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Abstract

Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations
between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between
variables of different data types (mutation, copy number alteration, DNA methylation and gene expression) from the
glioblastoma (GBM) and ovarian serous cystadenoma (OV) data sets from The Cancer Genome Atlas (TCGA). We find
hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by
Boolean implications and those found by commonly used methods for mining associations show that existing methods
would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications
reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number
alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations,
loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1
mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/
microarray/TCGANetworks/.
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Introduction

Large-scale cancer genome projects including The Cancer

Genome Atlas (TCGA) (http://cancergenome.nih.gov/) are gen-

erating an unprecedented amount of multidimensional data using

high-resolution microarray and next-generation sequencing plat-

forms. There are opportunities for mining these data sets that can

yield insights that would not be apparent from smaller, less diverse

data sets. Obtaining the full value of these data requires the ability

to find associations between heterogeneous data types.

In this paper, we propose to use Boolean implications [1] to find

pairwise associations in heterogeneous cancer data sets. Boolean

implications are if-then rules. The distribution of points in a

scatterplot of two variables in a Boolean implication is L-shaped

instead of linear (Figure 1). There are four Boolean implications:

(1) A-low ? B-low (LOLO), (2) A-high ? B-low (HILO), (3) A-low

? B-high (LOHI), (4) A-high ? B-high (HIHI). Boolean

implications can also be interpreted according to set theory. The

Boolean implication A-high ? B-high means that ‘‘the set of

samples where A is high is a subset of the set of samples where B is

high’’. The implication A-high ? B-low means that ‘‘the set of

samples where A is high is mutually exclusive with the set of

samples where B is high’’. Thus far, Boolean implications have

been mainly used to analyze gene expression data with a focus on

understanding development [2,3]. Previous work [1] showed that a

large number of Boolean implications are present in gene

expression data. Based on this finding, we hypothesized that

Boolean implications would be useful in the context of mining

heterogeneous cancer data sets because (1) they can expose subset

and mutual exclusion relationships, both of which have L-shaped

scatterplots between related variable pairs; and (2) they provide a

common and unified framework to expose relationships between

categorical and continuous data. Accordingly, we adapted the

existing Boolean implications framework to enable extraction of

Boolean implications between mutation, copy number alteration,

DNA methylation and gene expression for two large TCGA data

sets. Our experiments show that large numbers of implications

exist. Experimental comparisons with existing methods to identify

pairwise associations in biological data [4–10] such as t test,

correlation and Fisher’s exact test revealed that many Boolean

implications are missed by other methods. Furthermore, many of

the relationships found by Boolean implications captured key

aspects of cancer biology.

Materials and Methods

Data sets
Our proposed method was applied to two TCGA data sets:

glioblastoma (GBM) and ovarian serous cystadenoma (OV). For

both, we used the mutation, copy number, DNA methylation and

expression data. We started our analysis with the Level 3 data

downloaded from the TCGA website (https://tcga-data.nci.nih.

gov/tcga/dataAccessMatrix.htm). The GBM data set included

126 patients with mutation and copy number data, 235 patients
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with methylation and expression data, and 86 patients with

mutation, copy number and expression data. The OV data set had

314 patients with mutation and copy number data, and 286

patients with mutation, copy number, methylation and expression

data. For expression data for both GBM and OV, we used the

U133A array which has 22,277 probes. For methylation data for

GBM, we used the Illumina Golden Gate assay which has 1536

probes, and the HumanMethylation27 array which has 27,758

probes. We used the Golden Gate assay only when there were not

enough samples with HumanMethylation27 data. For methylation

data for OV, we used the HumanMethylation27 array which has

27,758 probes. In GBM, there were 673 mutations and 89,271

copy number alterations. In OV, there were 18,949 mutations and

13,859 copy number alterations.

Boolean Implication Extraction Between Pairs of Variables
Boolean implications between pairs of variables were detected

using a statistical test consisting of two parts: (1) the chi-squared

test for independence was used to detect nonrandom associations,

(2) then the sparsity test checked for sparseness of a specific

quadrant using a maximum-likelihood estimate of the error rate

for the points in the sparse quadrant [1]. An implication was

considered significant if the first statistic was greater than a cutoff

threshold (typically, between 2.0 and 3.0) and the error rate was

less than 0.1. The cutoff was chosen to obtain an acceptable false

discovery rate (FDR). The details of the FDR test are in the next

section. Note that the sparsity test (step 2) distinguishes a Boolean

implication from simple non-independence of variables.

Boolean Implication Generation Integrating
Heterogeneous Data

Each type of data was scaled in the range of 0-16, then a

threshold separating high and low values was found. The

conversion of the TCGA Level 3 data into high and low values

was specific to each data type. The conversion details are

summarized in Table 1. More details on the conversion procedure

are in the Supporting Information (Text_S1).

After the conversion of all categorical and continuous data into

Boolean variables, implications were derived between all pairs of

variables. Given the large number of attributes and even larger

number of potential relationships, it was necessary to evaluate the

significance of the relationships discovered by the above algorithm.

We used the FDR computation proposed in previous work [1].

The FDR was obtained by randomly permuting the values for

each attribute independently, and then extracting the Boolean

implications as above. This analysis was repeated 50 times to

compute the average number of Boolean implications in the

randomized data. The FDR was the ratio of the average number

of Boolean implications in the randomized data and the original

data. The cutoff thresholds for the Boolean implication test were

set to obtain an acceptable FDR.

Enhancements to Boolean Implication Extraction. To

enable better detection of Boolean implications with the genomic

alterations - mutation and broad Copy Number Alteration (CNA)

- data, we introduced several improvements to the implication

generation process described earlier [1]. The chi-squared test for

independence is not appropriate when the expected number of

Figure 1. Boolean Implications illustrated using data from gene expression arrays. Each variable has a threshold, represented in the plot
as a blue line, that divides the variable into ‘‘low’’ and ‘‘high’’ levels. The green and purple lines are 20.5 and +0.5 away from the threshold on the X
axis, respectively. Samples that fell between the green and purple vertical lines on the X axis and between the yellow and blue horizontal lines on the
Y axis were not considered during the generation of a Boolean implication. Each point in the scatterplot represents the values of two variables in a
tumor sample. Four L-shaped relationships of gene expression are shown (left-to-right and top-to-bottom) (A) LOLO (if CCND1 is low, then CHN2 is
low), (B) HILO (if GABBR2 is high, then JUP is low) (C) LOHI (if HOXB7 is low, then HOXD3 is high) (D) HIHI (if GABBR2 is high, then ABAT is high). A
Boolean implication exists between two variables when one quadrant is very sparse. Boolean implications can capture L-shaped relationships as well
as linear relationships (in which case the two opposite quadrants are sparse), revealing many associations not found by other methods.
doi:10.1371/journal.pone.0102119.g001
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any entry in the contingency table is less than 5. Instead, we used

Fisher’s exact test to detect nonrandom associations between

variables when processing low frequency events such as mutations

and copy number alterations. The Boolean implications between

genomic alterations were derived by using Fisher’s exact test

followed by the sparsity test. We also augmented the implication

extraction procedure for genomic alterations by adding artificial

normal samples. In both data sets, there exist a few genomic

alterations that were present in almost all tumor samples (such as

10q23_31 deletions in GBM and TP53 mutations in OV). In order

to find implications involving these genomic alterations, we added

artificial normal samples (which did not harbor the mutations or

copy number alterations) when deriving the implications between

genomic alterations. This was an acceptable procedure since,

unlike DNA methylation or gene expression, the mutations and

chromosomal alterations were very likely to be cancer-specific as

germline mutations and CNVs (copy number variations) had been

removed by TCGA. The number of tumor samples with mutation

and broad CNA data was 124 and 314 for GBM and OV,

respectively. Before we derived the implications, we added 10 and

30 artificial normal samples to the GBM and OV data sets,

respectively. An implication was considered significant if the p-

value for the Fisher’s exact test was less than a cutoff threshold

(v0:05) and the error rate was less than 0.14.

Results and Discussion

In order to mine relationships between variables of different

data types such as mutation, copy number, DNA methylation and

gene expression, we extracted all four types of Boolean implica-

tions (Figure 1). Each attribute was converted to a Boolean

variable. The conversion of the TCGA data into high and low

values was specific to each data type. The details are summarized

in Table 1 (see Materials and Methods for more details).

Subsequently, Boolean implications were derived across all pairs

of variables. In order to handle low frequency events such as

mutations, we made enhancements to the existing Boolean

implication extractor [1]. An evaluation of how well the test for

Boolean implications performed when picking a known set of

implications is demonstrated using a synthetic data set (Text_S2).

The rest of this section describes the Boolean implications we

found in the TCGA glioblastoma (GBM) and ovarian serous

cystadenoma (OV) data sets and their potential biological

significance.

Table 1. Conversion of Different Data Types to High and Low States.

Data Type Attribute Transformation High State in Sample Low State in Sample

Gene expression Gene expression probe set RMA [35] Normalization Value w StepMiner [34] threshold Value , StepMiner threshold

DNA methylation CpG site Scaling by a factor of 10 Value w StepMiner threshold Value , StepMiner threshold

Mutation Type of mutation per gene - Particular type of mutation present
in gene

Particular type of mutation
absent in gene

Mutation Mutation per gene - Mutation present in gene Mutation absent in gene

Copy Number Copy Number amplification
per gene

- Somatic gene amplification present Somatic gene amplification
absent

Copy Number Copy Number deletion per gene - Somatic gene deletion present Somatic gene deletion absent

Copy Number Broad Copy Number amplification
per segment

- Broad region amplified Broad region not amplified

Copy Number Broad Copy Number deletion per
segment

- Broad Region deleted Broad Region not deleted

StepMiner [34], which fits patterns of one-step transitions by evaluating every possible placement of the transition (or step) and choosing the one that gives the best fit,
was used to derive thresholds that divide the data into low and high states.
doi:10.1371/journal.pone.0102119.t001

Table 2. Summary Table.

Data Set Data Types Analyzed HIHI HILO LOLO LOHI

GBM {Copy Number Alteration, Expression} 202385 178195 52592 15777

{DNA methylation, Expression} 2875172 1008334 2671091 266135

{Mutation, Broad CNAs} 170 54 0 0

{Mutation, DNA methylation} 1057 238 8 0

OV {Copy Number Alteration, Expression} 271472 823660 8544 1471

{DNA methylation, Expression} 70498 116200 93543 35934

{Mutation, Broad CNAs} 75 5 0 0

{Mutation, DNA methylation} 319 670 33 60

Number of different Boolean implications between variables of different data types in the TCGA GBM and OV data sets. The different data types considered were
mutation, copy number, DNA methylation and gene expression. Since chromosomes tended to be altered in large blocks, the copy number data were also organized by
chromosomal segments. GISTIC2.0 [36] identifies focal peaks of amplification or deletion as well as broad regions of alteration. The segments derived by GISTIC2.0 are
referred to as broad CNAs.
doi:10.1371/journal.pone.0102119.t002
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Numerous Boolean Implications Exist Between Variables
of Different Data Types in Glioblastoma and Ovarian
Cancer

Table 2 summarizes the number and types of Boolean

implications found between variables of different data types in

the TCGA GBM and OV data sets. The pairs of data types -

{copy number alteration, expression}, {DNA methylation,

expression}, {mutation, broad CNAs} and {mutation, DNA

methylation} - were mined separately for Boolean implications.

Analyzing pairs of data types separately had the advantage of

maximizing the number of samples that had information for the

data types of interest since not all samples had data for all four

types. We only report the number of Boolean implications

between variables of different data types as it directly demonstrates

the value of integrating different types of data for the same patient.

The only exception to this is for the {mutation,broad CNAs}

analysis where we report all pairs except the relationships between

intra-chromosomal broad CNAs. No additional restrictions, such

as the requirement that the variables belong to the same gene,

were imposed on the relationships being mined. The FDR for each

analysis was v0:05, except the {mutation,broad CNAs} analysis

in GBM where the FDR was v0:1 to allow finding interesting

relationships with a small sample size. The results clearly indicate

that a large number of Boolean implications exist in the data.

Furthermore, the implications can be generated in a matter of

minutes, demonstrating the scalability of the extraction procedure.

Our results show that a large number of subset (HIHI) and

mutual exclusion (HILO) relationships exist between different data

types in these large cancer data sets. The next question was to see

whether or not these relationships can be found by other methods

used for identifying pairwise relationships.

Other Methods Miss Many Boolean Implications
We compared the relationships identified by Boolean implica-

tions to the relationships found by three commonly used

bioinformatics techniques for identifying pairwise associations

[4–9]: t test (which looks for a difference of means between two

groups), correlation (which looks for linear dependence between

two variables) and Fisher’s exact test (which looks for non-

independence of two variables). For a given set of probes, we

extracted all the Boolean implications of a certain kind, say HILO

and HIHI, and compared them to the top n relationships of the

other method, where n is the number of relationships found by

Boolean implications.

We identified relationships using the t test and compared them

to relationships found by Boolean implications. The t test is often

used to find the difference in means of a continuous variable

between two groups (which is a binary variable). In order for a

binary variable X and a continuous variable Y to be related using

the t test, Y has to be differentially expressed in the samples that

have high values of X compared with the samples that have low

values of X . The HILO implications were compared to all

relationships found by the t test where the continuous variable was

under-expressed when the binary variable was high. Similarly, the

HIHI implications were compared to all relationships found by the

t test where the continuous variable was over-expressed when the

binary variable was high. The relationships were ranked by p-

value and the top n relationships were picked in each case. To

make the task more computationally tractable, we did this

Table 3. Boolean implications versus t test.

Type of Implication Trial No. Total Overlap

HILO 1 319 87

2 216 54

3 236 72

4 333 113

5 329 97

6 246 80

7 307 101

8 233 76

9 308 63

10 33 71

HIHI 1 86 21

2 75 22

3 126 65

4 77 27

5 102 34

6 73 26

7 95 33

8 99 36

9 81 17

10 77 28

Comparison between relationships found by Boolean implications and the
relationships found by t test between randomly selected sets of variables of size
200 in the TCGA OV data set.
doi:10.1371/journal.pone.0102119.t003

Table 4. Boolean implications versus correlation.

Type of Implication Trial No. Total Overlap

HILO 1 67 9

2 38 4

3 83 19

4 51 2

5 87 26

6 80 19

7 91 15

8 65 14

9 64 13

10 55 5

HIHI 1 44 11

2 50 4

3 46 18

4 48 11

5 32 2

6 20 3

7 47 11

8 37 7

9 51 11

10 61 12

Comparison between relationships found by Boolean implications and the
relationships found by correlation between randomly selected sets of variables
of size 200 in the TCGA OV data set.
doi:10.1371/journal.pone.0102119.t004
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comparison on 200|200 pairs chosen at random and repeated

the random trials 10 times. Comparisons between the relationships

found by the t test and the relationships found by Boolean

implications showed very little overlap (Table 3). Visual exami-

nation of the Boolean implications missing in the top n list of the t
test showed that these relationships were strong L-shaped

relationships (see Figures S1–S2 for scatterplots of 20 missed

Boolean implications), which represent subset and mutual

exclusion relationships. Since the t test looks for a difference in

means between two groups, it picked out many other relationships

that were not necessarily L-shaped (examples in Figures S3–S4).

To compare Boolean implications with correlation, we com-

puted Pearson’s correlation coefficient between the two variables.

When comparing with HILO implications, variable pairs with

negative Pearson’s correlation coefficient were considered. In the

comparison with HIHI implications, variable pairs with positive

Pearson’s correlation coefficients were considered. The pairs were

ranked by absolute magnitude of the correlation coefficient in each

case, and the top n relationships were picked. As in the t test case,

the comparisons were done on randomly chosen 200|200

variable pairs and the trials were repeated 10 times. The overlap

between the relationships ranked highly by correlation and the

relationships found by Boolean implications was small (Table 4).

Inspecting the Boolean implications that were not in the top n

correlation list show that these relationships were strong L-shaped

relationships (examples in Figures S5–S6), whereas the relation-

ships picked only by correlation were not (examples in Figures S7–

S8). While the comparisons were done using Pearson’s correlation

coefficient, the results can be generalized to other types of

correlation coefficients as well as mutual information since these

methods are not tuned to pick out L-shaped relationships.

We also compared Boolean implications to the relationships

found by Fisher’s exact test. For comparison with HILO and

HIHI implications, we used the one-tailed Fisher’s exact test to

compute the statistical significance of mutual exclusion (left tail) or

co-occurrence (right tail), respectively. Since Fisher’s exact test

requires two discrete variables, discretization for continuous

variables was done in exactly the same way as for Boolean

implications. The top n relationships were picked in each case after

ranking by p-value. As in previous cases, the comparisons were

done on randomly chosen 200|200 variable pairs and the trails

were repeated 10 times. Even though the Boolean implication

extraction test is most similar to this test, there were differences in

the top n relationships (Table 5). Visual inspection of the top n
relationships of Fisher’s exact test that were not Boolean

implications showed that these cannot be reasonably interpreted

as subset or mutually exclusive relationships (examples in Figures

S9–S10), demonstrating the importance of the sparsity test in

extracting Boolean implications.

The low overlap between the relationships found by Boolean

implications and the relationships found by other methods clearly

indicate that the relationships found by Boolean implications are

unique and would be missed by other commonly used methods.

The next question was to see whether or not these relationships

were biologically meaningful, which we address in subsequent

sections. Figure 2 provides a pictorial summary of the different

implications we analyzed to answer the question of biological

relevance.

Boolean Implications Expose cis-Regulatory Mechanisms
in Glioblastoma and Ovarian Cancer

A common concern in cancer research is to understand the

relationship between expression of a gene and somatic copy

number alteration and/or DNA methylation. Boolean implica-

tions can be used to explore such cis-regulatory relationships.

Thus, we focused on implications between copy number alteration

and/or DNA methylation of a gene and expression of the same

gene.

Figures 3A and 3B illustrate examples of Boolean implications

between copy number alteration and expression of the same gene

in both data sets. Figure 3A clearly shows that CDKN2A

expression was low when CDKN2A was deleted. Similarly,

CCNE1 amplification implied high expression (Fig. 3B).

Figures 3C and 3D illustrate examples of Boolean implications

between DNA methylation and expression. In both cases, the

gene’s expression was low when methylation was high. In all of

these examples, the relationships were L-shaped: the change in

copy number or gene methylation caused expression to be either

high or low, but normal copy number and absence of methylation

did not produce the opposite expression pattern. Therefore, the L-

shape indicates that there are alternate mechanisms that induce

the same expression profiles as gene methylation, amplification or

deletion.

Table 6 summarizes the number of genes in the GBM and OV

data sets where copy number alteration or methylation was related

to gene expression. The details of the genes found and the

relationship types are in the Supporting Information (Tables S1–

S4). Genes that were both amplified and deleted in different

groups of samples were most likely passenger events and were

excluded from the analysis. Breaking down the analysis further,

there were 107 Boolean implications involving gene deletions and

12 involving gene amplifications for the GBM data set. For the

OV data set, there were 1703 Boolean implications involving gene

Table 5. Boolean implications versus Fisher’s exact test.

Type of Implication Trial No. Total Overlap

HILO 1 239 84

2 247 84

3 271 89

4 245 94

5 263 91

6 283 106

7 305 144

8 302 125

9 308 133

10 273 198

HIHI 1 102 33

2 86 36

3 87 14

4 143 44

5 70 13

6 66 11

7 91 19

8 76 18

9 105 29

10 87 17

Comparison between relationships found by Boolean implications and the
relationships found by Fisher’s exact test between randomly selected sets of
variables of size 200 in the TCGA OV data set.
doi:10.1371/journal.pone.0102119.t005
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deletions and 74 Boolean implications involving gene amplifica-

tions. Comparative analysis with existing methods to find cis-
relationships such as t test and correlation showed that the genes

found by Boolean implications were often not found by other

methods (Table 7), much like the results shown when all

relationships were considered.

To better understand these gene lists, we analyzed them with

Gene Set Enrichment Analysis (GSEA) [11]. The FDR q-value for

finding enriched gene sets was set to 0.05. GSEA analyses of genes

found by Boolean implications (Table 6) revealed enrichment for

genes that were either downstream of well-known cancer genes or

were genes known to play a role in glioblastoma [12,13] or ovarian

cancer [14,15].

It has been observed in cancer that multiple inactivation events

can disrupt the same gene. For instance, the TCGA marker paper

on ovarian cancer [7] reported BRCA1 was inactivated by

mutually exclusive genomic and epigenomic events. Our frame-

work lends itself to such combinatorial analysis between different

data types of the same gene. We describe one such example of

combinatorial analysis. Since, both deletions and methylation of

genes are considered to have a repressive effect on gene

expression, Boolean implications can be used to identify genes

that satisfy the following relationship: if (gene is deleted or gene is

methylated), then gene expression is low. This query selects genes

that are both deleted and methylated (in the same or different

samples in the same type of cancer) and that have low expression

in either case, potentially indicating that these genes play a central

role in the cancer. There were 203 genes and 223 genes that

satisfied the stated Boolean implication in the GBM and OV data

sets, respectively (Tables S5–S6). This search revealed additional

genes where deletion or DNA methylation alone was too rare to

yield a statistically significant implication, but the union of the two

events produced a significant implication. GSEA analysis of the

genes thus identified in the GBM data set overlap with genes that

are down-regulated when Wnt signalling is high and when RB1 is

down-regulated (WNT_UP.V1_DN, RB_DN.V1_DN). This was

in accordance with prior work that showed the importance of the

Wnt signalling pathway in gliomas [16] and the significant

presence of RB1 mutations in glioblastoma [17]. For the genes

found by the query in the OV data set, there was considerable

overlap with genes that are down-regulated when CCND1 is

over-expressed (CYCLIN_D1_KE_.V1_DN, CYCLIN_D1_UP.

V1_DN). CCND1 is known to be over-expressed in epithelial

ovarian cancer [18].

To summarize, we found numerous genes with subset and

mutual exclusion relationships between copy number alteration,

DNA methylation and expression. Combinatorial analysis of data

types allowed us to extract additional useful information from the

data illustrating an additional benefit of the Boolean implication

framework. Furthermore, GSEA analyses revealed that many of

these genes were related to glioblastoma and/or ovarian cancer

genes. The above analysis shows how one can use Boolean

implications to find genes whose expression is regulated by somatic

changes in copy number and/or DNA methylation.

Boolean Implications between Genomic Alterations
Reveals Mutual Exclusion, Potential Temporal
Progression, Hierarchical Pathway Hits and
Loss-of-Heterozygosity (LOH)

The implications between genomic alterations - mutations and

broad CNAs - were of two types: HILO and HIHI implications

(Table 2). HILO implications represent mutual exclusion. These

relationships have been studied previously in the same data sets in

the context of pathways [19]. Our analysis found many mutual

exclusion relationships between genes on the same pathway and

also found new ones since we were not restricted to pathway-

specific events (Text_S3).

HIHI implications are approximate subset relations between

broad CNAs or between mutations and broad CNAs. While subset

relationships are expected when studying regulatory relationships

of gene expression, we did not expect to find such subset relations

between broad CNAs on different chromosomes or between broad

CNAs and gene mutations. Only these unexpected relations were

examined further. We chose to investigate these relationships as

they have not been studied in the past. The implications between

the various genomic alterations may aid in understanding the

causes and/or effects of tumorigenesis. Tables containing the

complete list of implications are available in the Supporting

Information (Tables S7 and S8).

Figure 4, plotted using Graphviz: http://www.graphviz.org,

displays a subset of the HIHI Boolean implications between

genomic alterations in the GBM data set. The figure was obtained

after merging equivalent broad CNAs on the same chromosome.

The HILO implications involving broad CNAs that appeared in

one or more HIHI implications were overlayed on this graph. The

HIHI implications are represented as directed edges from the

superset to the subset. The HILO implications are represented as

dashed undirected edges. There are several possible reasons for

subset-superset relationships: temporal ordering where the super-

set happens before the subset in cancer progression, hits on the

same gene possibly pointing to biologically causal events, pathway

related interactions, etc. Examples of all of the above can be found

in the HIHI graph. 10q26 deletion is a reported early event in

glioamogenesis [20,21] and mutation of PTEN has been

implicated in the malignant progression of astrocytic gliomas

[20]. Interestingly, the HIHI graph shows that the 10q23/26

deletions has numerous subsets and is itself not a subset of

anything. Furthermore our graph also shows that PTEN

mutations have a HIHI implication with deletions of 10q23_31/

10q26. This is also consistent with the hypothesis that temporal

ordering can give rise to subset relationships. This particular

relationship between PTEN mutation and 10q23_31/10q26

deletion also highlights another noteworthy feature of this graph,

i.e., implications between mutations and broad CNAs that house

the mutated gene. The PTEN locus is 10q23_31. This suggests

loss-of-heterozygosity (LOH) of PTEN in the samples that have

the PTEN mutation. In fact, the samples with 10q23_31 deletions

but no PTEN mutations had several double deletions suggesting

that LOH of PTEN is an important event in gliomagenesis. A

similar LOH event was observed for RB1: RB1 mutations had a

HIHI implication with deletion of 13q14_2, the RB1 locus. An

unexpected HIHI implication existed between EGFR mutations

Figure 2. Analysis Pipeline. (A) Boolean implications are extracted between copy number alteration and expression of a gene, DNA methylation
and expression of a gene, and Boolean implications combining all three variables: if (gene is deleted or gene is methylated), then gene expression is
low. (B) Boolean implications extracted between mutations and recurrent copy number alterations represented as broad Copy Number Alterations
(CNAs) are used to build a hierarchy graph. (C) Boolean implications extracted between mutations and methylation are used to predict the role of a
mutation in producing aberrant methylation.
doi:10.1371/journal.pone.0102119.g002
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and amplification of 7p11_2, the EGFR locus. Thus, samples with

EGFR mutated also had EGFR amplified. This suggests strong

selective pressure to up-regulate EGFR in some patients with

glioblastoma.

Many of the relationships in the graph represent hits on

different pathways that need to be dysregulated for cancer

progression (Table 8). This analysis used the signalling pathways

curated by TCGA [17] (visually depicted in Supplementary

Figures 7 and 8 in their paper). We expected to find that most of

these relationships would capture hits on two different pathways as

is typically expected of co-occuring relationships. However, there

are examples of multiple hits on the same pathway indicating

Figure 3. Boolean Implications Between Copy Number Alterations/DNA Methylation and Expression of the Same Gene. Boolean
implications between variables are easily verified by inspecting scatter plots. Data for deletions and amplifications were rescaled: a value of 12 implies
gene deletion or amplification; a value of 4 implies no somatic copy number change for the gene. Gaussian noise was added so the points do not fall
exactly on 4 and 12 to allow easier visualization. The beta-values of methylation (which is how TCGA reports methylation data) were scaled by a factor
of 10. (A) HILO Boolean Implication between CDKN2A deletion and CDKN2A expression in TCGA GBM data set. (B) HIHI Boolean Implication between
CCNE1 amplification and CCNE1 expression in TCGA OV data set. (B) HILO Boolean Implication between MGMT methylation and MGMT expression in
TCGA GBM data set. (D) HILO Boolean Implication between HOXB5 methylation and HOXB5 expression in TCGA OV data set.
doi:10.1371/journal.pone.0102119.g003

Table 6. Summary of cis-regulatory analysis using Boolean implications.

Data Set Data Types Analyzed Number of Genes with Implications Disease-Relevant Gene Sets Found

GBM {Copy Number Alteration, Expression} 119 TCGA_GLIOBLASTOMA_COPY_NUMBER_UP,
PARENT_MTOR_SIGNALING_UP, SA_G1_AND_S_PHASES,
BIOCARTA_G1_PATHWAY

GBM {DNA methylation, Expression} 304 VERHAAK_GLIOBLASTOMA_PRONEURAL,
NOUSHMEHR_GBM_SILENCED_BY_METHYLATION,

BENPORATH_ES_WITH_H3K27ME3, PTEN_DN.V2_UP,

P53_DN.V1_DN

OV {Copy Number Alteration, Expression} 1777 DNA_REPAIR, LU_EZH2_TARGETS_DN,
DANG_BOUND_BY_MYC

OV {DNA methylation, Expression} 198 HELLER_SILENCED_BY_METHYLATION_UP,
SATO_SILENCED_BY_METHYLATION_IN_PANCREATIC_
CANCER_1,

ONDER_CDH1_TARGETS_2_DN,
SMID_BREAST_CANCER_BASAL_DN

Number of genes with relevant Boolean implications between copy number alteration, DNA methylation and expression. List of Disease-Relevant Gene Sets found by
GSEA of MSigDB gene sets (FDR q-value v0.05).
doi:10.1371/journal.pone.0102119.t006
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complex logic underlying these pathways. Lastly, there were some

relationships where two groups of samples that share a genomic

alteration had the same pathway hit by different mechanisms. For

instance, the 10q23_31 deletion was a superset of 19q12

amplification and RB1 mutation. Both 19q12 amplifications and

RB1 mutations affect the RB signalling pathway and did not co-

occur in our samples. Hence, the subset relationship between

19q12 amplifications and 10q23_31 deletions and between RB1

mutations and 10q23_31 deletions (via PTEN mutation) could be

due to an underlying logical relationship {10q23_31 deletion AND

(RB1 mutation OR 19q12 amplification)} governing the develop-

ment of these genomic alterations in GBM.

By examining the HIHI implications between the mutations

and broad CNAs in ovarian cancer we observed that TP53

mutations and 17q11_2 deletions were primarily supersets in

HIHI implications. There is evidence that TP53 mutations,

common in ovarian cancer, are an early event in ovarian

carcinogenesis [22]. This supports our temporal ordering hypoth-

esis where earlier events are supersets of later events. The 17q11_2

locus houses the NF1 gene, which is known to be important in

ovarian cancer. Previous work [23] has found that NF1 defects

(due to either mutation or deletion) are associated with activation

of the RAS pathway, which is involved in several cancers including

ovarian cancer [24]. We also detected a possible LOH event for

NF1 since all but one of the samples with NF1 mutations also had

17q11_2 deletions (although it failed our Boolean implication test

due to insufficient number of NF1 mutations).

Subset relationships have not been studied in the past and

highlight the ability of our method to find novel biologically

meaningful relationships.

Mutation Ranking Reveals Hypermethylator Phenotype
Associated with IDH1 Mutations in Glioblastoma

Interesting and somewhat unexpected findings in our initial

analysis (Table 2) were the implications between mutations and

DNA methylation. Recent work has shown that there exist genetic

drivers for DNA hypermethylation in cancer [25]. An interesting

question would be to see if genetic drivers of DNA hypermethyla-

tion can be identified using the Boolean implications between

mutation and DNA methylation. We developed a ranking

algorithm by counting the number of HIHI and HILO

implications associated with DNA methylation probes with each

mutation and ranking the mutations according to the ratio of

HIHI to HILO implications. The results of the analysis can be

interpreted as follows: if a particular mutation has mainly HIHI

implications with methylation probes, then almost all the samples

with the mutation have the corresponding probes methylated,

suggesting that it plays a role in inducing a hypermethylation

phenotype. Similarly, mutations that primarily have HILO

implications with methylation probes suggest a role in establishing

a hypomethylation phenotype. On the other hand, mutations that

have few HIHI or HILO implications with methylation or a

combination of HIHI and HILO implications are unlikely to play

a dominant role in aberrant DNA methylation.

Interestingly, this analysis placed IDH1 mutation with the

largest number of HIHI Boolean implications and also the largest

ratio between the number of HIHI and HILO Boolean

implication. The mutation has 101 HIHI implications with

methylation probes and very few (v5) HILO implications with

methylation probes. This is in accordance with prior work that

IDH1 is a driver of DNA hypermethylation in glioblastoma [26]

suggesting that this analysis method can be used to identify novel

drivers of aberrant DNA methylation. Applying the same method

to the OV data set did not reveal any mutations with aberrant

methylation phenotype. It is possible that specific mutations in

ovarian serous cystadenoma are not associated with a hyper-

methylation or hypomethylation phenotype. A quick search of the

literature did not reveal any genetic drivers of aberrant DNA

methylation in ovarian cancer, confirming our lack of results.

Summary and Conclusions

We are now moving to an era in which integrating several types

of data from high-throughput biological assays will be essential to

understand complex diseases such as cancer. Boolean implications

provide a conceptually simple and computationally efficient tool

for mining subset and mutual exclusion relationships in cancer

data. Boolean implications between variables of diverse data types

are derived in a matter of minutes. Our results demonstrate that

numerous Boolean implications exist between variables of different

data types. Furthermore, the relationships found by Boolean

implications are not ranked highly by other common bioinfor-

matics methods for identifying pairwise associations. This differ-

ence arises from the fact that these methods search for different

types of relationships. Thus, Boolean implications provide a

complementary approach to already existing methods that identify

pairwise associations between random variables.

Since Boolean implications are if-then rules mined from data,

there may be a superficial resemblance to association rule mining

[27], which finds rules of the form X[Y, where X\Y~w.

Finding associations (or rules) occurs in two steps: frequent itemset

(which refers to a set of items) enumeration and rule generation

within each frequent itemset. Since association rule mining has

mainly focused on finding higher order relations, the bulk of the

research has gone into more efficient algorithms for generating

itemsets [28,29] or a condensed representation of the frequent

itemsets [30]. The task of generating itemsets is exponential in the

number of variables. Hence, the algorithms cannot scale for data

such as the TCGA with hundreds of thousands of variables per

sample. So far, application of association rules to biological data

has been restricted to simultaneous analysis of gene expression and

GO categories [31,32]. Even if association rules are restricted to

itemsets of size two (so they find relationships between pairs of

variables), there are issues with the rules generated. The

associations generated between pairs of variables are either not

Table 7. Comparison between genes with cis-regulatory relationships found by Boolean implications and alternate methods.

Data Types being Compared Genes found by Boolean Implications Alternate Method Overlap with Alternate Method

{Copy Number Deletion, Expression} 1703 t test 860

{Copy Number Amplification, Expression} 74 t test 11

{DNA methylation, Expression} 198 correlation 94

Overlap between the genes found by Boolean implications and the top-ranked genes found by an alternate method in the TCGA OV data set.
doi:10.1371/journal.pone.0102119.t007
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statistically significant when they use the support-confidence

framework [31] (which has been shown in detail earlier [33]) or

they produce mainly co-occurence relationships [32] that are not

necessarily logically interpretable as subset or mutual exclusion

relationships. Thus, Boolean implications are not comparable to

association rules, despite the superficial similarity.

Delving into the biological significance of the extracted Boolean

implications demonstrated that subset and mutual exclusion

relationships result from a multitude of biological phenomena:

cis-regulatory mechanisms of gene regulation, temporal ordering,

interactions of multiple pathways, loss-of-heterozygosity of tumor

suppressors and mutation-specific epigenetic states. Many of these

relationships revealed cis-regulatory mechanisms where there were

subset and mutual exclusion relationships between different data

types (copy number alteration, DNA methylation and gene

expression) of the same gene (Table 6), either between pairs of

variables or in some cases involving variables of all three data

types. Subsequent analysis using GSEA demonstrated that the

genes obtained by mining these relationships were biologically

meaningful and had overlap with several known cancer genes -

TP53, PTEN, RB1 in glioblastoma; MYC, EZH2, CCND1, E-

cadherin in ovarian cancer, as well as overlap with genes in

important signaling pathways - MTOR in glioblastoma and WNT

in ovarian cancer. So far, there has been no work on extracting

subset relationships between mutations and copy number alter-

ations, and this represents a unique strength of our analysis. The

subset relationships between genomic alterations - mutation and

broad CNAs- exposed evidence of temporal ordering, loss-of-

heterozygosity (LOH) of two well-known tumor suppressors

(PTEN and RB1) and interesting pathway related interactions. A

well-known relationship between the IDH1 mutation and DNA

methylation was found by analyzing the mutation and DNA

methylation Boolean implications in GBM, confirming known

biology that IDH1 mutation produces hypermethylation in

glioblastoma [26]. This finding also demonstrated the value of

analyzing a set of related HIHI and HILO Boolean implications.

Given the diversity of biological insights that can be derived by

looking at a small portion of the entire set of extracted Boolean

implications, we speculate that Boolean implications will be an

useful tool for mining relationships in cancer data sets with diverse

Figure 4. Boolean Implications between Genomic Alterations in GBM. The nodes depicting amplifications, deletions and mutations are
colored in orange, blue and grey, respectively. The HIHI implications are represented by black directed edges with the arrow pointing from the
superset to the subset. The superset is always above the subset in the diagram. The HILO implications are depicted by red dashed undirected edges.
The relationships capture a multitude of biologically interesting phenomena: temporal progression, hierarchical pathway hits, LOH for PTEN and RB1,
and a subset relationship between EGFR mutations and 7p11_2 amplifications.
doi:10.1371/journal.pone.0102119.g004

Table 8. Pathway Analysis of HIHI Boolean Implications.

Subset Superset Possible Biological Significance

19q12-amp 7q21_2-amp CCNE1 and CDK6; double hit on RB signalling pathway

19q12-amp 7q31_2-amp CCNE1 and MET; hit on RB signalling and RAS pathway

19q12-amp 7p11_2-amp CCNE1 and EGFR; hit on RB signalling and RAS pathway.

19q12-amp 10q23_31-del CCNE1 and PTEN; hit on RB signalling and PI3K class 1 pathway

17q11_2-del TP53_mut NF1 and TP53; hits on P53 signalling and RAS pathway

PTEN_mut 7p11_2-amp PTEN and EGFR; hit on P13K class 1 and RAS pathway

PTEN_mut 7q21_2-amp PTEN and CDK6; hit on PI3K class 1 and RB signalling

RB1_mut PTEN_mut RB1 and PTEN; hit on RB and PI3K class 1 pathway

NF1_mut 7q21_2-amp NF1 and CDK6; hit on RAS and RB signalling

NF1_mut 7q31_2-amp NF1 and MET; double hit on RAS pathway

Mapping the HIHI implications in the GBM data set to known signalling pathways.
doi:10.1371/journal.pone.0102119.t008
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data types and the extracted relationships will lead to novel

biological insights.

One concern with using the Boolean abstraction could be the loss

of information that discretization can introduce. However, this is not

an issue unique to our proposed solution. Many effective statistical

techniques discretize data because there are tradeoffs that compen-

sate for the loss of information. In our specific case, the data for

mutation is discrete and hence a Boolean abstraction loses very little

information. Copy number alterations are inherently discrete but are

represented as continuous values in the data. These data are re-

discretized to identify copy number gains and losses. The cutoffs for

gene expression and methylation are derived in a systematic fashion

using StepMiner [34], which looks at the distribution of the data for

each expression/methylation probe across all the samples to come up

with a threshold. While thresholding the methylation and gene

expression data does result in the loss of some information, the

development of a common framework to analyze very different data

types provides power to the user by allowing combinatorial analysis

(copy number, methylation and expression) and revealing unexpected

associations (subset relationships between mutation and copy

number). There are often concerns raised about the applicability of

Boolean abstractions in biology. However, applying Boolean

implications to the TCGA glioblastoma and ovarian serous

cystadenoma data sets resulted in the re-discovery of some well-

known relationships and also found several new relationships between

genomic alterations, DNA methylation and gene expression data.

To conclude, Boolean implications are a novel way to explore

large data sets and expose numerous subset and mutual

relationships, which can lead to new hypotheses for further

investigation. The proposed methods are quite general and can be

applied to other types of heterogeneous data. We are in the process

of applying the above methods to other TCGA data sets. One

direction for future work would be to generate higher-order

relationships for certain combinations of variables which are

biologically meaningful. Other areas of future investigation would

be to use the relationships found by Boolean implications along

with other data to answer specific biological questions. One such

example would be to combine the subset relationships between

genomic alterations with additional data to identify novel temporal

ordering relationships in cancer progression.

Supporting Information

Figure S1 Examples of HILO Boolean implications that
were not ranked highly in a t test based approach to find
relationships between the same variable pairs.
(TIF)

Figure S2 Examples of HIHI Boolean implications that
were not ranked highly in a t test based approach to find
relationships between the same variable pairs.
(TIF)

Figure S3 Examples of non L-shaped relationships
found by the t test based approach. These were prioritized

over several L-shaped relationships picked out by HILO Boolean

implications.

(TIF)

Figure S4 Examples of non L-shaped relationships
found by the t test based approach. These were prioritized

over several L-shaped relationships picked out by HIHI Boolean

implications.

(TIF)

Figure S5 Examples of HILO Boolean implications that
were not ranked highly by the correlation based

approach to find relationships between the same
variable pairs.
(TIF)

Figure S6 Examples of HIHI Boolean implications that
were not ranked highly by the correlation based approach
to find relationships between the same variable pairs.
(TIF)

Figure S7 Non L-shaped relationships found by the
correlation based approach. These were prioritized over several

L-shaped relationships picked out by HILO Boolean implications.

(TIF)

Figure S8 Non L-shaped relationships found by the
correlation based approach. These were prioritized over

several L-shaped relationships picked out by HIHI Boolean

implications.

(TIF)

Figure S9 Examples of non L-shaped relationships
found by Fisher’s exact test. These were prioritized over

several L-shaped relationships picked out by HILO Boolean

implications.

(TIF)

Figure S10 Examples of non L-shaped relationships
found by Fisher’s exact test. These were prioritized over

several L-shaped relationships picked out by HIHI Boolean

implications.

(TIF)

Table S1 Genes that have Boolean implications between
copy number alterations and gene expression in the
TCGA GBM data set.
(TXT)

Table S2 Genes that have Boolean implications between
copy number alterations and gene expression in the
TCGA OV data set.
(TXT)

Table S3 Genes that have Boolean implications between
methylation and gene expression in the TCGA GBM data
set.
(TXT)

Table S4 Genes that have Boolean implications between
methylation and gene expression in the TCGA OV data
set.
(TXT)

Table S5 Genes that are found by looking at both
deletions and methylation in the TCGA GBM data set,
excluding those found by methylation.
(TXT)

Table S6 Genes that are found by looking at both
deletions and methylation in the TCGA OV data set.
(TXT)

Table S7 HIHI and HILO implications between muta-
tions and broad CNAs in the TCGA GBM data set.
(TXT)

Table S8 HIHI and HILO implications between muta-
tions and broad CNAs in the TCGA OV data set.
(TXT)

Text S1 Conversion of Different TCGA Data Types to
Boolean Values.
(PDF)
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Text S2 Boolean Implication Extraction on a Synthetic
Data Set.
(PDF)

Text S3 Mutual Exclusion Relations in the Genomic
Alterations Sub-network.
(PDF)
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