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A quantum expander is a unital quantum channel that is rapidly mixing, has only a few Kraus operators, and can
be implemented efficiently on a quantum computer. We consider the problem of estimating the mixing time (i.e.,
the spectral gap) of a quantum expander. We show that the problem of deciding whether a quantum channel is not
rapidly mixing is a complete problem for the quantum Merlin-Arthur complexity class. This has applications to
testing randomized constructions of quantum expanders and studying thermalization of open quantum systems.
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I. INTRODUCTION

A quantum expander is a unital quantum channel that is
rapidly mixing. This means that with repeated applications
of the channel, every quantum state is rapidly contracted to
the maximally mixed state, which is the unique fixed point.
In addition, a quantum expander has only a small number of
Kraus operators, each of which is described by an efficient
quantum circuit. Quantum expanders are quantum analogs of
expander graphs, which play a prominent role in computer
science and discrete mathematics [1]. The idea of quantum
expanders was introduced in [2,3]. Since then, several explicit
constructions of quantum expanders have been discovered,
and quantum expanders have found various applications in
quantum information theory, such as constructing quantum
states with unusual entanglement properties and simulating
thermalization in quantum systems [4–9].

Here we study the problem of estimating the mixing rate of
a quantum expander. Given a quantum channel � of the above
form (a small number of Kraus operators, specified by quantum
circuits), this problem is to estimate the spectral gap of �. This
problem arises in connection with randomized constructions
of quantum expanders [9], where with high probability one
obtains a good expander, but it is not obvious how to test
that a particular instance of the construction is in fact good.
In addition, this problem can be viewed as a special case
of a more general question: given an open quantum system,
determine whether it thermalizes, and on what time scale. (The
behavior of a quantum expander is roughly equivalent to that
of a quantum system with a particular weak coupling to a bath
of harmonic oscillators.)

Formally, we define the “quantum nonexpander problem”
(which is the complement of the above problem), and we
give evidence that this problem is computationally intractable:
We prove that it is QMA-complete. Here QMA (quantum
Merlin-Arthur) is a complexity class that is a quantum analog
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of NP (nondeterministic polynomial time) [10–12]. Proving
that a problem is QMA-complete implies that it is equivalent
(up to polynomial-time reductions) to all other QMA-complete
problems [11,13–19], a survey of which can be found in [20].
In particular, this implies that the problem cannot be solved in
polynomial time (unless QMA = BQP). Furthermore, this
implies that our original problem, the “quantum expander
problem”, is complete for the complexity class co-QMA
(where co-QMA is the class of all problems whose comple-
ments are in QMA); hence the “quantum expander problem”
cannot be in QMA (unless QMA = co-QMA). In other words,
when a channel � is not a quantum expander, there is an
efficiently verifiable quantum proof of that fact; but when �

is a quantum expander, there is no way of giving an efficiently
verifiable quantum proof.

II. PRELIMINARIES

A. The quantum nonexpander problem

We use the definition of explicit quantum expanders due to
Ben-Aroya, Schwartz, and Ta-Shma [4]. For an N -dimensional
Hilbert space H, let L(H) denote the space of linear operators
from H to itself. A superoperator � : L(H) → L(H) is admis-
sible if it is a completely positive and trace-preserving map. An
admissible superoperator is unital if �(Ĩ ) = Ĩ , where Ĩ = I

N

is the maximally mixed state on H (where I is the identity
operator on H). A unital superoperator is D-regular if � =
1
D

∑
d �d , and for d = 1, . . . ,D, �d (X) = UdXU

†
d , where

the Ud are unitary transformations on H. The unitaries Ud are
called the operation elements (or Kraus operators) of �, and D

is called the degree of �. A D-regular superoperator is explicit
if each of its operation elements can be implemented by a quan-
tum circuit of size polylog(N ), where N is the dimension ofH.

Definition 1 (quantum expander). A D-regular superop-
erator � : L(H) → L(H) is a κ-contractive expander if for
all A ∈ L(H) that are orthogonal to Ĩ with respect to the
Hilbert-Schmidt inner product, that is, Tr(AĨ ) = 0, it holds
that

‖�(A)‖F � κ‖A‖F . (1)

Here the Frobenius norm is given by ‖A‖F =
√∑

i,j |aij |2,
where aij are the entries of the matrix A. The quantity 1 − κ

is called the spectral gap of �.
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Remark 1. The motivation for this definition can easily be
seen from the following argument. A good quantum expander
� rapidly sends any density matrix ρ to the maximally mixed
state Ĩ . Because Tr [ρ] = Tr [Ĩ ] = 1 we can always write ρ =
Ĩ + A where Tr [A] = 0. The requirement of Eq. (1) therefore
formalizes the idea of � bringing ρ towards Ĩ by rapidly
killing off the A term. In this context Eq. (1) is equivalent
to demanding that ‖�(ρ) − Ĩ‖F � κ‖ρ − Ĩ‖F , which clearly
encapsulates the idea of � rapidly sending density matrices
towards the maximally mixed state. Note that in this argument
A = ρ − Ĩ is Hermitian; however, it can be shown that if
Eq. (1) applies for traceless Hermitian matrices, it also applies
for traceless matrices in general, thus justifying Definition 1.

We consider the problem of estimating the mixing time of a
quantum expander. Formally, we study the following decision
problem:

Definition 2 (quantum nonexpander problem). Fix some en-
coding such that each string x ∈ {0,1}∗ specifies the following:
an explicit D-regular superoperator � : (C2)⊗m → (C2)⊗m,
with operation elements U1, . . . ,UD , and two parameters
α > β.

We will consider instances which satisfy the following
promises:1 m and D are upper-bounded by (fixed) polynomials
in |x|; the parameters α and β are polynomially separated,
i.e., they satisfy α − β � 1

q(|x|) for some (fixed) polynomial q;
and the operation elements U1, . . . ,UD are given as quantum
circuits of size at most r(|x|) for some (fixed) polynomial r .

The “quantum nonexpander” problem is the task of decid-
ing which of the following is correct, given the promise that
exactly one of them is correct:

(1) � is not an α-contractive expander (YES case),
(2) � is a β-contractive expander (NO case).

B. Thermalization of open quantum systems

To motivate the “quantum nonexpander” problem, we now
describe a connection between that problem and the study
of thermalization in open quantum systems. We show an
example of a quantum system coupled to a bath, where the
system thermalizes and the relaxation time is determined by
the spectral gap of a certain quantum expander.

Let the system consist of m qubits, and fix some unitary
transformations Uα (for α = 1, . . . ,D) which act on (C2)⊗m.
Let the bath consist of a large number of harmonic oscillators,
with annihilation operators bαk (for α = 1, . . . ,D and k ∈ �,
where � is some large set). Let the total Hamiltonian be

H = HS + εHI + HB, (2)

where the system Hamiltonian is HS = 0, the bath Hamiltonian
is

HB =
∑

α

∑
k

ωkb
†
αkbαk, (3)

and the interaction Hamiltonian is

HI =
∑

α

(Uα ⊗ fα) + (U †
α ⊗ f †

α ), (4)

where the operators fα are defined by fα = 1√|�|
∑

k bαk .

1Here |x| denotes the length of the string x.

In the weak-coupling limit (ε → 0), the time evolution of
the system is described by a master equation [21]. Suppose the
bath is in a thermal state, ρB = (1/ZB) exp(−HB/T ). Then
the master equation takes the following form:

d

dt
ρS(t) = R0

∑
α

(UαρS(t)U †
α − ρS(t))

+R1

∑
α

(U †
αρS(t)Uα − ρS(t)), (5)

where ρS(t) is the state of the system at time t , and R0

and R1 are positive real numbers. Equation (5) has two
special features: There is no contribution from a “Lamb shift”
Hamiltonian, and the dissipator is in diagonal form with
Lindblad operators which are unitary. (See Appendix 1 for
the derivation of this equation.)

Now define the quantum channel

�(ρ) = R0

(R0 + R1)D

∑
α

UαρU †
α + R1

(R0 + R1)D

∑
α

U †
αρUα.

This channel � is a (nonuniform) mixture of unitary op-
erations. In the special case where the set of unitaries
{Uα | α = 1, . . . ,D} is closed with respect to the adjoint
operation (i.e., for every 1 � α � D, there exists some 1 �
β � D such that Uα = U

†
β), the channel � can be written as

�(ρ) = 1

D

∑
α

U †
αρUα;

hence � is a D-regular superoperator, as described in the
definition of a quantum expander.

The master equation can now be rewritten in terms of �:

d

dt
ρS(t) = (R0 + R1)D(� − I)[ρS(t)],

where I denotes the identity channel. We can solve for ρS(t):

ρS(t) = exp[t(R0 + R1)D(� − I)][ρS(0)].

Thus the system converges to the maximally mixed state as
t → ∞, and the rate of convergence depends on the spectral
gap of �. More precisely, write ρS(t) = Ĩ + A(t) where A(t)
is traceless. Then it can be verified that

‖A(t)‖F � exp[−t(R0 + R1)D(1 − κ)]‖A(0)‖F .

C. Quantum Merlin-Arthur complexity class

We will show that the quantum nonexpander problem
is QMA-complete, i.e., it is contained in QMA, and every
problem in QMA can be reduced to it in polynomial time. The
complexity class QMA consists of decision problems such
that YES instances have concise quantum proofs. The QMA
complexity class is motivated by the following protocol. Given
a problem instance x (i.e., a string of |x| bits) and a language
L ∈ QMA, a computationally unbounded but untrustworthy
prover, Merlin, submits a quantum state of poly(|x|) qubits
as a purported proof that x ∈ L. A verifier, Arthur, who
can perform polynomial size quantum computations, then
processes this proof and either accepts or rejects it. If x ∈ L

then there exists some polynomial size quantum state causing
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Arthur to accept with high probability, but if x /∈ L then Arthur
will reject all states with high probability. QMA is a quantum
analog of MA, which is the probabilistic analog of NP.

Definition 3 [QMA(a,b)]. A language L is in QMA(a,b)
if for each x ∈ {0,1}∗ one can efficiently generate a quantum
circuit V with the following properties:

(1) V acts on the Hilbert space W ⊗ A, where

W = (C2)⊗nw , A = (C2)⊗na ,

and the functions nw,na : N → N grow at most polynomially
in |x|.

(2) V consists of s(|x|) elementary gates where the
function s : N → N grows at most polynomially in |x|.

(3) If x ∈ L (YES case) then there exists a witness state
|ψ〉 ∈ W such that

‖PV |ψ〉|0〉‖2 � a. (6)

(4) If x /∈ L (NO case) then for all states |ψ〉 ∈ W we have
that

‖PV |ψ〉|0〉‖2 � b. (7)

Here W and A are the witness and ancilla registers,
respectively, and P = |1〉〈1| ⊗ 1 projects onto the subspace
of the first qubit of W ⊗ A being in the state |1〉. The state
|0〉 = |00 . . . 0〉 is the all-zeros state on A.

Observe that V,W,A,na,nw, and P depend on x; however,
to avoid unnecessarily complicated notation, we do not
indicate this explicitly.

Remark 2. It is conventional to define QMA =
QMA(2/3,1/3). However, the complexity class QMA(a,b) is
highly insensitive to the particular values of a and b. In fact,
even if a and b are functions of the problem size n, it remains
true that QMA(a(n),b(n)) = QMA provided a(n) − b(n) �

1
p(n) for some polynomial p. It is always possible to achieve
that a = 1 − ε and b = ε by increasing the size of the circuit
by a factor polylog(1/ε) and increasing na by polylog(1/ε)
qubits, with no change in nw [22,23].

III. QUANTUM NONEXPANDER IS IN QMA

We now show that the problem defined in Definition 2 is in
QMA. We first consider the YES case. In this case, Merlin has
to convince Arthur that there exists a traceless matrix A such
that

‖�(A)‖F > α‖A‖F . (8)

We may assume without loss of generality that ‖A‖F = 1.
Clearly, Merlin cannot directly send the matrix A because
it is an exponentially large matrix. Instead, he can send the
quantum certificate

|ψA〉 =
N∑

i,j=1

aij |i〉 ⊗ |j 〉

encoding the matrix A. We show that |ψA〉 can serve as
a witness making it possible to convince Arthur that the
inequality in Eq. (8) holds.

Arthur’s verification protocol makes use of the following
facts:

‖A‖2
F = 〈ψA|ψA〉, Tr[A] =

√
N〈ϕ|ψA〉,

|0〉 H • H

|ψA〉 Vd,e

FIG. 1. Hadamard test for Vd,e.

where |ϕ〉 = 1√
N

∑N
i=1 |i〉 ⊗ |i〉, and

‖�(A)‖2
F = 〈ψA|W †W |ψA〉,

where

W = 1

D

D∑
d=1

Ud ⊗ Ud,

and Ud denotes the complex conjugate of Ud .
First, to check whether Tr [A] = 0, Arthur verifies that

|ψA〉 is orthogonal to |ϕ〉. Second, to estimate the contractive
factor, Arthur estimates the expectation value 〈ψA|W †W |ψA〉
of W †W . For d,e = 1, . . . ,D, define the unitaries

Vd,e = (
U

†
d ⊗ UT

d

)
(Ue ⊗ Ue).

Note that Vd,e = V
†
e,d and Vd,d = 1. The expectation value can

be expressed as

〈ψA|W †W |ψA〉 = 1

D2

∑
d,e

〈ψA|Vd,e|ψA〉

= 1

D
+ 2

D2

∑
d<e

Re〈ψA|Vd,e|ψA〉.

Arthur can estimate the values Re〈ψA|Vd,e|ψA〉 using the
Hadamard test (shown in Fig. 1), since it will output 1
with probability Pr(1) = 1

2 (1 + Re〈ψA|Vd,e|ψA〉). From this
Arthur can calculate 〈ψA|W †W |ψA〉 = ‖�(A)‖2

F and ensure
it exceeds α2.

Now consider the NO case. In this case, Arthur’s first mea-
surement projects the state |ψA〉 onto the subspace orthogonal
to |ϕ〉; and by definition, all states |ψA〉 in that subspace must
satisfy

〈ψA|W †W |ψA〉 = ‖�(A)‖2
F � β2.

This shows that Merlin cannot cheat, that is, make Arthur
believe that there exists a quantum state with contraction
greater or equal to α, provided that Arthur estimates the
expected value sufficiently well and with sufficiently high
probability of confidence.

As in the original definition of QMA in [11], we may assume
that Arthur has multiple copies of the quantum certificate |ψ〉
so that we can estimate the expected value sufficiently well.
Using the powerful technique of in-place amplification [22],
we can transform a quantum circuit requiring |ψ〉⊗k into one
that requires only a single copy of |ψ〉.

IV. SOME TECHNICAL TOOLS

A. The Frobenius norm

In the proof that quantum nonexpander is QMA-hard we
will frequently make use of the Frobenius norm; we therefore
present some useful facts about this norm here. If B is a matrix
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with entries bij , then the Frobenius norm is defined as

‖B‖F =
√

Tr[B†B] =
√∑

ij

|bij |2. (9)

We have the following identities: ‖A ⊗ B‖F = ‖A‖F ‖B‖F ,
Tr[A ⊗ B] = Tr[A]Tr[B], and of course Tr[A + B] =
Tr[A] + Tr[B]. If |ψ〉 and |φ〉 are pure states then

‖|ψ〉〈φ|‖F =
√

〈ψ |ψ〉〈φ|φ〉 = ‖|ψ〉‖‖|φ〉‖. (10)

Note that ‖|0〉〈0|‖F = ‖|1〉〈1|‖F = 1.
In this paper we denote the Pauli matrices on one qubit

by σi , with σ0 = 1, σ1 = σx , σ2 = σy , and σ3 = σz. Consider
any traceless matrix A that acts on some space Cd ⊗ C2,
where we will refer to the second subspace (i.e., single-qubit
subspace) as the indicator qubit register. Because the Pauli
matrices σi form a basis for the matrices acting on the
indicator qubit register, we can decompose A as

∑3
i=0 Ai ⊗ σi ,

where Ai are matrices on the combined multiqubit subspace
(the witness and ancilla registers that we will see later).
Because σi are traceless for i = 1,2,3, the traceless condition
on A therefore becomes Tr[A0] = 0. Moreover, because the
Pauli matrices are orthogonal with respect to the trace inner
product and all satisfy ‖σi‖2

F = 2, we have ‖∑i Ai ⊗ σi‖2
F =∑

i ‖Ai ⊗ σi‖2
F = 2

∑
i ‖Ai‖2

F , giving the inequality∥∥∥∥
3∑

i=0

Ai ⊗ σi

∥∥∥∥
F

�
√

2‖A0‖F . (11)

A quantum operation G is called a pinching operator if
G(B) = ∑

P PBP where P are nonoverlapping projectors with∑
P P = 1. Pinching operators are trace preserving,

Tr

[∑
P

PBP

]
= Tr [B], (12)

and moreover (by the pinching inequality) cannot increase
Frobenius norm: ∥∥∥∥∥

∑
P

PBP

∥∥∥∥∥
F

� ‖B‖F . (13)

It should be noted that a quantum expander E is also norm-
nonincreasing,

‖E(B)‖F � ‖B‖F , (14)

and similarly for any projector P ,

‖PBP‖F � ‖B‖F . (15)

B. Controlled expanders

The remainder of our paper will make repeated use of
controlled expanders, which we introduce here. If U is a
unitary gate, we use the notation �U to indicate a controlled-U
operation.

Definition 4 (controlled expander). Let F be a quantum
expander with operation elements {Ui : i = 1 . . . m} so that
F(B) = 1

m

∑m
i=1 UiBU

†
i . The controlled expander �F is

defined to be the m-regular superoperator whose operation
elements are the controlled unitaries {�Ui : i = 1 . . . m}.

More explicitly, consider two registers, a control register
and a target register, and suppose that an expander F acts on
the target register as F(B) = 1

m

∑m
i=1 UiBU

†
i . Decompose the

control register into two orthogonal subspaces, and let Q and
P be projectors onto these two subspaces (so Q + P = 1 and
PQ = QP = 0). Suppose that the controlled operations �Ui

are to be applied when the control register is in the subspace
corresponding to P ; thus �Ui = P ⊗ Ui + Q ⊗ 1. Consider
a matrix A ⊗ B, where A and B act on the control and target
registers, respectively. Then the controlled expander �F , with
operation elements �Ui , acts on A ⊗ B as

�F(A ⊗ B) = 1

m

m∑
i=1

[(�Ui)(A ⊗ B)(�U
†
i )]

= 1

m

m∑
i=1

[(P ⊗ Ui + Q ⊗ 1)(A ⊗ B)(P ⊗ U
†
i

+Q ⊗ 1)]

= 1

m

m∑
i=1

[PAP ⊗ UiBU
†
i + PAQ ⊗ UiB

+ QAP ⊗ BU
†
i + QAQ ⊗ B]

= PAP ⊗ 1

m

∑
i

(UiBU
†
i )

+ PAQ ⊗
(

1

m

∑
i

Ui

)
B

+ QAP ⊗ B

(
1

m

∑
i

U
†
i

)
+ QAQ ⊗ B.

(16)

Note that if we impose on F the requirement that∑
i

Ui = 0, (17)

then we obtain

�F(A ⊗ B) = PAP ⊗ F(B) + QAQ ⊗ B, (18)

which is how we would naturally desire a controlled expander
to act. Unfortunately, unlike Eq. (18), Eq. (16) has additional
cross-terms whose elimination would greatly simplify our
future analysis.

We will, however, freely assume that Eq. (17) is satisfied,
justified by the following observation. If necessary, we may al-
ways increase the set of operation elements ofF from {Ui : i =
1 . . . m} to {Ui : i = 1 . . . m} ∪ {−Ui : i = 1 . . . m}. Such a
change has no effect on the original expander F ; the expander
F(B) = 1

m

∑
(UiBU

†
i ) is invariant under Ui ↔ −Ui , even

though the controlled expander �F(B) = 1
m

∑
(�UiB�U

†
i )

is not necessarily invariant under Ui ↔ −Ui . Thus, with only
a factor of two overhead in the number of unitaries, we may
satisfy the condition of Eq. (17), thereby eliminating the
undesired cross-terms; as such, Eq. (18) may effectively be
taken as the definition of a controlled expander.

A concrete example of a controlled expander—and one of
particular importance in this paper—is the controlled complete
depolarizer. Throughout this paper we use D to denote the
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control / •
target / F

FIG. 2. A controlled expander, �F .

complete depolarizing channel on a single qubit, which is
normally defined to apply a unitary from {1 ,X,Y,Z} with
uniform probability 1/4. To ensure that Eq. (17) is satisfied,
we therefore define the effect of D on a matrix σ to be

D(σ ) = 1

8

∑
W

WσW = 1
Tr[σ ]

2
,

where the sum is over W ∈ {1 ,X,Y,Z,−1,−X,−Y,−Z}.
Consequently, the controlled complete depolarizer �D with a
single-qubit target and (possibly multiqubit) control projectors
P (indicating apply D) and Q (indicating do nothing) is the
8-regular superoperator with operation elements

{�(1),�(X),�(Y ),�(Z),�(−1),�(−X),�(−Y ),�(−Z)}
having the effect

�D(A ⊗ σ ) = PAP ⊗ 1
Tr [σ ]

2
+ QAQ ⊗ σ. (19)

Although controlled expanders are not actually quantum
gates, we will nevertheless include them in circuit diagrams.
If �F(B) = 1

m

∑
i(�UiB�U

†
i ) then the circuit in Fig. 2 is to

be interpreted as applying an element selected uniformly at
random from the set {�Ui} (or equivalently, as applying to the
target register a unitary selected uniformly at random from the
set {Ui}, but only if the control register is in the appropriate
state). As a final remark note that although a controlled
expander is a unital map, it is not itself a good expander (first,
because depending on the control qubit, the operator might not
do anything at all, and second, because even when the operator
does act, it only expands on the subspace of the target, not the
entire space). For example, note that |0〉〈0| ⊗ |0〉〈0| is not
contracted at all by the controlled complete depolarizer �D,
thus indicating that �D is not a good expander.

V. QUANTUM NONEXPANDER IS QMA-HARD

A. Outline of the proof

Let L be any language in QMA( 2
3 , 1

3 ). We show that the
quantum nonexpander problem is QMA-hard by reducing L

to a quantum nonexpander problem. Specifically, let x be an
|x|-bit problem instance whose inclusion in L, or lack thereof,
we wish to determine. Because L ∈ QMA we have access to a
verifier circuit satisfying Eqs. (6) and (7) acting on a witness
space of nw = poly(|x|) qubits and some ancilla space. For
reasons that will become apparent later, we now use QMA
amplification to give that L ∈ QMA(a,b) for polynomially
separated a and b, where

a > 0.99 and b < (0.1)2−(nw+1).

Note from Remark 2 that this can be done without increasing
the size of the witness space of the verifier. Let the resulting
QMA(a,b) verifier circuit be called V , which acts on the same
witness space of nw = poly(|x|) qubits and some ancilla space

nw nw

witness /

V V †
/

Ena na

ancilla / • / /

indicator D D •

ancilla |←− witness −→| controlled E
verifier verifier

FIG. 3. The map � constructed from the verifier circuit V , the
complete depolarizer D, and the κE -contractive expander E . The first
controlled depolarizer is applied only if the ancillae are not all zero
and the second one only if the top output is zero. The controlled E
expander is applied only if the bottom qubit is one. Note that this
figure is not a true circuit because D and E are quantum expanders,
not unitary gates.

of na = poly(|x|) ancilla qubits. Merlin can provide Arthur a
valid (with high probability) witness if and only if x ∈ L.

Let E be an explicit κE -contracting expander of degree DE
acting on nw + na qubits, where κE < 0.1 and DE is constant
(independent of |x|). Such expanders are known to exist, as
we outline in Appendix 2 using Ref. [24]. Using V and E , we
create a quantum expander � that is bad if x ∈ L but good
if x /∈ L; indeed, we will present polynomially separated (in
fact, constant) α and β such that � is a β-contracting expander
if x /∈ L but is not an α-contracting expander if x ∈ L. The
circuit for � is shown in Fig. 3, which we now describe in
detail.

The map � acts on three registers, which from top to bottom
are the witness register (of nw qubits), the ancilla register (of
na qubits), and an additional single-qubit register we call the
indicator qubit register. The circuit is realized by composing
the following three maps:

(1) the ancilla verifier,
(2) the witness verifier,
(3) the controlled E .
The basic idea is that if x ∈ L then Merlin can provide a

valid witness and properly initialized ancillae that will pass
the verifiers and not be mixed by the final controlled expander
(indicating that our quantum expander is bad); conversely,
if x /∈ L then no matter what witness and ancilla qubits
Merlin provides, the indicator qubit will be depolarized and
consequently his state will be well mixed by the final controlled
expander (indicating our expander to be good).

We now provide a detailed description of the three different
maps and their purposes.

(1) The ancilla verifier is the first gate in Fig. 3. It is
the controlled expander �anc D, which applies the complete
depolarizer D to the indicator qubit register only if any of the
ancilla bits are 1 (i.e., if they are not all 0). More technically,
it is

�anc D(B) = 1

8

∑
W

�ancWB�ancW
†

(with W ∈ {1 ,X,Y,Z,−1,−X,−Y,−Z}), where �ancW is
the gate shown in Fig. 4. Note that �ancW requires a controlled-
W † gate controlled by na qubits, which can be implemented
with na

2 gates using no extra work qubits [25]. (It is important
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witness

ancillae

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

indicator

/

X • X

X • X
...

X • X

W W †

FIG. 4. The controlled expander verifying the ancillae. The
unitary W is selected from {1 ,X,Y,Z, −1, −X, −Y,−Z} uniformly
at random.

that the implementation not require work qubits, because we
demand that there be no internal ancillae; our expander must
be an expander on the entire space, not just a subspace.)
Intuitively, if the ancilla qubits are not initialized to be all
0’s, the verifier will depolarize the indicator qubit, whence the
term ancilla verifier.

(2) The witness verifier consists of the next three opera-
tions in Fig. 3. First, V operates on the witness and ancilla
registers, with its output on the top qubit (with |1〉 signifying
that the witness is valid, |0〉 signifying that it is invalid); the
lower multiqubit register of nw + na − 1 qubits contains the
rest of V ’s output (required by reversibility). A controlled-
depolarizer then acts on the indicator qubit, conditioned upon
the top qubit being |0〉 (i.e., failing the witness verification).
The effects of V are then uncomputed with V †. At this point,
intuitively, the indicator qubit has been depolarized if and
only if the input failed either the ancilla verifier or the witness
verifier (or both).

(3) Finally, the last operation, which is the controlled
expander �ind E , acts, conditioned on whether the indicator
qubit is |1〉. Intuitively, if the input was |ψ〉 ⊗ |0〉 ⊗ |0〉, with
the indicator qubit initialized to |0〉, with the ancilla qubits
initialized to |0〉 = |00 . . . 0〉, and with |ψ〉 a valid witness (for
x ∈ L), then the indicator qubit will remain |0〉 and nothing
will happen; if, on the other hand, the witness/ancillae failed
any of the verifiers, thus depolarizing the indicator qubit to be
1
2 1 = 1

2 |0〉〈0| + 1
2 |1〉〈1|, then E will act on the top registers,

resulting in a highly mixed output (across all three registers).
Note that because E is an explicit DE -regular expander

(where DE is a constant), �, being the composition of
two explicit 8-regular superoperators and � E , is manifestly
explicit and 64DE -regular (i.e., of constant degree). We now
proceed to show that � is indeed a good expander if x /∈ L

(the NO case) but not if x ∈ L (the YES case).

B. Analysis of NO case

First, consider the case in which x /∈ L. We wish to show
that � is a good expander, and therefore by Eq. (1), that
it sufficiently decreases the Frobenius norm of any input
traceless matrix. As discussed earlier, we may therefore take
the input state to be

∑3
i=0 Ai ⊗ σi for some matrices Ai with

Tr[A0] = 0, where σi are the Pauli matrices on the indicator
qubit register.

Both the witness and ancilla verifiers are controlled depolar-
izers, and we can analyze each of them in the same way using
projection operators that act on some subspace of the system;

specifically, we will use Q = ∑
φ passes |φ〉〈φ| that projects

onto the states that pass the verifier and P = ∑
φ fails |φ〉〈φ|

that projects onto the states that fail it. For the ancilla
verifier, these are Qa = |00 . . . 0〉〈00 . . . 0|anc (more properly
written as Qa = 1wit ⊗ |00 . . . 0〉〈00 . . . 0|anc ⊗ 1ind) and Pa =
1 − Qa = ∑

x =00...0 |x〉〈x|anc. For the witness verifier, Qw =
V †|1〉〈1|topV and Pw = V †|0〉〈0|topV (so that Pw + Qw = 1).
Here the subscript top is used to indicate the top qubit register
output from V .

Applying Eq. (19) and linearity, the effect of a verifier unit
on the input state

∑3
i=0 Ai ⊗ σi is therefore

F

(
3∑

i=0

Ai ⊗ σi

)
=

3∑
i=0

[
PAiP ⊗ 1

Tr[σi]

2
+ QAiQ ⊗ σi

]

= PA0P ⊗ 1 +
3∑

i=0

QAiQ ⊗ σi.

By linearity, it is easy to see that the effect of two such
verifier units—the ancilla verifier with projectors {Pa,Qa} and
witness verifier with projectors {Pw,Qw}—is

Fw ◦ Fa

(
3∑

i=0

Ai ⊗ σi

)

= Fw(PaA0Pa ⊗ 1) + Fw

(
3∑

i=0

QaAiQa ⊗ σi

)

= (PwPaA0PaPw + QwPaA0PaQw + PwQaA0QaPw)

⊗ 1 +
3∑

i=0

QwQaAiQaQw ⊗ σi

=
∑
P

PA0P
† ⊗ 1 +

3∑
i=1

QAiQ
† ⊗ σi,

where the first sum is over P ∈ {PwPa,PwQa,QwPa,QwQa}
and where Q is the single product Q = QwQa and Q† =
QaQw. Notice that the i = 0 term (involving σ0 = 1) in the
second sum has been transferred to the first sum, thereby
allowing the first sum to include all possible projection
combinations.

We can rewrite this as

Fw ◦ Fa

(
3∑

i=0

Ai ⊗ σi

)
= C(A0) ⊗ 1 +

3∑
i=1

QAiQ
† ⊗ σi,

(20)

where

C(A0) =
∑
P

PA0P
†

=
∑

Rw=Pw,Qw

Rw

⎛
⎝ ∑

Ra=Pa,Qa

RaA0Ra

⎞
⎠ Rw

= (Gw ◦ Ga)(A0)

is the composition of the pinching operators Gj (B) =
PjBPj + QjBQj applied to A0.
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Since C is the composition of pinching operators, Eqs. (12)
and (13), along with Eq. (11), tell us

Tr[C(A0)] = Tr[A0] = 0 (21)

and

‖C(A0)‖F � ‖A0‖F � 1√
2

∥∥∥∥∥
∑

i

Ai ⊗ σi

∥∥∥∥∥
F

. (22)

We are now ready to apply the final controlled expander,
which by Eq. (18), with P = |1〉〈1| and Q = |0〉〈0|, has the
effect

� E(B ⊗ b) = E(B) ⊗ |1〉〈1|b|1〉〈1| + B ⊗ |0〉〈0|b|0〉〈0|.
Applying this to the state Eq. (20) we conclude that the effect
of the map in Fig. 3 on the initial traceless matrix

∑3
i=0 Ai ⊗ σi

is

�

(
3∑

i=0

Ai ⊗ σi

)
= C(A0) ⊗ |0〉〈0| + E (C(A0)) ⊗ |1〉〈1|

+QA3Q
† ⊗ |0〉〈0| − E(QA3Q

†)

⊗ |1〉〈1|.
To show that � is a good quantum expander, we must

show that it sufficiently decreases the Frobenius norm of its
traceless input. Since E is a κE -contractive expander and C(A0)
is traceless [see Eq. (21)] we are guaranteed that

‖E (C(A0))‖F � κE‖C(A0)‖F . (23)

Applying the triangle inequality and Eqs. (14), (22), and (23),
we therefore have∥∥∥∥∥�

(
3∑

i=0

Ai ⊗ σi

)∥∥∥∥∥
F

� ‖C(A0)‖F + ‖E (C(A0))‖F

+‖QA3Q
†‖F + ‖E(QA3Q

†)‖F

� (1 + κE )‖C(A0)‖F + 2‖QA3Q
†‖F

� 1 + κE√
2

∥∥∥∥∥
3∑

i=0

Ai ⊗ σi

∥∥∥∥∥
F

+ 2‖QA3Q
†‖F . (24)

Note that we cannot make a claim similar to Eq. (23) for
E(QA3Q

†) because QA3Q
† need not be traceless.

In QMA(1,0) we are guaranteed that provided the ancillae
are initialized to be all 0′s, no witness can pass the verifier (for
a NO instance). Mathematically, this guarantee is equivalent
to saying that Q ≡ 0. Consequently, the QA3Q

† vanishes and
we are done. In QMA(a,b), however, we must upper bound
‖QA3Q

†‖F , which we now proceed to do.
Because x /∈ L ∈ QMA(a,b) we are assured that for any

purported witness |ψ〉,
‖Qw|ψ〉|0〉‖ �

√
b. (25)

Because Qa projects onto the |0〉〈0| ancilla subspace, we may
write

QaA3Qa =
∑
ψ1,ψ2

c(ψ1,ψ2)|ψ1〉〈ψ2| ⊗ |0〉〈0|,

where {|ψi〉} is any orthonormal basis of the witness subspace.
Note that because the witness register consists of nw qubits,
c(ψ1,ψ2) can be regarded as a matrix with dimension N =
2nw × 2nw . Thus using the triangle inequality and Eqs. (10)
and (25),

‖QA3Q
†‖F =

∥∥∥∥∥∥
∑
ψ1,ψ2

c(ψ1,ψ2)Qw|ψ1〉|0〉〈ψ2|〈0|Qw

∥∥∥∥∥∥
F

�
∑
ψ1,ψ2

|c(ψ1,ψ2)|‖Qw|ψ1〉|0〉〈ψ2|〈0|Qw‖F

=
∑
ψ1,ψ2

|c(ψ1,ψ2)|‖Qw|ψ1〉|0〉‖F ‖Qw|ψ2〉|0〉‖F

�
∑
ψ1,ψ2

|c(ψ1,ψ2)|b.

The matrix c has (2nw )2 elements, so its 1-norm and 2-norm
are related by∑
ψ1,ψ2

|c(ψ1,ψ2)| � 2nw

√ ∑
ψ1,ψ2

|c(ψ1,ψ2)|2 = 2nw‖QaA3Q
†
a‖F .

But by Eqs. (11) and (15), ‖QaA3Q
†
a‖F � ‖A3‖F �

1√
2
‖∑3

i=0 Ai ⊗ σi‖F ; thus we conclude,

‖QA3Q
†‖F � 2nw

√
2

∥∥∥∥∥
3∑

i=0

Ai ⊗ σi

∥∥∥∥∥
F

b. (26)

Although 2nw is exponential in nw, recall that b was chosen so
that 2nw+1b � 0.1. We conclude from Eqs. (24) and (26) that
� is a β-contractive expander,∥∥∥∥∥�

(
3∑

i=0

Ai ⊗ σi

)∥∥∥∥∥
F

� β

∥∥∥∥∥
3∑

i=0

Ai ⊗ σi

∥∥∥∥∥
F

, (27)

with

β = 1 + κE + 2nw+1b√
2

< 0.85. (28)

C. Analysis of YES case

Now consider the case in which x ∈ L. Since L ∈
QMA(a,b) there exists a valid witness |ψ〉 such that

‖Qw|ψ〉|0〉‖2 � a. (29)

From this witness we construct the density matrix � =
|ψ〉〈ψ | ⊗ |0〉〈0| ⊗ |0〉〈0|. Because � passes the ancilla veri-
fier unchanged and the witness verifier with very little change,
� is almost a fixed point of our expander � [and indeed, for
QMA(1,0) it is a fixed point]; intuitively, therefore, � is a poor
expander. The matrix Ĩ = 1

2nw+na+1 1 is certainly a fixed point
(for any unital map); therefore the traceless matrix

A = � − Ĩ = |ψ〉〈ψ | ⊗ |0〉〈0| ⊗ |0〉〈0| − 1

2nw+na+1
1

is also expected to change very little under �. By showing this
to be the case, we will show that � is not an α-contractive
expander for an α that is polynomially separated from the β

found in the NO case.
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Using an analysis similar to the previous case, it is easy to
see that the effect of our circuit on � is

� = |ψ〉〈ψ | ⊗ |0〉〈0| ⊗ |0〉〈0|
ancilla verifier

−−−−−−−−−−→ |ψ〉〈ψ | ⊗ |0〉〈0| ⊗ |0〉〈0|
witness verifier

−−−−−−−−−−→ Pw(|ψ〉〈ψ | ⊗ |0〉〈0|)Pw ⊗ 1
2

+Qw

(|ψ〉〈ψ | ⊗ |0〉〈0|)Qw ⊗ |0〉〈0|
controlled E

−−−−−−−−−−→ 1
2 E[Pw(|ψ〉〈ψ | ⊗ |0〉〈0|)Pw] ⊗ |1〉〈1|
+ 1

2Pw(|ψ〉〈ψ | ⊗ |0〉〈0|)Pw ⊗ |0〉〈0|
+Qw(|ψ〉〈ψ | ⊗ |0〉〈0|)Qw ⊗ |0〉〈0|.

Note that the three final terms are mutually orthogonal because
|0〉〈0|1〉〈1| = 0 and PwQw = 0. Consequently, we have

‖�(�)‖2
F = 1

4‖E[Pw(|ψ〉〈ψ | ⊗ |0〉〈0|)Pw]‖2
F

+ 1
4‖Pw(|ψ〉〈ψ | ⊗ |0〉〈0|)Pw‖2

F

+‖Qw(|ψ〉〈ψ | ⊗ |0〉〈0|)Qw‖2
F

� ‖Qw(|ψ〉〈ψ | ⊗ |0〉〈0|)Qw‖2
F

= ‖Qw|ψ〉|0〉‖4 � a2, (30)

where we have used Eqs. (10) and (29).
Now, because � is a pure state density matrix, ‖A‖2

F =
‖� − Ĩ‖2

F = Tr[�2] + Tr[Ĩ 2] − 2Tr[�Ĩ ], using Eq. (9), so
that

‖A‖2
F = 1 − 1

2nw+na+1
. (31)

Thus, using that � is linear and trace-preserving, that �(Ĩ ) =
Ĩ , and Eqs. (30) and (31), we have

‖�(A)‖2
F = ‖�(�) − �(Ĩ )‖2

F

= Tr[�(�)†�(�)] + Tr[Ĩ 2] − Tr[�(�)Ĩ ]

− Tr[�(�)†Ĩ ]

= ‖�(�)‖2
F + Tr[Ĩ 2] − 2Tr[�Ĩ ]

� a2 − 1

2nw+na+1
= ‖A‖2

F − (1 − a2)

>

[
1 − 8

5
(1 − a2)

]
‖A‖2

F ,

where in the last inequality we have used from Eq. (31) that
for nw � 1 we have 5

8 < ‖A‖2
F � 1. Thus we conclude that �

is not an α-contractive expander,

‖�(A)‖F > α‖A‖F , (32)

with

α =
√

1 − 8
5 (1 − a2) > 0.98. (33)

Note that α and β are constants, and therefore certainly
polynomially separated.

VI. CONCLUSION

We have presented a computational problem, quantum
nonexpander, and proved that it is QMA-complete. This gives
some insight into the computational complexity of estimating
mixing rates of quantum channels and open quantum systems.

In contrast to the plethora of natural NP-complete problems,
very few problems have been shown to be QMA-complete.
We hope that it may be possible to find new QMA-complete
problems, using reductions from the quantum nonexpander
problem.
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APPENDIX

1. Master equation for a quantum system coupled to a bath

In this section we derive the master equation (5), given the
system-bath Hamiltonian specified in (2)–(4). We follow the
arguments of Secs. 3.3 and 3.4 in [21].

First, define new operators Aασ and Bασ (for α = 1, . . . ,D

and σ = 0,1):

Aασ = 1√
2

(−i)σ [Uα + (−1)σU †
α],

Bασ = 1√
2
iσ [fα + (−1)σ f †

α ].

Then we can write the interaction Hamiltonian in the form

HI =
∑
ασ

Aασ ⊗ Bασ .

This form is convenient because Aασ and Bασ are Hermitian.
In the weak-coupling limit (ε → 0), one gets the following

master equation (Eq. 3.140 in [21], simplified using the fact
that HS = 0):

d

dt
ρS(t) = −i[HLS,ρS(t)] + D(ρS(t)), (A1)

where HLS is the “Lamb shift” Hamiltonian and D is the
dissipator,

HLS =
∑
αβστ

SαβστA
†
ασ Aβτ ,

D(ρS) =
∑
αβστ

γαβστ

(
AβτρSA

†
ασ − 1

2
{A†

ασAβτ ,ρS}
)

,

and the coefficients Sαβστ and γαβστ are given by

Sαβστ = 1

2i
(�αβστ − �∗

βατσ ), γαβστ = �αβστ + �∗
βατσ ,

where �αβστ are the one-sided Fourier transforms (evaluated
at frequency 0) of the bath correlation functions,

�αβστ =
∫ ∞

0
ds〈B†

ασ (s)Bβτ (0)〉, Bασ (t) = eiHBtBασ e−iHB t .
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We can evaluate the bath correlation functions, using the fact that the bath is in a thermal state at temperature T . After some
algebra, we get

〈B†
ασ (s)Bβτ (0)〉 = 1

2
iσ iτ

1

|�|
∑
kk′

(e−isωk 〈bαkbβk′ 〉 + e−isωk (−1)τ 〈bαkb
†
βk′ + (−1)σ eisωk 〈b†αkbβk′ 〉 + (−1)σ eisωk (−1)τ 〈b†αkb

†
βk′ 〉)

= 1

2
iσ iτ δαβ

1

|�|
∑

k

((−1)σ eisωkN (ωk) + e−isωk (−1)τ [1 + N (ωk)]),

where N (ωk) = 1
exp(ωk/T )−1 . We take a continuum limit, replacing the sum 1

|�|
∑

k by an integral
∫
�

dk; this amounts to using a
bath with infinitely many modes, and is necessary to obtain irreversible behavior of the system.

We then substitute the above expression into the definition of �αβστ :

�αβστ = 1

2
iσ iτ δαβ

∫ ∞

0
ds

∫
�

dk((−1)σ eisωkN (ωk) + e−isωk (−1)τ [1 + N (ωk)]).

We can simplify the above formula by exchanging the integrals and using the identity
∫ ∞

0 dse−ixs = πδ(x) − iP( 1
x

), where δ(x)
is the Dirac distribution and P( 1

x
) is the Cauchy principal value (equation 3.202 in [21]). We then get

�αβστ = 1

2
iσ iτ δαβ

∫
�

(
(−1)σN (ωk)

∫ ∞

0
eisωk ds + (−1)τ [1 + N (ωk)]

∫ ∞

0
e−isωk ds

)
dk

= 1

2
iσ iτ δαβ

(
(−1)σπN (0) + (−1)σ iP

∫
�

N (ωk)

ωk

dk + (−1)τπ [1 + N (0)] − (−1)τ iP
∫

�

1 + N (ωk)

ωk

dk

)
.

In particular, �αβστ can be written in the form

�αβστ = 1
2 iσ iτ δαβ((−1)σQ0 + (−1)τQ1),

where the coefficients Q0 and Q1 are complex numbers with positive real part.
We can now calculate the “Lamb shift” Hamiltonian HLS as follows:

Sαβστ = 1

2i

1

2
iσ iτ δαβ((−1)σ (Q0 − Q∗

0) + (−1)τ (Q1 − Q∗
1)),

HLS = Q0 − Q∗
0

4i

∑
α

(∑
σ

iσ (−1)σA†
ασ

)(∑
τ

iτAατ

)
+ Q1 − Q∗

1

4i

∑
α

(∑
σ

iσA†
ασ

)(∑
τ

iτ (−1)τAατ

)

= Q0 − Q∗
0

4i

∑
α

√
2U †

αUα

√
2 + Q1 − Q∗

1

4i

∑
α

√
2UαU †

α

√
2 = Q0 − Q∗

0

2i
DI + Q1 − Q∗

1

2i
DI.

So HLS is a multiple of the identity, and it contributes nothing when we substitute it into the master equation (A1).
Finally we can calculate the dissipator D. First,

γαβστ = 1
2 iσ iτ δαβ((−1)σ (Q0 + Q∗

0) + (−1)τ (Q1 + Q∗
1)).

We substitute this into the definition of D, and simplify it in the same way as we did for HLS . This yields

D(ρS) = (Q0 + Q∗
0)

∑
α

(UαρSU
†
α − ρS) + (Q1 + Q∗

1)
∑

α

(U †
αρSUα − ρS).

Note that Q0 + Q∗
0 and Q1 + Q∗

1 are positive real numbers. We
substitute this into the master equation (A1). This completes
our proof of (5).

2. Controlled expanders

In this section, we outline how we obtain the requisite
controlled expander � E needed for Sec. V. We use the results
of Ben-Aroya, Schwartz, and Ta-Shma [24], whose Theorems
4.3 and 4.6 give the following result.

Theorem A1. There exists an integer D0 such that for every
D > D0 and for every integer t > 0, there exists a explicit

λt -contractive expander of degree D2 on a space of dimension
D8t where λt � λ + cλ2 with c a constant and λ = 4

√
D−1
D

.
We will additionally use the following result, which follows

directly from the definition. Here we use the notation that F r

denotes the r-fold composition of F .
Proposition A1. If F is a λ-contractive expander of degree

D on a space of size N , then for any positive integer r ,
F r is a λr -contractive expander of degree Dr on a space of
size N .

In Sec. V we require an κE -contractive expander E with
κE � 0.1 on a space of size N = 2nw+na . Note that N is
actually allowed to exceed 2nw+na since we can always have
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extra input ancillae that do nothing but are acted upon by the
final controlled expander � E .

Fix D to be any power of 2 larger than D0. Then λ =
4
√

D−1
D

< 1 is fixed. Let r be such that (λ + cλ2)r � 0.1. Let

t = � nw+na

8 log2 D
� = nw+na+nextra

8 log2 D
for some nextra < 8 log2 D. Using

the above theorem we are guaranteed the existence of a λr
t -

contractive expander of degree D2r on a space of size D8t =
2nw+na+nextra , where D and r are constants and λr

t � 0.1.
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