
Nonlinear Filtering of Video Sequences Using

Contraction Theory

by

Martin A. Grepl

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2001

© Massachusetts Institute of Technology 2001. All rights reserved.

A uthor ....................... .....
Department of Michanical Engineering

May 11, 2001

C ertified by ............... .....
J.-J. E. Slotine

Professor of Mechanical Engineering and Information Science,
Professor of Brain and Cognitive Science

Thesis Supervisor

A ccepted by ............................ ...........
Ain A. Sonin

Chairman
SiSACHUSETTS INSTITUTEOF TECHNOLOGY

JUL 1 6 2001

LIBRARIES





Nonlinear Filtering of Video Sequences Using Contraction

Theory

by

Martin A. Grepl

Submitted to the Department of Mechanical Engineering
on May 11, 2001, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

The focus of this work is the application of partial differential equations (PDE's)
to image and image sequence processing with emphasis on nonlinear PDE's. The
main goal of the nonlinear filtering of images using PDE's is to achieve simultaneous
noise removal and edge enhancement. First, the process leading to PDE's in image
processing is reviewed and existing methods are classified into three basic types: non-
linear diffusion and its variational formulation, curvature flows, and shock filters. The
methods are analyzed; their merits and drawbacks are discussed. Next, a result ob-
tained from extending contraction analysis to the stability analysis of a certain class
of nonlinear reaction-diffusion equations is presented. The result guarantees global
stability and exponential convergence of the systems under consideration. The results
obtained for static image enhancement are then extended to time-varying image se-
quences. A new approach for the enhancement of image sequences with time-varying
uncorrelated noise is presented based on the above results. We propose an algorithm
which is based on the idea of alternating direction implicit (ADI) methods in numer-
ical analysis to solve a three-dimensional minimization problem. The algorithm is
fast, recursive and may be used for real-time applications. Some properties of the
new scheme are analyzed and its performance is shown on synthetic data.
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Chapter 1

Introduction

1.1 Problem Statement

Image enhancement finds applications in such a wide variety of fields. In the medical

field for instance, diagnosis often relies on information taken from MRI (Magnetic

Resonance Imaging) or sonography. In aeronautics, autonomous landing and ATR

(Automatic Target Recognition) require the use of radar images. It is common to

all of those images that they are generally very noisy. To be able to get information

out of such noisy images, it is necessary to remove noise from the image without

sacrificing the useful detail and to enhance or highlight certain features such as edges

or boundaries.

In the last decade there has been an increased interest in the use of partial differen-

tial equations (PDE) in image enhancement to achieve these goals. In this context the

noisy image is taken as the initial condition for a time-dependent PDE. The restored

image is either given by the steady-state solution of the equation or by stopping the

evolution at a certain time. Very good results have been reported for the enhance-

ment of a single image, while the enhancement of time-varying image sequences or

movies has not found as much attention in the past.

In this thesis we will review the process leading to PDE's in image processing and

show three main approaches. The first one can be classified as nonlinear diffusion and

is closely related to the heat or diffusion equation. The diffusion equation was the
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first PDE used in image processing because of its relation to low-pass filtering using

Gaussian convolution. In the original approach the diffusion term was modified to

stop the diffusion at edges, thus obtaining a nonlinear diffusion. However, the same

results can be reached using a variational formulation, as will be shown in the review.

The second approach makes use of curvature flows by interpreting the image as a

collection of iso-intensity contours that can be evolved. The flow by curvature is also

known as the geometric heat equation. The last approach is shock filters, which are

related to results known from shock wave calculations in fluid dynamics.

The goal of this thesis is to extend the results from two-dimensional static images

to the enhancement of three-dimensional image sequences, and to apply state-of-the-

art methods in nonlinear stability analysis known as contraction analysis to image

processing. The main advantage of this new method is that global exponential con-

vergence rates can be quantified, and it suggests specific choices of nonlinearities and

image coupling terms.

Finally, we will propose a new scheme for real-time image sequence processing.

It is based on the idea of alternating direction implicit (ADI) methods in numerical

analysis. Results on synthetic data and some properties of this fast and recursive

algorithm will be given.

1.2 Concepts and Notation

Before reviewing PDE's in image processing the following concepts and notations have

to be introduced. We define an image as an intensity function u(x, y) on a domain

Q C R2 . In general, u(x, y) :R 2 - JR+ represents a gray scale image, where u(x, y) is

the gray scale value and (x, y) specifies spatial position, i.e., u(xo, yo) is an absolute

light intensity at the point (xO, Yo) in the image plane. Thus we can write

u = u(x, y) x,yE GQ.

The gray-level can take on values in the range 0 to 255. However, in this thesis

this range is renormalized to (0,1). Here we employ the standard convention that 0

corresponds to black and 1 corresponds to white.
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The noise we are dealing with is modeled as additive Gaussian white noise with

mean p and variance or. The model we use for the noisy image is given by

uo(x, y) = u(x, y) + n(x, y), (1.1)

where n(x, y) denotes the noise, u(x, y) is the clean image, and uo(x, y) is the observed

noisy intensity function. Figure 1-1 shows a clean image u(x, y) on the left and the

noisy test image uo(x, y) on the right. The square has a brightness value of 0.25 while

the one of the background is 0.75. We will use this synthetic image to compare the

performance of the enhancement schemes we will discuss. The noise added to the

clean image has mean p = 0 and variance a - 0.1 throughout this work.

In image sequences (videos) the image intensity changes over time t. Now, the

intensity u is also a function of time, u = u(x, y, t), and the image sequence is defined

by u(x, y, t) : Q+ C R3, where we use the superscript '+' to denote the additional

dependence on time. We will consider two different models of image sequences. In

the first one the noise is assumed to be time-invariant, leading to the equation

uO(x, y, t) = u(x, y, t) + n(x, y). (1.2)

In the second case the noise is taken to be time-varying and uncorrelated in time

giving

uo(x, y, t) = u(x, y, t) + n(x, y, t). (1.3)

Based on those models we can state the main goal of image enhancement: Find the

"best" estimate it(x, y) of the clean image u(x, y) from the given noisy information

uo(x, y). To measure the performance of the different enhancement schemes, we

have to define what we mean by "best". This is a difficult task since everyone's

perception of the results may be different. However, since we deal with noisy and

restored images (signals) and the clean image is actually available, we can compute

the signal-to-noise-ratio defined by

SNR(Ui/u 2) = 10 log 10 [ 2 (U 2)1 (1.4)
r(i U1- U2)]
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Figure 1-1: Synthetic image u(x, y) on the left and test image uo(x, y) obtained by

adding Gaussian white noise to u(x, y).

where o is the variance. To compare the results we will give values of SNR(u/uo) and

SNR(u/i), where fi is the estimate resulting from the enhancement schemes. Note

that the higher the signal to noise ratio the better the restoration of the noisy image

in a mathematical sense.

At this point we can define more accurately what we mean by an edge or boundary

in the image. We say that an edge is simply a jump or discontinuity in the image

intensity u(x, y). Thus, u(x, y) is singular at these points and the gradient of u(x, y)

is strong. We determine that points where this happens carry important information

about the scene being observed. We now have two main tasks. On the one hand

we wish to smooth the homogeneous regions of the image with two objectives: noise

elimination and image interpretation. On the other hand, we wish to keep the accurate

location of the boundaries of these regions. Unfortunately, these are two conflicting

requirements. Furthermore, the classification of some information as "noise" and

other information as "important" is not clear, and techniques to correspondingly filter

images must, at some level, reflect this ambiguous decision. One natural filter exploits

the idea of scale - one can try to remove information that occupies a small amount

of the image, such as spots of non-matching brightness values or small oscillations in

boundaries of objects.
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As an example consider the observation of a forest. On the coarsest scale we can

only determine the forest as a huge green spot. Decreasing the scale will enable us to

distinguish the different treetops. And on the finest scale we can even recognize the

individual leaves. Returning to the noisy image we can state that the fine or inner

scale corresponds to noise while the coarse or outer scale is used to describe the main

features. It is therefore important to look at the image in several scales. The goal of

image enhancement is to diffuse the inner scale while keeping the outer scale. For the

previous example this would mean that we want the leaves to merge together before

the different treetops merge.

The main reason for diffusing images is that diffusion naturally produces a "scale-

space", e.g., a fine-to-coarse family of derived images. The parameter we will usually

use to encode the scale or resolution is the time t, and coarse/fine scale means low/high

resolution respectively. Hence, looking at the image at different scales means different

stages of filtering. And going from fine to coarse scales it is desirable to keep important

image features but suppress artifacts like noise.

The algorithms that we will discuss are based on the formulation of partial differ-

ential equations. The steady-state solution fL(x, y, t) of the differential equation gives

the restored image. Using the original noisy image uo(x, y) as the initial condition,

where u(x, y) :R 2  - R+ is an image in the continuous domain, and t is a time

parameter, the image processing methods can be put in the form

= q (f, V1, A,u o) (1.5)
at

= 0 on DQ (1.6)
On

fi(x, y, t = 0) = uo(x, y). (1.7)

Thus, we will have zero gradient boundary conditions for all evolution procedures and

T can be any function (linear or nonlinear) of its arguments.

For convenience we will denote partial derivatives with subscripts in the sequel,

that is
9U (x, y, t) 9U (X, y, t)

au~t) ut (x, y, t) and xy = u(x, y, t).
at Ox

The same notation holds for derivatives with respect to y and higher derivatives,
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e.g., we will write u,, for the second derivative w.r.t. x. The V-operator and the

Laplacian A are defined by

- a a V 2 02
V , and A=V 2  +

Ox Oy OX2 Oy2

respectively.

It is possible to rewrite equation (1.5) in a different form by using q- coordinates.

Here, 17 denotes the direction of the gradient and the direction perpendicular to the

gradient, also known as the direction of level sets [30]

[u, IUY] [_-UY U_ ]
/_= _ , r-= . (1.8)

The second-order derivatives in these directions are related to the derivatives in the

x and y direction by

- 2 x + 2uxuuxy + 2U

277 22+

- x - 2uxuuxy + U

where an equivalent notation for equation (1.10) is given by

UCC - IVul div .U
Aevul .

After the coordinate change equation (1.5) can be written as

(1.9)

(1.10)

(1.11)

(1.12)ftt = c27ii7 + cenz + f(i, uo),

where c and c are functions involving derivatives lower than second order and

f (ft, uo) is a function involving no derivatives, e.g., a feedback term (uo -i). Note that

f 7 is a diffusion along the direction of the gradient while fq diffuses in the direction

perpendicular to the gradient. Thus c1 controls the diffusion across the edge and c

controls the diffusion parallel to the edge. Bearing this fact in mind we can state the

conditions c, and c should meet for the enhancement procedure to perform "best".

Since we want to have diffusion inside regions but not across edges, the conditions to

obtain no smoothing of edges while removing noise within uniform regions are

lim c7 = lim c
IV?-+O IVfi- O

lim c7 = 0 and lim c

20
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As introduced above we used the assumption here that low gradients correspond to

noise while high gradients correspond to important features like edges and boundaries.

1.3 Thesis Organization

Chapters 2 through 3 present the three main approaches to image processing which

use partial differential equations.

Chapter 2 first shows how filtering by Gaussian convolution leads to the first

PDE in image processing, namely the heat or diffusion equation. Starting from this

idea a modification to the diffusion equation is introduced that uses nonlinearities in

the divergence operator to achieve a better performance. In the second part of this

chapter we present a variational approach whose solution also leads to an enhancement

scheme using nonlinear diffusion equations.

Chapter 3 describes the other two approaches. The first one are curvature flows,

in whose context the image is interpreted as a collection of curves, strictly speaking

the iso-intensity contours of the image, which can be evolved. The second one is

related to shock filters and applies ideas that stem from fluid dynamics.

A result from contraction analysis and its extension to the stability analysis of

reaction-diffusion equations is stated in the beginning of Chapter 4. Afterwards the

result is applied to one- and two-dimensional signal and image enhancment. The

main advantage of contraction analysis is that we can guarantee the global stability

and determine the exponential convergence rate of the enhancement scheme we are

going to discuss.

Finally, Chapter 5 deals with the enhancement of image sequences. First, an

extension of the enhancement algorithms for static images to time-varying images

will be given. It turns out that this approach is restricted only to certain models of

the image sequence. Then, a new idea for image sequence enhancement is introduced

and a fast and recursive scheme will be derived.

A summary of the main ideas and their merits follow in Chapter 6. Furthermore

suggestions for future work will be given.
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Since the topic of image enhancement is vast its treatment in this thesis is far from

complete. For more general information the interested reader is referred to [1, 8, 10,

27, 39, 40] and the references therein. Specific information on nonlinear scale-spaces

can be found in [10, 11, 12], on affine versions of scale-space in [35, 36, 37], and on

morphological scale-space in [41, 42].

22



Chapter 2

Nonlinear Diffusion and its

Variational Formulation

2.1 Introduction

This chapter outlines the introduction of partial differential equations in image en-

hancement. In the first part the original approach is presented. It is based on the

connection between Gaussian convolution and the first PDE used in this field: the

diffusion equation. We will also show that a substantially better performance can

be achieved by using nonlinearities in the divergence term, leading to the notion of

nonlinear diffusion.

In the second part we will see that nonlinear diffusion equations can also be derived

using a variational formulation. A PDE is obtained by solving the Euler-Lagrange

equations associated to the minimization problem using a steepest descent imethod.

Several examples for the functional to be minimized that are proposed in the literature

are presented.
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2.2 The Gaussian Scale-Space

2.2.1 Gaussian Convolution

In the classical theory, noise elimination and image enhancement are achieved by a low

pass filtering. The idea is to eliminate spurious details with high frequency content

like noise while maintaining the strong image features with low frequencies such as

edges. The main edges of the original image can then be identified at places where the

gradient of the filtered image has an extremum. Denoting the filtered image by fi(x, y),

the edges are curves where |Vft(x, y)j is a maximum. Thus, finding edges means

finding extrema in the gradient of ft(x, y). A maximum of the gradient on the other

hand is equivalent to the condition that the Laplacian of the smoothed signal At(x, y)

changes sign. Points in the image where this happens are also called zero-crossings of

the Laplacian. Marr and Hildreth who developed this theory in [27] speculated that

zero-crossings which spatially coincide over several scales are "physically significant."

These ideas have been improved and formalized by Witkin [43] and Koenderink [21].

In the classical theory noisy signals are usually filtered by convolving them with a

Gaussian function of a certain variance o-. The degree of blurring is controlled by the

variance of the Gaussian function. A larger variance means a higher rate of smooth-

ing; thus o- controls the scale of the smoothed signal. Witkin suggests that the signal

be observed at several scales and to determine how the signal evolves as the scale is

varied (say, from fine to coarse). This idea leads to the notion of scale-space in signal

processing. Witkin proposed to filter the original signal uo(x) by convolving it with

Gaussian functions of increasing variance o

10 (X-Y)
2

u(x, o-) -=u(x) * G,(x) = uo(y) e 2 dy

where "*" denotes convolution with respect to x. By continuously varying the scale

parameter -the original signal uo(x) is embedded in a family of derived signals u(x, -).

The x - o- plane is called the scale-space and the function u(x, -) defines a surface on

the x - o- plane, called the scale-space image of uo(x) [43]. Figure 2-1 shows a family

of one-dimensional signals obtained by convolving the original signal at the bottom
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with a Gaussian of increasing variance (from bottom to top). Each curve represents a

cross-section of the scale-space image for a certain a = constant. Note that the larger

the value of o the higher the degree of blurring. Also note that the high frequency

noise is removed very fast, while the important features with lower frequencies in the

signal remain more stable across the scales before they also disappear. The blurring

of important features is one of the problems associated with Gaussian smoothing of

signals and images. Another problem becomes apparent if we try to find the main

edges of the original signal uo(x).

Following the classical theory introduced above we have to look for maxima in

the gradient of the smoothed signal ux(x, a) for a certain o > 0, or equivalently for

zero-crossings of the one-dimensional Laplacian uxx(x, a). By varying a continuously

again we can now interpret uxx(x, a) as another surface in the x - a plane. To obtain

the zero-crossings of uxx(x, a) we can simply plot the contours of uzz(x, a) = 0 in the

scale-space. Figure 2-2 shows the same signal we used in Figure 2-1 on the bottom

and the contours of uxx(x, a) = 0 in the scale-space.

We can thus see how the zero-crossings or edges of our original signal evolve over

scale. Let us point out the two main features of Gaussian filtering:

* The contours of small oscillations emanating from noise disappear first, while

the ones from strong image features remain more stable across the scales. We

already mentioned this property in the context of Figure 2-1. For the largest a

in Figure 2-2 only two zero-crossings remain. These zero-crossings correspond

to the coarsest signal (the one on the top) of Figure 2-1. By following the

contours of the strong features from fine to coarse scales one can observe the

other main problem. The contours are twisted and thus the zero-crossings of the

smoothed signal give an inexact account for the location of the true edges of our

original image. Both problems, blurring and shifting of edges happen because

the Gaussian function is an isotropic operator. That is, since it smooths in all

directions, sharp boundaries will also be blurred.

* The other main point to observe is that the contours in the scale-space are
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Figure 2-1: A family of one-dimensional signals u(x, -) obtained by convolving the

original one (bottom) with Gaussian functions of increasing variance (bottom to top).

Figure 2-2: Original signal (bottom) and contours of uxx(x, a-) = 0 in scale-space.

The horizontal axis corresponds to x, and the vertical axis to o with the coarsest

scale on top.
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closed above but never below. This is the most desirable property when using

Gaussian convolution. To understand what it means recall that every contour

corresponds to a zero-crossing of the Laplacian of the original signal. Therefore

moving from fine to coarse scale, zero-crossings are never created as the scale

increases. An equivalent statement is that no new extrema, and thus edges,

should appear while increasing the scale. It is therefore possible to identify the

main edges at a coarse scale and then follow them backward by making the scale

decrease. This method could theoretically give the exact location of the edges.

However, the implementation is rather involved and is unstable because of the

appearance of new edges across scales and the multiple thresholdings involved

in the edge detection at each scale.

The second property just mentioned is also known as the causality requirement' and

was introduced by Koenderink [21]. Starting from the condition that the causality

requirement has to hold for every scale-space evolution, Koenderink proposed the first

partial differential equation in image processing.

2.2.2 The Diffusion Equation

Koenderink [21] noticed that the convolution of a signal with a Gaussian is equivalent

to the solution of the diffusion equation, with the signal as initial condition. If this

initial condition is denoted by uo (x, y), the "scale-space" analysis associated with

uo(x, y) consists in solving the system

fit(x, y, t) = div(c Vft(x, y, t)) = c Aft (x, y, t) (2.1)

t(x, y, 0) = o(x, y),

'Babaud et al [5] obtained the result that the Gaussian filter is the unique linear operator for

which the causality criterion holds.
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where c is the diffusion constant 2. The solution of equation (2.1) for c = 1 is

fi(x, y, t) = Gt(x, y) * uo(x, y), where

1 _2+

Gt (x, y) = e 4t (2.2)
v47rt

is a Gaussian function with time playing the role of the variance, related by - = 2t.

We can now check what happens to the test image from Figure 1-1 over time by

using it as the initial condition for the diffusion equation. We know that the result

is equivalent to convolving it with a two-dimensional Gaussian function. Thus the

noise will be removed, but also the edges will be blurred and might be shifted from

their true location. This is illustrated in Figure 2-3. It shows the input image uo(x, y)

on the left which has a signal to noise ratio of SNR(u/uo) = 3.4 and the result on

the right with SNR(u/fi) = 8.8. At the core of those problems is the linearity of the

Laplacian operator. It produces a displacement or loss of the edges that are present

in the image. This makes it necessary to find nonlinear operators as we will see in

the next section.

2.3 Anisotropic Diffusion

An important improvement of the classical scale-space analysis stems from Perona

and Malik [31]. Perona and Malik suggested to introduce part of the edge detection

in the filtering itself, thus ensuring that the edges remain much more stable across

the scales. The idea is to choose the diffusion constant c of equation (2.1) such that

it is conditional. The aim is to encourage smoothing within a region in preference

to smoothing across boundaries. This corresponds to choosing c = 1 in the interior

of each region and c = 0 across boundaries. In contrast to isotropic smoothing

the blurring would only take place inside uniform regions and the boundaries would

remain sharp, thus the notion of anisotropic diffusion.

But how do we know if we are inside a region or on a boundary? Let us assume that

a low gradient in the image corresponds to noise while a high gradient corresponds to
2 For the sake of clarity we will omit the arguments x, y, and t in the following equations and only

mention them in the initial conditions.
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Figure 2-3: Original image on the left and the filtered image produced by the diffusion

equation.

edges. Then we can take c as a function of jVfi2, that is c = g(lVfil). According to the

above-mentioned strategy g(lVfi2) has to be a nonnegative monotonically decreasing

function with g(O) = 1 and g(lVfii) - 0 as jVfi tends to infinity. Following Perona

and Malik the model can be written as

fi = div(g(Vfi2) Vfi) (2.3)

i(x, y, 0) = UO(X, y),

where g(lVfii) is a positive non increasing function given by

g(s) = e-(* (a > 1) (2.4)

or

1
g(s) = 1(a > 1), (2.5)

.7s + (-L)1+a-

where K is a positive constant. On the left of Figure 2-4 the qualitative shape of

g(s) given by equation (2.4) is plotted. The diffusion will be lowered if lVf(x, y)I

is large to keep the exact location of edges. If IVi(x, y)I is small the diffusion will

tend to smooth still more around (x, y), giving the desirable result of blurring small

discontinuities like noise and sharpening edges. By choosing different values for a and
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K we are able to change the shape of g(s). We can expect that there exists a certain

threshold 0 related to a and K which is crucial for the diffusion of the scheme. We

will have a closer look at this point in Section 2.3.1.

Figure 2-5 shows the result of applying the Perona-Malik equation (2.3) to the test

image, with g(s) from equation (2.4), a = 1, and K = 0.2. The signal to noise ratio

of the test image is SNR(u/uo) = 3.4 while that of the result is SNR(u/fi) = 17.7. We

observe that the edges are better preserved than in Figure 2-3. However, the Perona

and Malik equation has several practical and theoretical difficulties. These are shown

in the next section.

2.3.1 Instabilities of the Perona-Malik Equation

The first problem that appears for most enhancement schemes is the stopping time.

If the evolution procedure is not stopped all information would eventually be removed

from the image. To obtain a good result it is therefore necessary to choose a stopping

time in advance, which is not possible for machine applications.

The second problem comes from the nonlinearity inside the divergence operator.

Let us have a closer look at equation (2.3) and rewrite its divergence term in the

form of equation (1.12). Recall that q denotes the direction of the gradient and the

direction perpendicular to the gradient. In 71- coordinates we obtain

div(g(jV|tj)Vft) = g(jVi|) fq + h'(IVft) fi7, where h(s) = s - g(s). (2.6)

This means that the diffusion perpendicular to the gradient is controlled by g(s)

while the diffusion along the gradient is controlled by h'(s). The right-hand plot of

Figure 2-4 shows the qualitative shape of h(s). We can see that there exists a certain

threshold value 0 defined by h'(0) = 0 - the threshold we already mentioned in the

last section. And since h(s) = s -g(s) the relation to a and K is straightforward. We

can also observe from the plot that the function h(s) is monotonically increasing for

s < 0 and monotonically decreasing beyond 0. We can thus distinguish three main

properties of equation (2.6):

e For h' > 0 the equation behaves locally as a diffusion in both directions.
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Figure 2-4: Left: Stopping function g(s). Right: Function h(s) = s -g(s) inside the

divergence operator.

Figure 2-5: Original image on the left and solution of the Perona-Malik anisotropic

diffusion equation.
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" For h' = 0 the equation diffuses only in the direction perpendicular to the

gradient.

* For h' < 0 we obtain a local inversion of the heat equation because of the

negative speed of the diffusion in the direction of the gradient. The inverse dif-

fusion equation is well known to be unstable and we cannot expect a meaningful

solution.

Let us now have a look at the last point by considering the one-dimensional version

of equation (2.3)

=t = h(ux) = h'(ftx) - fX, (2.7)

where h(s) is defined as above. Again, for h'(fi) < 0 this equation acts like an inverse

diffusion equation. In practice, that means that very similar pictures could produce

divergent solutions and therefore different edges. In the context of image processing

this can lead to the following two problems.

The first problem comes from the discretization of the Perona-Malik equation.

In contrast to the diffusion equation which blurs all edges in the image, the inverse

form has the capability of deblurring. Thus for certain values of jVfL we should be

able to deblur or build up edges. Figure 2-6 shows a step edge, the blurred edge

and the steady state solution of the one-dimensional Perona-Malik equation (2.7).

The phenomenon we see in the plot is known as staircasing. The corresponding two-

dimensional version is shown in Figure 2-7. The original synthetic image is blurred

by convolving it with a Gaussian function. Next, the blurred image is taken as the

input to the Perona-Malik equation. As we can see in the 2-D case the choice of the

parameter K produces instabilities in the solution of the equation. The number of

new edges depends strongly on the value of K.

The second problem is related to the noise statistics of the image. Assuming

that the signal is very noisy, the noise introduces very large, in theory unbounded

oscillations of the gradient Vf. Thus, the conditional smoothing introduced by the

model will not give good results, since all these noise edges will be kept. Figure 2-8
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Figure 2-6: Application of Perona-Malik equation to blurred step edge. From left to

right: original step edge, blurred version, steady state solution of equation (2.7).

Figure 2-7: Application of Perona-Malik equation to a blurred image. From left

to right, top to bottom: Original blurred image, application of Perona-Malik with

K = 0.03, K = 0.04, and K = 0.05.
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shows our test image on the left and the result of the Perona-Malik equation. The

only difference to Figure 2-5 is that a smaller value for the constant K is chosen, thus

lowering the threshold 0 and the decision between smoothing and enhancement.

2.4 A Variational Formulation of Nonlinear Diffu-

sion

In the last two sections we described the original ideas that introduced PDE's in

image processing. We will now show that nonlinear diffusion equations for image

enhancement can also be derived using a variational formulation [3]. Assuming that

the model for the noisy image is given by equation (1.1), our goal is to find an

estimate ft(x, y) of the clean image u(x, y) based on the noisy observation uo(x, y).

The problem of finding this estimate can be formulated as the minimization problem:

in fJ (f, -UO)2 + #(1Vfi2D) dx dy} (2.8)

where q is a penalty function still to be defined. While the first term in this energy

functional assures that the estimate ft(X, y) will stay close to the original image the

second term controls the smoothness of the estimate by penalizing the gradient in a

certain way. The penalty function q controlling this smoothness is chosen to filter the

noise within uniform regions and to simultaneously keep the main edges of the image.

The conditions # has to satisfy to achieve this aim can be formalized by looking at

the Euler-Lagrange equation associated to equation (2.8) and given by

(f - Uo) - div ( Vf I) Vt) =0. (2.9)

Solving this equation by a steepest descent method with time as an artificial evolution

parameter leads to the partial differential equation

Ut = div ( j'f7j Vft) + (uo - fi) = div(g(lVftl) Vfi) + (uo - f), (2.10)

where Neumann boundary conditions are imposed on the boundary, the initial con-

dition is given by t(x, y, t = 0) = uo(x, y), and g(s) is defined by g(s) = . Using
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Figure 2-8: Original image on the left and solution of the Perona-Malik anisotropic

diffusion for K = 0.12.

'q - coordinates introduced in equation (1.8) the divergence term can be rewritten

as

(4#'(IV6|) \a ='(____)div 01 VfL Vfi + 4"0V6| 64 (2.11)

If we compare this formulation of the divergence term to equation (1.12) we can

identify the diffusion coefficients c,7 and c as

a'(jV)
c7 = U^ 1"(|V ) and c = . (2.12)

If we want a good restoration as described above c, and c, and thus 0, have to verify

the conditions stated in equation (1.13) and (1.14). Unfortunately the two conditions

of equation (1.14) are incompatible for any function # and cannot be satisified simul-

taneously. Condition (1.14) is therefore replaced by the following conditions imposed

for high gradients [4, 8]

lim cn = lim cC = 0 and lim = 0. (2.13)
IvuV00 IVu-+oo IVuI-oo cC /

These conditions mean that the diffusion across the edge, governed by c,,, has to

vanish more rapidly than the diffusion along the edge. This ensures that noise within

uniform regions disappears before edges get blurred. It has been shown that for a
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convex function O(s) with linear growth at infinity the solution of equation (2.8) exists

and is unique [3, 7]. Several choices for #(s) are given in Table (2.1).

We can immediately see that the first two functions O(s) in Table (2.1) are not

convex and the existence and uniqueness of the solution is not guaranteed. Indeed,

we already discussed both functions in Section 2.3 and saw that these choices lead

to a local inversion of the heat equation in certain image regions. The remaining

three choices are all convex and grow linearly at infinity; existence and uniqueness

of the solution are given. However, only the last two choices additionaly satisify the

conditions (1.13) and (2.13) stated for optimal restoration. Let us now have a closer

look at three of the five choices given for O(s).

2.4.1 Biased Anisotropic Diffusion

The second choice of # has been proposed by Hebert et al [17] in the context of

a generalized expectation-maximization algorithm and by Nordstroem [28] in the

context of a minimization problem similar to the one presented above. The PDE

obtained using the penalty function #(s) = I log (1 + s2 ) is given by

IVft
fit div fV + (UO - ft) (2.14)

1 + (lVftl/K)2
t(x, y, 0) = (X, y),

where the constant K is introduced as a threshold or scaling parameter similar to

section 2.3. Because of the feedback term (uo - i) the equation has the advantage

Name of function O(s) 0(s) g(s)

Perona-Malik [31] 1 - ee-s2 _ 2

Hebert-Leahy [17] j log (1 + s 2 ) 1 2

Total Variation [33, 34] s 1

Green [16] log (cosh (s)) tanh(s)
S

Hypersurfaces [3] /1 + s2 - 1 1

Table 2.1: Different choices of penalty function 0(s).
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of having a nontrivial steady state, eliminating therefore the problem of choosing a

stopping time. Despite this advantage however, the equation suffers from the same

drawbacks that are mentioned in Section 2.3.1 for the Perona-Malik equation. Those

drawbacks leading to the observed instabilities are originating from the non-convexity

of 0(s).

Figure 2-9 shows the input image and the steady-state solution of equation (2.14)

with K = 0.2. The original image has a signal to noise ratio of SNR(u/uo) = 3.4 and

the result has SNR(u/fi) = 17.5. Continued application of the equation produces no

further change.

2.4.2 Total Variation Minimization

Rudin et al [33, 34] proposed to minimize the total variation of the image subject to

constraints involving the statistics of the noise. The total variation is a measure of

how oscillatory the image is and is defined by

TV(u(x, y)) = Vu(x, y)I dx dy. (2.15)

The authors assume that the mean y of the noise is zero and that the standard

deviation - is given. The constrained minimization problem can then be formulated

in the following way:

inf Vfi(x, y)I dx dy (2.16)

subject to the constraints

J idx dy = fuo d dy (2.17)

J (i -uo)2 dx dy = U2 , where - > 0 is given. (2.18)

The first constraint (2.17) is automatically satisfied since the noise has zero mean

and the boundary conditions that will be used are 2 = 0 on OQ. The second

constraint (2.18) is enforced using Lagrange multipliers and leads to the minimization

problem similar to the one given in equation (2.8)

inf { (ft -UO)2 + |Vfil dx dy. (2.19)
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Figure 2-9: Original image on the left and the steady state solution of equation (2.14).

The PDE obtained from solving the Euler-Lagrange equation is therefore

fi = div + A(uo - fi), (2.20)

'(x, y, 0) = Uo(x, y),

where the Lagrange multiplier A can be computed (since a is assumed to be known)

and is given by

A= 2  ff{I _ (uo)*i" + (1o)2i) } dx dy. (2.21)
2a.2 f f jVfL I V

Figure 2-10 shows the test image on the left with SNR(u/uo) = 3.4, and on the right

the result obtained from the total variation minimization with SNR(u/ft) = 22.5.

The number of iterations until the steady-state is reached is 1000 and the time-step

is At = 5 - 10-6. The reconstruction is very impressive and belongs to the best ones

that can be achieved by the methods described in this work. Denoising algorithms

based on minimization formulations for other models, e.g., multiplicative noise, can

be found in [33].

It is also interesting to note that equation (2.20) can be cast in the level set

formulation that will be discussed in Chapter 3. For the above model the speed

function that will be introduced in equation (3.4) is given by

F =_ K.

IVUl'
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This means that all iso-intensity contours in the image move with a speed equal to

the curvature of the level sets scaled by an inverse magnitude of the gradient.

2.4.3 A Sigmoid Function

The last function 0(s) presented here was proposed by Green in [16]. This very

interesting choice leads to a nonlinearity in the divergence term containing the sigmoid

function tanh(s). We will return to this choice again in Chapter 4 and 5. The PDE

associated to the minimization problem using O(s) = log (cosh (s)) is given by

uit div (tanh(IVI 1K) Vf,) + (uo - ft) (2.22)

'(x, y, 0) = u(x, y).

Figure 2-11 shows the test image with SNR(u/uo) = 3.4 and the steady-state solution

of equation (2.22) with K = 0.02. The result has SNR(u/ft) = 21.0. Compared to

the enhancement schemes discussed here the performance is equivalent to the total

variation minimization and, as we will see in the next chapter, to the curvature flow

of Alvarez et al.
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Figure 2-10: Original image on the left and result obtained from the total variation

minimization.

Figure 2-11: Test image on the left and filtered image obtained from equation (2.22).
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Chapter 3

Curvature Flows and Shock Filters

3.1 Introduction

This chapter presents two more approaches to image enhancement using PDE's.

The first part of this chapter introduces a method that makes use of curvature

flows to enhance images. In this context the image is interpreted as a collection of

curves, strictly speaking the iso-intensity contours of the image, which can be evolved.

Before stating the image processing algorithm however, a thorough discussion of curve

evolution and level sets is necessary for understanding the ideas.

In the second part we present a method known as shock filters. Since it borrows

ideas from fluid dynamics we will first discuss the ability of certain partial differen-

tial equations to have discontinuous solutions and to build shocks. Afterwards the

application to image enhancement is shown.

3.2 Curve Evolution and Level Sets

In this section we will consider the problem of evolving a curve normal to itself with

a certain speed. Let us assume that Co(s), s E [0, L(C)] is a closed parameterized

planar curve, which moves in the direction of its inward Euclidean normal vector R

with a speed given by the speed function F. Using this notation the evolution of the
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curves C(s, t) can be written as

ac(s, t)
't = F - (3.1)at

C(s,t = 0) = CO(s).

A standard numerical method to solve the curve evolution equation is the marker

particle method. In this method N markers are placed on the initial curve in regular

intervals. The equation of motion associated to the curve evolution is then solved

separately for each marker (xi, yi) = C(si), i = 1, ... , N. The main drawback of

this approach is that the evolving curve cannot deal with topological changes of the

moving front, e.g. splitting, merging and crossing over itself. This can be avoided by

a method introduced by Osher and Sethian [30, 38] called level set methods.

In this approach the initial curve is represented by the zero level set ((x, y) = 0)

of an initial surface q0 (x, y). The surface is defined at each point (x, y) by Oo(x, y) =

±d(x, y), where d(x, y) is the distance from (x, y) to the initial contour CO(s). The

minus sign is used if (x, y) is inside Co(s) and the plus sign if the point is outside.

At time T the evolved curve C(s, T) is described by the points (x, y) which satisfy

the equation #(x, y, T) = 0, also called the zero level set of #. We can now derive the

evolution equation for the surface q(x, y, t).

The speed of each point (x, y) on the curve in the direction R normal to the zero

level set is given by the speed function F. Thus

C(s, t) - F,
at

where ac st = (!, a). The inward normal vector is defined by

- , (3.2)

given the initial #. Differentiating / with respect to t by the chain rule gives

t + ' - VO = 0. (3.3)at

Combining equations (3.1)-(3.3) we can write q as the solution of the partial differ-

ential equation

=t - F IVO = 0, (3.4)

(x, y, 0) = ±d(x, y). (3.5)
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At any time, the moving front C(s, t) is just the zero-level set of q, that is

C(s,t) = [ (x, y) | #(x, y, t) = 0 ]. (3.6)

Level set methods thus enable us to cast the evolution of a curve defined by

equation (3.1) into the initial value partial differential equation (3.4) and (3.5). At

first glance it seems contradictory to introduce a new dimension in order to reduce

the complexity of the problem. But in fact it is easier to find accurate numerical

schemes for equation (3.4) than using marker particle methods. Furthermore, finite

difference approximations can be used which exploit techniques borrowed from the

numerical solution of hyperbolic conservation laws. Finally, level set methods can

handle topological changes of the moving front as mentioned earlier.

The image enhancement schemes to be introduced later can be put in the form of

equation (3.4). With the preceding discussion it will therefore be easier to understand

how these models work. But first let us have a look at two specific speed functions.

Speed function F = ±1

The first speed function is simply given by F = t1. In this case the equation defines

the operators "erosion" and "dilation" of classical mathematical morphology. These

operators can also be used for image processing but this topic is beyond the scope of

this thesis. A more detailed discussion may be found in [41, 42].

Speed function F = ,

The second speed function is more interesting for us and is given by F = r, where K

is the curvature of the moving front. With our previous definition of # the curvature

is obtained from the divergence of the unit normal vector to the front

K = div I , (3.7)

and is positive on all convex level curves. Since F controls the speed in the direction

of the inward normal, a curve evolving with speed F = K shortens and shrinks. This
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flow is known as the curve shortening or mean curvature flowl and corresponds to

a curve collapsing under its curvature. Gage and Hamilton [13, 14] showed that a

convex curve moving under this speed function must evolve to a round point without

developing self-intersections or singularities. Grayson [15] generalized this result and

proved that any nonconvex curve will evolve into a convex curve without crossing

over itself or forming edges in the front, that is, without developing self-intersections

or singularities. Combining these two results means that any arbitrary simple closed

curve moving under its curvature collapses in finite time nicely to a round point and

then disappears.

We should note here that curvature motion has important smoothing properties.

Flow under curvature smooths out oscillations in the front and removes spikes of noise

since they correspond to high curvature objects. Thus small oscillations corresponding

to high curvature will disappear before the overall shape is altered. The deformation

of a curve by its curvature given by equation (3.1) with F = rK is therefore also known

as the geometric heat equation.

So far we have only considered the evolution of a curve if we construct q0 as the

signed distance function to the initial curve. In the context of image processing we

would have to construct an initial surface for every iso-intensity contour in the image

which would not be applicable in practice. Fortunately, Kimia et al [20] showed that

the evolution of Co(s) into C(s, t) is independent of the choice of the initial surface

#o. Thus for our intensity image u(x, y) it is mathematically valid to directly obtain

the surface # from the gray-level information and to evolve the whole image at once.

This is equivalent to evolving each iso-intensity curve separately by curvature and

then combining them again.

Before moving on to an image enhancement scheme based on curve evolution it

should be noted that level set methods can also be used for other image processing

tasks, such as geodesic active contours [6] or snakes [19].

The level sets of the solution move in the normal direction with a speed proportional to their

mean curvature [9], thus the term "mean curvature motion" effect.
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3.3 Image Selective Smoothing by Nonlinear Dif-

fusion II

Curvature flows in image processing were first introduced in Alvarez et al [2]. They

proposed to obtain an estimate f(x, y) of zot(x, y) by solving

V f
ft = g(IVG, * f|) jVft div ( (3.8)

ft(X,y,O) = UO(xy),

where g(s) is defined as in equation (2.4) or equation (2.5). Using equation (1.11) we

can rewrite the above equation in the form of equation (1.12) and obtain

fit= g(IVG, * fil) iq . (3.9)

Recall from Section 1.2 that fi& is a diffusion term which diffuses fi(x, y) only in the

direction c orthogonal to its gradient and not at all in the direction of Vit. Thus, the

aim of this model is to diffuse fi(x, y) on both sides of an edge with minimal smoothing

of the edge itself. The term g(IVG, * u ) controls the speed of the diffusion 2 . If

|VG, * fil is small in a neighbourhood of a point x this point is considered to lie in

the interior of a smooth region of the image and the diffusion is therefore strong. If

IVG, * |I has a large value, the point is considered as an edge point and the diffusion

is lowered, since g(s) is small for large s.

With the previous introduction of level set methods there is also another inter-

pretation. The main point is to consider the image as a collection of iso-intensity

contours. Since we are free in the choice of our initial surface we can simply take the

gray-level image uo(x, y) as the initial surface. Thus we can evolve the whole image

uo(x, y) by curvature flow and know that the same holds true for every iso-intensity

contour. Using equation (3.7) we can write equation (3.8) in the form

nt = g(|VG, * ftl) K ,Vfl. (3.10)

2 Note that (G, * fL) is a filtered version of ft and is therefore more robust in the presence of high

noise.
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Comparing this equation with equation (3.4) we see that the speed function for the

curve evolution is given by F = g(IVG, * il) K here. That means that each iso-

intensity contour of the image moves with speed g(IVG, * fi) K.

Let us have a closer look at the properties of equation (3.10). The most important

advantage of curvature flows is that it does not alter the contrast between different

shapes. There is no smoothing or diffusion taking place across the level lines of the

image. Thus boundaries remain sharp and do not blur, smoothing takes place inside

regions but not across. A disadvantage associated with equation (3.10) is that all

information is eventually removed from the image through continued application of

the scheme. This is due to the nature of curvature flows described in the last section:

each curve is first smoothed by curvature deformation, then it shrinks to zero and

disappears. Since the speed is never equal to zero the image will finally disappear,

making it necessary to choose a stopping time.

We can now have a look at the filtered image obtained using the method of Alvarez

et al. Figure 3-1 shows the input image on the left with SNR(u/uo) = 3.4 and the

resulting image on the right with SNR(u/f) = 24.2. The stopping function g is given

by equation (2.5) with K = 0.6. The Gaussian function used has a variance o = 2 and

is truncated by including 12 points on each side of the point at which g is calculated.

It seems that the edges of the square are blurred, an effect which comes from the

numerical approximation of the scheme.

Alvarez et al proposed a modification of this model in [2]. The reason is obvious if

we recall equation (3.9) and its interpretation: the diffusion in the image takes place

only perpendicular to the gradient. This property is desirable along edges but it is

not necessary to diffuse anisotropically at points where the gradient is low. Inside a

region of uniform brightness the scheme should diffuse in both directions. Therefore

a better model is

fit = g(VGo * fit) (1 - k(jVft)) Aft + k(jVft)Vft div ,f) (3.11)

where k(s) is a smooth nondecreasing function such that k(s) = 0 if s < e, k(s) = 1 if

s > 2e. The parameter e introduced here is not a new parameter. The function k(s)
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Figure 3-1: Original image on the left and solution of the curvature flow of Alvarez et

al.

is used to control the direction of diffusion and is similar to the stopping function

g(s). Thus e depends on the parameters K and a of g(s). Rewriting the modified

equation we obtain

Ut = g(IVG, * fi)fDii + g(jG, * Vfit)(1 - k(IVit))Unn4. (3.12)

For jVfi > 2e the second term is zero and the equation reduces to equation (3.9):

diffusion only takes place perpendicular to the gradient. Whereas for IVfl <; e

the amount of smoothing is the same for both directions. We obtain a scheme

that guarantees anisotropic smoothing along edges and isotropic smoothing inside

regions of uniform brightness. The input image (SNR(u/uo) = 3.4) and the result

(SNR(u/fL) = 23.8) obtained by equation (3.11) are shown in Figure 3-2. The stop-

ping function g is given by equation (2.5) with K = 0.6 and the parameter e = 0.03.

The Gaussian function used has a variance o- = 2 and is truncated in the same way

as above. Comparing it with Figure 3-1 we can see that the brightness inside and

outside the square is more uniform now.
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Figure 3-2: Original image on the left and solution of the modified equation of Al-

varez et al.

3.4 The Burger's Equation

The idea of applying the theory of shock calculations to image processing was intro-

duced by Rudin [32] in which the numerical analysis of singularities and shock filters

are studied. Shock waves are well known in fluid dynamics and are closely related

to the theory of hyperbolic conservation laws. An extensive discussion of the theory

of shocks is beyond the scope of this thesis and we consider only their application to

image processing. For further information the reader is referred to [22, 23].

The reason we can use shock calculations in image processing is based on the

way images are described. By assigning a brightness value to each pixel we can

interpret the image intensity function u(x, y) as a surface over the x - y plane. It was

already mentioned in Chapter 1 that an edge in the image is nothing but a jump or

discontinuity in the brightness distribution u(x, y). Consider again Figure 2-6 which

showed a one-dimensional step edge and its blurred version. Our goal is now to restore

the original step edge from the blurred one. This is equivalent to the development of

a shock in the brightness function u(x). We can try to achieve this goal by making

use of equations similar to those known from shock calculations.

One of the simplest models that demonstrates singular behaviour in its solution
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is the inviscid Burger's equation given by

ut + (u2)x = ut + U -ux = 0, (3.13)2

where u(x, t = 0) = uO(x). If the initial condition uo(x) is not monotonically non-

decreasing in the space variable x this equation may lead to discontinuous solutions

in finite time. More precisely the solution is determined by the characteristics which

are defined by d = u. These are curves in the x - t space along which u is constant.

The development of a shock then corresponds to the crossing of characteristics. Fig-

ure 3-3 shows the development of a right facing profile over time on the left and

its characteristics on the right. As we can see from the characteristics the shock

starts to form at t = 1 sec. and then keeps traveling to the left. The shock speed

is controlled by the Rankine-Hugoniot jump condition. Note that if a discontinuity

or shock forms the differential equation is no longer valid. In this case the solution

is given by the so called weak solution. Weak solutions are essentially solutions that

satisfy the differential equation where the solution is smooth, and the jump condition

at discontinuities.

Figure 3-4 shows the development of the same profile as in Figure 3-3 but now

facing to the left. The characteristics plotted on the right do not cross and therefore

no shock develops. In contrast to Figure 3-3 the profile tends to be smeared out.

We can also include viscous effects in the above equation by adding a diffusion

term. This leads to the viscous Burger's equation

Ut + u - Ux = EuXX. (3.14)

When the viscous term is included, the equation becomes parabolic and does not

admit discontinuous solutions. The second derivative uxx acts like a smoothing term

and stops the development of shocks. We can try to achieve a balance by control-

ling E: decaying u and at the same time steepening right facing profiles. This could

theoretically lead us to edge enhancement and simultaneous smoothing of noise. How-

ever, from the above discussion it should be clear that there are problems inherent to

equation (3.14) that make it unsuitable for applications to image processing. Let us

review these problems and show how to overcome them:
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Figure 3-3: Solution of the inviscid Burger's Equation for the right facing profile at

times t = 0, 0.5, 1.0, 1.5, and 2 sec. on the left and its characteristics on the right.
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Figure 3-4: Solution of the inviscid Burger's Equation for the left facing profile at

times t = 0, 0.5, 1.0, 1.5, and 2 sec. on the left and its characteristics on the right.
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" Equation 3.14 is not symmetric in the x-space. Thus, all left facing profiles

will be smoothed while right facing profiles will be steepened as we saw in the

preceding plots. However, by replacing ux by Juxl the equation can be modified

and put in a space symmetric form.

" The solution is not stationary because different parts of the initial signal travel

with different velocities. To prevent this problem the "speed" has to be con-

trolled by further transforming the equation into

ut + f (U2) - u - I uux = EUXX, (3.15)

where the coefficient f(ux) is set to control the diffusion speed.

3.5 Shock Filters

Osher and Rudin [29] introduced a shock filter based on the theory of the last section.

First we discuss the filter and its performance in 1-D. The extension to the 2-D filter

and its application to images will be straightforward.

The main point when applying shock filters is that we assume the input image to

be blurred but without noise. Since the filter sharpens edges any noise in the image

will also be enhanced by this procedure and the result would be useless. However, we

can still apply shock filters to noisy images if we blur these images first. The low-pass

filtering can be done by convolving the noisy image with a Gaussian function, e.g.,

in Section 3.5.2 we will blur our standard test image first and then take the result as

the input for the shock filter. Although this way of approaching the problem works

for our test image, we will see the use of this procedure is limited. If the noise is very

high the diffusion has to be strong to reduce all oscillations. It can therefore happen

that too much information is already lost because of the blurring, e.g., two objects

or image features that are close to each other might merge.
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3.5.1 One-dimensional Shock Filter

The one-dimensional version of the shock filter is given by

Ut = -ju.1 F(uxx) (3.16)

u(x,0) = uo(x).

Comparing this filter to equation (3.15) we can see the relationship to Section 3.4.

Since we assume the input to be already blurred we do not need to be concerned about

smoothing. We can therefore leave out the viscous term and set E = 0. Thus, the

only difference is to replace (f(ux) -u) by F(uxx). F is set to change sign across any

essential singular feature and is used as the edge detector switch, e.g., F = sign(uXX) 3 .

In Figure 3-5 we apply equation (3.16) to a sine wave. The plot shows the wave

at times t = 0, 0.5,1.0 sec. and the steady state solution at 2.0 sec. We can see that

shocks are formed and that the restored signal will be piecewise smooth.

3.5.2 Two-dimensional Shock Filter

The two-dimensional shock filter used for image enhancement is given by

Ut - u2 + U F(L(u)) (3.17)

u(x, y, 0) = uo(x, y).

The edge detector switch is defined by F = sign(L(u)). The sharpening of edges will

now occur at places where L(u) = 0. Compared to the one-dimensional version there

is more freedom of choice as to which edge detector L(u) to use in the 2-D case. The

simplest choice for L(u) is the Laplacian

L(u) = ucx + Uyy. (3.18)

Another choice for L(u) follows the idea that the edges are located at the zero-

crossings of the second directional derivative of u(x, y) in the direction of the gradient.

3 Recall from Chapter 2 that edges are located at the zero-crossings of the (one-dimensional)

Laplacian in the classical theory.
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Figure 3-5: One-dimensional shock filter applied to

times t = 0, 0.5, 1.0 and 2.0 sec.

sine wave. The result is shown at

With equation (1.9) the condition that u,, = 0 is equivalent to setting

L(u) = uxxu + 2uuu + UYYU~y. (3.19)

Figure 3-6 shows the noisy test image on the left. In the first step the noisy image is

taken as the input to a standard approximation to the diffusion equation with diffusion

constant c = 2. The number of iterations is 200 and the time-step At = 0.05. The

blurred output is shown in the middle. In the second step the shock filter is applied

to the blurred image. The time-step At = 0.05, the number of iterations is 250,

and L(u) is taken from equation (3.19). The restored image is plotted on the right.

Similar to the 1-D case the restored image is piecewise smooth. Furthermore we

should note that the solution reached a steady-state. Choosing a higher number of

iterations would produce no further change.

53

1

0.5

0

.5

-1



Figure 3-6: From left to right: Noisy input image, blurred version produced by the

diffusion equation, and the steady state solution of the shock filter with blurred image

taken as input.
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Chapter 4

Contraction Analysis applied to

Image Processing

4.1 Introduction

This chapter applies recent results from the stability analysis of nonlinear reaction-

diffusion equations to image processing. We will first state a result obtained using

contraction theory that enables us to quantify exponential convergence rates and to

guarantee the global stability of the system.

Afterwards, we will consider the enhancement of one-dimensional noisy signals

before extending these ideas to images. The last section shows the discretization

used to solve the model equation in one and two spatial dimensions.

4.2 Nonlinear Reaction Diffusion Equations

We will first state a result from the stability analysis of a certain class of nonlin-

ear reaction-diffusion equations which is obtained by extending a recently developed

analysis and control system tool called contraction analysis to partial differential equa-

tions [25]. To quantify the stability properties of the system the right hand side of

the PDE is discretized using finite differences. The continuous state-space quantities

are then computed as the limits of the discretized versions, as the discretization step
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tends to zero. The main advantage of the method is that it guarantees global stability

and exponential convergence if the system under consideration is contracting. The

result [25]is given below.

Consider the nonlinear reaction-diffusion equation

00 = Vh(V#, t) + f (, x, t) (4.1)at

with continuous state q, position x, time t and where &h/&V# > 0. Here, bold

characters, as e.g. h, denote vector quantities'. We denote by max(li) the diameter

(maximum length) of the continuum along the ith axis, and by min(A ah ) a lowerav$
bound on the smallest eigenvalue of the symmetric part of 'h on the continuum.avo

Assume that

AVh ~ max ( ) (4.2)

is uniformly negative, where

m 2

AVh = - min(A Oh (4.3)
v max(li) 2

for a Dirichlet condition (#(t) specified on the boundary), and

AVh = 0 (4.4)

for a Neumann condition (V#(t) specified on the boundary). Then, all system tra-

jectories converge exponentially to a single field #d(x, t), with minimal convergence

rate JAVh + max() ).

In the autonomous case (f = f(#, x), and with constant boundary conditions) the

system converges exponentially to a steady-state qa(x), which is the unique solution

of the generalized Poisson equation

0 = Vh(VOd) - f(0, x).

Let us now show how these concepts and results can be applied in the context of image

enhancement. We will first discuss the enhancement of one-dimensional signals before

moving on to two-dimensonal signal and image enhancement [26].
1Note that Vh = div h since h is a vector quantity.
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4.3 One-dimensional Signal Enhancement

We consider a general one-dimensional reaction-diffusion equation of the form

fit = div h(VL, t) + f (i, x, t), div h = (h) (4.5)
Ox

with Neumann boundary conditions Vt = 0. In the 1-D case Vit reduces to it and

therefore h(Vfi, t) is just a scalar function. Let us review the conditions we have to

satisfy for this equation to be contracting. According to the last section min(A a)

has to be nonnegative and f strictly decreasing. Since h is just a scalar function the

first condition is equivalent to requiring that 9 > 0. Thus, choosing any arbitrary

nondecreasing function h and strictly decreasing function f will guarantee the global

stability of equation (4.5). On the other hand it also depends on the shape of h and f

if we can achieve noise removal while keeping edges intact. Let us first use an intuitive

approach to find choices of h and f that meet both requirements simultaneously.

An intuitive approach

Taking a look at the reaction term f(ft, x, t), we want our choice for f to ensure

that the solution of our enhancement scheme converges to the desired restored signal.

Thus, we will take f to be a simple feedback of the form f = (uo - ft), where uo is

the original signal. This choice penalizes the deviation from the original signal and

guarantees that the solution reaches a non-trivial steady-state.

The determination of h(Vf, t) is more difficult but we can follow the ideas pre-

sented in Chapter 2 and set the function h inside the divergence operator to control

the diffusion. First of all assume a separable pattern of image and noise characteris-

tics. This implies that oscillations in the gradient Vft that are smaller than a certain

threshold 0 correspond to noise while features where Vft is greater than 6 correspond

to edges. Thus we want to find an h that stops the diffusion and gives div h(Vft) = 0

for VfL > 0, while removing the oscillations and giving div h(Vii) : 0 for Vii < 0.

Formulating this condition for h we want to have h(VfL) = constant for Vii > 0, thus

satisfying the condition div h(Vft) = 0 for this range of V. Below the threshold we

want h to vary and ensure that div h(Vft) : 0.
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A smooth saturation function would therefore be a natural choice of h(Vl), i.e.,

one could take

h(VfL) = sin - sat (4.6)
2 K

where "sat" is the saturation 2. The constant K is used to set the threshold 0 above

which h = constant. In the above equation 0 is related to K simply by 0 = K. The

shape for this choice of h is shown on the left of Figure 4-1 for K = 3. Another

possibility for h would be

h(Vit) = tanh (Yt). (4.7)
(K

In this case there is no exact value for which h = constant. Indeed, the derivative

of h will never be exactly equal to zero. However, a threshold for which this is

approximately true is given by 0 ~ 3K as we can see in Figure 4-1 on the right for

K = 1.

Let us now check how those choices of h and f perform on a noisy test signal.

Figure 4-2 shows a noisy signal and its estimate produced by equation (4.5). We used

h(Vft) from equation (4.6) with K = 0.05. The plot shows the steady-state solution

of our model.

We will show that there is actually a justification for the above choices that is

based on a variational formulation.

A variational approach

Let us first point out the resemblance between the reaction-diffusion equation (4.5)

and the partial differential equation (2.10) obtained from the variational formulation
2 The saturation is defined as

1 for x > K,

sat - - for -K < x < K,

-1 for x < -K.
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Figure 4-1: Possible choices for the function h(Vfi) as the argument of the divergence

operator.

in Chapter 2. If we state a similar minimization problem like the one in equation (2.8)

for the one-dimensional case we get

inf { (f -i O)2 + O(V)) dx}, (4.8)

and solving the Euler-Lagrange equation of this problem using a steepest descent

method leads to the partial differential equation

fi = div q'(Vfi) + (uo - fi) (4.9)

i (x, 0) = uo(x).

Comparing equation (4.5) and equation (4.9) we see that h(Vfi) = #'(Vfi) and the

solution obtained from equation (4.5) is the unique minimizer fi of equation (4.8) if

# is either given by

O(s) = log (cosh (s)) (4.10)

or

s8- 7r-2 if s > 1

0(s)- = (4.11)
(1 - cos (1s)) if s < 1,

depending on the choice of h(s). Note that the first choice of # was already mentioned

in Chapter 2 and was first proposed by Green [16]. Also note that the condition for
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the system (4.5) to be contracting was given by a > 0. This however is equivalent

to the condition that # has to be convex, #"(s) > 0; the same requirement that has to

hold so that the minimization problem (4.8) has a unique and existing solution [3, 7].

Finally, notice that we can rewrite div #'(Vft) as q"(Vft) Au. The diffusion

therefore stops for high gradients, which is the one-dimensional equivalent to the

conditions (1.13) and (2.13) stated for optimal enhancment in 2-D.

4.4 Two-dimensional Signal and Image Enhance-

ment

The extension of the above results to two-dimensional signal and image enhancement

is straightforward. Let us first review the conditions that must be satisfied for the

reaction diffusion equation to be contracting in 2-D. The equation is given by

Ut = div h(Vu, t) + f (u, x, t), (4.12)

where we only take Neumann boundary conditions Vu = 0 into account. Note that

we use bold characters for x and h now since they denote vector quantities.

According to Section 4.2 equation (4.12) is contracting if the function f is strictly

decreasing and the field h has a positive semi-definite Jacobian (vu). Choosing a

feedback term (uo - ft) for f clearly satisfies the first requirement. The choice for h

will be guided by our discussion in Chapter 2 where a typical form of the nonlinear

diffusion term was given by

h(Vu) = g(s)Vu, with s = IVu|.

The Jacobian of h has to be positive semi-definite for the system to be contracting.

Here, the Jacobian is symmetric and can be written as

Oh (g(Vu|) + Og(s) I us ux u
OVu 0 (| / Os Ul U 2
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Figure 4-2: Noisy signal and its estimate produced by equation (4.5).

or

Oh Og(s) VuVuT
O(Vu) = 8) s Ivul

= gs) ~s g(s) Vu VuT
Os IVul IVuL

Since the largest eigenvalue of the dyadic product of two unit vectors is 1, the condition
that must be satisfied is

g(s) + s g s = -(s g(s)) O .
Os Os

Hence, AVh is negative and the system is globally contracting for g 0 and O "g") > o.
By considering the saturated Laplace operator div (g (IVu I) Vu) we reformulated the
condition h has to satisfy as a condition for the scalar function g.

We can now extend the results from 1-D to 2-D in the following way: we solve
the two-dimensional variational problem (2.8) using the penalty function $(|Vit|) of
equation (4.11)3. Similar to Chapter 2 the estimate it is given by the steady-state
solution of

i = div(g(IVit|) Vit) + (uo - it) (4.13)

it(x, y,O0) = oy)
3 Note that #(s) = log (cosh (s)) has already been discussed in section 2.4.3.
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where g(jVftj) is given by

g'(| |) -sin (i sat(i"b))
g(f6| =~fj = (4.14)

and the constant K is set to control the diffusion. Note that the system is contracting

since g(s) satisfies g(s) > 0 and 0(sg(s)) > 0. We also note that the condition in terms

of # for equation (4.13) to be contracting is given by #" > 0, thus q has to be convex.

Let us check how the enhancement scheme performs on the test image. Figure 4-3

shows the test image and the steady-state solution of equation (4.13) with g taken

from equation (4.14) and K = 0.05. The signal to noise ratio of the noisy image

is SNR(u/uo) = 3.4 and that of the result is SNR(u/f2) = 18.0. Compared to the

enhancement schemes discussed earlier the performance is equivalent to the schemes

discussed in Sections 2.4.2 and 2.4.3 and to the curvature flow of Alvarez et al.

4.4.1 An Alternative Interpretation

We can further analyze the enhancement procedure by transforming it in the form of

equation (1.12). Using q - coordinates equation (4.13) can be written as

fit = g(Vfd) fq + G'(IVt|) '&n + (uo - ft), (4.15)

where G(s) = s - g(s). Thus, the diffusion coefficients c and c, are given by c =

g(|Vf|) and c, = G'(IVft|), respectively. We can easily check that the conditions

(1.13) and (2.13) for optimal enhancement are indeed satisfied for the above choice

of g(s). The smoothing takes place in both directions for low gradients whereas for

high gradients the diffusion is only in the direction perpendicular to the gradient.

Let us assume now that jVi| > K and drop the feedback term for a moment.

Since G'(IVfI) = 0 in this case equation (4.15) reduces to

Ut = g(lVftl) i2c = g(jVf2) K jVft. (4.16)

Comparing this form to equation (3.4) we notice that the model reduces to a curvature

flow for high gradients IVfI2. Recalling the discussion about curvature flows in Chap-

ter 3 we know that all iso-intensity contours of the image move with speed g(jVii|) K.
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Figure 4-3: Test image on the left and filtered image produced by equation (4.13).

No smoothing or diffusion takes place across the level lines and the contrast between

different objects is therefore not altered. Furthermore, boundaries remain sharp and

do not blur. This is the reason why the performance of the enhancement scheme is

very good even for small K. At the beginning of the enhancement procedure the

whole image is smoothed by curvature flow until the strong oscillations are removed.

While the model remains a curvature flow across the boundaries all of the time, at

one point the diffusion in the second direction is "turned on" within uniform regions,

leading to isotropic smoothing and giving a better result. Finally, note that because

of the feedback term the equation reaches a non-trivial steady state. The solution

converges to the desired restored image.

4.5 Discretization

In this section we outline the discretization scheme used in all the examples above.

Equation (4.13) is discretized on a square lattice, with the brightness values u(x, y, t)

associated to the vertices, and the conduction coefficients g(s) associated to the arcs.

The lattice has a spatial stepsize h and contains N discrete points in each direction,

the timestep is denoted At. We propose two different schemes for the discretization

here: a fully explicit scheme and a semi-implicit one. If we use the explicit scheme

63



a step size requirement arises in At to ensure stability. For the semi-implicit scheme

no such requirement exists. For time critical calculations it might be of advantage to

choose the semi-implicit scheme.

The image domain Q is discretized as follows:

xi = ih, yj = jh,

and the discrete timesteps are

t, = n At,

i, j = 1,2, ... , N

n = 0,1, ...

The brightness value u(x, y, t) at each pixel is given by its corresponding value on the

grid point, hence

jj= u(Xi, yj, t).

The Neumann boundary conditions are implemented using fictitious grid points sur-

rounding the image domain. Denoting those points with indices 0 and N + 1 we can

write

Ui,N = Ui,N+1,

j -,... ,N

17... ,N.

The continuous derivatives are approximated by finite differences.

following notation for nearest neighborhood differences

AxUi,j = ~(Ui:F,j - U',j)

,A"uj = - - Ui,j)

The conduction coefficients are then given by

S9 = g(IAu- i)

nw = fIAY,(.f
CW.. =i +kV1 ijI

UOJ = Uil, UNJ UN+1,j,

uio = u,1,

We will use the
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where g(s) is either given by equation (4.14) or by one of the choices in Table (2.1).

The abbreviations N, S, E, and W stand for "North, South, East, and West," respec-

tively. They are defined with respect to the grid point (i, j). The partial derivative

with respect to time ut is discretized by a forward difference scheme

Un+1 Un

Ut j'At i

Using a 4-point nearest neighborhood discretization of the Laplacian the explicit

scheme for the discrete version of equation (4.13) can be written as

Un+1 _ n
2,3 2j AYUC A ~j+(o~ n)

At A[CN - A'U - CS - A'- - CE +

where A = , i,j =1,2, ... ,N and n=0,1, .... This equation can be put into the

form

U n+1 _ gn%) - 'J + Ah (Un,)Un. = 0, n > 0. (4.17)
At i

A step size restriction is imposed for stability

'At
-<C-

For the semi-implicit scheme the conduction coefficients are calculated at the old

timestep n while new values are used for the nearest neighborhood difference. This

gives

Un+1 Un
U.. i -U [rn Ax n+l Cn Ax Un±1

At A[N j +Uii i j -A.ij

+Cn AY Un 1 - c AYi Un] + (Uoij - U,)

Thus, we can write the semi-implicit scheme as

U n+1 __ Un
' + Ah (Un,)Ut 1 = 0, n > 0, (4.18)

At i 1

where the matrix Ah is tridiagonal by blocks and positive definite. Therefore (I +

AtAh(U y)) is invertible. Equation (4.18) has to hold for each grid point i, j = 1, 2,... , N.

It gives a linear system of equations that has to be solved at each timestep.
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Chapter 5

Image Sequence Enhancement

5.1 Introduction

This chapter is divided into two main parts. In the first part we will show how the

results for image enhancement obtained in the previous chapters can be extended to

the enhancement of image sequences. We will first discuss the time-invariant noise

case and then the time-varying noise case.

In the second part we will propose a new algorithm for image sequence enhance-

ment with time-varying noise. We will start by considering a three-dimensional vari-

ational formulation and then propose a fast and recursive solution to this problem.

5.2 Extension of 2-D Image Enhancment to 3-D

Image Sequence Enhancement

Before extending the enhancement ideas from static images to time-varying image

sequences let us review the model we stated in Chapter 1 to describe image sequences.

The first model was defined in equation (1.2) where we assumed that the noise is

time-invariant. Since its applicability in practice is very limited we also introduced a

more realistic model in equation (1.3) where the noise is time-varying and possibly

uncorrelated in time. We will use the first model only at the beginning of this chapter
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in Section 5.2.1 and then move on to the second model which is utilized for the

remainder of this chapter.

A snapshot (frame number 30) of the synthetic image sequence we will use to test

the performance of the algorithms presented is shown in Figure 5-1. The variance

of the noise added to the clean image is o- = 0.1. Only in section 5.2.2 will we also

consider cases where the variance of the noise is smaller. The gray-value of the objects

in the sequence is 0 and the one of the background is 1. The square on the bottom

left moves horizontally to the right while the square on the top right moves vertically

downwards into the image. The square on the top left is static and does not move at

all.

5.2.1 The constant noise case

One-dimensional signals

Let us start by considering the enhancement of a one-dimensional time-varying sig-

nal uo(x, t) with time-invariant noise (n # n(t)). Since the enhancement procedure

discussed in the last chapter contains a feedback term we can simply apply it to time-

varying signals. Recall that the scheme was given by equation (4.5) and that we used

a smooth saturation function in the divergence operator. The only difference is that

uo is now also a function of time, no = uo(x, t).

This is illustrated in Figure 5-2, which shows intermediate values of the noisy

signal and its estimate from zero initial conditions at times t = 0, 2.5, and 5.0 sec.

It seems that the estimate cannot follow the original signal "fast enough". However,

choosing a higher feedback gain, e.g., replacing the feedback term f = (uo - fi) by

f = a(uo - ft), where a > 1, also amplifies any noise present in the signal and the

result is still noisy.

Thus, instead of modifying the model itself we use a coordinate error feedback.

Denoting the estimate of the time-varying signal uo by ft we can write [24]

it = div h(V) + (uo - ft) (5.1)

ft = +U0.
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Figure 5-1: Frame number 30 of the test image sequence: noisy frame uo(x, y, t) on

the left and clean frame u(x, y, t) on the right.
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0 - -- --

- -- - - ~

- -- .... ...

Figure 5-2: Noisy time-varying signal and its estimate from zero initial condition at

times t = 0, 2.5, and 5.0 sec.
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The system therefore satisfies the nonlinear reaction-diffusion equation

fit - uo,t = div h(Vft) + (ao - f).

The dynamics of it now contains uo,t which accounts for the motion compensation.

Let us see how equation (5.1) performs on the same time-varying signal as in

Figure 5-2. The noisy signal and its estimate it using the same initial condition as

previously are shown in Figure 5-3 at times t = 0, 2.5, and 5.0 sec. again. We can see

that the performance is much better. The edges are kept very well and the noise is

removed.

Two-dimensional signals

Similar to the one-dimensional case we will apply the same model we discussed for

time-invariant images also to the time-varying case. The only slight modification

is that we use a coordinate error feedback again. The enhancement procedure to

calculate the estimate ft(X, y, t) of a noisy time-varying image sequence uo(x, y, t) is

then given by

t = div(g( V ) Vi) + (uo - ft) (5.2)

fi = f + U0,

where g(s) is given by any of the last three entries in Table (2.1). The system therefore

satisfies

tt = uo,t + div(g(jVitj) Vit) - (ft - uo). (5.3)

Thus the dynamics of it contains uo,t, although the actual computation is done using

equation (5.2) and hence Uo,t is not explicitly used.

The performance of this scheme on the noisy test sequence is shown in Figure 5-

4 on the right. Note that the noise is time-invariant, thus only the squares in the

sequence move. It is also important to note that this enhancement procedure only

works because Uo,t, which accounts for the motion compensation, is itself not noisy.
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0.2-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5-3: Noisy time-varying signal and its estimate fi from the coordinate error

feedback at times t = 0, 2.5, and 5.0 sec.

Since the noise does not change in time, the time derivative o =0 and %90 reduces

to

at at

which contains no noise at all. However, if the noise changes in time we would get

auO Ou an
at at at

A white noise enters the dynamics of ft through uo,t now and the filtering process does

not work anymore.

Finally, consider the special case where an image sequence shows a static scene

which is taken from a moving camera whose motion is known. In this case the motion

field Uo,t stems from that known camera motion. We can replace uo,t with a modeled

plant dynamics vTVft, where v accounts for camera translation and rotation [18].

5.2.2 The time-varying noise case

We will now move on to the case where the noise is assumed to be time-varying.

Introducing a slight modification we can still use the model (5.2) proposed earlier
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1. K =K(- uo*

Figure 5-4: Noisy and restored frame 30 of time-varying image sequence with constant

noise using coordinate error feedback.

and write

Ut =div(g(JVLI) Vf2) + (uO - ?)(5.4)

Ui=i u+K(uo) uo,

where the gain K is a function depending on U0 . The idea is to switch the coordinate

error on or off depending on information given in the original image. It is based on

the observation that the coordinate error feedback has to be active only at places

where important changes actually occur, e.g., at edges of (moving) objects in the

image. Thus, in general we will take K(s) = 1 for s > a and K(s) = 0 otherwise,

where a is a constant threshold chosen appropriately. Several choices are possible for

the gain K(s):

1. K = K(IVuoI)

We can simply switch on the coordinate error feedback at edges in the original

image U0 . This leads to the gain

K(Vu) 1 if VUO a (5.5)
0 otherwise.

The result of this approach is shown in Figure 5-5. The original noisy image

(frame number 30) is plotted on the right and the restored frame is plotted on
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the left. Although the background and the squares are restored very well, this

method only works for very low noise (in the displayed case the variance of the

noise is a- = 0.015, whereas the difference in gray-value between the objects and

the background is 1). Even with low noise there is "false" feedback where the

gradient of the noise is higher than the threshold. To be able to deal with higher

noise in the image sequence we could base our decision not on the gradient itself

but on the estimate of the gradient. In this case K is given by

K(IV(G * To) ) V(G * -o) (5.6)
0 otherwise,

where G is a Gaussian function and '*' denotes convolution. The restored frame

using this choice for K is show in Figure 5-6. The noise in the image sequence

has a variance of a- = 0.05 now and the algorithm gives almost the same result as

in the previous case. However, it is obvious that the places where the feedback

is turned on are not as exact as in the first case.Furthermore the feedback is

also turned on at edges of stationary objects (see the square on the top left),

which is not necessary and reduces the quality of the restoration.

2. K = K(JA(uo)1)

To prevent feedback at edges of stationary objects we can use

a 1 if Ia(UO)J > a
K(- (o)) = (5.7)at 0 otherwise.

The result of this method is shown in Figure 5-7. The restoration of the squares

and the background is very good. Compared to the first idea this scheme has

the advantage that the coordinate error feedback is active only at moving edges,

and not at stationary ones. Therefore the restoration of the stationary square

on the top left is better. But the main problem concerning its applicability in

practice remains. The method only works for very low noise (a = 0.015) and

there is a considerable amount of false feedback. Similarly to the previous case
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Figure 5-5: Frame number 30 of noisy image sequence on the left and restored frame

using K from equation (5.5).

4v

Figure 5-6: Frame number 30 of noisy image sequence on the left and restored frame

using K from equation (5.6).
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we can therefor use

I if I (G * o) > a
K(I+ (G * u)1) =t -(5.8)0 otherwise.

Figure 5-8 shows the noisy image with additive noise of variance - = 0.025.

The restoration of the objects and the background is again very good. The dis-

advantage of this method is the low accuracy of where to turn on the feedback.

We just saw that a simple extension of the scheme given in equation (5.2) is limited

to very low amounts of noise. We will therefore propose a new algorithm now that

overcomes those difficulties and gives very good results in the time-varying noise case

even in the presence of high noise.

5.3 A Variational Formulation in 3-D

Consider the noisy image sequence shown schematically in Figure 5-9(a). Let us

first assume that all N frames are recorded and available for processing. The image

sequence is described by equation (1.3) and the noise is white in space as well as in

time. Our goal is to find an estimate ft(x, y, t) of the clean data u(x, y, t) given the

noisy observation uo(x, y, t). Similar to Chapter 2 we can formulate this problem in

terms of the minimization problem

{f ( (it - uo)2 + 0(1V*ftD) dx dy dt}, (5.9)

where we define V* = (- )' and # has to satisfy the conditions (1.13) and

(2.13) stated for optimal enhancement. The choice of # we will use here is given by

equation (4.11). We solve the Euler-Lagrange equation of this minimization problem

using the steepest descent method and introduce an artificial evolution paramter T1 .

The estimate fi is then given by the steady-state solution of

tr = div (c/ fI V*ft) + (uo - t) (5.10)

fI(x, y, t, = 0) = o(x, y, t).

'Note that ft is already a function of time t and thus a new evolution paramter has to be

introduced.
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P 4

Figure 5-7: Frame number 30 of noisy image sequence on the left and restored frame

using K from equation (5.7).

........

Figure 5-8: Frame number 30 of noisy image sequence on the left and restored frame

using K from equation (5.8).
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With this approach we do not only keep sharp edges in x and y but also in time t.

The original and restored frame number 30 obtained with this method are shown in

Figure 5-10 on the left and right, respectively. The noise added to the clean image

sequence has a variance of a- = 0.1. Although the result is very good we should note

that the computation can only be done off-line in a post-processing step.

One way to speed up the computation is to consider only 3 frames of the sequence

as shown in Figure 5-9(b). Let us assume that the noisy frame uo,n+1 is the most

recent observation and that we already have a clean estimate n_1 of frame n - 1. We

can still use equation (5.10) to solve for the estimate of uo,, and then move on to the

next frame. The two neighbouring frames now act as Dirichlet boundary conditions

in time. Unfortunately it will take too long to obtain the estimate uno,, in practice

since Uo,n is only given by the steady-state solution of equation (5.10).

Before we continue we should note the difference here between a pure 2-D diffusion

of uo,, and the 3-D diffusion (5.10). In both cases only iA is changed, u,_1 and u,,+1

are actually not altered at all. However, in the 3-D approach the temporal information

is taken into account due to the Dirichlet boundary conditions in time; there is more

information on which the estimate iA is based. Furthermore, the convergence of ft, is

faster due to the Dirichlet boundary conditions, as can be seen in Figure 5-11. Note

that although the computational burden is slightly higher for the 3-D diffusion, the

solution converges in only half the number of steps of the 2-D diffusion.

Let us now consider a slightly different minimization problem given by

{f ( (ft - uo)2 + ox (ix) + #5 (fly) + #t(ifit) dx dy dt}. (5.11)

Solving this problem leads to the Euler-Lagrange equation

a a a
(f - UO) - (' (fix)) - (#' ( )) - - (#' (it)) = 0, (5.12)ax a y y' at

which can be rewritten as

(ft - 'o) - div(4'(Vfi)) = 0,

where #'(Vfi) is defined as

0'(,7)f [, (fix) 0' (fy) 0' (fit)].
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Figure 5-9: (a) Image Sequence. (b) Frames u,_1 , un, and Un+1-

A6..

Figure 5-10: Noisy frame uO on the left and estimate ft obtained from a three-

dimensional nonlinear diffusion.
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Figure 5-11: Comparison of convergence rates for 1-D and 3-D diffusion.

The main difference between the two minimization problems is that all directions are

treated separately in the second one. This has the advantage that the corresponding

Euler-Lagrange equation decouples in x, y, and t. To analyze this equation we first

neglect the two space dimensions and only look at the optimization in time t. From

equation (5.12) we know that the solution of this optimization problem is given by

the steady-state solution of

-(t, T)=- Ih I + (uo -ii), (5.13)
OT Ot 8 . t/

where h = .. The discrete form of this equation is given by

6,m+1 im+AT2 (h+(Un+1 - i,") - h-(2"' - un. 1 )) + Ar (uo~n - n'"), (5.14)

where the superscript m denotes the iteration number, and un- and u7 +1 are the pre-

vious and next frame, respectively. Note that the functions h+ and h- are equivalent

and differ in their argument only. To simplify the subsequent discussion we will now

use a pure saturation h(s) = sat(j) instead of a smooth one. It is actually possible

to find the steady-state solution of equation (5.14) in this special case. This is most

evident by means of the example shown in Figure 5-12. The plot shows a pixel of

frame n - 1 and rn + 1 and their corresponding grayvalues un_ and u 1 . The noisy
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observation fn = uo,, can lie either above un+1 (e.g. at position 1), between un- 1

and un+1 (position 3) or below u,_ 1 (position 5). Neglecting the feedback term in

equation (5.14) for a moment let us assume first that un,o lies at position 1. In this

case un+1 - n is negative and therefore h+(Un+1 -an) = -1 is negative. On the other

hand in - Un- is positive and so is h-(fn - un-1) = +1. Since h- is subtracted from

h+ the absolute value of inA will decrease by the amount 2". As soon as the pixel at

position 1 enters the boundary layer at (un+i + 0), h+ will decrease, whereas h- will

still be +1. If fin = Un+1 it turns out that h+ = 0, and if in = (un+1 - 0) (position 2)

we have h+ = 1. At this point h+ = h- and int will remain constant. Note that fln

will remain constant anywhere in between the two boundary layers, since h+ = h~

holds. It is straightforward to do a similar analysis if in, is initially at position 5.

In this case fin will reach its steady-state at position 4. Thus we can summarize the

following:

" If uo,n ;> u>n+ - 0 then n - un+1 - 0;

" If un < un_1+ 0 thenn. +un-i +0;

* If Un_1 + 0 < UOn < un+1 - 0 then in = Uo,n.

The same results hold for un_1 > un+, by simply switching the roles of un_1 and Un+1-

So far we neglected the feedback term (uo,n - in) in our analysis. So let us check

how this term influences the solution. Within the boundary layer the feedback term

will be 0, since ftn = uo,n . If uo.n is initially at position 1, the feedback term will try

to pull ftn back up. Thus 4no will not reach its steady-state at positon 2, but slightly

above2 . A similar result holds if uo,, is originally at position 5.

The relation between the input value uo,n and the output fai can therfore be

written as fa = f(uo, , , un- 1, un+1). We just saw that the influence of the feedback

term is very small. To simplify the problem we will therefore neglect the feedback

2Note that 0 <u < 1 and therefore (u 0,n - in) < 1. However, -1 < h < 1 and therefore in will

lie between u,+1 - 0 and un+1-
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term and also set 0 = 0. Note that we can then write this mapping in closed form as

1 n~~O,n - (Un+1 + _) 1
n 1 - (Un+1 - un-1)1 sat ( Uni)) + - (un+1 + un_1). (5.15)

2~2 I |(Un+1 - Un-1)|

The shape of f(uo,n, Un_1, un+1) is shown in Figure 5-13.

A well known method in numerical analysis is the alternating direction implicit

(ADI) method. The main idea of this method is to solve a multidimensional equation

in each direction seperately, thus reducing the bandwidth of the resulting system of

equations. In the second minimization problem we stated that the system is decoupled

in each direction, thus using ADI methods is a natural thing to do. We also obtained

an approximate solution to the one-dimensional optimization problem in time given

by equation (5.15). We therefore propose to solve equation (5.12) in the following

way: first do the mapping (5.15) in time and then do an equivalent mapping in x

and y. If low-frequency noise remains in the image, we can compare every pixel not

only to its direct neighbour in x and y, but also to their second next neighbours, thus

increasing the smoothing scale of the algorithm.

Before showing results of this approach let us write down the algorithm in a general

form. The discrete version of u is defined by

u(i, j, n) =i,j,n = u(iAx, jAy, nAt),

where At is the temporal stepsize and Ax and Ay are the spatial stepsizes. We will

also need the following definitions

W = {u(i-1,j,n),u(i+1,j,m)}

6 i~j = {u(i, j - 1, n), u(i, j + 1, n)}

{u(i,j,n- 1), u(i, j, n + 1)}

x = {u(i-2,j,rn),u(i+2,j,n)}

6 'J = {u(ij- 2,n),u(ij+2,n)}.

Furthermore we use the following notation

A6 i' . = (u(i + 1, j, n) - u(i - 1, j, n))
1

6 173 = - (u(i - 1,j, n) + u(i + 1, j, n)).
X2
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A similar notation of A6"'J'n and 6"' applies to k = y, t, 2x, 2y. The relation between

the input and the output including the boundary layer (0 > 0) can then be written

as

(max 6"' - 0)

(min 6'i' + 0)
fA(Ui,j,n) =

ui,,n

if Ui,jn > ( 6 i'"l - 0) v kA6 Z'1' " 20

if Ujn < (6S'i'f + 0) V

if Uij,n 5 (6j'n + 0) V IA6' I< 20

otherwise,

where we define Uijn > 6ij'i' to be true only if it holds for either entry of 6i"n andrk f

correspondingly for the other inequalities. If we let 0 -0 equation (5.16) reduces to

max

k

Ui'j,n

if U,,n k "

if Ui,j,n < 6 ' 'n

otherwise.

(5.17)

Similar to equation (5.15) this can be written in closed form as

fA (Ui,,k) = I 'A6i'"I sat
tUi,j,k -~~

k + )'i'" (5.18)

The estimate fi,jn of the noisy observation U,i,j,n is computed according to the fol-

lowing 5 steps:

" 1
-u = ft (UO,,n)

SU. = ft(u,,,,)

* U1

* f j= f2X(utJ,,)

It is important to note that the proposed algorithm satisfies the following Min-Max-

Criterion

rnin uo (i, J, n)mm 0 (ij~n < 1(i,jn) < max uo(ij,rn).
i'j'n
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f (Ui,j,k) =

(5.19)
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The result obtained with the new algorithm is shown in Figure 5-14. The noisy

frame is shown on the left and the restored one on the right. The computation to

process one frame takes only 0.12 sec. and the algorithm therefore runs with a speed

of approximately 8 frames per second. Figure 5-15 shows a comparison between the

convergence of the 2-D diffusion, the 3-D diffusion and the new algorithm on the left

and a zoom on the first 10 iterations on the right. The plot on the right shows that the

proposed algorithm basically convergences after only two steps (first step: t - x - y,

second step: 2x - 2y). Note that doing one step of the new algorithm takes the same

computation time as one step of the discrete 3-D diffusion. The proposed scheme

is therefore approximately 20 times faster than the explicit 3-D diffusion algorithm

using the discretization shown in section 4.5.

Finally, Figure 5-16 summarizes the results obtained from the 2-D diffusion (top

right), the 3-D diffusion (bottom left), and the new algorithm (bottom right). The

signal-to-noise ratio of the original noisy frame is SNR(u/uo) = 8.5, the one of the

result using the 2-D diffusion is SNR(u/ft) = 36.8, the 3-D diffusion SNR(u/fi) = 43.8

and the new algorithm SNR(u/ft) = 39.2. The performance of the proposed scheme

is visually as good as the full 3-D diffusion and even better than a pure 2-D diffusion.
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Figure 5-14: Noisy frame uO on the left and estimate fL obtained from the new proposed

algorithm.

Figure 5-15: Left: Comparison of convergence rates. Right: Zoom on the first 10

iterations.



Figure 5-16: Comparison of results of 2-D, 3-D diffusion and new algorithm.
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Chapter 6

Conclusions

6.1 Summary

In this study, we sought to give an overview of the application of partial differential

equations in image processing and extend the results existing for the enhancement of

static images to the enhancement of time-varying image sequences.

The diffusion equation was the first PDE used for image enhancement because its

solution is equivalent to the result obtained from filtering by Gaussian convolution.

We saw that using nonlinearities in the divergence operator substantially improved

the results obtained on the test image. It was also shown that nonlinear diffusion

equations can also be derived from a variational formulation, thus giving a mathe-

matical justification for their use in image enhancement.

In the context of curvature flows the image was interpreted as a collection of

iso-intensity contours that evolved under their curvature. Level set methods were in-

troduced to make ideas clearer. They are a convenient computational tool for evolving

curves and can also be used for other image processing tasks, such as geodesic active

contours or snakes. The main advantage of curvature flows was that no smoothing

took place across the level lines, thus keeping boundaries sharp. Shock filters achieve

the aim of deblurring or rebuilding the edges best, but their application is limited

in the presence of noise. They can be used to sharpen the edges in the last stage of

processing the image after most of the noise is removed.
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A result obtained from extending contraction analysis to the stability analysis of

a certain class of nonlinear reaction-diffusion equations was given. We discussed the

conditions that have to be satisfied by the nonlinearity in the divergence operator for

the system to be contracting. Results were shown using a smooth saturation function

as the nolinearity. This choice reduces to a curvature flow for high gradients and

to an isotropic diffusion for low gradients, thus giving a very good performance in

keeping the edges and smoothing isotropically within regions of uniform brightness.

Finally, we extended the results obtained for the enhancement of static images to

time-varying image sequences. A simple extension using a coordinate error feedback

proved to be useful only in the time-invariant noise case. We also showed a way to

circumvent this problem which was restricted to cases with only low amounts of noise.

A new algorithm for image sequence enhancement with time-varying noise was then

derived. The idea of the algorithm is based on ADI methods in numerical analysis

that are used to obtain a fast approximate solution to the three-dimensional variatonal

problem. A maximum principle was given and results obtained on synthetic image

sequences were shown.

6.2 Conclusion

Contraction analysis is a very convenient tool to analyze global or local stability

properties of nonlinear systems. There is a wide variety of applications, especially in

controller and observer designs of mechanical and chemical systems. In this study

we considered its application to image processing by using results obtained for the

analysis of nonlinear reaction-diffusion processes. The main advantage of applying

contraction analysis in this field is that global exponential convergence rates can be

quantified.

Algorithms for image enhancement using partial differential equations are very

well developed and their performance is very good. However, the extension of those

algorithms to the enhancement of time-varying image sequences in real-time is miss-

ing. We proposed a fast and recursive algorithm that has the capability to run in
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real-time. The results on synthetic data presented in this thesis are very promising.

6.3 Future Work

Further work on this topic would most certainly involve a profound theoretical anal-

ysis of the algorithm for real-time image enhancement presented here. Numerical

aspects like multigrid methods have to be investigated and a computer code has to

be developed to further speed up the computation.

We also believe that the performance could be further improved using motion

compensation. The velocity vector field could be estimated and thus improve the

time filtering capabilites of the system.

Finally, since all computations are done using discrete equations (or better the

discrete approximations of continuous equations) it would be interesting to study

and derive results for these equations directly.
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