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Abstract
The relationship between drug resistance, changes in signaling, and emergence of an invasive
phenotype is well appreciated, but the underlying mechanisms are not well understood. Using
machine learning analysis applied to the Cancer Cell Line Encyclopedia database, we identified
expression of AXL, the gene that encodes the epithelial-to-mesenchymal transition (EMT)–
associated receptor tyrosine kinase (RTK) AXL, as exceptionally predictive of lack of response to
ErbB family receptor–targeted inhibitors. Activation of EGFR (epidermal growth factor receptor)
transactivated AXL, and this ligand-independent AXL activity diversified EGFR-induced
signaling into additional downstream pathways beyond those triggered by EGFR alone. AXL-
mediated signaling diversification was required for EGF (epidermal growth factor)–elicited
motility responses in AXL-positive TNBC (triple-negative breast cancer) cells. Using cross-
linking coimmunoprecipitation assays, we determined that AXL associated with EGFR, other
ErbB receptor family members, MET (hepatocyte growth factor receptor), and PDGFR (platelet-
derived growth factor receptor) but not IGF1R (insulin-like growth factor 1 receptor) or INSR
(insulin receptor). From these AXL interaction data, we predicted AXL-mediated signaling
synergy for additional RTKs and validated these predictions in cells. This alternative mechanism
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of receptor activation limits the use of ligand-blocking therapies and indicates against therapy
withdrawal after acquired resistance. Further, subadditive interaction between EGFR- and AXL-
targeted inhibitors across all AXL-positive TNBC cell lines may indicate that increased abundance
of EGFR is principally a means to transactivation-mediated signaling.

INTRODUCTION
Receptor tyrosine kinases (RTKs) are widely abundant and dysregulated in cancers, and
have been the focus of targeted therapies for several decades (1). Although inhibitors
targeting RTK signaling have shown clinical benefit in certain malignancies, the use of such
drugs is unfortunately limited because of primary (innate) or secondary (acquired) resistance
that renders therapeutics against seemingly appropriate targets surprisingly ineffective (2).
Often, striking initial benefits of such treatments are ultimately futile as a result of quickly
developed resistance and disease progression. Recently, activation of alternative RTKs as an
important resistance process has been identified (3, 4), although underlying mechanisms are
not well understood. Amplification of the targeted signal can also confer resistance,
particularly in vivo, where access to the tumor site by therapeutics may be limited (5, 6).

Another process involved in RTK inhibitor resistance is epithelial-to-mesenchymal
transition (EMT), a global program that endows epithelial cells with the ability to migrate
and invade surrounding tissue (7, 8). In multiple cancers exhibiting initial response to
targeted therapeutics, development of secondary resistance correlates with metastatic
potential, inva-siveness, and mesenchymal-like traits (9–15). Certain transcriptional,
posttranscriptional, and posttranslational changes that confer differences in growth factor
signaling, migratory capacity, and resistance have been reported (8,16–18). However, the
global nature of the EMT program indicates that integrative studies combined with
multivariate, systems approaches will be required to elucidate how these diverse changes
contribute to disease progression (19).

AXL, the gene that encodes the TAM (TYRO3, AXL, MERTK) RTK family member AXL,
is widely overexpressed in cancers and is predictive of poor patient outcome (20–28). Its
expression is induced by the EMT program (10, 28–32), and activation of AXL has been
linked to resistance to ErbB-targeted therapies (10, 30, 33). Although AXL can be activated
by binding its ligand, Gas6, it often appears to be activated in an alternative ligand-
independent manner (33–37). Given the prospect for AXL signaling as a potential
explanation for EMT-related ineffectiveness of RTK-directed therapeutics, we examined its
contribution to RTK-targeted drug resistance and investigated the potential underlying
mechanism.

Using machine learning techniques and multivariate signaling network analysis in concert
with public databases and our own targeted experiments, we identified AXL expression as an
exceptionally strong predictor of resistance to ErbB inhibitors. We discovered that triple-
negative breast cancer (TNBC) cell lines that had similarly high abundance of both EGFR
(epidermal growth factor receptor) and AXL were more sensitive to AXL inhibition than to
EGFR inhibition. Resistance of these cell lines to EGFR inhibitors with respect to viability
was accompanied by EGFR activation–induced transactivation of AXL in a manner that
amplified a subset of downstream signals that are important to invasive motility but are not
activated vigorously by EGFR itself. Exploring the mechanism for this resistance-related
signaling diversification, we found a correlation between the AXL-mediated lack of
response to RTK-targeted drugs and the physical association of AXL with those particular
RTKs as characterized by cross-linking coimmunoprecipitation. Indeed, we were able to
successfully predict novel AXL transactivation in RTK/ligand pairs by considering

Meyer et al. Page 2

Sci Signal. Author manuscript; available in PMC 2014 March 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



expression and association proclivity. Together, our findings offer new insights concerning
RTK signaling crosstalk involving AXL through a transactivation mechanism.

RESULTS
Classification of tumor cell lines identifies AXL as an exceptionally strong predictive
marker of resistance to ErbB-targeted drugs

Because activation of alternative receptors is a widespread means of resistance to RTK-
targeted inhibitors (3, 4), we used the Cancer Cell Line Encyclopedia (CCLE), a publicly
available data set of expression and drug response (38), to examine whether combinatorial
expression of multiple RTKs may be related to lack of response to particular RTK-directed
drugs. Although straightforward inspection of univariate correlation between expression and
drug response is a common approach for hypothesis generation, such an analysis is
confounded by broad-ranging expression correlations between genes, particularly genes
encoding proteins targeted by the inhibitor. The expression of a single gene may therefore
correlate with drug resistance through its correlation with expression of the drug target.
Pairwise comparison indicated that RTK expression is either significantly correlated or
anticorrelated as often as not (51% of RTK pairs at P < 0.05 significance; Fig. 1A and fig.
S1A). Therefore, we instead used all possible drug target RTK gene pairs as bivariate
predictors in a support vector machine (SVM)–based classification scheme (39) to identify
genes whose expression in combination with that of the gene encoding the target RTK
synergistically improves prediction of drug response. Briefly, SVM methods aim to find a
discriminating threshold based on “inputs” (in this case receptor gene expression) that
predict an “output” (in this case sensitivity to drug). By examining whether a set of inputs
can discriminate sensitive or resistant cells accurately, we formed hypotheses about whether
a particular receptor may play a causal role in drug resistance. As an initial control, the
expression of genes encoding the targets of each drug was used on its own to predict
sensitivity. To calculate significance for later comparisons, we combined this expression
measurement with a random vector, and the distribution of all such trials is shown (blue
area, Fig. 1B). This random vector additionally accounts for model performance because of
changes in the number of input variables. A more permissive control was created by using
solely the random data vectors in repeated trials (black area, Fig. 1B). Completely
randomized data did not necessarily predict half of the cell lines correctly, as a result of
asymmetry in the number of cell lines in each class (resistant or sensitive). Not surprisingly,
expression of the gene that encodes the inhibitor-targeted RTK was always among the
strongest independent predictors of drug response and was significantly more predictive than
only random inputs.

Given that drug sensitivity can be reduced by redundancy among RTKs, we tested whether a
model that considered the expression of the gene encoding the targeted RTK along with the
expression of a gene encoding another RTK was better at predicting drug response than the
model considering the drug target RTK alone. The predicted response to the ErbB-targeted
drugs lapatinib and erlotinib was significantly improved by considering AXL expression,
whereas the prediction of response to the IGF1R (insulin-like growth factor 1 receptor)-
targeted drug AEW541 was not substantially improved (Fig. 1B). The expression of genes
that encode TAM ligands (such as Gas6 and protein S) or other TAM receptors (TYRO3,
MERTK) all failed to generate synergistic prediction improvement when combined with that
of the drug target RTK alone, with that of AXL, or with that of the drug target RTK and
AXL (fig. S1B). With respect to directionality, the classifier for sensitivity to the EGFR
inhibitor erlotinib using AXL and EGFR expression (fig. S1C) yielded the prediction that
EGFR expression indicates increased sensitivity, whereas AXL expression indicates
increased resistance (Fig. 1C). In contrast, univariate analysis predicted no relationship
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between AXL expression and erlotinib sensitivity (Fig. 1D). Methods depending only on
AXL expression likely do not capture a relationship because AXL and EGFR are themselves
correlated in expression (P < 10−32, Spearman correlation, from the CCLE), convoluting
simpler analyses as we argued above. This correlation additionally exists within clinical
tumors (P < 10−17, Spearman correlation, from the CCLE); however, our aim is not to
ascribe significance to correlation between the two receptors but rather to point out this
convoluting factor in univariate analyses (40). Our modeling therefore identified AXL
expression as a common marker for resistance to ErbB-targeted but not IGFR-targeted
therapies. Inhibitors that target MET [hepatocyte growth factor (HGF) receptor] and PDGFR
(platelet-derived growth factor receptor), for which sensitivity data are available, target
multiple receptor families; therefore, a meaningful analysis could not be readily performed.
Although AXL expression showed the highest significance in this analysis, that of EPHA1
and FGFR1 also exhibited similarly high significance (table S1). Expression of these genes
has been implicated similarly in resistance to ErbB-targeted therapies in breast carcinoma (3,
41).

Although AXL has been shown previously to confer secondary resistance to lapatinib and
erlotinib in other cancer subtypes, including HER2 (human epidermal growth factor receptor
2)–positive breast cancer and non-small cell lung cancers (30, 33), we focused on a role for
AXL in modulating the response of TNBC cells to EGFR-targeted drugs. Despite high
abundance and activation of EGFR in TNBC, EGFR inhibitors have not been efficacious on
their own, so discerning explanations for the lack of sensitivity could be important both for
understanding basic aspects of EGFR signaling and for potentially improving therapeutic
strategies. Because TNBC cell lines typically express both EGFR and AXL endogenously,
our model would indeed predict AXL-related resistance to erlotinib in these cells.
Extrapolating from the observation that inclusion of AXL expression improved the predictive
capacity of the model, we additionally reasoned that simultaneous inhibition of AXL and
EGFR would result in synergistic cy-totoxicity in TNBC and that these cells would be more
sensitive to AXL inhibitors than to EGFR inhibitors. We treated three such cell lines with
erlotinib and R428, a specific inhibitor of AXL, and confirmed that they are resistant to
EGFR inhibition and sensitive to AXL inhibition (Fig. 1E). Additionally, treatment with
R428, but not erlotinib, showed synergistic cytotoxicity with paclitaxel in a subset of cells
(fig. S1, D and E), consistent with previously reported findings that targeted RTK inhibition
can operate synergistically with DNA-damaging agents (42, 43). However, we were
surprised to observe a subadditive interaction between the EGFR- and the AXL-targeted
inhibitors in dually treated cells (Fig. 1E). Although these results validate the prediction of
erlotinib resistance in these cells, validation of AXL as the mechanism of resistance would
typically be expected to show synergy in the combined effects of erlotinib and R428.
Because subadditive interactions can indicate shared pathway components, we wondered
whether inhibition of one receptor might decrease the activity of the other. A second
possibility, in which two distinct cell populations exist—one in which both AXL and EGFR
are expressed and is sensitive to both drugs, and another in which neither is expressed and is
resistant to both drugs—would similarly explain our observations but not constitute drug
antagonism. However, single-cell analysis revealed neither distinct populations of cells nor
changes in receptor expression upon drug treatment (fig. S2).

AXL knockdown impairs EGFR signaling
To test our model, we probed whether AXL and other RTKs outside the ErbB family are
activated upon EGF (epidermal growth factor) stimulation. Using MDA-MB-231 cells, we
measured pan-phosphotyrosine abundance on immunoprecipitated receptors and found that
MET and AXL were phosphorylated after cells were treated with EGF (Fig. 2A). In contrast,
we did not observe phosphorylation of EGFR upon activation of AXL with an activating
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antibody, demonstrating that, although activation of EGFR can induce the transactivation of
AXL, the reverse does not transpire (fig. S3A).

Because the expression of AXL, but not that of the gene encoding its ligand Gas6, predicted
resistance to ErbB inhibitors (fig. S1B) and because previous studies have verified Gas6-
independent resistance effects of AXL signaling (33), we hypothesized that AXL may also
modulate signaling responses elicited by activation of other RTKs. To test this, we
transfected MDA-MB-231 cells with an siRNA (small interfering RNA) pool targeting AXL
(Fig. 2B) and then stimulated cells with EGF, TGFα (transforming growth factor–α), or
HGF and measured the phosphorylation of 11 downstream phosphosites. The surface and
total (Fig. 2C) abundance of other receptors were unchanged by AXL knockdown, and the
phosphorylated (fig. S3B) abundance was unchanged by treatment with R428. However,
nearly all downstream phosphosites were affected by AXL knockdown, either in control or
in growth factor–stimulated cells (Fig. 2D and table S2), indicating that AXL-dependent
signaling effects may be global in nature and emphasizing the importance of multivariate
analysis because of the limited use of focusing on a single signaling pathway. Similar effects
on the phosphorylation of two proteins were observed in cells treated with the AXL-specific
inhibitor R428 (fig. S3C), indicating that these effects depend on the kinase activity of AXL.
Western blotting for a subset of phosphosites quantitatively matched our ELISA (enzyme-
linked immunosorbent assay) measurements (fig. S3D). Attempting to directly stimulate
AXL with Gas6 did not elicit a substantial signaling response, and these signaling
consequences were small compared with EGF-elicited, AXL-dependent signaling effects
(fig. S3E). This observation is similar to results in other studies of Gas6-elicited signaling in
MDA-MB-231 (44). Why different cell lines display markedly distinct receptor activation
patterns to Gas6 remains a question for future studies (44–46).

To investigate the crosstalk between AXL and EGFR (as well as MET) signaling further, we
next examined the ratio of fold activation (phosphorylation) of various signaling proteins in
the absence versus presence of AXL (Fig. 3A). The unstimulated conditions represented
signaling network activity presumably arising from constitutive autocrine processes. This
analysis revealed more widespread AXL-dependent effects in EGF- or TGFα-stimulated
cells compared with HGF-stimulated cells, with the largest difference in activation observed
for GSK3 (glycogen synthase kinase 3) and Akt. Further, the relative magnitude of effects
across the phosphosites investigated was correlated between EGF- or TGFα-stimulated cells
and unstimulated cells but was not correlated between HGF-stimulated and unstimulated
cells (Fig. 3A, inset). These results suggest that AXL may mediate similar basal and EGFR-
stimulated signaling pathways in TNBC cells, whereas HGF yields a distinct downstream
AXL-mediated signature.

We then performed principal components analysis (PCA) to gain insight concerning the
network-level variation in signaling across these treatment conditions (Fig. 3B). Principal
component 1 (PC1) was found to correspond to EGF-induced signaling, and PC2 to HGF-
elicited signaling, with TGFα having an intermediate effect. Knockdown of AXL moved
cells negatively along PC1 and reduced the magnitude of the effect of EGF stimulation.
Examination of the loading plot revealed separation between phosphosites only mildly
affected by knockdown [for example, phosphorylation of STAT3 (signal transducer and
activator of transcription 3) and JNK (c-Jun N-terminal kinase)] and those strongly affected
(such as the phosphorylation of Akt and GSK3), with the rest scattered at intermediate
locations (Fig. 3C). Together, these data indicate that EGF and TGFα induce ErbB-mediated
downstream signaling that is qualitatively similar to basal signaling but is distinct from
MET-mediated signaling, and this baseline-like signaling is disrupted by AXL knockdown.
The difference between HGF and EGF, TGFα, and baseline signaling is likely a result of the
absence of signaling from EGFR, HER2, or AXL in the former case, because MET is
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presumably transactivated also in the EGF- or TGFα-stimulated cases. An appealing
interpretation is that autocrine EGFR ligand activity is constitutive and transactivates AXL.

AXL amplifies signaling in the EGFR-associated pathway but does not sensitize EGFR to
its ligand

Because receptor activation can be quantitatively characterized in terms of ligand
concentration–related sensitivity and maximal activation at saturation, we investigated how
AXL influences the dose response of EGFR to EGF. We stimulated MDA-MB-231 cells
with a range of concentrations of EGF and measured the pan-phosphotyrosine on EGFR and
the phosphorylation of Akt (Fig. 4, A and B). Phosphorylation of Akt was chosen for
measurement as a critical downstream signal that was strongly influenced by AXL
knockdown, though not to imply that all transactivation-mediated effects are regulated
through Akt alone (Fig. 3C). Phosphorylation of EGFR was unaffected by AXL knockdown
except at very high (above saturating) EGF concentrations (Fig. 4A), likely as a result of
altered trafficking or cellular processes induced at such nonphysiological amounts of
stimulation. Other receptor-proximal components, such as the adaptor protein SHC and the
CDC2 kinase, exhibited similar phosphorylation after stimulation at the EGF dose used in
the signaling studies here (fig. S4). In contrast, AXL knockdown affected the
phosphorylation of Akt in response to all doses of EGF by a shift in magnitude (“vertically”)
rather than in sensitivity (“horizontally”) (Fig. 4B). To deconvolve these concomitant
changes in the phos-phorylation of EGFR and Akt, we plotted the abundance of
phosphorylated Akt as a function of phosphorylated EGFR in cells treated with either
control siRNA or AXL siRNA (Fig. 4C). This revealed a uniform downward shift across all
stimulation amounts in the absence of AXL, indicating a consistent fold change in the
magnitude of signal transduction. Each curve could be well described to first approximation
by a Hill function, with comparable Kd (threshold of half-maximal activation) but markedly
different maximal activation (Fig. 4D). To identify the level at which this regulation may
occur, we fit these data to alternative models of signal transduction from the receptor layer
(see Materials and Methods). The data were best explained by a model in which basal and
stimulated AXL activities exist, the latter in proportion to EGFR activation and in which
transduction of both signals occurs through separately saturable processes (table S3). This
model is consistent with our biochemical observations (Fig. 2A). The effect of baseline
activation of AXL can be observed from the plot of phosphorylated Akt as a function of
pan-phosphotyrosine EGFR, where at low EGFR activation in the presence of AXL, the
phosphorylation of Akt was higher than a simple Hill regression would suggest (Fig. 4C).
Biologically, this indicates that the components downstream of the receptor are saturated by
maximal EGFR activation and that, at least with respect to phosphorylated Akt, the
transactivation of AXL increases the effective amount of RTK signaling and amplifies the
signaling consequence of stimulation.

Multipathway signaling correctly predicts AXL knockdown inhibition of EGF-stimulated
protrusion

We next asked how the broad effects on signaling that resulted from AXL knockdown might
influence the migration behavior of cells. We elected to use acute membrane protrusion as a
surrogate measurement of three-dimensional migratory capacity on the basis of our previous
findings that this assay corresponds well to growth factor–stimulated invasive motility
within extracellular matrix (47). Protrusion measurements from wild-type MDA-MB-231
cells were used to train a family of partial least-squares regression models for how
protrusion activity depends on multiple phospho-proteomic signals. Minimal models that use
only three signals were examined to ascertain the most vital pathway predictors for growth
factor–induced motility. We identified models that fit the data by cross-validation (Q2 > 0.6)
and found that these were enriched in inclusion of GSK3, STAT3, and Akt as the key
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predictor signals (fig. S5A). These models involved similar weights for the predictor signals
in both PCs, demonstrating consistency across the ensemble of top-fitting models in their
multipathway signaling-to-protrusion relationships (Fig. 5A).

This ensemble of models was then used to predict wild-type MDA-MB-231 protrusion by
cross-validation and to a priori predict protrusion modulation by AXL knockdown (Fig. 5B).
EGF-stimulated protrusion was predicted to be the most substantially attenuated response
after AXL knockdown, whereas HGF-stimulated protrusion was predicted to remain
essentially unaffected. These predictions were indeed correct in MDA-MB-231 cells
transfected with AXL siRNA: HGF-elicited protrusion was not significantly affected,
whereas EGF-elicited protrusion was significantly reduced (Fig. 5C). Treatment with R428
confirmed that EGF-stimulated protrusion depended on AXL-mediated signaling in another
TNBC line, MDA-MB-157, but that it did not in two other breast cancer cell lines, MCF7
and T47D, which lack AXL expression (Fig. 5D). The effect of R428 phenocopied that of
AXL siRNA treatment in terms of the protrusion response to EGF in MDA-MB-231 cells
(Fig. 5, C and D). TGFα-stimulated protrusion was also reduced in MDA-MB-231 cells by
R428 treatment, although to a lesser degree, which was in accord with our model predictions
(fig. S5B). These results indicate that along with amplification of EGFR-induced
downstream signaling, the transactivation of AXL additionally activates a qualitatively
distinct set of signals that are important for cell migration in response to stimuli. Moreover,
our three-pathway partial least-squares regression model successfully captured the integrated
effects of these signals on this phenotypic response.

AXL is in proximity to ErbB and MET but not IGF1R or IR
We investigated whether the transactivation of AXL (and MET) by EGFR might involve
physicochemical proximity of these RTKs. Because of technical limitations in capability for
distinguishing receptor colocalization by other methods (fig. S6, A and B), we used a
technique in which immuno-precipitation of cross-linked receptors from lysate was
performed in a multiplexed fashion on barcoded fluorescent beads. The degree of AXL
cross-linking with each of various other RTKs was quantified using an AXL antibody (Fig.
6A). Across multiple cell lines, we observed a significant degree of AXL cross-linking with
ErbB receptors, MET, and PDGFR but not with insulin receptor (INSR) or IGF1R (Fig. 6B
and fig. S6C). The amount of AXL cross-linking was roughly proportional to the abundance
of that particular RTK—with the exception of INSR and IGF1R, neither of which garnered
cross-linked AXL to a measureable extent (Fig. 6C). We confirmed cross-linking results
with reciprocal immunoprecipitation assays in MDA-MB-231, in which we observed the
association of AXL with EGFR but not with IGF1R (fig. S6D).

On the basis of these data, we sought a quantitative framework to understand the respective
amounts of complexing observed between AXL and each RTK across different cell lines.
According to fundamental stoichiometric considerations, the amount of AXL observed in
complex with a particular RTK in a particular cell line should be approximately the product
of the RTK abundance in that cell line, with proportionality described by coefficients
constituting (i) the cross-linking and protein loading efficiency and (ii) the antibody
immunoprecipitation efficiencies and extent of colocalization. With measurements of RTK
abundance and the amount cross-linked to AXL, we determined the remaining parameters
(see Materials and Methods) to provide a way to account for differences in receptor
expression when interpreting cross-linking data (fig. S6D). With this quantitative
formulation, we could then calculate whether the parameter characterizing AXL/RTK
colocalization deviated significantly from 0 for each RTK (Fig. 6D). Significant deviation
from 0 indicates colocalization. Despite IGF1R and INSR being substantively abundant in
various cell lines, the calculated likelihood that they localized with AXL was not significant.
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Although this parameter includes the efficiency of immunoprecipitating IGF1R or INSR, we
verified that these two receptors were detected with similar efficiency both by direct ELISA
of the same cell lysates and by quantification of a recombinant standard. We additionally
confirmed cross-linked immunoprecipitation between AXL and EGFR to the exclusion of
IGF1R by reciprocal immunoprecipitation in MDA-MB-231 (fig. S6E). Our quantitative
analysis framework ruled out the possibility that merely low abundance of IGF1R and INSR
was a trivial explanation for the absence of significant colocalization. We therefore conclude
that AXL is colocalized with ErbB, MET, and PDGFR but not with IGF1R or INSR.

The amount of EGFR-AXL complex was much greater in MDA-MB-231 than in other cell
lines, likely as a result of the differences in abundance of EGFR (Fig. 6C). MCF7 cells
transfected with AXL and treated with EGF showed no synergistic response characteristic of
receptor transactivation, consistent with the relatively little EGF-elicited signaling overall
(fig. S7A). We therefore considered whether we could predict the importance of AXL
transactivation induced by activation of RTKs other than EGFR. MDA-MB-453 cells have
large amounts of HER2 and HER3 in complex with AXL, so our notion would predict that
AXL signaling might contribute to a heregulin (HRG)–stimulated response in these cells.
We learned by direct test, using AXL transfection and HRG treatment, that this is in fact
observed (Fig. 7A and fig. S7B). We analogously predicted that the relative degree of
synergistic HRG-induced signaling should be similar to the difference in signaling between
EGF, TGFα, HGF, HRG, HBEGF (heparin-binding EGF-like growth factor), and IGF, if the
effect of clustering can be resolved from single RTK-specific effects. That is, phos-
phorylation sites that show synergistic activation should be relatively less stimulated by IGF
stimulation because IGF1R does not display comparable AXL colocalization. Indeed, the
magnitude of synergy induced by HRG and AXL signaling correlated significantly with
colocalized RTK-specific signaling (Fig. 7B and fig. S7C). This indicates that RTK/AXL
colocalization can predict RTK-mediated AXL transactivation and that this transactivation
leads to similar downstream signaling not obtained through activation of IGF1R or INSR.

DISCUSSION
Differential expression between two sets of cells or tumors is often used as evidence for the
functional significance of particular genes but ignores the intricate correlation present
between genes that can lead to spurious associations in targeted studies. We interrogated a
large publicly available data set derived from cancer cell lines to examine the role of
receptor expression in resistance to RTK-targeted therapeutics and found that AXL
expression synergizes with expression of the gene encoding the targeted receptor when
predicting resistance to erlotinib and lapatinib. However, as a result of co-expression of AXL
and EGFR, this relationship could not be clearly identified by univariate analyses. Although
activation of AXL has been implicated in resistance to ErbB inhibitors in both lung cancer
and HER2-positive breast cancer (30, 33), our analysis suggests that AXL expression may be
a common marker of EGFR inhibitor resistance in TNBC and possibly in other subtypes of
breast carcinoma (Fig. 1B). Using dedicated experimental tumor cell cultures, we discovered
a synergistic interaction between ErbB and AXL signaling in which AXL transactivation
mediated by associated EGFR amplified the response of a subset of downstream elements,
quantitatively shifting emphasis of the downstream network across multiple pathways. This
diversification contributed in a critical manner to the migration and efficient proliferation of
TNBC cells in response to EGF (Figs. 1E and 5D). Moreover, we found that this
transactivation appeared to result from physical clustering interactions, which are
quantitatively restricted to certain RTKs depending on a combination of intrinsic “affinity”
and expression (Fig. 6, C and D). We also predicted additional RTK/ligand contexts in
which AXL synergistically amplified downstream signaling (Fig. 7).

Meyer et al. Page 8

Sci Signal. Author manuscript; available in PMC 2014 March 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Context-dependent physical interaction between EGFR and AXL has recently been
appreciated (48). Our data indicate that ErbB, MET, and AXL receptors exist in local
clusters on the plasma membrane, though do not distinguish between distinctly bound
complexes and diffusional proximity. Because IGF1R and INSR are the only receptors
examined here not found in complex with AXL, and IGF1R seems to be qualitatively
distinct in its inability to provide compensatory resistance, we expect that this clustering
may be important to the signaling that confers resistance (3). Clustering may arise as a
consequence of mutual interactions with the extracellular matrix, weak lipid interactions, or
shared scaffold interactions. Our observations along with previous reports are consistent
with the phenomenon that clustering leads to subsequent activation-dependent enhancement
of interactions after stimulation (48), with striking correlation between the receptors that are
activated in trans and their localization on the cell surface (37). Future work is needed to
perturb this clustering specifically and examine the extent to which such clustering is
required for resistance, trans-activation, and diversification of receptor signaling. If
clustering is required for these effects, drugs targeting the interaction mechanism may be
efficacious in counteracting this signal diversification, thereby bolstering RTK-targeted
therapy effectiveness.

These results carry clinical significance in the design of therapies targeting AXL and MET
signaling, particularly within TNBC. Subadditive cytotoxicity after dual treatment with
AXL and EGFR inhibitors suggests that the TNBC cells investigated here may be more
reliant on AXL or MET for downstream signaling than EGFR itself, and that the effects of
increased EGFR abundance may be in large part manifested by activation of AXL or MET.
If dispensable for survival, EGFR is still important for directing metastatic dissemination,
and our results suggest that transactivation may be important for promoting such an invasive
response (49). Activation by alternative receptors indicates that treatments blocking ligand
binding to AXL and MET, an area of active investigation (50–53), may not be effective in
blocking signaling from these receptors, and that inhibitors of their kinase activity or
treatments that reduce receptor abundance may be more effective (51, 54). Transactivation-
mediated signaling may additionally be a means of secondary resistance to MET or AXL
ligand-blocking treatments. In other carcinomas, EMT and the expression of AXL and c-
MET have been identified as a mechanism of secondary resistance to ErbB-targeted
therapies (30, 33). Crosstalk in these cells, particularly after ErbB-targeted treatment, is
halted because of RTK-mediated secondary resistance and may provide qualitatively distinct
signaling through new receptors, though in response to the original activating ligand.
Consequently, upon withdrawal of treatment, cells could respond to the original ligand with
a more invasive or aggressive phenotype as a result of the dynamic network rewiring that
created resistance (55–57). Finally, given the striking similarities in signaling and resistance
profiles of AXL and MET, as well as the observation that MET can drive AXL expression
(58), inhibition of both receptors simultaneously in drug design may be desirable.

Our work more broadly raises the implication that modulation of RTK expression may not
simply dictate response to stimulation by a receptor’s cognate ligand, but that particular
receptor pairs can communicate in a directional manner. Thus, cancer therapies targeting
ligand interaction may be circumvented by activation in trans, and quantitative changes in
inhibitor resistance may take place by amplification of signaling through other receptors.
Future work is needed to gauge the extent and exact molecular mechanism of interfamily
transactivation, the mechanisms of preclustering, as well as the exact signals that are
sufficient for therapeutic resistance through activation of alternative receptors.
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MATERIALS AND METHODS
Antibody reagents, growth factors, and inhibitors

EGF, PDGF-BB, and TGFα were purchased from Invitrogen. HGF, IGF1, HBEGF, and
HRG were purchased from PeproTech. Unless otherwise indicated, EGF and Gas6 (R&D
Systems) were used at 100 ng/ml. TGFα, PDGF-BB, HBEGF, and HGF were used at 50 ng/
ml. HRG was used at 80 ng/ml. AF154 (R&D Systems) was used at 900 ng/ml. Biotinylated
AXL detection, capture, and activating antibodies were purchased from R&D Systems.
EGFR, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), EGFR pTyr1173, EGFR
pTyr1068, EGFR pTyr1045, SHC pTyr317, Cdc2 pTyr15, ERK (extracellular signal–regulated
kinase) pThr202/pTyr204, Akt pS473, and α-actinin were used for Western blotting and
purchased from Cell Signaling Technology. AXL (Santa Cruz Biotechnology) and Cav1
pTyr14 (Sigma) were also used for Western blotting.

R428 was purchased from Synkinase. AXL SMARTpool ON-TARGETplus siRNA,
nontargeting SMARTpool ON-TARGETplus siRNA, and DharmaFECT 4 were purchased
from Thermo Scientific. Lipofectamine 2000 was purchased from Invitrogen.

ELISA-based signaling measurements were performed according to the manufacturer’s
instructions (Bio-Rad). In all cases, pERK is ERK1/2 (pThr185/pTyr187, pThr202/pTyr204),
pGSK3 is GSK3α/β pSer21/pSer9, pJNK is JNK pThr183/pTyr185, pP38 is P38 pThr180/
pTyr182, pcJun is c-Jun pSer63, pHSP27 is HSP27 pSer78, pIRS1 is IRS1 pSer636/pSer639,
pSrc is Src pTyr416, pSTAT3 is STAT3 pTyr705, pTyk2 is Tyk2 pTyr1054/pTyr1055, and
pAkt is Akt pSer473.

Lysis was performed with 50 mM tris-HCl (pH 7.5), 10% glycerol, 150 mM NaCl, and 1%
NP-40, with complete protease (Roche) and phosphatase (Boston BioProducts) inhibitors
added before use.

Cell culture
MDA-MB-231, MDA-MB-157, T47D, MDA-MB-453, SKBR3, and MCF7 cells were
cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. For knockdown, 5 × 105

MDA-MB-231 cells in a 10-cm plate were transfected with 125 pmol of nontargeting siRNA
or siRNA targeting AXL using DharmaFECT 4 according to the manufacturer’s
instructions. All further analysis was performed 48 hours after siRNA transfection. For AXL
overexpression, untagged AXL in pIRESpuro2 was transfected with Lipofectamine
according to the manufacturer’s instructions, and further experiments were performed 12
hours later.

Signaling analysis
Cells were seeded sparsely in six-well plates overnight and serum-starved for 4 hours in
DMEM with 0.35% bovine serum albumin and 1% penicillin-streptomycin. After starvation,
cells were stimulated with EGF, TGFα, or HGF for 5 min and lysed. Protein concentration
was measured with BCA (bicinchoninic acid) assay. When used, inhibitors were added upon
serum starvation.

Protrusion measurement
Glass-bottomed dishes (MatTek) were coated with 0.2% Matrigel in serum-free medium for
30 min. Cells were seeded sparsely overnight and serum-starved for 4 hours in L15 medium
with 0.35% bovine serum albumin. Inhibitors, when indicated, were added at the beginning
of serum starvation and present in the stimulatory bolus. Differential interference contrast
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images were acquired every 10 s for 1 min before stimulation and 9 min after stimulation.
Cell areas were traced immediately before stimulation and 9 min after stimulation with
ImageJ (National Institutes of Health). Single-cell information was aggregated from at least
three independent experiments.

Receptor cross-linking
For MDA-MB-231, 5 × 105 cells in 10-cm dishes were transfected with either siRNA
targeting AXL or a nontargeting control, and the next day, the cells were plated at identical
densities. Two days after transfection, cells were starved for 4 hours and cross-linked using
1 mM EGS for 30 min at 4°C. For MCF7, SKBR3, T47D, and MDA-MB-453, 50%
confluent 15-cm plates were transfected with 20 mg of AXL in the IRESpuro2 vector. The
next day, cells were starved for 4 hours and cross-linked using 1 mM EGS for 30 min at
4°C. Cells were lysed and normalized by total protein. Measurement of cross-linking was
performed by modification of a kit for total RTK measurement (Novagen). Briefly, lysates
were diluted twofold in assay buffer and incubated with capture beads for RTKs other than
AXL overnight. The lysates were then cleared, and the beads were washed with wash buffer
and then incubated with a biotinylated antibody for AXL for 1 hour. After washing again,
the beads were incubated with streptavidin-conjugated phycoerythrin for 30 min and then
quantified with a Bio-Plex 200 (Bio-Rad Laboratories).

Support vector classification
All numerical analysis was performed within MatLab (MathWorks). Cell lines were
classified according to their published drug response, measured as cell viability with
CellTiter-Glo after 72 hours, and expression (38). Microarray expression measurements
were processed by the robust multiarray average method as described in the original
publication. A cell line was considered resistant to the selected drug if its IC50 (median
inhibitory concentration) was reported to be greater than 8 µM. This cutoff was selected
somewhat arbitrarily because it was the maximum dose tested; however, other cutoffs
produced identical results. This method of classification largely agreed with classification
based on activity areas and EC50 (median effective concentration) values. Cell lines without
corresponding drug and expression measurements were thrown out.

As an initial control (blue region, Fig. 1B), the targets of each drug were used on their own
to predict sensitivity. The drug target was always among the strongest independent
predictors of drug response. To calculate significance for later comparisons, this expression
measurement was combined with a pseudorandom vector generated with the randn function,
and the process was repeated 104 to 108 times depending on the significance stringency
being tested.

Another control (black region, Fig. 1B) was created by using only the random data vector in
repeated trials. Prediction with the drug target was always significantly higher than with
only random data. Thus, with these controls, expression of another RTK was considered to
be predictive of drug sensitivity if a model of the RTK with the drug target was above the
95th quantile of the blue and black lines.

Classification was performed with the svmtrain function in MatLab using a linear kernel and
quadratic programming optimization method. A quadratic kernel or other optimization
methods led to qualitatively identical results. The probes corresponding to AXL and EGFR
expression were 558_at and 1956_at, respectively.

Synergy significance
The Loewe interaction model was used to evaluate synergy or antagonism (59):
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where D1 and D2 are the concentrations of the first and second drugs, respectively; IC50,1
and IC50,2 are the IC50 values of each drug; and m1 and m2 are a shape parameter for each
drug. Econ is the viability of untreated cells, and E is the viability of cells for the respective
drug concentrations. Viability data were normalized such that the maximum measurement
was scaled to 1, and Econ was set to be 1. Last, α is the Loewe synergy parameter, which is
negative for antagonism, positive for synergy, and zero for additive effects. Because of the
lack of analytical expression for E, the value of E was calculated with lsqnonlin by solving
for the value that minimizes:

Fitting was performed with the nlinfit function within MatLab with initial parameters
identified by inspection of the single drug data. Optimization was unconstrained but IC50
values were in all cases significantly positive, and all m values were significantly negative as
verification of effective fitting. Confidence intervals presented were calculated from the
empirically derived Jacobian with the nlparci function. Significance was separately verified
by jackknife (60).

Partial least-squares regression and PCA
Replicate measurements were averaged and each signaling variable was mean-centered and
variance-normalized before further analysis. PCA was performed with singular value
decomposition within the pca function. The first two components explained 83% of the
variance.

For reduced partial least-squares modeling, the output variable was assembled from mean
protrusion measurements for each growth factor, and the unstimulated condition set to 0.
Model reduction was performed by training models with all possible combinations of three
input variable sets. Three variables were chosen, as it was the smallest model size with
sufficient well-trained models to ensure robust variable enrichment. Model reduction with
larger reduced models produced qualitatively similar results. Each individual reduced model
was then used concomitantly, and the results were shown by displaying the average and SE
of loading values and predictions. As a result of variation in baseline signaling, predictions
for knockdown cells were taken to be the prediction for the knockdown and stimulated
condition minus the prediction of the knockdown and unstimulated condition.

Amplification modeling
Each model was fit with the nlinfit function. To ensure robustness with respect to initial
parameter selection, fitting was performed 100 times with randomly selected initial
parameters within the range of feasible values. ξ is 0 with AXL knocked down and 1 with
AXL present. [pEGFR] and [pAkt] are from measurements of pan-phosphotyrosine EGFR
and pAkt across a dose range of EGF. Models were compared using the corrected and
uncorrected Akaike information criterion denoted AICc and AIC, respectively (61).
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To fit data to a model in which activation of AXL is in proportion to EGFR activation, and
signaling integration is receptor-proximal, Eq. 1 was used:

For a model in which amplification of Akt activation with respect to a set amount of EGFR
activity, and AXL only affects this proportional relationship, Eq. 2 was used:

For a model in which no signaling effect from AXL exists, Eq. 3 was used:

For a model in which some baseline activation of AXL is possible in addition to
proportional activation, and signaling integration is receptor-proximal, Eq. 4 was used:

For a model in which Akt activated by AXL and activated by EGFR is summed with
proportional activation of AXL, Eq. 5 was used:

For a model in which no signaling effect from AXL through EGFR pathway exists, but there
is a baseline effect of AXL present, Eq. 6 was used:

For a model with only baseline activation of AXL, and signaling integration is receptor-
proximal, Eq. 7 was used:

For a model with Akt activated by AXL and activated by EGFR summed, with proportional
and baseline activation of AXL, Eq. 8 was used:
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Total receptor quantification
Total receptor amounts were measured with a bead-based ELISA (Novagen). For
quantification of AXL and MER, established ELISA antibodies and standards (R&D
Systems) were used. The capture antibody was conjugated to unconjugated beads (Bio-Rad)
and used in a multiplexed fashion with the other targets. Linearity of the assay was validated
during measurement by dilution series of both the lysates and standards.

Each cell line was seeded sparsely, and the next day was starved for 4 hours and lysed.
Receptor measurements were normalized to total protein content to provide a receptor mass
fraction (that is, femtogram of receptor per milligram of cell lysate). This mass fraction was
used in all subsequent modeling. For receptor density calculations, a subconfluent plate of
cells was trypsinized the number of cells was counted and lysed and total protein was
quantified. This provided the conversion, for each cell line, from milligram of lysate to
number of cells. Combined with the known mass of each receptor, a value could then be
converted to number of receptors per cell. Finally, receptor density was calculated by using
the surface area of a HeLa cell [1600 µm2, BNID 103718 (62)].

Assay selection
To determine which methods might be suitable for studying such complexes on the cell
surface, we developed a simple statistical model to describe the background one might
expect given particular receptor expression, a characteristic distance for a particular assay,
and random distribution of receptors on the surface of a cell. The background of an assay
that gives signal when two receptors are within a particular distance has a background of one
minus the probability of colocalization occurring by chance, given by a Poisson distribution:

The average number of receptors at a density of n found within a characteristic distance of R
is given as:

Integrating these, the background B of an assay with a characteristic distance of R and with a
mean receptor density of n is:

and for a given amount of acceptable background, the maximal characteristic radius is:
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Cross-linking distance modeling
Tij is the amount of receptor i in cell line j. βj encompasses variation in the efficiency of
cross-linking and protein loading from experiment to experiment. αi encompasses variation
in the efficiency of antibodies for each receptor, and the amount of cross-linking between
AXL and receptor i. Therefore, the amount of cross-linking Xij from AXL to receptor i
within experiment and cell linej is modeled as:

The likelihood of each observation was calculated using the distance between the amount of
cross-linking predicted by a particular model and that observed as well as the SE for each
measurement (all cross-linking measurements were performed with four to six technical
replicates).

Constrained optimization was performed with αi ⊂ [0,1] and βj ⊂ [0,1] using fmincon within
MatLab. To assess confidence in robust cross-linking, individual αi parameters were
constrained as 0, and optimization was again performed. The difference in likelihood was
used for assessment of cross-linking. For the globally optimal solution, initial parameters
were randomly assigned repeatedly to avoid local minima. For constrained solutions, the
global optimum without constraint was used as the initial parameter state.

Receptor cross-linking immunoprecipitation
Three confluent 15-cm plates of MDA-MB-231 cells were cross-linked with 1 mM EGS for
30 min at 4°C and then lysed. The lysate was clarified by centrifugation at 16,1 00g for 15
min, and then precleared for 30 min with agarose resin. Lysate was then incubated with
protein A/G agarose and either an immunoglobulin G control, AXL, or IGF1R antibody
overnight at 4°C. The next day, the resin was washed six times with lysis buffer and then
incubated with 2 M hydroxylamine HCl in phosphate-buffered saline (pH 8.5) for 6 hours at
37°C. The resin was then removed and the supernatant was run on a reducing gel.

Fluorescence-activated cell sorting analysis
Cells were treated with 2 µM R428 in full-serum medium. Twenty-four hours later, cells
were trypsinized stained and immediately analyzed by flow cytometry. Dual staining was
performed with mab225 and AF154 (R&D Systems) for 1 hour on ice. Staining for each
receptor was performed separately when in conjunction with live/dead analysis. YO-PRO-1
and propidium iodide were used according to the manufacturer’s guidelines (Invitrogen).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Support vector classification to identify mechanisms of drug resistance
(A) Spearman correlations of expression for a subset of RTKs. Only statistically significant
correlations are shown (P < 0.01). (B) Classification of cell lines as resistant or sensitive to
AEW541, erlotinib, and lapatinib based on RTK expression. Classification accuracy using
randomized expression data (black), a model considering the expression of the gene
encoding the drug target receptor (blue), or a model considering the expression of both the
gene encoding the drug target receptor and that of AXL (dotted line) are shown. (C) Fraction
of cell lines that are sensitive to erlotinib after separation according to those that exhibit
greater or less than median expression of EGFR or AXL. (D) AXL expression probe values
for resistant and sensitive cell lines to each drug (**P < 0.01, Kruskal-Wallis test, n = 91 to
396 cell lines per grouping). FI, fluorescence intensity; n.s., not significant. (E) Dose-
response curves for R428 and erlotinib in three TNBC cell lines that have abundant EGFR
and AXL. Bars on the side indicate the range of viability between the highest and lowest
erlotinib dose to illustrate subadditivity (P < 10−6, BT549; P < 0.05, MB436; P < 0.01,
MB231 by Loewe’s synergy analysis; see Materials and Methods) between erlotinib and
R428. Data are means ± SEM from three independent biological measurements.
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Fig. 2. EGF stimulation transactivates AXL and MET
(A) ELISA-based pan-phosphotyrosine (pan-pY) measurement of alternative receptors after
EGF stimulation in MDA-MB-231 (*P < 0.05, Student’s t test). (B) AXL knockdown,
measured by ELISA. (C) Total and surface amounts of alternative receptors in AXL-
silenced MDA-MB-231 cells (*P < 0.05, Student’s t test). Data are means ± SEM of three
biological measurements. (D) Downstream signaling assessed by kinase phosphorylation in
MDA-MB-231 cells 5 min after stimulation with EGF, TGFα, or HGF in the presence or
absence (siAXL) of AXL. Each phosphosite was mean-centered and variance-normalized.

Meyer et al. Page 21

Sci Signal. Author manuscript; available in PMC 2014 March 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3. AXL knockdown attenuates downstream signaling in MDA-MB-231
(A) Ratios of fold activation after treatment with growth factor in AXL knockdown cells
relative to wild-type cells: ([siAXL GF]/[siAXL Unstim]) ÷ ([siControl GF]/[siControl
Unstim]). The unstimulated bar indicates the ratio of unstimulated abundance: [siAXL
Unstim]/[siControl Unstim]. Inset shows the Spearman correlation across all phosphosites
between the unstimulated and stimulated ratios (*P < 0.05). (B) PCA score plot of signaling
data after AXL knockdown. Line colors indicate stimulation conditions denoted in (A). (C)
Loading plot of signaling data after AXL knockdown.
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Fig. 4. AXL amplifies the EGFR signaling response
(A) ELISA of pan-pY EGFR in wild-type (siControl) or AXL-silenced (siAXL) MDA-
MB-231 after 5 min of treatment with varying EGF amounts. Data are means ± SEM. P <
0.05, Student’s t test. n = 3. (B) Phosphorylation of Akt in response to a range of EGF doses.
Data are means ± SEM. P < 0.05, Student’s t test. n = 3. (C) ELISA for the abundance of
pan-pY on EGFR versus the phosphorylation of Akt in MDA-MB-231 cells. Lines show a
Hill regression to each set of data with SE of biological triplicate measurements. (D) Hill
regression of each plot shows similar Kd values but significantly different maximal
activation (F test). Error bars indicate SE of the fit.
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Fig. 5. AXL signaling is required for EGF-elicited protrusion
(A) Mean loadings of the reduced partial least-squares regression models. The red point
corresponds to the projection of the phenotype. Error bars indicate the SE for the family of
reduced models. (B) Protrusion predictions from reduced partial least-squares regression
models for wild-type (by cross-validation) and AXL knockdown (by prediction) cells. Error
bars indicate the SE of prediction across the family of reduced models. (C) EGF-elicited
protrusion response of MDA-MB-231 cells upon AXL knockdown (***P < 0.001, Mann-
Whitney test; n = 13 to 25 from three independent experiments). (D) EGF-elicited protrusion
responses with or without 0.3 µM R428 (***P < 0.001, Mann-Whitney test; n = 17 to 35
from three independent experiments). MDA-MB-231 and MDA-MB-157 cells express AXL,
whereas MCF7 and T47D cells do not.
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Fig. 6. AXL colocalizes with ErbB receptors and MET
(A) Illustration of the multivariate cross-linking–mediated coimmunoprecipitation procedure
adopted. After ethylene glycolbis(succinimidylsuccinate) (EGS) cross-linking, cells are
lysed and incubated with identifiable beads targeting non-AXL RTKs, then with an antibody
for AXL to quantify the amount of receptor coimmunoprecipitation. (B) Quantification of
AXL in complex with the indicated receptor in MDA-MB-231 and MCF7 cells. To account
for possible antibody crosstalk, samples were always compared to those with AXL
modulated by either siRNA-mediated knockdown (siAXL) or exogenous expression (AXL)
in MDA-MB-231 or MCF7 cells, respectively. Data are means ± SE FI from six technical
replicates across biological duplicates; P < 0.05, Student’s t test. (C) Summary of the
relative amount of the indicated receptor found in AXL-linked complexes assessed by direct
ELISA (TOTAL) or cross-receptor measurement (XLINK) from each cell line in cross-
linked lysates. Data are representative of two separate experiments, each with technical
triplicates. (D) Relative likelihood of each parameter being 0 (no complex occurring with
AXL) for each receptor across all five cell lines.

Meyer et al. Page 25

Sci Signal. Author manuscript; available in PMC 2014 March 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7. Cross-linking predicts HRG-AXL crosstalk in MDA-MB-453
(A) Fold activation of downstream signaling after HRG stimulation in cells with or without
exogenous AXL expression. (B) For the effect of clustered receptors in MDA-MB-231, the
signaling measurement of IGF-stimulated cells was z score–normalized to the mean
measurement of EGF-, TGFα-, HGF-, HRG-, and HBEGF-stimulated cells. For synergy in
MDA-MB-453 cells (which do not normally express AXL), the ratio of fold activation after
HRG treatment in cells overexpressing AXL to that in cells that do not express AXL is
shown. P = 0.027, Spearman correlation.
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