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Abstract

We examine the notion that supermassive black holes at the centre of galaxies, such
as the Milky Way, could have been seeded in the early universe by the mechanisms
of hybrid inflation. Using luminosity data, we estimate the current density of super-
massive black hole. We develop the formalism of the dierct integration method in
hybrid inflation and obtain a power spectrum, which we try to relate to the literature.
Our results do not directly show the plausibility of seeding supermassive black holes,
but the shape of the power spectrum suggests that further work might yield positive
results.
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Chapter 1

Introduction

From our perspective, centered on our small planet, the world outside our atmosphere

is vast and puzzling. Large expanses of space separate us from even the closest

structure, and for most of our history it was assumed that the realm of the stars

was divine and unreachable. This isolation, however, is broken by the propagation of

light.

Much of what we know about the Universe now is based on the behavior of elec-

tromagnetic waves. Classical electromagnetism helped Albert Einstein formulate his

theory of relativity in 1915. General relativity pioneers, such as Schwarszchild and

Droste, realized that Einstein's equations naturally lent themselves to the possibility

of curvature singularities; these would come to be known as black holes. Chan-

drasekhar and Oppenheimer showed that neutron stars above a certain mass would

necessarily collapse into singularities, thereby legitimizing black holes as astrophysical

objects.

But are black holes relegated to near solar-mass sizes? The early formalism pro-

posed by Schwarzchild spoke of the mass density required for collapse, but no mention

was made of mass scale. Clearly, if all black holes are to result from stellar collapse,

then the spectrum of their masses is limited by the weak spread of main sequence

masses.

Another perspective was proposed by Martin Rees in 1971. Using ultraviolet data

from the National Radio Astronomy Observatory (NRAO), he asserted the possibility
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that the Milky Way galactic center contained enough mass, in a sufficiently small

volume, to form a black hole. The novelty of the idea, however, was the mass scale

he proposed. The supermassive black hole had to be at least 5 orders of magnitude

heavier than a typical stellar black hole in order to account for the large Doppler

spread of water masers around the galactic center. The idea rapidly caught on, and

resources were invested towards identifying near center objects in an attempt to better

understand the mass constituents of the center.

The most convincing argument for the presence of a supermassive black hole in

the center of the Milky Way came in 2002 when astronomers, working with data from

the Very Large Telescope (VLT) at the European Observatory in Chile, measured

stellar velocities and X-ray emission of nearby stars. They showed that the mass con-

centration near Sagittarius A* was not a cluster of astrophysical objects or massive,

degenerate fermions, but rather a strongly constrained central density. Thus came

wide-spread acceptance of the presence of supermassive black holes not only at the

center of the Milky Way, but also of other spiral-type galaxies.

While most of the work has been done in terms of characterizing the properties

of supermassive black holes, the question of origins remains. Ordinary stellar black

holes provide us with a relatively straightforward narrative. Large stars collapse

into neutron stars, which then may collapse into black holes if their mass is large

enough. Our understanding of stellar black holes is tied to our understanding of

stellar evolution, which is believed to be known fairly accurately. But supermassive

black holes provide no such obvious narrative. The gap between stellar black holes,

for whom the mass upper bound is believed to be of order 10 Solar Masses, and

the observed supermassive black holes, whose masses are believed to range in the

millions of Solar Masses, is roughly 5 order of magnitude, suggesting that the processes

leading to their formation are probably different. This paper will attempt to show

the plausibility of seeding supermassive black holes in the very early universe using

inflationary cosmology, and discuss the inflation density perturbations required to

possibly achieve primordial black holes. The difficulty of this task will be explained.
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1.1 Black Hole Foundations

1.1.1 Just How Many Supermassive Black Holes Are There?

According to astronomer Paul Schechter, the modern understanding of active galactic

nuclei has progressed sufficiently that we are fairly confident of their concomitance

with supermassive black holes. This means that we can, naively, estimate the num-

ber density of supermassive black holes as roughly 1 per galaxy. Just how many is

that, however? To address this question, we propose to use the Schechter luminosity

function.

The Schechter function Oy(L) is the number of galaxies in a given region per

unit volume per unit luminosity. This function varies depending on which region is

observed, but over large scales (i.e. larger than 100 Mpc), the space-dependence goes

away, and we now have a universal function 4(L).

By fitting to experimental data, Schechter[1] found q(L) =

where a = -1.07, 0* ~ 0.04 Mpc-3, and L* ~ 2.3 x 10 10LO.

To obtain the number density of galaxies ng, we first find the

by integrating

ni= L'#(L')dL'

=5*L* -(9) +1

L/L* L*
e-L'/L*d

(L) (iy e-ns*i

luminosity density

(1.1)

where L < L* is the minimum luminosity. We have written the integrand sugges-

tively, so as to use the fact that we know elementary calculus that

00
X-le-'dx = F(a),

0
(1.2)

where F(a) is the Gamma function. We can then rewrite the limits of integration
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and get

ni = $*L* [F(2 + 2) - P(L/L*)]

~ 4*L* [f(1) -F(o)I

9.2 x 10 8LeMpc 3 . (1.3)

If the universe were comprised of Milky Ways, in other words if the Milky Way

luminosity were representative, then we would find the number density by dividing

the luminosity density by the luminosity of a the Milky Way:

9.2 x 10 8LOMpc- 3  C3
ng = ~. 0OO-'_ 0.05Mp-. (1.4)

= 1.7 x 10 10 L®

Assuming at least a 1-to-1 ratio of supermassive black hole to galaxy, we obtain a

similar number density for the black holes.

This current day density is interesting, but all sorts of phenomena could have

occurred to chance it from the time primordial black holes were seeded to now. Fur-

thermore, without knowing exactly when the black holes were seeded, we are limited

in the actual numerical comparisons we can make. More about this in chapter 3.

1.1.2 Gravity Preliminaries

Eintsein's mathematical description of gravity marks a departure from the Newtonian

paradigm. There is no direct expression for the gravitational force between objects.

Instead, the paradigm shifts to the energy-momentum content of space and the way

it influences its geometry. General Relativity, the end product theory, is based on

Riemannian geometry, and next we summarize some of it.

Spacetime, or the set of space and time coordinates, is taken to be a metric

space, namely an ordered pair (X, d) where X is a set with a Cartesian product

X x X = {(x, y) : x, y E X} and d is a metric. The metric becomes the defining

aspect of the space; two spaces with the same metric are identical. Now, what
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characteristics do we need this metric to have? Intuitively, we want it to allow u to

calculate distances, so a few things come to mind. First, it should be non-negative.

It should also follow the coincidence axiom, namely that the distance between two

points should be zero if and only if these two points are identical. It should be

symmetric too, since we want the distance between points x and y to be equivalent to

the distance between y and x. Finally, we would like our notion of distance to follow

the triangle inequality, since we like to be able to insist on convergence properties

(such as in a Hilbert space).

We can now put together these four ideas more formally as follow. A metric is

defined as a mapping d : X x X H-+ R such that, for all x, y, z E X:

(i) d(x, y) = d(y, x)

(ii) d(x, y) > 0

(iii) d(x, y) = 0 ==> xz = y, and

(iv) d(x, z) =< d(x, y) + d(y, z).

We can now attempt to describe the geometry of spacetime uniquely in terms

of the metric. Specifically, spacetime is represented as a 4-dimensional differentiable

manifold and, using the four conditions mentioned above (as well as local Lorentz

covariance), a covariant, second-rank, symmetric tensor g,, on the manifold.

1.1.3 General Relativity and Schwarzschild's Solution

As stated in the previous section, Einstein's 1915 epiphany was to treats gravitational

forces as a consequence of energy-momentum affecting the metric tensor. His work

produced the famous field equations, which take the form

1
Rpv - I = T,, (1.5)

where R,,P is the Riemann curvature tensor and T,, is the energy-momentum tensor.

This simplicity of form is misleading, however, because "hidden" into R,,P are non-
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linear second-order derivatives of the metric. Analytical solutions are hard to come

by, but thankfully for us, the simplest of solutions is sufficient to begin understanding

black holes.

Shortly after the publication of the field equations, Schwarzschild found a solu-

tion for the case of a spherically-symmetric, uncharged, non-rotated mass M. The

resulting geometry, named the Schwarzschild metric, is written in spherical (t, r, 0, 4)

coordinates as

ds2 _ (1 _ 2GM) dt 2 ± I - 2GM> dr 2 + r 2 (d0 2 + sin 20dO2). (1.6)

At first glance, this geometry looks dangerously singular at r = 2M (let's take

G = 1). It is easy to show, however, that the danger is in fact benign. Consider an

"astronaut" coming in from far away, where the metric is incidentally flat. Assume

the astronaut is coming in freely and radially. We can calculate his trajectory, a radial

geodesic, through spacetime and find that his coordinate time is given by

t 2 (r ) 3 /2 
- 1/2 (r/2M)1 / 2 + 1

-= -- M- 2( + In (r/2M)1/2 - 1 + constant, (1.7)

which tell us that the astronaut needs an infinite lapse in coordinate time to reach

r = 2M. However, coordinate time isn't relevant to the astronaut's experience; only

proper time r is. But T isn't behaving singularly at r = 2M:

T 2 'r 3 /2
- = -- -- ~3  + constant. (1.8)

2M 3 2M

So the astronaut reaches the r = 2M in finite time on his watch. We can further show

that the tidal forces felt by the astronaut at the specified radius are finite too, since

the components of the Riemann tensor are finite. Cranking through the algebra in

the astronaut's frame, we find that every component of the Riemann tensor vanish,
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except

2M M
rs,= Riota = tRigtq -g (1.9)

2M -M
R -- R,;,6 = = , i= . (1.10)

Tidal forces are finite everywhere, except for r = 0. For good measure, we can

calculate the invariant Kretschmann scalar K = RUPRA"VP = 48M 2 /r 6 and conclude

that in every local Lorentz frame, including the astronaut's, tidal forces will become

infinite at r -* 0.

While we have shown that there is no obvious "pathology" happening at r =

2M, this does not mean that nothing interesting happens there. In fact, a crucial

turnaround occurs with timelike and spacelike coordinates. In the region r > 2M, the

t direction (&/dt) is timelike since gtt > 0 and the r direction is spacelike. However,

when r < 2M, gLt and gr, switch signs.

What does this mean? Prior to crossing the Schwarzschild radius, the astronaut is

in control of his r coordinate, but not of t. He can move back and forth in r, but time

goes forward inexorably. When he crosses the horizon, however, things change. A

decrease in "r" represents the "passage of time", strictly forward-going. This means

that, as inexorable as the passage of time for an ordinary astronaut well outside of

the horizon, the spacetime path of anybody within r = 2M will lead to r -+ 0. It

is this condition, in the words of Stephen Hawking (as reported by Kip Thorne in

Warping Spacetime), that defines a black hole.

1.1.4 Simplified Stellar Structure

The next logical question to ask (other than what happens at r = 0, but that one is

harder to pin down) is perhaps one of genesis: where do black holes come from? At

first pass, any mass M will have a Schwarzschild radius r = 2GM. But point masses

are not observed experimentally, so any mass M will have some spacial extent and

therefore a mass density. Will these densities necessarily collapse in to form black

holes? Of course they will not, for objects in the universe are more than simple
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gravitational puppets. Pressure, be it thermal or degeneracy, will antagonistically

fight gravitational collapse and reach a dynamical equilibrium. Our investigation of

black holes, then, means understanding when pressure is insufficient to counteract

gravity.

This qualitative discussion can be made quantitative in the case of stars. Stars

are, after all, important astrophysical objects. They are the important constituents

of galaxies that also provide an observational footprint. More importantly, they are

objects whose constituents we can guess with reasonable certainty. The following

discussion is adapted from Paul Schechter's 2013 Modern Astrophysics class.

Ignoring stellar rotation, magnetic fields, time-dependent composition changes,

and strong luminosity variability (as in Cepheid variables), we can model basic stel-

lar structure. Assuming spherical symmetry and a power-law relationship between

pressure and density (P = ,p(n+")/n, where n is called the polytropic index and , is

a constant) we can differentiate the equation of hydrostatic equilibrium to obtain the

dimensionless Lane-Emden equation

1 d d
2 

1.11

where = r (n+) 1/n-1 = r/a is the dimensionless radius and p = A#n defines

the dimensionless density. The total physical radius of the star rmax = a r.ax corre-

sponds to the largest for which the dimensionless density is greater than 0. We can

then compute the mass enclosed in the star by integrating the density:

M = jrmax 4,r 2pdr

= 4rAa 3 j 0%2 <.
0

(1.12)
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Now we can use the Lane-Emden equation to substitute for 4 and get that

M = -4rAa 3  _ d (2 ) do , (1.13)
fo <{ d<

which begs for the use of the fundamental theorem of calculus. By looking at hydro-

static equilibrium, we conclude that _ j = 0. Putting it together with (1.9), we

obtain

M = -4wAa 3
2_

= -~47rAa T do 1 (1.14)

This expression is in terms of the (ma and the slope of # at ,a which are dimen-

sionless quantities that can be calculated by solving numerically the Lane-Emden

equation for a given polytropic index. However, we still have to find a central density

A and an a(i,) in order to get an idea of the behavior of the mass of simplified stars.

To do so, we make a small interlude into statistical mechanics.

Equation of State for White Dwarfs

White dwarfs are interesting candidates as intermediaries towards black holes. How

can we adapt what we know of degenerate white dwarfs to the ideas proposed in the

previous section?

The first step involves writing a general expression for the pressure in a degenerate

neutron star. Using suggestions from Paul Schechter, we write the pressure as

J/2  0 0

P = dO f (p)(2rp2 sin 0)(v cos 0)(2p cos 0)dp, (1.15)
fo 0

where f(p) is the phase space density, the second bracketed term corresponds to the

"velocity flux" and the third bracketed term is the momentum transfer. For a Fermi-

Dirac distribution at temperature T = 0, the phase space density simplifies to g/h 3

for p < pf, where pf is the Fermi momentum and g is the number of spin states (we
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take it to be 2), and 0 otherwise.

Assuming that our degenerate neutron star is highly relativistic, we perform the

integral by rewriting v = p/me and letting x = p/mec:
V1+(p/mec) 2

4 5pf/meC 4
87rmec5  

______

3h3 = . (1.16)

In the ultra-relativistic range, x > 1, so the integral simplifies to

81rm 4 c5  Pf/mec
P = X 3dx

3h 3  Id
8 4rc

- f- (1.17)

To find an expression for pf, we integrate the phase space density:

ne = 47rp 2f(p)dp

87r3= rP3 (1.18)

where ne is the number density of electrons. Finally, we use the fact that ne =

where 1e is the fractional "molecular weight", in units of proton, of the electron and

mP is the proton mass, to obtain

P hc 3 
113

8 7rp4P

This is the result we needed. Referring back to the polytropic equation of state, we

can now kill two birds with one equation (we promise to eat the birds afterward).

First, the power-law dependence of (1.15) tells us that n = 3 in (1.7). Furthermore,

the coefficients suggest that , = b( )1 /3 (em)-4/3.

Going back to (1.10), we substitute for a and find that the dependence on the

central density A vanishes. We can rewrite it in a suggestive way:

M [( hc 3/2 (3 1/2 P d 2 <ax ] m , (1.20)
7r 2 Gm2 4 <d ,n.
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which numerically evaluates to M, = L MD ~ 1.45MD for an electron mean molecular

weight of 2, where we have taken the liberty of labeling our radius-independent mass

M, in honor of Chandrasekhar.

This result tells us that a spherically-symmetric, non-rotating, non-varying, non-

magnetic white dwarf cannot be in equilibrium (i.e. stable) if it is any more massive

than Mc. Our result, which is based on heavy simplifications, is still in close agreement

with the accepted value for the Chandrasekhar limit, which is 1.44MD[2].

While we have not shown that stars do indeed collapse into black holes, we have

provided an illustration of the tug-of-war between gravity and pressure in astrophysically-

significant objects.

Could supermassive black holes result from the collapse of dying stars? It seems

unlikely, given the very large masses involved. Where then? In the next section and

beyond, we will look at possible early universe scenarios, and attempt to relate our

understanding of the dynamics to the seeding of primordial black holes as precursors

of supermassive black holes.
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Chapter 2

Inflation as a Formalism of the

Early Universe

2.1 Inflation Preliminaries

Generally speaking, the further away from us a phenomenon is, the harder it is to

understand. The very early universe, where presumably large energy scales reigned

supreme, is an example of a time so remote that it is difficult for physicists to reach

a high level certainty as to what was really going on then. Nevertheless, the current

universe is kind enough to offer some clues. in particular, our understanding of the

universe involves two central principles. These principles, while rich in consequences,

are simple to explain.

First, we will take for granted that over distances larger than 100 Mpc, the universe

is homogeneous. This assumption is, no pun intended, rather weighty and deserves

a bit of attention. Indeed, it is rather clear that the universe is not homogeneous

on small distance scales. The Milky Way galaxy, for instance, comprises of a disk of

about 100 000 light-years with a bulge centered around the center of the disk. Go

100 000 lights years away from the center, directly up following the rotational axis of

the disk, however, and you will find a mass density many orders of magnitude smaller

than the average mass density of the galaxy[3].

On the scale of galaxy superclusters, however, things are much smoother. Data[?}
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shows that the space between superclusters does not vary significantly, and so spheres

of radius 100 Mpc all contain, more or less, the same mass.

The second assumption we make is isotropy, which says means that there are no

preferred direction in the universe. Like in the case of homogeneity, isotropy only

holds for distances over the supercluster size, namely 100 Mpc. In other words, an

astronomer observing the universe 100 Mpc away would see exactly the same thing re-

gardless of the direction in which the telescope is pointing. When we combine isotropy

and homogeneity, we obtain the cosmological principle. Of course, data from the Cos-

mic Microwave Background (CMB) supports the notion that, at recombination, the

universe was extremely homogeneous and isotropic.

Naturally, our investigation of primordial black holes involves structures that are

very much inhomogeneous when compared to the background. So any understanding

of early universe physics has to, in one fell swoop, address both homogeneity and

isotropy, while at the same time offer an avenue to "seed" inhomogeneities. This is a

challenge, and in the next section we propose to discuss the initial condition problems

we face. Problems are made to be solved, however, and posing the problems leads us

to a solution, namely inflation, a version of which we will use to tackle the primordial

black hole problem.

2.2 Alan Guth's Favorite 3 Problems; Initial Con-

ditions in the Early Universe

Generally speaking again, there are two independent sets of initial conditions char-

acterizing matter: the spacial distribution, which is described by an energy density,

and the initial field of velocities. What can we say about them, given the current

state of the universe?
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2.2.1 Horizon Problem

First, let's examine the fact that the universe is nearly homogeneous and isotropic on

very large distance scales. The following discussion mirrors a lecture given by Alan

Guth in the Early Universe course. Take the present horizon scale to be of order

cto = (3 x 10 10m/s)(13.75Gyr) ~ 1026 m. The size of the homogeneous and isotropic

region, at an earlier time denoted by the subscript i, is therefore at least as large as

di ~ cto0  , where a corresponds to the scale factor.

Now, let us compare this distance to the size d, - cti of a causal region. Taking

ratios, we have
di to ai (2.1)
de ti a0

While we cannot know exactly what value this ratio takes, we do know that at tem-

peratures greater than the Planck temperatures Tp we enter the realm of quantum

gravity, and that primordial radiation dominates at the Planck time Tp. We can

estimate the ratio of the scale factors as the inverse ratios of the temperatures in the

following manner:

- ~ T ~ (2.75)( )-1/2 , 10-32 (2.2)
ao TP k2G

Using the Planck time, we get

S 1028(2.3)
dc

Assuming that no signal can propagate faster than the speed of light, this is a strange

result. At the Planck time, the size of the homogeneous universe was roughly 28 orders

of magnitude bigger than the causality scale. In the words of Barbara Ryden, on page

194 of her bookIntroduction to Cosmology, "how can two points that haven't had

time to swap information be so nearly identical?"

2.2.2 Flatness Problem

We have discussed, after a fashion, the matter distribution. Now let us address the

velocities, more specifically how incredibly accurately they must be set so that the

negative gravitational energies of matter be compensated.

25



We assume Hubble expansion, so that the initial homogeneity not be quickly

destroyed. Consider a spherically symmetric cloud of stuff. We can compare its total

energy Ett to its kinetic energy due to Hubble expansion EH. We further assume

that the only interaction between constituents comes as the result of gravity, so that

the negative potential energy of the gravitational self-interaction is given by E. By

conservation, we have

Ett = EH + E = E+E (2.4)

But since EH is a kinetic energy, we have EH -V v2 , where v is the velocity, so we can

relate it to the time derivatives of the scale factor:

.di 2(2.5)
Eir do

Taking ratios, we have

Et"Ot E. + E EHO + EGO do .22E~~_ ~ GE~_E (2.6)
Ei E;1 EHO di)

Next, we assume that the scale factor grows as some power of time. This may not be

right, but it isn't insane, so we move on and estimate that i - a/t as polynomials

do. We can use (2.1) and (2.3) to rewrite

E< H EOG(i-28 227

We expect the Hubble expansion kinetic energy to be of order of the gravitational

energy (up to a negative sign), or at the very least we don't expect it to me many

orders of magnitude larger, so we conclude that

Ei-3" 0" (2.8)

This result is problematic, as was (2.3). It means that for given energy density dis-

tributions, the Hubble velocities must be adjusted extremely finely, to an "accuracy"

of 10-5%.
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2.2.3 The Monopole Problem

To begin, we admit to having never really understood this topic until we came across

notes by Arjen Baarsma while researching this paper. The following discussion is

therefore based on Baarsma's 2009 seminar notes from the University of Utrecht,

which are available online.

Monopoles arise if the vacuum manifold of the potential has the topology of

a two-dimensional sphere. To see how this can work, consider the Higgs mech-

anism. Its main feature, arguably, is the existence of real n-plet of scalar fields

= (q, 2,..., 0') used to break the original symmetry of the theory. Their La-

grangian can be written, depending on the model, as

'CO = I al4oO -_- (02 _ U.2)2. (2.9)

At very high temperatures, symmetry is restored and the Higgs field has a vanishing

expectation value, or q = 0. As the universe cools below TGUT, phase transitions take

place and the scalar fields acquire vacuum expectation values corresponding to the

minimum of the potential in (2.9):

n

o2 .=2. (2.10)
i= 1

Note that if n = 3, (2.10) manifestly describes S 2 . If we consider two causally

disconnected regions A and B, we find that with probably 0(1) we can have 4 > 0

and q5 < 0, i = 1, 2,3 and 0' satisfy (2.10). But 3 2-dimensional hypersurfaces

determined by Oi (X1, X,3) 0 generically cross each other at a point. Since all 3

fields vanish there, this is the point of false vacuum. Thus a monopole, a 0-dimensional

topological defect, is created.

Now, the actual probability that the orientation of the Higgs field around the

point is topologically non-trivial is, as we have written, close to 1. However, its exact

value will depend, as explained in Baarsma, on the shape of the vacuum manifold.

It can be estimated by looking at how many of the possible configurations, around a
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point, result in monopoles. Taking the vacuum manifold to be the 2-sphere described

above, we use Kibble[4] to find a probability P ~ 0.1. We also take the GUT scale

to be roughly 1016 GeV, and the horizon to be dGUT ~ 8 x 10- 28 (TGUT/10'6 GeV)-2

cm. So right after the phase transition, the number density nGUT of monopoles is, at

least,

nGUT >PdcUT 1 180 (TGUT/101 6 GeV) 6 cm-3 , (2.11)

which is large.

Monopololes, because of their topological nature, cannot decay into other particles.

They can, however, annihilate with their companions anti-monopoles and release their

total mass-energy in a process that preserves the total topological charge. Perhaps

most of the early universe monopoles annihilated, thereby depleting their numbers?

Not so fast, said Zeldovich and Khoplov[5]. They proposed that the attractive force

between monopoles of opposite charge are of the order of the Coulomb force, allow-

ing them to estimate the rate at which monopoles and anti-monopoles capture each

other and annihilate. They found that pair annihilation is a slow and inefficient pro-

cess, mostly due to the high monopole mass. When the ratio nGUT/T 3 falls under

10- 8 (mmnpoe/101 7 GeV), annihilation becomes unable to keep up with the expansion

of the universe[6]. At this point, the number density must scale as a- 3 . Assuming

the universe cools down adiabatically afterward, the total entropy is conserved (as

per discussions with Alan Guth) and entropy density s scales as a-3, telling us that

nGUT/S is conserved. Now, using results from Alan Guth's 8.286 class, we write the

entropy density as s = g.1T 3 , where g., the effective number of freedom, is taken

to be around 100, as per discussions with Alan Guth. This allows us to obtain the

constant

nGUTIS ~'-O 4 x 10- 9 (TGUT 1 16 GeV) 3 , (2.12)

assuming the initial ratio is smaller than the annihilation threshold and monopole

annihilation plays no role. This means that the current monopole number density

would be n ~ 10-7 (TGUT/10 16GeV) 3 cm- 3 today, when T = 2.725K and g, = 3.91.

If the monopole mass is around 10 17 GeV, then we get a monopole energy density of
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roughly 10 9 GeV/cm today. This is 16 orders of magnitude larger than the accepted

total energy density of baryonic matter in the universe. Clearly, this cannot be. The

universe is not dominated by magnetic monopoles today. In fact, there is no strong

evidence that they exist at all.

2.3 Inflation

2.3.1 Hydrodynamics Introduction

One may be tempted to gloss over the monopole problem as a mere artifact of a

deficient grand unified theory, but it is harder to dismiss the flatness and horizon

problems. The problem, we recall, is that the ratio di/do, which we found to be

very large, determines the number of causally disconnected regions and defines the

necessary accuracy of the initial velocities. Now, if gravity was always attractive,

we would expect, naively, that di/o > 1, since gravity would slow down expansion.

However, what if during some period of expansion gravity acted repulsively? We could

have di/do < 1, and the creation of a single causally-connected domain universe may

become possible. Of course, we would still want the successful predictions of the

pre-inflation Friedman model, such as nucleosynthesis, to hold. So we would want

inflation to begin and end rather quickly.

To see how all this may work, consider the second-order Friedmann equation

47r
a = - G(e + 3P)a, (2.13)

3

where c is the energy density and P the pressure. Accelerated expansion can occur

with & > 0 only if c + 3P < 0. This latter condition is fine, but it isn't much of an

equation of state.

To make progress, we recall that d/a = H 2 + H. At the end of inflation, a must

be negative (to gracefully join up with Friedmann expansion), so H must be negative

as well. But f/H 2 grows towards the end of inflation, which takes place roughly

when JHf = O(H 2 ). Assuming H 2 changes faster than H, we get an estimate for the
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end of inflation

tend ' Hi/AIH, (2.14)

where the subscript i refers the "beginning" of inflation.

Inflation, of course, should last long enough to magnify a tiny patch of space to the

point where it reaches a scale comparable to the observable universe. Now, CMB data

shows that inhomogeneities do not surpass 10-5. Artifacts of a large inhomogeneity,

provided

di/do < 10-', (2.15)

will be sufficiently diluted. Since H = j, we can rewrite (2.15) as

di aend ai Hi aend
e- - < 10 . (2.16)

ae'nd do aend Hend do

But aend/do > 1028, and we conclude that we need

aend > 1033 Hi. (2.17)
a2  Hend

Over the course of inflation, we have H 2>>| I, so we estimate

aend - > 1033. (2.18)
a(

This essentially says that we would like inflation, at least in the most basic terms, to

last longer than ln(10 33) ~ 76 Hubble times (or e-folds), in other words tend > 76H-1.

We use the fact that we can write Friedmann's equations (taking k = 0) as H2 =

8 and H = -4rG(c + P), we reformulate the 76 e-fold condition (which can be

expressed as I I/Hj < 1/76) as

(E + P)i< 10-2. (2.19)
Ei

This tells us that, at the earliest stages of inflation, a de Sitter solution is rather good,

with the deviation not exceeding 1%.
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2.3.2 Scalar Fields as Drivers of Inflation and Slow Roll

Although the word "scalar" is nowhere to be found in Alan Guth's seminal 1981

paper, Prof. Guth [7] discovered that scalar fields are natural drivers for inflation.

At first, we note that the energy-momentum tensor for a scalar field can be rewrit-

ten in a form similar to that of an idea fluid. The energy density is then

1
e = 25 2 + V(#) (2.20)

2

for a potential V(4), in a region where #b is homogeneous. The pressure is

1P= _2 -V(k). (2.21)
2

Since we wish to achieve P ~ -c (refer to previous section), the scalar field has

the desired equation of state if V(O) > 0 2 .

A discussion on which potentials can actually provide us with slow roll inflation

involves the study of homogeneous classical fields in an expanding background, but the

equation for this field can be derived easily. Consider an expanding sphere of volume

V, in which the pressure P does work. According to the first law of thermodynamics,

the change in total energy dE must be equal to the work:

dE = -PdV (2.22)

But E = cV, so

dE = cdV + Vd = -PdV. (2.23)

Since V - a3 , we can write dV = 3a 2 dA and substitute in the second equality of

(2.23) to obtain

dc = -3(c ± P da (2.24)
a

Differentiating with respect to time and substituting H = &/a, we recoup the ho-

mogeneous, isotropic universe version of the energy conservation equation Tj = 0,
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namely

E = -3H(c + P). (2.25)

Thus armed with a differential equation for the energy density, we can substitute

(2.20) and (2.21) in our conservation expression and obtain

+ 3H$ + OOV = 0. (2.26)

All we have left to do to, in principle, is to write H = (}k2+ V(#)), where we

took G = 1 and k = 0.

As an example, consider the simple potential V = lm4 #A. This potential was

chosen randomly, but as James Joyce wrote, the best things in life axe random. Now,

substituting, we get the closed form equation + 127r ( 2 m44) + m4 $3 = 0.

This does not look very friendly, but we can reduce it to a first order differential

equation for (#). Since e = q ,we could rewrite the second order equation as first

order and use phase plots to study its behavior.
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Chapter 3

Hybrid Inflation and Seeding

3.1 Hybrid Inflation

3.1.1 Hybrid Inflation Preliminaries

We have discussed, in some manner of generality, the characteristics of inflationary

mechanisms. The beauty of inflation, in a way, is how general it is. It specifies no

particular Lagrangian, which is a good thing for imaginative physicist. And yet we

have not attempted to draw a logical link between primordial black hole production

and inflation, mostly because doing so requires both specifying Lagrangian, perhaps

despite our better nature, and performing a large amount of work, much of which is

still the subject of research today. Let us now try anyway, using hybrid inflation as

our particular brand of inflation.

Hybrid inflation [8] differs from what we discussed in chapter 2, because it com-

bines, along with the usual slow-roll field, a "timer" field, whose job it is to change

the slow-roll field potential (we'll call it "waterfall" field from now on) such that at

some point in time the local vacuum turns into an unstable point. Thus the waterfall

field "falls down" to a new minimum, where we declare inflation to end.
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3.1.2 Hybrid Inflation Dynamics

We now have at least two fields to play with. We assume a fixed background de-Sitter

space. As we have illustrated in the previous chapter, this is not a bad approximation.

The first field to consider is the slow-roll field 0, termed "waterfall" by physi-

cists/poets. Typically speaking in single-field inflation, the mass term in the La-

grangian would be time-independent. But as we described before, we make it explic-

itly time-dependent. The Lagrangian for # becomes[9]

LO = e3Ht [I 2I - e 2 H tIV012 
- m2 2t)IkI2 (3.1)

Note that the exponential prefactor comes from the fact that the V - a3 in 3 dimen-

sions. As well, we note that 0 must be complex, since as a single-field it is liable to

creating domain walls.

To make the time-dependent mass switch sign, we use the general form

m2 (t) = m2 [ - ( ))](3.2)

where V' is the timer field and we have chosen r = 4. The Lagrangian for 0 is

W, = ~e3Ht 2 _ -2H
t  2 _ 2,

Since the dynamics only care about derivatives of Lagrangian, we can add a constant

V, which we could take to be large so that variations in H during inflation be small.

We can now express the equations of motion, in a manner similar to (2.26). For

the waterfall field, we have

+ 3H - e- 2HtV 2 0 + mn2(t)o 0, (3.4)

while the timer field behaves as

+3H4 - e- 2HtV 2 + m2,4= 0. (3.5)
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We do not require * to depend on position, so we can just as well take V4 = 0.

We can then solve (3.5) if we specify as initial conditions that 0(t = 0) = '0, and

m2(t = 0) = 0. We obtain:

$(t) = e(-3/2±9/4-m/H2)Ht (3.6)

The form of this solution suggests rescaling the masses in the same way as time is

rescaled such that the number of e-folds N is equal to Ht. We define pu = mo/H

and f.p0 = pg/ H.

3.1.3 Mode Expansion

We will need to consider numerical calculations rather than analytical solutions to

tackle this problem. We consider a finite cubic box of length b, whose size is measured

in units of 1/H, subject to periodic boundary conditions and a discrete spatial lattice

with Q3 points (we go from 0 to Q - 1 per dimension). Our lattice conditions become

X = 17 (3.7)

= -n, (3.8)

where the vector 1 = (w, ly, l) indicate our lattice position and n' = (nt, ny, nz) does

the same for k-space and the integers ni go from -Q/2 to Q/2 - 1.

We can expand 0 in modes u(k, t) in momentum space in the following way:

#(, t) = b 3 c(Q)ei1 u(i, t) + dt(k)e-u*(k, t) , (3.9)

where c(k) and dt (k) are the creation and annihilation operators. Going back to (3.4),

we substitute in our mode expansion to get a differential equation for u(k, N) rather

than #:

ii(k, N) + 3t(k, N) + e- 2 N 2 u(k, N) - p2 (I - eP oN) u(k, N) = 0, (3.10)
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where we have rescaled I = kIk/H and an overdot means a derivative with respect to

the rescaled time N.

We can transform this equation to be explicitly in terms of the amplitude R(k, t),

which is defined such that the solution to (3.10) is written

1 -

u(k, t) = R (ki, t)elG(t). (3.11)
2kH

This allows us to separate the equation in a real and an imaginary part, and we get

an equation for the amplitude

ft - R 2 + 3 +e 2N 2 R - p (i - e-P) f = 0. (3.12)

This equation is coupled to 0, which is unpleasant. We can remedy the situation

by integrating the equation for the imaginary part and comparing to the early time

behavior of the analytic solution (see Son). Thus uncoupled, we can rewrite (3.12) as

2 e-6N
f + ft 3  + 3R + e-2 NkR - p (I - e 0N) f = 0, (3.13)

which is the equation we tackle numerically using a fourth-order Runge-Kutta. Solv-

ing (3.13) is delicate, however, because setting up the initial conditions is non-trivial.

We know from the analytical solution at early times that R(N -+ -oo) -+ e-N.

But we need to start numerical integration somewhere finite, and we would like to be

able to do this without sacrificing too much in terms of accuracy. We therefore "refine"

the far-past condition by adding extra terms 6R(N) such that R(N) = e-N + 6R(N),

and we can start integrating when the expansion starts to violate the desired accuracy

bound.

We can obtain an expression for 6R by substituting R(N) with the correction into

(3.13) and then Taylor expanding. Rearranging terms, we get

2 N -N) e-2N 3 5
__ N 6 ~ 3 6 1i?2e&N)± 3eft e 26R = 4k 2  -4e2- ( e- 2 2 6R
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We now expand JR in powers of IL' and eN and write correction terms 6Rj as the

ith order correction in p and the jth correction in eN. We found expressions for

various correction terms, up to JR65 = 15pL0'18 (1 - e-"P 3 . We also repeated

this process for the phase 0. We then plotted each term in the expansion in order

to identify the smallest one, which we reserve to use as a criterion. We follow then

follow the expansion until the criterion becomes larger than the accuracy bound.

From there, as we discussed earlier, we can integrate to our heart's content. We have

plotted R for various k and for p = 18 and pL = 1/18 in 3-1.

3D Mode Functions
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-21
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Figure 3-1: Mode functions R as a function of e-fold number, taking go = 18 and
po = 1/18. The pale blue is for k = 256, the green is for k = 64, the gray for k = 1,
the red for k = 1/64, and dark blue for k = 1/256.

The dark blue curve represents k = 1/256 and switches behavior to rapid growth
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first. The other curves represent each a greater k value, up to the powder blue curve

where k = 256. Note that for early times, all curves converge, which we expected,

and for late time the behavior is independent of k, which we also expected.

3.2 Perturbations

3.2.1 Time Delay Formalism

The field # is quantum mechanical, so we expect some degree of quantum fluctuations

to occur. Exactly how much depends on the inflationary model used and what it is

precisely that we take to fluctuate.

For the moment, let us consider some moment, towards the end of inflation. The

field rolls down towards the vacuum. Crucially, however, position-dependent pertur-

bations to the field will lead it to reach its minimum in a given region at a slightly

different time than in another region, where the perturbations are different. Because

the region ends up inflating more -or less- its density will be different. The idea of

a "mapping" of end-of-inflation time differences with density perturbations is called

the "time-delay formalism", and was pioneered by A. Guth. and S.Y. Pi in 1985[10].

We make abundant use of it here.

To see how this works, we make use of (2.26). The real equation of motion for the

scalar field # has a Laplacian piece in it, but because it is multiplied by a- 2 = e-2N

it becomes negligible at late times. Let the classical homogeneous solution to # be

0o(t) and write the full solution as the sum of the classical part and a small, space-

dependent perturbation JO(, t), i.e.

(, ) = #0 (t) + ( , t). (3.14)

We then substitute this expression into our equation of motion. To first order in 6#,

we get

b+ 3Hk#+ 0 -60. (3.15)
M0o
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We can also take the time derivative of the equation of motion for 0 to get

qO5 + 3HoJq -- V = 00 d&V (316)dt qo Ot d$ 0 &(0

which means that 6 and qO follow the same differential equation. By analogy to a

spring, we also see that the presence of a "damping term" implies that at late times,

Jo oc o, so we write

JO(-, t) = 6T(Y)5 0 . (3.17)

This is almost what we want. We finally take this expression to first order in 6T and

find that

(i, t) -+ 'o(t - 6-r (y)). (3.18)

This result is quite powerful. It means that our quantum field #, at late times,

behaves like the homogeneous classical solution, up to a time offset which depends

on position.

3.2.2 Direct Integration Method

In the literature, most calculations of density perturbations have involved further

numerical calculations, usually of the Monte Carlo type. The M.I.T. hybrid inflation

group, made of Alan Guth, Evangelos Sfakianakis, Illan Halpern, Matthew Joss, and

the author, has been working since Summer 2012 on developing an alternative that

does not require a classical trajectory.

As a first step, recall that that the mode functions, for late times, all behave

similarly and exponentially in time. We write formally that

u(k, t --+ o) ~ e otuQi), (3.19)

where u(k) does not depend on time. To find A, we go back to (3.13) and assume

that pz, is small and that N is large but not enough to completely cancel the last
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term on the right. We cancel the dependence on k and get

5+ N 2 (1 - e-A2 NR + R - o 0 R=O.(3.20)

Because of the slow exponent multiplying the R term, we treat it as a constant and

solve (3.20) as a linear, homogeneous second order differential equation using the

model solution R(N) = RoeAN, which yields

A + 9+ 4i ( - e N) (3.21)

where we have neglected the negative solution because it only remains real for small

p4.

We care about the end of inflation, however, so the exponential part grows larger

and move negative for larger N, which results in

3 1
A0 = 2 9 4g. (3.22)

Now, we need to define a few quantities of importance. We define

qrms ( 0 (x, t)5*(x, t)10) (3.23)

as the root mean square value of the waterfall field, evaluated on the Bunch-Davis

vacuum. The use of this vacuum state is justified, because we assume the interaction

of cosmological perturbations are strong enough to drive excited states towards the

vacuum. To be absolutely sure, we would need to actually calculate decay rates and

show that they are not too suppressed by the Planck mass or a slow-roll parameter.

We make no attempt whatsoever at proving this and instead motor on with the

Bunch-Davis vacuum.

We now insist on defining the end to of inflation as the moment where tkrms reaches
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kend. Since all late modes more or less grow at the same exponential rate, we find

( = (. (3.24)

We can solve for the time delay and rescale by the rms field (Y, t) = to obtain

Jt(y) = nIn (Y, t)12. (3.25)

From here, we write the two-point function, which is the Fourier transform of the

power spectrum, as

(6t(Y)6t()) = lnIkn(i', to)12 In|0(6,t0)|2). (3.26)

Next, we decompose (Y, t) = X 1 + iX2 and k(G, t) = X 3 + iX 4 , where the Xs are

real. Since we have, in this case, a free field theory, we take the Xs to be random

variables in position following a jointly Gaussian distribution, where the probability

density is

11
p(X) = exp XTE-IX (3.27)

47 2 det(E) 2

where Eii is the correlation matrix (X2Xj). Our two-point function therefore becomes,

in this language of jointly-Gaussian distributions,

(ot()t()) = l In (X1 + X2 ) In (X3 + X4 ) exp 1X T E-7X dXi. (3.28)
_= 1672A2N/det(E_) (2

This looks somewhat promising, but we have yet to evaluate E = (XX). To do so, we

go back to (3.9) and use the commutation relations for the creation and annihilation

operators and work out the expectation values, which turn out to be

0 A 0

01 A2

0 'A 0A(.9

2,
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where A = 1 u(0) 12ei;.

To ease our way in evaluating the integral, we use polar coordinates variables

(ri, 0j) such that X 1 = r 1 cos 01 , X 2 = r, sin 01, X 3 = r 2 cos 02 , and X 4 = r2sin 92.

Further, we change the angular variables to 0 = 01 - 02 and 9 01 + 02, and the

radial variables r 1 = r cos q and r 2 = r sin 0.

This gerrymandering of the variables was not for show. Let's see what we get:

)= 1d do sinf(2)
rA2 (1 _ 4A 2) ] ] 0 (3.30)

r 3 ln(r cos q) ln(r sin k) exp r (1 -2A sin(2)cos) dr.
Jo I 1 - 4A62 I

Lo and behold, we have managed to find a way to separate the radial integration.

Even better, however, is the fact that it can be done analytically:

r 3 In(r cos #) ln(r sin #)ed 2 dr = 2 [(- - 2)-y+ r2/6-

0 8a (3.31)

2 ln(cos 0 sin #) (-y - 1+ In a) + 4 ln(cos #) ln(sin

where -y ~ 0.58 is Euler's constant and a = 1--2Acos0sin(24). This is a fantastic result,1-4A2

because we have reduced the problem to integrating over 2 variables, from our initial

4.

3.2.3 Results

While we are able to graph the two-point function directly, of more immediate interest

to primordial black hole seeding is its Fourier transform, namely the power spectrum

83 r1/2

We graph the power spectrum for mass parameters ,p = 20 and p, - 1/20.

The reason for this relevance is that most sources in the literature relate conditions

for primordial black hole production directly to the curvature power spectrum. Indeed
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Figure 3-2: This plot was adapted, with permission, from a plot
gelos Sfakianakis. Graphed is the r spectrum, as a function of
Note the presence of a peak at around k = 10.

produced by Evan-
k in Hubble units.

it seems that, regardless of the particular flavor of inflation used, most authors agree

that some bounds on the curvature power spectrum are required in order to produce

primordial black holes.

Cosmologists, like David Lythe[11] who has worked extensively on related topics,

often quote Bernard Carr's 1975 paper[12] on the primordial black hole mass spectrum

as a starting point. Of course, this was written in the pre-inflation era, without the

subtleties of hybrid inflation in mind.

The author has spent a considerable amount of time trying to adapt Carr's ideas,

as Lythe and Takayama[13] have done in their own specific situations, to the specifics

of our formalism. The results were unsuccessful.

On the one hand, we can adapt the requirements that overdense regions, which
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we take to be spherical, have larger density than a critical value and constrain

4.V > f,>(3.33)to

where 6o is the initial density contrast upon horizon re-entry, and to and ao corre-

spond to the time and scale factor at that moment, while P = fpy is the equation of

state (which may change with time). We can therefore estimate that the curvature

perturbations Ro need to be at least of order unity, since f is.

This argument, however, is not foolproof. At the same time, we have not been

able to address the outer bound, namely the bound required to not produce a separate

universe. Takayama writes a condition based on bounds on the radial derivative of

R, but we have not managed to reverse-engineer its origins so as to see if we could

adapt it to our own purposes. All in all, what we are left with from the literature

is the notion that we need a peak in the curvature spectrum. This peak is found by

Takayama to be around k = 810 Mpc-1, but in the absence of greater insight as to

when the appropriate modes re-enter the horizon and condensate critically, we cannot

provide a scale to our k values, which are measured in units of H.
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