Search for Flavor-Changing Neutral Currents in Top-Quark Decays $t \rightarrow Zq$ in pp Collisions at $\sqrt{s} = 8$ TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.112.171802</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/88724</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
A search for flavor-changing neutral currents in top-quark decays $t \to Zq$ in pp Collisions at $\sqrt{s} = 8$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)
(Received 15 December 2013; published 2 May 2014)

A search for flavor-changing neutral currents in top-quark decays $t \to Zq$ is performed in events produced from the decay chain $\bar{t} \to Zq + Wb$, where both vector bosons decay leptonically, producing a final state with three leptons (electrons or muons). A data set collected with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 19.7 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV. No excess is seen in the observed number of events relative to the standard model prediction; thus, no evidence for flavor-changing neutral currents in top-quark decays is found. A combination with a previous search at 7 TeV excludes a $t \to Zq$ branching fraction greater than 0.05% at the 95% confidence level.

DOI: 10.1103/PhysRevLett.112.171802
PACS numbers: 12.15.Mm, 12.15.Hh, 12.60.–i, 14.65.Ha

The heaviest known elementary particle, the top quark, decays to a bottom quark and a W boson, $t \to Wb$, with a branching fraction of nearly 100% [1]. Within the standard model (SM), the corresponding flavor-changing neutral current (FCNC) decay to a Z boson and a light up-type quark (u or c), $t \to Zq$, is suppressed by the GIM mechanism [2], occurring only at the quantum loop level, with a branching fraction $\mathcal{B}(t \to Zq)$ at $\mathcal{O}(10^{-14})$ [3]. The detection of FCNC $t \to Zq$ decays at a higher-than-expected rate would thus be clear evidence for physics beyond the SM.

Some extensions of the SM, such as R-parity-violating supersymmetric models [4], top-color-assisted technicolor models [5], and singlet quark models [6] predict enhancements of the FCNC branching fraction that could be as large as $\mathcal{O}(10^{-4})$. These models, however, need to be updated from their earlier parametrizations using the latest Large Hadron Collider (LHC) results. While this is not easily done in general without a detailed analysis, a recent study [7] places $\mathcal{B}(t \to Zq)$ at $\mathcal{O}(10^{-5})$ in warped extra dimension models [8,9]. The rate is very sensitive to the Kaluza-Klein gluon scale m_{KK}, as well as right-handed mixing parameters. The m_{KK} scale is probed directly [10,11] at the LHC, while B physics measurements [12] do not significantly constrain right-handed couplings. In this Letter we report a search for $t \to Zq$ at the LHC, with results that start to complement both the direct search for KK gluons, as well as flavor physics constraints.

The experimental searches on top FCNC have been carried out since LEP and HERA on single top quark production with best limit $\mathcal{B}(t \to Zq) < 4\%$ [13,14]. The current limit by Tevatron on top FCNC decay is $< 3.2\%$ [15]. In a previous search with the Compact Muon Solenoid (CMS) experiment, we reported results from a search for this decay using 5.0 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV, resulting in a 95% confidence level (C.L.) upper limit on $\mathcal{B}(t \to Zq)$ of 0.21% [16]. A limit of 0.73% [17] on the branching fraction has also been reported by the ATLAS experiment from an analysis of 2.1 fb$^{-1}$ of 7 TeV data. The analysis described in this Letter uses a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$ of pp collisions at $\sqrt{s} = 8$ TeV.

The central feature of the CMS apparatus is a superconducting solenoid, which provides an axial magnetic field of 3.8 T. Within the field volume there are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass or scintillator hadron calorimeter. Charged-particle trajectories are measured by the tracker, covering $0 \leq \phi \leq 2\pi$ in azimuth and $|\eta| < 2.5$ in pseudorapidity, where η is defined as $-\ln[\tan(\theta/2)]$, and θ is the polar angle of the trajectory of the particle with respect to the counterclockwise proton beam direction. Muons are identified and measured in gas-ionization detectors embedded in the steel flux return yoke outside the solenoid. A more detailed description of the CMS detector can be found in Ref. [18].

Monte Carlo (MC) samples of Drell-Yan events, SM $t\bar{t}$, $Zt\bar{t}$, $Wt\bar{t}$, tbZ, and diboson (WW, WZ, and ZZ) events are simulated using MADGRAPH [19], while single-top-quark events are generated using POWHEG [20–22]. The signal sample $pp \to t\bar{t} \to Zq + Wb \to e^+\ell^- q + e^\prime\ell^\prime \nu\bar{b}(e, \ell = e, \mu, \tau)$ is generated with MADGRAPH. One of the top quarks of the pair is forced to decay to Zq, where q stands for a u or c quark with equal probability, while the other decays to Wb. The ratio between the dimension-four vector and the
axial-vector couplings of the $t \rightarrow Zq$ FCNC model is assumed to be SM-like [23]. In all cases, hadronization and showering are simulated with PYTHIA 6 [24], while τ decays are simulated with TAUOLA [25]. The set of parton distribution functions (PDFs) used is CTEQ6L [26]. The CMS detector response for all MC samples is simulated using a GEANT4-based [27] model, and the events are reconstructed and analyzed using the same software used to process collision data. The simulated events are weighted so that the trigger efficiencies, reconstruction efficiencies, and the distribution of reconstructed vertices observed in data are reproduced.

The search is performed by looking for $t\bar{t}$ events where one top quark decays into Zq and the other decays into Wb with both vector bosons decaying leptonically, which provide a very clear signature. The analysis follows closely the search performed at 7 TeV [16]. Several of the event selection requirements have been reoptimized before the complete data set was collected, based on the expected signal and background yields at 8 TeV with $B(t \rightarrow Zq) = 0.1\%$.

Events are required to pass at least one of the ee or $\mu\mu$ high transverse momenta (p_T) dilepton triggers. Events with two opposite-sign, same-flavor, isolated leptons (e or μ) having an invariant mass between 78 and 102 GeV, consistent with a Z-boson decay, and one extra charged lepton (e or μ) are selected. When there is more than one lepton pair forming a Z candidate, the pair with invariant mass closest to the nominal value is taken. All three leptons must satisfy the following kinematic requirements: $p_T > 20$ GeV and $|\eta| < 2.5$ for electrons and $|\eta| < 2.4$ for muons. The lepton selection efficiencies (reconstruction, identification, and isolation) mean values and their dependence with p_T and $|\eta|$ are consistent between the data and the simulation [28,29].

Multiple simultaneous interactions per bunch crossing (pileup) were observed in data. Events are required to have at least one good primary vertex candidate [30]. In events with more than one candidate, the vertex with highest Σp_T^2 of its associated tracks is selected. The leptons and all charged particle tracks that are associated with jets are required to be consistent with originating from the primary vertex.

Since the leptons are expected to originate from the decays of W and Z bosons, they are required to be isolated as defined in Ref. [31]. Events with a fourth isolated lepton are rejected. Neutrinos from W-boson decays escape detection and produce a significant momentum imbalance in the detector in the plane transverse to the beams. The missing transverse momentum ($-\Sigma p_T$) and its magnitude (E_T) are reconstructed using the CMS particle-flow technique [32], and we require the E_T to be larger than 30 GeV. The W-boson candidates are constructed from the momentum of the extra lepton and the missing transverse momentum (assumed to originate from an undetected neutrino), by constraining the resulting invariant mass to be equal to the W-boson mass [1].

The requirements described above, namely events with dilepton-triggers, a Z boson candidate, an extra lepton, no fourth lepton, and the requirement of E_T, will be referred to as the “basic event selection”. The observed number of events after the basic event selection is 1424, in agreement with the MC expectation of 1455 ± 16 events, including 1229 ± 4 events from WZ and 86.3 ± 0.2 events from ZZ production, where the uncertainty quoted is statistical only.

Figure 1 shows the distributions for data and simulated events of the E_T and transverse mass (m_T) of the W-boson candidate after the basic event selection. The transverse mass is calculated using the transverse

![Graphs showing data and simulated events for E_T and m_T](image-url)
mWb require at least two jets, reconstructed also using the combined secondary vertex misidentification rate of about 18\% for \(b \) jets and below 1.5\% for other jets.

The invariant mass of the W boson and the \(b \)-tagged jet, \(m_{Wb} \), is required to be within 35 GeV of the top-quark mass, which is set to 172.5 GeV in the simulation. A non-\(b \)-jet is combined with the Z candidate to form a second top-quark candidate. By examining all possible pairings, the top-quark candidate which has the largest separation in azimuthal angle to the first top quark is selected, and the reconstructed top-quark mass, \(m_{Zj} \), is required to be within 25 GeV of the assumed value of 172.5 GeV. The mass requirements are the same as in the 7 TeV analysis \[16\].

Figure 2 shows the comparison of the \(m_{Zj} \) and \(m_{Wb} \) distributions in data and simulation, while Table I summarizes the signal efficiencies determined from simulated events.

According to simulations, the dominant backgrounds arise from diboson and \(t\bar{t} + X \) production. These processes can be categorized into three groups based on the number of \(b \) quarks present: (a) diboson and Drell-Yan events with almost no \(b \) quarks, (b) events from top-quark FCNC decay with only one \(b \) quark, (c) \(t\bar{t}, tbZ, t\bar{t}W, \) and \(t\bar{t}Z \) processes with at least two \(b \) quarks. Events passing the basic event selection, with two jets to be paired with \(W \) and \(Z \) bosons are divided into three samples: (a) events with no \(b \)-tagged jets, (b) events with exactly one \(b \)-tagged jet, and (c) the rest of the events. The numbers of events in those three samples can be related to the yields of the three groups based on the \(b \)-tagging efficiencies for \(b \) jets, \(c \) jets, or other jets, which are measured using data. The numbers of events in the three groups are then turned into an estimate of the corresponding yields via a linear \(3 \times 3 \) system of equations to be solved before the top-quark mass requirements. The corresponding acceptances of the mass requirements are obtained from MC simulations. The overall contribution from \(WZ \) plus \(ZZ \) and Drell-Yan backgrounds is estimated to be \(1.4 \pm 0.1(\text{stat}) \pm 0.3(\text{syst}) \) events. The expected yield from \(t\bar{t}W, t\bar{t}Z, tbZ, \) and \(t\bar{t} \) backgrounds is \(1.7 \pm 0.8(\text{stat}) \pm 0.4(\text{syst}) \) events. The uncertainty of the \(b \)-tagging efficiency, measured in control data samples, and the uncertainty on the top-quark mass requirement, estimated with MC simulation, contribute to the systematic uncertainty. The estimated background yields are summarized in Table II and show a good agreement with those obtained from data.

Table I. Signal selection efficiency, in percent, for each dilepton channel with respect to events from all channels.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Efficiencies [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e\bar{e}e)</td>
<td>0.49 ± 0.01</td>
</tr>
<tr>
<td>(e\bar{e}\mu)</td>
<td>0.52 ± 0.01</td>
</tr>
<tr>
<td>(\mu\mu\mu)</td>
<td>0.55 ± 0.01</td>
</tr>
<tr>
<td>All</td>
<td>2.12 ± 0.03</td>
</tr>
</tbody>
</table>

FIG. 2 (color online). Comparison between data and simulated events of the \(m_{Zj} \) (left), \(m_{Wb} \) (middle), and two-dimensional scatter (right) distributions after the event selection prior to the top-quark mass requirements, which are shown as the dotted vertical lines (left, middle) and box (right). The data, corresponding to an integrated luminosity of 19.7 fb\(^{-1}\), are represented by the points with error bars and the open histogram is the expected signal. The stacked solid histograms represent the dominant backgrounds. The statistical uncertainties are not drawn. The last bin in each of the left two plots contains all the overflow events.

To reduce the background from diboson events we require at least two jets, reconstructed also using a particle-flow technique \[32\], each with \(p_T > 30 \) GeV and \(|\eta| < 2.4 \). Exactly one of these jets should be identified (tagged) as a \(b \)-quark jet. These requirements further reduce the observed event yields from 1424 after the basic event selection to 29. The \(b \)-jet identification is performed using the combined secondary vertex \(b \)-tagging algorithm described in Ref. \[33\]. This tagging method has an identification efficiency of 62\% for \(b \) jets with transverse momentum between 30 and 100 GeV and a misidentification rate of about 18\% for \(c \) jets and below 1.5\% for other jets.
from MC simulation. The background estimations from data are used for the final results.

To calculate the expected upper limits, the systematic uncertainties from the dilepton trigger efficiency, lepton selection efficiency [28], pileup modeling [34], b-jet tagging efficiency [33], jet energy scale and missing transverse energy resolution [35] are included, with the b-jet tagging efficiency being the dominant one for the background estimation. Additionally, several sources of uncertainties in the signal yield are evaluated: the choice of PDFs, generator parameters, and uncertainty in the t\bar{t} cross section. The major contributions come from the PDFs and the generator parameters of the signal MC simulation. The prescription given in Ref. [36] is used to determine the uncertainty from the CTEQ66 PDF error sets [37]. The uncertainty from the generator parametrization is evaluated using CMS fast simulation [38] samples with different top-quark mass assumptions (±2 GeV), different parton-jet matching thresholds (30 GeV and 60 GeV), and different event renormalization and factorization scales (varied between 1/4 and 4x from their nominal value). In addition, there is a 2.6% uncertainty on the luminosity measurement [39]. All these sources, summarized in Table III, are combined in quadrature to give a 20% relative uncertainty in the signal selection acceptance. The systematic uncertainties in the background estimation are listed with the total background prediction given in Table II.

After applying all the criteria and adding all four channels, 3.1 ± 1.1 events are expected from SM background processes and 1 event is observed in data. A 95% C.L. upper limit on the branching fraction of the $t \rightarrow Zq$ decay is determined using the modified frequentist approach (CL$_s$ method [40,41]). A summary of the observed and predicted yields and limits is presented in Tables II and IV. The observed and expected 95% C.L. upper limits on the branching fraction $B(t \rightarrow Zq)$ are 0.06% and 0.10%, respectively.

These results are combined with the statistically independent results of our previous search [16]. The systematic uncertainties on the signal efficiency estimation and the luminosity measurements are taken as fully correlated. Since the background estimations are based on independent samples, their systematic uncertainties are treated as uncorrelated, except for the uncertainties on the top mass selection requirement due to the choice of PDFs, which are also taken as fully correlated. The combination with the 7 TeV b-tag analysis [16] gives a slightly lower expected limit and hence is chosen as the reference result. The observed upper limit on $B(t \rightarrow Zq)$ is 0.05%, with a median expectation of 0.09%, and with 1σ and 2σ ranges which are 0.06–0.13% and 0.05–0.18%, respectively. The derived limits and their uncertainties are shown in Table IV.

In summary, a search for FCNC events in top-quark decays in $t\bar{t}$ events produced in proton-proton collisions at $\sqrt{s} = 8$ TeV is presented. A sample of events with three leptons (e or μ) in the final state and compatible with leptonic decays of a Z and Wb boson is selected from data recorded with the CMS detector and corresponding to an integrated luminosity of 19.7 fb$^{-1}$. No excess of events above the background is observed. Combining this result with a previous search corresponding to an integrated luminosity of 5.0 fb$^{-1}$ $\sqrt{s} = 7$ TeV, excludes a $t \rightarrow Zq$...
branching fraction greater than 0.05% at a confidence level of 95%. This new limit, about four times better than our previous one, has been achieved with a better background estimation, increased cross section at higher energy and increased integrated luminosity. This new result starts to probe the enhanced FCNC branching fraction predicted by certain SM extensions, such as warped extra dimensions. Our limit can be translated into a constraint on the KK gluon to be heavier than 1.1 TeV [9].

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIES (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista, São Paulo, Brazil

Universidade Federal do ABC, São Paulo, Brazil

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Universidad de Los Andes, Bogota, Colombia

Technical University of Split, Split, Croatia

University of Split, Split, Croatia

Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

University of Debrecen, Debrecen, Hungary

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research—EHEP, Mumbai, India

Tata Institute of Fundamental Research—HECR, Mumbai, India

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

University College Dublin, Dublin, Ireland

INFN Sezione di Bari, Bari, Italy

Università di Bari, Bari, Italy

Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Bologna, Italy

Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Catania, Italy

Università di Catania, Catania, Italy

CSFNSM, Catania, Italy

INFN Sezione di Firenze, Firenze, Italy

Università di Firenze, Firenze, Italy

INFN Laboratori Nazionali di Frascati, Frascati, Italy
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chulalongkorn University, Bangkok, Thailand</td>
<td>Chulalongkorn University, Bangkok, Thailand</td>
</tr>
<tr>
<td>Cukurova University, Adana, Turkey</td>
<td>Cukurova University, Adana, Turkey</td>
</tr>
<tr>
<td>Middle East Technical University, Physics Department, Ankara, Turkey</td>
<td>Middle East Technical University, Physics Department, Ankara, Turkey</td>
</tr>
<tr>
<td>Bogazici University, Istanbul, Turkey</td>
<td>Bogazici University, Istanbul, Turkey</td>
</tr>
<tr>
<td>Istanbul Technical University, Istanbul, Turkey</td>
<td>Istanbul Technical University, Istanbul, Turkey</td>
</tr>
<tr>
<td>National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine</td>
<td>National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine</td>
</tr>
<tr>
<td>University of Bristol, Bristol, United Kingdom</td>
<td>University of Bristol, Bristol, United Kingdom</td>
</tr>
<tr>
<td>Rutherford Appleton Laboratory, Didcot, United Kingdom</td>
<td>Rutherford Appleton Laboratory, Didcot, United Kingdom</td>
</tr>
<tr>
<td>Imperial College, London, United Kingdom</td>
<td>Imperial College, London, United Kingdom</td>
</tr>
<tr>
<td>Brunel University, Uxbridge, United Kingdom</td>
<td>Brunel University, Uxbridge, United Kingdom</td>
</tr>
<tr>
<td>Baylor University, Waco, Texas 76706, USA</td>
<td>Baylor University, Waco, Texas 76706, USA</td>
</tr>
<tr>
<td>The University of Alabama, Tuscaloosa, Alabama 35487, USA</td>
<td>The University of Alabama, Tuscaloosa, Alabama 35487, USA</td>
</tr>
<tr>
<td>Boston University, Boston, Massachusetts 02215, USA</td>
<td>Boston University, Boston, Massachusetts 02215, USA</td>
</tr>
<tr>
<td>Brown University, Providence, Rhode Island 02912, USA</td>
<td>Brown University, Providence, Rhode Island 02912, USA</td>
</tr>
<tr>
<td>University of California, Davis, Davis, California 95616, USA</td>
<td>University of California, Davis, Davis, California 95616, USA</td>
</tr>
<tr>
<td>University of California, Los Angeles, Los Angeles, California 90095, USA</td>
<td>University of California, Los Angeles, Los Angeles, California 90095, USA</td>
</tr>
<tr>
<td>University of California, Riverside, Riverside, California 92521, USA</td>
<td>University of California, Riverside, Riverside, California 92521, USA</td>
</tr>
<tr>
<td>University of California, San Diego, La Jolla, California 92093, USA</td>
<td>University of California, San Diego, La Jolla, California 92093, USA</td>
</tr>
<tr>
<td>University of California, Santa Barbara, Santa Barbara, California 93106, USA</td>
<td>University of California, Santa Barbara, Santa Barbara, California 93106, USA</td>
</tr>
<tr>
<td>California Institute of Technology, Pasadena, California 91125, USA</td>
<td>California Institute of Technology, Pasadena, California 91125, USA</td>
</tr>
<tr>
<td>Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA</td>
<td>Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA</td>
</tr>
<tr>
<td>University of Colorado at Boulder, Boulder, Colorado 80309, USA</td>
<td>University of Colorado at Boulder, Boulder, Colorado 80309, USA</td>
</tr>
<tr>
<td>Cornell University, Ithaca, New York 14853, USA</td>
<td>Cornell University, Ithaca, New York 14853, USA</td>
</tr>
<tr>
<td>Fairfield University, Fairfield, Connecticut 06824, USA</td>
<td>Fairfield University, Fairfield, Connecticut 06824, USA</td>
</tr>
<tr>
<td>Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA</td>
<td>Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA</td>
</tr>
<tr>
<td>University of Florida, Gainesville, Florida 32611, USA</td>
<td>University of Florida, Gainesville, Florida 32611, USA</td>
</tr>
<tr>
<td>Florida International University, Miami, Florida 33199, USA</td>
<td>Florida International University, Miami, Florida 33199, USA</td>
</tr>
<tr>
<td>Florida State University, Tallahassee, Florida 32306, USA</td>
<td>Florida State University, Tallahassee, Florida 32306, USA</td>
</tr>
<tr>
<td>Florida Institute of Technology, Melbourne, Florida 32901, USA</td>
<td>Florida Institute of Technology, Melbourne, Florida 32901, USA</td>
</tr>
<tr>
<td>University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA</td>
<td>University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA</td>
</tr>
<tr>
<td>The University of Iowa, Iowa City, Iowa 52242, USA</td>
<td>The University of Iowa, Iowa City, Iowa 52242, USA</td>
</tr>
<tr>
<td>Johns Hopkins University, Baltimore, Maryland 21218, USA</td>
<td>Johns Hopkins University, Baltimore, Maryland 21218, USA</td>
</tr>
<tr>
<td>The University of Kansas, Lawrence, Kansas 66045, USA</td>
<td>The University of Kansas, Lawrence, Kansas 66045, USA</td>
</tr>
<tr>
<td>Kansas State University, Manhattan, Kansas 66506, USA</td>
<td>Kansas State University, Manhattan, Kansas 66506, USA</td>
</tr>
<tr>
<td>Lawrence Livermore National Laboratory, Livermore, California 94720, USA</td>
<td>Lawrence Livermore National Laboratory, Livermore, California 94720, USA</td>
</tr>
<tr>
<td>University of Maryland, College Park, Maryland 20742, USA</td>
<td>University of Maryland, College Park, Maryland 20742, USA</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA</td>
<td>Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA</td>
</tr>
<tr>
<td>University of Minnesota, Minneapolis, Minnesota 55455, USA</td>
<td>University of Minnesota, Minneapolis, Minnesota 55455, USA</td>
</tr>
<tr>
<td>University of Mississippi, Oxford, Mississippi 38677, USA</td>
<td>University of Mississippi, Oxford, Mississippi 38677, USA</td>
</tr>
<tr>
<td>University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA</td>
<td>University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA</td>
</tr>
<tr>
<td>State University of New York at Buffalo, Buffalo, New York 14260, USA</td>
<td>State University of New York at Buffalo, Buffalo, New York 14260, USA</td>
</tr>
<tr>
<td>Northeastern University, Boston, Massachusetts 02115, USA</td>
<td>Northeastern University, Boston, Massachusetts 02115, USA</td>
</tr>
<tr>
<td>Northwestern University, Evanston, Illinois 60208, USA</td>
<td>Northwestern University, Evanston, Illinois 60208, USA</td>
</tr>
<tr>
<td>University of Notre Dame, Notre Dame, Indiana 46556, USA</td>
<td>University of Notre Dame, Notre Dame, Indiana 46556, USA</td>
</tr>
<tr>
<td>The Ohio State University, Columbus, Ohio 43210, USA</td>
<td>The Ohio State University, Columbus, Ohio 43210, USA</td>
</tr>
<tr>
<td>Princeton University, Princeton, New Jersey 08544, USA</td>
<td>Princeton University, Princeton, New Jersey 08544, USA</td>
</tr>
<tr>
<td>University of Puerto Rico, Mayaguez, Puerto Rico 00680</td>
<td>University of Puerto Rico, Mayaguez, Puerto Rico 00680</td>
</tr>
<tr>
<td>Purdue University, West Lafayette, Indiana 47907, USA</td>
<td>Purdue University, West Lafayette, Indiana 47907, USA</td>
</tr>
<tr>
<td>Purdue University Calumet, Hammond, Indiana 46323, USA</td>
<td>Purdue University Calumet, Hammond, Indiana 46323, USA</td>
</tr>
<tr>
<td>Rice University, Houston, Texas 77251, USA</td>
<td>Rice University, Houston, Texas 77251, USA</td>
</tr>
<tr>
<td>University of Rochester, Rochester, New York 14627, USA</td>
<td>University of Rochester, Rochester, New York 14627, USA</td>
</tr>
<tr>
<td>The Rockefeller University, New York, New York 10021, USA</td>
<td>The Rockefeller University, New York, New York 10021, USA</td>
</tr>
<tr>
<td>Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA</td>
<td>Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA</td>
</tr>
<tr>
<td>University of Tennessee, Knoxville, Tennessee 37996, USA</td>
<td>University of Tennessee, Knoxville, Tennessee 37996, USA</td>
</tr>
<tr>
<td>Texas A&M University, College Station, Texas 77843, USA</td>
<td>Texas A&M University, College Station, Texas 77843, USA</td>
</tr>
<tr>
<td>Texas Tech University, Lubbock, Texas 79409, USA</td>
<td>Texas Tech University, Lubbock, Texas 79409, USA</td>
</tr>
<tr>
<td>Vanderbilt University, Nashville, Tennessee 37235, USA</td>
<td>Vanderbilt University, Nashville, Tennessee 37235, USA</td>
</tr>
<tr>
<td>University of Virginia, Charlottesville, Virginia 22901, USA</td>
<td>University of Virginia, Charlottesville, Virginia 22901, USA</td>
</tr>
<tr>
<td>Wayne State University, Detroit, Michigan 48202, USA</td>
<td>Wayne State University, Detroit, Michigan 48202, USA</td>
</tr>
<tr>
<td>University of Wisconsin, Madison, Wisconsin 53706, USA</td>
<td>University of Wisconsin, Madison, Wisconsin 53706, USA</td>
</tr>
</tbody>
</table>
Deceased.

Also at Vienna University of Technology, Vienna, Austria.

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.

Also at Universidade Estadual de Campinas, Campinas, Brazil.

Also at California Institute of Technology, Pasadena, CA, USA.

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

Also at Zewail City of Science and Technology, Zewail, Egypt.

Also at Suez Canal University, Suez, Egypt.

Also at Cairo University, Cairo, Egypt.

Also at Fayoum University, El-Fayoum, Egypt.

Also at British University in Egypt, Cairo, Egypt.

Present address: Ain Shams University, Cairo, Egypt.

Also at Université de Haute Alsace, Mulhouse, France.

Also at Joint Institute for Nuclear Research, Dubna, Russia.

Also at Brandenburg University of Technology, Cottbus, Germany.

Also at The University of Kansas, Lawrence, KS, USA.

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

Also at Eötvös Loránd University, Budapest, Hungary.

Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India.

Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.

Present address: King Abdulaziz University, Jeddah, Saudi Arabia.

Also at University of Visva-Bharati, Santiniketan, India.

Also at University of Ruhuna, Matara, Sri Lanka.

Also at Isfahan University of Technology, Isfahan, Iran.

Also at Sharif University of Technology, Tehran, Iran.

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Also at Università degli Studi di Siena, Siena, Italy.

Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.

Also at Purdue University, West Lafayette, IN, USA.

Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.

Also at National Centre for Nuclear Research, Swierk, Poland.

Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.

Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

Also at University of Athens, Athens, Greece.

Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Cag University, Mersin, Turkey.

Also at Mersin University, Mersin, Turkey.

Also at Izmir Institute of Technology, Izmir, Turkey.

Also at Ozyegin University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Suleyman Demirel University, Isparta, Turkey.

Also at Ege University, Izmir, Turkey.

Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.

Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

Also at Utah Valley University, Orem, UT, USA.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.