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We show that it is impossible to obtain a quantum speedup for a faulty Hamiltonian oracle. The effect of
dephasing noise to this continuous-time oracle model has first been investigated by Shenvi, Brown, and Whaley
[Phys. Rev. A 68, 052313 (2003).]. The authors consider a faulty oracle described by a continuous-time master
equation that acts as dephasing noise in the basis determined by the marked item. The analysis focuses on the
implementation with a particular driving Hamiltonian. A universal lower bound for this oracle model, which
rules out a better performance with a different driving Hamiltonian, has so far been lacking. Here, we derive an
adversary-type lower bound which shows that the evolution time T has to be at least in the order of N , i.e., the
size of the search space, when the error rate of the oracle is constant. This means that quadratic quantum speedup
vanishes and the runtime assumes again the classical scaling. For the standard quantum oracle model this result
was first proven by Regev and Schiff [in Automata, Languages and Programming, Lecture Notes in Computer
Science Vol. 5125 (Springer, Berlin, 2008), pp. 773–781]. Here, we extend this result to the continuous-time
setting.
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I. INTRODUCTION

The Hamiltonian oracle [1] model can be seen as a
continuous-time analog of the unstructured search problem,
which is also known as Grover’s problem. In an unstructured
search, the task is to find one marked item, which is commonly
labeled by w, out of N possible items. It is known that on a
classical computer on average at least O(N ) queries to the
oracle are needed to find the marked item. One of the major
breakthroughs in the search of quantum algorithms was that
this bound could be beaten on a quantum computer. Grover
showed that a quantum algorithm exists, which only queries
the oracle O(

√
N ) times [2]. It can be shown that this quadratic

speedup is optimal [3]. Hence, no algorithm can outperform
Grover’s search for this problem.

However, the investigation of Grover’s algorithm in the
presence of noise [4–7] has shown that this quadratic speedup
is very fragile. In quantum query algorithms two classes
of noise models have been considered. One class of noise
model considers coherent errors [8,9], whereas the other class
models errors in terms of either dephasing or bit-flip errors
[4–7,10]. For the latter class, the quadratic speedup of Grover’s
algorithm vanishes and the runtime assumes a linear scaling
[4]. Regev and Schiff have recently proven that no other query
algorithm that has access to a dephasing oracle can outperform
this scaling [11].

The effect of dephasing noise on the continuous-time analog
of Grover’s algorithm in the Hamiltonian oracle setting has
also been investigated by Shenvi et al. [4]. Similar to the
discreet case, the authors have found that when considering a
constant error rate, the quadratic speedup over the best classical
solution vanishes. This was investigated by a direct analysis
of a specific quantum algorithm subject to an appropriately
chosen noise model. The question that remained open is
whether this performance in the continuous-time (Hamiltonian
oracle) algorithm found by the authors is in fact optimal, i.e.,
no other algorithm could perform better. We will show, as
could be expected, that this is indeed the case by extending

the proof of Regev and Schiff to the Hamiltonian oracle
setting.

In Ref. [4], Shenvi et al. considered the effect of phase
fluctuations on the query term of the Hamiltonian model. The
authors showed that such a fluctuating term leads to dephasing
of the density matrix. Such an effect can best be described by a
continuous-time master equation of Lindblad form. The most
general form for such an equation is given by [12]

d

dt
ρ = −i [H,ρ] +

∑
i

LiρL
†
i − 1

2
{L†

i Li,ρ}+. (1)

Here, the Hamiltonian H drives the coherent evolution,
whereas the Lindblad operators Li can lead to loss of
coherence and damping.

II. FAULTY HAMILTONIAN ORACLE MODEL

The general Hamiltonian oracle model can be described
as follows: Rather than applying a sequence of unitaries, as
is done in the circuit model of quantum computation, one
considers the evolution of some quantum state subject to the
Schrödinger equation

i
d

dt
|ψ〉 = H (t)|ψ〉. (2)

The computation is encoded in the Hamiltonian H (t), which
is allowed to vary in time. The search problem can be encoded
in terms of a Hamiltonian oracle, which is a term present in the
Hamiltonian. It is important to note that even though we are
allowed to choose particular Hamiltonians H (t) that realize
the quantum algorithm, we do not have control over the term
which corresponds to the Hamiltonian oracle.

For the unstructured search problem we consider the Hilbert
space CN where the basis states {|k〉}k=1...N label the items in
the search space of size N . The task in the unstructured search
problem is to find a single marked item we label by |w〉, also
referred to as the winner. The general goal is to construct a
Hamiltonian that drives the evolution towards the state |w〉. In
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general, such a Hamiltonian is of the form

H (t) = E|w〉〈w| + HD(t). (3)

Here the projector on the winner Hw = E|w〉〈w| encodes the
Hamiltonian oracle. The actual computation we have control
over is encoded in the driving Hamiltonian HD(t).

A particular driver that solves the unstructured search
problem is given by the projector on the superposition of
all basis states in the search space. This corresponds to the
choice HD = E|s〉〈s|, where |s〉 is the superposition of all basis
states given by the coherent “mixture” |s〉 = N− 1

2
∑N

k=1 |k〉.
The overlap between the winner and the mixture is given by
〈w|s〉 = N− 1

2 . For such a driving Hamiltonian it was shown
[1] that the time to generate constant overlap with the winner
starting from the coherent mixture scales as t = O(

√
NE−1).

Moreover, it was shown that no other choice of driver HD(t)
can outperform this scaling.

The analysis of this problem assumes a perfect implementa-
tion of the oracle Hamiltonian |w〉〈w|. However, in a realistic
application, one would expect that the oracle is subject to
some form of noise. Let us assume that the magnitude of the
oracle Hamiltonian is subject to small fluctuations. That is, we
assume that the oracle is of the form

Hξ
w = [E + ξ (t)] |w〉〈w|, (4)

where ξ (t) is a stochastic variable for which the Markov
assumption holds. This variable satisfies

∫ π

0 ξ (t)dt = ε, where
ε is distributed according to a Gaussian distribution with
variance s. As was shown in Ref. [4], such a fluctuating
term in the oracle model leads to dephasing in the basis
determined by the oracle with a rate � = s2

2π
. We therefore state

the noisy Hamiltonian oracle model in terms of a dephasing
master equation of the form (1) with a single dephasing
Lindblad operator L1 = √

�|w〉〈w|. The full noisy oracle
model describes the evolution of a density matrix ρ according
to the equation

d

dt
ρ = −i [H (t),ρ] + Lw(ρ), (5)

where we denote

Lw(ρ) = �
(|w〉〈w|ρ|w〉〈w| − 1

2 {|w〉〈w|,ρ}+
)
. (6)

The coherent evolution is now given again by the error-free
Hamiltonian H (t) = Hw + HD(t).

We will have to compare the evolution of the system where
the oracle is present with the evolution in the absence of the
oracle to see how much progress is made towards achieving
the goal, i.e., generating sufficient overlap with the target state
|w〉〈w|. To this end we also state the evolution in the absence
of the oracle, which is given by

d

dt
ρ = −i [HD(t),ρ] . (7)

Note that since no oracle term Hw is present, we assume that
this evolution is not subject to noise and hence the system only
evolves unitarily with the driver HD(t). Unlike the evolution
subject to the noisy oracle, the evolution in the absence of an
oracle retains the purity of a pure initial state.

III. RUNTIME LOWER BOUND

We now proceed to derive the lower bound on the runtime to
find the marked state when we can make use of the noisy oracle.
We find that the noisy oracle with a constant dephasing rate �

cannot yield a quantum speedup over the classical bound. We
can state the following as our main result.

Main result. Every driver Hamiltonian that finds the marked
state |w〉 with probability p > 2−1/2 has to evolve on average
for a time T at least

T � N
2�(2p2 − 1)

�2 + 4E2
. (8)

The strategy for showing this is the following: First we
construct a progress measure which has to be larger than
O(N ) after the evolution time T of the algorithm. We then
derive an upper bound on the growth rate of the progress
measure. From this we can infer the bound on the runtime of the
algorithm.

We compare the evolution of the state that evolves according
to the Hamiltonian oracle with respect to the evolution of the
system where no oracle is present. In order to differ between the
two cases, we need to define a progress measure. A suitable
progress measure can be defined from the Frobenius norm
difference between two states. We write

Fw
t = ∥∥ρw

t − ρ0
t

∥∥2
F
. (9)

Recall that the Frobenius norm is defined as ‖A‖F =√
tr[A†A]. Since we are interested in the performance of the

algorithm for an arbitrary marked item |w〉, we need to consider
the (unnormalized) average over all marked items. We define
the progress measure as

Ft =
N∑

w=1

Fw
t . (10)

Lower bound to the progress measure. The lower bound to the
progress measure after time T is obtained from the following
argument: For the algorithm to be successful, we want to be
able to find the state |w〉 at least with a fixed probability p

after the algorithm has completed. To this end the trace norm
difference between the state ρw

T which has evolved for time T

subject to the oracle (5) has to differ by

1
2

∥∥ρw
T − ρ0

T

∥∥
tr � p (11)

from the state ρ0
T which evolved in the absence of the oracle.

The trace norm of some operator A on the space CN is
defined as ‖A‖tr = tr[

√
A†A]. This distance has an operational

interpretation and indicates the best statistic distinguishability
by quantum measurements between the two states [13]. Recall
that the evolution without an oracle preserves purity. We
therefore know that ρ0

T = |ϕT 〉〈ϕT | if we started without loss
of generality in some pure state |ϕ0〉〈ϕ0|. A well-known bound
[13] on the trace distance between two quantum states can be
given in terms of the fidelity. We can therefore bound

p � 1
2

∥∥ρw
T − ρ0

T

∥∥
tr �

√
1 − 〈

ϕT

∣∣ρw
T

∣∣ϕT

〉
. (12)

022310-2



RUNTIME OF UNSTRUCTURED SEARCH WITH A FAULTY . . . PHYSICAL REVIEW A 90, 022310 (2014)

Since we have that tr[(ρ0
T )2] = 1 and tr[(ρw

T )2] � 0, we know
that after some T the value of Fw

T has to be

Fw
T = tr

[(
ρw

T

)2] + tr
[(

ρ0
T

)2] − 2
〈
ϕT

∣∣ρw
T

∣∣ϕT

〉
� 1 − 2

〈
ϕT

∣∣ρw
T

∣∣ϕT

〉
� (2p2 − 1). (13)

The final bound is obtained from (12). After summing over all
marked items, the average progress measure is bounded by

FT =
N∑

w=1

Fw
T � N (2p2 − 1). (14)

The growth rate of the progress measure. We now have to see
how long it will take for the evolution of the progress measure
to reach this value and will compute a bound on the rate by
which it increases. So we compute

d

dt
Fw

t = d

dt

(
tr
[(

ρw
t

)2] + 1 − 2 tr
[
ρw

t ρ0
t

])
(15)

= 2
(
tr
[
Lw

(
ρw

t

)
ρw

t

] − tr
[
Lw

(
ρw

t

)
ρ0

t

]
+ i tr

[[
Hw,ρw

t

]
ρ0

t

])
. (16)

Note that the dependence on the driver Hamiltonian HD(t) has
vanished. This is due to the fact that evolution of the driver
in the oracle model cancels with the evolution of ρ0

t . The
evolution equation for the density matrix ρw

t depends only on
the winner |w〉〈w|. The other relevant projector is given by the
pure state ρ0

t = |ϕt 〉〈ϕt | which has evolved in the absence of
the oracle.

Let us for convenience first consider the two-dimensional
subspace spanned by the nonorthogonal vectors |w〉,|ϕt 〉. We
can introduce the two orthogonal basis vectors |w〉,|w⊥〉 that
span the same space so that we can write

|ϕt 〉 = 〈w|ϕt 〉 |w〉 +
√

1 − | 〈w|ϕt 〉 |2 |w⊥〉. (17)

We proceed to patch these states with some orthonormal basis
supported only on the complement of this two-dimensional
space. The resulting basis is {|w〉, |w⊥〉, |3̃〉, . . . ,|Ñ〉}. To
simplify the notation we define f ≡ 〈w|ϕt 〉

√
1 − | 〈w|ϕt 〉 |2.

We evaluate the contributions to the derivative of the
progress measure Fw

t in Eq. (16) in this basis. We see that
both terms that depend on ρ0

t and ρw
t are given by

tr
[
Lw

(
ρw

t

)
ρ0

t

] = −�

2

([
ρw

t

]
w,w⊥f + [

ρw
t

]
w,w⊥f

)
, (18)

tr
[[

Hw,ρw
t

]
ρ0

t

] = E
([

ρw
t

]
w,w⊥f − [

ρw
t

]
w,w⊥f

)
. (19)

Note that in these terms the only contribution from ρw
t comes

from the subspace spanned by |w〉,|w⊥〉. If we consider the
remaining summand that only depends on ρw

t , we obtain

tr
[
Lw

(
ρw

t

)
ρw

t

] = −�
∣∣[ρw

t

]
w,w⊥

∣∣2 − �

N∑
k̃=3

∣∣[ρw
t

]
w,k̃

∣∣2
.

(20)

Recall that we want to find an upper bound on the evolution
of the progress measure. Therefore, we can only increase the
bound on the progress measure by assuming that the state

ρw
t is only supported on the two-dimensional subspace and

therefore set
∑N

k̃=3 |[ρw
t ]w,k̃|2 = 0. Now the derivative of Fw

t

only depends on the single matrix element x ≡ [ρw
t ]w,w⊥

With the variables x and f defined earlier we can write for
Eq. (16)

d

dt
Fw

t = 2

[
−�|x|2 +

(
�

2
+ iE

)
xf ∗ +

(
�

2
− iE

)
x∗f

]
.

(21)

It is easy to see that the right-hand side of (21) becomes
maximal for the choice xopt = ( 1

2 − i E
�

)f . Furthermore, since
|f |2 � |〈w|ϕt 〉|2, we can state the inequality

d

dt
Fw

t � �2 + 4E2

2�
| 〈w|ϕt 〉 |2. (22)

Note that |ϕt 〉 is a normalized state. We therefore have that the
sum over all winners is bounded by

d

dt
Ft =

N∑
w=1

d

dt
Fw

t � �2 + 4E2

2�
. (23)

Integrating inequality (23) with the initial condition F0 = 0,
we find that

FT � �2 + 4E2

2�
T . (24)

Together with inequality (14), this leads to the bound on the
minimal evolution time T , as stated in the main result (8).

When considering a fixed error rate �, we observe that
the previous square-root scaling in the database has now been
reduced to a liner scaling, which is also what happens for the
standard oracle model of quantum computation. The authors
of Ref. [4] also considered what happens when one allows
for an error rate that decreases in the size of the data base,
i.e., � = αN−2δ , where both α and δ are positive constants.
With this error rate the runtime of the noisy Grover algorithm
scales as T = O(N1−2δ), as long as δ � 1/4. The bound in
the main result reproduces the exact same scaling of the
runtime. However, for δ > 1/4 the actual bound of the coherent
evolution T = O(N1/2) has to be considered since the bound
given for the noisy oracle ceases to be tight.

IV. CONCLUSIONS

In conclusion, we have recovered the bound on the runtime
of an unstructured search which holds for the standard noisy
oracle model also in the noisy Hamiltonian oracle model
framework. With a constant dephasing error rate the quantum
speedup breaks down and reduces to the known classical result
of an unstructured search. The techniques used here are very
much in the spirit of the original proof [1] of the noise-free
Hamiltonian oracle model. The major difference is the noisy
evolution described by the dephasing master equation and a
different progress function, which uses the Hilbert-Schmidt
norm between two density matrices, as apposed to the standard
L2 norm between two pure states.
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