Chiral RKKY interaction in Pr$_2$Ir$_2$O$_7$

Rebecca Flint and T. Senthil

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 23 January 2013; published 28 March 2013)

Motivated by the potential chiral spin liquid in the metallic spin ice Pr$_2$Ir$_2$O$_7$, we consider how such a chiral state might be selected from the spin-ice manifold. We propose that chiral fluctuations of the conducting Ir moments promote ferrochiral couplings between the local Pr moments, as a chiral analog of the magnetic RKKY effect. Pr$_2$Ir$_2$O$_7$ provides an ideal setting to explore such a chiral RKKY effect, given the inherent chirality of the spin-ice manifold. We use a slave-rotor calculation on the pyrochlore lattice to estimate the sign and magnitude of the chiral coupling, and find it can easily explain the 1.5 K transition to a ferrochiral state.

DOI: 10.1103/PhysRevB.87.125147

PACS number(s): 75.30.Mb, 75.10.Kt, 72.80.Ga

I. INTRODUCTION

Pr$_2$Ir$_2$O$_7$ sits at the intersection of two recent fields of high interest in condensed matter physics: spin ice and iridate physics.12 Pr and Ir sit on interpenetrating pyrochlore lattices of corner sharing tetrahedra, where the Pr ions are Ising local moments while the Ir form a correlated conduction band. In such a heavy fermion material, one expects magnetic order or a heavy Fermi liquid, but there is no sign of either. Instead, below 1.5 K there is an anomalous Hall effect that persists in the absence of both magnetic field and any observable magnetization. This hysteretic signal implies the onset of an unknown phase, originally proposed as a chiral spin liquid.5

Pr$^{3+}$ is a 4f^2 ion with a $J = 4$ magnetic non-Kramers doublet $|J_z\pm\rangle \approx |J_z = \pm 4\rangle$ ground state.3 The Pr moments are therefore perfectly Ising and point into and out of the tetrahedra along the local $\{111\}$ axis, while the in-plane components of the doublet are strictly quadrupolar. The RKKY interaction gives a ferromagnetic Pr-Pr coupling,2 which means the Pr sublattice realizes the spin-ice Hamiltonian. Spin ice is a degenerate ground state on the pyrochlore lattices containing all possible arrangements of “2 in, 2 out” tetrahedra4 [see Fig. 1(a)]. Indeed, spin-ice correlations are seen in the magnetization, where a metamagnetic transition to the “3 in, 1 out” state is seen for fields along the $[111]$ direction, but not [100] and [110], where the field simply aligns “2 in, 2 out” tetrahedra.2 The resistivity minimum at 25 K is also consistent with the development of spin ice.5 The data are strongly suggestive of spin-ice correlations, but not conclusive in the way pinch points in neutron scattering would be.6 However, spin ice is clearly not the whole story, as Pr$_2$Ir$_2$O$_7$ has no extensive ground-state entropy, implying further correlations.

The Ir$^{4+}$ configuration is 5d^5, equivalent to one hole in the t_{2g} orbital. Strong spin-orbit coupling is predicted to convert this configuration to a half-filled $J_{\text{eff}} = 1/2$ doublet.7 As there are 4 Ir/unit cell, semimetalllic behavior is expected. However, due to the narrowed $J_{\text{eff}} = 1/2$ bandwidth, the smaller 5d U is capable of inducing Mott insulating behavior, as seen in Sr$_2$IrO$_4$.7 and Na$_2$IrO$_3$.8 Pr$_2$Ir$_2$O$_7$ is part of a family of pyrochlore iridates, R_2Ir$_2$O$_7$, that undergo a metal-insulator transition (MIT) as a function of the rare-earth element.9 While $R = \text{Pr}$ is metallic, $R = \text{Nd}$, Ho have MITs at temperatures increasing from 3.6 K to 150 K. Pressure experiments on Nd$_2$Ir$_2$O$_7$ and Eu$_2$Ir$_2$O$_7$ have been able to suppress the insulating phase, indicating that Pr$_2$Ir$_2$O$_7$ is quite close to a MIT induced by increasing interaction strengths. The exact nature of this transition is unclear; the second-order nature suggests that it has a large Slater component, but analogy with other iridates suggests that it likely has some Mott character.

The Pr moments and Ir electrons are coupled by the Kondo effect, but the non-Kramers nature means that valence fluctuations are to excited Kramers doublets, generating a two-channel Kondo effect instead of the usual one-channel effect. Here, the symmetry of the two channels is protected by time-reversal symmetry. While the ordinary Kondo effect leads to heavy Fermi liquid formation, the two-channel version is critical and cannot form a Fermi liquid without a phase transition.16,17 The diverging Sommerfeld coefficient, $\gamma(T) = C(T)/T$, the partial quenching of the Pr moment seen in the susceptibility, and the resistivity minimum are all consistent with two-channel Kondo physics.16,18 While two-channel Kondo physics can lead to broken-symmetry states, as proposed for URu$_2$Si$_2$ (Ref. 17), the main signature of these hystatic states is the development of a heavy Fermi liquid at a mean-field-like phase transition. In Pr$_2$Ir$_2$O$_7$, χ and γ continue to diverge and there is no sharp phase transition in the thermodynamic quantities.

The absence of thermodynamic anomalies is also the strongest evidence against magnetic order. It is supported by the absence of spin freezing in μSR data,19 although, as the muons modify the Pr environment, neutron or x-ray experiments would be more conclusive.

There is, however, a clear signature in the Hall effect, which shows hysteresis in field and develops a zero-field contribution sharply at 1.5 K, while the susceptibility does not develop hysteresis until much lower temperatures.2 The experimentalists proposed that this large Hall effect is due to a macroscopic scalar spin chirality. The scalar spin chirality, $\chi_{ijk} = \hat{S}_i \cdot \hat{S}_j \times \hat{S}_k$, is the solid angle between three spins on a triangular plaquette; as such it is only nonzero when the three spins are neither collinear nor coplanar. In metallic systems, the chirality’s identity as a solid angle means that conduction electrons coupled to the local moments acquire a Berry phase as they move through the lattice. This Berry phase acts as a local magnetic flux and contributes to the anomalous Hall effect, $\rho_{xy} = R_0 B + R_M M + R_\kappa \kappa$, even in the absence of both...
FIG. 1. (Color online) (a) For any given tetrahedra, the net chirality (a vector sum over the faces) will be proportional to the net magnetization. (b) Thus for the system to exhibit net magnetization without net chirality, the chirality must originate from independent triangles, like the isosceles triangles that make up the hexagons of the kagome planes, whose chirality will have an associated direction given by the normal to the triangular plaquette.

magnetic field and magnetization.20 This chiral contribution can develop in magnetically ordered states, like Nd\textsubscript{2}Mo\textsubscript{2}O\textsubscript{7} (Ref. 42), but does not require magnetic order. Several recent theories for Pr\textsubscript{2}Ir\textsubscript{2}O\textsubscript{7} have proposed that \(R_\text{M} \) is anomalously large, while \(\kappa \) is irrelevant.21,22 However, as \(B = 0 \) and \(\vec{m} \) is unobservably small, we take the experimentalists’ point of view that the chirality is the main event. This picture can be checked: The Kerr effect can in principle measure the broken time reversal, and resonant inelastic x-ray scattering (RIXS) should be able to detect spin chirality directly.23

The Ising pyrochlore lattice has a lot of inherent spin chirality due to the noncoplanar Ising axes, which give every triangular plaquette a nonzero chirality. But is it possible to realize chirality without magnetization? While the chirality of the tetrahedron is always proportional to its magnetization, we can construct superpositions of states with large chirality and zero magnetization where the chirality originates from the hexagons of the kagome planes. However, a simple symmetry analysis actually reveals that any chiral state will automatically also be magnetic.

In three dimensions, the scalar chirality acquires a direction given by the normal to the plaquette. The point group of the pyrochlore lattice is \(O_h \), and both chirality and magnetization transform as the three-dimensional \(\Gamma_4 \) irrep. Therefore a linear coupling between the two, \(y \vec{m} \cdot \vec{r} \), is expected. This problem is peculiar to the pyrochlore lattice, as generally the chirality and magnetization transform differently. One might expect that a different time-reversal symmetry breaking order parameter, for example, one with \(\Gamma_5 \) symmetry, could explain the lack of magnetization; however, the existence of an anomalous Hall effect requires a \(\Gamma_4 \) order parameter, as the conduction electron Berry phase transforms as \(\Gamma_4 \). Experimentally, it appears that there is a large chirality without a large magnetization, so it is an important open question why the symmetry-allowed linear coupling appears to be so small in Pr\textsubscript{2}Ir\textsubscript{2}O\textsubscript{7}.

In a 2D system, the chirality is an Ising quantity, and as such a chirality transition should be in the Ising \([O(1)]\) universality class, with a diverging specific heat. However, in cubic symmetry, the chirality can point along eight symmetry-equivalent directions, meaning that it should instead be described as an \(O(3) \) vector order parameter with strong pinning to those directions, which gives a kink in the specific heat. The specific heat is presumably broadened by disorder in the real material, leading to the observed broad peak.

As the spin-ice manifold contains chiral as well as nonchiral states, we propose that some interaction favors these chiral states, leading to the development of a correlated state with a large chirality. This state is essentially a chiral spin liquid, except for the small parasitic magnetic moment guaranteed by symmetry; we will call this state a CSL*. A chiral spin liquid is a magnetic state that breaks time-reversal symmetry, but no others; specifically, it has no long-range magnetic order24 but does have a uniform \(\langle \kappa \rangle \). Theorists originally discussed quantum chiral spin liquids;24,25 but it is also possible to have finite-temperature classical chiral spin liquids, which would occur above low-temperature magnetically ordered chiral states. The initial theoretical proposals were in insulating two-dimensional Heisenberg magnets,26 so it is quite interesting to find a strongly related state in a metallic three-dimensional Ising magnet. This CSL* state is not differentiated from a ferromagnetic state by symmetry, although a topological phase transition is possible. In order to understand the CSL*, we must first understand its Hamiltonian. The natural question to ask is, what kind of perturbation can one add to the magnetic Hamiltonian to select this chiral state out of the spin-ice manifold? There are two generic possibilities for Pr\textsubscript{2}Ir\textsubscript{2}O\textsubscript{7}: The RKKY interaction will generate further neighbor interactions, or quantum exchange terms, which are enhanced over those in canonical spin ice by both the smaller Pr moment and the Kondo effect, can kinetically favor certain configurations.

The magnetic interactions between Pr ions originates from the RKKY interaction,26 where the non-Kramers nature of the Pr moments ensures that the magnetic RKKY interaction is purely Ising-like, as the in-plane moment of the \(\Gamma_3 \) doublet is quadrupolar in nature; we are neglecting the quadrupolar exchange. The RKKY interaction is long-ranged, decaying as \(1/r^3 \) just like the dipolar interaction. In insulating spin ice, the dipolar interactions delicately balance to preserve the degenerate spin-ice state;4 however, the RKKY interaction does not generically do so.27 While the further neighbor interactions can select states out of the spin-ice manifold, there is no natural way to select a nonmagnetic chiral state; even magnetically ordered states with chirality but no magnetization require large unit cells. Furthermore, in three dimensions we do not expect the magnetic and chiral ordering temperatures to split. So further neighbor RKKY interactions do not provide a satisfying explanation for a CSL*.

What about non-Ising exchange terms, which have been predicted to generate spin-liquid states?28 The above picture is purely classical, which works well for the large moments in insulating spin ice, \(\mu_{\text{eff}} \sim 10 \mu_B \), but here the moments, \(\mu_{\text{eff}} \sim 3 \mu_B \), are much smaller, and quantum effects likely become important. Quantum effects can be treated by perturbatively...
where "out" spins alternate, as shown in Fig. 2. As these hexagons in a hexagon, favoring "flippable hexagons," where "in" and "out" self-consistently around the hexagon by picking the axes pointing into the alternating tetrahedra spheres, and have defined "in" and "out" point out of the plane.

These "flippable" hexagons have zero chirality. Here, we indicate and "out" spins contain local modes in which every spin around the chiral spin liquid and how it may be tested.

Finally, in Sec. IV, we discuss the properties of this kind of chiral RKKY effect for Ir electrons on the pyrochlore lattice. Then in Sec. III, we estimate the magnitude and sign of the chiral RKKY effect between local moments,26 interactions between conduction electrons, giving rise to a chiral RKKY effect. Interactions can be mediated by chirality fluctuations of the conduction electrons,30,31 and by quantum exchange terms,\(\sum_{x,y} J_{xy} S_x S_y + H.c.\), the specific origin is addressed by Chen and Hermele.29 This problem was originally considered by Hermele, Fisher, and Balents,28 who suggested such a Hamiltonian might lead to a \(U(1) \) quantum spin liquid. The main idea is that degenerate perturbation theory favors states that can be connected by flipping every spin in a hexagon. The first term can be transformed into third-order perturbation theory and involves flipping every spin in a hexagon, favoring "flippable hexagons," where "in" and "out" spins alternate, as shown in Fig. 2. As these hexagons have zero net chirality, the \(U(1) \) spin liquid is not a chiral spin liquid, although it may be related to materials such as \(\text{Yb}_2\text{Ti}_2\text{O}_7 \). By inspection, the sixth-order loops also do not favor chiral configurations, so the chiral ordering temperature is at best \(O(\frac{1}{2} J_s (2 J_z)^3) \). Even taking \(J_z = J_x \), this term is 0.004\(J_z \), three orders of magnitude too small. So quantum fluctuations cannot generate a chiral spin-liquid state at \(T_H = 1.5 \) K.

In the next section, we explain how local-moment chirality interactions can be mediated by chirality fluctuations of the conduction electrons, giving rise to a chiral RKKY effect. Then in Sec. III, we estimate the magnitude and sign of the chiral RKKY effect for Ir electrons on the pyrochlore lattice. Finally, in Sec. IV, we discuss the properties of this kind of chiral spin liquid and how it may be tested.

II. CHIRAL RKKY EFFECT

As magnetic interactions are unlikely to generate the \(T_H = 1.5 \) K transition in \(\text{Pr}_2\text{Ir}_2\text{O}_7 \), we must look elsewhere for the origin of the chiral state: to the conduction electrons. Just as conduction electrons carrying spin mediate the magnetic RKKY effect between local moments,26 interactions between the local-moment chiralities can be mediated by chirality fluctuations of the conduction electrons, \(\kappa_{i,j}(r) \). Generically, this effect will be captured by the Hamiltonian,

\[
H = \sum_{x \neq x'} \kappa_x(r) \chi'_x(r) \chi'_x(r') + \sum_{r,j} J_{c,f} \kappa_c(r) \kappa_f(j),
\]

where \(\kappa_x(r) \) represents the conduction electron chirality, \(\kappa_f(j) \) represents the local-moment chirality of a plaquette centered at \(j \), \(\chi_x(r - r') \) is the conduction electron chiral susceptibility, and \(J_{c,f} \) is the coupling between the local moment and conduction electron chirality that originates from the Kondo interaction, \(J_c \propto \frac{J^2_c}{\epsilon_F^2} \). The direct local-moment chiral coupling, \(\sum_{i,j} J_{c,f}(i) \kappa_c(i) \kappa_f(j) \), is likely to be too small; however, we shall show that a large coupling can be generated by integrating out the conduction electrons:

\[
J_{c,f}(r - r') = -|J_{c,f}|^2 \chi_c(r - r'),
\]

in exact analogy with the magnetic RKKY effect. Hence, we dub it the chiral RKKY effect. Such a term will be generated directly from integrating out the conduction electrons directly from the Kondo Hamiltonian, as a sixth-order term of order \(J^6/c / \epsilon_F^4 \); however, we prefer this second-order picture, both for the better understanding of the physical mechanism and also for the relative simplicity of the calculation. The magnitude of this chiral RKKY effect can be roughly estimated from experimental parameters. If we take the single-band estimate of \(n = 4.12 \times 10^{21} \text{ cm}^{-3} \), the bare electron mass, the Fermi energy is \(\epsilon_F \approx 10^4 \text{ K} \). Then taking \(J_{RKKY} = \theta_{CW} = 20 \text{ K} \), these parameters lead to a Kondo coupling, \(J_K = 310 \text{ K} \), and a chiral RKKY effect on the order of \(J^2_K / \epsilon_F^2 \sim 0.1 \text{ K} \). This rough estimate gives a coupling only an order of magnitude smaller than the actual ordering temperature. However, we can make a better estimate using Eq. (2), and we find a ferrochiral coupling one to two orders of magnitude larger than this estimate. There are two straightforward ways to estimate this coupling, and we begin with a simple classical picture in the limit of infinite Kondo coupling to illustrate the general principle, before going on to a more microscopically motivated slave-rotor approach.

III. ESTIMATE 1: CLASSICAL MOMENTS

A simple upper bound to the chiral coupling can be found by taking the limit of infinite Kondo coupling, \(J_K \to \infty \), and assuming the Pr moments to be classical. The conduction electron spins then track the local moments perfectly as they move around the lattice, seeing the local moments as a background gauge field, \(A(r) \). The local-moment chirality is given by \(\frac{1}{2} \nabla \times A(r) \), where \(\nabla \times \) ensures that the chirality is dimensionless, and \(A \) is the area of a plaquette. Here, we take the conduction electrons to have a parabolic dispersion,

\[
\epsilon_k = \frac{k^2}{2} \mu - \mu, \text{ and their action in the background gauge field is}
\]

\[
S[A, \kappa] = \frac{k_B T}{2} \sum_{i \neq \bar{i}} \left[i \omega_n - \frac{(\epsilon_k - A)^2}{2m} - \mu \right] c_{k,i}.
\]

After integrating out the conduction electrons, the action becomes

\[
S[A] = \int_q A(q) \Pi_C(q) A(-q),
\]

where \(\Pi_C(q) = 1/(A(q) A(-q))^T = -(J_C(q) J_C(-q))^T \) is the transverse current-current correlator for the conduction electrons, and we have already taken the static limit for simplicity. This action can be rewritten in terms of the chirality, \(\kappa(q) \),

\[
S[\kappa] = \frac{\hbar^2}{A^2} \int_q \kappa(q) \Pi_C(q) \kappa(-q).
\]
The chiral coupling \(J_\kappa (r) \) calculated in the classical, \(J_K \rightarrow \infty \) approximation for a parabolic dispersion. The y axis is in kelvins, for a possible set of parameters for \(\text{Pr}_2\text{Ir}_2\text{O}_7 \). For \(r = a = 10.4 \) Å, the chiral coupling is \(-200\) K. Just like the magnetic RKKY interaction, the chiral RKKY interaction is oscillatory and decays rapidly.

For a parabolic dispersion, the current-current correlator can be calculated analytically in the zero-temperature limit,

\[
\Pi_c(q) = \frac{2n}{m} + \frac{2\hbar^2 k_B T}{3m^2} \sum_{\text{even}} \int k \left[q + \frac{q}{2} \right]^2 \left(f(\epsilon_{k+q}) - f(\epsilon_k) \right) = \frac{n}{m} \left[\frac{1}{2} + \frac{q^2}{2} - \frac{1}{4} \tan^{-1} \left(\frac{q}{\theta} \right) \right],
\]

where we have introduced \(\theta = q/2k_F \) for clarity.

The chiral coupling constant \(J_\kappa (r) \) can now be calculated:

\[
J_\kappa (r) = \frac{\hbar^2 \Omega}{(2\pi)^2 A^2} \int_0^\infty dq q^2 \int_0^1 d\cos \theta \frac{\Pi_c(q)}{q^2} \sin 2k_F q r.
\]

The result is plotted in Fig. 3, using \(k_F = 2\pi/(1.218a) \) taken from the Hall effect,\(^{2,27} \) \(n = 4.12 \times 10^{21} \) cm\(^{-3} \), and the lattice constant \(a = 10.4 \) Å. The finite \(k_F \) leads to oscillatory behavior, so both ferrochiral and antiferrochiral interactions are possible, depending on the distance. For the parameters of \(\text{Pr}_2\text{Ir}_2\text{O}_7 \), the chiral coupling at \(r = a \) is \(-200\) K. As we have taken \(J_K \rightarrow \infty \), this estimate is obviously an upper bound on the real value.

IV. ESTIMATE 2: SLAVE ROTORS

To make a more accurate estimate, we return to Eq. (2), and now attempt to calculate the conduction electron chiral susceptibility, \(\chi_\kappa (r - r') \). As it is a twelve-point correlation function, this calculation initially appears quite tedious. However, by introducing the slave-rotor mean-field approximation,\(^{33} \) we can greatly simplify the calculation, and in the process model the approach to the Mott transition. As electrons approaching a Mott transition have increased chiral fluctuations,\(^{34} \) we expect the coupling to be enhanced.

Slave rotors are typically introduced to capture the quantum criticality associated with the Mott transition in the Hubbard model by splitting the conduction electron into a neutral spinon and a charged holon, \(c_{i\sigma}^\dagger = f_{i\sigma}^\dagger e^{i\theta_i} \) (Ref. 33). This decoupling possesses a U(1) gauge symmetry,

\[
\text{U(1) gauge symmetry : } \left\{ f_{i\sigma}^\dagger \rightarrow f_{i\sigma}^\dagger e^{i\theta_i}, \theta_i \rightarrow \theta_i + \alpha_i \right\},
\]

which glues the spinon and holon back together to form the charged electron in the metallic phase. The metallic phase is captured by the uniform condensation of this rotor, \(\langle e^{i\theta_i} \rangle \), while it is uncondensed in the Mott-insulating phase and the Mott transition is a 4D XY transition before the coupling to the gauge field is taken into account. The spin chirality is particularly simple in this approach,\(^{34} \)

\[
\mathbf{\nabla} \times \mathbf{a} = \frac{\hbar}{A} \bar{\mathbf{c}}_1 \cdot \bar{\mathbf{c}}_2 \times \bar{\mathbf{c}}_3,
\]

where \(\mathbf{\nabla} \times \mathbf{a} \) is the lattice curl of the gauge field around a triangular plaquette, and the units are fixed by \(\hbar \) as before. The chiral susceptibility can then be calculated from the transverse gauge propagator, \(\langle a(q)a(-q) \rangle^T \),

\[
\chi_k^{\alpha\beta}(q) = \langle k^{\alpha\beta}(q)k^{\beta\alpha}(-q) \rangle = \frac{A^2}{3h^2} (q^2 \delta_{ab} - q_a q_b) \langle a(q)a(-q) \rangle^T.
\]

As the spinon and holon add in series, the gauge propagator is

\[
\langle a(q)a(-q) \rangle^T = [\Pi_{F,\theta}^T(q) + \Pi_{X}^T(q)]^{-1},
\]

where \(\Pi_{F,\theta}^T(q) \) are the transverse current-current correlators for the spinons and rotors, respectively.

We now calculate these correlators within a specific model: electrons on the half-filled Ir pyrochlore lattice, where the strong spin-orbit coupling means the 5d\(^5\) Ir configuration is simplified to an isotropic effective \(J_{\text{all}} = 1/2 \) doublet.\(^{35} \) Both oxygen-mediated Ir-O-Ir and direct Ir-Ir hopping are expected,\(^{36} \) and we take the nearest-neighbor dispersion considered by Witzczak-Krempa et al.\(^{36} \) where the oxygen-mediated hopping has magnitude \(t_0 \) and the direct hopping is governed by two parameters, \(t_\sigma \) and \(t_{\sigma \sigma} \), with the specific choice \(t_\sigma = -t_0, t_{\sigma \sigma} = \frac{1}{2}t_0 \). This dispersion has no Fermi surface at half filling, instead having a peculiar quadratic band touching with zero density of states at \(E_F \). We add a small next-nearest-neighbor oxygen-mediated hopping, \(t_2 \), to convert the quadratic band touching into a semimetallic dispersion with small electron and hole pockets. The strong spin-orbit coupling means that the Ir-Ir hopping is spin dependent, leading to a complex hopping matrix \(\Gamma_{\alpha \sigma \beta \sigma'} \), where \(\alpha, \beta \in \{1–4\} \) label the four sites per unit cell. The Hubbard model for this system is then

\[
H = -\mu \sum_{i\sigma} c_{i\sigma}^\dagger c_{i\sigma} + \frac{U}{2} \sum_{i\sigma} \left(\sum_{\sigma} c_{i\sigma}^\dagger c_{i\sigma} - \frac{N}{2} \right)^2 + \sum_{ia} t_{ij} \Gamma_{\alpha \sigma \beta \sigma'} c_{i\alpha \sigma}^\dagger c_{j\beta \sigma'} .
\]

As the nearest-neighbor hopping has several components, hidden within \(\Gamma_{\alpha \sigma \beta \sigma'}^{\alpha \sigma \beta \sigma'} \), \(t_1 \equiv t_{ij} \) is actually just \(t_0 \). Here the conduction electron density is kept fixed to half filling by \(\mu \), and the proximity to the Mott transition is tuned by changing the interaction strength, \(U \). We introduce the slave-rotor decoupling, \(c_{i\alpha \sigma}^\dagger = f_{i\alpha \sigma}^\dagger e^{i\theta_i} \), where from now on we will work...
in terms of \(X_{ia} \equiv e^{i\varphi_{ia}} \). The hopping term is now a quartic term, and we introduce four Hubbard-Stratonovich fields to decouple it:

\[
Q_F^{(1,2)} \propto \langle X_{ia} X_{jb}^\dagger \rangle_{\langle ij, \langle ijj \rangle \rangle},
\]

\[
Q_X^{(1,2)} \propto \sum_{\sigma, \sigma'} \langle \Gamma_{ia\sigma}(\langle f_{ia\sigma}^\dagger & f_{jb\sigma'} \rangle)_{\langle ij, \langle ijj \rangle \rangle} \rangle,
\]

where \(\langle ij \rangle \) and \(\langle ijj \rangle \) are really a shorthand restricting \((ia)\) and \((jb)\) to be nearest or next-nearest neighbors, respectively. In other words, we are assuming the \(Q_F^{(ia)(jb)} \)'s take one value, \(Q^1 \), for nearest neighbors, another, \(Q^2 \), for next-nearest neighbors, and are zero otherwise. This decoupling leads to quadratic actions for both the fermions and bosons,

\[
S_F = \int_0^\beta d\tau \sum_{ia} f_{ia\sigma}^\dagger (\partial_\tau + \mu) f_{ia\sigma}
- t_F Q_F^{(1)} \sum_{\langle ij, ab, \sigma \rangle} \Gamma_{ia\sigma}(\langle f_{ia\sigma}^\dagger & f_{jb\sigma'} \rangle - t_2 Q_F^{(2)})
\times \sum_{\langle ij, ab, \sigma \rangle} \Gamma_{ia\sigma}(\langle f_{ia\sigma}^\dagger & f_{jb\sigma'} \rangle,
\]

\[
S_X = \int_0^\beta d\tau \sum_{ia} \frac{|\partial X_{ia}|^2}{U} + \lambda_{ia}(|X_{ia}|^2 - 1)
- \frac{2}{3} t_X Q_X^{(1)} \sum_{\langle ij, ab \rangle} X_{ia}^* X_{jb} = t_2 Q_X^{(2)} \sum_{\langle ij, ab \rangle} X_{ia}^* X_{jb},
\]

where \(\lambda_{ia} \) is a Lagrange multiplier enforcing the phase nature of the slave rotors that we will take to be uniform, \(\lambda_{ia} = \lambda \), and we have rescaled \(U \rightarrow U/2 \) to preserve the atomic limit. Note that while the fermions still have the complex hopping matrix of the original conduction electrons, the bosons behave like spinless fermions. The nearest-neighbor hopping element is then given by the trace of \(t_0 \Gamma_{ia\sigma}(\langle f_{ia\sigma}^\dagger & f_{jb\sigma'} \rangle = t_0 + t_2 + t_3 = 2t_1 \). As the slave-rotor technique is fairly standard, and has already been applied to the pyrochlore lattice, with different dispersions, we have skipped several intermediate steps. The fermionic and bosonic bands are shown in Figs. 4(a) and 4(b), respectively. The Green’s functions are

\[
G_{km}(i\nu_m) = X_{0}^2 \delta(k) \delta_{\nu_m, 0} + \frac{1}{i\nu_m / U + \lambda + \xi_{kn}},
\]

\[
G_{km}(i\omega_n) = \frac{1}{i\omega_n - \epsilon_{km}},
\]

where \(\epsilon_{km} \) are the eight fermion bands and \(\xi_{kn} \) are the four bosonic bands. We have allowed the bosons to condense in the lowest band with the uniform amplitude \(X_0 \equiv \langle X_{ia} \rangle \), which implies that the Lagrange multiplier \(\lambda = 4t_1 Q_X^{(1)} + 12t_2 Q_X^{(2)} \) is fixed to the bottom of the bosonic bands. We will concentrate on the mean-field theory of the metallic phase and quantum critical point at zero temperature, where \(X_0 \in [0, 1] \) quantifies the distance from the quantum critical point.

The remaining parameters \((X_0^2, Q_F^{(1,2)}, Q_X^{(1,2)}, \mu)\) can be determined from the six mean-field equations,

\[
|X_{ia}|^2 = X_0^2 + \frac{1}{N_s} \sum_{k\omega} \frac{U}{4(\lambda + \xi_{kn})},
\]
where $D_1 = 6t_1$ and $D_2 = 12t_2$ are determined by the relevant number of neighbors, and N_s is the total number of sites. For $t_2 \neq 0$, these must be solved self-consistently. We choose $t_2 = 0.05t_1$, and find $U_c \approx 1.35t_1$, $X^2 = 1 - \sqrt{\frac{U}{U_c}},$ while $Q^{(2)} = 0.14, 0.20$, are independent of U. The U dependence of the renormalized bandwidths $Q^{(2)} = 1 - \sqrt{\frac{U}{U_c}}$, where $U_c = 1.5t_1, 1.6t_1$; it is important to note that while the quasiparticle weight $Z = X^2$ goes to zero at the quantum critical point (QCP), the bandwidths decrease with increasing U, but remain finite at the QCP.

With the mean-field parameters in hand, we can now calculate the current-current correlator, where the cubic symmetry implies $\Pi_{F,X}(q = q)$:

$$\Pi_{F,X}(q) = -\langle j_F^X(X,q) \rangle_{F,X} - \langle T_{F,X} \rangle,$$ \hspace{1cm} (17)

and the paramagnetic currents are given by

$$j_F^X(q) = T \sum_{i_{o_{m}},k_{m}} \sum_{k_{m}} \frac{1}{2} \langle \psi_{k_{m}}^\dagger (\psi_{k_{m}}^+ + \psi_{k_{m}+q_{m}}^+) \rangle_{F,k_{m}f_{k_{m}+q_{m}}^+},$$

$$j_F^X(q) = T \sum_{i_{o_{m}},k_{m}} \sum_{k_{m}} \frac{1}{2} \langle \psi_{k_{m}}^\dagger (\psi_{k_{m}}^+ + \psi_{k_{m}+q_{m}}^+) \rangle_{F,k_{m}X_{k_{m}+q_{m}}^+},$$ \hspace{1cm} (18)

with the fermionic, $\psi_{k_{m}} = \partial \epsilon_{k_{m}} / \partial k_{y}$, and bosonic, $\tilde{v}_{k_{m}} = \partial \epsilon_{k_{m}} / \partial k_{y}$, velocities. The diamagnetic contributions are

$$T_F = T \sum_{i_{o_{m}},k_{m}} \sum_{k_{m}} \frac{\partial^2 \epsilon_{k_{m}}}{\partial k_{y}^2} f_{k_{m}f_{k_{m}+q_{m}}^+},$$ \hspace{1cm} (19)

$$T_X = T \sum_{i_{o_{m}},k_{m}} \sum_{k_{m}} \frac{\partial^2 \epsilon_{k_{m}}}{\partial k_{y}^2} X_{k_{m}f_{k_{m}+q_{m}}^+}.$$ \hspace{1cm} (19)

The fermionic current-current correlator is shown in Fig. 5(a) for several values of X^2. Π_F decreases in magnitude with increasing U.

The bosonic correlator requires a bit more care. Deep in the Fermi liquid, the paramagnetic term vanishes, and the diamagnetic term, $T_F = \sum_{i_{o_{m}},k_{m}} \sum_{k_{m}} \frac{\partial^2 \epsilon_{k_{m}}}{\partial k_{y}^2} f_{k_{m}f_{k_{m}+q_{m}}^+}$, is the only contribution. At the QCP, we can calculate $\Pi_{F,X}^C(q)$ directly. In between, we must interpolate between the two,

$$\Pi_{F}^C(q) = \Pi_{F}^B(q) \coth \frac{\Pi_{F}^C(q)}{8\beta \epsilon_{F}(2Q_{1} + 2Q_{2})X^2}.$$ \hspace{1cm} (20)

The results are shown in Fig. 5(b) for a variety of X^2, and Π_F^C generally decreases with increasing U, like Π_F^C.

FIG. 5. (Color online) (a) Fermionic transverse current-current correlator, $\Pi_{F}(q)$, on the pyrochlore lattice for varying proximity to the Mott transition: $X^2 = 0$ (red, $U = 1.4r$); $X^2 = 0.05$ (orange, $U = 1.2r$); $X^2 = 0.1$ (yellow, $U = 1.1r$); $X^2 = 0.25$ (green, $U = 0.8r$); $X^2 = 0.5$ (blue, $U = 0.3r$); $X^2 = 0.75$ (purple, $U = 0.08r$); and $X^2 = 1$ (gray, $U = 0$). Note that the distance from the Mott transition increases the effective fermionic bandwidth. (b) Bosonic transverse current-current correlator, $\Pi_{F}(q)$, on the pyrochlore lattice for varying proximity to the Mott transition (same color scheme as above). Note that for large X^2, the correlator approaches a constant in space, just as expected in the Fermi liquid.

Having the correlators, we now combine them and Fourier transform,

$$J_{E}^X(q) = -\frac{J_{CF}^2 A^2}{3\hbar^2} \sum_{q} e^{i2\pi q} [q^2 - q'^2] \frac{1}{\Pi_{F}(q) + \Pi_{X}^C(q)},$$

$$J_{E}^X(q) = -\frac{J_{CF}^2 q^2}{8\beta \epsilon_{F}(2Q_{1} + 2Q_{2})X^2} \int_{BZ} d\tilde{q} f(\tilde{q}),$$

where we have defined $A = \frac{U_{c}}{T_{F}}$ as the area of the isosceles triangle constant in Fig. 1(b) and $a = 10.4$ \AA is the lattice constant. We have also introduced $\tilde{q} = q_{o}q_{z}$ and used that the units of $\Pi_{F,X}^C(q)$ are t/a^3 to introduce the dimensionless function $f(\tilde{q}) = t/a^3 \tilde{q}^2 - q_{o}^2)/[\Pi_{F}(q) + \Pi_{X}^C(q)]$. For J_{CF}, we have simply taken $J_{CF}^2 \rho^2$, where ρ is the density of states at the Fermi energy, and we take the estimate J_{E} from Sec. II. We took $a = 10.4$ \AA roughly from the density functional theory calculation.\(^{13}\)

The chiral coupling (Fig. 6) oscillates slowly and is nearly always negative, or ferrochiral, due to the small carrier density (or small k_{F}, in direct analogy to the usual RKKY effect), although for larger distances farther from the Mott transition it can be small and antiferrochiral due to the small pockets. By contrast, on the half-filled fcc lattice, which has a large Fermi
Between layers, order, unlike other theories based on the nature of the metal insulator transition is unclear; though its transition does increase the chiral coupling, it is already quite large for free fermions on the pyrochlore lattice, making the transition in Pr2Ir2O7 provides the opportunity to test whether or not driving the system closer to a Mott transition increases the chiral ordering temperature by increasing the conduction electron chiral susceptibility. The nature of the metal insulator transition is unclear; though its proximity to a metal insulator transition provides the opportunity to test whether or not driving the system closer to a Mott transition increases the chiral ordering temperature. The authors would like to acknowledge useful discussions with Leon Balents, Patrick Lee, Ivar Martin, Karen Michaeli, Andrew Millis, Ashvin Vishwanath, and Fa Wang. R.F. was supported by the Simons Foundation via Award No. 229736. T.S. was also partially supported by the Simons Foundation. T.S. was supported by the Simons Foundation. The authors would like to acknowledge useful discussions with Leon Balents, Patrick Lee, Ivar Martin, Karen Michaeli, Andrew Millis, Ashvin Vishwanath, and Fa Wang. R.F. was supported by the Simons Foundation via Award No. 229736. T.S. was also partially supported by the Simons Foundation. T.S. was supported by the Simons Foundation. T.S. was supported by the Simons Foundation. The authors would like to acknowledge useful discussions with Leon Balents, Patrick Lee, Ivar Martin, Karen Michaeli, Andrew Millis, Ashvin Vishwanath, and Fa Wang. R.F. was supported by the Simons Foundation via Award No. 229736. T.S. was also partially supported by the Simons Foundation. T.S. was supported by the Simons Foundation.
20Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
35Dmytro Pesin and Leon Balents, Nat. Phys. 6, 376 (2010).
40P. Gegenwart and S. Nakatsuji (unpublished).