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It is known as a purely quantum effect that a magnetic flux affects the real physics of a particle, such as the
energy spectrum, even if the flux does not interfere with the particle’s path—the Aharonov-Bohm effect. Here
we examine an Aharonov-Bohm effect on a many-body wave function. Specifically, we study this many-body
effect on the gapless edge states of a bulk gapped phase protected by a global symmetry (such as ZN )—the
symmetry-protected topological (SPT) states. The many-body analog of spectral shifts, the twisted wave function,
and the twisted boundary realization are identified in this SPT state. An explicit lattice construction of SPT edge
states is derived, and a challenge of gauging its non-onsite symmetry is overcome. Agreement is found in the
twisted spectrum between a numerical lattice calculation and a conformal field theory prediction.

DOI: 10.1103/PhysRevB.89.195122 PACS number(s): 03.65.Vf, 67.10.−j, 75.10.Pq

Mysteriously, an external magnetic flux can affect the phys-
ical properties of particles even without interfering directly on
their paths. This is known as the Aharonov-Bohm (AB) effect
[1]. For instance, a particle of charge q and mass m confined
in a ring (parametrized by 0 � θ < 2π ) of radius a threaded
with a flux �B [see Fig. 1(a)] would have its energy spectrum
shifted as

En = 1

2ma2

(
n + �B

�0

)2

, n = 0, ± 1, . . . , (1)

where �0 = 2π/q is the quantum of magnetic flux and we
adopt e = � = c = 1 units. One can dispose of the gauge
potential in Schrödinger’s equation of the wave function ψ(θ )
by a gauge transformation that changes the wave function
to ψ̃(θ ) = ψ(θ ) exp[iq

∫ θ A(θ ′)dθ ′]. So, the effect of the
external flux can be enforced by the condition that the phase
ϕ̃(θ ) of the new wave function satisfies a twisted boundary
condition,

(1/2π )
∮

dθ
∂ ϕ̃(θ )

∂θ
= �B/�0, (2)

as the particle trajectory encloses the ring; thus, this twisted
boundary condition implies a “branch cut” [see Fig. 1(b)]. We
may refer to this twist effect as an “Aharonov-Bohm twist.” For
electrons confined on a mesoscopic ring, for example, even
though interactions are not negligible, the sensitivity of the
system to the presence of the external flux can be rationalized
as a single-particle phenomenon [2].

It is then opportune, as matter of principle, to ask whether
such an AB effect can take place as an intrinsically interacting
many-body phenomenon. More concretely, we ask whether
the low-energy properties of such interacting systems display
a response analogous to Eq. (1) when subject to a gauge
perturbation and, in turn, how this effect is encoded in
the “topology” (or boundary conditions) of the the wave-
functional �[φ(x)]; see Figs. 1(c) and 1(d). We shall refer
to this as a many-body AB effect or twist.

In this paper, we show that two-dimensional (2D)
symmetry-protected topological (SPT) states [3–5] offer a
natural platform for observing the many-body AB effect.
SPT states are quantum many-body states of matter with a
finite gap to bulk excitations and no fractionalized degrees

of freedom. Due to a global symmetry, the system has the
property that its edge states can only be gapped if a symmetry
breaking occurs, either explicitly or spontaneously. So, in the
absence of any symmetry breaking, the edge is described
by robust edge excitations that cannot be localized due to
weak symmetry-preserving disorder, in contrast to purely
one-dimensional systems [6]. Assuming then that the edge
states are in this gapless phase (an assumption that we will take
throughout the paper), we shall demonstrate that the system
will respond to the insertion of a gauge flux in a nontrivial
way, whereas if the edge degrees of freedom were to become
gapped, then they would be insensitive to the flux. We note
that in 2D systems displaying the integer quantum Hall effect,
the insertion of a flux also induces a nontrivial response of the
chiral edge states [7]. In contrast to this situation, here we shall
be concerned with 2D nonchiral SPT states for which gapless
edge excitations, such as the single-particle modes on a ring,
propagate in both directions. The spectrum of these gapless
modes characterizes the low-energy properties of the system.

We approach this problem from two directions: (i) First,
we study the response of the SPT state to the insertion of a
gauge flux by means of a low-energy effective theory for the
edge states, and we derive the change in the spectrum of edge
states akin to Eq. (1). (ii) Complementarily, we show that the
many-body AB effect derived in (i) can also be captured by
formulating a lattice model describing the edge states. Twisted
boundary conditions defined for these models are shown to
account for the presence of a gauge flux, which we confirm
numerically.

I. MANY-BODY AHARONOV-BOHM EFFECT

To capture the essence of the AB effect on a symmetry-
protected many-body wave function, we imagine threading
a gauge flux through an effective 1D edge on one side of a
2D bulk SPT annulus (or cylinder). This many-body wave
function on the 1D edge (parametrized by 0 � x < L) of
SPT states is the analog of a single-body wave function of
a particle in a ring. Since the bulk degrees of freedom are
gapped, we concentrate on the low-energy properties on the
edge described by a nonchiral Luttinger liquid action Iedge[φI ]
[8,9]. To capture the gauge flux effect on a many-body wave
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FIG. 1. (Color online) (a) and (c) Single- and many-body wave
functions upon flux insertion, respectively. (b) and (d) Flux effect
captured by twisted boundary conditions showing the associated
branch cut.

function |�〉, we formulate it in the path integral,

|�(tf )〉 =
∑

n

|�n(tf )〉〈�n(tf )|e−i
∫ tf
ti

H (t)dt |�(ti)〉

=
∑

n

|�n(tf )〉
∫ φI,n

φI (ti )
DφI e

i (Iedge[φI ]+(1/2π)
∫

qI A∧dφI ),

(3)

with φI the intrinsic field on the edge. Our goal is to interpret
this many-body AB twist (1/2π )

∫
qI A ∧ dφI . We anticipate

the energy spectrum under the flux would be adjusted, and
we aim to capture this “twist” effect on the energy spectrum.
Below we focus on bosonic SPT states with ZN symmetry
[8–12], with global symmetry transformation on the edge (see
Appendix A for details on the field-theoretic input),

S (p)
N = e

i
N

(
∫ L

0 dx ∂xφ2+p
∫ L

0 dx ∂xφ1), (4)

where p ∈ {0, . . . ,N − 1} and (1/2π )∂xφ2(x) is the canonical
momentum associated with φ1(x) [13].

The Lagrangian density associated with Eq. (3) reads

Ledge[A] = 1

4π
KIJ ∂tφI ∂xφJ − Hf [φI ]

+ 1

2π
qIAμεμν∂νφI , (5)

where indices μ,ν ∈ {0,1}, I,J ∈ {1,2}, K = (0 1
1 0), Hf [φI ]

is the Hamiltonian density describing a free boson, and qI =
(q1,q2) = (1,p) specify the charges carried by the currents
J

μ

I = (1/2π )εμν∂νφI . The right (left) -moving modes are
described by φR,L ∝ φ1 ± φ2.

Integrating the equations of motion of (5), with respect to
φI , along the boundary coordinate x in the presence of a static
background ZN gauge flux configuration

∮ L

0 dxA1(x) = 2π
N

yields

(1/2π )
∮ L

0
dx ∂x

(
φ1

φ2

)
= 1

N

(
p

1

)
. (6)

(See Appendix B for an alternative derivation from a bulk-edge
Chern-Simons approach.) Equation (6) represents the shift in
winding modes of the edge boson fields, and it plays a role

analogous to the single-particle twisted boundary condition,
Eq. (2). The spectrum of the central charge c = 1 free boson
at compactification radius R is labeled by the primary states
|n,m〉 (n,m ∈ Z) with scaling dimension

�(n,m; R) = n2

R2
+ R2m2

4
(7)

and momentum P(n,m) = nm [14]. Then, according to
Eq. (6), after the flux insertion, we derive the new spectrum
(also see another related setting [15])

�̃
(p)
N (n,m; R) = 1

R2

(
n + p

N

)2

+ R2

4

(
m + 1

N

)2

(8)

and momenta P̃ (p)
N (n,m) = (n + p

N
)(m + 1

N
) for each SPT

state p ∈ {0, . . . ,N − 1}. Equations (6) and (8) capture the
essence of the many-body AB effect analogous to Eqs. (1)
and (2).

II. EFFECTIVE LATTICE MODEL FOR THE EDGE OF
SPT STATES

A. Symmetry transformation and domain wall

The twist effect encoded in Eq. (8) comes from an
effective low-energy description of the edge. We aim, as a
complementary and perhaps more fundamental point of view,
to capture this twist effect from a lattice model. As a first step
in this program, we shall construct a global ZN symmetry
transformation in terms of discrete degrees of freedom on the
edge whose action reduces to Eq. (4) at long wavelengths.
The hallmark of a nontrivial SPT state is that the symmetry
transformation on the boundary cannot be in a tensor product
form on each single site, i.e., it acts as a non-onsite symmetry
transformation [3,4,16]. We propose the following ansatz for
the symmetry transformation:

S
(p)
N ≡

M∏
j=1

τj

M∏
j=1

exp

{
i
p

N

[
2π

N
(δNDW)j,j+1

]}

≡
M∏

j=1

τj

M∏
j=1

e
i
N

Q
(p)
N (σ †

j σj+1), (9)

acting on a ring with M sites that we take to describe the 1D
edge, with σM+1 ≡ σ1. At every site of the ring we considerZN

operators (τj ,σj ), j = 1, . . . ,M , satisfying τN
j = σN

j = 1 and

τ
†
j σj τj = ω σj , where ω ≡ ei2π/N . We shall use the following

representation:

σj =

⎛
⎜⎜⎜⎝

1 0 0 0
0 ω 0 0

0 0
. . . 0

0 0 0 ωN−1

⎞
⎟⎟⎟⎠

j

,

(10)

τj =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
... 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠

j

.

195122-2



SYMMETRY-PROTECTED MANY-BODY AHARONOV-BOHM EFFECT PHYSICAL REVIEW B 89, 195122 (2014)

The overall symmetry transformation contains the onsite
transformation part generated by the string of τ ’s and the “non-
onsite domain wall (DW)” part (δNDW)j,j+1 between sites j

and (j + 1). The ansatz form Eq. (9) has the property that∏M
j=1 τj and

∏M
j=1 e

i
N

Q
(p)
N (σ †

j σj+1) commute, and the unitarity of

S
(p)
N implies [Q(p)

N ]† = Q
(p)
N . It follows that

(
S

(p)
N

)N =
M∏

j=1

ei Q
(p)
N (σ †

j σj+1) . (11)

The construction above then naturally yields N distinct classes
of ZN symmetry transformations, labeled by p ∈ ZN , upon
imposing the following condition on the (N − 1)th-order
polynomial operator Q

(p)
N (σ †

j σj+1):

ei Q
(p)
N (σ †

j σj+1) = (σ †
j σj+1)p, p = 0, . . . ,N − 1, (12)

which guarantees (due to periodic boundary conditions)
that (S(p)

N )N = 1. The symmetry transformation in the
trivial case corresponds to p = 0 (mod N ), for which∏

j e
i
N

Q
(p=0)
N (σ †

j σj+1) = 1, while p 	= 0 (mod N ) describe the
other N − 1 nontrivial SPT classes. Identifying σj ∼ ei φ1(j ),
then the domain-wall variable (δNDW)j,j+1 counts the number
of units of the ZN angle between sites j and j + 1, so
(2π/N )(δNDW)j,j+1= φ1,j+1 − φ1,j , which produces the ex-
pected long-distance behavior of the symmetry transformation
Eq. (4). Our ansatz nicely embodies two interpretations
together, on both a continuum field theory and a discrete lattice
model. The ZN symmetry transformations Eq. (9) that satisfy
Eq. (12) can be explicitly written as

S
(p)
N =

M∏
j=1

τj

M∏
j=1

e
−i 2π

N2 p {( N−1
2 )1+∑N−1

k=1

(σ
†
j

σj+1)k

(ωk−1)
}
. (13)

In Ref. [16], the edge symmetry for ZN SPT states was
proposed in terms of effective long-wavelength rotor variables.
We emphasize that the construction of the edge symmetry
transformations Eq. (13) described here does not rely on a
long-wavelength description; rather, it can be viewed as a
fully regularized symmetry transformation. In Appendixes C
and D, we give explicit formulas for the Z2 and Z3 symmetry
transformations, and we draw a connection between the lattice
operators (τj ,σj ) and quantum rotor variables.

B. Lattice model

Having constructed all the classes of ZN symmetry trans-
formations, Eq. (13), we now propose our translation invariant
and ZN -symmetric lattice model Hamiltonians H

(p)
N on the

edge of ZN SPT states, i.e.,[
H

(p)
N ,T

] = 0,
[
H

(p)
N ,S

(p)
N

] = 0, (14)

where T performs a translation by one lattice site. Our model
Hamiltonian is (with λ

(p)
N a constant),

H
(p)
N = λ

(p)
N

M∑
j=1

h
(p)
N,j ≡−λ

(p)
N

M∑
j=1

N−1∑
�=0

(
S

(p)
N

)−�
(τj + τ

†
j )
(
S

(p)
N

)�
.

(15)
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FIG. 2. (Color online) Spectrum of the SPT Hamiltonian Eq. (15)
with respect to the lowest energy E

(p)
N,0, on a ring as a function of the

lattice momentum k ∈ Z. The first few primary states are labeled by
(n,m). (a) Spectrum of H

(p=1)
2 with λ

(p=1)
2 = 0.82 and M = 20 sites.

(b) Spectrum of H
(p=1,2)
3 with λ

(p=1,2)
3 = 0.26 and M = 12 sites. The

values of λ
(p)
N above guarantee a proper normalization so that states in

the same conformal tower separated by δk = ±1 are integer-spaced
(up to finite size effects) (see Ref. [17]).

Notice that H
(p)
N is manifestly ZN symmetric since it is

constructed from the superposition of τj conjugated to all
powers of S

(p)
N . In the trivial SPT case for which H

(p=0)
N ∝

−∑M
j=1 (τj + τ

†
j ), the model gives a gapped and symmetry-

preserving ground state. In Appendix C, we provide explicit
forms of the nontrivial classes of SPT Hamiltonians for the
N = 2 and N = 3 cases. We note that for the Z2 case, our
symmetry transformation and edge Hamiltonian are the same
as that obtained in Ref. [9] (where the low-energy theory in
terms of a nonchiral Luttinger liquid has been discussed),
despite the fact that our method of constructing the symmetry
is independent of that in Ref. [9] and provides a generalization
for all ZN groups. It is noteworthy to mention that the authors
of Ref. [9] argue that the edge of the Z2 bosonic SPT state
is generically unstable to symmetry-preserving perturbations.
Nevertheless, we shall still study the model Hamiltonian (15)
for the Z2 as a means to address our numerical methods. A
common feature of these Hamiltonian classes is the existence
of combinations of terms such as σj−1τjσj+1 due to the
non-onsite global symmetry. Their effect, as we shall see, is to
give rise to a gapless spectrum. To understand their effect on the
low-energy properties, we perform an exact diagonalization
study of the nontrivial Hamiltonian classes Eq. (15) on finite
systems.

In Fig. 2, we plot the lowest energy eigenvalues for the
Z2 and Z3 nontrivial SPT states as a function of the lattice
momentum k ∈ Z defined by T = ei 2π

M
k . The spectrum of

H
(1)
2 with M = 20 sites shows very good agreement with the

bosonic spectrum Eq. (7) at R = 2, with states being labeled by
|n,m〉. The global Z2 charges relative to the ground state were
found to be eiπ (n+m) in accordance with Eq. (4) (we note that
similar results have been obtained for the Z2 case in Ref. [16]).
For theZ3 SPT states, which have not been investigated before,
with M = 12 sites, the spectra of H

(1)
3 and H

(2)
3 are identical

[18]. Finite-size effects are more prominent than in the Z2

case, but the overall structure of the spectrum is very similar,
with the second and third states being degenerate with energy
close to 1/4 and global Z3 charges e±2πi/3 (which we identify
as the |n = ±1,m = 0〉 states), suggesting the same spectrum
Eq. (7) at R = 2.
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In Appendix D, following the methods of Refs. [3,4,16],
we show that the symmetry classes defined in Eq. (9) subject
to condition Eq. (12) are related to all ZN 3-cocycles of
the group cohomology classification of 2D SPT states [3].
Thus, our lattice model completely realizes all N classes of
H3(ZN,U (1)) = ZN , where p stands for the pth class in the
third cohomology group.

III. TWISTED BOUNDARY CONDITIONS AND TWISTED
HAMILTONIAN ON THE LATTICE

We now seek to build a lattice model with twisted boundary
conditions to capture the edge state spectral shift in the
presence of a unit ofZN flux insertion. It is instructive to revisit
the case of twisted boundary conditions where the symmetry
transformation acts as an on-site symmetry. For the sake of
concreteness, let us consider the one-dimensional quantum
Ising model HIsing = ∑M

j=1(Jσ z
j σ z

j+1 + hσx
j ) with global Z2

symmetry
∏M

j=1 σx
j . The Z2 twisted sector (or equivalently,

in this case, the antiperiodic boundary condition sector) of
the model is realized by flipping the sign of a pair interaction
σ z

k σ z
k+1 → −σ z

k σ z
k+1, for some site k, while leaving all the

other terms unchanged. If the Ising model is defined on an
open line, the twist effect is implemented by conjugating the
HIsing with the operator

∏
��k σ x

� . When the model is defined
on a ring, the same effect is obtained by defining a new
translation operator T̃ = T σx

k and demanding that the twisted
Hamiltonian H̃Ising commutes with T̃ . It is straightforward to
see that the twisted Ising Hamiltonian on a ring that commutes
with T̃ indeed has σ z

k σ z
k+1 → −σ z

k σ z
k+1. We also note that

(T̃ )M = ∏M
j=1 σx

j generates the Z2 symmetry of HIsing, which
is also a symmetry of H̃Ising.

We now generalize the construction above for the SPT edge
Hamiltonians on a ring with a non-onsite symmetry by defining
the unitary twisted lattice translation operator [19]

T̃ (p) = T e
i
N

Q
(p)
N (σ †

Mσ1)τ1 (16)

for each p ∈ ZN class, which incorporates the effect of the
branch cut as in Fig. 1(d). The twisted Hamiltonian H̃

(p)
N ,

constructed from H
(p)
N of Eq. (15) and satisfying[

H̃
(p)
N ,T̃ (p)] = 0, (17)

reads (see Appendix C 2 for explicit results)

H̃
(p)
N = λ

(p)
N

M∑
j=1

h̃
(p)
N,j , (18a)

h̃
(p)
N,1 = τ

†
1 τ

†
2 h

(p)
N,1τ1τ2,

h̃
(p)
N,j = h

(p)
N,j (2 � j � M − 1), (18b)

h̃
(p)
N,M = τ

†
1 e− i

N
Q

(p)
N (σ †

Mσ1) h
(p)
N,M e

i
N

Q
(p)
N (σ †

Mσ1)τ1.

Notice that, due to the intrinsic non-onsite term in the
symmetry transformation,

S̃
(p)
N ≡ (T̃ (p))M = e

i
N

[Q(p)
N (ω σ

†
M σ1)−Q

(p)
N (σ †

M σ1)] S
(p)
N , (19)

the twisted nontrivial Hamiltonian breaks the SPT global
symmetry [i.e., [H̃ (p)

N ,S
(p)
N ] 	= 0 if p 	= 0 mod(N )], signaling
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FIG. 3. (Color online) Spectrum of the twisted SPT Hamiltonian
with respect to the lowest energy E

(p)
N,0 on a ring as a function of

the lattice momentum k̃, with the same values of λ
(p)
N as in Fig. 2.

The first few primary states are labeled by (n,m). (a) Spectrum of
H̃

(1)
2 with M = 20 sites. (b) Spectrum of H̃

(1)
3 (+) and H̃

(2)
3 (×) with

M = 12 sites. (c) Comparison between �̃
(1)
2 (circles) and numerical

results (+) plotted as a function of the momentum P̃ (1)
2 . All points are

twofold-degenerate. Red circles represent primary states, while the
remaining points account for descendant states in the CFT spectrum.
(d) Comparison between �̃

(1)
3 (circles) and data points (+) plotted in

terms of the momentum P̃ (1)
3 . Same for �̃

(2)
3 (squares) and data points

(×) plotted in terms of the momentum P̃ (2)
3 .

an anomaly effect [20,21]. (For a more systematic discussion
of bosonic anomalies in the context of 2D SPT states, see
Ref. [21].) However, in the trivial state, Eq. (19) yields
S̃

(p=0)
N = S

(p=0)
N = ∏M

j=1 τj , so that the twisted trivial Hamil-
tonian still commutes with the global ZN onsite symmetry, and
the twisted effect is equivalent to the usual toroidal boundary
conditions [17], as exemplified before for the antiperiodic
boundary condition of the Ising model.

In Figs. 3(a) and 3(b), we display the low-energy spectrum
of the twisted Z2 and Z3 SPT Hamiltonians with a π -flux
and 2π/3-flux, respectively, as a function of twisted lattice
momentum k̃ defined as T̃ = ei 2π

M
k̃ . The eigenvalues of the

primary states show very good agreement with �̃
(1)
2 (n,m; R =

2) and �̃
(1,2)
3 (n,m; R = 2) in Eq. (8), which we compare, in

Figs. 3(c) and 3(d), by folding the spectrum so that the primary
states are plotted as a function of the continuum momenta
P̃ (1)

2 (n,m) and P̃ (1,2)
3 (n,m). Our findings thus establish a

relationship between the many-body AB effect in terms of
both a long-wavelength description in the field theory as well
as twisted boundary conditions in a lattice model.

IV. SUMMARY

We have demonstrated that an intrinsically many-body
realization of the Aharonov-Bohm phenomenon takes place
on the edge of a 2D symmetry-protected many-body system in
the presence of a background gauge flux. In our construction,
we have assumed that the edge state is in a gapless phase and
is described by a simple nonchiral Luttinger liquid action with
one right- and one left-moving propagating mode carrying
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different ZN charges [22], in which case the spectrum in the
presence of a gauge flux displays quantization as Eq. (8) due
to global symmetry protection (ZN symmetry in our work),
analogous to the quantization of the energy spectrum of a
superconducting ring due to the Z2 symmetry inherent to
superconductors [23]. The universal information carried by the
counterpropagating edge modes is that they carry different ZN

charges, which has been numerically verified for the Z2 and
Z3 SPT classes in Fig. 2, where this difference is parametrized
by the integer p ∈ {1, . . . ,N − 1} that characterizes the SPT
class. This quantum number should remain invariant as long
as the SPT order is not destroyed in the bulk. The offset in the
charges carried by the right- and left-moving modes has then
been shown to reflect itself in the edge spectrum according to
Eq. (8) (where R is a nonuniversal parameter), which we have
confirmed numerically in our model Hamiltonians for the Z2

and Z3 SPT classes in Fig. 3.
We have proposed general principles guiding the construc-

tion of the lattice Hamiltonians, Eqs. (15) and (18), of the
bosonic ZN -symmetric SPT edge states for both the untwisted
and twisted (without and with gauge fluxes) cases. The twisted
spectra (i.e., with gauge flux) characterize all types of ZN

bosonic anomalies [20,21], which naturally serve as “SPT
invariants [5]” to detect and distinguish all ZN classes of SPT
states numerically and experimentally. (See also the recent
work in Refs. [21,24].)

Gauging a non-onsite symmetry of SPT has been noticed
relating to the Ginsparg-Wilson (GW) fermion [25] approach
of a lattice field theory problem [26]. We remark that our
current work achieves gauging a non-onsite symmetry for
a bosonic system, thus providing an important step in this
direction. Whether our work can be extended to more general
symmetry classes and to fermionic systems [such as U(1)
symmetry in the GW fermion approach] is an open question,
which we leave for future work.
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APPENDIX A: FIELD THEORY REALIZATION OF ZN

SPT STATES

In this appendix, we briefly review the field theory tool for
topological states, especially symmetry-protected topological

(SPT) states, but with an emphasis on canonical quantization
and how the global symmetry transformation S (p)

N on the edge
is encoded in the canonical quantization.

1. Bulk and boundary actions

A general framework of categorizing and classifying
Abelian topological orders, especially the SPT ones, in 2 + 1D,
makes use of Abelian K-matrix Chern-Simons theory [27].
We now derive the K-matrix construction for the SPT order,
following the pioneering work of Refs. [8–13].

The intrinsic field theory description of SPT states, on a 2D
spatial surface M2, is the Chern-Simons action

ISPT,M2 = 1

4π

∫
dt d2xKIJ εμνρaI

μ∂νa
J
ρ , (A1)

where a is the intrinsic (or statistical) gauge field, and K

is the K matrix, which categorizes the SPT orders. An SPT
state is not intrinsically topologically ordered [3], so it has
no topological degeneracy [13,27]. Ground-state degeneracy
(GSD) of SPT on the torus is GSD = | det K| = 1 [8,13,27];
this suggests a constrained canonical form of K [8,12,13].

The SPT order is symmetry-protected, so tautologically its
order is protected by a global symmetry. The novel features of
SPT distinct from a trivial insulator are its symmetry-protected
edge states on the boundary. The effective degree of freedom
of its 1D edge, ∂M2, is the chiral bosonic field φ, where
φ is meant to preserve gauge invariance on the bulk edge
under gauge transformation of the field a [27]. The boundary
action is

ISPT,∂M2 = 1

4π

∫
dt dx (KIJ ∂tφI ∂xφJ − VIJ ∂xφI ∂xφJ ).

(A2)

2. ZN symmetry transformation

The ZN symmetry simply requires a rank-2 K

matrix, which exhausts all the group cohomology class,
H3(ZN,U (1)) = ZN ,

K =
(

0 1
1 0

)
. (A3)

The ZN symmetry transformation with a ZN angle specifies
the group element g [8],

gn : δφgn
= 2π

N
n

(
1
p

)
, (A4)

where p labels the ZN class of the cohomology group
H3(ZN,U (1)) = ZN . Both n and p are module N as elements
inZN . It can be shown that under φgn

→ φgn
+ δφgn

, the action
Eq. (A2) is invariant, and the ZN group structure is realized
through gN

n = 1. The construction of more general symmetry
classes can be found in Refs. [8,12].

3. Canonical quantization

Here we go through the canonical quantization of the boson
field φI . For canonical quantization, we mean imposing a
commutation relation between φI and its conjugate momentum
field �I (x) = δL

δ(∂tφI ) = 1
2π

KIJ ∂xφJ . Because φI is a compact
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phase of a matter field, its bosonization contains both zero
mode φ0I and winding momentum PφJ

, in addition to nonzero
modes [13]:

φI (x) = φ0I + K−1
IJ PφJ

2π

L
x + i

∑
n	=0

1

n
αI,ne

−inx 2π
L . (A5)

The periodic boundary has size 0 � x < L. First, we impose
the commutation relation for zero mode and winding modes,
and we generalize Kac-Moody algebra for nonzero modes:[

φ0I ,PφJ

] = iδIJ , [αI,n,αJ,m] = nK−1
IJ δn,−m. (A6)

We thus derive canonical quantized fields with the commuta-
tion relation,

[φI (x1),KI ′J ∂xφJ (x2)] = 2πiδII ′δ(x1 − x2), (A7)

[φI (x1),�J (x2)] = iδIJ δ(x1 − x2). (A8)

The symmetry transformation of Eq. (A4) implies φgn
→

φgn
+ δφgn

:

(
φ1(x)
φ2(x)

)
→

(
φ1(x)
φ2(x)

)
+ 2π

N

(
1
p

)
. (A9)

It can be easily checked, using Eq. (A7), that

S (p)
N = e

i
N

(
∫ L

0 dx ∂xφ2+p
∫ L

0 dx ∂xφ1) (A10)

implements the global symmetry transformation

S (p)
N

(
φ1(x)
φ2(x)

)(
S (p)

N

)−1 =
(

φ1(x)
φ2(x)

)
+ 2π

N

(
1
p

)
. (A11)

APPENDIX B: TWISTED BOUNDARY CONDITION FROM
A GAUGE FLUX INSERTION

Using the same formalism as in Appendix A, in this
appendix we derive the twisted boundary condition due to a
gauge flux insertion. Here we apply the canonical quantization
method to formulate the effect of a gauge flux insertion
through a cylinder (an analog of Laughlin thought experiments
[7]) in terms of a twisted boundary condition effect. The
canonical quantization approach here can be compared with
the alternate path-integral approach motivated in the main
text. The canonical quantization offers a solid view as to why
the twisted boundary condition resulting from a gauge flux is a
quantum effect. We will first present the bulk theory viewpoint,
then the edge theory viewpoint.

1. Bulk theory

Our setting is an external adiabatic gauge flux insertion
through a cylinder or annulus. Here the gauge field (such
as the electromagnetic field) couples to (SPT or intrinsic)
topologically ordered states, by a coupling charge vector qI .
The bulk term (here we recover the right dimension, while one

can set these to be e = � = c = 1 in the end)

Ibulk =
∫
M

(c dt) d2x

[(
e2

�

)
KIJ

4π
εμνρaI

μ∂νa
J
ρ + eqIAμJ

μ

I

]
,

(B1)

where J
μ

I is in a conserved current form

J
μ

I =
(

e

�

)
1

2π
εμνρ∂νaρ,I . (B2)

From the action, we derive the EOM,

J
μ

J = −qI

e

2π
K−1

IJ

c

�
εμνρ∂νAρ. (B3)

From the bulk theory side, an adiabatic flux ��B induces an
electric field Ex by the Faraday effect, causing a perpendicular
current Jy flow to the boundary edge states. We can explicitly
derive the flux effect from the Faraday-Maxwell equation in
the 2 + 1D bulk,

qI��B = −qI

∫
dt

∫
�E · d�l = qI

∫
dt dlμcεμνρ∂νAρ

= −2π

e
KIJ �

∫
Jy,J dt dx = −2π

e
KIJ

�

e
QJ , (B4)

which relates to the induced charge transported through the
bulk, via the Hall effect mechanism. This is a derivation of
the Laughlin flux insertion argument. Q is the total charge
transported through the bulk, which should condense on the
edge of the cylinder.

2. Edge theory

On the other hand, from the boundary theory side, the
induced charge QI on the edge can be derived from the edge
state dynamics affecting winding modes [see Eq. (A5)] by

QI =
∫

J 0
∂,I dx = −

∮ L

0

e

2π
∂xφIdx = −eK−1

IJ Pφ,J . (B5)

Combine Eqs. (B4) and (B5),

qI��B

/(
2π

�

e

)
= �Pφ,I . (B6)

An equivalent interpretation is that the flux insertion twists the
boundary conditions of the φI field,

1

2π
[φI (L) − φI (0)] =

∮ L

0

1

2π
∂xφIdx = K−1

IJ �Pφ,J (B7)

= K−1
IJ qJ

[
��B

/(
2π

�

e

)]
. (B8)

In the ZN symmetry SPT case at hand, we should replace
e to the condensate (order parameter) charge e∗ = Ne. This
affects the unit of ��B as 2π �

e∗ , so ��B = 2πn �

Ne
, and the

twisted boundary condition is

1

2π
[φI (L) − φI (0)] = K−1

IJ qJ (n/N ). (B9)

195122-6



SYMMETRY-PROTECTED MANY-BODY AHARONOV-BOHM EFFECT PHYSICAL REVIEW B 89, 195122 (2014)

Notice qJ is the crucial coupling in the global symmetry
transformation, where we gauge it by minimal coupling to a
gauge field A with a term qIAμJ

μ

I . Here qJ is realized by
(1,p) from Eq. (A4), so inserting a unit ZN flux produces

[φI (L) − φI (0)] = 2π

N

(
p

1

)
. (B10)

In other words, while the global ZN symmetry transformation
is realized by

S (p)
N

(
φ1(x)
φ2(x)

)(
S (p)

N

)−1 =
(

φ1(x)
φ2(x)

)
+ 2π

N

(
1
p

)
, (B11)

the insertion of a unit ZN gauge flux implies the twisted
boundary condition(

φ1(L)
φ2(L)

)
=
(

φ1(0)
φ2(0)

)
+ 2π

N

(
p

1

)
. (B12)

Here φ1(x) is realized as the long-wavelength description of
the rotor angle variable introduced in the main text, while its
conjugate momentum is the angular momentum,

Lφ1 (x) = 1

2π
∂xφ2(x), (B13)

where [
φ1(x1),Lφ1 (x2)

] = iδ(x1 − x2). (B14)

We stress that our result is very different from a seemingly
similar study in Ref. [5], where “the gauging process” is done
by coupling the bulk state to an external gauge field A, and
integrating out the intrinsic field a, to get an effective response
theory description. However, the twisted boundary condition
derived in [5] does not capture the dynamical effect on the
edge under gauge flux insertion. Instead, in our case, we can
capture this effect in Eq. (B12).

APPENDIX C: FROM FIELD THEORY TO
THE LATTICE MODEL

In this appendix, we provide our detailed lattice construc-
tion (with ZN symmetry) for both the untwisted and twisted
(without and with gauge flux) cases. Here we motivate the
construction of our lattice model from the field theory. Our
lattice model uses the rotor eigenstate |φ〉 as a basis, where in
ZN symmetry, φ = n(2π/N ), where n is a ZN variable. The
conjugate variable of φ is the angular momentum L, which
again is a ZN variable. The |φ〉 and |L〉 eigenstates are related
by a Fourier transformation, |φ〉 = ∑N−1

L=0
1√
N

eiLφ|L〉.

1. General Hamiltonian construction

The ZN class Hamiltonian may be realized by H
(p)
N , with

p ∈ ZN ,

H
(p)
N ≡ λ

(p)
N

M∑
j=1

h
(p)
N,j

= −λ
(p)
N

M∑
j=1

N−1∑
�=0

(
S

(p)
N

)−�
(τj + τ

†
j )
(
S

(p)
N

)�
, (C1)

with the parametrization

τj = ei2πLj /N . (C2)

S
(p)
N is the ZN class of symmetry transformation

S
(p)
N ≡

M∏
j=1

τj

M∏
j=1

exp

{
i
p

N

[
2π

N
(δNDW)j,j+1

]}

≡
M∏

j=1

τj

M∏
j=1

e
i
N

Q
(p)
N (σ †

j σj+1), (C3)

where

Q
(p)
N (σ †

j σj+1) =
N−1∑
a=0

q
(p)
N,a (σ †

j σj+1)a. (C4)

The hermiticity of Q
(p)
N combined with σ

†
j σj+1 ∈ ZN imply

the constraint on the complex coefficients qa (we drop indices
p,N to simplify notation, and, in the following, an overbar
denotes complex conjugation):

q0 ∈ R; qa = q̄N−a,a = 1, . . . ,(N − 1)/2 (C5)

for odd N , while

q0 ∈ R; qa = q̄N−a,a = 1, . . . ,N/2 − 1; qN
2

∈ R (C6)

for even N . The coefficients of the (N − 1)th-order polynomial
operator Q

(p)
N (σ †

j σj+1) are determined, up to unimportant
phases, by the condition

ei Q
(p)
N (σ †

j σj+1) = (σ †
j σj+1)p, p = 0, . . . ,N − 1. (C7)

The solution of Eq. (C7) can be systematically found for each
value of p ∈ ZN giving rise to different symmetry classes.
Below, for the sake of concreteness, we give explicit forms of
the symmetry transformations and Hamiltonians for Z2 and
Z3 groups.

a. Z2 lattice model

For the N = 2 lattice model, in the |φ〉 basis, we have
|φ = 0〉, |φ = π〉, and ω = ei π = −1,

〈φa|eiφj |φb〉 =
(

1 0
0 −1

)
ab,j

= σab,j = (σz)ab,j , (C8)

〈φa|τj |φb〉 = 〈φa|ei2πLj /N |φb〉

=
(

0 1
1 0

)
ab,j

= τab,j = (σx)ab,j . (C9)

The symmetry transformation reads

S
(p)
2 =

M∏
j=1

τj

M∏
j=1

e
i
2 Q

(p)
2 (σ z

j σ z
j+1), (C10)

where we find, by imposing condition (C7),

Q
(p)
2

(
σ z

j σ z
j+1

) = p
π

2

(
1 − σ z

j σ z
j+1

)
, p = 0,1. (C11)
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With that, we obtain the Hamiltonian in the trivial class as

H
(0)
2 = −2λ

(0)
2

M∑
j=1

σx
j , (C12)

and in the nontrivial SPT class as

H
(1)
2 = −λ

(1)
2

M∑
j=1

(
σx

j − σ z
j−1σ

x
j σ z

j+1

)
. (C13)

b. Z3 lattice model

For the N = 3 lattice model, in the |φ〉 basis, we have
|φ = 0〉, |φ = 2π/3〉, |φ = 4π/3〉, and ω = ei2π/3,

eiφj =
⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠

j

= σj , (C14)

ei2πLj /N =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠

j

= τj . (C15)

The symmetry transformation reads

S
(p)
3 =

M∏
j=1

τj

M∏
j=1

e
i
3 Q

(p)
3 (σ †

j σj+1), (C16)

where we find, by imposing condition Eq. (C7),

Q
(p)
3 (σ †

j σj+1) = q
(p)
0 + q

(p)
1 (σ †

j σj+1) + q̄
(p)
1 (σ †

j σj+1)2,

q
(p)
0 =−p

2π

3
, q

(p)
1 =p

π

3
(1 + i/

√
3), p = 0,1,2.

(C17)

With that, we obtain the Hamiltonian in the trivial class as

H
(0)
3 = −3λ

(0)
3

M∑
j=1

(τj + τ
†
j ), (C18)

and in the nontrivial SPT classes p = 1,2 as

H
(p)
3 = −λ

(p)
3

M∑
j=1

{
τj

[
5

3
+ ω + ω̄

3
(σ †

j−1σj + σj−1σ
†
j )

+
(

(1 + ω)

3
σ
†
j σj+1 + 2ω̄

3
σ
†
j−1σj+1 + 2ω

3
σ
†
j−1σ

†
j σ

†
j+1

+ H.c.

)]
+ H.c.

}
. (C19)

c. ZN lattice model

For a generic ZN lattice model, we have |φ = 0〉,|φ =
2π/N〉, . . . ,|φ = 2π (N − 1)/N〉, and ω = ei2π/N . Applying
the Fourier transformation, |φ〉 = ∑N−1

L=0
1√
N

eiLφ|L〉, in the |φ〉
basis, we derive

eiφj =

⎛
⎜⎜⎜⎝

1 0 0 0
0 ω 0 0

0 0
. . . 0

0 0 0 ωN−1

⎞
⎟⎟⎟⎠

j

= σj , (C20)

ei2πLj /N =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
... 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠

j

= τj . (C21)

Explicit forms of S
(p)
N can systematically be found by imposing

condition (C7) for all p ∈ ZN . The explicit form of the
symmetry transformation reads

S
(p)
N =

M∏
j=1

τj

M∏
j=1

e
−i 2π

N2 p {( N−1
2 )1+∑N−1

k=1

(σ
†
j

σj+1)k

(ωk−1)
}
. (C22)

2. Twisted boundary conditions on the lattice model

We clarify some of the steps leading to an edge Hamiltonian
satisfying twisted boundary conditions accounting for the
presence of one unit of background ZN gauge flux. The case
with a general number of flux quanta can be equally worked
out.

Let T be the lattice translation operator satisfying

T † Xj T = Xj+1, j = 1, . . . ,M (C23)

for any operator Xj on a ring such that XM+1 ≡ X1. It satisfies
T M = 1. One can then immediately verify from Eqs. (C1) and
(C3) that [S(p)

N ,T ] = 0 and

T † h
(p)
N,j T = h

(p)
N,j+1, (C24)

from which it follows that H
(p)
N in Eq. (C1) is translational

invariant, i.e.,

[
H

(p)
N ,T

] = 0. (C25)

Twisted boundary conditions are implemented by defining
a modified translation operator

T̃ (p) = T e
i
N

Q
(p)
N (σ †

Mσ1) τ1 (C26)

and seeking a twisted Hamiltonian

H̃
(p)
N ≡ λ

(p)
N

M∑
j=1

h̃
(p)
N,j (C27)

under the condition that

(T̃ (p))† h̃
(p)
N,j (T̃ (p)) = h̃

(p)
N,j+1, (C28)

which then yields

[
H̃

(p)
N ,T̃ (p)

] = 0. (C29)
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We now compute, iteratively, (T̃ (p))M [where we use U
(p)
M,1 = e

i
N

Q
(p)
N (σ †

Mσ1)],

(T̃ (p))2 = T U
(p)
M,1 τ1 T U

(p)
M,1 τ1 = T 2 U

(p)
1,2 τ2 U

(p)
M,1 τ1,

...

(T̃ (p))M = T M︸︷︷︸
=1

(
U

(p)
M−1,MτM

)(
U

(p)
M−2,M−1τM−1

) · · · (U (p)
1,2 τ2)(U (p)

M,1τ1
)

= (
U

(p)
M−1,MU

(p)
M−2,M−1 · · · U (p)

1,2

)
τM U

(p)
M,1 (τM−1τM−2 · · · τ1)

=
⎛
⎝ M∏

j=1

U
(p)
j,j+1

⎞
⎠(

U
(p)
M,1

)−1
τM U

(p)
M,1 τ

†
M

⎛
⎝ M∏

j=1

τj

⎞
⎠

=
⎛
⎝ M∏

j=1

U
(p)
j,j+1

⎞
⎠ e− i

N
Q

(p)
N (σ †

Mσ1)e
i
N

Q
(p)
N (ωσ

†
Mσ1)

⎛
⎝ M∏

j=1

τj

⎞
⎠ . (C30)

Thus we obtain

S̃
(p)
N ≡ (T̃ (p))M = e

i
N

[Q(p)
N (ωσ

†
Mσ1)−Q

(p)
N (σ †

Mσ1)] S
(p)
N . (C31)

Notice that in a trivial case (p = 0), the relation

S̃
(p=0)
N = (T̃ (p=0))M =

N∏
j=1

τj = S
(p=0)
N (C32)

reduces to to the global onsite symmetry S
(p=0)
N . In this

case, the twisted Hamiltonian commutes with the onsite
symmetry since 0 = [H̃ (p=0)

N ,(T̃ (p=0))M ] = [H̃ (p=0)
N ,S

(p=0)
N ],

and the states in the twisted sector are still labeled by the global
trivial ZN charges, corresponding to usual toroidal boundary
conditions. In a nontrivial SPT state (p 	= 0), however, we
find 0 = [H̃ (p)

N ,(T̃ (p))M ] 	= [H̃ (p)
N ,S

(p)
N ], so that the twisted

Hamiltonian breaks the nontrivial ZN SPT global symmetry.
We should regard (T̃ (p))M ≡ S̃

(p)
N as a new twisted symmetry

transformation incorporating the gauge flux effect on the
branch cut.

a. Twisted boundary conditions for the Z2 SPT state

We now explicitly work out the twisted Hamiltonian for the
nontrivial Z2 SPT state and later mention the general ZN case.
The global SPT symmetry reads

S
(1)
2 =

M∏
j=1

σx
j

M∏
j=1

e
i
2 Q

(1)
2 (σ z

j σ z
j+1) =

M∏
j=1

σx
j

M∏
j=1

e
iπ
4 [1−σ z

j σ z
j+1].

(C33)

Define Uj,j+1 ≡ e
iπ
4 [1−σ z

j σ z
j+1]. Then the nontrivial SPT Hamil-

tonian H = ∑M
j=1 hj (we drop overall constants for simplic-

ity) is

hj = σx
j + S−1 σx

j S

= σx
j + U−1

j−1,j U−1
j,j+1 σx

j Uj−1,j Uj,j+1

= σx
j − σ z

j−1σ
x
j σ z

j+1 (C34)

for j = 1, . . . ,M . The modified translation operator reads

T̃ = T UM,1 σx
1 = T e

iπ
4 [1−σ z

Mσ z
1 ] σx

1 . (C35)

We seek a twisted Hamiltonian H̃ ≡ ∑M
j=1 h̃j that commutes

with T̃ . It is a simple exercise to check that

T̃ †h2T̃ = h3,

T̃ †h3T̃ = h4,
(C36)

...

T̃ †hM−2T̃ = hM−1.

We are then led to identify

h̃j ≡ hj , j = 2, . . . ,M − 1. (C37)

We now consider

h̃M ≡ T̃ †hM−1T̃ = σx
1 U−1

M,1 hM UM,1 σx
1 (C38)

and

h̃1 ≡ T̃ †h̃MT̃

= σx
1 U−1

M,1

(
σx

2 U−1
1,2 h1 U1,2 σx

2

)
UM,1 σx

1

= σx
1 σx

2

(
U−1

M,1 U−1
1,2 h1 U1,2 UM,1

)︸ ︷︷ ︸
=h1

σx
1 σx

2

= σx
1 σx

2 h1 σx
1 σx

2 . (C39)

Now it remains to be shown that T̃ †h̃1T̃ = h̃2 = h2. And
indeed

T̃ †h̃1T̃ = σx
1 U−1

M,1

(
σx

2 σx
3 h2 σx

2 σx
3

)
UM,1 σx

1

= σx
1 σx

2 σx
3 h2 σx

1 σx
2 σx

3

= h2. (C40)

So we have found new terms h̃j such that T̃ †h̃j T̃ = h̃j+1, thus
implying that [T̃ ,H̃ ] = 0.

Explicitly, the twisted Hamiltonian for the Z2 nontrivial
SPT state reads

H̃ =
M∑

j=1

h̃j , (C41a)
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where

h̃1 = σx
1 σx

2 h1 σx
1 σx

2 = σx
1 + σ z

M σx
1 σ z

2 ,

h̃2 = h2 = σx
2 − σ z

1 σx
2 σ z

3 ,

... (C41b)

h̃M−1 = hM−1 = σx
M−1 − σ z

M−2 σx
M−1 σ z

M,

h̃M = σx
1 U−1

M,1 hM UM,1 σx
1 = σ

y

M σ z
1 + σ z

M−1 σ
y

M.

b. Twisted boundary conditions for the ZN SPT state

Generalization to the ZN case follows very similar lines to
the Z2 case above. We have for the twisted Hamiltonian (again
we drop overall constants)

H̃
(p)
N =

M∑
j=1

h̃
(p)
N,j , (C42a)

where

h̃
(p)
N,1 = τ

†
1 τ

†
2 h

(p)
N,1 τ1 τ2,

h̃
(p)
N,2 = h

(p)
N,2,

... (C42b)

h̃
(p)
N,M−1 = h

(p)
N,M−1,

h̃N,M = τ
†
1

(
U

(p)
M,1

)−1
h

(p)
N,M U

(p)
M,1 τ1,

where U
(p)
M,1 = e

i
N

Q
(p)
N (σ †

Mσ1). One can easily verify that
Eqs. (C28) and (C29) are satisfied.

APPENDIX D: CORRESPONDENCE IN GROUP
COHOMOLOGY AND NONTRIVIAL 3-COCYCLES FROM

A MPS PROJECTIVE REPRESENTATION

In this appendix, we match each SPT class of our lattice
construction to the 3-cocycles in the group cohomology
classification. Importantly, we notice that the non-onsite piece
in S

(p)
N is

Uj,j+1 ≡ ei Q
(p)
N (σ †

j σj+1) = exp

[
i

N

N−1∑
a=0

qa (σ †
j σj+1)a

]
(D1)

≡ exp

{
i
p

N

[
2π

N
(δNDW)j,j+1

]}
. (D2)

We seek a quantum rotor description of the above form. We
claim that

Uj,j+1 = exp

[
i
p

N
(φ1,j+1 − φ1,j )r

]
, (D3)

which is equivalent to (i) the domain-wall picture using rotor
angle variables [here (φ1,j+1 − φ1,j )r , where the subscript r

means that we take the module 2π on the angle [16]], and (ii)
the field theory formalism in Eq. (A10).

The reason is as follows: as we mention in the pth case of
ZN class, we impose the constraint

UN
j,j+1 = (σ †

j σj+1)p (D4)

to solve the polynomial ansatz
∑N−1

a=0 qa (σ †
j σj+1)a . This is

equivalent to the fact that

UN
j,j+1 = (σ †

j σj+1)p = (exp[iφ1,j ]† exp[iφ1,j+1])p (D5)

= exp[ip(φ1,j+1 − φ1,j )r ], (D6)

since exp[iφ1,j ]ab = 〈φa|eiφj |φb〉 = σab,j . Therefore, the
domain-wall variable (δNDW)j,j+1 indeed counts the num-
ber of units of ZN angle between sites j and j + 1, so
(2π/N )(δNDW)j,j+1 = φ1,j+1 − φ1,j . We thus have shown
Eq. (D3), and we have confirmed that our approach of lattice
regularization is indeed a rotor realization in Ref. [16] with
the same symmetry transformation S

(p)
N , but it captures much

more than the low-energy rotor model there.
The argument on nontrivial 3-cocycles from matrix prod-

uct states (MPSs) projective representation follows closely
Ref. [16]. We start by writing the symmetry transformation
S

(p)
N in terms of the rotor variable; this is achieved based on

the mapping derived above. So

S
(p)
N ≡

M∏
j=1

τj

M∏
j=1

U
(p)
j,j+1

=
∏
j

ei2πLj /N exp

[
i
p

N
(φ1,j+1 − φ1,j )r

]
. (D7)

We then formulate S
(p)
N as the MPS with the form

S
(p)
N =

∑
{j,j ′}

tr
[
T

j1j
′
1

α1α2T
j2j

′
2

α2α3 · · · T jMj ′
M

αMα1

]|j ′
1, . . . ,j

′
M〉〈j1, . . . ,jM |.

(D8)

Here j1,j2, . . . ,jM and j ′
1,j

′
2, . . . ,j

′
M are labeled by input or

output physical eigenvalues (hereZN angle), and the subscripts
1,2, . . . ,M are the physical site indices. There are also inner
indices α1,α2, . . . ,αM that are traced in the end. Summing
over the entire operation from {j,j ′} indices is supposed to
reproduce the symmetry transformation operator S

(p)
N . This

tensor T is suggested [16] to be (with the ZN angle element
2πk
N

)

(T φin,φout )(p)
ϕα,ϕβ ,N

(
2πk

N

)

= δ

(
φout − φin − 2π

N
k

)

×
∫

dϕαdϕβ |ϕβ〉〈ϕα|δ(ϕβ − φin)eipk(ϕα−φin)r /N . (D9)

We verify the tensor T by computing S
(p)
N ,

S
(p)
N =

∑
{j,j ′}

tr
[
T

φ1
in,φ

1
out

ϕα1 ϕα2
T

φ2
in,φ

2
out

ϕα2 ϕα3
· · · T φM

in ,φM
out

ϕαM
ϕα1

]∣∣φ1
out,φ

2
out, . . . ,φ

M
out

〉〈
φ1

in,φ
2
in, . . . ,φ

M
in

∣∣ (D10)
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= ei
p

N
[(φ2

in−φ1
in)r+(φ3

in−φ2
in)r+···+(φ1

in−φM
in )r ]

∣∣∣∣φ1
in + 2π

N
,φ2

in + 2π

N
, . . . ,φM

in + 2π

N

〉〈
φ1

in,φ
2
in, . . . ,φ

M
in

∣∣ (D11)

= ei
p

N
[
∑M

j=1(φj+1
in −φ

j
in)r ]

∣∣∣∣ . . . ,φj
in + 2π

N
, . . .

〉〈
. . . ,φj

in, . . .
∣∣ (D12)

=
∏
j

exp

[
i
p

N
(φ1,j+1 − φ1,j )r

]∏
j

ei2πLj /N , (D13)

which justifies the claim for MPSs of S
(p)
N .

To find out the projective representation eiθ(g1,g2,g3) of this
tensors T (g1),T (g2),T (g3) acting on three neighbored sites,
we follow the fact that

P †
g1,g2

T (g1)T (g2)Pg1,g2 = T (g1g2) (D14)

and contracting the three neighbored-site tensors in two
different orders,(

Pg1,g2 ⊗ I3
)
Pg1g2,g3 � eiθ(g1,g2,g3)

(
I1 ⊗ Pg2,g3

)
Pg1,g2g3 .

(D15)

Here � means the equivalence is up to a projection out of an
unparallel state transformation.

To derive Pg1,g2 , notice that Pg1,g2 inputs one state and output
two states. This has the expected form

P
(p)
N,m1,m2

=
∫

dφin

∣∣∣∣φin + 2π

N
m2

〉
|φin〉〈φin|

× e−ipφin[m1+m2−(m1+m2)N ]/N , (D16)

where (m1 + m2)N with subscript N means taking the value
module N .

To derive θ (g1,g2,g3), we start by contracting T
(p)
N (m1)

and T
(p)
N (m2) first, and then the combined tensor contracts

with T
(p)
N (m3) give(

Pg1,g2 ⊗ I3
)
Pg1g2,g3

=
∫

dφin

∣∣∣∣φin + 2π

N
(m2 + m3)

〉∣∣∣∣φin + 2π

N
m3

〉
|φin〉〈φin|

× e−ipφin[m1+m2+m3−(m1+m2+m3)N ]

× e−ip 2π
N

m3
m1+m2−(m1+m2)N

N , (D17)

the form of which inputs one state 〈φin| and outputs three
states |φin + 2π

N
(m2 + m3)〉, |φin + 2π

N
m3〉, and |φin〉.

On the other hand, one can contract T
(p)
N (m2) and T

(p)
N (m3)

first, and then the combined tensor contracted with T
(p)
N (m1)

gives(
I1 ⊗ Pg2,g3

)
Pg1,g2g3

=
∫

dφin

∣∣∣∣φin + 2π

N
(m2 + m3)

〉∣∣∣∣φin + 2π

N
m3

〉
|φin〉〈φin|

× e−ipφin[m1+m2+m3−(m1+m2+m3)N ], (D18)

again the form of which inputs one state 〈φin| and outputs three
states |φin + 2π

N
(m2 + m3)〉, |φin + 2π

N
m3〉, and |φin〉. From

Eqs. (D15), (D17), and (D18), we derive

eiθ(g1,g2,g3) = e−ip 2π
N

m3
m1+m2−(m1+m2)N

N , (D19)

which indeed is the 3-cocycle in the third cohomology
group H3(ZN,U (1)) = ZN . We thus verify that the projective
representation eiθ(g1,g2,g3) from MPS tensors corresponds to the
group cohomology approach [3]. This demonstrates that our
lattice model construction completely maps to all classes of
SPT, which is what we aimed for.
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