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Abstract

This dissertation presents an analysis of a synchronous transfer line (one in which
all production times are identical) that produces multiple different part types on
unreliable machines. The rates of failure and repair of the machines need not be
identical. Inventory is stored between machines in finite buffers, or in work areas
in the machines themselves, and different buffers may have different sizes. The ma-
chines operate according to a static priority rule, operating on the highest priority
part whenever possible, and only operating on lower priority parts when unable to
produce those with higher priorities due to either blockage or starvation. In order
to analyze this system, we introduces a new method of decomposition - party type
decomposition; decomposing two part type line into distinct two single part type line.
An iterative algorithm is employed to solve the resulting equations of the decomposed
line. Estimates for performance measures, such as average buffer levels, throughput,
and proportion of time due to blockage and starvation are presented, and compared
to extensive discrete event simulation.
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Chapter 1

Introduction

1.1 Motivation

The design, operation, and analysis of manufacturing systems are of great economic

importance. Most of the current work applied in industry relies on computer simu-

lation of the stochastic processes of the production flow line. However, simulations

require a considerable time to construct and run. Work done by Gershwin suggest

that by using docomposition method he developed, it is possible to construct a closed

formulation of production line under various operational assumptions. Current formu-

lations of decomposition methods include those with single-class single-failure mode

lines, single-class, multi-failure mode lines. These formulations usually yield solutions

that approximate the solutions of the simulation without the required computational

power and time. However all of the decomposition methods done assume that there

is only one part type. The contribution of this work presented in this paper will be

to extend the method described above to a processing line with more than one part

type. Since most manufacturing systems consists of machines that do manufacturing

more than one part type of product, it is essential that models be developed to reflect

9



this. The challenge of formulating the multi-class line is not completely new. Nemec

tried to formulate a deterministic single-failure multi-class transfer line. However,

this formulation only worked for small two-class type lines. The work presented in

this paper will propose a new way of decomposion method - part type decompostion

that decomposes the multiple part type line into single party type lines. This decrease

the complexity of the line and make the line easier to evaluate the behavior of the

line. While the methods presented appear to be generalizable to more than two part

types, we restrict our attention to only two in order to make precise all of the issue

involved in the decomposition.

1.2 Literature Review

Single-Part Type Transfer Lines with Single-Failure-Modes

M(sl) 0 BsI )I M(1) 0 BIi l M(2) *e0 M(i) Bi,1 M(i+1) 000 M(k) - Bk.1 M(dl)

Figure 1-1: A Single Part Type Line

The manufacturing process line is a production system whose work proceeds in a

linear fashion from one machine to the next. A single-part type line is one in which

the manufacturing process line only builds one type of part. An example of a single-

part type line is shown in Figure (1-1). A flow line has machines (M) which perform

some work in a part, and such are depicted by the squares in the figure. Parts flow

from machines into buffers (B), or storage centers, which are depicted by circles. The

arrows that connect the machines and buffers represent the path of work-in-process,

and the direction is from left to right.

One way to analyze flow lines is to break them into simpler structures, specifically,

10



M" B

Figure 1-2: Two Machine Line

two-machine-lines. This is the technique called decomposition. Once a formulation

and solution to the two-machine-line is found, it may be possible to find an approxi-

mate solution to the complete flow line. A two-machine-line is depicted in Figure 1-2.

In order to solve the two-machine-line, it is necessary to have a behavior assumption

and a representation of the machines and the production process. The representation

requires the size of the buffer (N), the failure rate of the machines (p), the repair

rates (r), and the processing rates (p).

The simplest characterization of the production flow is the deterministic model.

Under a deterministic assumption, the processing rates of all machines are constant.

A machine processes one part, in one time unit, asynchronously from other machines.

In addition, a machine cannot process a part if it is starved (there is no available

material in the buffer preceding it), or it is blocked (there is no space in the buffer

receiving parts from the machine). Generally, a machine is not allowed to fail unless

it is working on a part. In addition, in a two-machine-line, the up stream machine

is never starved (there is always raw material), and the down stream machine is

never blocked (there is always space to put completed parts). The formulation and

solution of the resulting deterministic two-machine-line is achieved by solving a two-

dimensional Markov chain with 4(N - 1) states [1]. The solution to such a chain

11
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M" B Md

rul P ul rdl9 Pdl

u2' Pu2 rd2, Pd2

ru3 u3 rd3 , Pd3

Figure 1-3: Singe-Part-Type, Multiple-Failure-Mode Two-Machine-Line

is given as the steady state probability of all states, the line's buffer levels, and the

overall production rate.

Through other types of assumptions and solution techniques, other process behav-

iors can be captured. For example, using a continuous flow assumption, it is possible

to allow for machines to have different processing rates.

Single-Part Type Transfer Lines with Multiple-Failure-Modes

The transfer line models discussed above assume that machines may fail only in one

way. Current work done by Tolio [3] allows for a similar formulation of production

lines with the added feature that a given machine may fail in one of several modes,

and be repaired in the mode corresponding to the specific failure mode. Thus, for

example, a machine may fail because a part got stuck, and take an average of 5

minutes to repair, or because the motor exploded, and take an average of 5 days to

repair. A two-machine-line building block representation is depicted in Figure 1-3.

Another feature of multiple failure lines is that in the decomposition process, two-

12
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machine-lines can assign failure modes to account for the probability of starvation and

blockage due to failures of machines outside of the two-machine-line. These failure

modes are called virtual failure modes as they are not real failure modes. For every

two-machine-line, behavior paramenters are analyzed and changed in an ordered way

until convergence is achieved. By allowing a two-machine-line to account directly for

new possibilities of failure, the accuracy of the solution is usually improved.

Multiple-Part Type Transfer Lines with Single-Failure-modes

Work conducted by Nemec [2] formulated and solved for deterministic behavior lines

that processed more than one part type. Nemec's formulation only works for small

two-class type lines. The reason why the formulation works only in a limited set of

lines is that he considered every single detail of behavior of the line that his decom-

position equations were too complicate to be solved analytically.

1.3 Thesis Outline

This dissertation is organized as follows. Chapter 2 introduces a Markov model of a

processing line with two different part types, flexible, unreliable machines, and finite

intermediate buffers. The decomposition of the long line into smaller, tractable two-

machine lines is discussed. Chapter 3 presents the analysis of the Markov chain for

the two-machine lines. The decomposition derivation is derived in Chapter 4 and 5.

An algorithm to solve the decomposition is presented in Chapter 6, as are numerical

results concerning the accuracy of the decomposition, and the qualitative behavior of

the system.

13



2

Multi-Part Type Processing Lines

2.1 Introduction

In this chapter we introduce a Markov chain model of a two-part type line. The

purpose of developing the model is to predict the performance of the line: the pro-

duction rate of each part type and average buffer levels. Here, we describe the model

assumptions and notation. We also describe how we use the model to obtain the

performance measures. Most of the assumptions and notations describing the system

follow the convention set by Gershwin [1] and Nemec [2].

7~ 7

My

1,I2

M2 S 000

Bi, I

Mi Mi 0S

7%

Bk. Mo

Mk

BM--

Figure 2-1: A two-part type flow line
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2.2 Two Part Type Processing Line

Figure 2-1 represents the transfer line processing two different part types. The line

consists of two kinds of components: processing machines (Mi), denoted by the

squares; and finite-capacity storage (Bi) for work in process inventory, denoted by

the circles. At the beginning and end of the line, there are supply machines: (Msi),

and (Ms 2 ), and demand machines: (MD1), and (MD2)-

Machines Msi and MD1 process only Type 1 parts, while Machines Ms2, and MD2

process only Type 2 parts. Each machine between the supply and demand machines

can process both part types. We assume that there is no set-up time incurred when

the machine switches production from one part type to another. When machine Mi

completes work on a part, it sends the part to a buffer downstream of the machine.

Each part type has a distinct buffer after each machine. Therefore, a Type 1 part

processed at machine Mi would be sent to the buffer Bii. A Type 2 part processed

at the same machine would be sent to buffer Bi2-

2.2.1 Processing Machine

We assume that all the machines in the line, including supply and demand machines,

are unreliable. Let a denote the state of of a machine. If a = 1, the machine is said

to be up or working. If a = 0, the machine is said to be down or failed.

We let as, (t) denote the state of supply machine Si at the end of time step t

We define as2 (t) similarly for S2. For the demand machine, D 1, and D 2 , we let the

corresponding state variables be aDl(t) and aD2(t). For processing machine Mi, the

state variable representing the state of the machine at the end of time step t is written

acv(t).

We make the assumption that all the machines in the line, including the supply

and demand machines, have homogeneous processing times - that is, the lengths of

15



time that parts spend in machines are fixed, known in advanced, and the same for

all the machines. Therefore, the processing times are assumed to be scaled to unity.

Furthermore, we assume that the yield of all machines is 100%. That is, we do not

allow for the scrapping or rework of parts.

2.2.2 Buffers

We assume that all buffers, the including supply and demand buffers, have finite size.

The size of buffer (i, j) is denoted Ni,, where i indicates the production stage, and

j = 1 or 2, represents the part type. We let buffers S1 and S2 denote the supply

buffers for Type 1 and Type 2, respectively. Likewise, buffers DI and D2 denote the

demand buffers for Type 1 and Type 2, respectively. We denote the current level of

buffer (i, j) at the end of time step t by ni,(t). Therefore, 0 < nij(t) < Ni,, for all

(i, j), and for all t > 0. A machine is said to be starved for a given part type if the

upstream buffer corresponding to that part type is empty. It is blocked for a given part

type if the corresponding downstream buffer is full. We make the assumptions that

the supply machines are never starved and the demand machines are never blocked.

2.2.3 Machine Parameters

As mentioned earlier, all machines in the line are assumed to be unreliable: either up

or down. We further assume that all machines, including the machines representing

supply and demand cannot fail if they are idle. This is called operation dependent

failures. This means that the supply machines cannot fail if they are blocked. This

also means that the demand machines cannot fail if they are starved. A processing

machine cannot fail if it is either starved or blocked for Type 1 parts, and at the same

time starved or blocked for Type 2 parts.

All machines are assumed to have geometrically distributed up and down times.

16



We assume that the probability that processing machine Mi fails is the same, regard-

less of the part type the machine is working on or the history of the system. We let

ri represent the probability that machine Mi is up in time step t + 1, given it was

down in time step t. Likewise, pi represents the probability that machine Mi is down

in time step t + 1, given it was up and not blocked or starved in time step t. For the

supply machines, we let rsi and rs2 represent the probability that machine Msi and

Ms2 are up in time step t + 1, given they were down in time step t, respectively. Also,

psi and Ps2 represent the probability that machine Si and S2 are down in time step

t + 1, given they were up and not blocked in time step t. For the demand machines

D1 and D 2 , the corresponding parameters are written rDl, PD1, rD2, and PD2- Let us

define k be the number of machines that are processing two different part types in

the line, not including the supply and demand machines. For the processing machine

Mi, this can be written as:

ri = Pr [a (t + 1) = 1|a (t) = 0] (2.1)

pi = Pr [ai,1 (t + 1) = 0{oaj, 1(t) = 1 flni_1,1(t) > 0 n ni,1(t) < Ni,1} U

{ai,1(t) = 1 (ni1,1(t) = 0 U ni,1(t) = Ni,1)

n ni- 1,2 (t) > 0 n ni,2 (t) < Ni,2}]

for i = 1, ... ,k

Likewise, for the supply and demand machines,

rs, = Pr [as,(t + 1) = 1Iasi(t) = 0] (2.2)

17



rs2

Psi

Ps2

rDl

rD2

PD2

PD2

-Pr

-Pr

-Pr

Pr

-Pr

-Pr

-Pr

[as 2(t +

[as,(t +

[as2 (t +

[aDl(t +

IaD2(t +

[aD1(t +

[aD2(t +

1)

1)

1)

1)

1)

1)

1)

= Icas 2(t) = 0]

= Olasi(t) =1 fn nsi(t) < Nsi]

- OlCs 2 (t) = 1 n ns 2 (t) <Ns2]

- aD1(t) - 0]

-1GD2(t) = 0]

- OZD1(t) = 1 f Dl(t) > 0]

01aD2(t) = n nD2(t) > 0]

2.2.4 Part Type Priority Policy

Since each machine in the production line now must choose which part to work on

when it has a choice, we are required to state a policy by which that choice is made.

Our assumption is that each machine will work on Type 1 whenever the machine is

up, the upstream buffer for Type 1 is not empty, and the downstream buffer for Type

1 is not full. Each machine will only work on a Type 2 part if it is up, and either

blocked or starved for Type 2 parts, and not starved and blocked for Type 2 parts.

2.2.5 Efficiency

Let us denote the efficiency of Type 1 part at machine i by E(i, 1). This is the fraction

of time that Mi is working on Type 1 parts. We know that machine Mi will make a

Type 1 part at the end of time t + 1 if Mi is not starved for type one at time t, Mi

is not blocked for type one at time t, and Mi is up at the end of time t + 1.

This probability is expressed as follows:

18



E(i, 1) = Pr [ac (t + 1) = 1 n ni_1,1 (t) > 0 n ni,1 (t) < Ni,(]

Let the quantity E(i, 2) denote the efficiency of Type 2 parts. This is the fraction

of time that Mi is working on Type 1 parts. From our assumptions, we know that

machine Mi will make a Type 2 part at time t + 1 if Mi is either blocked or starved

for type one at time t; Mi is not starved for type two at time t; Mi is not blocked for

Type 2 parts at time t; and Mi is up at the end of time t + 1. This is expressed as

follows:

E(i, 2) = Pr [ai (t + 1) = 1 n (ni_ 1,1(t) = 0 U ni,1 (t) = Ni, 1) (2.4)

n ni- 1,2 (t) > 0 n ni,2 (t) < Ni,2]

In steady state, because of conservation of flow [?], we require that each machine

in the line makes the same numbers of type one and type two part. If we denote the

throughput for the demand machine for part type j by EDj, and the supply machine

for part type j by Esj, then we must have

Es = E(i, 1) = E(i, 2) =.. .=E(i, k) = EDj,

for j = 1, 2.

19
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2.3 Part Type Decomposition

As described in Chapter 1, we are able to analyze a single part type line. Now

we want to analyze the line that processes more than one part type. To do this

we decompose the system into single part type lines first, and then analyze each

single part type separately. We call this procedure part type decomposition. This

decomposition procedure is represented in Figure 2-2.

We suppose that there are two observers in each machine in the real line. One

observer watches the flow of only Type 1 parts. We call him the Type 1 observer. On

the other hand, the second observer watches the flow of only type two parts. This is

the Type 2 observer. Since each observer watches only one part type, the observers

are unable to tell that they are in the system that is processing two different part

types. Since Type 1 parts have priority over Type 2 parts, each part type observer

sees that this machine is processing a part whenever there is a part available in

the immediate upstream buffer and there is space to put a processed part in the

immediate downstream - The part flow he observes would be very similar to what he

would observe if he were observing a single part type line.

However, there is a special behavior that the Type 1 observers would notice in the

two part type line, that they would not experience if he were in a single part type line.

Suppose that the Type 1 observer does not see any inflow of parts due to starvation:

there has been an actual machine failure in the upstream part of the line, starving

the line downstream of it. The observer would think that his machine is idle because

he can only see Type 1 parts. However, the actual machine may not be idle; instead

it may be working on the second part type. While the actual machine is working

on the second part type, it might fail. From the Type 1 observer's perspective, the

machine has failed while it was idle. We call this idleness failure.

This idleness failure is a behavior that can be observed only by Type 1 observer

20



in a multi-part type line. Conventionally, in a single part type line, we assume

that both the real machines and the pseudo-machines in the two machine lines of

the decomposition have operation dependent failures. Therefore, we must relax that

assumption for the two machine line in the multiple part type case. We present a

discrete-time, discrete-state Markov model of precisely such a line in Chapter 3.

Now, suppose that we take the point of view of second part type observer. We

similarly misinform this observer: we lead him to believe that he is watching the flow

of a single part type line in his machine. The machine may stop processing the second

part type for three reasons: the machine is actually down, the machine is processing

part type one, or the machine is starved or blocked for the part type two. However,

since the observer sees only the second part type, he believes that the machine is

down when the machine is processing the first part type.

We must therefore choose the parameters of the machine in the second part type

line so that judging by the behavior of the machine, the observer of the machine is

unable to tell whether or not the machine is processing one or two part types. We

present the equations for the parameters of the second part type line in Chapter ??.

21
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Figure 2-2: Part Type Decomposition
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Chapter 3

Two-Machine Line Model with

Idleness Failure

3.1 Introduction

This chapter presents the analysis of a Markov chain model of the two-machine trans-

fer processing line. As discussed in Section ??, in order to decompose the Markov

chain model of the two-part type processing line, we need a new two-machine line.

The two-machine line presented here is similar to the deterministic processing time

model described by Gershwin [1]. However, in our model, the machines in the two-

machine line are no longer restricted to failing only if they are not blocked or starved.

We eliminate the assumption that machines in the line can fail only when they are

operating on a part. Since a machine in the line can fail while it is idle - staved or

blocked, we call the line, a two-machine line with idleness failure. Nemec [2] modeled

the two-machine line with idleness failure and we follow his notation and assumptions.
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3.2 Model assumptions, and conventions

Figure 3-1 illustrates the two-machine line. We denote the upstream machine by M,

and the downstream machine by Md. The size of the buffer is N, and the level of the

buffer at time t is n(t). Therefore, it follows that 0 < n(t) < N, for all t.

MU B Md

u' u,qu rd 9 Pd,'qd

Figure 3-1: A two-machine transfer line with idleness failures.

Material flows from outside the system to the upstream machine to the buffer

to the downstream machine and then out of the system. We assume that only one

part type is produced in the line and the production time at each of the machine is

identical and equal to 1.

We assume that the machines can fail while they are either operating on a part

or while they are idle, but we do not assume that the probabilities of failure are

identical. In particular, we assume that the probability that M" fails while it is

working on a part, given it is not blocked, is pu, and the probability that it fails while

it is blocked is q,. We define the quantities Pd and qd for Md similarly. Finally, we

denote the probabilities that M, and Md are repaired while they are down by r" and

rd, respectively. We call a failure that takes place while the machine is operating on

a part an operational failure, and a failure that occurs when the machine is idle an

idleness failure.

Finally, we define the state of the two-machine line to be s = (n, au, ad), where n
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is the level of the intermediate buffer (0 < n < N), a, is 0 if M, is down, and 1 if

M, is up, and ad is 0 if Md is down, and 1 if Md is up.

3.3 Transition Equations

In this section we define the transition equations for the Markov model. Nemec

originally modeled the equations and therefore, we review his model in this section.

3.3.1 Transient States

The assumptions of the model imply that certain states are transient; that is, they

have zero steady state probability. Transient states cannot be reached from any state

except possibly other transient states. The following states are transient:

* (0,1,0) is transient because it cannot be reached from any other state. If a.(t +

1) = 1 and ad(t + 1) = 0, then n(t + 1) = n(t) + 1.

* (0,1,1) is transient because it cannot be reached from any other state. If n(t) = 0

and a,,(t + 1) = 1 and ad(t + 1) = 1, then n(t + 1) = 1 since Md is starved and

thus not able to operate. If n(t) > 0 and a,(t + 1) = 1 and ad(t + 1) = 1, then

n(t + 1) = n(t).

* (N,0,1) is transient. If ad(t + 1) = 1 and a,,(t + 1) = 0, and n(t) > 0, then Md

will produce a part in time step t + 1 because it was not starved in times step

t, and is never blocked, by assumption.

* (N,1,1) is transient. If a,,(t + 1) = 1 and ad(t + 1) = 1, and n(t) > 0, then Md

will produce a part in time step t + 1 because it was not starved at time step

t and is assumed never to be blocked, but M, will not produce a time step in

time t + 1 because it was blocked at time step t.
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Some states that were previously transient without idleness failure now have posi-

tive probability with idleness failure. For example, state (0, 0, 0) was transient without

idleness failure. However, with idleness failure, the system can reach state (0, 0, 0)

from the state (0, 0, 1) if the downstream machine fails while it is starved, and the

upstream machine is not repaired.

3.3.2 Lower boundary equations (n < 1)

p(O, 0, 0) = (1 - ru)(1 - rd)p(0, 0, 0) + (1 - ru)qdp(0, 0, 1)

p(1, 1, 0) = ruqdp(0, 0, 1) + ru (1 - rd)p(0, 0, 0)

p(0, 0, 1) = (1 - ru)rdp(0,0, 0) + purdp(1, 1, 0)

+(I - ru) (1 - qd)p(0, 0, 1) + (1 - ru)rdp(1, 0, 0)

+(I - ru)(1 - pd)p(1, 0, 1) + Pu(l - pd)p(1, 1, 1)

p(l, 0, 0) = p(1- rd)p(,1, 0) + (1 - ru)(1 - r)p(1, 0, 0)

+(1- ru)pdp(1, 0, 1) + pupdp(1, 1, 1)

p(l, 0, 1) = (1 - ru)rdp(2, 0, 0) + (1 - rT)(1 - pd)p(2, 0, 1)

+purdp(2, 1, 0) + pu (I - pd)p(2, 1, 1)

p(l,1,1) = rrdp(0,0,) 0) + (1 Pu)rdp(170)

+ru(1 - qd)p(O, 0, 1) + rurdp(1, 0, 0)

+rs(1 - pd)p(1, 0, 1) + (1 - Pu)(1 - pd)P(1, 1, 1)

p(2,1,0) = (1-pu)(1-rd)p(1,1,0)+ru(1-rd)p(10,0)

+rupdp(1, 0, 1) + (1 - pu)pdp(1, 1, 1)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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3.3.3 Internal equations (2 < n < N - 2)

The internal equations are identical to the internal equations in Gershwin [1].

p (n, 0, 0)

p(n, 0, 1)

p (n, 1, 0)

p(n, 1, 1)

= (1 -rs)(1 -rd)p(n,0,0) + (1 - rs)pdp(n,0,1)

+Pu (I - rd)p(n, 1, 0) + PuPdP(n, 1, 1)

S(1 - r)rdp(n + 1, 0, 0) + (1 - ru) (1 - pd)p(n + 1, 0, 1)

+purdp(n + 1, 1, 0) + Pu(l - Pd)P(n + 1, 1, 1)

= r (1 - rd)p(n - 1, 0, 0) + TuPdP(n - 1, 0, 1)

(1 - pu)(1 - rd)p(n - 1, 1, 0) + (1 - Pu)PdP(n - 1, 1, 1)

= rurdp(n, 0, 0) + r(1 - Pd)P(n, 0, 1) + (1 - pu)rdp(n, 1, 0)

(1 - Pu) (I - Pd)P (n, 1, 1)

(3.8)

(3.9)

(3.10)

(3.11)

3.3.4 Upper boundary equations (n > N - 1)

p(N - 2, 0, 1) =

p(N - 1, 0, 1) =

p(N - 1, 0, 0) =

(I - 'ru)(I - Pd)P(N - 1, 0, 1)

+(I - ru)rdp(N - 1, 0, 0)

+purdP(N - 1, 1, 0) + Pu(1 - Pd)P(N -1 ,1

(1 - ru)rdp(N, 0, 0) + qurdp(N, 1, 0)

(1 - ru)pdp(N - 1, 0, 1)

+(I - r,)(1 - rd)p(N - 1, 0, 0)

+PU(1 - rd)P(N - 1, 1, 0) + PuPdP(N - 1, 1, 1)
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p(N - 1, 1, 0) =

p(N - 1,1, 1) =

p(N, 1, 0) =

p(N 0, 0) =

rU(1 - rd)p(N - 2, 0, 0) + rupdp(N - 2, 1, 1)

+(- Pu)(I - rd)p(N - 2,1, 0)

+(I- p)pdp(N - 2, 1, 1)

rurdp(N - 1, 0, 0) + (1 - Pu)rdp(N - 1, 1, 0)

+(I - Pu) (I - Pd)p(N - 1, 1, 1) + (1 - qu)rdp(N, 1, 0)

+rurdp(N, 0, 0) + ru (1 - Pd)p(N - 1, 0, 1)

ru (1 - rd)p(N - 1, 0, 0) + ruPdp(N - 1, 0, 1)

+rs(1 - rd)p(N - 1, 0, 0) + (1 - pu)(1 - rd)p(N - 1, 1

+(I - pu)rdp(N - 1, 1, 1) + (1 - qu)(1 - rd)p(N, 1, 0)

(1 - ru)(1 - rd)p(N, 0, 0) + qu(1 - rd)p(N, 1, 0)

Normalization

Since the sum of the probability of all states must be equal to one, we have the

following normalization equation:

1 1 N

1= p(n, a, ad)
au=O ad=O n=O

Equations (3.1) through (3.19) define a probability mass function for the Markov

chain model of the two-machine transfer line.

3.4 Performance Measures

The main important performance measures are efficiency, average buffer level, prob-

ability of starvation, and probability of blockage.
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3.4.1 Average buffer level, probability of blockage and star-

vation

The average buffer level T is

1 i N

7T= Z Z: np(n, au, ad) (3.20)
au=O ad= n=O

The downstream machine can be starved in two different ways. Suppose the

upstream machine has been down and the downstream machine has depleted all the

parts in the buffer. Then the downstream machine is starved while it is up. The

probability that the downstream is up, but that there is no part in the buffer, denoted

, is

Swd = p(0, 0, 1). (3.21)

Since the machine can fail while it is starved, we need to quantify this probability.

The probability that the downstream machine is down, but that there is no part in

the buffer, denoted Sdu is

= p(O, 0, 0). (3.22)

Likewise, the probability that the upstream machine is blocked and is up, denoted

B", is the probability that the machine is up, and that the intermediate buffer is full.

B" = p(N, 1, 0) (3.23)

and the probability that the upstream machine is blocked and is up, denoted Bu, is

the probability that the machine is down and that the intermediate buffer is full.
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(3.24)

Note that without the idleness failure, the quantities Si and By are zero.

3.4.2 Efficiency

The efficiency of the upstream machine, denoted Eu, is the probability that the up-

stream machine is working in time step t + 1 and not blocked at time t. This is the

fraction of time that Mu is working on a part. Since Mu is allowed to process only

one part at one time step, the efficiency is actually a production rate of the machine.

E = Pr [au(t + 1) =1 In n(t) < N] (3.25)

The efficiency of the downstream machine,denoted Eu, is the probability that the

downstream machine is working at time t + 1 and not starved at time t. This is given

by

Ed = Pr [ad(t + 1) = 1 n n(t) > 0] (3.26)

For our convenience, we define the following quantities: Wu and Wd, such that

Wu= Pr [ad(t) = 1n n(t) < n]

Wd Pr [a(t) =1 n n(t) > 0]

Observe that these probabilities are different from the efficiency described in (3.25)

and (3.26) in that each quantity is expressed with only single time step t.
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Notice that (3.25) and (3.25) are awkward expressions because it involves states at

two different time steps. Without the idleness failure the following equalities should

hold [1]

Wu Eu

Wd=Ed

however, with the idleness failure, these equalities do not hold anymore. We need to

transform them into a statement about the state of the system at a single time step.

In order to do this, we need to show the following:

Repair Frequency Equals Failure Frequency

For every repair, there is a failure in steady state. This seems self-evident, so it is

reassuring that the transition equations satisfy this condition. This equation is used

in the decomposition described in Chapter ??. When the system is in steady state,

Pr(Mu is up at t + 1Mu is down at t) x Pr(Mu is down at t)

= Pr(Mu is down at t + 1Mu is up at t) x Pr(Mu is up at t)

That is, actually,

ru(Pr[{a = 0} n {n < N}] + Pr[{a = 0} n {n = N}]) (3.27)

= pUPr[{au = 1} n {n < N}] + quPr[{au = 1} n {n = N}]
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Similarly, for the downstream machine we have

rd(Pr[{ad = o} n {n> 0}] + Pr[{ad= o} n {n = 0}]) (3.28)

= pdPr[{{au = 1} n {n> }] + qdPr[{a = 1} n {n = 0}]

We can use (3.27) and (3.28) to derive alternative expressions for (3.25) and (3.26).

The upstream machine, Eu, produces a part in time step t + 1 if it is up at the end

of time step t + 1 and was not blocked at the end of time step t. We can then write

Eu as follows:

Eu = Pr [au(t + 1) =1 n n(t) < N]. (3.29)

This expression has both time step t + 1 and time step t in it. We proceed

by conditioning on events occurring in time step t to write (3.29) in terms of events

occurring entirely in time step t. By doing so, we will be able to express the production

rate of the upstream machine entirely in terms of the state probabilities, which are

defined only in one time step.

Eu = Pr[{cau(t + 1) = 1} A {n(t) < N}]

- Pr[{au (t + 1) = 1}{au(t) = 1} A {n(t) < N}]

xPr[{au(t) = 1} n {n(t) < N}]

+Pr[{au(t + 1) = }{a(t) = o} n {n(t) < N}]

xPr[{au(t) = 0} n {n(t) < N}]

= (1 - pu)Pr[{au(t) = 1} n {n(t) < N}]
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+rePr[{au(t) =0} n {n(t) < N}]

= Pr[{cxz(t) = 1} {n(t) < N}] - puPr[{ca(t) = 1} n {n(t) < N}]

+r Pr[{a(t) =0} n {n(t) < N}]

= Pr[{aU(t) = 1} n {n(t) <N}]

+quPr[{oa!(t) = 1} n {n(t) = N}]

-r Pr[{au(t) =0} {nr(t) = N}]

By the equations (3.23), (3.24), and (3.27), we can express the above such that:

E. = Wu + quBU - ruB" (3.30)

Similarly,

Ed = Wd + qdSdd - ruSwd (3.31)

We note that those equations also reduce to the efficiency without idleness failure

if the idleness failure probabilities are set to zero.

3.4.3 Flow Rate-Idle Time

We now derive the flow rate-idle time relationships for the two-machine line. First,

we define the following quantities:

(3.32)
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This quantity is the probability that the upstream machine is down and not

blocked at time t. Then we can state that

W + D + B + B = 1(

Some simple algebraic manipulation of (3.27) and (3.30) yields

(3.33)

D _ PU uD=-" E
ru

-(1 - p)Bu + u(1 - pu)B"
ru

= E+ ruW

(3.34)

(3.35)

Now, from Equation (3.33), we have

1-Bu - B= Wu + Du (3.36)

By substituting the expressions in (3.34) and (3.35) into (3.36) and manipulating

algebraically, we arrive at

Eu = eu (1 - Bu) - euquB" ( u+ rd - Purd -

ru(ru + rd - rt

In a similar manner, it is possible to derive the following expression for the down-

stream machine.

r- + rd - ruPd - 2 rurd
Ed ed(1d) - rd(ru + rd - rurd) J (3.38)

Now, observe that if the idleness failure probabilities in either of the above equations

are zero, then that expression reduces to that found in Gershwin [1].
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Chapter 4

Part Type 1 Analysis

4.1 Introduction

In this chapter, we analyze the behavior of the two-part type line, especially for Type

1 parts. As mentioned in Section 2.3, we take the position of an observer for Type

1 parts in each machine. We then seek to capture the Type 1 part behavior, as seen

by the observer. We first try to capture the isolated machine parameters of each

machine in the part type one line, denoted by LP(1). Once we analyze the machine

parameters in LP(1), we apply decomposition method.

4.2 Part type decomposition for Type 1

4.2.1 Isolated machine parameters in Type 1 Line

Type 1 observer watches the flow of only Type 1 parts. The observer is unable to tell

whether or not he is in the system of processing two part types. The decomposition

of the part type one line is illustrated in Figure 4-1. A machine in LP(1) is denoted

by M(i, j), where i = 1,... ,k is the sequence of the machines and j = 1 is the part
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Figure 4-1: Part Type Decomposition

type number. Also we let B(i, 1) denote a buffer in LP(1). We take the the first and

last machine in LP(1), denoted M(sl, 1) and M(dl, 1), to be the same as Mj1 and

Mdl, respectively. This is because these machines are processing only Type 1 parts in

the real line. We take all the buffers, including supply and demand buffers in LP(1),

to be the same as all the buffers in the real line. Therefore, the size of the buffer in

LP(1), denoted by N(i, 1), is Nj,.

4.2.2 Machine parameters in the part-type-one line

Now, we have a hypothetical transfer line, LP(1), processing only Type 1 parts. We

need to calculate the machine parameters in order to analyze the line. We denote the

repair and failure probability of M(i, 1) by r(i, 1) and p(i, 1), respectively. Type 1

parts have priority over Type 2 parts. Therefore, the Type 1 part observer sees that

the machine is processing Type 1 parts whenever there is a Type 1 part available in

the immediate upstream buffer and whenever there is space to put a Type 1 part in

the immediate downstream buffer. The parameter p(i, 1) is the failure probability of

machine M(i, 1). That is, it is the probability that M(i, 1) does not make a part at
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time t + 1, given it did make one, at time t. This is expressed as

p(i, 1) = Pr [M(i, 1) down at time t + 1|M(i, 1) up, at time t] (4.1)

Note that unlike the single part type processing line case, in the above conditional

probability, M(i, 1) is not restricted to fail while it is not starved or blocked. There

are two ways that M(i, 1) is down at time t + 1, and M(i, 1) was up at time t. They

are:

Mi is down at time t +1, and Mi was up, and not starved and blocked for Type

1 parts at time t, or

Mi is down at time t+1, and at time t, Mi was up, and either starved or blocked

for Type 1 parts and not blocked and starved for Type 2 parts.

We express (4.1) such that

p(i, 1) Pr [ao (t + 1) = 0{a (t) = 1 n ni_1,1(t) > 0 n ni,1(t) < Ni} U

{a (t) = 1 n (ni- 1,1(t) = 0 U ni,1(t) = Ni,1)

n ni- 1,2 (t) > 0 n ni,2 (t) < Ni,2}1

= Pr [ai,i(t + 1) = 0{ai, 1(t) = 1 n ni_ 1,1(t) > 0 n ni,i(t) < Ni1]

~~ pi

The parameter ri,1 is the repair probability of machine M(i, 1). That is, it is the

probability that M(i, 1) makes a part at time t +1, given it did not make one at time

t. This is expressed as
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r(i, 1) = Pr [M(i, 1) up at time t + 1|M(i, 1) down at time t]

There are two ways that M(i, 1) produces a Type 1 part at time t + 1, given that

it did not produce one at time t. They are

" Mi is up at time t + 1 and Mi was down at time t, or

" Mi is processing a Type 1 part at time t + 1 and was processing a Type 2 part

at time t.

For the second case, Mi,1 can work on a Type 2 part only when the Mi is blocked

or starved. The observer would believe that M(i, 1) is not processing a Type 1 part

at time t, because of the blockage or starvation in the part type one line. Therefore,

the observer would not notice the second case and we can ignore the case. Since we

consider only the first term, we can express as

r (i, 1) = Pr [ai,I(t + 1) = 1cIa, 1(t) = 0]

=ri

It follows from the definition of ri. In similar manner, it is possible to evaluate

r(sl, 1), p(s1, 1), r(dl, 1), and p(dl, 1). Therefore, failure and repair probabilities in

LV(1) are
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r(s1, 1) = ri,

r(dl, 1) = rdl,1

p(s1, 1) = Psi,1

p(dl, 1) = Pdl,1

r(i, 1) =r

p(i, 1) =pi

for i=1,...,k

4.2.3 Idleness failure in Type 1 part line

Suppose that the Type 1 observer does not see any inflow of parts due to starvation;

there has been an actual machine failure in the upstream, starving the line down-

stream of it. The observer would think that the machine is idle. However, the actual

machine may not be idle and maybe working on Type 2 parts. While the actual

machine is working on Type 2 parts, the machine can fail. From the part type one

observer's perspective, the machine can fail while it is idle. We call this idleness

failure.

Unlike the machine parameters, probability of idleness failure depends on the size

neighboring buffers. This is because the idleness failure is the failure rate while the

machine is either blocked or starved, and these blockage and starvation depend on

the size of buffers.

Instead deriving an equation for the idleness failure for each machine, we consider

idleness failure to be a two machine line parameter as illustrated in Figure 3-1.
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4.3 Two machine line decomposition

We present a decomposition for the line LV(1) in this section. The approach is similar

to the decomposition for the single part type. However, we consider idleness failure

in our model.

4.3.1 Notation and assumptions

Figure 4-2 shows the decomposition of the line LV(1). For each buffer Bi,1, we have

a representative two-machine line, denoted L(i, 1). The upstream machine is denoted

Ms(i, 1), and the downstream machine is denoted Md(i, 1). We denote the repair,

failure, and idleness failure parameters of M,(i, 1) by r,(i, 1), pu(i, 1) and qu(i, 1),

respectively. Likewise, we denote the repair, failure, and idleness failure parameters

of Md(i, 1) by rd(i, 1), Pd(i, 1) and qd(i, 1), respectively. We take the size of the buffer

B(i, 1) in L(i, 1), denoted N(i, 1), to be the same as Bi,1 . We denote the current level

of the buffer in L(i, 1) by n(i, 1)(t).

We will assume that the probability that a machine Mi is simultaneously starved

and blocked for a given part is negligible. That is, we assume that

Approximation. Pr [mnjg(t) = 0 n ni,j(t) = Nij] ~ 0 I

In order for a machine to be both starved and blocked for a part simultaneously,

it is necessary that at some point, the machine had exactly one part in the upstream

buffer, and exactly one space in the downstream buffer. We expect that this is a

rare occurrence because in order for it to happen, the buffer upstream of machine Mi

would have to have exactly one part in it, and the buffer downstream of machine Mi

would have to have exactly one space for a part.

We also define some useful quantities.
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Figure 4-2: Part Type Decomposition

Sd(i -1, 1)
Si(i -1, 1)

Bu(i, 1)

B"(i, 1)

= Pr[a (t) = 0 nni-1,1(t - 1) = 0 nni,A(t - 1) < Ni,1]

= Pr[a (t) = 1 nni_,A(t - 1) = 0 nni,A(t - 1) < Ni,1]

= Pr[ai (t) = 0 nni1,(t - 1) > 0 ni,(t - 1) = Ni,]

= Pr [ai (t) = 1 A ni_,(t - 1) > 0 A ni, 1(t - 1) = Ni,]

Notice that these probabilities are quantities for two-machine-line. The quantity

Sd(i - 1,1) denotes the probability that Md(i - 1,1) is down and starved, while

S,(i - 1,1) denotes the probability that Md(i - 1, 1) is up and starved. The quantity

Bu(i, 1) denotes the probability that Mu(i, 1) is down and blocked, while Bw,,(i, 1)
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denotes the probability that M(i, 1) is up and blocked. We define the preceeding

quantities because the main technique in deriving the decomposition is to relate events

in the real line with events in the two-machine-lines. Since the two-machine-lines

model the behavior of material flowing into and out of the buffers in the real line, the

states when buffers in the real line are empty or full should correspond to states in

the relevant two-machine sub-lines where the intermediate buffer is empty or full.

4.3.2 Conservation of Flow

Since there is no mechanism for the creation or destruction of material, we expect

the flow of each type to be conserved. That is, for j = 1, 2, we require that

E(i, 1) = E(sl, 1) for i = 1, ... , K. (4.2)

4.3.3 Resumption of Flow Equations

The resumption of flow equations are used to calculate the values of r"(i, 1) for i =

1,... , K and rd(i, 1) for i = s1,..., K - 1. We begin with the calculation of an

expression for r,(i, 1), i = 1, . . . , K.

The parameter r(i, 1) is the repair probability of the upstream machine of L(i, 1).

That is, it is the probability that M,(i, 1) makes a part in time t + 1, given it did not

make one, and was not blocked, in time t. There are three ways that Mi could have

not produced a type one part in time step t, given that it was not blocked for type

one at time t - 1. They are:

" M was down at time t, and not starved for type one at time t - 1,

* Mi was down at time t, and starved for type one at time t - 1, or

" M was up at time t, and starved for type one at time t - 1
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If we are considering a processing line making only Type 1 parts, and assume the

the machines have operation-dependent failures, then the probability of the second

point occurring is zero, as the a machine being simultaneously down and starved

implies that the machine failed while idle. We can express such that

r (i, 1) = Pr [ai (t + 1) = 1 n ni_1,1 (t) > 0 n ni,1 (t - 1) < Nii

({ai(t) = 0 n ni_1,1(t - 1) > 0} U

{ai(t) = 0 n ni_1,1(t - 1) = 0} U

{ai(t) = 1 ni_1,1 (t - 1) = 0}) n ni,,(t - 1) < Ni,1 ]

If we define the following events

U = {ai(t + 1) = 1 n ni- 1,1(t) > 0 n ni,,(t - 1) < Ni,

A = {ai(t) = 0 n ni- 1,1(t - 1) > 0 n ni,,(t - 1) < Ni,1}

B = {a (t) = 0 n ni_1,1(t - 1) = 0 n ni,1(t - 1) < Ni,1}

C = {ai (t) = 1 A ni_1, 1 (t - 1) = 0 n ni,1(t - 1) < Ni,1 }

We note that the events A, B, and C are mutually exclusive. Then we can rewrite

r (i, 1) as

ru(i,1) = Pr [U|A U B U C]

43



= Pr[U|A]Pr[A|AUBU C]+Pr[U|B]Pr[B|A U B U C]

+Pr [U|C]Pr [CIA U B U C]
Pr [U|A]Pr [A] + Pr [U|B]Pr [B] + Pr [UjC]Pr [C]

Pr [A u B u C]

We need to calculate these quantities. We first calculate the probability of the

event A. That is, we calculate the probability that Mi is down, and not blocked or

starved. In order to do so, we need to classify exactly when M(i, 1) is down and not

blocked. There are three mutually exclusive, collectively exhaustive possibilities:

" Mi is down, and not blocked or starved for type one,

" Mi is down, and starved, but not blocked for type one, or

" Mi is up, and starved, but not blocked for type one.

That is,

Pr[a(i, 1) = 0 n ni,1 < Ni,1 ] (4.3)

= Pr[a (t) = 0 n ni- 1,1 (t - 1) > 0 n ni,1(t - 1) < Ni,1]

+ Pr[cat(t) = 0 n ni_1,1(t - 1) = 0 n ni,1(t - 1) < Ni,1]

+ Pr[a (t) = 1 n ni_1,1(t - 1) = 0 n ni,1(t - 1) < Ni,]

Using (4.2), we can write the following:

Pr[a(i, 1) = 0 n ni, < Ni,1 ] (4.4)
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= Pr[A] +S(i - 1,1) + Sd(i - 1,1)

Therefore,

Pr [A] =P7- [au(i, 1) = 0 n ni,1 < Ni,1] - Sd(i - 1, 1) - Sw(i_ - 1,)

Now, from the repair-frequency-equals-failure-frequency of the upstream machine

for the two machine line stated in (3.27), together with the quantity we defined in

(4.3), this can be written as

Pr [A] =
Pu( 1) Pr [a (i, 1) = 1 nni < Ni,] + qu(i' 1) B" (i, 1)
re (i, 1) ru(i, 1)

-Bu (i, 1) - Sdd(i - 1, 1) - Swd(i - 1, 1)

Note that in the fist term, the probability that the upstream machine is up and is

not blocked can be related with the efficiency we derived in (3.31). Finally we arrive

at the following expression for Pr[A].

Pr [A] = (i I)[WU(i 1) +ru(i, 1)

+ q 1 (i, 1)
rB(i 1)

-B(i, 1) - Sd(i -
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Next we calculate the probability of the event B. That is we need to calculate

the probability that Mi is down, and not blocked, but starved. If we relate this event

with the event in the two-machine-line that is defined in (4.2),

Pr[B] = Sd(i - 1, 1) (4.5)

Similarly, the probability of the event C is

Pr[C] = Sw(i - 1,1) (4.6)

Next we need to calculate Pr [A U B U C]. Actually, they are mutually exclusive

events. Therefore, probability of this event is the sum of the probabilities of the

events X, Y, and Z.Therefore, we can write the following:

Pr [A U B U C] Pr[A] + Pr[B] + Pr[C]

Pu (i 1) [W(i, 1) + qu(i, 1)Bu(i, 1) - ru(i, 1)B"(i, 1)]
ru(i, 1)

+ (i1)(i, 1)
ru(i, 1)

-Bu(i, 1) - S - )(i - 11) 1)

+S(i - 1, 1) + S$d(i _ I,1

Pu (i 1) [Wu (i, 1) + qu(i, 1)Bu (i, 1) - ru(i, 1)Bu (i, 1)]
ru(i, 1)

+ B, (i, 1) - Bu (i, 1)
rs(i, 1) d
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Next, we calculate the conditional probability that we make a part at time step

t +1, given that we did not make one at time t because Mi was down and not blocked

or starved for Type 1 parts.

Pr [UJA] = Pr [a (t + 1) = 1 n ni-1,1 (t) > 0 ni,1(t - 1) < Ni,

a (t) = 0 n ni1,1(t - 1) > 0 n ni,1(t - 1) < Ni,1 ]

= Pr [a (t + 1) = 11a (t) = 0]

= ri.

Here, the last step follows from the definition of ri.

Next, we calculate the conditional probability that Mi makes a type one part in

time t + 1, given it did not make one in time t because the machine was down at

time t, and starved for type one parts in step t - 1. This is the probability that Mi

is repaired, and Mi_1 makes a type one part.

Pr [UIB] = Pr [ai (t + 1) = 1 n n- _1,1 (t) > 0 n ni,1(t - 1) < Ni,

a (t) = 0 n ni_1,1 (t - 1) = 0 n ni,1 (t - 1) < Ni,]

~riru (i - 1, 1).

In this derivation, two events are occurred simultaneously. First, machine Mi is

repaired, which occurs with probability ri. Second, there is a repair of Mi_ 1, or Mi_1

becomes not starved for Type 1 parts due to a repair upstream.
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Next, we calculate the conditional probability that Mi makes a Type 1 part in

time t + 1, given it did not make one in time t because it was up, but starved for

Type 1 parts.

Pr [U|C = Pr [a (t + 1) =1 ni_1, 1 (t) > 0 n ni,1 (t - 1) < Ni,1j

ai (t) =- 1 n nj-,1(t - ) =o0 n ni,1(t - 1) < Ni,1]

~ru(i - 1, 1)(1 - qd (i - 1, 1)).

Here, the approximation comes from two events occurring. First, there is a repair

of Mi_ 1 , or Mi_ 1 becomes not starved for Type 1 parts due to a repair upstream.

Second, machine Mi did not fail while idle. This corresponds to the machine not

failing while making a Type 2 part. The observer in the Type 1 buffer does not even

know if Mi was working on a Type 2 part, but he observes that the machine did not

undergo an idleness failure. This occurs with probability 1 - qd(i - 1, 1).

If we put (4.5), (4.5), (4.6), (4.7), (??), and (??) together into (4.3), then

= ri ' f {Eu(i, 1) - qu(i, 1)Bu(i, 1) + ru(i, 1)Bu (i, 1)}14rr( i 1 ) 
7 )

+4 B"u(i, 1) - Bu (i, 1) - Sdd(i - 1, 1) - Sid(i - 1, 1)
ru(i, 1)BUd 

I
+riru(i - 1, 1)Sdd(i -1, 1) + ru(i - 1, 1)(1 - qd(i - 1, 1))Swd(i -1 )

(+u '~ 1 {Es(i, 1) - qu(i, 1)Bu(i, 1) + ru(i, 1)B"(i, 1)}

+ 1) (i, 1) - Bu (i, 1)
ru(i, 1) d
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We observe that if we set qu(i, 1) = qd(i - 1, 1) =0, then B(i, 1) and S(i - 1)

both become zero. Then r(i, 1) becomes

r (i, 1) = ru7 {) E(i - 1, 1) - p,(i - 1, 1)} + r,,(i - 1, 1)PS(i - 1, 1))r (i, 1)

r(i1) E(i 1).

Observing that Conservation of Flow gives E(i-1, 1) = E(i, 1), this equation is re-

duced to the resumption of flow equation for the one-part transfer line decomposition

given in [1].

Finally, we can similarly derive an expression for rd(i, 1). The equation for rd(i, 1)

is given as:

rd(i, 1) - ri+1 EPd(i, 1) E(i + 1, 1) - qd(i, 1)Sd(i 1) + rd(i, 1)Sd(i, 1)1
rd(i, 1)

+ T4 i1 Swd(i,1 1) - Bdu (i,)- Sdd(i, 1) - B"u(i, 1)
rd(i, 1)

+ri+1rd(i + 1, 1)Bu(i + 1, 1) + rd(i + 1, 1)(1 - qu(i + 1, 1))Bu(i

(+ ( Ed(i + 1, 1) - qd(i, 1)Sd(i, 1) + rd(i, 1)Sd (i, 1)1

+d(i, 1)S(i, 1) - S(i, 1)
rdi,1

(4.8)

+ 1, 1))

We note that this equation also reduces to the one-part type resumption of flow

equation for the downstream machine if the idleness failure probabilities are set to

zero.
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4.3.4 Idleness failure equation

The probability qu(i, 1) represents the probability that pseudo-machine M,(i, 1) is

down at time t + 1, given that is was up and blocked at time t. Since we assume

operation dependent failures, the only way that this is possible is if the processing

machine Mi failed while making a Type 1 in step t. Therefore, this can be expressed

as

qu(i, 1) = Pr [ay (t + 1) = Ola (t) = 1 n ni_ 1,1(t - 1) = 0 n ni,1(t - 1) < Ni,

n ni-1,2(t - 1) > 0 n ni,2 (t - 1) < Ni,1 ]

= piPr [ay(t) = 1 n ni- 1,1 (t - 1) = 0 n ni,1 (t - 1) < Ni,

n ni- 1,2 (t - 1) > 0 n ni,2 (t - 1) < Ni,]

It remains to calculate the expression in the second line above. From first principals,

we have

Pr [A] = Pr [A n B] + Pr [A n B]

Thus,

Pr [a (t) = 1

= Pr [ay (t) = 1

- Pr [ai (t) =_1

n

n

n

n

n

ni_,1,(t- 1) = 0 nni,1(t - 1) < Ni,1

ni-1,2 1) > 0 0 ni,2 (t - 1) <Ni,]

ni_,,1(t- 1) = 0 nni,,(t - 1) < Ni,1 ]

ni_1,i(t - 1) = 0 n ni,1(t - 1) < Ni,1

(ni-1,2(t -1) = 0 U ni,2 (t - 1) =Ni,)]
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The first term is defined to be Sd,(i - 1,1). We argue that the second term can

be approximated by

($,d(i - 1, 2) + Bu"(i, 2)) 'w .1( 2± ( Sw(i - 1, 1) + Buw(i, 1)

This follows because, from (??), we know that the probability that machine Mi is

either blocked or starved for type one, and either blocked or starved for type two is

given by

Swd(i - 1, 2) + Bu (i, 2).

It follows that the probability that Mi is starved for type one, and either blocked

or starved for type two would be the probability that it is either blocked or starved for

type one, and either blocked or starved for type two, times the weighted probability

that the machine is starved for type one, given it is blocked or starved for type one.

The result is our idleness failure equation for the upstream machine of line L(i, 1).

q(ij 1) = -1,1) Sw(i - 1, 2) + B"§(i, 2)
Swd(i - 1, 1) + Bu(i, 1)

Similarly, we can derive

qd(i - 1, 1) =- piB" (i, 1) 1 - .w i-1 ) u(,2
Swd~z - 1, 1) + Bu"(i, 1)

4.3.5 Boundary Conditions

The boundary conditions of the Type 1 part line is following:
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ru(0,

ps (0,

qu(0,

rd(K,

pd(K,

qd(K,

1)

1)

1)

1)

1)

1)

ri,1

pii

0

rK+1,1

PK+1,1

0
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Chapter 5

Part Type 2 Analysis

5.1 Introduction

In this chapter, we analyze the behavior of the two-part type line, especially for Type

2 parts. As mentioned in Section 2.3, we take the position of an observer for Type

2 parts in each machine. We then seek to capture the Type 2 part behavior, as seen

by the observer. We first try to capture the isolated machine parameters of each

machine in Type 2 line, denoted by LP(2). Once we analyze the machine parameters

in LP(2), we apply decomposition method.

5.2 Part type decomposition for Type 2

5.2.1 Isolated machine parameters in Type 2 Line

Type 2 observer watches the flow of only Type 2 parts. The observer is unable to tell

whether or not he is in the system of processing two part types. The decomposition

of the part type one line is illustrated in Figure 5-1. A machine in LP(2) is denoted

by M(i, j), where i = 1, .... , k is the sequence of the machines and j = 2 is the part
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LP(J)
Type1

M(s1,1) Bsi lo M(1,1) 1Bi,l 1 M(2,1) . . . M(i,1) 10 Bi,i - M(i+1,1) 0 0o M(k,1) l Bk M(dl,1)

r(s 1,) r1, 1) r(2, 1) rA i1) r(k- 1, 1) r(k. 1) r(dl, 1)

MS i Bsi* ,Bti. Typel %Bi 1 Bk,1 I MD1
AA

Mi M2 0.0 Mi M+1 0 0 Mk

Ms2 Bs2 B1,2 B42 Bk,2 MD2

Figure 5-1: Part Type Decomposition

type number. Also we let B(i, 2) denote a buffer in LP(2). We take the the first and

last machine in LP(2), denoted M(sl, 2) and M(dl, 2), to be the same as M 2 and

Md2, respectively. This is because these machines are processing only Type 2 parts in

the real line. We take all the buffers, including supply and demand buffers in LP(2),

to be the same as all the buffers in the real line. Therefore, the size of the buffer in

LP(2), denoted by N(i, 2), is Ni, 2 .

5.3 Two machine line decomposition

5.3.1 Machine parameters in Type 2 line

Now, we have a hypothetical transfer line, LP(2), processing only Type 2 parts. We

need to calculate the machine parameters in order to analyze the line. We denote

the repair and failure probability of M(i, 2) by r(i, 2) and p(i, 2), respectively. Type

1 parts have priority over Type 2 parts. Therefore, the Type 2 part observer sees

that the machine is processing Type 2 parts when there is a blockage or starvation

for Type 1 and also there is a Type 2 part available in the immediate upstream buffer
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and there is space to put a Type 2 part in the immediate downstream buffer.

5.3.2 Interruption of Flow

The parameter p(i, 2) is the failure probability of machine M(i, 2). That is, it is the

probability that M(i, 2) does not make a part at time t + 1, given it did make one,

at time t. This is expressed as

p(i, 2) = Pr [M(i, 2) down at time t + 1IM(i, 2) up, at time t] (5.1)

There are four ways that M(i, 2) is down at time t + 1, and M(i, 2) was up at

time t. They are:

" Mi is up and not starved or block for Type 1 at time t + 1, and Mi was up, and

was starved for Type 1 parts at time t, or

" Mi is up and not starved or block for Type 1 at time t + 1, and Mi was up, and

was blocked for Type 1 parts at time t, or

Mi is down at time t + 1, and Mi was up, and was starved for Type 1 parts at

time t, or

* Mi is down at time t + 1, and Mi was up, and was blocked for Type 1 parts at

time t.

We define the following events:

A = {ay (t) = O}

B = {a(t) = 1 n ni_1,1(t - 1) > 0 n ni,1(t - 1) < Ni,
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D = {ai(t) = 1 nni_1,1 (t - 1) =0 n ni,1(t - 1) < Ni,1}

E = {oay(t) = 1 niI,I(t - 1) > 0 n ni,(t - 1) Ni,

Note that the event A,B,C,D, and E are mutually exclusive.

such that

p(i, 2) = Pr [A U BID U E]
Pr [(A U B) n(D U E)]

Pr [D U E]
Pr [(An(D U E)) U (B

Pr [D U E]

We express (5.1)

n (D U E))]

= Pr [AD U E] + Pr [B|D U E]

Pr [D]
= Pr [D] + Pr [FE] (Pr[ A|D] + Pr[B|D])

Pr [E] (Pr[A|E] + Pr[B|E])
Pr [D] + Pr [E]

We need to calculate these quantities. By the definition of the probability of

failure, we know that

Pr[AID] = Pr[A|E] = pi (5.2)

Next, we calculate the conditional probability that Mi makes a Type 1 part in

time t + 1, given it did not make one in time t because it was up, but starved for

Type 1 parts.
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Pr [BID] = Pr [a&(t + 1) =1 ni- 1,(t) > 0 0 ni, 1(t - 1) < Ni,1j

ai (t) = 1 n i_1,1(t - 1) = 0 n ni,1(t - 1) < Ni,1]

S ru (i - ,1)1 -qd~ ,1)

Here, the approximation comes from two events occurring. First, there is a repair

of Mi_ 1, or Mi_1 becomes not starved for Type 1 parts due to a repair upstream.

Second, machine Mi did not fail while idle. This corresponds to the machine not

failing while making a Type 2 part. The observer in the Type 1 buffer does not even

know if Mi was working on a Type 2 part, but he observes that the machine did not

undergo an idleness failure.

Likewise,

Pr [B IEl Pr [ai (t + 1) =- I n ni_1,1 (t) > 0 n ni,1(t - 1) < Ni,1

ac (t) = 1 ni_, 1 (t - 1) > 0 n ni,1(t - 1) = Ni,1]

Arls, b)( - qt (i, 1)).

Also, by the definition of the two-machine line, we know that

Pr[D]

Pr[E]

- Sd(i-1,1)

- Bu"(i,1)
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Therefore, p(i, 2) is

p(i, 2) = S wi - 1,1) + B (i, 1) (ru(i - 1, 1)(1 - qd(i - 1,1)) + pi)

Bu(i, 1)
+Si - 1,1W y(,1 (r (i, 1( q (i, 1)) + p)

(5.3)

5.3.3 Resumption of Flow

The parameter ri,2 is the repair probability of machine M(i, 2). That is, it is the

probability that M(i, 2) makes a part at time t + 1, given it did not make one at time

t. This is expressed as

r(i, 2) = Pr [M(i, 2) up at time t + 1IM(i, 2) down at time t]

We define the following quantities:

= {a (t+1)

= {ai (t) = 0

= {ac (t) = 1

= {a(t + 1)

= {ai(t) = 0

n

n

n

1 n ni_1,1(t) = 0}

ni_1,1(t - 1) = 0}

ni_1,1(t - 1) = 1}

1 n ni 1,1(t) =Nj,

ni_1,1(t - 1) =Nj,
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V2 = {a (t) = 1 n ni_1 ,1 (t - 1) = Ni,1 - 1}

Then we can refine r(i, 2) such that

r(i, 2) = Pr [U 1 U U2 |Di U V1 U UD 2 U V2]

Pr [UI|D 1 U V1 U UD 2 U V2]

+Pr [U 2 D1 U V1 U UD 2 U V2 1

Pr[U|D1]Pr[D1 ] + Pr[UVI]Pr[V]
Pr[D1] + Pr[V]

Pr [U 2 |D2]Pr[D2] + Pr [U 2 V2] Pr [2]
Pr[D2] + Pr[V2]

From the previous analysis we know that

Pr[UI1DI] = ri(1 - r, (i - 1, 1))

Pr[Di] = S(i - 1, 1)

Pr[UIV] (1 - ru(i - 1, 1))P(i - 1, 1; 101) + pu(i - 1, 1)P(i - 1,1; 111)
P(i - 1 1; 101) + P(i - 1, 1; 111)

Pr [V] =P(i - 1, 1; 101) + P(i - 1, 1; 111)

Pr[U2 |D2 1 = ri(1 - rd(i, 1))

Pr[D2] = B (i, 1)

Pr[UI1V] = (1 - rd(i, 1))P(i, 1; N - 110) + Pd(i, 1)P(i, 1; N - 111)
P(i, 1; N - 110) + P(i, 1; N - 111)

Pr[V] =P(i, 1; N - 110) + P(i, 1; N - 111)
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Therefore, we can express

r (i, 2) =(ri (I - r ,(i -1, 1)) Sdd(i - 1)

- r'(i - 1, 1))P(i - 1, 1; 101) + Pu(i - 1)P(i - 1, 1, 111))

\d(i - 1, 1) + P(i - 1, 1; 101) + P(i - 1, 1; 111))
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Chapter 6

Algorithms and Preliminary

Results

6.1 Introduction

It is now necessary to develop an algorithm that will solve the equations. This

chapter presents an algorithm, classifies its effectiveness, and provides numerical data

for determining its accuracy.

6.2 Algorithm

In this section we present an algorithm for solving the decomposition equations de-

rived in Chapter 4 and Chapter 5. The basic idea of the algorithm is to run DDX

algorithm to the Type 1 line, calculating the upstream two-machine parameters for

type one, and then apply DDX algorithm for Type 2 line, using the parameter calcu-

lated from Type 1 line. We repeat the process until the parameters are converged.

Step 0: Initialization
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initialize upstream parameters for Type 1

for i = 1 to NumMachines do;

PU [i] [j] = PHi]1]1;

ru[i][j] = r[i][1];

qu[i][j] = 0;

end;

initialize upstream parameters for Type 2

for i = 1 to NumMachines do;

Pu[i][j] = p[i][2];

ru[i][j] = r[i][2];

qu[i][j] = 0;

end;

initialize downstream parameters for Type 1

for i = 0 to NumMachines-1 do;

pd[i][j] = p[i + 1][1];

rd~i][j] =r[i + 1][1];

qd[i][j] = pd[i][1];

end;

initialize downstream parameters for Type 2
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for i = 0 to NumMachines-1 do;

Pd[i][j] = p[i + 1][2];

rd [il[j] = r [i + 1] [2];

qd[i][j] = Pd[i][2];

end;

While the termination criterion of step 5 is not met, do steps one through four, in

order, until the termination criterion of step 5 is met, or until the algorithm iterates

for a preset number of iterations.

Step 1: Upstream Sweep for Type One

for i = 1 to NumMachines do;

Evaluate Two Machine Line L(i - 1, 1);

Calculate q[i][1] using Equation (??)

Calculate p,[i][1] using Equation (??)

Calculate rs[i][1] using Equation (??)

end;

Step 2: Downstream Sweep for Type One

for i = NumMachines-1 to 0 do;

Evaluate Two Machine Line L(i + 1, 1);

Calculate qd[i][1] using Equation (??)

Calculate pd[i][1] using Equation (??)

Calculate rd[i][1] using Equation (??)

end;

Step 3: Upstream Sweep for Type Two
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for i = 1 to NumMachines do;

Evaluate Two Machine Line L(i - 1, 2);

Calculate q,[i][2] using Equation (??)

Calculate p,[i][2] using Equation (??)

Calculate r.[i][2] using Equation (??)

end;

Step 4: Downstream Sweep for Type Two

for i = NumMachines-1 to 0 do;

Evaluate Two Machine Line L(i + 1, 2);

Calculate qd[i][2] using Equation (??)

Calculate pd[i][2] using Equation (??)

Calculate rd[i][2] using Equation (??)

end;

Step 5: Evaluate Stopping Criterion

Terminate the algorithm when the maximum value of

||E(ij) - E(0,j)II

for i = 1,..., NumMachines is less than some pre-specified c for each

part type j.

6.3 Preliminary Results

With the above parameters, the cases were randomly generated using a program

written in C. A script then simulated each case, and recorded the results, using a
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discrete-event simulator written in C. Simulation consisted of 100 independent simu-

lations runs of 1,500,000 time periods each, where the first 500,000 time periods were

discarded to ensure data was only collected on a system in steady state. The length of

the simulation runs was chosen so that we could be sure that the transient period did

not affect the results and that the period of data collection was long enough to give

confidence intervals that gave at least three significant digits of accuracy to the right

of the decimal place. To do so, we followed a simple procedure of picking a simulation

length and transient period at random, and the doubling it until the results from one

iteration to the next were essentially identical.

For production rates, we calculated the percent error of the approximated pro-

duction rate from the simulated production rate in the following manner.

Edcm - Esi
% Error = 100 x dcomp E sim (6.1)

Esim

This metric is standard in the literature, and provides easy recognition of whether

the approximation is under- or over-estimating the simulated production rate.

The average absolute percent error for the 269 cases where the algorithm converged

was 0.15% for Type 1 parts, and 4.51% for Type 2 parts.

65



NO FILE: eps/decomp-case5plotl.eps

Figure 6-1: The errors in the decomposition approximation for Type 1 and Type 2
production rates in a production line with eight processing machines.
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