
MIT Open Access Articles

Bayesian Approach to MSD-Based 
Analysis of Particle Motion in Live Cells

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Monnier, Nilah, Syuan-Ming Guo, Masashi Mori, Jun He, Peter Lenart, and Mark Bathe. 
“Bayesian Approach to MSD-Based Analysis of Particle Motion in Live Cells.” Biophysical Journal 
103, no. 3 (August 2012): 616–626. © 2012 Biophysical Society

As Published: http://dx.doi.org/10.1016/j.bpj.2012.06.029

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/88695

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/88695


616 Biophysical Journal Volume 103 August 2012 616–626
Bayesian Approach to MSD-Based Analysis of Particle Motion in Live Cells
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†Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; ‡Graduate Program in Biophysics,
Harvard University, Cambridge, Massachusetts; and §Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg,
Germany
ABSTRACT Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mech-
anism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from
single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heteroge-
neity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion
models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for
sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam’s Razor to avoid
over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known,
demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed
model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We
subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental
particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions.
This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for
classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as
single-cell-, tissue-, and organism-level studies.
INTRODUCTION
Advances in high spatial and temporal resolution imaging of
fluorescently tagged biological molecules, organelles, and
cells are increasingly enabling the collection of detailed
time-series data on the positions of these particles over
time within living cells, tissues, and embryos using conven-
tional and superresolution microscopy (1–5). The resulting
single-particle trajectories (SPTs) contain important infor-
mation on the transport dynamics and local environments
of individual biological molecules, the collective behaviors
of molecules and cells, and the spatial and temporal regula-
tion of these behaviors (6–15). In most biological applica-
tions, the underlying mode of particle motion is unknown
a priori and must be inferred using mathematical models
from data sets that are limited by experimental parameters
including sampling rate, acquisition time, and number of
trajectories (16). In addition, the stochastic nature of SPTs
requires careful treatment of trajectory variability and noise
properties to facilitate objective model evaluation (6).

Despite the importance of analyzing SPT motion in bio-
logical systems, systematic and automated means of evalu-
ating multiple competing motion models are still lacking,
with interpretation of SPTs typically relying on time-
consuming data analysis with significant manual interven-
tion that focuses on evaluating a particular motion model
such as confined or anomalous diffusion. Although such
approaches allow for the testing of a single hypothesis or
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a pair of competing hypotheses for defined biological appli-
cations (17–19), standardized approaches that allow side-
by-side comparison of larger sets of generalized complex
motion models without any constraints on model form,
trajectory length, or number are needed for higher-
throughput systematic biological studies, as well as to stan-
dardize the analysis of SPTs across laboratories (6). Here,
we present an approach based on Bayesian inference for
multiple-hypothesis testing (20–23), which has proven
successful in handling noise and experimental limitations
in other biological applications (24–29). This approach
focuses on evaluating models of stationary, time-invariant
physical processes governing the motion of single particles
undergoing free, confined, or anomalous diffusion, with or
without directed transport superimposed.

Stationary physical processes are characterized by
ensemble average distribution functions such as the mean-
square displacement (MSD), which is commonly used
to evaluate particle motion because of the availability of
closed-form analytical solutions to the dependence of
MSD on time lag, t, for a number of motion models
(6,30,31). It is important to note that MSD curves from
individual particles undergoing the same stochastic motion
are typically highly variable due to limited sampling and
strong correlations over t, which can result in fitting erro-
neous, overly complex models (30–33). To avoid this over-
fitting problem, here we account for these correlations by
measuring the MSD and its noise covariance matrix using
multiple independent MSDs, and we infer model probabili-
ties using an empirical Bayesian approach similar to that
http://dx.doi.org/10.1016/j.bpj.2012.06.029
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recently applied to fluorescence correlation spectroscopy
data (28,29).

The Bayesian approach computes relative probabilities
of an arbitrary set of competing motion models without
any requirement on model form or nesting, in contrast to
frequentist tests such as the F-test (21). This approach natu-
rally handles experimental sampling limitations and hetero-
geneity between particles in a given biological data set,
automatically identifying the simplest model consistent
with the observed data according to the Principle of Parsi-
mony or Occam’s Razor, a well established property of
Bayesian inference (20–23,28,29). Although Bayesian
inference requires a choice of prior probabilities associated
with each model and its parameters, this requirement objec-
tifies the scientific process by formalizing and reporting
these biases concisely in the mathematical form of a prior
distribution (21,22). Given a set of priors, Bayesian infer-
ence can then be applied automatically, without user
intervention.
THEORY

Mean-square displacement analysis

A single-particle trajectory consists of a sequence of N
particle positions frigNi¼1 ¼ fxi; yi; zigNi¼1 observed at
specific times ftigNi¼1 separated by time step dt. The mean-
square displacement is then computed for time lags t
according to

MSDðtÞh�
DrðtÞ2� ¼ 1

N � t

XN�t

i¼ 1
jriþt � rij2: (1)

For stationary processes, the MSD is given in three
dimensions by the following closed-form analytical solu-
tions for free diffusion (D), anomalous diffusion (DA),
confined diffusion (DR), and flow or directed motion (V),

MSDDðtÞ ¼ 6Dt (2)

MSDDAðtÞ ¼ 6Dta (3)
2
�

�6Dt=R2
C

�

MSDDRðtÞ ¼ RC 1� e (4)

MSDVðtÞ ¼ y2t2; (5)
where y is the magnitude of the particle velocity, D is its
diffusion coefficient, a is the anomalous exponent, and RC

is the radius within which the particle is confined (6).
Free diffusion is characteristic of unrestricted stochastic

particle motion (33), confined diffusion is characteristic of
trapped particles, for example, due to physical corralling
by cytoskeletal polymers (6,34,35), and directed motion
may result from molecular motor-driven transport (36,37)
or cytoskeletal flows (11). Anomalous diffusion arises
from a variety of underlying physical processes, including
the presence of obstacles or transient binding events,
making it difficult to interpret mechanistically (38–40).
These diffusive modes often occur together with directed
motion, yielding more complex motion models described
by linear combinations of the above equations, such as
MSDDV(t) ¼ 6Dt þ y2t2 for free diffusion plus flow (DV)
(6). Experimental particle-position measurements typically
contain a localization error characterized by a positional
uncertainty with standard deviation se, which adds
a constant term of 6s2e to the MSD (32) that can be easily
incorporated into the proposed Bayesian framework
(Fig. S2 in the Supporting Material). In some physical situ-
ations, such as confinement within a radius smaller than
either the mean localization error or the mean diffusive
step size given the sampling rate, the particle may appear
stationary because the MSD curve is dominated by this
constant term.
Model selection

Classical data regression fits an observed series of data,
y ¼ {y1, y2, . yn} (in this case, the MSD values), with
a model function f(x; b) (for example, Eqs. 2–5) according
to yi¼ f(xi; b)þ εi, where x¼ {x1, x2,., xn} are the sample
points (in this case, the time lags t), b ¼ {b1, b2, ., bp}
are the model parameters, and εi are the errors associated
with the yi measurements. Classical statistical approaches
minimize the sum of the squared residuals,
c2 ¼ Pn

i¼1½yi � f ðxi;bÞ�2=s2i , where the error terms, εi,
are assumed to be uncorrelated and normally distributed,
with mean zero and standard deviations si. The chi-
squared value, c2, can then be used to test the goodness
of fit of models conditioned on a null hypothesis. How-
ever, MSD curves contain highly correlated errors that
often result in their appearing overly complex (30,32,33)
(Fig. 1 A and Note S1 in the Supporting Material). For
example, MSD curves from purely diffusive trajectories
may appear by eye to include directed motion or confine-
ment (Fig. 1 A).

Here, we account for correlated errors directly by
including an error covariance matrix in Bayesian inference,
following previous work on temporal autocorrelation func-
tions from fluorescence correlation spectroscopy data that
suffer from similar correlated errors (28,29). For K possible
models (M1, ., MK), the probability of each model given
the observed data, y, is given by Bayes’ theorem,

PðMkjyÞ ¼ PðyjMkÞ PðMkÞ
PðyÞ fPðyjMkÞ; (6)

where PðyÞ ¼ PK
k¼1PðyjMkÞ PðMkÞ, and the proportionality

holds if the prior model probabilities P(Mk) are assumed
equal for all k, which is suitable when no information is
Biophysical Journal 103(3) 616–626



FIGURE 1 ProposedMSD-based Bayesian approach to analyzing particle trajectories. (A) Top, Example MSD curves (dashed lines) from individual simu-

lated particle trajectories undergoing pure diffusion withD¼ 0.001 mm2/s, dt¼ 1 s, and T¼ 200 s. The analytical form of the MSD curve,MSDD(t)¼ 6Dt, is

also shown (solid line). Bottom, Analytical form (30,32) of the noise covariance and correlation matrices for pure diffusion MSD curves with the above

parameters. (B) Sequence of analysis steps to apply Bayesian inference. Starting from a set of particle trajectories, an MSD curve is calculated from

each trajectory and then the set of MSD curves is used to calculate a mean MSD curve and its noise covariance matrix, which serve as inputs to the Bayesian

procedure described in the main text. The output model probabilities and parameters can be interpreted in the context of the biological system, and, if

necessary to improve resolution of complex models, additional trajectories can be collected or existing trajectories can be classified into less heterogeneous

sub-groups. (C) Models of particle motion used in the Bayesian approach. The simplest (single-parameter) models are shown in the top row, followed by

intermediate-complexity (two-parameter) models in the middle row and the most complex (three-parameter) models in the bottom row. Model abbreviations

are chosen to specify the parameters in each model; for example, the diffusion-plus-flowmodel (DV) has both a diffusion coefficient and a velocity magnitude

as parameters. Lines connecting the models indicate nesting relationships; for example, both DR and DVare nested in DRV, but DAVand DRVare not nested

one in the other.
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available to prefer one model over another. P(yjMk) is calcu-
lated by marginalizing over the model parameters (bk),

PðyjMkÞ ¼
Z

Pðyjbk;MkÞ PðbkjMkÞdbk; (7)

which inherently penalizes overly complex (overparameter-

ized) models (20). The probability P(yjbk,Mk) of observing
the data y for any given realization of the parameters bk of
model Mk with model function fk(x; bk) is given by the
general multivariate Gaussian function (20) including C,
the covariance matrix of the errors εi,

Pðyjbk;MkÞ ¼ 1

ð2pÞn=2jCj1=2
exp

�
� 1

2
½y� fkðx;bkÞ�T

� C�1½y� fkðx;bkÞ�
�
:

(8)

Estimation of C is essential for proper calculation of the
model probabilities (29). We use multiple observations of
the data y (independent MSD curves from multiple particle
trajectories or subtrajectories) to estimate C, as described in
Note S1 in the Supporting Material. (In the case of anoma-
lous diffusion, displacements along an SPT may be corre-
lated, and thus, splitting a single trajectory into multiple
independent subtrajectories may require estimation of de-
correlation time using block transformation (29,41) or
a related approach.) Regularization of the estimated covari-
Biophysical Journal 103(3) 616–626
ance matrix is often required, because the number of
available independent MSDs is typically less than the
dimension of the matrix (42,43). A shrinkage approach to
regularization (42) performs well when low numbers of
MSD curves are available (Note S1.3 in the Supporting
Material and Fig. S1).

Although numerical integration is required to evaluate the
integral in Eq. 7 in general, the Laplace approximation may
be used to perform this integration analytically by assuming
that P(yjbk, Mk) is well approximated by a multivariate
Gaussian distribution around the Bayesian point estimatebbk;Bayes ¼ arg maxbk

½Pðyjbk;MkÞ PðbkjMkÞ� (20,28). The
Laplace approximation is asymptotically exact in the limit
of high amounts of data, which is not true of derived metrics
such as the Aikake Information Criterion (21). The
Bayesian Information Criterion is an alternative, commonly
used special case of the Laplace approximation (44) but
does not sufficiently penalize model complexity in the
case of small sample sizes (28). Here, we use a uniform
prior parameter distribution, P(bkjMk), for which bbk;Bayes

is equal to the maximum-likelihood point estimatebbk;MLE ¼ arg maxbk
½Pðyjbk;MkÞ� (28). For additional

details of the implementation, please see the Methods
section in the Supporting Material.

The application of Bayesian inference to particle trajecto-
ries is summarized in Fig. 1 B. The set of competing models
evaluated by this method (Fig. 1 C) can vary in complexity
and include nesting relationships that cannot be treated
using standard frequentist tests.
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RESULTS AND DISCUSSION

Performance of the Bayesian approach on
simulated trajectories

To evaluate the performance of the Bayesian procedure in
a controlled setting, we applied it to simulated trajectories
of particles undergoing Brownian motion with flow
(Fig. 2) or within a confined spherical corral (Fig. 3 A).
Although we use default simulation parameters comparable
to the experimental conditions observed below for starfish
chromosomes, namely D ¼ 0.005 mm2/s, dt ¼ 2.5 s,
FIGURE 2 Diffusion plus flow simulations and effect of sampling limitations.

flow with D¼ 0.005 mm2/s, dt¼ 2.5 s, and varying y as shown along the x axis. T

trajectories per data set varies from n¼ 60 (left) to 30 (middle) to 5 (right). MSD

and used to calculate a meanMSD curve and error covariance matrix as input to th

and standard deviations over 50 repetitions of the simulations and inference pro

true model (DV) can be resolved given the simulated experimental parameters. E

medians and quartiles below the model probabilities, in comparison with the true

top middle panel indicates the starting parameters used for the trajectory numbe

tories simulated as in A (middle), but at a fixed velocity and systematically varyin

the number of trajectories per data set, n, is varied from 30 down to 4.Middle, Ve

120 down to 16 steps/trajectory). The number of points in the MSD curves is he

fixed at y ¼ 0.1 mm/s, and dt is varied from 0.5 s up to 15 s with T fixed at 300 s.

number of steps in the trajectory.
T ¼ 300 s, tmax ¼ T/4, and n ¼ 30 trajectories per data
set, we emphasize that the illustrated properties of the
proposed multiple-hypothesis-testing procedure are general.

An important source of noise in MSD values is statistical
sampling noise due to experimental limitations on the
number, length, and sampling rate of available SPTs
(6,33). Trajectories were simulated with the above default
parameters (Fig. 2 A, middle), with lower noise (higher T
and n; Fig. 2 A, left) or higher noise (lower T and n; Fig. 2
A, right), while systematically varying the value of a super-
imposed velocity, y. The relative contributions of diffusive
(A) Model probabilities for simulated trajectories undergoing diffusion plus

varies from 600 s (left) to 300 s (middle) to 150 s (right), and the number of

curves with 30 points (up to tmax ¼ 75 s) are calculated for all n trajectories

e Bayesian approach. The resulting model probabilities are shown as means

cedure. Light gray shading indicates the range of velocities over which the

stimated values of y and D obtained from fitting the DV model are plotted as

values of y and D used in the simulation (lines). The thick dashed line in the

r and sampling rate limitation tests in B. (B) Model probabilities for trajec-

g one of the sampling parameters. Left, Velocity is fixed at y¼ 0.1 mm/s and

locity is fixed at y¼ 0.02 mm/s and T is varied from 300 s down to 40 s (from

ld constant at 1/4 of the number of steps in the trajectory. Right, Velocity is

The number of points in the MSD curves is again held constant at 1/4 of the

Biophysical Journal 103(3) 616–626



FIGURE 3 Confined diffusion simulations and effect of heterogeneity. (A) Left, Model probabilities for simulated trajectories undergoing confined diffu-

sion inside a reflecting spherical boundary with D ¼ 0.005 mm2/s, dt ¼ 2.5 s, T ¼ 300 s, and varying confinement radius RC as shown along the x axis.

Analysis is performed as in Fig. 2 but using the full set of motion models as in Fig. 1 C. Right, Trajectories are simulated as in A but at a fixed confinement

radius of RC ¼ 0.4 mm. dt is varied from 0.5 s to 15 s as in Fig. 2 B. S represents a stationary-particle model including only a constant term. (B) Left, Trajec-

tories are simulated as in Fig. 2 A (middle) but with the velocity of each particle drawn from a normal distribution centered on y ¼ 0.05 mm/s, with standard

deviation (as a percentage of the mean) as shown on the x axis. Analysis is performed as in Fig. 2. Right, Trajectories are simulated as in A but with the

confinement radius of each particle drawn from a normal distribution centered on RC ¼ 1.5 mm, with standard deviation (as a percentage of the mean) as

shown on the x axis. Analysis is performed as in Fig. 2. (C) Complex models are most likely to be resolved when there is low heterogeneity between particles

and low noise due to data collection limitations, such as the number, length, and sampling rate of the trajectories. The tradeoff between reducing particle

heterogeneity and increasing sampling noise by splitting trajectories into smaller groups of fewer trajectories is illustrated by the transition from B to B0.

620 Monnier et al.
and directed motion to the diffusion plus flow (DV) MSD
equation given above are of similar magnitude when
t ~ 6D/y2 h tDV. The Bayesian approach strongly prefers
the DV model for y values corresponding to a timescale
tDV that is comparable to the time lags covered by the
MSD curve (Fig. 2 A, middle). The simpler D and V models
are preferred at low and high y, respectively, where the
contribution of the y or D parameter to the more complex
DV model is not significant given the level of noise in the
mean MSD curve. The locations of these crossovers to
simpler preferred models at low and high y depend on the
Biophysical Journal 103(3) 616–626
level of sampling noise (Fig. 2A, left and right). Examination
of the fit parameter values for the true DV model in Fig. 2 A
shows that when the DV model probability is high, both
parameter values are well estimated, whereas their values
become poorly estimated when the model probability is
low. Thus, the Bayesian multiple-hypothesis-testing frame-
work not only selects the appropriate model that is justified
given the empirical level of noise, it also provides a prescre-
ening filter for downstream physical or biological interpreta-
tion of model parameter values, which are only reliablewhen
the model to which they belong is strongly preferred.
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We next independently varied three contributing factors
to the sampling noise—trajectory number, trajectory length,
and sampling rate—at fixed values of y (Fig. 2 B). Starting
with the default simulation parameters above and a fixed
value of y ¼ 0.1 mm/s near the righthand crossover point
(Fig. 2 A, middle), decreasing the number of trajectories
used to calculate each meanMSD curve and associated error
covariance matrix from 30 to 4 results in loss of the ability to
resolve the DV model over the simpler V model due to the
increasing level of noise (Fig. 2 B, left). Decreasing T from
300 s to 40 s reduces the ability to resolve the y component
of the motion (Fig. 2 B, middle), whereas increasing dt from
2.5 s to 15 s at a fixed T reduces the ability to resolve the D
component of the motion (Fig. 2 B, right), due to the differ-
ence in the relative contributions of diffusion and flow to the
MSD curve at high and low t.

To test whether this Bayesian procedure applies generally
to other motion models in addition to diffusion and flow, we
repeated the above tests on simulations of confined diffusion
(Fig. 3 A and Fig. S3). Here, we also included the full set of
competing models shown in Fig. 1 C to test the robustness of
the model selection procedure in the presence of both
higher- and lower-complexity competing models. Confine-
ment makes a significant contribution to the confined diffu-
sion (DR) MSD equation (Eq. 4) when the ratio 6Dt=R2

C is
on the order of 1, or when t � R2

C=6DhtDR. The Bayesian
approach strongly prefers the DR model when this ratio tDR
is below the maximum t in the MSD curve, whereas the
simpler D model is preferred for larger confinement radii
(Fig. 3 A, left). As above, the exact crossover point depends
on the level of noise in the mean MSD curve. For a fixed
value of RC, decreasing n or T results in loss of the ability
to resolve the DR model (Fig. S3). Finally, increasing the
trajectory time sampling interval, dt, past the ratio tDR for
a fixed value of RC results in loss of the ability to resolve
the diffusive component of the motion, making the particle
appear stationary (Fig. 3 A, right).
Effect of particle heterogeneity on model
selection

The above results demonstrate that this Bayesian procedure
can be used to detect both confinement and directed motion
in a systematic manner that accounts appropriately for the
sampling noise level, avoiding over-fitting of complex
models. Heterogeneity in motion type, either within a single
trajectory or between distinct particle trajectories, may also
reduce the ability to resolve the underlying physical process
(Note S2 in the Supporting Material). To explore the effect
of heterogeneity, we simulated trajectories as above but
allowed a single parameter (y or RC) to vary randomly
between particles according to a normal distribution. As
a result, even perfectly measured MSD curves without any
statistical sampling error would still vary between the
different particles, introducing an apparent noise into the
mean MSD curve estimate. As heterogeneity between
particles is increased by increasing the standard deviation
of the distribution of y or RC values, the ability to resolve
the true motion model diminishes in favor of simpler models
due to this increase in apparent noise (Fig. 3 B). For normal
diffusion plus flow, heterogeneity does not change the
dependence of the mean MSD function on t, but the esti-
mated value of y obtained from the DV model is systemat-
ically higher than the true mean due to the quadratic
dependence of MSD on y (Fig. 3 B, left, and Note S2.1 in
the Supporting Material). For confined diffusion, heteroge-
neity in RC changes the dependence of the mean MSD func-
tion on t so that none of the models describes the resulting
mean MSD curve satisfactorily (Fig. 3 B, right, and Note
S2.3 in the Supporting Material). The apparent diffusion
coefficient decreases with increasing heterogeneity in RC

because the diffusion timescale is affected disproportion-
ately by larger confinement radii.
Analysis of actin-dependent chromosome
transport in starfish oocytes

To test the performance of the proposed model-selection
procedure on experimental biological data sets, we first
applied it to the motion of chromosomes during meiosis I
in starfish oocytes. Chromosomes are transported toward
the spindle at the animal pole (AP) of the oocyte
(Fig. 4 A) by homogeneous contraction of a large actin
network that forms in the nuclear region after nuclear enve-
lope breakdown (NEBD) (11,45). Chromosomes from four
oocytes were imaged and tracked at 2.6-s time resolution,
a more than fivefold improvement in resolution over
previous studies (11), during the 6-min actin-dependent
transport phase (Fig. 4 A). We analyzed the mean MSD
curve over all 30 chromosome trajectories (Fig. 4 B) using
the Bayesian inference approach to test the full set of
motion models shown in Fig. 1 C. The DV model is
strongly preferred over the other models, consistent with
the previously proposed hypothesis that chromosomes
diffuse within the actin network as they are transported in
a directed manner toward the spindle (11). This result indi-
cates that the chromosome trajectories provide significant
evidence for both the diffusive and directed components
of their motion but do not provide significant evidence
for additional complexity such as confinement or anoma-
lous diffusion, which could potentially result from steric
interactions with the actin network structure (11) or the
viscoelastic nature of the actin network (46). These more
complex motions are not necessarily ruled out by the above
result, however, because the additional complexity of
confined or anomalous diffusive models might be masked
by sampling noise or heterogeneity, as shown in the simu-
lations above.

Since the chromosomes were previously shown to have
significant heterogeneity in their velocities, which are
Biophysical Journal 103(3) 616–626



FIGURE 4 Analysis of chromosome and bead trajectories in dynamic and stabilized starfish oocyte actin networks. (A) Left, Cartoon of chromosome

positions in the starfish oocyte at the start (upper) and end (lower) of meiosis I. AP indicates the animal pole of the oocyte toward which the chromosomes

are congressing. Right, Maximum-intensity Z-projection through a starfish oocyte nuclear region showing chromosomes labeled with H2B-GFP at 4 min

after NEBD. Chromosome trajectories over the full actin transport phase are superimposed, colored from 2 min after NEBD (red) to 8 min after NEBD

(blue). (B) Mean MSD curve with standard errors (solid line) averaged over 30 chromosome trajectories from a total of four oocytes imaged at 2.6 s

time resolution for the 6-min period from 2–8 min after NEBD. Four sample MSD curves from individual chromosome trajectories are shown (dashed lines),

as is the standard deviation over all 30 of the individual-chromosomeMSD curves (gray region). The preferred model by Bayesian inference is diffusion plus

flow (DV) for the mean MSD curve. (C) Left, Model probabilities obtained by fitting mean MSD curves over subgroups of 15, 12, and 6 chromosomes (top to

bottom), plotted from left to right in order of increasing initial distance from the AP. Only the D, V, and DV model probabilities are shown (all other model

probabilities were negligible). Right, Velocity and diffusion coefficient estimates obtained from the DV model fit to individual-chromosome MSD curves,

showing the correlation of velocity with initial distance from the AP. (D) Left, Cartoon of an actin network in the post-NEBD nuclear region of a starfish

oocyte. Right, Time projection (red to blue) of the motions of 0.2-mm-diameter beads in a utrophin-GFP-stabilized actin network. Some beads appear tran-

siently immobilized (red arrowhead). (E) Mean and individual MSD curves as in A from 12 bead trajectories in a utrophin-stabilized actin network. The

preferred model by Bayesian inference is pure diffusion (D) for the mean MSD curve. (F) Left, Four sample MSD curves from individual beads in the actin

network, shown on a log-log scale. Right, Model probabilities for the seven tested models fit to each of the four individual-bead MSD curves shown on the

left, as well as to the mean MSD curve in E.
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correlated with initial distance from the AP (11), we split the
chromosome trajectories into equally sized groups to reduce
this heterogeneity and reanalyzed their motions (Fig. 4 C).
An initial split into two groups revealed that the DV model
is preferred for chromosomes closer to the AP, whereas the
simpler V model is preferred farther from the AP (Fig. 4 C,
upper left), confirming that there is heterogeneity along this
biological coordinate. Splitting trajectories into less hetero-
geneous subgroups has a tradeoff (Fig. 3 C) in that it reduces
the number of trajectories per group, which was shown
above to reduce the ability to resolve complex models.
The effect of this tradeoff is apparent in the overall trend
toward simpler models upon further subclassification of
the chromosome trajectories (Fig. 4 C, left). Although the
increase in sampling noise that results from the reduction
in number of SPTs per subgroup outweighs the reduction
in heterogeneity in this case, additional oocytes could in
principle be added to the total pool of data to again resolve
Biophysical Journal 103(3) 616–626
the more complex DV model. Finally, the increasing proba-
bility of the simpler V model for chromosomes far from the
AP and the simpler D model for chromosomes close to the
AP is comparable to moving to the right and left, respec-
tively, along the horizontal axes in Fig. 2 A because of the
difference in velocities between these chromosomes
(Fig. 4 C, right).
Bead dynamics probe confinement by the actin
network

We next sought an alternate means of probing the starfish
actin network that is not complicated by the network’s
directed motion. We examined the diffusion of 0.2-mm
beads within the network by injecting them into the oocyte
nucleus just before NEBD while simultaneously overex-
pressing mEGFP-UtrCH to stabilize actin bundles to
prevent network contraction (Fig. 4 D). Bead trajectories
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have previously been used to characterize the density
of obstacles, sizes of pores, and viscoelastic properties of
cytoskeletal networks (46,47). We found that beads in
the stabilized actin network exhibit a range of behaviors
(Fig. 4 D) and that the mean MSD curve over multiple
bead trajectories (Fig. 4 E) is best explained by the
simple diffusion model, presumably due to this high hetero-
geneity. However, when individual bead trajectories are
analyzed by splitting them into consecutive subtrajectories
(assumed to be independent) to estimate the mean
MSD and noise covariance matrix for each bead, then
a variety of diffusive models are resolved, including
the higher-complexity anomalous- and confined-diffusion
models (Fig. 4 F). This data set therefore provides an
example in which heterogeneity between particles is high
enough that moving from a mean MSD curve over all
particles to individual-particle MSD curves improves the
ability to resolve complex models despite the associated
increase in sampling noise. A more detailed analysis of
these heterogeneous bead dynamics will be the subject of
future work.
FIGURE 5 Analysis of CD36 trajectories and mouse oocyte kinetochore traje

tubules (red) in a macrophage. Image reprinted from Jaqaman et al. (8) with perm

and isotropic (lower) by the asymmetry metric used in Jaqaman et al. (8), colore

standard deviation over all of the CD36 trajectories that are at least 40 time steps

is anomalous diffusion (DA). (C) Model probabilities for the mean MSD curve (

the most probable model for all CD36 trajectories (lower left), for the 84 linear

(lower right). As in Fig. 3 A, S represents a stationary-particle model including o

different time phases defined in Kitajima et al. (12) leading up to the first meio

chromosomes (red) in a maximum-intensity Z-projection through the spindle a

permission from Elsevier. Lower right, Sample kinetochore trajectory showing

ochore trajectories from a single oocyte during the full 8.7-hr period of meiosis.

Left, Model probabilities obtained by fitting mean MSD curves over all 40 kineto

DV model probabilities are shown (all other model probabilities were negligible

vidual time phases, colored by the preferred model.
Dynamics of the membrane receptor CD36
in macrophages

As another example of detecting confinement in a very
different biological system, we analyzed previously pub-
lished trajectories of the membrane receptor CD36 (Fig. 5
A), which exhibits a range of behaviors including linear
motion, confined diffusion, and unconfined diffusion (1,8).
Testing the full set of motion models from Fig. 1 C with
the Bayesian procedure reveals that the mean MSD curve
over all CD36 trajectories (Fig. 5 B) is best fit by the anom-
alous-diffusion model, but that individual CD36 trajectories
are best explained by either pure diffusion or by the
stationary-particle model described above (Fig. 5 C). The
high probability of the stationary model suggests that these
receptors are confined within a radius smaller than the mean
diffusive step size of the trajectory, as in Fig. 3 A, or are
attached to a stationary structure such as a cytoskeletal
matrix (48), consistent with the confined diffusion classifi-
cation in previous analysis of the trajectories (8). Pure diffu-
sion is the preferred model for nearly all trajectories
ctories. (A) Left, Image of the membrane receptor CD36 (blue) and micro-

ission from Elsevier. Right, Example trajectories classified as linear (upper)

d over time from red to blue. (B) Mean MSD curve with standard errors and

in length (296 trajectories total). The preferred model by Bayesian inference

upper left). Frequency with which each of eight tested models is selected as

CD36 trajectories (upper right), and for the 212 isotropic CD36 trajectories

nly a constant term. (D) Upper, Cartoon of kinetochore motions during the

tic division in mouse oocytes. Lower left, Mouse kinetochores (green) and

t the beginning of phase 2. Image reprinted from Kitajima et al. (12) with

the four phases of motion. (E) Mean MSD curve as in B over all 40 kinet-

The preferred model by Bayesian inference is confined diffusion (DR). (F)

chore trajectories split into the time phases shown in D. Only the D, DR, and

). Right, Mean MSD curves over all 40 kinetochore trajectories for the indi-
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previously classified as linear (Fig. 5 C), confirming that
these motions are linear due to 1D diffusion (for example,
along 1D tracks or within linear-shaped confinement zones),
whereas the stationary model is preferred for most of the
previously classified isotropic trajectories (Fig. 5 C). Only
a small fraction of receptors exhibit isotropic unconfined
diffusion.
Kinetochore trajectories during mouse meiosis I
exhibit heterogeneity in time

The above examples illustrate that a single automated
Bayesian approach can be used to detect either directed
motion or confinement or anomalous diffusion in a variety
of biological systems. We next sought to detect both types
of motion within a single biological data set. Kinetochores
in mouse oocytes (Fig. 5 D) were recently found to exhibit
distinct complex motions during discrete time phases during
meiosis (12). Analyzing the mean MSD curve over the
entire period of meiosis (Fig. 5 E) with the Bayesian proce-
dure reveals that the highest-probability model for the mean
behavior of the kinetochores is confined diffusion. However,
sequentially dividing the kinetochore trajectories into time
periods corresponding to the previously described phases
(12) reveals that confinement is localized to phase 4,
whereas diffusion plus flow is preferred for phases 1 and
2, and pure diffusion is preferred for phase 3 (Fig. 5 F). In
future studies or screens, this Bayesian procedure may be
used in an automated manner to discover the above phase
boundaries a priori by systematic evaluation of boundary
locations and number of phases.
CONCLUSION

Like all experimental measurements, SPTs require the use
of mathematical models for their physical interpretation.
To enable analysis of many dozens or even hundreds or
thousands of trajectories, often under both wild-type and
perturbed biological conditions, a fully automated approach
to systematic evaluation of competing motion models that
does not require manual intervention or data curation is
highly desirable. Bayesian inference, applied here to
MSD-based analysis of SPTs, is a general theoretical frame-
work that is useful for this purpose. The Bayesian approach
handles multiple competing models for single-particle
motion simultaneously, preferring simpler models when
statistical noise and heterogeneity preclude the resolution
of more complex models that are not justified by the data.
Although fully objective in the computation of model prob-
abilities, Bayesian inference still involves a subjective
choice about what probability is considered convincing
evidence for a given model or hypothesis to be accepted,
a topic that is discussed at length by Raftery and colleagues
(21,49). Although the emphasis here is on performing
systematic multiple-hypothesis testing for particle motion,
Biophysical Journal 103(3) 616–626
we also illustrate that computed model probabilities act as
a reliability test for the downstream physical or biological
interpretation of model parameter values.

Statistical noise due to sampling limitations and heteroge-
neity between particles limits the ability to resolve complex
motion models. Sampling noise may be reduced by collect-
ing more data, namely longer or more trajectories, to
improve the statistical accuracy of estimates of the mean
MSD and its correlated error (Fig. 3 C, Case A). However,
heterogeneity within a trajectory or across multiple trajecto-
ries may only be reduced by appropriately segmenting
trajectories into smaller subsets along a relevant biological
axis (Fig. 3 C, Case B). Segmentation typically comes at
the cost of increasing sampling noise, because the number
of particle trajectories within each subgroup is reduced
unless additional particle trajectories from the same system
are acquired. Resolving meaningful, reproducible heteroge-
neity in biological systems is of central interest to under-
standing biological behavior, and therefore, automated
classification schemes for this purpose will be the subject
of future work. Accounting for heterogeneity directly in
the inference process by the use of stochastic models instead
of ensemble-averaged quantities such as the MSD is also of
interest (34,35,50,51). Nevertheless, the approach presented
here already enables the systematic and automated analysis
of information-rich particle-trajectory data sets and can be
applied to high-throughput screens involving cells,
embryos, and whole animals by incorporation into auto-
mated screening platforms, such as Cell Profiler (52) and
CellCognition (53), or in-house analysis programs via
download from http://msd-bayes.org.
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