111111
e
o

LIBRARY

THE PERTURBATION THEORY OF SOME VOLTERRA OPEREATORS
by
John Markham Freeman

BJsA+, University of Florlda
(June, 1957)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENT FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1963

Signature of Author. . eeeeseaee
" DeYartment of Mathematics, May 15, 1963

Certified by. res s s sessess e

Thesls Supervisor . ‘

Accepted by'....‘.’ VVVVVVVVVVVVVVVVVV LR IR B RN BN BN BN IR B Y

Graduaste Students



The Perturbation Theory of Volterra Operators
John Markham Freeman

Submitted to the Department of Mathematics on May 17, 1963 in
partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

ABSTRACT

A general procedure is derived for obtaining sufficient
conditions for the similarity of operators T and T + P, This
is applied to obtaln sharp conditigns for the similarity of
the Volterra operators J: f(x) = / f(y)dy and J + P where
P: f(x) =+ /Fp(x,y)f(y)dy. By the Same methods perturbations
of the one Sided shift operator 3 on 4P(O,®) by ocertaln trace
class opsrators P are shown to be similar to 3.

In the last chapter solvability conditions are obtained
for the operator equation
TX = X8 = A
where T and S are normal operators.
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INTRODUCTION

In {3 ] Friedrichs studies perturbations of the self-
adjoint operator T: f(s) - sf(s) on L2(a,b) by Fredholm
integral operators P with regular kernels. In order to de-
termine conditions on the perturbation P sufficient to en-
sure the similarity of T + P and the unperturbed operator T,
Friedrichs used a method which has since been abstractly formu-
lated by Schwartz {21] and applied to the perturbation theory
of a number of self-adjoint operstors.

In Chapters II and III of this thesis the perturbation
theory of certaln non self-adjoint operators will be approached
in a manner similar in broad outline to these methods of
Friedrichs=-Schwartz. Chapter II will be concerned with the
quasi-nilpotent Volterra operator "indefinite integration” on
1P(0,1), and Chapter III with the discrete Volterra operator
"shift right" on £P(O, ™) ,

In the paper of Friedrichs mentioned above it 13 assumed
that the kernel p(s, t) of the perturbing Fredholmoperator

b
(1) P: f(s) »~/, p(s, t) £(t)dt
be regular in the sense that HBlder conditions of order
a (0 < a < 1) be satisfied;
Ip(sq,t) = p(s,,t)] < Klsy= s,|®
(2)

Ip(s,t;) = p(s,t;)] < Kltq= t,]®
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It is then proved that T: f(s) - sf(s) 1is similar to the
perturbed operator T + P provided that |P| 1s small enough,

where

Ip(s,ty)=p(s,t,)] [p(sq,t)=p(s,,t)|
(3) |P| = suplp(s,t)]|+sup s - 2 +sup—2t aa’
|tl’t2| '81‘82'

The c¢rux of the method used in proving this result lies
in the observation that for & regular Fredholm integral opera-

tor A, the commutator equaticn

ey TT (A) = [(A)T = A

is solved by the singular integral operator,

b
(5) () £(s) = (o) /, 2128 £(5)at

(where (c¢) denotes the Cauchy principal value).

Chapter IV will deal with the solvability of (li) when
T 1is any normal operator--without restrictions as to type
and multiplicity of spectrum. A singular integral analogous
to (5) will be defined which solves (li) for operators which

are "regular" with respect to T.



CHAPTER I
SPACES OF REGULAR PERTURBATIONS

Let T and P be fixed bounded operators on & Banach
space. The operators T and T + P are said to be similar
provided that there exists a bounded invertible operator S
such that

T = s‘l(T + P)S .

In terms of the notion of a "regular perturbation of T" to
be formulated in this chapter, it will be possible to state
sufficient conditions for the similarity of T + P and the
unperturbed operator T.

The basic observation leading to the abstract notion
of regularity with respect to an operator T 1is the following.

If X simultaneously solves the two operator equations

(1) TX = XT = A

(2) A+ PX = =P,

then (I + X)T = (T + P)(I + X)« (This is seen by multiplying
out both sldes and collecting terms according to (1) and (2).)
Hence T + P 1s similar to T provided that I + X 1is in-
vertible (e.g. if ||X|] <1 or merely 1im "xn"l/h <1l).

In order to apply this observation gzmkhe perturbation
theory of T, one first determines a class ({ of "regular"

operators A for which the commutator equation (1) is explicitly



solvable by a bounded operator X = [ (A). In the following
chapters it will be seen that the operstor [ (A) 1is, as a
rule, "singular", i.e. does not belong to .

Now, having determined A and a map [~ from { into

the bounded operators such that
(3) T (A) = [ (A)T = a4,

the equations (1) and (2) then reduce to

(L) A+ Pl (a) = =P ;

any solution A ¢ (L of this equation also satisfies

(5) (1 + (AT = (T + P)[I + [(a)]

and hence T and T + P are simllar provided that
[T + l"(A)]"'1 exists,

In terms of the map
(6) [p: & =P (a)
equation (li) becomes |
(I + [pla=-pP

which is solved formally by the Neumann seriss

A= 3 (-1 GR-P) .
n=0

However, in order to make even the individual terms of

the series meaningful one must assume first that P € CZ
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(so that l; (P) 1s defined) and also that the "singular"
operator | (A) be "smoothed" by left multiplication by
Pe (I , 1., if Pand A e, then [H(8) =P[(a) e .
These considerations suggest the definition (below) of a space
of regular perturbations of an operator T,

Let T be a fixed (bounded) linear operator on a Banach
space A , and denote by B (X ) the Banach space of
bounded linear operators on X . Throughout ||°|| will de-

note the norm on B (X))

Definition 1.,1. A linear set ({ © 8 (X) 1s called

a space of regular perturbations (s.r.p.) of T 1if there

exists & norm |+] on ( and a linearmap [ : Q -» B (X)

such that

(a) ({ 1is a Banach space under ||

(b) T[(A) - [(A)T = A

(e) T < klal

(d) ir P, A e (, then P[(a) ¢ (Q and

1P ()] < K 17)14] .

In what follows a is assumed to be an sS.r.p. of T
and P ¢ ({ . The map [, given by (5) is then a bounded

operstor on (({ . Its norm and those of its iterates will be

denoted by ‘rl—,n" n= 1,2,000 .
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Proposition l.2. A sufficlient condition for the (unique)

solvability of’
(7) (I + [p)(a) = -p

for A t'CZ is that

1 |FPYR <1

n-¥we
Proof: If this condition 1s satisfied, then the series
ac
s (-1)% r;n converges (absolutely) in the operator norm.

n=0

Tts sum is (I + r;)'l

The following lemma (cf. [Q ], page 518) will be needed

several times in the next chapters.

Lemma 1.3 Let (S, %, 4) be a positive messure space and

k a measurable functlon on SxS with

ess-sup / |k(s,t)|u(dt) < M < » and
s S

ess-sup / |k(s,t)|u(ds) < M.
t S

Then Kf(s) =/ k(s,t) f(t)dt defines a bounded linear opera-
S

tor on ILP(S, %, W)(l < p < ») and HKHpsMo
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CHAPTER II
X
THE OPERATCR J: f(x) - /of(y)dy

In this chapter perturbations of the Volterrs operatar
J: f(x) - /i f(y)dy on Lp(O,l) will be treated. Sufficient
conditions which are In a precise sense sharp will be obtsined
for the similerity of J and J + P, where P is also & Volterrs

b
operator P: f(x) - /; p(x,y) £(y)dy.

81. Preliminaries

x
Given two Volterra operstors K: f(x) = /; k(x,y) £f(y)dy and

x
L: f(x) -~ /6 4(x,y) f(y)dy then (under restrictions to be

stated below on the kernels k and %) KL is the Volterre opersagtor

X
KL: f(x) =/, (k#%)(x,y) £(y)dy
where
X

(1) k#t(x,y) = /& k(x,n) %(n,y)dn .

To begin with we prove several facts concerning the compo-
sition ki*t, By 'kernel' we will mean simply a (messurable)
reel or complex velued function k(x,y) on 0 < y < x <1, For

(2) [kl o= sup [k(x,y)(x-y)"?
’ O<y<x<1l
X
Lerms 2.1. If [|k]| o < then Ki f(x) ~+/, k(x,y) £(y)dy
s
is a bounded operator on Lp(O,l) (1 <p =< *)and

Kl <2 KN o -



Proof: We have, immediately from (2),

x pd
esg-sup / |k(x,y)|dy < [kl « sup /s 4 -a
0<x<1 * 0sx<1 (x-3)
and
dx

1l
ess-sup /. lk(x,y)]|dx < ||k]| sup /. ——

1
and hence by l.4 we get ||K|fp <C Itklla’m with ¢ = /_ —%%E = %.
x

Lemms 2.2. If k and ¢ are kernels for which ]Iklla o 8nd
’

l,‘;“‘g’m < ®, then

I'k*£"a+ﬁ’w = B(Q’B),ik"a,mg,tllﬁ’m

(where B(a,f) is the beta function).

el 145w
(x-n)1"%(n-y) 1P

Proof: Since |[k(x,n) *(n,y)| <

it follows thet

dn
(x=m)1"% (ney)i™F

(x| 5 11Kl g ol 1411, /

1 at
© gl=a(1.4)i-P

"

1l l 14115 ooy

Since this last integral is B(a,f), this is equivalent to the

asserted inequality.

The following (known) facts will be used freely and with-

out explicit mention.
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(A) If k, %, and m are kernels with llklla - lltllﬁ o and
2 ’

l[ml[Y w 811 finite for some a, B, Y > O, then
H
(k4 )em = ke(Liem)

(BY 1If llklla and l"]lﬁ are finite, and K and L are the
Volterra operators defined by k and % respectively, then KL
1s 8 Volterra operator and 1ts kernel is ki4,

For a kernel k with llkl!a w < ® we define
b4
(3) k(n) = kitk#...%k (n factors).
' X
For example, the lterates of J: f(x) =/  f(y)dy are

X
(L) M:oex) » /1,30 £iy)ay

where

n-1
n - (x-
1M (x,5) = (Bl
Lemma 2.,3. If IlkHa,OO < © then

™ s el e,

(where TI' denotes the gamma function)..

Proof: This holds for n = l. Assuming Inductively that it

holds for n, we have by 2.2 ,'k(n+1)|](n+1)a w =
s

’lk(n)%k|,( < B(na,a) ,Ik(n)llna,wllk|'a,w

n+l)a,®

P ()" n+l _ r(a)n+l n+l
Mna “klia’m - P((n+1jay ,'k'la,m d

< B(na,a)
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Lemma 2.1i. If llklla s bthen the norms of the operators
’

X
B f(x) » /o M (x,y) £(y)ay

n
savisty ||| < —wpriddyey K2, -

Thus lim IIKPII;/h =0, 1.8., K 18 a quasi-nilpotent operator

n—»xo
on LP(0,1).
. 1 (n)
Proof: By 2.1, ||Kpl|p =z |k "na,w° By the preceding
(o))" n
lemma, this in turn is majorized by = v {fa Ilklla’m .
That lim HKnIIl/n = 0 now follows since 1lim l"(nm)l/n = o
N0 P r-sco

when g > 0.

Lemma 2,5. If kernels k and 4 are continuous on 0 <y<x<1
and IIkIIG’w, i|£llﬁ’m < ®, then kil is continuous on

0O<y<x<1l. Ifa+ §>1, then k¥t 1s continuous on

0 <y< x< 1 with k#t(x,x) = 0,
Proof: By the assumptions, k(x,y) = mXx = and
(x~y)
Lx,y) = X ~F where m and n are continuous and bounded on
(x=y)

0<y<x<1l, When y < x the variable change N = y + t(x~y)
gives

1

k*‘tf(x,y') - (x_y)a+B-l/ mlx,g+t(x-g) ln |2+t!x-z)‘g|dt
° (1-t)"72 7P

1
(x-y)a+ﬁ'1'/6 £(x,q)(8) at

L

Thus, if 0 <y, < x, < 1 and (x,¥y) converges to (xo,yo), then
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the number k#i(x,y) converges to k%L(xo,yo), by the dominated
convergence theorem.

For we have

lim f (t) = ¢ (t) when 0 < t <1
(x,7)(xy,3,) (%07 (%427,)
and |f )(t)l < constant /(1-t)1'a g1=F |

(x,y

That k#{ converges to 0 as (x,y) converges to (xo,xo) follows

also from the above expression for k#l providing o + g > 1.

Lemma 246 If k(x,y) 1s continuous on 0 < x<y<1,

kl(x,y) ='%§ k(x,y) and 4(x,y) are continuous on 0 < y < x < 1,

and 11311, oo 11115 o < =, then

IQJ

kiad(x,y) = klﬁﬂ(x,y) + k(x,x)4(x,¥y).

Q

X

Proof: For 0 <y < x

A

1,

kid(x+h,y) - ksd{x,y) _
h

x x+h
s Mz = k(X an gyan + £/ k(x,m)4n,5)an

h
y

x+h
s/, Hzhen) = Kxn) 4in y)an

As h - 0, the first integral converges to klﬁb(x,y) by dominated

convergence, the second to k(x,x)4(x,y) by continuity of the
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integrand (recalling that y < x), and the third to O since the

integrand 1s integrable, uniformly in h, in an interval about x.

§2. Solution of the Commutator Equation.

Let Cld (o > 0) be the class of kernels a satisfying

(i) a and a, are continuous on 0 <y < x <1
(11) a(x,x) = al(x,x) =0

(111) =a exists and is continuous on 0 < y < x < 1 and
11 - -
Hagylly o <

(The subscript 1 continues to denote differentiation with
respect to x,)

= 1 = 1(2)
By (1i) it follows that 8y = l"all and a = 1'% g4 and
hence, by 2.2,

|la
|lal] el e
a+2,° — ala+l)

(5)

11''q
l,atllloﬁl,mf' a

from this it is clear that |a| = ||a11||a » 18 & norm
2
(and not just a pseudo-norm) on Cza and that |°| is equivalent

nn Cﬁ to the norm

(6) lal, = Nl + Hayllo ot Hagll o -
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Proposition 2.7. Cz'a 1s a Banach space under I-Ia.

Proof: By the remark made above, it suffices to show that
aa is complete in the norm |*|. So let a" e aa be a

| *| ~Cauchy sequences

|a? - a®} = ||ar{1 - a?llla,w'» 0O as m, n=+0 .,

By the definition of ll-lla » this means that
9

[agl(x,y) - a?l(x,y)](x-y)1°a converges uniformly to O on

0<y<x<1l. Hence a?l(x,y)(x-y)l'“ converges uniformly

on 0 <y<x<1l toa function c(x,y)(x-y)l°°, continuous
and bounded there. Now setting a = 1(2)% c, we have a ¢
8y = ¢ and

n n
|e® = al = ||ay; - clla,w -0 as n = o ,

We now solve the commutator equation

(7) J(aA) = [(A)T =4

when A 13 a Volterra operator with kernel a ¢ CZ(I.

By the general remarks made earlier (7) becomes

(8) 1#[ (a) = [ (a)#l = a

if one assumes a solution to (7) of the form

X
(9) F(a): £(x) =/, [(a)(x,y) f(y)dy .
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Proposition 2.8. If a ¢ aa, then the kernel [ (a) defined by
22 7
(20)  [(a)(x,y) = 5555 /, a(8+x-y,8)df O<y<x<1

satisfies (8), is continuous on 0 <y < x < 1, and
||r'(a)||a’w < lala. Thus [ (&) represents a bounded quasi-
nilpotent operator [ (A) on IP(0,1) with ”r(A)pr. %lala.

Proof: Since ay and a,; are continuous on 0 <y + € < x<1
(e > 0) the Leibniz rule for differentiating an integral with

y
parameter can be applied twlce to /6 a(f+x=-y,2)d2, This gives

32 32
(applying either 37 °F 3y )

y
M (a)(x,y) = g/o all(8+x-y,z)dz + al(x,y).

From this follows the continulty of [ (a) on 0<y<xc<1

and

v a0l o
IT () (x,3) ] = /g —22e ag + [fay )] o (x-9)°

[} ( X"Y) -1

. Haglly e * Hegll 4w . lal
- (xey) 1= T (x-y) T2

and hence !Ir-(a)||a,w_§ |3'a .

Since
2

X y
1" (8) (x,¥) =/, anlzss /,, ale+n=y,2)ae]

v n=x
= =/, 81(2¥n-7,8)dE + a(n,y) |, .

y Y
a(x,y)1fo a1(§+x-y,§)d§ﬁ/oal(E,g)dﬁ-a(y,y),

]
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and
- x 3¢ M
| (a)#1(x,y) = /y anls753 /o a(E+x=-",8)dg]
. n=x
=/ a,(g+x-n,8)d8
o 1 ’ n=y
X y
=/, 8(8,8)a8 = /_ &) (8+x-y,8)ag
we have

X
l-z:-!"(a) - r_(&)’x‘l = a(X,S’) - J/‘y al(gsg)dg - a(y’y)'

But the last two terms vanish since a ¢ aa so that (l) is
satisfied by [ (a). The last assertion now follows directly

from 2.,

Remark. For a kernel k of the form k(x,y) = m(y)/m(x),
it can be shown that the commutator equation
k:[ (a) - [(a)#k = a

is formally solved by

[(a)(=x,y) = % 5—%;—, [/Z a(g+x~-y,8) ’—“%ﬁ%i'-ﬂ dg]

provided a(x,x) = al(x,x) = 0, By using this,
results analogous to those of the present chapter can be
obtained for Volterra operators K with kernels k of the

above type.
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§3. Solution of the Operator Equation A + P[ (A) = =P

For Volterra operators P and A with kernels p ¢ C{
and a ¢ aa the equation A + P[ (A) = =P 1s equivalent to

(11) a + px[ (a) = «p ,
1.5, to the integro-differential equation
x a2 y
a(x,y) + /y p(x,mM) [m /o a(§+n-y,§)d§]dn = -p(x,¥).
Lemma 2,9, If pe (d_ and be CZp, then
p# [ (b) e ao+g and

Ip % T ()5 < B(0,8) Ipl, I0ly «

Proof: Using 2.6 we differentiate p # [ (b) twice with

respect to x. This ylelds flrst

%‘i p*r(b)(X,Y) Pl*l—(b)(x,Y) + P(X,x)r(b)(X,y)

py*[C(b)(x,5)  (since p(x,x) =0),

and then

N

H

2= ps["(b) (x,7)

X Pu*]—(b)(XJ) + pl(x’x) l—(b)(x,Y)

]

pll*r(b)(x,y) (since pl(X,X) = 0)e

Thus by 2.5 and 2.8, p#[ (b) and (p-:’-l—(b))l = pl-::-r'(b) are
continuous on 0 <y < x < 1 and (p#[ (b))y; = pyy*[ () 1s
continuous on 0 < y < x £ 1. Three applications of 2.2 now

yield
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0% (0) H gypaz e < BUO%2,8) 1101l 5pp ol T (011
#0011 gagag 0 < BO+1L,8) 1Ipyllg,y ol IT(ONI
#0113 N gyg w0 = B(2,8) [Ipgyll ol TR,

Finally, using the fact that Ilf—(b)||g‘5 IblB and
B(Y,p) < B(o,8) when Y > 0, we get

'p*r—(b)lg.pa .f B(U’ﬁ) 'p'c 'blB

by adding the three lnequalitles.

The next lemma will give bounds for the norms of the

lterates of the operator

(12) l;;: a=+pi# [ (a)

Lemma 2,10, If p € ao and a ¢ aa’ then I;n(a) ea no+g

and

n
1528 | oy = R hsmayed IpI2 lal, -

Proof: Taking p =a and b =a in 2.9 ylelds

I15(8) | g < —sd8) p1, ol

(since B(0,a) = ['(9) M(a)/ I (v+a)).

Now assume lnductively that the lemma holds for n and take

g =nc+qg and b = f;n(a) in 2.9.
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Then r’g+1(a) = f;(b) ¢ a (n+l)o+a and

| Gn'l'l(a) ’

A

B(o,n0+a) |plg 1T7(8) [0y,

IA

n
B(o,no4a) |p,| | SLE=ELel|p " mJ

r(e)®*tp n+l
e 1o 1™ 1al,

the last inequality following by induction assumption.

Proposition 2,11, If p ¢ CZ a? then l';: a -+ pe:-[—(a) is a

bounded operator on a o and

nyl/n _
1im H; la 0

=0

Proof: By (2) and (6) it is clear that the norms |°|a in-

crease with a« Thus for a ¢ a, a

: I n+l n
”;-n(a)|a = '[;n(a)'(n+1)a .<. r G.n+ ) 'pla !a'ﬂ. ]

the last inequality being a special case of 2.10. Hence

[rr;n'a. < I"(a)n+1/ [ [(n+l)a] from which 2.11 follows since

lin P (nq)¥/®

nN~-<o

= o,
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8ls The Similarity of J + P and J.

Having now established the axioms l.1 for a’a’ we pass
to the question of similarity of the perturbed and unperturbed

operators.

Theorem A. If p € aa’ then the operators J and J + P,

where
y
J: f(x) —»/o f{y)dy
and

y
P: £(x) =/, p(x,y) £(y)dy
are similar on Lp(o,l) for any p with 1 < p < =,

Proof: By 2.7, 2.8 and 2.9, the class of Volterra operators

A with kernels a ¢ a a and

Al = la]

b4
[ (a): f(x) =/, [(a)(x,y) £f(y)dy

is a space of regular perturbations of J, By 2.11 and 1.2,
A+ P [(A) = «P is solvable for A with a ¢ (J , Biven P
with p € a o Since [ (A) 1is quasi-nilpotent,

a
(I + l-(A)]"l exists., Hence by the general considerations of

Chapter I, J and J + P are similar.

The preceding theorem can be strengthened by a procedure

used by Volterra-Peres [22] and Kalisch {9 ].
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X
Let G: f(x) d-/b g{x,y) f(y)dy Dbve a Volterra operator

whose kernel satisfies

(1) g(x,y) and gl(x,y) are continuous on 0 <y < x < 1

1
(11) g(x,x) > 0 and /; g{x,x)dx = ¢

(111) 4

3T g(t) and~%€ Ei(t) are continuous on 0 < t < 1.

where g(t) = g(t,t) and g,(t) = gy(t,t).
(1iv) gll(x,y) is continuous on 0 <y < x< 1l and

||gll||a,® < © where 0 <gqa < 1.

Corollary A': G 1is similar to c¢J.

This will follow easily from the next lemmas,

Lemma 2.12., Let G be as above with ¢ = 1, and set

x
r(x) = /B g(t,t)dt., Then 8.t £f(x) = £f(r(x)) is a bounded
non-singular operator on Lp(O,l). Moreover H = S;IGSr is

a Volterra operator whose kernel h satisfies h(x,x) =1

and the conditions (1) to (iv) above.

Proof: Since g(t,t) is continuous and > 0 on 0 <t <1,

-1

1
and /_ g(t,t)dt =1, m=r " exists and both r and m

are continuously differentiable:

ar _ dm _ 1
Ix = 8(x,x) and Fo = oy Yy e

Thus S, and S;l = S, are bounded operators on P(0,1)

1l 1l
(bounds < ll%%llm/p and ll%ﬁl'm/b respectively).



I1.15

Moreover, since

o1 m( x)
S.T6s, £(x) =/ g(m(x),y) f(m(y))dy

X
= /o glaty ity L9

H = “;IGSr is a Volterra operator with kernel
h(x,y) =-§%§%§}t§%§%) satisfying h(x,x) = 1.
Now

gl(m(x),m(y))
hl(X,Y) = - ey and,

g(nm(y))g({m(x))

1 [eyp(m(x),m(y))  gy(m(x),m(y))$E(m(x)T]

hy1(%¥) =< ~ 2 - ~ 3 .

g(m(y)) g(m(x)) g(m(x))

In view of the above expression for hl’ the continulty of h1
and dﬁi/ﬁt follows from the continuity of g, and dgi/dt.
Similarly, h11 1s continuous on 0 <y < x <1 by the assump=~

tions (i) - (iv) on g. To see that h,, satisfles the proper
growth condition at the diagonal, h,,(x,y) = O[——nl;I:E],
(x-y

notice that in the above expression for hll’ only the term
containing gll(m(x),m(y)) can be unbounded near x = y. But
by the assumption (iv) on 811 »
1

]

(m(x)-m(y))l'a which in turm

g1 (m(x),m(y)) = of

m( x

)
is O[—___-I:El since x-y = p(m(x))=r(m(y)) =‘/h(y) g{t,t)dt.
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Lemma 2,12, Let H be a Volterra operator whose kernel h

satisfies h(x,x) =1 and (1) to (iv) above and set

k(x) = exp /g h (t,t)dt. Then M : f(x) - k(x)f(x) is a
bounded nonesingular operator on Lp(O,l). Moreover,

Q= M;]'HMk is a Volterra operator whose kernel q satisfies
(1), (iv) and q(x,x) = 1, ql(x,x) = Q.

Proof: Silnce
-1 X5
M, THM, @ £(x) »/o E{% h{x,y) f(y)ay
Q 1is a Volterra operator with kernel
x
a(x,y) = h(x,y) exp[-/g h,(t,t)dt]
so that q(x,x) = h(x,x) = 1 and

X
q49(%,5) = [hy(x,y)=hy(x,x)n(x,5)] exp[=/ hy(t,t)at]
dﬁi x
qll(x,y) = [hll(x’y)-h(x’y)-a-t—(x) + Hl(x)ah(XQY)]exp[-J, l(t)t)dt]

Thus ql(x,x) = hl(x,x) - hl(x,x)h(x,x) = 0, That the proper-
ties (1) and (iv) hold for q follows from the above expres-
sions for q, q; and q,; &nd the assumptions (1) to (iv)

on he.

Proof of A': Multiplying by 1/¢, G can be normalized so

that /i g(t,t)dt = 1, Then by the lemmas, G 1is similar to

a Volterra operator Q whose kernel satisfies q(x,x) = 1,
q,(x,x) = 0, and (1) and {iv)s But then the operator P =Q = J
has kernel p = g-1 € Cz’a and hence by Theorem A, Q = J + P

is similar to J.
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$c. Applications.

x
The Volterra operator G: f(x) -/  g(x,y) f(y)dy 1is
similar to J 1if, say,

g(x,y) = oM (X=¥) (where A is any complex number)
or if
X )3'1
glx,y) =1+ 11;¥?7—- where $ > 2.

This latter example shows that J 1s similar to J + JB

when § > 2 where JB is the fractional integral operator

18,

X
f£(x) ""F]:(‘BT /o(x-y)ﬂ'l f(ylay .

By & result of Kalisch [11], J 18 not similar to J + Jﬁ
when B < 2. Thus Theorem A 1s sharp with respect to the

allowable algebraic singularity of P1q at the dlagonal,
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CHAPTER III

THE SHIFT OPERATCR

In the present chapter perturbations of the isometric

operator

s: (xo,xl,xZ’.‘O) g (O,Xo,xl,xz,ooo)

on ¢p(O,W) by certaln trace classs operators will be shown

to be similar to the unperturbed operator S.

§1. Preliminsries

With respect to the basis [ﬁn: n=0,1,2,...) where

4

by the matrix

o = (1,0,0,..0), ﬁl = (0,1,0,ees), etc., S 1is represented

o O©O ¢+ O
< =W O O
~ O O O

The matrix of the operator "shift left",

S (xo,xl,xz,...) -+ (XI’XZ"")
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is

ta o¥s
i

p .

<%

It is well-known thet 8§ amd S  both have norm 1 on
‘p(O,w) and satisfy S*s = 1 and SS* = El where E1 is

the projection

Elz (xo’xl’XZ"") - (O,xl,xe,...) .

More generally,

whers

En: (XO’xl’coi,xn,.oq)"’ (0,0,...,Xn,xn+l,...) .

The projections E are represented by the matrices

n
n-zeros
P i N
e :diag(O’O’ooc,O,l’l,l’ooo)

n

For an infinite matrix a = [anm] we define
(v o)
(1) laf = = e |
m, n=0 nm

and will denote by M the class of matrices a with [a]| < =,
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The metrices a € M represent bounded operators on 4p(0,®):

Az (XO’XI’XZ’.°°) - (yO"yl’y2’°") ’
Q0
y = b a X .
no oo nmm

As an operator on <42(0,®), A 1s of trace class (see [23]).

Its trace is given by

e o]

tr(A) = I
n=0

.

a
nn

Lemma 3.1. If a € M, then the serles

o0

z g*Kpgk
k=0
converges {(conditionsally) in the norm of E3(¢p); its sum
Y(A) satisfies llY(A)llp < |a] and is represented by the
matrix

v(a) = [er(3"Pas™] .

Proof: We first observe that the operation a - as shifts a

matrix left one column, and a - s%a shifts up one row. Hence

a -+ s*kask shifts s matrix k units diagonally upwards. Thus
N
the partial sums YN(A) = I S"'kASk have matrices
k=0

N, N
Yyla) = = ¥ Has¥ = [ T 4

k=0 k=0

I

n+k,m+k

Now to esteblish 3.1, we first show that Y(a) represents
s bounded operator Y(A) on *P(0,®) with IIY(A)I{p < lal.



We have
s Qo Q0
s, my) <sup £ ¥ Ja | = lal
sup % [tr(8TAST)| = P n+k,m+k! =
m>0 n=0 m>0 n=0 k=0 ’
and
[+ 8] m oo o0
*n
sup £ [tr(STAS )] <sup T I |a | = |a]
n>0 m=0 n>0 m=0 k=0 ntk, mtk

which, using 1.3, establishes the assertion.

Finally we show thet Yy (A) = Y(A) in the norm of B(tp).
To do this we observe that Y(A) - YN_l(A) is represented by
the matrix

Y(a) = Yy_q(a) = [tr(s N gty

and
[« o] J"N»{- N+ Qo Qo
#N+n, N+m '
sup I |tr(S AS )] <sup T Z Ja |
n>0 m=0 n>0 m=0 k=0 N+n+k, Ntmtk
QO a0

#N__N
= sup I I e | < [s"7as™|
n>N m=N k=0 = DHK,mrK

and (similarly)

(e o]
sup T |tr(s¥NRysNty) o

#N N
< |sas"| .
m>0 n=0 .

Hence (agsin by 1.3) we havse

[1¥a) vy (a1 < [s*NasN| .

But the latter converges to O s N -+ %, which proves the lenma.
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§2. Spaces of Regular Perturbations of S

For a matrix a ¢ M we define

(2) M(a) = s¥Y(a),

T (a) 1s thus the matrix of [ (A) = s*Y(A), 1.e. of the
operator
*k+lASk

T(a) = 2 s
k=0

Since Ils*llp = 1, we have by 3.1,

HT W, = ¥ < lal.

Proposition 3.2. [ (A) satisfies the commutator equation

sT7(a) =T (aA)s =4
1f and only if tr(AS™) =0 for n = 0,1,2,eee &

Proof: Recalling that S°S = I and SS" = E, We have

L

sTT(a) - T (#)s = E,¥(4) - s¥y(a)s

L

v(a) - s¥v(a)s - (I-E;)Y(A)

il

A =~ (I-El)Y(A).
But (I-El)Y(A) has as matrix

-

tr(A) tr(AS) tr{AS®) sos

(I-eq)¥(a) = 0 0 0

* L4 L ]

— —

from which the result follow immediately.
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Lemma 3.3« If p and a e M, then p| (a) € M and
el (a}] < Ipllal

Proof: By definition (1),

an ao a0

lpM(a)] = 2 2 |3 p, te(s*Fas™)|
n=0 m=0 k=0

x v o] a0 [e o]
=z 2 2 |p,l 2 |a |
n=0 m=0 k=0 DK 3=0 k+l+J,m+]
Qo [o 2] o0 Q0
= 2 2 Ipl 2 3]s 1
= n=0 k=0 "K' ‘m=0 J=0 ktl+]J,m+]
< lpllal &

We are now in a position to determine some spaces of regu-
lar perturbations of S. Let CZ,O denote the space of matrices
a € M whose entries vanish on and above the main diagonal,.

More genefally, Cz’a (a > 0) will be the space of a ¢ M
whose entries vanish on and above the ath sub-diagonal.

First, 1t is clear that the a q B8re Banach spaces under
the norm |*| of M., Moreover, since tr(as®), n = 0,1,2,...,
are the dlagonal and super-diagonal sums of the entries of s,

it follows from 3.2 that for a ¢ Qa’ T (a) surely solves
s[(a) = [(a)s = a.

Lemma 3.k 1r p e C{_ and beCZBthen pr(b)eam_ﬁ

and

Pl (e)| < leg, Pl vl
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proof: If be (l_, then the entries of [ (b) vanish on
and above the (p-1)"® sub-dlagonal. For [ (b) = s*¥(b) and
Y(b) has only O's on and above the ﬁth sub=diagonal when
b ¢ aﬁ (see 3.1)s Thus p[ (b) has entries vanishing on
and above the (a+§)th sub-diagonal, In particular p[ (b)

has only Ot's on and above the (Mﬁ)th row, Hence

p[ (b) = ©04p p[ (b) so the result now follows by 3.3.

We now investigate the bounds of the iterates of the

operator

[o: a=pl[ (a)

p

on aa.

Lemma 3.5. If P¢a° and aeaa, the I';n(a) el

and

no+q

n

IR < ETT ogpuepld lal

Proof: By 3.} this is true for n = 1. Assuming validity
for n and taking b = [;n(a) and B = nO+q in 3. gives

I;n-tl(a) = [; (b) ¢ a (n+l)06+q and

I @ < Vogn,1yougp! IT50(8)]

n+l
{ TT le pll faf .
k=1 K9*a

IA

As an immediate consequence of 3.5 we have
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Proposition 3.6. Let p e aa and H';nla denote the

norms of the powers of [_ as operators on the Banach space

p
A+ Then n
n
”_p 'af El|e(k+l)apl .

Hence a+p| (a) = -p 1s (uniquely) solvable for a e aa

provided that
n

1/n
= {lz;rl'e(k“’l)ap“ <1l.

N~¥0

§3. Similarity of S + P and S

We can now easlly deduce some sufficient conditions for

the simllarity of S + P and 3.

Theorem Be If p eQO and |p]| <%" then S + P and S

are similar,

Proof: |p] <%’ we have by 3.6 that H';nlo < |pl™ < (%)n .

Hence a+p| (&) = -p 1s solvable for a ¢ aoo Moreover,

lal < Ipl+lpl(a)] < (1+laD)Ipl < (1+]aD)3

so that |al <1, But then [I + T—(A)]'l exists, since
IH"(A)Hp < lal. Hence by the considerations of Chapter I,

S+ P and S are similapr.

Proposition B'y If p ¢ a 1 and p has only O entries be-

low a certain row, then S + P and S are similar,
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Proof: By assumption e,P = 0 for n large enough. Hence,

an
by 3.5, r;n(p) =0 for large n. Thus a = 3 (-1)0 r;n(-p)
n=0

is a finite sum and satisfies a + p[ (a) = =p. Moreover,
since p vanishes on and above the first sub-dlagonal and
below a certain row, the same is true of a. Thus I_(a)
vanishes on and above the main diagonal and below some row.
Such a matrix is nilpotent and hence [I + I"(A)]"1 exists.,

Thus by Chapter I, S and S + P are similar,

Remark. Theorem B refers to perturbations of s of the form

0 0 0 0 e 0 0 © 0.. ees ]
1 0 0 0 e Pio 0 0 0
84p = [0 1 0 0 e + 1P5g-Poy 0 o
0 0 1 0 oo p30 p32 p32 0 ese
[ . . ¢
. . B -

Stronger results can be obtained from 3.6 when the first sub-
dlagonal of s is not perturbed, i.s. when p ¢Cl  with

a > l. For then, Instead of the estimate

n n
1T, 1, =< Ipl

given by 3.6 when p e o (since e  =1I) we have

o

n
n
”-;, 'a = J;’]-_ '9(n+1)ap| .

But, since left multiplication by the projections & replace
the first m rows of p by rows containing only O's, we have

|%J'»0asn»® when a > 0.
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CHAPTER IV
THE OPERATOR EQUATION SX-XT = A

Introduction: In thils chapter we willl obtain sclvability

conditions for the commutator equation
(1) TX = XT = A
when T 1s a normal operstor on a Hilbert space H. The results
will apply equally well to
(2) SX - XT = A
when S and T ars both normal.
For two bounded (not necessarily normal} operators 3 and
T on H we defins
(3) OX = SX = XT
for X € EB(H). Then ) 1s a bounded operator on the Banach
space B (H).and, by a result of Kleinecke (ses [17]), has
as spectrum
() o(f) = o{8) = &(T).
For 0 one has the Dunford operational caleulus f - £({0)

defined by
1 -1
(5) £(0) = - é;i‘ésf(z)(CLz) dz

for functions f holomorphic on a neighborhood D of o(0),

A more useful representation of f£(0) 1is obtained by Rosenblum

(1713

(6) £(O)a = b / £(S=z)alz=7) "laz
" %6



Iv.2

where G 1is a certain neighborhood of o(T). In particular,
when O ¢ o(0), (6) gives the oxplicit inversion formula for

(7) Tla) = 5 / (3-2)"2a(2z-1) "taz,

In [8 ] Heinz shows that 1f T + T < b<a < S + S, then

0! exists as a bounded operator on B(H) and is given by
1 P tS, -tT
(8) OHA) ==/ e "Ae " dt
0
where the integral 1s absolutely convergent:
.S, =tT 1 1
(9) folle ae” " ||dt < 5(a-b)"7[[Al] .

We, on the other hand, are principally interested in
solving (1), 1.6« X = A when 8 = T. By Kleinecke's result
(L), O then belongs to the spectrum of O, so that 1 will
not exist as a bounded operator on B(H). Thus the above
formulas do not apply to the problem of inverting the commuta-
tor equation (1).

It is the object of this chapter to construct an opera-
tional calculus for O when S =T 1s normal and, from this,
deduce sufficient conditions for the solvability of X = A.
The explicit solution will have the form of a singular Integral
operator [ (A) analogous to (5 ) of page 0.2.

‘ By carrying through the analysis to include the case
S # T, we will also be able to formulate the guestion of ex-

istence of the wave operators
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(10) U, =w - 1lim oltS o-1tT
- trteo

in a new way. These are the unitary [or partial-isometric]
operators which implement the unitary equivalence of S and

T [or of their absolutely continous parts] in the Kato-Cook-
Rosenblum treatment of self-adjoint perturbations S =T + P
of a self-adjoint operator T.

In what follows operators X - SX and X - XT will be
denoted by S+ and T_. Using this notation we have
O=8,=-7T_. From (11),IV.10 below it follows that, as oper-
ators on the Hllbert space of Schmidt class operators, S+ and
T_ have as their adjoints (S_'_)':'f = (S’x‘)+ and (T_)* = (T%)_
gnd hence

o = (S*)+ N (T*)_ .

This implies that if S and T are normal operators on H,

then [0 1is normal as an operator on Schmidt class.

The goal of the next few sections is to calculate expli-

citly the spectral resolution of U in terms of those of S

and T.

81. Preliminaries on Rectangles

Given two sets Sl and 82’ the subsets of Sl x 52 which
are of the form ©&xY with 8 < S, and Y © S, will be called
rectangles, The symbol 'U' will denote a union whose summands

are palrwise disjoint.
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Lemma lL,l. If 8, x Y, and 5, x Y, are non-void, then a third
rectangle O6xY is their disjoint union,5xY=(61xY1)U(62xY2) ir

and only if
either 6 = 61 v 62 and Y = Yl = Y2
or 6 = 61 = 62 and Y = Yl V) Y2 .

Lemna lo2. (8xY)-(6,xY;) [(éﬂél)x(v-vl)lﬁt(é-él)xv]

Proofs: (See Halmos [5 ].)

Lemma li,3. If (6xY)ﬂ(61xY1) is non-void, then (GxY)-(Glel)

is a rectangle if and only if either & C 51 or Y < Y.

Proof: If & &, then (8xY)-(8,xY,) = 8x(Y=Y;) by h.2. The
argument 1s the same 1f Y C Yl‘

Conversely, suppose (6xY)-(61xY1) is a rectangle, If
6-8, # ¢ and Y=Y, # #, then lL.2 expresses this rectangle as
the disjoint union of two non-vold rectangles. Hence by li.l
we must then have either Y = Y-Y; or 5-51 = 80 8,. But this
is impossible since Y N Yy # 0 and 6§ N 8, # B (recall that
the rectangles 8xY and 51xYl were assumed to have a non-
vold intersection). Thus either 6-61 = ¢ or Y-Yl = ¢, and

this proves the lemma.,

Lemma lJi., The smallest rectangle containing a union U(61XY1)
i

of non-vold rectangles is the rectangle (Uéi)x(UYi).
1 i

Proof: (Straightforward.)
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Lemma .5 If Giin, 1 =1,2,3, are non~void pairwise dis=-

joint rectangles whose union 1s a rectangle ©&xY, then

(bxY)=(8,xY,) = U8 is a rectangle for some i = 1,2, or 3.

Proof: By li.3 1t suffices to show that elither & = 61 for some

1 orY= Yi for some 1.

We first show: 1f 68, N 63 # @, then either 8, © 63 or

6j < 8. For example: 1If 6, N &, # ¢ , then elther 3, < &,

or &, © 8;, Suppose, on the contrary, that 8 ¢ b, and

5, ¢ 8, and take x, © 61 - 8, and x, ¢ 6, - 3, Since

8, n 5, # ¢, we must have Y, N Y, = # (by the assumption that

8,xY; and 8,xY, are disjoint). Take y; € Y; and Yo € Yoo

3

Now by Ly, éxy = ( U & 4)x( U v,) and hence (x4,5,) and (x,,y)
1”1 1*1

belong to 8xY. But then, since xy £ 815 (X1,¥,) and (x,,¥;)

must belong to 53xY3. But this is also impossible.since, by

assumnption

= (83xY)N(8,xY,) = (8508,)x(¥,0Y,),

and hence either 53”5 = ¢ or Y3

(x1,¥,) # 8,xY; or (x5,y7) # 8;xY;. This contradiction es-

ﬂYl = g so that either

tablishes the assertion made at the beginning of the paragraph.

The analogous assertion holds for the Yi'

Case I: 51053 =f for 1 # jo Then Y = Y.+ For suppose

3
(see liay) o

Y € Y=Y;. Then (x,y) € 6xb for all x ¢ & =
1»1 "1
In particular (x,y) € 8xY for x € 51. But this 1s impossible

since x € &, implies that (x,y) g o >XY, and (x,y) 7 63xY3, and
y # Y, implies that (x,y) ¢ 81xYq e
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Case II: &; < 55 for some 1 and J with i1 # j, say

[ans 6§ = & 8 4] =
62 51. Then elther 1 or = 3 or Y Y3. From

the above we know that if 6, 0 63 # ¢, then either 8, © 63

(V)

C < =
or 53 51. Since 62 61 and 6 15161, 61 c 63 implies

that 6 = 53, and 63 < 6, implies that & = 61. Hence we can
assume that &, n 63 = ¢d. Then 6, N 63 = ¢ also, since

8 This implies that Y = Y For otherwise take

2 © 8o
y € Y-Y3.

for x € 63. But this is a contradiction, since x ¢ 63 implies

that x ¢ (51xYl)U(62xY2), and x £ Y3 implies that (x,y) £ 63xY3.

3.
Then (x,y) € %xY for all x ¢ & and, in particular,

It follows from the flirst part of the proof that Cases I

and II are exhaustive, so the lemma 1s proved.

§2. The Tensor Product E ® W().

Let [ denote the O-ring of Borel subsets of ﬁhe complex
plane © .+ A resolution of the identity on a Hilbert space
H is a function E(°+).on E} whose values are (orthogonal)
projections on H and which satisfiles

(1) E(®) =0, EC) =1

(11) E(6Né') = E(8)E(8') for all &, 8t ¢ B 1.e. if

R
= 5
5 € B ana 6 ngl . then

[v o]
E(8)r = 3 E(5n)f for every f € H.
n=1l

Let FK be the ring generated by the rectangles 8xY with
5, Ye¥® , 1.6, Y] 1is the set of finite disjoint unions of

Borel rectangles. If E(°*) and F(°*) ars resolutions of the
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identity we deflne the (bounded) operator E ® F(3xY) on
B(H) by

(1) E ® P(8xY)A = E(8)AF(Y).

Lemma L6, If O8xY = U (6 ) then

i=1

n
E®r(b6xyY) = Z E®F (6iXYi)’
i=1

Proof; If ©OxY = (61xY1)U(62xY2) then by li.1 we can assume
that, say, 0 = 6,08, and Y = Y, = Y,. We then calculate
directly

E(81)AF(Y)+E(8,)AF(Y) = [E(6,)+E(0,)JAF(Y) = E(8)AF(Y)

3
If 3xy = 1Ul(b xYs), then by y . we can assume that, say,
(62xY2)U(6 ) is a rectangle. Thus the case n = 3 follows

o]

by applying twice the case n = 2,

Now assume the result for k < n - 1l. Since

bxy = (8,xY,)V 8 (8%

= vj l
1on (GIXYI)L Al 3 A

1* 1) Pod

where A4, = 51x(Y-Y1) and 4, = (6-51)xY, we have by an appli-

cation of the case of three disjcint summands

E ® F(8xY) = E ® F(b,xY;)+E ® F(4,)+E ® F(Aa).

n

Now A [éixY )ﬂAl] and A U [(51xY1)ﬂA

i=2

Thus, since

= ]e
1 1=2 2 2

the intersection of two (Borel) rectangles is again a (Borel)

rectangle, we can apply the inductive assumption to get

L]
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n
b

M

E ® F(A1)+E®F(A2) = 2E ® p[(aixvi)nal]+
e
and this 1is equal to 2 E ® F(61xY1) since for 1 > 2,

i=2

®
. . E ® F[{6,xY,)N4,]

149]

8, xY, = [(6,xY,)N8;100(8,xY,)N4,]

3
4

Hence E ® F(6xY) =

®
. E F(51in).

N

1

1]
Lemma lis7. If Ai (1 = 1,eee,n) and AJ (j =1,2,ee.,m) are

two families of pairwise dis joint Borel rectangles and

n m n m
Ua, = YA, then 2 E®PF(4,) = 3E®FA,r).
=11 =1 i=1 =1 J
14
Proof: Aij = Ai n AS“ (1 = 1,e00yn3 J=1,2,e0s,m) i8 a
" [] "
family of disjoint rectangles and Ai = ?Aij’ AJ = gdid'

1

J)
"

2 E® F(Aij) follows from li.5. Hence both I E ® F(4,) and

i i

) and E ® F(4A

1"
Moreover that E @ F(Ai) = ZE® F(A1
3 J

17"
T E® F(A‘ " are equal to X E ® F(4,.,).
3 J 1,3 i

In virtue of this lemma we can define the operator

E®PA) on YR(H) for any 4 ¢ R by
n
(2) E ® F(4)A = 3 E(8,)AF(Y,)
- i 1
i=1
where Giin (1 =1,.00.,n) is any finite family of disjoint

n
Borel rectangles with 4 = U 6,xY,, Then as a consequence

of li+7 we have
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Lemma li 8. The operator E ® F(4) on B (H) 1s a finitely
additive function of 4 ¢ ¥1

Lerma lLs9. (i) E® F(gF) =0, E®FECxA) =1.
(11) E ® F(& N At) = E ® F(A)E ® P(A') for all A,Ate R,

m '
Proof: (1) 1is clear from (1l ). If & = U 61 VJ‘L then for
A e [B(H)

E ® F(8)E ® F(&")A = 3 E(8,N

=y J )AE( Yir‘Y

J) = E ® F(4aN4,)a,

since U (6 ﬂﬁj) x(Y ny .

1,3 172

j ) o= UJ(6 )ﬂ(é;_xY‘;‘)- = 4,NA

§3. Complete Additivity of E ® F(.) on Schmidt Class

Let H now be a separable Hilbert space and [¢h] & come
plete orthonormal set iIn H. An operator A on H 1s said

to be of Schmidt class if
[ o}
2 2
[alls = 2 Jlag |1° < =
s n=l n
The Schmidt class of operators forms a Hilbert space with
o
(4,B)g = z (af , BE) .
n=1i

This Hilbert space is independent of [¢£] and 1s (unitaprily

equivalent to) the tensor product H ® H*. If we denote the

linear functional (°*, g) by &, then the elements of H ® H' of

the form f ® g arewidentified with the operators h = (h,g)f
n

on H. More generally, 2 °1f1 ®'§1 is the operator on H
1=1
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of finite rank given by

n n
(1§l°if1 ® gi)h = 1z,°1(h'gi)f1 .

H® H% 1s the closure of the set of operators of finite rank
in the norm || *| 's‘ For these remarks and the facts which we

1list next the reference 1s Schatten [20].

(1) If X ¢ YB(H) and A ¢ H ® H', the AX and
XA € H ®H'., In particular X(f ®g) = (Xf) ® g and
(£ ®g)X=r¢® }Fc—g.

(11) If X ¢ W (H) and A,B ¢ H ® H', then

3 &
(XA,B)8 = (A,X B)s and (AX,B)s = (A,BX )8 .

(111) For A € H ®H", (A, £ ®g)_ = (Ag, f). In partiou-
lar, (F @Y, r %) = (£,0)(T,e).

Lemma ly.10, For each A ¢R , E ® F(4) 1is an orthogonal

projection on H ® HY, Moreover, if &4, At ¢ ﬂ and A © At

then E ® F(4) < E @ p(a1),

Proof: From [f.9 it follows that E ® F(A)2 =E ® p(4).

n 3o
If 4= Ub,xy, and ABcH® H”, then, by (11) above,

=1 b

(E ® F(A)A,B) =

-
#da

(B8 )AR(Y),B) g =

H

n
= 2 (A,E(8)BR(Y,)), = (4,5 @ F(A)B),

and hence E ® F(A)¥ = E ® F(A)., Thus E ® F(4) 1is an ortho-

gonal projection,
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If & € A1, then A' = & U (A'-4) and hence, by the

finite additivity of E® F(:) on B ,
E ® F(4!) = E ® F(4) + E ® F(41-4)

from which the last assertion of the lemma follows.
From now on the E ® F(4) with A ¢ B will be inter=

preted exclusively as operators on H @ H* (and not on BH)).

Lemma leslle E ® F(°*) is strongly completely additive on F{ .

Proof: If A4 ¢W and 8,7 , then by L.10, E ® F(4 ) is an
increasing sequence of projections on the Hilbert space H ® H*.
Thus E @ F(An) converges strongly to a projection P on

oo

H ®H"., We now show that if A = UA ¢ , then E ® F(4) = P.
n=1
Since E ® F(+) is, by .8, finitely additive on ] , this will

prove the lemma,
From (1)nabove we have E ® F(SxY)f ® g = [E(8)f] ® F(V)g,

Thus, if 8 = U 8,xY,, then
i=1

n
l|lE ® F(a)r ®E||Z = 3 ||E(8,)r ® F(V,)gll?
8 1= 1 1=0s

n 2 2
= izlllE(bi)fH HF(v)ell

= (4 x V)(4),
the cartesian product of the two measures
[ ] 3 2 L) ® 2
H(¢) = [|E()E]|° ana v(°*) = ||F(*)gl]|® .

Hence, if 4,, 8 € § and 4 74, then
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- 2 2 -1
(8, ® p(a-8)¢ 8 %) 12 [1al12]12 @ (a-a,)2 © 5|

|1a113(kxv) (84 ) » 0 as n = =,

since Wxv 1is a finite measure and 4-4 ™ #. Thus

lim E © F(An)f g =E ® FA)f ®g so that E ® F(4) = P at all

n-so

elements of H ® H" of the form f ® g. But then, since H ® H*
is the closed linear span of elements of this form, we have

E ® F(4) = P throughout H ® H*,

Proposition LL.12. E ® F(°*) has a unique extension to a reso-

lution of the identity on H ® H, 1.e.
(1) E ® r(°*) 1s defined and strongly completely additive
on the Cering BxB of Borel subsets of @€ x €T
(11) E ® F(AMA') = E ® F(A)E ® F(A') aad
E®FA)* = E ® P(A) for all 4,8' ¢ B xPB
(111) E® ®¢) =0 and E® R(ECxC) = I.

Proof: The set functions M
A,B

pletely addltive on the ring ﬂ of Borel rectangles and by

(*) = (E ® F(*)A,B), are com-

Schwartz's inequality IHA’B(AH < ”A”sl |B| |s for all A ¢ 8 .
Hence by standard theorems (see e.ge. [Q], P. 136) on the ox~
tension of measures p’A,B( *) can be uniquely extended to a
measure on B xB e« The extended measure also has the bound
14l 's”B“s‘ That HA’B(A) is linear in A and conjugate linear
in B for fixed & ¢ P x B follows from the uniqueness of the
extended measure and the fact that HA’B(IS) has this property

for 4 € Y3 . Hence for each 4 ¢ ¥3 x¥3 there exists a unique
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bounded operator E ® F(4) on H ® H* such that HA,B(A) =

(E ® P(A)A,B) s That the E ® F(*) thus extended satisfies (1ii)
follows again from the unigueness of the measures uA,B(.) and
the fact that E ® F(e*) satisfies (ii) on Y} .+ Thus the ex=
tended E ® F( *) is a weak resolution of the identity. Howe
ever, the strong complete additivity now follows, since (11)
implies that ||E ® F( o)A||§‘= (E ® F(*)4,A), and hence for

a € B xB with 8, -7 & we have

E ® F(A«A )AII2 -0 as n + o ,
n s

Remark li,13. In the case of Schmidt class operators of rank
one, A = ¢ @y and B=f ®g , we have

(E ® F(8)4,B), = (Hxv)(8)

where W(e) = (E(*)Z,f) and v(°*) = (F(*)¥,g8)« This follows

immediately for A ¢ Y3  using that

(E ® p(0xv)¢ ®-‘;, r®7g) = (E(8)F,0)TF(Y)Y,g). Then by

uniqueness the two measures are equal on ¥ x Q.

8. Solvability of TX = A when A is of Schmidt Class

Let 3 and T be normal operators on H with resolutlons
of the 1dentity E(°*) and F(*) respectively., Then E ® F(*) has
support included in 0(S)x9(T). For a function f(r,8), bounded
and measurable on 9(S)x9(T), we define the operator f(S+,T_)

on H®H" by

(1) (£(s8,,T_)A,B), = £ 4(E ® F(*)4,B)

g(S8)xo(T)
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For two functions f(A,8) and g(1,8), bounded and measurable

on 9(3)x0(T), we have
(2) (£eg)(S,,T) = £(S,,T_)&(S,,T ) «
This follows from (i1i) above by approximating f and g uni-

formly by simple functions, A similar argument shows that if
h(A) is bounded on °o(S) and k(%) is bounded on o(T) then

(3) h(s,) = h(s), and KT} = K(T)_
where h(S) = fhdE and k(T) = /kdF.
Theorem Ce Let S and T be bounded normal operators on H

with spectral resolutions E(°*) and F(°*) and let A be a

Schmidt c¢lass operator on H. If
(#) T (a) = (c)/'i%g dE ® P(*)A exists In the weak operator

topology of H, and
(#%) E ® F(8)A = 0 where & is the diagonal of 9(S)xo(T),

then s[(4) = T7(a)T = A,

Proof: Let X . be the characteristic function of

A, = [(A,8):|r=2] > €] and set £ (X,8) = X .(X,8)/(r=5).
Then £, is a bounded function on 0(S)x9(T) and the assumption
(¢¢) means that the Schmidt class operators fe(S+,T_)A converge
in the weak operator topology of H to [ (A). We have by (2)

and (3) above
- 8lf (8,7 )A) = [£(s,,T )AlT =

= (5,-T_)f_(S,,T_)A =E @ F(4,)A
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which converges in ll'lls to A - E® F(5)A. But then since

[ (A) =w - 1im £ _(8,,T_)A we have
s[T(a) - T(A)T =A - E® F(8)a,

from which the theorem follows.

Examples. Let H = L2(-1,1) and S = T be the operator

f(s) - sf(s) and

A: f(s) *‘/fia(s,t)f(t)dt where ZVWa(s,t)fzdsdt < @,

For a subset 4 of the squsre, E ® E(A)A is the integral oper-
ator with kernel 7CAa. More generally, for a bounded func-

tion f(s,t) on the square, f(T+,T_)A 1s the operstor with ker-

nel f(s,t)a(s,t)s Thus the operator [ (A), if 1t exists, is

the weak operator 1limit of the Schmidt class operators

L aE ® F(e)a: f(s) - / ﬂ%{-%lf(t)dt,

|s-t]>e 3°° [s-t]>€

+1
Leee [T(A)E(s) = (o) /_; 2L22b) r(g)at.

Here E ®E(8)A = 0, since its kernel is Asa = 0, so that
the condition (#:) 1s vacuously fulfilled.

The situstion 1s reversed if H iIs finite~dimensionsal.
In this case, E ® P(8) = 0 1s necessary and sufficlent for
the solvability of SX-XT = A. For 0(8S)xo(T) consists of Just
a finite number of points so that f(A,g) = %g% where
A = [(A,E): A # 8] 1s bounded on o(S)xo(T). Thus [ (a) =
£(S,sT_)A exists and S[ (A) - [ (A)T = (S,=T_)f(S,,T_)A =
E®F(A)A =A -E ®F(8)A, so that E ® F(8)A = 0 1s sufficlent.
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It 1s necessary since E ® F(8)[SX-XT] = g(s,,T_)X where
g(r,8) = (A-2) X 4(x,8) = O.

Remark. The conditions (%) and (:*#*) are easily shown to be
also necessary for the solvability of SX-XT = A for X in
Schmidt class where the operators r(s,,T_) and E ® F(4) are
defined. The difficulty in showlng the necessity of these
conditions for solvability in YR(H) stems from the fact that
we may well have solvabllity in YR(H) but not in Schmidt
class. It can be shown thet in the first example considered
above TX-XT = A possesses a Schmidt class solution if and only

ir
L1422 2agqt < @,

a property not enjoyed by the regular . Fredholm kernels
studled by Friedrichs, for which, on the other hand, the
commutator equation is solvable in Eﬁg ) o

These difflculties will be partially overcome in the
last section of the chapter. By other devices, the condition

E ® F(8)A= 0 will be shown to be necessary for solvability in

- B H).

§5. The Convolution E # F(°*) and Applications

We now assume that S and T are self-adjoint operators on

H with resolutions of the identity E(*) and F(*). E ® F(e)
1s then defined on the Borel subsets of RxR where R is the resl

line. For a Borel subset 8§ of R we define
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E 3 F(8) = E ® F(4)
where 8 = [(A,E): A-Z € 8], Then E % F(°*) 1s a resolution
of the identity on H ® H* defined on R. For functions f(x)
bounded and measurable on 0(S)~-0(T) we have (recalling that

O=5, -T_)

£(0) = S f(A-E)Ad E ®F(*) = /S f(x)a E = F(°)
o(8)x0(T) 9(8)=-o(T)

Thus, in particular, we have the expression

d_E % F(*)

for oitD(A) = eitSAe-itT, interpreted as an operator on H ® H%.

Thus for A ¢ H ®H" and f, g € H we have
400

(oitSAe“itTg’f) = / eitxdx(E # F(e)A, T ®.§)s

-0

and hence

-1t7T

Theorem D If A 1is of Schmidt class then (eitSAe g,r)

is the Fourier transform of the finite Borel measure
(E = F(*)A, £ ®F), .
Examples. If A =g ® ¥, then

(E # F(*)A, £ @¢g) = (u=v)(*)

where M(e+) = (E(*)g,f) and v(+) =(F(*)7,2),

since by l.13,
(E @ F(*)A, £ ®g), = (Hxv)(*).
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If S and T have absolutely continuous spectrum i.e.

(E( *)¢g,f) and (F(+)Y¥,g) are absolutely continuous measures on

R, then
uiv( 8) = /6' [%}—{(E( o)ﬁ,f)* %;(F‘ -;!”gi]dx

so that

400
(%00 g, 1) =/ oPFL(E( ), )% (T, 2T 1ax

-0

If, finally, S = T 1is the operator f(s) = sf(s) on

LZ(-m,+w) then

400
(e1tThe™1tT g £y = s olPX[(gT)%(Tg) 1ax .
-0
Solvability of (XX = A

Since %Eeitm = iCbitD

we have
t 1s0 140
-1/ 67" (A)ds = A = e (A)
0
this suggests, as a solution of UX = A, the integral
e o]
) = -1 / o™ a)at .
0

If this integral exists in the sense of the weak operator topo-
logy of H, then TJ|” (A) = A. Thus sufficient conditions for

solvabllity can be expressed as integrablility conditions on the

1t0

functions (e~ “"Ag,f) which, if A is of Schmidt class, are the

Fourier transforms of the finite Borel measures (E * F(*)A,f ®'§)s.
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Existence of the Wave Operators U+ .

Define U, = ot%56"1%T 4nd set P =5 - 1.

t

d
-a-EUt’ = le

1tS,_=-1tT

Then Pe = ieitD(P) so that

1s0

t
U, =1I+1/e " (Plds .
0

t

Thus the existence of U+ =w = 1linm Ut depends on the existence
t>4oo

(P)dt as a weak operator integral, for which, if P

a0

of [ o
0

is of 3chmidt class, sufficient conditions are again expressible

1t0

in terms of the integrability of the Fourier transforms of

finite Borel measures (E = F(*)P, £ ® g)s.

Remark. These considerations suggest how to formulate ab-
stractly the notion of "regularity" or "smoothness" of a

Schmidt class operator A with respect to a self-adjoint opera-
tor T (or self-adjoint operators T and S) in such a way that
regularity of A = solvabllity of X = A (or the existence of u).
Namely, the Fourler transforms of certain finite Borel measures—
on R should be integrable. The HBlder-regularity of the kernels
a(s,t) assumed in the Friedrichs example T: f(s) - sf(s) is

clearly expressible in the above terms.
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