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Abstract Dry deposition is an important removal process controlling surface ozone. We examine the
representation of this ozone loss mechanism in the Community Earth System Model. We first correct the
dry deposition parameterization by coupling the leaf and stomatal vegetation resistances to the leaf area
index, an omission which has adversely impacted over a decade of ozone simulations using both the Model
for Ozone and Related chemical Tracers (MOZART) and Community Atmospheric Model-Chem (CAM-Chem)
global models. We show that this correction increases O3 dry deposition velocities over vegetated regions
and improves the simulated seasonality in this loss process. This enhanced removal reduces the previously
reported bias in summertime surface O3 simulated over eastern U.S. and Europe. We further optimize
the parameterization by scaling down the stomatal resistance used in the Community Land Model to
observed values. This in turn further improves the simulation of dry deposition velocity of O3, particularly
over broadleaf forested regions. The summertime surface O3 bias is reduced from 30 ppb to 14 ppb over
eastern U.S. and 13 ppb to 5 ppb over Europe from the standard to the optimized scheme, respectively.
O3 deposition processes must therefore be accurately coupled to vegetation phenology within 3-D
atmospheric models, as a first step toward improving surface O3 and simulating O3 responses to future and
past vegetation changes.

1. Introduction
Surface ozone (O3) is a harmful air pollutant that is toxic to humans and ecosystems. O3 concentrations in
the troposphere are controlled by a balance among chemical production, stratospheric influx, and loss pro-
cesses. A major loss process for O3 is surface dry deposition, accounting for about 20% of the O3 lost in the
troposphere [Wild, 2007]. The majority of this O3 removal occurs over vegetation, mainly by direct uptake
through the stomatal pores of plants and by direct deposition over the leaf cuticles [e.g., Wesely, 1989].

Changes in vegetation as a result of human activities and climate change are of great concern for O3 air
quality [e.g., Sanderson et al., 2003; Ganzeveld et al., 2010; Wu et al., 2012]. For example, deforestation may
decrease foliar uptake, prompting a rise in O3 concentration. In addition, changes in vegetation affect emis-
sions of O3 precursors (e.g., biogenic volatile organic compounds and soil NOx emissions), which in turn
affect OH, an important oxidizing agent in the atmosphere that regulates the lifetime of the greenhouse
gas methane.

Surface O3 is challenging to simulate in 3-D atmospheric models [e.g., Murazaki and Hess, 2006; Wu et al.,
2007; Lamarque et al., 2012], due to the nonlinearity of the chemistry, the complexity of physical process,
and the heterogeneity of precursor emissions. A recent well-known issue in some models is the positive bias
of surface ozone of more than 10 ppb over eastern U.S. and Europe during the summer [e.g., Murazaki and
Hess, 2006; Fiore et al., 2009; Reidmiller et al., 2009; Lamarque et al., 2012]. For example, Murazaki and Hess
[2006] reported a very large positive bias (40–60 ppb) for the maximum daily 8 h averaged (MDA8) O3 over
eastern U.S. in the summer with the Model for Ozone and Related chemical Tracers version 2 (MOZART-2).
Lamarque et al. [2012] reported a similar bias for the Community Earth System Model (CESM) over the
eastern U.S. and a bias of 10–30 ppb over Europe. A positive bias of 10–20 ppb was reported for summer-
time MDA8 O3 over eastern U.S. in the multimodel Hemispheric Transport of Air Pollution study [Reidmiller
et al., 2009]. Most recently, Lapina et al. [2014] reported a consistent bias of 15 ppb for summertime daily O3

over the eastern U.S. from the mean of three models: GEOS-Chem, GFDL AM3, and STEM.
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2. Methods and Results

With the goal of understanding the role of the dry deposition in the persistent positive bias of surface O3

over eastern U.S. and Europe, and the ability of the global CESM to properly simulate O3 responses to veg-
etation changes, we review, evaluate, and optimize the dry deposition parameterization scheme in CESM.
For this work, we use CESM driven by Modern Era Retrospective-Analysis (MERRA) reanalyzed meteorolog-
ical fields from the NASA Global Modeling and Assimilation Office, with a 1.9◦ × 2.5◦ horizontal resolution,
and 56 vertical levels between the surface and 0.02 hPa (including 13 levels up to 800 hPa). We employ
CESM version 1.1.1 for the year 2001 and specified sea surface and sea ice distributions, i.e., we only allow
fast land and atmospheric responses to occur. To simulate land surface processes, we use the Community
Land Model version 4 (CLM4) [Oleson et al., 2010]; for the atmospheric model, we use the Community Atmo-
spheric Model version 4 (CAM4) [Neale et al., 2013] fully coupled with the interactive gas-aerosol scheme
CAM-Chem [Lamarque et al., 2012]. The chemical mechanism contains full tropospheric O3–NOx–CO–VOC
and aerosol phase chemistry, based on MOZART-4 [Emmons et al., 2010].

The dry deposition scheme in CESM is based on the multiple-resistance approach originally described by
Wesely [1989], with some updates discussed in Emmons et al. [2010] and Lamarque et al. [2012]. The dry
deposition velocity (Vd) is computed as follows:

Vd = 1
Ra + Rb + Rc

,

where Ra is the aerodynamic resistance, Rb is the quasi-laminar sublayer resistance above canopy, and Rc

is the surface resistance. For O3 and over vegetated regions, Vd is mainly driven by Rc during the day since
the effects of Ra and Rb, which are dependent on meteorological conditions, are typically small [Zhang et al.,
2002]. Rc is then computed as follows:

1
Rc

= 1
Rs + Rm

+ 1
Rlu

+ 1
Rcl

+ 1
Rg

,

where Rs is the stomatal resistance, Rm is the leaf mesophyll resistance (Rm=0 s/cm for O3), Rlu is the upper
canopy or leaf cuticle resistance, Rcl is the lower canopy resistance, and Rg is the ground resistance. This
surface resistance scheme is commonly applied in both regional and global models, although different
approaches are used to calculate the resistance components. For example, Rs schemes range from simple
parameterizations as a function of solar radiation and/or time of day [e.g., Wesely, 1989], one- or two-big-leaf
approaches [e.g., Collatz et al., 1991; Zhang et al., 2002], to a multilayer leaf resistance models [e.g., Baldocchi
et al., 1987]. Typically, dry deposition schemes are used with fixed vegetation parameters. However, the evo-
lution of Earth System Models in recent years provides the capability to couple the atmospheric composition
to evolving vegetation [e.g., Sanderson et al., 2007]. Here we couple the simulation of dry deposition loss of
atmospheric species to the vegetation phenology represented in the CLM. In the land model, all the indi-
vidual resistances in Rc are computed at the level of each plant functional type (PFT). Then, the deposition
velocity in each grid box is computed as the weighted mean over all land cover types available at each grid
box [Lamarque et al., 2012] and transferred to CAM-Chem through a coupler. At the same time, CAM-Chem
provides CLM with the meteorological fields needed to determine the resistance components dependent
on atmospheric conditions (e.g., Ra and Rb).

Our investigation of and modifications to the dry deposition scheme revealed a series of oversimplifica-
tions in the implementation of the parameterization in the standard code for CAM-Chem (and the MOZART
model upon which it is based, including MOZART-2, MOZART-3, and MOZART-4); these are summarized in
Table 1. In the original dry deposition scheme, Rs is based on the simple scheme described by Wesely [1989],
in which this resistance is mainly determined by a parameter prescribed for each season and PFT. Thus, Rs

is not integrated over the canopy depth and neglects the leaf area index (LAI) dependence to account for
the seasonality and the geographical distribution of the vegetation [Baldocchi et al., 1987; Gao and Wesely,
1995]. In this work, we replace the standard Wesely [1989] Rs scheme by the Ball-Berry Rs scheme described
by Collatz et al. [1991] and implemented in a global model by Sellers et al. [1996]. The Ball-Berry scheme
relates the Rs directly to the net leaf photosynthesis. Both parameters are computed in CLM and are depen-
dent on environmental and canopy factors [Oleson et al., 2010]. We use the LAI to integrate Rs over the
canopy depth for sunlit and shaded leaves. Monthly LAI in CLM (run with offline phenology) is derived from
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Table 1. Summary of Major Changes in the CESM Dry Deposition Velocity Schemea

Original Scheme Corrected Scheme

Stomatal Resistance (Rs)

Rs = rs

{
1 + 1

[200(G+0.1)]2

}{
400

Ts(40−Ts)

} DH2O

Dx

1
rs
= m A

cs

es
ei

Patm + b

[Wesely, 1989] [Collatz et al., 1991; Sellers et al., 1996]

Rs =
fsun × rsun

s
LAI

+ (1 − fsun) × rsha
s

LAI

Leaf Cuticular Resistance (Rlu)
Rlu = rlu

10−5H + fo
Rlu = rlu

LAI × (10−5H + fo)
[Wesely, 1989] [Gao and Wesely, 1995]

aThe minimum stomatal resistance is rs, G is solar radiation, Ts is surface air temper-
ature DH2O and Dx are the molecular diffusivities for water vapor and for a specific gas
x, m is the Ball-Berry slope of the conductance-photosynthesis relationship as a func-
tion of PFT, A is leaf photosynthesis calculated separately for sunlit and shaded leaves
to give rsun

s and rsha
s , b is the minimum stomatal conductance when A ≤0, cs is the CO2

partial pressure at the leaf surface, es is the vapor pressure at the leaf surface, ei is the
saturation vapor pressure inside the leaf and Patm is the atmospheric pressure, fsun is
sunlit fraction of canopy, LAI is the leaf area index, rlu is minimum leaf cuticular resis-
tance, H is gas-specific Henry Law constant, and fo is a reactivity factor for oxidation.

the advanced very high resolution radiometer for each PFT. As described in Bonan et al. [2002], CLM consid-
ers 15 PFTs based on the 24 biomes and the geographical distribution defined by Olson et al. [1983]. As an
example, we show the global distribution of LAI and the seasonal cycle in the broadleaf deciduous temper-
ate forest PFT in Figure S1 in the supporting information. Similarly, the calculation of Rlu in the original dry
deposition scheme neglects LAI, and we thus correct Rlu to scale it over the bulk canopy [Gao and Wesely,
1995]. These errors in dry deposition are due to the implementation in the CESM (and MOZART) models,
and are not inherent to the dry deposition schemes themselves.

Figure 1 shows O3 deposition velocity and surface O3 during the summer for the simulation without vege-
tation dependence in the dry deposition scheme (Original Scheme) and the changes in a simulation with
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Figure 1. Dry deposition velocity (left) and surface O3 (right) simulated by CESM during the summer (June, July, and
August (JJA)) with the (a) “Original” dry deposition scheme. The difference between the LAI-coupled schemes and the
original scheme are shown as (b) “Corrected Scheme”–“Original Scheme” and (c) “Optimized Scheme”–“Original Scheme”.
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Figure 2. Comparison of modeled and observed (a) daytime stomatal resistance (Rs) and (b) midday O3 dry deposi-
tion velocity (Vd). Rs data show modeled median and minimum-maximum range (gray) and average from observations
(black). Rs observations are averages from measurements collected over a broadleaf deciduous forest in Ontario, Canada,
and a cotton field in Sacramento, California, during the summer (JJA) [Padro, 1996]. Vd observations (see Table 2) are
shown in black, and results from three simulations are shown in grey (Original), blue (Corrected), and red (Optimized),
respectively. Symbols show the mean values; vertical bars represent the minimum-maximum range.

vegetation dependence (Corrected Scheme). O3 dry deposition and surface concentrations are substan-
tially affected by linking the dry deposition scheme to LAI, in particular over densely vegetated regions.
For example, the eastern U.S. is dominated by broadleaf deciduous forests and summertime LAI is about
4.5 (Figure S1). Deposition velocities increase by 0.25 cm/s (80% increase) with the Corrected Scheme. This
leads to a decrease of 12 ppb of surface O3 over the region in summertime.

To examine the performance of the original and corrected dry deposition schemes, we compare modeled
Rs with observations. We evaluate daytime Rs because direct uptake through the stomata pores is the dom-
inant O3 removal process over vegetation; for most vegetation types, this uptake only occurs during the
day as stomata are closed at night [e.g., Wesely, 1989; Lamaud et al., 2002; Wu et al., 2011]. Figure 2a dis-
plays daytime Rs observations based on long-term measurements gathered in a broadleaf deciduous forest
in Ontario, Canada, and a cotton field in Sacramento, California, during the summertime extracted from
Padro [1996], Figure 2. We compare these observations to the simulated median Rs, and the minimum and
maximum range from 6:00 to 21:00 local standard time (LST) during the summer for broadleaf deciduous
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Table 2. A Review of Daytime O3 Dry Deposition Velocities Over Main PFTsa

Land Use Type Location High LAIb Low LAIb

Deciduous Forest Harvard Forest, MA 0.81 (0.72–0.92)
Ontario, Canada 1.0 (0.80–1.10) 0.30 (0.20–0.35)

Harvard Forest, MA 0.70 (0.50–0.80) 0.25 (0.20–0.40)
Kane Experimental Forest, PA 0.83 ± 0.015 0.24 ± 0.017

Mixed Forest Sand Flats State Forest, NY 0.82 ± 0.013 0.55 ± 0.019
Duke Forest, NC 0.80 (0.60–0.95)

Coniferous Forest Schefferville, Quebec 0.30 (0.25–0.35)
Niwot Ridge Obs, CO 0.55 (0.40–0.60)

Southern Norway 0.45 (0.40–0.6) 0.05 (0.05–0.075)
Ulborg Forest, Denmark 0.73 (0.45–0.95) 0.39 (0.34–0.44)

Les Landes Forest, France 0.62 0.29
Niwot Ridge Obs, CO 0.5 (0.3–0.68) 0.12

Manitou Forest Obs, CO 0.5 (0.35–0.75)
Tropical Forest Ducke, Amazon, Brazil 1.8 (1.25–2.6)
Cotton Field Sacramento, CA 0.75 (0.50–0.90)
Grassland Sacramento, CA 0.15 (0.10–0.25)

Sand Mountains, AL 0.4 (0.35–0.45)
Kansas, USA 0.50 (0.30–0.75)c 0.35 (0.18–0.45)c

aReported daytime (9:00–15:00 LST) Vd as average (minimum-maximum), avg ± SD or
average. Data extracted from Wu et al. [2011], Padro et al. [1991], Padro et al. [1992], Munger
et al. [1996], Finkelstein et al. [2000], Kumar et al. [1983], Hole et al. [2004], Mikkelsen et al.
[2000], Lamaud et al. [2002], Turnipseed et al. [2009], Park et al. [2014], Fan et al. [1990], Padro
et al. [1994], Meyers et al. [1998], and Gao and Wesely [1995].

bHigh LAI are periods with active plant growth and large LAI and Low LAI are periods
with no plant growth or/and snow cover (see text for further explanation).

cVd for 10:00–14:00.

temperate forests and C3 crops at those locations. The diurnal variability of Rs is mainly regulated by radia-
tion, which controls stomatal opening. During the day, Rs decreases rapidly and reaches a minimum around
local noon when stomata are fully open and vegetation photosynthesis activity is at a maximum [e.g.,
Wesely, 1989; Padro, 1996]. Observed daytime Rs values range from 0.7 to 6 s/cm in both PFTs, and noon
minima are 1 s/cm and 0.7 s/cm in the broadleaf deciduous temperate forest and cotton field, respectively.
Similar daytime Rs values have been reported in other, however limited, studies. Finkelstein et al. [2000]
measured daytime average Rs values of 2–6.4 s/cm over different broadleaf deciduous temperate trees;
Grantz et al. [1997] reported daytime O3 Rs of 1.4–6.6 s/cm inferred from water vapor stomatal conductance
measurements in a cotton field. The Ball-Berry Rs scheme implemented in CESM captures the diurnal vari-
ability of observed Rs. However, the model substantially overestimates the Rs magnitude by a factor of 5.
Lombardozzi et al. [2012] suggest that O3 damage to plants (not included here) would further increase the
stomatal resistance; including this effect would exacerbate the model bias in stomatal resistance. Canopy
parameters used to calculate Rs are not well constrained in CLM4, and that may contribute to the large
Rs values [Bonan et al., 2011]. It is also important to note that Rs is difficult to measure, and observations
are rather limited. Therefore, other sources of uncertainty may account for or contribute to the difference
observed between the model and observations. However, it is unlikely that vegetation density is a major
factor here. We find that a 50% increase in the LAI increases summertime midday Vd by about 20%, with a
concurrent decrease of 3 ppb in surface O3 concentrations. Therefore, we use this initial model-observation
comparison to optimize the Rs values implemented in our dry deposition scheme.

Figure 1c shows results from a simulation in which we reduce the Rs used in the dry deposition scheme by
a factor of 5 to match the observations shown in Figure 2a (Optimized Scheme). This Optimized Scheme
also includes the updated vegetation dependence of the Corrected Scheme. The impact of the Optimized
Scheme on the ozone simulation is substantial. For example, in the eastern U.S. dry deposition velocities
are 0.5 cm/s (∼200%) larger than the Original Scheme, with a concurrent decrease of 20 ppb in surface O3

concentrations. We observe similar decreases in surface O3 over dense vegetated regions in the tropical
Southern Hemisphere (e.g., Amazon) where LAI is large (∼ 5) throughout the year.
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Figure 3. Scatterplots of simulated surface O3 during the summer (JJA) with the Original Scheme (black), Corrected
Scheme (blue) and Optimized Scheme (red) versus observed long-term mean values at (a) individual Clean Air Status
and Trends Network (CASTNET) sites (1995–2005) in eastern U.S. and (b) individual European Monitoring and Evaluation
Programme (EMEP) sites (1990–2009) in Europe. Squared-correlation coefficients (r2), slope, and normalized mean biases
(NMB) are shown in the inset. Reduced–major axis regression lines (solid) and the 1:1 lines (dash) are also shown.

To further support the changes suggested by our Corrected and Optimized schemes, we compare simu-
lated ozone dry deposition velocities with observations in Figure 2b. We show the seasonal variation of O3

Vd over four sites (Harvard Forest (MA, USA), Rocky Mountain National Park (CO, USA), the Amazon (Brazil),
and Kansas (USA)) representative of four major PFTs (broadleaf deciduous temperate forest, needleleaf ever-
green temperate forest, broadleaf evergreen tropical forest, and grassland). We show the monthly average
of midday (9:00–15:00 LST) Vd as well as the minimum and the maximum values simulated by CESM at
these locations. Table 2 summarizes midday Vd from field observations reported in the literature over dif-
ferent PFTs. We report midday Vd for high LAI and low LAI periods to distinguish the effect of growth and
vegetation density on the deposition velocity. We define “high LAI” as periods with active plant growth
and large LAI and “low LAI” as periods with no plant growth or/and snow cover, as defined in each study.
Figure 2b includes observations from four of these PFTs, shown as the average and minimum and maximum
(or ± standard deviation (SD)) reported in each study for the duration of measurement period. The compar-
ison of O3 Vd observations from a particular location with global CESM model output (1.9◦ ×2.5◦ horizontal
resolution) may be biased because of heterogeneity within the grid box. However, we ensure that the grid
box, from which the model data are extracted, is dominated by the PFT in which observations were col-
lected. Figure 2b shows that the ozone dry deposition is generally underestimated (in some cases by more
than a factor of two) in the Original Scheme and both our Corrected and Optimized schemes improve
comparisons with observations. The dry deposition velocity is particularly sensitive to Rs under densely
vegetated (high LAI) conditions. For example, the Optimized Scheme produces Vd values that are a factor of
two larger than the Corrected Scheme in deciduous forests during the summer and tropical forests through-
out the year (∼1 cm/s versus 0.5 cm/s), whereas it remains nearly constant in all configurations in deciduous
forests during the winter (∼0.1 cm/s) and grasslands (∼0.3 cm/s).

In broadleaf deciduous temperate forests, Vd is primarily controlled by the seasonal cycle of LAI (Figure S1)
[e.g., Finkelstein et al., 2000; Wu et al., 2011]. Observations show a pronounced seasonality in Vd with larger
values from late spring to early fall (∼0.8 cm/s in summer versus 0.1 cm/s in winter; Table 2). It is clear that
the original dry deposition scheme configuration has little skill in capturing the seasonal variability of Vd .
The new schemes dependent on LAI reproduce the seasonal cycle, with the Optimized Scheme capturing
both the variability and the magnitude of the cycle. Similar results are found in needleleaf evergreen
temperate forests, with a much less pronounced seasonality in the simulated and observed Vd .

In broadleaf evergreen tropical forests and grasslands, modeled and observed Vd show little to no season-
ality. In these PFTs, where LAI remains nearly constant throughout the year [e.g., Turnipseed et al., 2009;
Gao and Wesely, 1995], Vd is mainly driven by environmental factors, such as temperature, humidity, light,
and the presence of snow. In broadleaf evergreen tropical forests, the Optimized Scheme improves the
comparison with observed dry deposition velocities but is still biased low. It is important to note that Vd

observations over tropical regions are very scarce, and data shown are based on only one field campaign
(Table 2). In grasslands, dry deposition is not very sensitive to vegetation as LAI is very low (<1; Figure S1),
and all configurations reproduce the observed ozone dry deposition velocities.

VAL MARTIN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6
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Figure 3 shows how these changes to the simulation of dry deposition affect the comparison of simu-
lated surface O3 concentrations with observations during the summer. In this comparison, we focus on the
eastern United States and Europe since these are regions with dense observational networks and where a
consistent positive bias in simulated surface O3 has previously been identified. Observations shown for the
eastern U.S. and Europe are long-term means from the CASTNET and EMEP networks, respectively. As an
example, we show the bias between model and observations with the original dry deposition scheme in
Figure S2 (supporting information). Over the eastern U.S. (Figure 3a), the simulation of surface O3 concen-
trations is positively biased with all dry deposition scheme configurations. However, including LAI in the dry
deposition scheme significantly improves the simulation of surface O3. The Original Scheme has a mean
positive bias of 30 ppb with respect to the observations, i.e., a 44% normalized mean bias (NMB), which is
similar to that obtained for other periods studied with CESM [Lamarque et al., 2012], and is clearly outside of
the range of climate variability in surface O3. This bias drops to 23 ppb (38% NMB) in the Corrected Scheme
and to 14 ppb (28% NMB) in the Optimized Scheme. Over Europe (Figure 3b), all model configurations also
tend to overestimate surface O3. However, both the Corrected Scheme and Optimized Scheme are substan-
tially closer to observations (respectively, 5 and 10 ppb bias versus 13 ppb in the Original Scheme). A more
detailed evaluation using ozone sondes and satellite and aircraft observations shows that the updates to
the dry deposition scheme have a negligible effect on O3 concentrations above 900 hPa, and away from
regions and periods with dense vegetation, i.e., eastern U.S. and Europe during the summer and Southern
Hemisphere tropical regions (S. Tilmes, National Center for Atmospheric Research (NCAR), personal com-
munication, 2014). Therefore, while the simulation of surface ozone is dramatically impacted by the
representation of vegetation phenology in the dry deposition scheme, the global tropospheric ozone bud-
get is largely unaffected. In addition, our changes to the dry deposition scheme have little impact on the
simulation of other species (e.g., SO4, NO2, and CO), which are less sensitive to dry deposition losses [e.g.,
Wesely, 1989].

3. Conclusions

Dry deposition represents an important physical mechanism controlling surface O3 in CESM. Correcting the
vegetation dependence and optimizing the stomatal resistance used in the dry deposition scheme in CESM
leads to a substantial improvement in the simulation of surface O3 over regions that are well known to have
a positive bias (e.g., eastern U.S. and Europe). Thus, ozone biases reported in the literature [e.g., Murazaki
and Hess, 2006; Lamarque et al., 2012] using the Original Scheme can, at least in part, be attributed to impor-
tant oversimplifications in the implementation of the dry deposition scheme. Ensuring that models correctly
link ozone deposition processes with vegetation and use accurate dry deposition schemes may be a first
step toward improving surface O3 simulations. However, our Optimized Scheme is based on limited obser-
vational constraints, and additional globally distributed measurements of both stomatal resistance and
dry deposition velocities could be used to improve this parameterization. Further work is also needed to
fully understand the causes of the bias in the simulated stomatal resistance, and the impact that the scal-
ing applied in our Optimized Scheme may have on the simulation of the hydrological and carbon cycle, via
greater stomatal water loss and carbon uptake. Finally, including explicit links between vegetation param-
eters and dry deposition is critical to the ability of Earth System Models to simulate surface O3 response to
future and past vegetation changes, as well as factors controlling changes in stomatal resistance, such as
changes in CO2 and drought stress. Thus, on-going investigation of the accuracy of such links must proceed
concurrently with efforts to project changing global air quality.
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