here of how to determine the maximal basins; several
algorithms related to this maximal basin problem, are known for contour drawing and for vector field
visualization [cf 150, 152, 153 and 154]. In the same figure, few more examples for the maximal basins
are shown. We point out that the minimal partition is not unique.

Within a (maximal) basin, we can integrate the given direction field and find streamlines that connect the
inlet of the basin with its outlet. Instead of finding exact optimal continua, we will use the maximal basins
as the continua of the path structure in the greedy approach. (A slightly more comprehensible approach is
to combine some maximal basins and construct a continuum as large as possible.) The next section
provides the procedure that we will take with the greedy approach using the basins while the immediately
following subsection briefly describes how it is possible to find the optimal continuum "almost exactly."

3. The Individual Cut Heuristics for Maximal Basins*

We write down the cutting time again, as defined in Equation (20 and 21, Section 2.4), in abbreviated
form:

T 1r x rV<{ dudv (J.. tdIl | |dr||
Tr= w(u, v)- 4(u, v) '2 w V0
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Figure 27 Maximal Basins and Minimal Partitions into Basins

As explained in Subsection 2.4.2, the main purpose of the last term for the non-effective cutting time is to

prevent the path structure from developing too narrow continua. Once the direction field is given and the

maximal basin boundary is checked to be much shorter than the total length of the tool paths, it is not

unreasonable to neglect the last term marked in the above equation. Under this ideal situation, the

individual cut principle, as shown in Section 3.5, can be applied for each maximal basin (as opposed to

the continuum) by extending the feasibility set for the matching pairs from Q" to Q' = Q" u {(0, 0)) . One

more adjustment that we need is to take account of the "periodicity" of the "orbits," which does not

increase the complexity of the problem significantly. This general search is mentioned here, just for

completeness. In our first analysis, we regard a maximal basin as a continuum and, as a result, take Q" for

the feasibility set instead of the extended feasibility set.
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4.4 Determining Side Step and Eliminating Redundant Paths

In this section, we also assume that a direction field q (u, v) and its maximal basins have been generated
as described in the previous section. The remaining task is to find another unknown function, the side step
w(u, v), and place tool paths in each maximal basin. In fact, we already developed all the necessary
procedures in the previous chapter. We briefly review the key procedures.

1. Path Placement

The problem that we are now concerned with is how to determine a "seed point" (or a shifted point) from
which the next tool paths can be constructed by forward and backward integration. In Section 3.1, we, in
fact, showed the generalized shifting procedure using transverse curves to answer this question. The
simplest way is to choose a straight line in the parameter space 'P for the transverse curve which is
perpendicular to the previous tool path on the surface. The procedure is essentially similar to the one
presented in the literature by other researchers [cf 18, 22 and 28]. Unlike other approaches, we can
obtain higher order formulas because we took the "continuum" model.

2. The Reference Side Step

For a given direction field Ti(u, v) in a basin, we tentatively assume that the matching pairs are all (1, 1)
in a basin and use the following equation in order to determine the reference side step:

Wref(s) = inf {w,(s) /exp(f h3 (s)ds) : 0! s !L } - exp(J h3ds)

where s is the arc length parameter of the streamline measured from the inlet curve and L is the arc length
of the streamline (Equation 31 and 33). We refer to the tool paths that we place from the reference side
step as reference toolpaths and the corresponding cutting time as reference cutting time.

A DETAIL*

In performing the integration Jh ds in the above equation, it is convenient to evaluate the term h
directly from the generating function V(u, v) instead of from the direction field -q (u, v). We use the
following formula (Equation A-55):

h3 = VVTWVV where VV= { } Gad 922 -[12

2-f31'2 . g yV ) -921 911,

W =Gad { 2gH R + (g - Vv- gv - Vu)-1} - g{[ VGVad -VVGad yTGadVV, g =Det(G),

H is the Hessian matrix of the generating function V(u, v), G is the 1st fundamental form coefficient
matrix and R is the rotation by the right angle. The step by step derivation is provided in APPENDIx A.2.
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3. Path Elimination based on Path Matching

We improve the cutting time of the reference tool path following the path matching procedure as

defined in Section 3.6. The procedure finds an approximate solution for the side step. Essentially, we

eliminate some sections of the reference tool paths in a maximal basin based on a certain criterion.

Loosely speaking, we achieve the path matching by selecting every nth path and eliminating other paths in

the region where n - 1 < pref < n (for a natural number n). Note that Pref is the reference overlap degree,
which we defined as prelog 2(w/Wef). The overlap degree can be thought of as a measure of

inefficiency of tool paths.

4. Construction of Non-effective Movements

After generating the effective movements (or the streamlines), we construct the non-effective movements

by connecting an end of a previous tool path with a next tool path. We do this in another greedy fashion.

We pick an end of an effective movement and find the nearest end point of another tool path until all the

tool paths are connected.

5. Summary of the Procedure

The following steps summarize the procedures developed in this chapter:

(GREEDY TOOL PATHs GENERATION)

1. Generate an array of sampling points on the designed surface and find the greedy

direction at each point.

2. Fit a direction field q (u, v) to the data generated in Step 1.

3. Find a minimal partition T (= {'B, i=J ... N)) of the field T .

For each maximal basin 'B e T, do

4. Generate the reference tool paths;

5. Eliminate the sections of the tool paths considering path matching whenever

possible,

until all the maximal basins in Tare visited.

6. Construct the non-effective movements; match the ends of a path with the
beginning of the next path in an efficient way.
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4.5 Examples of Greedy Tool Paths

EXAMPLE 1

We have implemented the procedures described in this chapter and applied it to a bi-quartic Bezier tensor
product surface patch to be machined with a hexapod 6-axis machine tool. Figure 28-(0) shows the
machine tool and the designed surface. About 24cm x 24cm area will be machined. The following
properties were set to define the capability of the machine tool:

The speed limit ofeach link ol = 6cm /s

The tool length I = 15.14cm

Ball radius R = 0.5 cm

Averaged acceleration limit amx = 0.6 g.

Note that the acceleration limit is used only for evaluating non-effective cutting time. More detailed
dimensional information about the machine tool and the designed surface is given in APPENDIX B and
APPENDIx D. In this example, a rather large cusp height limit, ho = 1mm, was set to make it possible to
visualize the solution. All the examples are for the surface normal machining, i.e. q = n. Each step is
shown in Figure 28, which is:

FIGURE 28

(1) Pick greedy directions at 12 x 12 sampled points in the parameter space 'P.

(2) Fit a generating function to the data. (The generating function and its level lines are
shown in the figure. The level lines are the streamlines. Bi-cubic basis functions were
used for this fitting.)

(3) Find a minimal partition of the field.

(3-1) Find the critical and turning points of the generating function.

(3-2) From the critical and the turning points, extract the basin boundaries.

(3-3) The basin boundaries are shown on the designed surface.

For each maximal basin, do

(4) Generate the reference tool paths in each basin;

(5) Eliminate the sections of the tool paths considering path matching whenever possible,

until all the maximal basins in the partition are visited.

(6) Construct the non-effective movements; match the ends of a path with the beginning
of the next path in an efficient way.
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(Con't) 7) Greedy surface tool paths 8) Iso-u-paths 9) Iso-v-paths

Greedy
Tool path
Generation

h- Te = 534 sec T 57 sec Te = 606 sec T, = 12 sec Te = 674 sec T = 13 sec

1mm T, = 590 sec Tr = 618 sec T, = 686 sec

Advantage 5% less time 14% less time

Te = 1426 sec T,e = 89 sec Te = 1805 sec T,, = 23 sec Te = 2013 sec Te = 28 sec

ho = Tc = 1514 sec T, = 1827 sec T, = 2041 sec
0.1mm Advantage 17% less time 26% less time

In Figure 28-(7), we present the surface tool paths which can be constructed by the surface

parameterization. In (8), the iso-u-paths are shown; we can apply the same algorithm by setting the

generating function such that V(u, v) = u. The iso-v-paths are generated by setting V(u, v) = v. Because

path matching algorithm was applied to these two iso-parametric paths, the iso-parametric paths shown in

the figure outperforms "usual" iso-parametric paths. We evaluated the cutting time for each tool path

scheme. 5% and 14% of cutting time can be saved. In this example, the non-effective cutting time of the

greedy path is higher than that of the iso-parametric paths. However, if we use a more realistic cusp-

height-limit, the ratio Te ,e is reduced significantly, and the greedy approach becomes more

advantageous (roughly, T,, /e, (const) -h1/4 , Te - (const) h-"-2 and T,, (const) . h; 114 ). Reducing the

cusp height 10 times, we generated the tool paths. Now, 17% and 26% of cutting time is saved as shown

in the table.

We provide another example in Figure 30 using the bi-quadratic generating function. Other parameters are

set to be the same as the previous example. In Figure 29, we compare this with the previous bi-cubic case.

The bi-cubic generating function performs slightly better for the small cusp-height-limit while the

opposite happens for the large cusp-height-limit.

Figure 29

Bi-cubic vs. bi-
quadratic Fitting

ho = 1mm T7 = 534 sec Tne = 57 sec

T( = 590 sec

T = 518 sec Tue = 38 sec

Te = 555 sec
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h = 0.1mm Te = 1426 sec Tne = 89 sec Te = 1496 sec Tuje = 60 sec

7 = 1514 sec T, = 1555 sec
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--------.......

7) Surface Tool Paths
ffedvti lov"ement are con-ttructed,

Figure 30 Greedy Tool path Generation: a Bi-Quadratic Generating Function
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MoRE EXAMPLES

Two additional examples are shown. The control points of the Bezier surfaces are provided in APPENDIx D.

10-40% improvements in cutting performance is observed.

Example 1

/MM

//k,

Example 2

I," WIN

Example 3

o__.

'K'"6.

Result of the 3 examples Example 1 Example 2 Example 3

1. Cusp Height Limit h, (PM) 1000 1000 1000

2. Iso-u path (T= Te + Tne) (sec) 618 (=606+12) 250(=239+11) 286(=277+9)

3. Iso-v path 68 6 (=67 4+13) 373 (=363+10) 413 (=404+8)

4. Greedy path 555 (=518+38) 239(=203+36) 248 (=216+33)

5. Advantage over Iso-u path 10% 4% 13%

6. Advantage over Iso-v path 19% 36% 40%

NOTE: The non-effective cutting time was evaluated procedurally.
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SUMMARY: GREEDY TOOL PATH GENERATION

In this chapter, we have seen how we generate greedy tool paths. Greedy tool paths maximize material

removal rate of each individual path instead of minimizing the total cutting time. This approach is called

greedy because it optimizes the local measure from the viewpoint of individual tool paths without

considering neighboring tool paths.

We sample a proper number of points on a designed surface. At each sampled point, we find the greedy

direction in which the material removal rate is maximized. To find a greedy direction, we necessarily find

a point on a velocity polygon where the largest iso-sweeprate contour line passes. In this way, we take

account of the kinematics and the "local" geometry of the machine tool in the greedy tool paths.

In theory, we could find the greedy directions everywhere and form a vector field. Once we formed a

vector field, we would integrate it and generate tool paths using the procedures developed in the previous

chapter. In practice, however, it is not straightforward to perform the integration along the greedy

direction field, which is defined merely "procedurally" and discontinuous somewhere. The problem is

more complicated because there are at least two equally preferable directions at every point on the

surface. To circumvent such technical difficulties in integrating the greedy direction field, we fit a vector

field, whose streamlines are level lines of a certain continuous function on the surface, to the sampled

greedy directions. We minimize the weighted sum of squares of deviation angles. The continuous function

that we used for the fitting is called a generating function, which is simply a special kind weaving

function. By choosing weights appropriately in the least squares approximation, we reduce the problem to

minimizing (or maximizing) a Rayleigh quotient. The optimization is now standard and easy to be solved.

There are, however, other unknowns to be determined. Among them, the continuum boundaries are

crucial, which encode where a path starts (and ends). Since exact optimal continuum boundaries are hard

to be found, we, instead, define maximal basins and use them as the path continua of our path structure.

Basins are the regions subordinate to a direction field, which exhibit very "strong" regularity-a basin

consists of only one inlet and only one outlet of streamlines of the direction field. If two basins in a

partition cannot be combined to form another basin, we call the basins maximal and the partition minimal.

The critical points and the turning points of the generating function is an important cue for finding

maximal basins. Additionally, we have shown that after fining the maximal basins, finding the optimal

continuum is reduced to an optimization problem along a (1-dimensional) streamline in the maximal

basins in an approximate sense. We call this the individual cut heuristics, which must be distinguished

from the individual cut principle. Even though the individual cut heuristics simplifies the problem

considerably, the simplified problem still remains "combinatorial." In the greedy approach, we regard a

maximal basin as a continuum, without searching after the optimal continuum.

After finding the direction field though the least squares approximation and taking the maximal basins as

the continua, the remaining task is plain. The procedures that we need were provided in the previous

chapter. In a sense, the greedy approach fixes, from the outset, the two most hard-to-be-found unknowns.

Some examples of greedy tool paths were given in this section. As a rule, the chance is high that the

greedy tool paths outperform arbitrarily generated tool paths. Greedy approach is invaluable when a

machine tool approaches its singularities. Near singularities, behavior of the machine tool becomes

extremely anisotropic as shown in Figure 25-(d), and trajectory planning becomes invaluable. The

question now we raise is how well the greedy paths work, which we study in the next chapter.
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5 BOUND AND SCALE ANALYSIS

Until now, we have formulated the machining problem, studied its qualitative nature and constructed
some tool paths with a greedy strategy. The question we now ask is how well the greedy tool paths work
in comparison with other "standard" tool paths. We develop the theory for greedy direction fields but it is
readily applicable to any situation as far as a direction field is given. In a sense, we develop "indirect"
performance indicators of direction fields. They are crude in nature but it allows us to judge economically
whether it is worth while to generate tool paths along a particular direction field.

In Section 1, we show that there is a lower bound of (effective) cutting time and explain its physical
meaning. In Section 2, we further assume that the direction field is linearly converging or diverging and
derive formulas for cutting time in terms of easily obtainable parameters. We could have used other types
of direction fields such as exponentially converging fields, which we defer to the readers. In addition, we
show an example to use those formulas. Thanks to them, we can answer whether it is necessary to split a
maximal basin and, as a result, to place intermittent cuts. In Section 3, we define the notion of availability
(A. V) and potential advantage (PA.). The availability characterizes the overlap of tool paths while the
potential advantage characterizes the amount of anisotropy in the kinematic performance of machine
tools. They are the indirect measures that are evaluated by means of "blind" integrations. The greedy
approach is to take advantage of the anisotropy keeping the amount of overlap as low as possible. We
show how to achieve the trade-off between the two measures, (A. V) and (PA.). Finally, we present some
examples.
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5.1 The Strong Greedy Solution: A Lower Bound of Cutting Time

In this section, we introduce a lower bound of cutting time. The lower bound is evaluated from the greedy

directions without iteration.

THE LOWER BOUND OF CUTTING TIME

We refer to the greedy direction angle at (u, v) e P as 99(u, v). (The superscript g stands for "greedy.") In

the previous chapter, we described how to obtain the greedy directions. Given the greedy directions, there

are defined the corresponding speed 49 and the side-step-limit w9 s.t.

w5 (u, v) =_w,(r 1 (u, v), u, v) and 9(u, v) = % (r](u, v)

where w,,(7, u, v) is the side-step-limit and %(-q, u, v) is the maximum speed

defined in Section 3.4. We refer to the triad (-qg, w9, qg) as a strong greedy

following inequalities:

w(u, v) w0 (1]S(u, v), u, v) wS(u, v)

), u, v)

in the given direction as
solution. Because of the

and (u, v) 0 &(T (u, v), u, v) 4 S9(u, v),

(which are the cusp-height-limit and the actuator speed limits), it is evident that

T,[T, w, R] of any feasible path structure satisfies the following inequality:

the effective cutting time

| [r x r4II .dudv

Tew ] (u, v) - w(u, v)
> fj 11 ru x rvI . dudv -TL

, SP(U, V) -w901, V)
Vq VwVq9. (37)

The quantity TL, as defined in the equation above, is a lower bound of effective cutting time and, as a

result, the lower bound of total cutting time T, = T, + T,,, (T,,, > 0). Therefore, any attempt to finish

machining a surface earlier than TL would fail. Generally, a meaningful (or tight) lower bound is useful in

various situations. For example, it can be used in a termination condition of an optimization process.

A REMARK ON THE STRONG GREEDY SOLUTION*

It is obvious that the strong greedy solution, q (u, v) = aq(u, v) and w(u, v) = wS(u, v), fails to satisfy the

differential compatibility (Equation 15) almost everywhere. According to our model (Equation 21), the

incompatibility on sets of measure zero (curves or points) results in finite non-effective cutting time. If the

set of incompatibility is a set of full measure, the non-effective cutting time diverges to the infinity.

Therefore, the strong greedy solution requires infinite non-effective cutting time. The physical situation is

very similar to spotting, during which the majority of time is spent on switching positions. This is a

natural consequence of neglecting the non-effective cutting time and the compatibility to get the greedy

directions. While infinite non-effective cutting time is required for the strong greedy solution, a lower

bound TL of effective cutting time is furnished by it. Therefore, the strong greedy solution furnishes the

minimum of effective cutting time. The greedy approach attempts, in a sense, to reduce the non-effective

cutting time while keeping the effective cutting time near the lower bound TL.
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5.2 The Individual Cut Principle, the Individual Cut Heuristics and Additional
Approximation

We outline this section. First, we recap the individual cut principle and the individual cut heuristics to
make the context clear. Then, we present an approximate formula for the cutting time per a streamline.
Finally, we show a simple example that uses the formula.

THE INDIVIDUAL CUT PRINCIPLE

In Section 3.5, we presented the individual cut principle, which implies that we must minimize the cutting
time per a streamline to minimize the total cutting time. The cutting time per a streamline was defined as
follows:

Tref fL(rej _ +~Z[ 0 (]T~ !L_ (Wf + [C0. (]Yi+ 1,i) (Wf )]

where the matching pairs (y 1 y + 1 ) must be in the feasibility set

=" (1, ,1' ,(1 , ,

and other symbols are as defined in Equation (34). This principle is applicable only when a continuum
and its direction field are provided. Resorting to this principle, it is possible to extract the (pseudo-
compatible) grain boundaries in a given continuum, at least in theory.

THE INDIVIDUAL CUT HEURISTICS

In Section 4.3.3, we provided the rationale for the individual cut heuristics to get the approximate
continuum boundaries in a maximal basin. In this case, we also minimize the cutting time per a
streamline but we search for the matching pairs the following extended feasibility set:

Q" ( 0,o) = (0, 0), (1, 12, (2, 1), (1, 1).

THE CUTTING TimE PER A STREAMLINE FOR LINEAR FIELDS

The individual cut principle and the individual cut heuristics reduce our problem to separate optimization
problems each of which is defined on a 1-dimensional space (or a streamline). Even though they pretty
simplify the problem, finding the optimal continuum boundaries still remains computation-intensive.
Below, we simplify the problem further by considering a restricted case for the direction field in a (given)
maximal basin-we invoked the individual cut heuristics by considering each basin and its streamlines
one by one.
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The restrictions are

(1) The field is linearly converging and the converging ratio is homogenous in a maximal
basin, i.e. y = d(wo - w) Ids = const > 0.

(2) There are no pseudo-compatible points.

(3) The homogenous NEP model: The NEP term to is a constant.

(4) The side-step-limit and the speed are constants.

(5) The incompatible points are equidistant along a streamline.

With the restrictions above, we derive an approximate formula for cutting time per a streamline in
APPENDIx E. Without derivation, we provide the following formula:

( e(N)+ t,,(N) ; T, .[(2 - 3) + {1 - (1 - f/N)N} /N] + to -N - {1 - (1 - P3/N)N

= - {I(I-N t N+ +!± .( 2 -) (38)

where t(N) is the cutting time per a streamline for (N - 1) interruptionst (or the number of incompatible
points),

P=(- Y, 0f- - (w -w)=constO0, W- - w-ds, V-- f ,.ds,

V is the average (maximum) speed along the streamline, L is the length of the streamline, W is the side-
step-limit and t 0 is the non-effective penalty (NEP) term. We refer to the quantity P as the compression
ratio.

We will apply the above "nominal result" for rather general (not necessarily linear) cases. In those cases,
the estimation of the compression ratio P becomes expensive because the value of the parameter y is not
known in a point-wise manner prior to the integration of the side step. To circumvent this difficulty, we
used the following estimation in an average sense, i.e.

O~y ~ L I dwo dw -A ~ ](9
A wo ds w ds

where A is the area of a maximal basin. We point out that the averaged compression ratio is evaluated,
once a direction field -q (u, v) is specified in a maximal basin. Note also that (dw /ds) /w (= h 3 ) is known
from the (differential) continuity.

* In other words, Nis the number of continua.
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Figure 31 Effective Cutting Time v.s. Non-effective cutting Time

We plotted the equation in Figure 3 1-(a) for a specific value of 13, T0 and T I. The graph shows that as the

number of incompatibility increases, the effective cutting time is reduced to a lower bound while the non-

effective cutting time increases (c.f the analogous problem in Figure 21, Section 3.6).

REmARK: To be more specific, we check limit cases:

as N +oo ,

as 3-+ 0,

_, + TL - T12 ) n -> (I - e-P) /P T oN -+> oote L= tt1(2-0 3 ) and Tne 0]e~/Vo-tI

te -> 2T1  and Tne -+ TON.

THE DESIRED NUMBER OF CONTINUA

We differentiate Equation (38) and derive the desired number N* of path

desired number N* must satisfy the following condition:

dT

dN
N = N

continua in the given basin. The

= 0.

The condition is arranged as follows:

T N*2 . [(1 -( - /N*)N* _ N*(1 - 0 /N*)N*{ In(1 - /N*) + f/(N* - 0)}l
T 0 . [{ I -(1 - 0 /N*)N*} + N*(J - 0 /N*)N*{ In(I - /N*)+ 0 /(N* -0)} ]

(40)

We plot the condition on a non-dimensional chart in Figure 31 -(b). The chart shows that the higher the
compression ratio is, the more continua (or equivalently the more interruptions) we need. Besides, the
desired number increases as the ratio (T1 /TO) increases.
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AN EXAMPLE

We now ask whether it is advantageous to split a maximal basin further after we applied the path
matching procedure. This is one of the examples that show how we use the formulas that we have derived

in this section.

We inserted a set of values for the compression ratio 1, the half 1 of the average effective cutting time

per a streamline and the NEP term co as follows:

P = IM) - 2.5 sec and TO = 0.5 sec.
2' 2 2(0.2m/sec)

We point out that the maximum of the compression ratio is 1/2 if the path matching procedure has been

applied. In addition, other values were chosen rather conservatively so that the desired number N* of path

continua can be over-evaluated somewhat. Even in this conservative case, the formula (Equation 40)

predicts the desired number of continua in a maximal basin to be 1.81 as shown in Figure 32. (Note that

N* = 1 implies no split, N* = 2 is for the case when one split is made, and so on). Therefore, for most

cases, it is expected that we cannot obtain a better path structure by splitting a maximal basin further into

path continua after the path matching procedure. Of course, this is a conclusion that is drawn for typical

cases with a crude argument. The answer depends on the specific situation where a particular problem

stands. In general, if a machine tool exhibits poor performance in its maximum speed (in comparison with

its performance in acceleration capability), it is better to split a maximal basin into path continua.

A REmARK

We have derived the formulas (Equation 38 and 40) assuming the direction field is linearly converging.

We might have derived similar formulas using other types of direction fields. For example, we could have

used exponentially converging field, which we defer to the readers.

to 21 -C e ne
N 2.= 1/2

N 2 te L = (Im)
------------------------------------ LV 2(IMs)

2V 2(0.2m sec)IV 5

ne T=0.5 sec

2.S 3 .5 4 4 N5 5 5.5

N = 1.81

Figure 32 The Desired Number of Continua
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5.3 Comparison with Iso-Cusp-Height Schemes

The greedy approach takes the local advantage at the expense of the overlap of neighboring tool paths. A
path generation scheme in the opposite side is the iso-cusp-height scheme, which minimizes the overlap
degree as explained in Section 2.1. It is interesting that the strong greedy path is an iso-cusp-height path,
too. Therefore, at the expense of the non-effective cutting time, the strong greedy solution is approached

by both the path generation schemes.t The deviation of the two types of tool paths from the strong greedy
solution is our concern in this section. In a practical sense, we compare two schemes prior to actual path
generation. Since reducing the effective cutting time is the objective of both the schemes, we compare
their effective cutting time only.

A LOWER BOUND TO EFFECTIVE CUTTING TimE FOR A PARTICULAR DIRECTION FIELD

As we defined the lower bound to effective cutting time for the greedy direction field, we define it for a
particular direction field iq(u, v):

ru x r,|1 -dudv

TL11 ff (q (u, v), U, v) -w, (7 (u, v), u, v)

The effective cutting time of any tool paths that are aligned to the streamlines of the direction field
ri (u, v) is greater than this lower bound, namelyt

TL: TL[rj I < T,"ef[TI VT

where TL =_ T[rT1 as defined in Equation (37).

THE DIRECTIONAL Loss

We define directional loss to measure how much a field r1 deviates from the greedy direction field T19:

(D.L.)[ ] T[] -TL (42)
TL

This measures how efficient a fitting scheme for a given greedy direction field when it is applied for the

fitted field. It is possible to evaluate the directional loss once a direction field is given or fitted.

t -This limit process is equivalent to sending the continuum size to zero.

iyef[1  j I r x rJI - dudv

whr~f[11 f'e8,(n(U, v), U, v) -wre s e pf ai, v)

where w,,f,n] is the reference side step for a given direction field 11 as defined in Section 3.5.
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AVAILABILITY

Because of inevitable overlaps, the effective cutting time of tool paths strays from the lower bound as
expressed in the Equation (41). Availability is defined to measure this deviation from the lower bound. As
shown in Figure 3 1-(a), the effective cutting time in a maximal basin cannot be improved by the splits
more than Terf[r]- TL[r], where Tref~] -is the effective cutting time of the reference tool path (c.f
Figure 21). Being motivated by this, we define availability (A.V.)[-I of a (fitted) direction field 9 (u, v)
as follows:

) Tef[f] - TL1

The availability can be thought of as the loss due to the overlap that hinders the effective cutting time
from achieving the lower bound TLrIT .

Note that it is necessary to actually construct the (reference) tool paths in order to evaluate the effective
cutting time Trlf[T1 ] of the reference tool paths. However, thanks to the linear theory (Equation 38), we
estimate it by taking the following approximation:

Tref[ii ] - TL[r T,(]) -[L P f[]
TLIrT1 TL 2 - P[r]

where 3 is the compression ratio as defined in Equation (39). By definition, the compression ratio P can
be computed without performing streamline integration.

THE ESTIMATED EFFECTIVE CUTTING TimE

Using the directional loss and the availability, we estimate the effective cutting time of the fitted field as
follows:

T ef[1] = (A.V.) h] + }{D.L. []+I TL.

This is an economic way to evaluate the performance of a particular direction field avoiding the expensive
task of path generation. This approximation can be used to compare two direction fields quickly. (Of
course, this is a crude estimation.) If there are several direction fields, this measure can be used in a
"branch and bound" search of the space of paths.

REMARK: To evaluate the effective cutting time after the path matching procedure, we
evaluate the compression ratio in the following way:

O[N ] = .JF-dA where F = MAX -
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In the linear theory, it is observed that the availability (A. V.) is always estimated less than

33% because 1h] 1 /2. In other words, it is always possible to machining an entire surface
with the effective cutting time being less than 1. 3 3 TL[n].

THE POTENTIAL ADVANTAGE

We can compute for a surface the worst directions iiW as

shown in Figure 33, just as we determined the best

directions. When kinematic concerns are ignored, a
commercial CAM system may pick a bad direction for

tool paths. The question is what the opportunity for

improvement is. Clearly, for a flat, square patch, the

opportunity is small. For other surfaces, the opportunity u

may be greater, and we define a metric called the
potential advantage (P.A.) to capture this opportunity:

TL~r1I - TL Figure 33 Finding the Worst Direction
(P.A.) TL

where TLir[] and TL are defined in Equation (41 and 37). The more anisotropic the performance of the

system, the greater the potential advantage is. If the potential advantage of a surface is low with respect to

the availability, the benefits of the greedy tool paths are diminished. Under the circumstances, the most

important criterion for the optimality is reducing overlap.

THE UPPER BouND FOR ISO-CUSP-HEIGHT TOOL PATHS

An extreme approach for the tool path problem is to ensure that there is no overlap at all on the surface.
This approach is referred to as the iso-cusp-height scheme. By the worst field, the effective cutting time of

any iso-cusp-height direction field -q is bounded from above, namely

TL { Te[11c] = TLr[c]} TLNrw].

This is because the iso-cusp-height tool paths satisfy the following equation:

wc(u, v) = w(flc(u, v), u, v)

where T1c(u, v) is the direction field and w"(u, v) is the side step of the iso-cusp-height tool paths; they are

compatible (almost everywhere without overlap). Note that, for a general direction field TI, its effective

cutting time Tref[rn] is only bounded from below.
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THE RISK INDEX

If T 4 [i] > T[iw], it is not worth while to proceed with the greedy approach. This is because any iso-
cusp-height paths outperform the (greedy) paths in that case. In order to check whether the (greedy) tool
paths can outperform the iso-cusp-height tool paths, we define the risk index (R.I) in the following way:

(R.I.)[- ] [(A.V.)1[1 + 1 (D.L.)[ni + 1 -]/(P.A.).

The less this index, the more likely that the greedy approach succeeds. A definite (negative) conclusion is
drawn: if (R.I)[ri] > 1, then the effective cutting time of any iso-cusp-height tool paths is less than the
effective cutting time of the tool paths that are generated from the direction field -q (u, v) and, as a result, it
is better to generate the iso-cusp-height tool paths.

SUMMARY

We summarize this section by providing following trivial inequalities:

1. T~ [~ =1 ru x r,||.dudv || ru x rv|| -dudv

1| rr x r,11 -dudv

J7rf 4 I((u, v), U, v) - w 0 (rj(u, v), U, v)

|| r x rvj| . dudv (Va).
Jfra0 (lw(u, v), U, v) . w0 (rw(u, v), U, v)

2. The above inequality holds especially for the iso-cusp-height tool paths. Therefore,

{TL2TL[]} { TL[71c] = T2ref[cTc]}{T (Vnq)

3. For a general direction field, we only have the following inequality:

{TL TLIrl]} T TL[n]} { Tef[fI}] (Vp).
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5.4 Concluding with Examples

In this section, we present some examples for estimating the performance indices that has been defined in

this chapter and judging the efficiency of the greedy tool paths over the iso-cusp-height tool paths. In

addition, we show how well this estimation, which is based on the "linear" theory, works.

THE PERFORMANCE INDICES

We take the same example as shown in the previous chapter. From the 8'" to the 1 I' row in Figure 34, the

lower bounds and the compression ratio are computed through area integration. We estimate the

directional loss (D.L.), the availability (A. V), the potential advantage (PA.), and finally the risk index

(R.I.) as shown from the 12'" to 15 th row. In the second and the third example, the risk index is low; while

the first example exhibits high risk index around 1. The high risk index of the first example implies that it

is better to choose iso-cusp-height approach for the surface. In this particular case, the high risk index

mainly due to high directional loss (around 60%), which can be improved through improving the fitting

method.

The uncertainty of the fifth row is due to the fact that the first and the last tool paths in a basin usually
"cover" neighboring basins. Of course, the effective cutting time will dominate this uncertain portion of

finishing time as the cusp-height-limit reduces. In the current implementation, the characteristic length L

in Equation (39) was set very crudely as a constant over the designed surfaces as shown in Figure 34. In

the 16 'h to 17 '" row, we computed the actual availability and the risk index. The estimation corresponds

well to the actual values, taking account of the fact that the length L was set roughly. We can improve the

result by using a respective characteristic length for each maximal basin.

THE EFFECTIVENESS OF THE ESTIMATION

We generated the greedy tool paths for various surfaces and estimated the performance indices. The

difference between the estimated value and the actual value is shown in Figure 34. It is observed that the

lower the compression ratio, the more accurate estimation tends to be made.

CONCLUDING REMARKS

In this chapter, we have defined various "indirect" performance indices of tool paths to compare the two

intuitive approaches quickly. If we extend this idea further, instead of solving the exact problem, it is

worth an attempt to minimize the following approximate cutting time:

f 2 T [ q J 
I D

2 -P[n] S -'D

where the last term 'DI is an appropriately-defined measure on the "discontinuity" set 'n. The problem is
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Figure 34 Evaluating the Performance Indices

Example 1 Example 2 Example 3

Example 1 Example 2 Example 3

1. Cusp Height Limit h, (Pm) 1000 1000 1000

2. Iso-u path (Tc =e n+Tie) (sec) 618(=606+12) 250 (=239+11) 286(=277+9)

3. Iso-v path 686 (=674+13) 373(=363+10) 413(=404+8)

4. Greedy path 555 (=518+38) 239(=203+36) 248(=216+33)

5. Uncertainty (-)9 (-)17 (-)19

6. Advantage over Iso-u path 10% 4% 13%

7. Advantage over Iso-v path 19% 36% 40%

8. The Lower Bound TL 229 134 142

9. The Worst Bound TL["'wI 510 300 353

10. ****Lower Bound TL[1J1 371 156 162

11. Compression Ratio3[qf] 0.4388 0.3880 0.4238

12. Directional Loss (D.L.)[f] 62.02% 16.42% 14.08%

13. Potential Advantage(P.A) 122.9% 124.5% 148.6%

14. By estimation, (A.V.)[rf]~ 28.11% 24.07% 26.89%

15. By estimation, (R.I.) * 87.51% 35.70% 30.12%

16. *Actual (A.V.)[Tfj 35.20%-39.70% 24.63%-30.22% 21.43%-33.17%

17. "Actual (R.I.) * 96.86%-102.7% 36.22%-41.45% 25.93%-34.94%

The worst lower bound was roughly estimated compared to other estimations in the current implementation; it is under-

estimated because we did not find the exact worst direction. As a consequence, the potential advantage is under-estimated

and the risk index is over-estimated.

This uncertainty comes from the fact that the last path in a basin cover a region somewhat redundantly.

***The characteristic length L was set as follows:

L (Area)
7c /4

***f stands for the fitted field.
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now similar to the problem of image segmentation, which has been in attention in the computer vision

community [c.f Mumford-Shah Functional, e.g. see 162]. Of course, there are much room for refming the

above functional from various perspective.
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6 CONCLUSIONS AND RECOMMENDATIONS

This thesis (1) developed a new framework for CNC finish milling tool path generation for free-form

surfaces, (2) studied the formulated problem theoretically, (3) implemented a path generation algorithm,
which we called greedy, and (4) evaluated the performance of the generated paths. This thesis achieved

the following two objectives: to lay down the theoretical basis for surface machining and to find a

practical solution of the machining path optimization problem. The developed framework is fairly general

and model the machining process effectively. We showed that the implemented greedy scheme can reduce

the machining time to a considerable extent. It remains as future work to solve the optimization problem

in a stricter sense.

We recommend a few improvements of the greedy tool path generation scheme, show how we may

proceed to solve the general problem and place the problem in certain perspective. We wrap up this thesis

with a summary.
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RECOMMENDATIONS FOR THE GREEDY SCHEME

It is recommended to improve the fitting method. Pre-segmentation of the region is expected to improve
the fitting performance, and as a result, to reduce the directional loss. It is also recommended to weight
the error measure with "local anisotropy" of the machine tool. In lieu of the Bernstein polynomials, other
function spaces should also be studied. To the error measure, we may add penalty term for the severe
overlap degree. We pre-assigned the orientation (p(u, v), 4(u, v)). We can make more realistic yet not too
complicated assignment like cp(u, v) = <p,(T (u, v), u, v) and J(u, v) = 40(-(u, v), u, v) that depends on the
direction angle T , too.

A PRELUDE To GENERAL SEARCH

We take a simple case as an example and describe how we may approach the general problem. We show
that it is possible to reduce our problem to a mixed-variable optimization problem.

We consider a triangular region on a plane as shown in Figure 35. We tessellate the region into three sub-
triangles. We regard each sub-triangle as a grain of our path structure. We assume that the tool paths in
each region are mutually parallel being spaced at an equal distance apart. Then, tool paths in the i'
triangle is identified by the two variables,

0i and Wi

where Oi is the direction
this approach, we assume

angle and W is the side step of the i'h triangle. Just for showing the essence of
that the velocity polygon is given as an ellipse such that
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Figure 35 A Mixed-variable Formulation



V(T1() CoS2(0i-@f)+ ( _2- sin2 ( - Of'), (i = 1, 2, 3)

where Oi, Vx and V1y are certain constants that characterize the velocity "polygon." To the three edges of

the tessellation, we assign the following variables for matching pairs,

(y 12 , Y2 1), (723 >732 ) and (731,y1 3 ) E {.) , ,i, j,

which encode whether the boundary is compatible or not.

Now, the effective cutting time is captured by the following formula:

A 2I (cos(o -e)12 A 2  2sin(@ -0)12
Te = ( VXZ Wi + Wi 6

i = V

where A is the area of the i'h triangle. In a similar way, it is possible to express the non-effective cutting

time and other constraints in terms of W , 0i and yi . (We point out that the monotonicity condition on

the weaving function is more easily captured when we use the stream function instead of the direction

angle. However, we do not state problem with the stream functions not to distract the readers with such an

abstract notion).

In this manner, we discretize the problem and form a mixed-variable nonlinear optimization problem [e.g.

see 128]. In general, this approach results in a large scale problem, for which it is perhaps better to

proceed for approximate solutions. It is recommended to apply various techniques of the mixed-variable

optimization problems and to evaluate their fitness to our problem. It is not difficult to establish a similar

discretization for general curved surfaces.

PLACING THE PROBLEM IN CERTAIN PERSPECTIVE

Even though the following observations are, at best, superficial and speculative at the current stage of our

research, we mention a few probable connections of our problem to other types of problems.

When we substitute the side step with the corresponding side-step-limit, the compatibility turns out to be a

1st order PDE about the direction field of the iso-cusp-height tool paths. In their article on iso-cusp-height

tool paths [18], Suresh and Yang mentioned the difficulty that is associated with the sharp corners

developed in their tool paths. It is expected that we can circumvent the technical difficulty by seeking for

a viscosity solution [141 and 142] of the PDE using the level set method [e.g., see 122]. The level set

method is naturally fits the problems of "hyperbolic or propagation" kind.

In spite of its remoteness from our problem, predicting the micro-structure of a material share certain

similarity with the machining problem. We may regard the effective cutting time as the internal energy

and the non-effective cutting time as the surface energy of the micro-structure [e.g., see 143]. Another

analogous problem is image segmentation which has been in attention by the computer vision community.
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The classical Mumford-Shah functional and the Ambrosio-Tortorelli functional are similar to our cost
functional in that they concern with piecewise continuous functions and the discontinuity sets. The
research on the segmentation problem is relatively-mature and there are abundant body of literature and
ideas [e.g., see 162 and 163]. Some techniques of this problem are based on the above-mentioned level set
methods [123]. It is recommended to borrow ideas from the image segmentation problem to establish
certain approximation of our cost functional.

It is not difficult to see the similarity of a tool path structure to a flow on a manifold or a phase space of a
2-dimensional dynamic system [e.g., see 144 and 145]. Since Poincard, dynamic systems has been an
active research area. It is recommended to pursue the connections of our problem to that area, especially
in the context of subdivision schemes. From a somewhat different angle, the problem of extracting vector
field topology has been in attention in the area of visualization or fluid mechanics [152, 153 and 154]. Its
inverse problems are vector field interpolation [146, 147, 148 and 149] and vector field modeling [164].
The results of those problems can be related to the vector field fitting and the path continuum extraction
in our problem.

We further discuss the relation of our problem to optimal control problems, dynamic programming and the
TSP. The dynamic programming approach attempts to solve all the optimal-control trajectories, namely by
solving the Hamilton-Jacobi-Bellman PDE while the maximum principle-based reasoning attempts to
find just one essential trajectory by solving "Hamilton's equation" or a 2-point boundary value problem.
The optimal control flow in the phase space has a special "sink," which is usually set as the origin of the
phase space. In the machining path optimization problem, there is no such a pre-specified sink on the
surface. It is not expected to be able to construct the necessary conditions for optimality of "maximum
principle type." On the other hand, naive enumeration of the TSP results in the complexity of "factorial
order." It is well known that the dynamic programming reasoning reduces the number of necessary
enumeration for the TSP to "merely exponential" one [125 and 129]. It is interesting that the above
tessellation based mixed-variable formulation naturally exhibits exponentially-growing complexity as the
number of grains in the tessellation increases. It is also recommended to relate the bound analysis of the
TSP to the one of our problem.

SUMMARY

In Chapter 1, we briefly explored the nature of the machining path problem in comparison with other path
or scheduling problems. We observed that no existing path problem is suited for the machining process.

The free-form surface machining is a fundamental but time-consuming process in modern manufacturing.
As a result, it is of considerable economic importance to reduce the machining time. In Chapter 2, we
formulated the machining problem as a (non-classical) variational time-optimization problem. The
conceived problem is not a conventional problem of time-optimal control because the domain of the
performance measure is not a 1-dimensional but a 2-dimensional space. Instead of searching for a series
of individual paths, we search for an optimal vector field to get a skeletal information on the time-optimal
tool paths. Then, we place tool paths along the streamlines of the vector field. This viewpoint forms a
"parallel" description method for tool paths as opposed to the sequential description method that
conventional schemes take. The sequential description is suited for commanding a machine tool but it
hardly handles the optimization problem.
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A cutting tool must cover a surface properly during a machining process. The new "parallel" framework

describes naturally this fundamental requirement of machining paths. At the center of this framework, the

compatibility equation, which we have devised in this thesis, plays a crucial role in keeping the

consistency of the formulated problem. It is an equality constraint in our optimization problem that relates

the "gap width" of neighboring tool paths to the vector field.

In addition, this framework can capture various limitations of machining processes including the

kinematic limits of machine tools and the geometric cusp height limits. They are the inequality constraints

in our time-optimization problem. The anisotropy in the kinematic performance is considerable in any 5-

axis machine tools and it is important to take into account the kinematics in path generation. The

consideration on the kinematics becomes of more practical importance in the context of recent trend of

developing parallel mechanisms and using high speed machine tools.

Tool paths can exhibit complicated patterns. This is because, in fact, tool paths are separate swathe, not a

continuum. Tool paths can start and stop anywhere in the surface and can form "chaotic" patterns.

However, such "chaotic" tool paths will result in machining inefficiency because it tends to increase the

number of continuous tool paths or the amount of overlap; the cost for moving a tool from the end of a

previous path to the beginning of the next path is quite high. We postulate that a surface is partitioned into

regions in each of which tool paths are reasonably continuous. By this hypothesis, we exclude

unnecessarily-complicated tool paths from our consideration but we still accommodate diverse path

patterns. Path continua are such "reasonable" regions. Each path continuum is partitioned further into

grains where paths are "strictly continuous." What is meant by the "reasonably" or "strictly" continuous

paths are defined in terms of certain functions on a surface including a direction field, a side step function,
a weaving function, stream functions and matching pairs. The participating functions must satisfy the

compatibility equation. A partition of a surface into path continua together with the participating functions

is defined as a path structure. Including the speed function in the list, we define kinematic and dynamic

path structures. Now, the problem is reduced to finding a "good" path structure. This mathematical

construction is necessary for stating the problem formally.

After formulating the problem that we have conceived, we deduced its consequences in Chapter 3. We

derive the necessary conditions for the optimality of a tool path structure assuming that the direction field

in a path continuum is given. We showed that the problem is reduced to a series of independent

variational sub-problems defined on the 1-dimensional streamlines of the given direction field. The

individual cut principle summarizes this condition. This principle state the following trivial reasoning: "if
a path structure is optimal, each individual streamline or each tool path must be optimal." The widest cut

principle and the fastest cut principle can be thought of as special cases of the individual cut principle.

They state even more trivial reasoning: to finish machining a surface as early as possible, each individual

cut must cover as wide a region as possible and the cutting tool must move as fast as possible. In spite of

their triviality, we need some mathematical techniques to deduce the principles from the optimization

problem that we formulated in Chapter 2. Specifically, we used the characteristics theory of PDEs and the

transformation of the domain of area integration. While we state the problem mainly using partial

derivatives, we convert the partial derivatives back to ordinary derivatives along streamlines of the

presumably known vector field when we "solve" the problem. Even though the individual cut principle

simplifies the problem significantly, there remain some unknowns that are hard to be found. They are the

continua and the direction field of the optimal path structure. Especially, giving variations to the

continuum boundaries is not straightforward.

135



In Chapter 4, we developed the greedy scheme to find a practical solution. The greedy scheme is to find
the directions of maximum material removal rate and to place tool paths through the numerical integration
of the direction field. To circumvent some technical difficulties, we fit a smooth (conservative) vector
field to the sampled greedy directions. Instead of extracting the optimal continuum boundaries, we used
the maximal basins as the continua of the greedy path structure. Once the greedy direction field and the
maximal basins fix the two most inconvenient unknowns, which are the direction field and the continuum
boundary, the remaining task is very plain. The greedy tool paths optimize a certain local measure and,
therefore, they are not necessarily optimal. However, the chance is high that they perform better than
arbitrarily generated tool paths. 10-40% improvement is observed over iso-parametric tool paths.

In Chapter 5, we developed an approximation theory. The theory establishes a criterion that judge
economically whether it is probable for greedy tool paths to outperform iso-cusp-height tool paths. The
more anisotropic the kinematics performance of a machine tool is, the more it is likely that the greedy tool
paths succeed. We compare the anisotropy with the amount of overlap of the greedy tool paths. We define
the potential advantage (P.A.) and the availability (A.V.) to measure the anisotropy and the amount of
overlap, respectively. They are indirect measures for the performance of greedy tool paths. In fact, we can
extend this reasoning further and compare any two direction fields economically. We concluded this thesis
by briefly mentioning how it is possible to solve this problem in a stricter sense.
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APPENDIX A COMPATIBILITY

A.1 Derivation

We fill in here the gaps between the compatibility (Equation 15)

h (n, U, v) - C + h2(T, U, V)' - v= h3(> 7, 5 v, u, v) - w (a.e.) (A-1)

and Equation (14)

d[ (n x t)Tdr = 0 (a.e.). (A-2)

Recall that h,, h, and h3 are real-valued functions; (u, v) E T is a point in the parameter space; r

represents the direction angle; w represents the side step. Both -q and w are functions on the parameter

space .

Now, we start some "brain gymnastics."

DIFFERENTIAL FORMS

For the derivation of compatibility equation, differential forms are used. We summarize the necessary
results especially for planes-2 dimensional Euclidean spaces. In our case, the 2-dimensional Euclidean
space in analysis is the parameter space P and the coordinate functions are denoted by u and v instead of
the usual choice, x and y. In this summary, we do not discern the definitions from what are deduced; for
the rigorous formalization/axiomatization from various perspectives, readers are referred to some texts on
this subject such as [103-108].
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In the following statements, by the letters like f,f1 ,f 2, g, g1 , g2 and h, we denote usual functions on P; by
a and b, real numbers; by n and m, non-negative integers; by p and y, differential forms.

(A-3) A differential 0-form is a function on t.

(A-4) A difftrential 1-form is f -du + g -dv, for certain functions f and g on T

(A-5) A difftrential 2-form is h - dudv, for a function h on f.

(A-6) h (f, - du+ g, - dv) ±(f 2 .du+g 2 - dv) = (h f ±f2) -du+(h g1 g92) dv

(A-7) f dudv + g - dudv = (f+ g) -dudv

(A-8) dudv = -dvdu t

(A-9) dudu = dvdv = 0

(A-10) (f, - du + g, - dv) (f2 .du +g 2 .dv) = (fVg 2 -f 2 1) . dudv

(A-l) (p - w = (-)n m . V - (p, for an n-form p and an m-fbrm

(A-12) df = du+ Ldvt
au av

(A-13) d(f-du+g -dv) = df-du+dg.dv

(A-14) d(ap + by) = a - dp +b -d

(A-15) d(kpp) = (dp) . x + (-])" - q> d\y, for an n-form (P

(A-16) d(d>) = 0 for a C2 differential form p

MATRIx REPRESENTATION AND SOME USEFUL RELATIONS

Adopting matrix representation can simplify some algebraic manipulation.

A mapping r,:Tu T - Tr(u)-W, which is defined by

r*U(d) = r(u + t -di) (A- 17)
1t=0

is called the derivative mapping of the surface map, r:T --> W, at u = (u, v) e T. It is not difficult to

t dudv is sometimes denoted by du A dv and this product is called wedge product or exterior product. The
reason why we do not specify the wedge product explicitly is that the context usually makes it clear which
product is used in an expression.
I-The operation denoted by the symbol d is called the exterior derivative.
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show that this mapping is a linear transformation [109]. It is a well-known result of linear algebra that

there is a corresponding matrix to a linear transformation with respect to a particular choice of bases. The

corresponding matrix is called a Jacobian matrix. We choose the "natural" bases of (the tangent spaces

of) the parameter space 'P and the workpiece space W The Jacobian matrix of the surface (map) r with

respect to their natural bases will be denoted by A , i.e.

r ,(ti) = A 6 and A = [ru I rv] (A-18)

by setting the correspondence, r, ++ A . As mentioned earlier, we adopt the convention that any vector is
treated as a column vector for matrix representation.

The Jacobian matrix A is related to the firstfundamental form matrix G by

G = ATA. (A-19)

The modal matrix P is defined in terms of the first fundamental form coefficients (Equation 4, Chapter 2)

and satisfies the following relation

PTGP = 1. (A-20)

Resorting to the elementary matrix theory, we get the following immediate result:

p 2g = 1, (GP)-T = P, GPPT = 1 and ppT = G-1 = Gad /g, (A-21)

where p = Det(P), g = Det(G) and

Gad 22

~-921

- 1 2

g11_

(A-22)

The modal matrix P and the Jacobian matrix A are essential in the matrix representation of tangent

vectors of the surface. For example,

n x t = APRa

dr = A -du

(A-23)

(A-24)

where a = [cosj sin- ]T and R is the 90 degree rotation matrix.

Abusing the notation somewhat, we adopt the matrix multiplication rule for exterior product, for example,

duduT = ddu dv] = dudud _0 1 dudv = -Rdudv = RTdudv.
Ldv[ Ldvdu dvdvi L-1 0

(A-25)
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We also write:

d[fT.du] = dfT-du =d[duT - du.df (A-26)

where f= [f g]T; this is a matrix representation of (A-13). The minus sign in the last tenn is from (A- 11).

90* -rotation matrix R plays interesting roles in plane geometry as in (A-25). Among them, the following
formula may interest you:

RTMR = Det(M). M-T, (A-27)

for any non-singular 2-by-2 matrix M. Also,

da = d cosa] = -sinn -d1 = Ra d-9 = Ra - (%du + 71dv).
sin] J cosTJ

The following is evident:

RTR = RRT = 1

which merely states that 90 - 90 = 0.

(A-2) EXPANDED:

We apply the rule (A-15) to (A-2):

d[] -(n x t)Tdr + d[(n x t)Tdr] 0.

Applying (A- 12) further, we get

-F' 1du (n x t)Tdr + d[(n x t)Tdr] = 0.
w2a La vj W

After all, we will show that (LHT) = (RHT) is equivalent to (A-1), where

(LHT) = [ -]du .(n x t)Tdr

(RHT) = w -d[(n x t)Tdr]

(LHT) SIMPLIFIED:

We plug (A-23, A-24) into the 1-form (n x t)Tdr in (A-32):

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)
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(n xt)Tdr = drT(n xt) = duTAT. A PRa.

By (A-19), the 1-form is reduced to

(n x t)Tdr = duT - GPRa.

Using this and (A-25), (LHT) is reduced to the following form:

(LHT) = L du -duT -GPRa = dudv - v j.

We apply (A-27 and A-21):

RT(GP)R = gpP = -P.

Plugging this into (A-35), we get

(LHT) = F -Pa - dudv =h](qu, v) - -+ h v L - - dudv,

where we used the definition, h = [h] h2 ]T = Pa (Equation 6).

(RHT) SIMPLIFIED:

We apply (A-34 and A-26):

d[(n x t)Tdr] = -duT -d[GPRa].

Recalling the general matrix multiplication rule and (A-15, A-28, A-29), we get

d[GPRa] = d[GP] -Ra + GPR -da

= (du - (GP) + dv - (GP)) Ra + (Tdu + ridv) -GPRRa

= (du (GP) + dv - (GP)) Ra - (qdu + qvdv)- GPa

We plug this into (A-38) and apply (A-8, A-9, A-36):
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(A-34)

(A-35)

(A-36)

(A-37)

(A-38)

(A-39)



d[(n x t)Tdr I4

={[114 1v] - R -

= { - [71, Ti']

GPa+ [0 1] - (GP)-[] 0] - (GP Ra dudv

PRa + ([0 1] - a(GP) -[1 01 (GP)- Ra dudva i TV

COLLECTING TERMS:

Now plug (A-37, A-40) into (A-32) and set (LHT) /fg = (RHT) /J:

hi *-o +h2* O 1[qu T1v] -PRa + [01.(GP)- [1 0]. a(GP -Ra/1hr -w.

We factored with Fg so that resulting terms could have some geometric meaning.

Just by setting

h3 = [i[T, 7,]P+ ([0 1](GP)-[ ] 0]+(GP) /g -. Ra,

(A-4 1)

(A-42)

(A-41) becomes (A-1). Now, we have shown that (A-1) is derived from (A-2).

A.2 Compatibility in terms of a Generating Function

The generating function V was defined as a smooth function on the parameter space , which satisfies the
following relation to the direction angle Ti:

, Cos _

si nT1

RTPTVV

JVVTPPTVV
P--RTVV ,where VV= .

' VTGadVV Vv
(A-43)

Here, we derive the compatibility somewhat independently instead of directly plugging (A-43) into (A-1);
dealing with the arctangent function is somewhat inconvenient. Our objective is equivalent to expressing
h 1, h2 and h3 in terms of the generating function V instead of the direction angle T .

Since the term VVTGadVV shows up frequently, we abbreviate this term to f: f= VVTGadVV.
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(LHT): hi AND h2

We do easier one first. Using (A-43), we have

h = [h] h2 ]T = Pa = P- PJIRTVV _ RTVV
.VVTGadVV f

In other words,

hi = Vv/l/f and h2 = -u/ jf.

(RHT): h3

Comparing (A-42) with (A-38 and A-40), we say that

h3 * dudv = d[(n x t)Tdr] _ -duT - d[GPRa]

Using (A-43, A-29 and A-2 1), we have

GPRa = GPR- RTPTVV

jVVTPPTVV

fg -VV _ Af-VV

g VVTPPTVV VVTGadVV

We apply the exterior derivative to the above equation in a component-wise manner, and apply (A- 12):

d[GPRa] -
Ou VVTGadgy)

.du+a - VV dv.
v VVTGadVV

We perform the wedge product between this and -duT:

-duT.d[GPRaJ = [0 1]. a
au

- a 1 -.VV

-5u VVTGadV )

g - [VV
SVVTGadVV

a ig V

_v IN yTGadV

0]. - - dudv}v {1yTGad uv,

-dudv = {I] -I2} -dudv,

where

145

(A-44)

(A-45)

(A-46)

(A-47)

(A-48)

(A-49)



JVVTGadVV r.V .
2-(VV) -GadVV+VVTGadVV

U VVTGadIV

2 VVTGadVV

= {(gu. Vv + 2 g _ Vuv)- {VVTGadVV} - g. V,- {2 - (VV)7- GadVV+ VVTGadV ) 2/{ .f 3 '2 . g

and similarly,

I2 F

{vVTGadVJ

= {(g' V,, + 2 g - Vuv) {VVTGadVV} _g. V - {2- (VV)T -GadVV+ VVTGadVV}}/{2-f 3 ' 2 .1g

Now, if we compare (A-49) with (A-46), we notice that

h3 = {f1-1}/,.fg

-VVTGadVV-,. g. .{V (VV)- Vu(VV)T) Gadvg . V VT{ VG ad _UGad}VV

2 .f 3 / 2 . g

Recalling that Gad is a symmetric matrix, we do some tricks for the 2nd term:

-{ Vv(VV)[- Vu(VV)[} - GadVV = VVTGad. f- Vu(VV) + V (VV)v}

= VVTGad. [u { } V} = VVT .Gad .HR VV

v uVI V, v] VU

where we denoted Hessian matrix by H:

H vuUU vUV

V V ' ~ V VV

Then we are lead to the following equation:

h3
VVTWVV

2 .fS/2. g

where
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{(= ----g

(A-50)

(A-51)

(A-52)

(A-53)

(A-54)

(A-55)

TU =a V
7V V TGad

vv + Fg - Vv 

Qg, - vv - g - VU)



W =Gad {2g H R+ (g,-g, - v V ,)' I -gVvGad-_ uGad)

In summary,

h] (2fg) Vv

2 -f3/2 . g . h2 = -(2fg V (A-56)

h3 VVTWVV

Now, the compatibility is expressed in the following form:

V.u v -- = -fv- . W Vd w. (A-57)
f v au " Cav 1 f VVT-2g-.Gad.-VV
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APPENDIX B SURFACE INVERSE KINEMATICS

B.1 The Dimensions of the Hexapod Machine Tool

In Figure 36, a hexapod machine tool is shown. Its controller dictates the required motion to each link. As

each link moves up and down with respect to the ceiling, the distance ii between two spherical joints

along the i' link varies. In the end, we control the motion of the rigid body that hangs from the ceiling.
We call the "triangular" rigid body the downstairs of the hexapod machine tool. The hexagonal ceiling is

referred to as its upstairs. In our previous terminology, the downstairs is the spindle base (cf Figure 9).
At the center of the downstairs, we attach an imaginary point M, which we regard as the cutter location
point. We also attach an orthonormal basis {e,, e2, e3 } on the downstairs as shown in Figure 37. The CL-
point M together with the basis {e , e2, e} forms a reference frame, which we refer to as D. In the bottom

a) A 3D model

1.

0.402
V

b) Skeletal Drawing

Figure 36 The Hexapod Machine Tool
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P5

Downstairs

Q4A Q6

Tool q

B

Upstairs

P2
aP

P3

b 
P

Figure 37 The Neutral Position of Hexapod

150

e31

H

zk

Workpiece



of the machine tool, we attach an orthonormal basis {i,j, k}. We refer to the bottom as the base of the
machine tool. We attach a point 0 at the center of the base. The point 0 together with the basis {i,j, k I

forms a reference frame, which we refer to as G. The same frame can be taken for the workpiece space -W,
either. (In this case, the change of frame between the workpiece space and the inertial reference frame is
the trivial unity.) It is well known that the inverse kinematics of a hexapod (a parallel mechanism) is
readily obtained (while getting its forward kinematics is quite challenging).

In Figure 37, we show the geometric dimensions that we need to specify, which are a, b, c, H, B and 1.

And, we specified their values:

a = 26", b = 1', c = 12" , H = 4' , B = 18" and I = 6".

They are the inputs in our problem. Here, we show how to get the coordinates of the vertices of the
upstairs and the downstairs from the specified geometric input data.

THE VERTICES OF THE UPSTAIRs HEXAGON:

We refer to the vertices of the Hexagon as Pi (i = 1... 6) as shown in the figure below. Let ai denote its

position (vector) in the workpiece space -W, whose basis is {i,j, k}. Then, the point is determined from

the given geometric inputs in the following way:

t, = arctan (2(a/b)+JI , (0 an i x/2)

R= - {2-(a/b)+J}2 +3
2 3

(a)- a2 = /2+ , (i = 1...6 and n = 1... 4).

+2= n+ 2c /3

P 3

b P4

R

P] a/2

03 - ao

P6
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THE VERTICES OF THE DOWNSTAIRS TRIANGLE:

Just for convenience, we assign two points at each vertex of the downstairs triangle as shown in the figure

below. The points are denoted by Q, (i = 1.. .6). By bi, we denote the coordinates of the vertices

(observed) in the downstairs frame D. Now, we have:

where

P
C

7r/2

0+2ir/3

B.2 The Kinematic Control Law

The hexapod machine tool is a redundant machine tool for 5-axis machining because it has 6 independent

axes. A simple way to resolve the redundancy is to impose a constraint between the generalized

coordinates of the system. In the given particular hexapod, its controller imposes the following constraint:

which implies that Q4 Q5 //xz-plane , in the geometric sense.

B.3 The Kinematics

1. The Rigid Body Motion of the Downstairs

The above specific kinematic control law implies that the basis vector e,

the following form:

of the downstairs is expressed in

e, = cosa - i - sina -k or e = [cosa 0 -sinao]T

The orientation q is a body-fixed direction and, in fact, it coincides with e 3 , i.e.

e3 = q.

Since e3 should be perpendicular to e1 , we have:
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eT e = qT (cosa -i- sina -k) = qxcosa-qzsina = 0.

Therefore,

cosc = qz

ql 2+q 2
and sina = q .

2 1~q

In summary,

[qz 0 -qx ]T
e =z

e2 = 3x e,

e3 = [ qx

-qzqy]T

q qz+T

qy q]T3

Let Q be the rigid body rotation of the downstairs with respect to the workpiece space. By definition,

Ie2 e3] q0

qz -qxy Y q x

0 q2 q~q

-qx -qzqy Y qZ-

where q, = qx+ qz.

ROTATION APPLIED:

The vertices of the downstairs triangle in the workpiece space is

MQj = Q b'

when the CL-point M is at the origin of the workpiece space.

TRANSLATION APPLIED:

We further apply the translation:
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** minJ~jjm UffEJ ~ -. -

UNi = M i+rm = Qbi+rM

2. Joint Displacement

Using the above equation, we have

PiQi = OQi -OP = Q bl+r -ai.

Note that bi and ai are constants. Now, we derive the distance between the two spherical joints along the
ith link in terms of (rM, Q):

1 = PQ.TPi; = (Q bi+rM-ai)T(Q bi+rM _ ai)

= (bi)Tbi+ (ai)Tai+(rM)TrM+2 - (rM)TQbi-(ai)TQbi-(ai)TrM)

Note that we used QTQ = 1. The equation above can be arranged in the following form:

I = (bi)Tbi+(ai)Tai+(rm)TrM + 2 . (rM-aI)Tg5 -(ai)TM' . (B-)

The displacement is also expressed by

(B-2)

where we set

Both forms are useful.

3. Orientation Parametrization and the Surface Inverse Kinematics

REMARKS ON THE PARAMETRIZATION OF THE ORIENTATION:

The orientation vector can be parametrized by two parameters because it is a unit vector in a 3-
dimensional space. Generally, we cannot avoid the representation singularities of a unit sphere (using only

2 parameters). However, we point out that the cutting tool is not allowed to penetrate the designed solid
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and the orientation we need is not the entire unit sphere. The set of orientation under our interest is only a
"north" hemisphere whose equator is on the tangent plane of the designed surface, which is topologically

equivalent to a bounded 2-dimensional domain. As a result, we avoid the representation singularities

easily if we confine the singularities within the "south" hemisphere. For example, we can adopt the two
angles of a spherical coordinate system, whose singularity is in the "equator." It is also possible to use a

stereographic projection whose singularity is on the "south" pole. In practice, it is more convenient to

define the orientation with respect to the tangent plane of the surface. To accommodate this situation, we

allow the parametrization to depend on the locations of the surface. Therefore, the orientation is

parametrized in the following form:

q = q,(q, 4, u, v)

where q, is a parametrization (map), (T, 4) are two parameters for the orientation and (u, v) is a point on

the parameter space . By preassigning the vector field with T = p,(u, v) and 4 = 4(u, v), we have the

orientation in the following form:

q(u, v) = q,(p,(u, v), 4),(u, v), u, v)

forming a unit vector field on the surface.

THE REQUIREMENT OF TANGENCY:

The cutter location point M is defined by the requirement of tangency:

rM = r+R - n + l-q (B-3)

THE SURFACE INVERSE KINEMATICS:

Once the orientation vector is parametrized by two angles, p and 4, we substitute q in Equation (B-1 or
B-2) with the parameterization q(p, 4, u, v) and substitute the cutter location point rM with

r(u, v) + R - n(u, v) + 1 -q,(, 4, u, v). The surface inverse kinematics is readily obtained. Substitution with

the assignment q(u, v) will yield the restricted surface inverse kinematics:

IV 'P-+Rs, (u,v)->(1 1 ,l 2 , 13> 141>16).
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B.4 The Jacobian Matrix of the Surface Inverse Kinematics

Using Equation (B-1, B-2 and B-3), we derive the following formula for the Jacobian matrix C of the

surface inverse kinematics map fP . (Note that C [fuO fv"] and o = Cifl.

C = jM (A+R N+t S)+JQ.S

where jM = [01, JQ = [A], N-[n~n] , S=- [quv] , A [rurvl]

Jg=ry+ci,rM c
J1 = {rM-ai} ', c -Qb 1 -a 1 , r = r+R-n+l-q,

i)TQbi), q, = F2 2 2I? = (bi)Tbi+(ai)Tai+(rM)TrM+2-((rM)Tci-(a q +qz

qz

Qs 0

L-qx

q2

-qzy Y

1OqX
qq

JOqz

-qxqz

-q 2L

2

qq

qxq Yqz

31

01

0

0

aQ 2 ==0
aq Y q

-qx 01
0 qO

-qz 01

q2

aQ3 = Q 0

Lx~z z q

B.5 The Weingarten Formula and Surface Normal Machining

The following is the Weingarten formula [e.g. see 117]:

N = -AG- 1D

where N - [n nj,, A = [ru rj], G is the first fundamental form matrix and D is the 2nd fundamental
form matrix. This formula simplifies the evaluation of the Jacobian matrix of the surface inverse
kinematics. Especially, for the surface normal machining,

because q = n and S = N = -AG-ID.
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APPENDIX C THE SIDE-STEP-LiMIT

C. The Side-step-limit

In this appendix, we refine the formula (Equation 23) of the side-step-limit w,(r, u, v). Given a principal

direction angle r1 e [0, 7 /2], principal curvatures (K, and K2), a tool curvature Kb and a cusp-height-

limit ho , we use the following formula to evaluate side-step-limit:

[w1 /7 +y} 
w =

{W1 L + YL) PL

where

1.y = ]+ (3) 2, =7L +(KsJL)2 ,

if ho hL(q)

(C-1)
otherwise

2 . x,(n)= xI sin 2T + K2 cos 2 - , (Euler 'formula)

: KI and K2 are the most concave and convex principal curvature, respectively.

3.w 
if [s=KO V ,p/1 + (Ksp)21 =

[In(1 + s)J/s - n(1 - s)Js ] /2 otherwise

4. OL is decided by solving the following polynomial equation:
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F(f3 ) (KbKS)
2

p4 - 2Kbl2f3 + Kx32 - Kbf3 L + 1 = 0

in the interval of (I /Kb) P 0< ( 2 Kb) if ,> 0

in the interval of 0r P 3 < (I /Kb) if KS< 0,

using any numerical methods. Note that the uniqueness of the solution in the given interval is proved.

For Newton-Rhapson method, use the following derivative:

F/(3L) = 2Kb{7i(2K bL-3)+]}.

5. hL [KbyL -- p2, and

6. 3 is decided by solving the following nonlinear equation in the interval 0 s p pL (only if h0  hL):

h = HMs+ + fiKby - s ]2 (C-2)
2 1 + 172 -(~ -x)2f2_

with given ho. Use the information that the right side term is monotonic with respect to p.

For other three quadrants of the (a, ) -space, the side-step-limit is evaluated by the symmetry. For most

cases, w0 ~ 23 is accurate enough. If the direction angle T is given instead of the principal direction

angle, we use the following relation:

1] = Ti+ i 0

where T1 is defined by the following system of equations

cosn0 = Itr, /Ilr,|| and sinrl, = n T(r x iu)/|r|

Note that iv is the "most convex" principal direction. Instead of solving Equation (C-2), we could solve

the following 5 ' order polynomial equation:

[p2]3 5 K2- 
6

K
2 +

[ p2]4 K - K4 K [9 - 8h KS] +

[$2]3 K 
2 8K2 K2 [ 3 - 5(his) + 3(hOKV)] -
b s bL O 'O

[p2]2 K2. 8 [i2{- 2+ 4(h 0 ,K) - 7(hK )2 + 4(hors)3} + 18K2] +

[p32] K2. 16[K2{ 2 - 2(hKs) + (hOs)2 }h + 12Kx]h 0 +

[- 0 K 16[K h -4]h
=0
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DERIVATION

The normal section in a normal plane of a streamline at u e T is the intersection of the normal plane of a

streamline with the designed surface as shown in Figure 38-(a). We refer to the arclength parametrization

of the normal section as rNS(I3). Kb is the curvature of the cutting tool.

The normal section is approximated at u e T by

d(r rNSd _2
rNS(p) = r(U)+ + %+...

d$ 2 dD2 2

This is the parabolic approximation of the normal section. We center the normal section at r(u) and

define:

ArNS(f)=rNS(p)-r(u) = (0)(n x t)+ (1Kso32)n+

where t is the unit tangent vector of a streamline passing through the point and n is the unit surface

normal vector at the surface point. K, is the normal curvature in the direction of n x t. It is well known in

differential geometry that the normal curvature KS corresponds to the curvature of the normal section,
namely, KS = I(rNS)yIu j

nn

R =

b nNStNS

ho

rNS p

nxt

r(u)
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We set a local coordinate system for the expression of the normal section. For brevity, we consider the
following alternative expressions the same:

ArNS(p) = p(n x t)+ (KSP 2)n = x(n x t)+yn = (x, y) K

We define tNS and nNS as the unit vectors of the normal section as shown in Figure 38-(a), namely

tNS = s(1,1() and nNS s(-Kj, 1)

-+ -(Y)2 )+( K p2

Then, the center r. of the ball is

r(xy) = (x,(y)+ -sP + I (C-3){rb (Xf3)LK( Y +K2)+K.
b Eb JI + (Kso 2

Applying Pythagoras' theorem to the triangle in Figure 38-(b),

x +(y,-ho)2 = R2 or

{Kb - K+Scf )2 { + I Kb1 (sO2h 2

S+ (s) (sp)2

Solving the above equation for ho results in

0, = ye - -R 2 * _C_4)

The other solution h0 = y+ -- x is discarded since it predicts h1 in Figure 38-(b). Figure 38-(c)
shows that h0 is bounded by a certain number hL and the corresponding 3 is denoted by PL.

By inserting Equation (C-3) into Equation (C-4), we have

(1= 352+ EbY - -i - 2J

where we set

Directly using this formula causes computational instability near Kb = 0. To avoid such "artificial
singularities," we rationalize the equation and get the following equation:
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h= IK+ +Kb7-2KS} 22 2h().

2 + s I - {K(] + (Ksp)
2

) - 2KS } 2

By expanding the above equation, we have the following 5th order polynomial equation for 12:

[p32]5 K2 K6 K2 +
5sK

[$214 K2 -K4[9 - 8h K]+

[B2] 3 K 2 8K 2K[ 3 - 5(hs) + 3(hOK) 2 ] -

[2] 2 Kb 8 [K {-- 2 + 4(h Ks) - 7(h0 Ks) 2 + 4(hoKs) 3 } + 18K2] +

[ p2] K g 16[ 2{ 2 - 2(h 0 K) + (ho0 K) 2 } ho + 12Ks]ho +

[1 ] K2.16[Kgh2 -4]h2

=0

MONOTONICITY OF h(s)

Since the 5th order polynomial can have a complicated root structure, we want to solve 1 directly from

Equation (C-5) for a given cusp-height-limit ho. To do so, we check the monotonicity of the function

h(p):

Kb 7 3  > 0, since
Kb1)

=(Kxs3) { b 3
= K}

[dh = (dx/ d)

dp (y, -h)I

(1)If K<S 0, then I=[I- Kh+

(y1) and (Kb KS).

(Ks 1)(gc

where I= 11

K 2/2] 0.

(2) If K > 0, then starting from

h y, (inspecting Figure 38-b)

-Ksh > - sYc

[I - K h + K22/2] [1 - KsYC + K 2p/2] -II

II = 1+ K2 /2-K y/ = 1+ }- {1 + Kb'sp2}
2 s b K + (-Ksp2 2

K Kby -Ks

Kby Kby
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d13

dyc

-x h+ IKp2]



12 M 0

Gathering both cases, we conclude that

(Pf3 0)

which implies that h(p) is monotonic.

CUTTING OFF THE SIDE-STEP-LIMIT FOR LARGE CUSP-HEIGHT-LIvITS

The critical value hL of h(p) occurs at

Ix=
Kb

as shown in Figure 38-(c). The corresponding 3 is denoted by P'L, which is the solution of

PL KS I
x( 1 =L)IKb - =R.

Kb ]l+(KsJL) 2 } Kb

Expanding the above equation, we establish the following equation about hL:

F() = (KbLs)2 f -2Kbsf L +b L- 2Kbf3L+ 1 = 0. (C-6)

We also observe that h(P) in Equation (C-5) starts to have an imaginary value from P = PL . (Of course,
this is not a proof, which we omit here). If we insert P = PL into the equation, the square root part will be
zero. Thus, the limit value of cusp height is

hL = [KS+ 1 + jI- L
3 ]p2

'b L - 2s L

where we set

yL +(KpL)
2 .

Elementary calculus is sufficient to prove that

If K, 0, Equation (C- 6 )-F(3L) = 0 - has the unique solution in the interval:

1 2.
Kb Kb

if K, < 0, the equation has the unique solution in the interval:
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Kb

THE SIDE-STEP-LIMIT:

Approximately,

wo~ 2P

where P is the solution of the Equation (C-5). Of course, this is valid only if h0 hL . To be more exact,

W= 2.Jf T+)d, = 2 J 1+ (Kx)2 dx=
0 o

ln(1+s)s - In(1 -s)lIs +Y2

where we set

1 + ( Ks13) 2

Note that

rlim [ In(1 + s)'Is] = ln(e) = 1 and lim [ ln(J - s)-1Is] = in (-) = -1.
s-+ 0 s - 0

All the considerations made here lead us to the formula given in the outset of this section.

C.2 Iso-sweep-rate Contour Lines

MINIMUM REQUIREMENT OF THE SIDE-STEP-LIMIT FORMULA

We can devise other approximate formulas for the side-step-limit. But, we require that the formulas

should satisfy the following inequality:

dw
- 0 whererj E [O, z /2].
drj

(C-7)

This is because the widest cut is made in the most convex direction.

ISO-SWEEP-RATE CONTOUR LINEs IN THE TANGENT SPACE

As mentioned earlier, (3,4,,) is the cylindrical coordinates of the ( , ) -space, namely a = cosrT and
= sinr . In terms of the cylindrical coordinate system, iso-sweeprate contour lines can be expressed by
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the following equation:

= F0 /w 0 (ri),

where F0 is the sweep rate. Then, resorting to Equation (C-7), we have

,4(-q=0)>8! (-q=x /2) .

Geometrically, it means that the iso-sweep-rate contour lines are enlarged to the ii -axis and shrinks to the
i -axis. This is shown in Figure 39-(a). The contour can even have inflection points in the (i, i)-space if
the variation of the side-step-limit is large as shown in Figure 39-(b).

Conventional tool path generation schemes do not take account of the kinematic aspect of machining,
which is equivalent to the assumption that the velocity limit is not a polygon but a circle in (ii, i) -space,
namely 4 : 0,=const represents the velocity polygon. For such an isotropic case, the most convex
direction ( -axis) is the direction of maximum sweep rate as shown in Figure 39-(c).

71
V

VC

enlarge

a) A Convex Iso-sweep Rate
Contour Line

= const

_L__:~ u

c) Constant Velocity Limit

b) A Non-convex Iso-sweep Rate
Contour Line

c) The Direction Angle of a Iso-
sweep-rate Contour Line

Figure 39 Iso-Sweep Rate Contour Lines
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TANGENT ANGLES AND INFLECTION POINTS OF ISO-SWEEPRATE CONTOUR LINES

The convexity of iso-sweep-rate contour lines is an important piece of information to find the greedy
direction. To check the convexity, we define the tangent angle of the contour lines:

®(rt)~atanj di)'0(ij)~ =_ ),2
71 < '

K2 2)

which is the angle of the tangent vector dd /d- of an iso-sweep-rate contour line from the a_ -axis. This is

shown in Figure 39-(d). An iso-sweeprate contour line (a(r), ( )) in (ti, ) -space for a given sweep rate

J7 is represented by

a = 8cos 7 = 1 - Cos and = sinT = 0 . sin .

Then, we have

0(ri) = atan2 lwo - cosfl - w,'. sinr, -(wo -sinf- + w' - cos-r)], (7c /2<0 < 57r /2)

where w'0 = 2(K1 - K2) cos2 . (dwo/dKs)

(y(2-4h 0 Ks + 2h K by 3 _ KbKs 3)
S+ jws(Kx 3 )I if h0  hL

dwo (I - 2h 0 KS+ y 2 )(Kby3 - KS)

dK 2 2
sLYL(cbL(Ks otherwise

(bOL ) 2 (2bOL - 3) + KbOL - 1 +

x - arc sinh(x)

Note that all the symbols are as defined in Equation (C-1). This formula is used to find the edge binding

points and the inflection angles. For the edge binding points, we used the bisection search method without

differentiation. For the inflection angles, we took the golden ratio search method, maximizing O(n).

Depending on the numerical methods we choose, the following derivative can be invoked:

dO

dqn

d d -(d

2 (d 2

d (dd

Note that

d@ > 0
d-

at the points where an iso-sweep-rate contour line is convex.

167

if lxi # 0

otherwise



C.3 Edge Binding Criteria

We maximize the function 6(q) and eventually find the inflection point in the first quadrant. Let the
direction angle of the inflection point be ni, and corresponding slope be i,,= -(r if). For other
quadrants, the inflection points are derived by symmetry.

Let an ith edge of the velocity polygon be represented by 2 vertices (being oriented anti-clock wise):

6. = [i. i ]T and ai+, = [di+] itj iT.

We refer to the principal direction angle of the vertices as rn,, namely q, = atan2(Qi, d,). Let

Afi =uIi -Ii..The ta+n - p

The tangent angle of each segment is represented by

If an edge has a binding point, the following criterion is satisfied:

2r -0 <0 < if or 37-1 7f<O<r+@ .

In addition,

[7 i,Ti+ 1 ] r U#0

where

U = [-qi, /2]

U = [7c/2,7c-qjn]

U = [n + - 37 /2]

U = [37r/2,27-%,,]

Of course, if r > , then the
euiif
equation

if At. < 0 and Ai. < 0

if <>

if >>

if ><.

interval [ml m, +,] is interpreted considering the periodicity, namely

Ili > , . If the edge passes the above criteria, we solve the following

= 0 (C-8)

in the corresponding interval U.
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After finding the solution r1. of Equation (C-8), we check whether the point is on the segment but not on

its extension. The ray in the direction of r, is represented by

( cosrI

sinb J>

The equation of the edge is expressed by

{4 A~~ O i3t e (0, 1).

Equating both, we solve the following equation for parameters 9 and t:

~cosI* -Af~ x

sinrq -A t y -

In order that the point can be a candidate of the binding point, the following inequalities must be satisfied:

4 > 0 and 0< t < .

If the point passes all the above criteria, we include the point &[cos* sinr *]T e (fi, I)-space in the list of

candidate (edge) binding points.
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APPENDIX D EXAMPLES OF SURFACES

Here, we provide the control points R11 for the surfaces that were taken as examples in Chapter 4. We also

provide the control points Vi1 for the generating function V(u, v) that is fitted to the greedy directions.

D.1 Surface Example 1:

ROO=

R01=

R02=

R03=

R04=

R10=

Rll=[

R12=

R13=[

R14=[

R20=

R21=

R22=

R23=

R24=

R30=

R31=

R32=

R33=

R34=

R40=[
R41=[

R42=

R43=

R44=[

-0.1200
-0.1200

-0.1200
-0.1800
-0.1200

-0.0600
-0.0600

-0.0600

-0.0600
-0.0600

0.0000

0.0000
0.0000

0.0000

0.0000
0.0600
0.0600

0.0600
0.0600

0.0600
0.1200
0.1200

0.1200
0.1200

0.1200

-0.1200
-0.0600

0.0000
0.0600

0.1200

-0.1200

-0.0600
0.0000

0.0600
0.1200

-0.1200

-0.0600
0.0000
0.0600

0.1200
-0.1800
-0.0600

0.0000
0.0600

0.1200

-0.1200
-0.0600
0.0000

0.0600
0.1200

0.2500] (m)

0.2500] (m)

0.3611] (m)

0.2500] (m)

0.2500] (i)

0.2500](i)
0.2500](i)
0.2500] ()

1.0833] (i)
0.3056] (m)

0.2500] (m)

0.1944] ()

0.1944] (m)

0.0278] (m)

0.2500] ()

0.3056](m)
0.5278] (i)

0.3056] (m)

0.1944] (m)

0.2500] (m)

0.2500] (i)

0.3056] (m)

0.3056] ()

0.2500](m)
0.2500] ()
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Bi-quadratic [Vij] =

0.00010000000000 -0.75318950554665 -0.43351053657144

-0.00873161266664 0.28345116377007 -0.10811633357740

-0.30453695395901 -0.21252059798077 -0.12147624308731

Bi-cubic [Vij] =

0.00010000000000 0.04787356388696 0.35433969464262 0.15356826121058

0.01738605276363 -0.10564499097978 -0.65479627927392 0.10882303739045

0.14714797217375 0.53228756990644 0.18364673085155 -0.01008529754797

-0.17350569539288 -0.10408369864959 0.11766457389464 0.05395849964030

D.2 Surface Example 2:

-9.0000

-12.0000
-12.0000

-9.0000
-3.0000

-3.0000

-3.0000
-3.0000

3.0000

3.0000
3.0000

3.0000

9.0000
12.0000

12.0000

9.0000

-9.0000
-3.0000

3.0000
9.0000

-12.0000
-3.0000

3.0000
12.0000

-12.0000

-3.0000
3.0000

12.0000

-9.0000

-3.0000

3.0000

9.0000

20.0000]*(0.012500) (m)

12.0000)*(0.012500) (m)

12.00001*(0.012500) (m)

20.0000]*(0.012500) (m)

28.0000]*(0.012500) (m)

20.0000]*(0.012500) (m)

20.00001*(0.012500) (m)

28.0000]*(0.012500) (m)

28.00001*(0.012500) (m)

20.0000]*(0.012500) (m)

20.0000]*(0.012500) (m)

28.00001*(0.012500) (m)

20.0000]*(0.012500) (m)

12.0000]*(0.012500) (m)

12.0000]*(0.012500) (m)

20.0000]*(0.012500) (m)

[Vij] =

0 0.30058703471589 -0.05681922365427

-0.41158334537802 -0.62397478156384 -0.50407602853921

0.00000000000000 0.30058703471590 -0.05681922365427
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D.3 Surface Example 3:

ROO=[ -12.0000 -9.4737 20.0000]*(0.012500)(m)

-3.1579
3.1579
9.4737

-12.6316

-3.1579

3.1579
12.6316

-12.6316

-3.1579
3.1579

12.6316

-9.4737
-3.1579

3.1579

25.3333]*(0.012500)(m)

25.3333]*(0.012500)(m)

20.0000]*(0.012500)(m)

25.3333* (0.012500) (m)

36.0000]*(0.012500) (m)

36.0000]*(0.012500) (m)

25.3333]*(0.012500) (m)

25.3333]*(0.012500) (m)

36.0000*(0.012500)(m)

36.00001*(0.012500)(m)

25.3333]*(0.012500) (m)

20.0000]*(0.012500) (m)

25.33331*(0.012500) (m)

25.3333]*(0.012500) (m)

R01=

R02=

R03=

R10=

R11=

R12=

R13=

R20=

R21=

R22=

R23=

R30=

R31=

R32=

R33=

-8.0000
-8.0000

-12.0000
-4 .0000

-4.0000

-4.0000

-4.0000

4 .0000

4.0000

4.0000

4.0000

12.0000

8.0000

8.0000

12.0000

[Vij] =
--------------------------------------------------------- -------

0.00010000000000 -0.03398149913045 0.00066044448484

0.03571439157901 0.99808789770223 0.01531906506090

-0.00000000000000 -0.03398149913045 0.00066044448484

0 020

0:0
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APPENDIX E
CUTTING TIME

PER A STREAMLINE IN A LINEARLY CONVERGING FIELD

In this appendix, we derive the formula (Equation 38, Section 5.2) for the cutting time per a streamline:

EQUATION (38)

=,(N) 1,(N)+1,(N)~ z - [(2- 0) + {1-(I - /N)N}/IN]+ - N - {1 ( - 0 /N)Nj

= -1--1- N N+ +11-.(2-0)

where uc(N) is the cutting time per a streamline for
points),

3 (-! y
IJL

T 2 .V~

V is the speed along the streamline, L is the length

the non-effective penalty (NEP) term.

(N - 1) interruptions (or the number of incompatible

s - w) = const > 0,

of the streamline, W is the side-step-limit and To is
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E.1 Non-effective Cutting Time

Because we consider only the converging field, the overlap degree will vanish on the inlet of each new
continuum to minimize the cutting time. The number n1 of tool paths in the ith continuum is approximated
by

Yi
ni ~ -

W0

where Y is the length of the inlet of the ith continuum and wi is the (averaged) side-step-limit along the
inlet as shown in Figure 40. We assumed that the direction field is linearly converging, i.e.

y = (wo -w) = const.

The side step w oilet on the ith outlet is approximated by

Wil ~ w 1 - L - ) (E-1)

where N is the number of path continua and L is the averaged length of streamlines in the maximal basin
under consideration. Note that

Wi+I W i outlet
0 W0

because an outlet of a continuum is the inlet of its next continuum. With the same token, the length Yi +
of the (i+1)th inlet is identical to the length of the i'h outlet.

The number of tool paths in the ith continuum must be conserved, i.e.

.0 L

a) A maximal basin whose characteristic length is L.

(

b I

0n2
0nN

b) N subdivisions N

Figure 40 Subdividing a Maximal Basin into Path Continua (c.f. Figure 22)
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n= = -l. [W. I+i
From Equatooutlet ( ouea E2 w

From Equation (E- I and E-2), we have

C.-
We consider the side-step-limit a constant, namely
paths in each region is a geometric series:

n ( = n- -

wi = W = const. Consequently, the number of tool0

where - Y

We now derive the non-effective cutting time T,, of the maximal basin as follows:

Tne ; To -(Number of Toolpaths) = c -(zn) = to - n(. T -(1N-

Note that the non-effective cutting time per a streamline is Tne /n ,. Therefore,

(E-3)

E.2 Effective Cutting Time

We divide the effective cutting time Te of the maximal basin into two terms as follows:

Te fdA f dA + fo -

The first term is a constant for a given direction field. In this appendix, we refer to the first term as TL.

We reverse the approximation in Equation (20) for the second term, i.e.

w -w
Te = TL+ -ds.

i c , W"

In the outset, we assumed that wo(s) - w(s) z y -s , wo ~ W and 8 ~ V. Then,
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= L+_ I 2VW

With a similar manner, we are lead to

TL C 1(2 - 0)
Ln,

where L2 V'.7 ,

Collecting both terms, we have derived the effective cutting time per a streamline in a maximal basin:

T e(N) = L+(Te-tL)
n I

= . (2- B) + 1 (

E.3 Total Cutting Time

Collecting terms in Equation (E-3 and E-4), we now have derived the cutting time per a streamline in a
maximal basin:

1,(N) -'re(N)+ t,e(N) = I - (I - N} 0 N+ +,C -(2-P)

as shown in Equation (38).
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