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ABSTRACT

An investigation is made of a new approach to solving a set of equa-
tions (the multimode kinetics equations) which have been obtained by the
application of time synthesis to the multigroup neutron diffusion equa-
tions. The multimode kinetics equations are cast into the form of the
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CHAPTER I

INTRODUC TION

1. 1 The Use of Space-Dependent Kinetics

Although the essential problem confronting the reactor physicist

has remained the same since the early 1940's, the emphasis of the

physicist's approach has shifted considerably. Stated simply, the prob-

lem is: How is one to predict the behavior of a neutron population in a

material medium? It was this problem that Fermi faced in June of

1942, when he derived a value of 1.07 for the infinite medium multi-

plication factor for a uranium oxide-graphite lattice. And it is roughly

the same problem that today's reactor physicist must tackle. The

approach to the problem over the past few years, however, has been

focused in large part on the desirability of knowing as much as possible

about when and where heat is produced in a power reactor. Thus (as

S. Kaplan pointed out in 1966) it is extremely important to be able "to

predict what the spatial distribution of the fission rate will be at all

times during the life of the reactor, under all static and dynamic oper-

ating conditions, and during various postulated accidental transients." 1

The early experiments of Fermi at Columbia University in 1942

were designed to investigate the possibility of a neutron chain reaction.

Later that year, at Chicago, confirmation of the chain reaction was

obtained and the nuclear energy business was born. Today that busi-

ness is concerned with the design and construction of large (>1, 000

M w9) thermal reactors, and with the development of fast breeder

reactors.
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The prediction of the spatial distribution of the fission rate for

these devices has involved, over the past few years, the development

of methods for solving the time-dependent, multigroup diffusion equa-

tion (and various approximations to it) in one or more spatial dimen-

sions. This approach to the problem of predicting the behavior of a

neutron population in a material medium (a substantially different

approach from that of Fermi) has evolved partly because of the recog-

nition that in the large, loosely-coupled thermal reactors being designed

today the neutron population will not exhibit a spatially uniform behav-

ior in response to a localized perturbation. In fast breeder develop-

ment, this approach is viewed as part of a necessarily strong emphasis

on safety.

The degree of sophistication with which one tackles the solution of

the time-dependent, multigroup neutron diffusion equation is usually

dictated by the kind of event being considered, the level of sophistica-

tion of the computational machinery at the reactor physicist's disposal,

and the price the reactor physicist is willing to pay. For a given

reactor, both the nonuniformity of the spatial redistribution of the

neutron population following a perturbation and the time scale of the

redistribution depend on the type of perturbation which has occurred.

Consequently, the methodology that one chooses to model the neutron-

ics of the reactor should be based in large part on one's knowledge of

the event, given the constraints of computational cost and accuracy

that then select the "best" method from a list of comparable methods.

This thesis is concerned with the analysis of a new approach to

solving a set of equations (the multimode kinetics equations) which
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cheaply approximate the predictions of the time-dependent, multi-

group neutron diffusion equation, along with the associated set of time-

dependent neutron precursor equations. The remainder of this chapter

involves a brief review of several of the current techniques for approx-

imating such predictions, and a development of the point kinetics form

of the multimode kinetics equations using a time-synthesis approxima-

tion. Chapter II begins with an analysis of the current approach to

solving these equations and goes on to develop a new approach, based

on the Pads (2, 0) and a modified Pads (1, 1) approximation to the expo-

nential. Some numerical results which test the new approach are given

in Chapter III. And, finally, both the conclusions concerning the worth

of the new approach and some recommendations for further work are

found in Chapter IV.

1. 2 Some Current Methods of Solving the Time-Dependent,

Multigroup Diffusion Equation

Before a development of the multimode kinetics equations is begun,

it would seem wise to consider the equations they approximate. The

time-dependent, external-source-free neutron diffusion equation for

energy group g, along with the associated equation needed to deter-

mine the concentration of delayed neutron precursors belonging to

delayed precursor group i may be written as2

V-D (r,t) V (r,t) - 9(rt) * (rt)+ X P(1 vp E ,(rt) *,(rt)

,(rt(r, tg+ g (r,t) ,(rit)+ x. X.C.(r,t) (1.1)
sg'I ig i 1 at v

g' i
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i= 1, 2, ...I (1. 2)v fg,( tg ,( rt) - Cwr,t) (C (r.,t)

g'Ij

where the superscript j refers to the j th fissionable isotope.

In equations (1. 1) and (1. 2):

(a) V - D (r, t) V* (r, t) is the net leakage rate per unit volume of neu-

trons belonging to energy group g at location r and time t.

(b) Z (r, t) P (r, t) is the total neutron reaction rate per unit volume
tg g

for neutrons belonging to energy group g at location r and time t.

(c) xg (1-pi) Ivj ,(r, t) * ,(r, t) is the production rate per unit

jg'
volume of prompt neutrons belonging to energy group g at loca-

tion r and time t.

(d) X.gxC .(r, t) is the production rate per unit volume, resulting
ig

from the decay of delayed emitters, of neutrons belonging to energy

group g at location r and time t.

(e) ,(r, t) * 1(r, t) is the production rate per unit volume, due
sgg g

g'
to scattering, of neutrons belonging to energy group g at loca-

tion r and time t.

* (r, t

( is the rate of increase per unit volume of the num-
at v

o g)
ber of neutrons belonging to energy group g at location r and

time t.
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v Eg,(r, t) * '(r, t) is the production rate per unit volume
fg' g(g) p

j g'
of delayed emitters of type i at location r and time t.

(h) X.C.(r, t) is the rate of decay per unit volume of delayed emitters
1 1

of type i at location r and time t.

(i) (Ci(r, t)) is the time rate of change per unit volume of delayed

emitters of type i at location r and time t.

For G groups and I precursors, equations (1. 1) and (1. 2) may be

written in matrix form as follows:

D (r, t) * , t)

D G(r, t) *G(r, t)

p3)+ j 1
XpG

) Es 11

-Es21( r,t)

[v f(r, t).0 v fG r,t

-s12 (r,t)

t2s(r,t) - E s 22(rt)

)] ~1 ,t)

G(r t)

. . .- s1G(r,t)

s 2G(r,t)

EsG1(rt) EtG(r,t) - ZsGG(r,t)

Xii

X C (r,t)LiG

- -G3

a
at

1
v 1

*G(r,t)

41 (~t)

cI~Q ( i~ t)

0

i

(rt)

1
V G

(1.3)

0



14

S 1 1C.W,t)

pI vj~i (rt) ... viEGrt) (r,t) -X-C (;,t)= at

fG~r~t G( ,t)

i = 1,2,...I. (1.4)

Equations (1. 3) and (1. 4) may now be written as

- D(',t)] V[ IN(7A, t)]+ (1 -P pj) Xj v 3 t) [ (T t)]
jv~j

-[A( r,t] 0 (r0t)+ X C (r-,t) [ Xi] = v]~ (7,t)]I (1 . 5)

i=1

T aC.(, t)
p3 v rE( , t) [ r(, t)] - ACi (r, t) = I o iij= J1, 2,.1 .. I (1. 6)

For assemblies the size of current power reactors, it is generally

assumed that equations (1. 5) and (1. 6) are sufficient to describe the

spatial and energy distribution of the neutron flux in the reactor as a func-

tion of time. Having adopted this position, one must decide how to go

about solving the equations.

Certain parallelisms in structure exist in the development of two

general approaches to solving these equations. Since analytic solutions

of equations (1. 5) and (1.6) can be obtained only in the most trivial

cases, direct approaches involve finite differencing the equations in

both space and time. Indirect approaches include those classes of

approximations generally referred to as modal methods and space-

time synthesis methods. Typically, indirect methods involve an

attempt to reduce the number of independent variables at hand. They
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therefore require one to recombine trial functions and coefficients to

describe the neutron flux distribution.

In general, one may divide those direct techniques which depend

upon finite differencing in space and time into at least three general

categories. All involve the replacement of all the time derivatives and

the Laplacian term of equations (1. 5) and (1. 6) by their finite difference

counterparts. This transformation results in a set of equations which

are sufficient to describe the energy group fluxes and the precursor

group concentrations at each spatial mesh point as a function of time.

To recast equations (1. 5) and (1.6) into a finite-differenced form

in a direct manner, one typically begins by forming a set of semi-

discrete equations. This is done by superimposing a three-dimensional

spatial mesh over the reactor of interest, integrating the resulting,

spatially discretized form of equations (1. 5) and (1. 6) over the volumes

associated with each of the mesh points, and assuming that the neutron

current may be approximated by a finite difference relationship. The

resulting equations for the neutron flux at all mesh points for energy

group g and for the ith delayed neutron precursor group may be writ-

3
ten as

IG

d g g g ] + [F 1C + [T }[$ ,] (1.7)

and

G
d[C I = -[A ][C] + [Pg ]p[g]. (1.8)dt 1 g =1

g' =
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In equations (1. 7) and (1. 8):

(a) [D ][y ] is the finite-differenced, box-integrated counterpart of the

operation v {V - D (r, t) V (rt)}. [D ] is a seven-stripe matrix

representing the process of neutron leakage across the six sides of

the mesh volume.

[T ,][L ,] is the finite-differenced, box-integrated counterpart

of v x i (1 -p)
ga pg P 7 V ,, t)

g'

Ztg(r',t) .' [T,] contains t

and intergroup scattering processes.

,(r, t) + e s ab s ,(aot) -

g'
erms representing absorption

(c) [F gi [C is the finite-differenced, box-integrated counterpart of

vgx iC (r, t). The matrix product [F .][C I1 concerns the transfer

of delayed neutrons into group g due to decays in precursor group i.

(d) [A ][C ] is the finite-differenced, box-integrated counterpart to

X C (r, t). The matrix [A ] contains the precursor decay constants.

G

(e) [P. ,][$ ,] is the finite-differenced, box-integrated counterpart

g'=1
to pi v g(r, t) j ,(r, t) and represents the production rate

g'
of the ith delayed precursor due to fissions in group g'.

The semi-discrete equations (1. 7) and (1. 8) may be combined into

the single matrix equation

d ] = [A][ 4f] (1.9)

G
(b)

g'=1
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where

[9] -
[G]

[C ]

[c I

[D + T 1

[T 2 1]

[T Gl

[ 1 1 ]

[P 2 1]

[P ]

[T 1 2 ]

[D 2 + T 2 2 ]

[TG 2]

[1 2]

[P221

[ il

[TIG]

[T 2 G ]

[DG+TGG]

[P1G]

[P2G]

[PIGI

[F i]

[F 2 1]

[FG1]

-[A ]

[FII]

... [F 21]

... [FGI]

0

0
4[AI]

If one assumes that all the terms of the matrix [A] are constant

over a time step, At, then the solution of the matrix equation (1. 9) is

given by

[T(At)] = exp([A]At) [T(0)]. (1. 10)

Two of the three categories of direct, finite-differenced techniques

involve the solution of the semi-discrete equations (1. 7) and (1. 8); and,

consequently, are approximations to (1. 10). The GAKIN METHOD

(MATRIX DECOMPOSITION METHOD) 4 solves the semi-discrete

and

[A] =
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equation (1. 9) by splitting the matrix [A] into four parts: [U], the upper

triangular part of [A]; [L], the lower triangular part of [A]; [A], that

part of the sub-matrix diagonal of [A] which contains the matrices [DG];

and [i], the remaining, sub-matrix diagonal part of [A] which contains

the matrices [T 1 I] through [TGG] and -[A 1 ] through -[A ].

With this splitting, equation (1. 9) may be written as

-j-qi- [r][*i] = [L+u][T'] 0.11

Equation (1. 11) then may be formally integrated over the interval

At (t - tp) with the following result:

[(t p+1)]= exp([I']At) [1f(t p)] + dt' exp((At-t')[I]) [L+U][4f(t p+t')]

Atdt' exp((At-t')[']) [A]['W(t +t')]. (1. 12)
0 p

The GAKIN METHOD then assumes that in the first integral of

equation (1. 12)

[ N(t p+t')] = exp(p[lt) [T(t ) (1.13)

where the terms of ["] are typically found by utilizing one's knowledge

of the change in [T] over the preceding time step. In the second inte-

gral, it is assumed that

p(tp+t')] = exp(-[w](At-t')) [T(tp+1 4)

Applying these assumptions to the integral equation (1. 12) yields
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{[I] - [ -r] ([I] - exp([I - ]At)) [A]} [*(tp+1)]

= {exp( [FIAt) + [w -i] 1 (exp( [w]At) - exp( [T]At)) [L + U]} [ I(t p)].

(1. 15)

It is essentially equation (1. 15) that the GAKIN METHOD tackles

as an approximation to the semi-discrete equation (1. 9).

Another class of approximations to equation (1. 10) involves that

category of direct, finite-differenced techniques known as ALTERNATING-

DIRECTION SEMI-IMPLICIT TECHNIQUES. These techniques replace

the time derivative in equation (1.9) by two successive forward differ-

ences over a time step, At (where At = 2h). Typically, a change of var-

iables is introduced to reduce the truncation error difficulties which

plague alternating-direction splitting methods. This change of variables

is in fact an exponential transformation of the form[T(t)] = exp([]t)[(t)],

where [0] is a diagonal matrix whose terms are again chosen by utilizing

one's knowledge of the past behavior of [4]. If, for each half of the time

step, the matrix [A] is split into two parts and the exponentials which

result from the exponential transformation are evaluated at the midpoint

of the step, a matrix equation may be developed which represents a

6
general, two-step, alternating-direction, semi-implicit method. With

[A] split arbitrarily into [A ] + [A 2 ] for the first half of the time step,

and into [A 3] +[A 4 ] for the second half, this matrix equation may be

written as

[ (tp+1)]= [B( ,h)][ (tp)].
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In the preceding equation:

[B(Q , h)] = exp([Q ]h) ([I) - h([A 4 -a[])~{[I]+ h([A 3

- [I] - h( [A 2 - a[Q ] )}~ ([I] +h([A 1 ]- y[O ])) exp([Q]h)

where a + y = 1.0.

The specific alternating-direction, semi-implicit technique used

depends on the choices one makes for A 1 through A 4 , along with a and

y. To see more clearly the various choices one may make, the ma-

trix [A] is again split into four parts: [U], the upper triangular part

of [A]; [L], the lower triangular part of [A]; [T], that part of the sub-

matrix diagonal of matrix [A] which contains the matrices [T 1] ]through

[TGG]; and [D], the remaining sub-matrix diagonal part of [A] which

contains the matrices [D1 ] through [DG] and -[A1] through -[AG].

For the SYMMETRIC, ALTERNATING-DIRECTION IMPLICIT

METHOD (SADI) the following choices are made:

a = y = 0. 5

[A1 ] =- [T] + [U] + [D] =[Ag]

[A2] =$[T] + [L] + [D2] = [A3]

where [D 1 ] contains those terms of [D] associated with diffusion in one

direction and one half of each term in the submatrices [A 1 ] through

[A1]. [D 2] is then defined by [D] = [D 1 ] + [D 2].

Using these same values of [D 1] and [D 2 ], the splitting choices of

the NONSYMMETRIC, ALTERNATING DIRECTION IMPLICIT (NSADI)

METHOD are



[A1 ] = [U] + [D1]

[A 2] =[T] + [L] + [D 2]

[A 3]= [U] + [D 2]

[A 4 ] = [T] + [L] + [D]

with a = 1.0 and y = 0.

The SYMMETRIC, ALTERNATING DIRECTION EXPLICIT

METHOD (SADE) involves the following choices:

a = y = 0. 5

[A ] = '[T] + [U] + [D ] = [Ag]

[A 2 ] = I [T] + [L] + [D 2 ] = [A 3

where [D ] contains those stripes of [D] which lie above the diagonal

plus one half of each term on the diagonal and where [D 2] contains the

remaining terms of [D].

The NONSYMMETRIC, ALTERNATING DIRECTION EXPLICIT

METHOD (NSADE) is obtained by letting

a = 1.0 y = 0

[A 1 ] = [U] + [D ]

[A 2 ] = [T] + [L] + [D 2I

[A 3] = [U] + [D 2

[A 4 ] = [T] + [L] + [D]

21
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where [D 1] and [D 2] are the same as for the SADE method.

All of these methods have been investigated by Donald Ferguson7

in two dimensions, and the NSADE method, which was found to be the

best overall strategy, has been extended successfully to three dimen-

sions.

The third category of direct, finite-differenced techniques to be

considered here stems not from a straightforward attack on equation

(1. 9) but rather from a "point-kinetics" approach to equations (1. 5)

and (1. 6). This approach, known as the 0-METHOD, is based in part

on the fact that equations (1. 5) and (1. 6) may be formally cast into the

following "point -kinetics" form' 9

dT __

AT + X C

i=1 (1. 15)

dC. p.
1 T - X.C. i = 1,2,... I.dt A 11 .

This reduction is carried out by multiplying the terms of equa-

tions (1. 5) and (1. 6) by an arbitrary weighting function and integrating

over space and energy. In this approach, the flux vector [ (r, t)] is

expressed as the product of a shape function and a scalar amplitude

function (i. e. , [ @(r, t)] = [S(r, t)] T(t)), and the resulting values of A(t),

pj(t) and p(t) are typically assumed to take on constant, average values

during the time step At.

In the 0-METHOD, the values of [ @p+1] are found in terms of [P }
10

by casting equation (1. 15) into the following, differenced forxn:



23

T - T p -pP
P OP T +1
- O PT + ( 1 P 1 m T

At A 00 p+1 0
p

+ k.69.C + 1 - 9.0C.
)1 f01 1, p+ (1 \ "oi / 1 , p1

(1. 16)

Ci, p+1 ~ pL
= 6 T + (1 - 0 Tat A 10 p+1 \ o/T p

p

- X. fEn i .C. + I -n.I C." i=1 12,...I.1 11 { 1 , p+1 l1/1+

The 0' s appearing in equations (1. 16) are parameters which are

selected at each time step to improve the accuracy of the approxima-

tion. The idea behind their use may be presented by considering the

following, somewhat trivial initial value problem which involves only

one independent variable. The problem begins by supposing that a finite

difference solution is required for

d* (t)

dt = R M(t)

where *(t) is a scalar and R is a constant.

Obviously, for this initial value problem, one may express the

solution *(tp+ 1 ) at time tp+1 exactly as

*(tp+ 1 ) = exp(Rp At p) (tp )

where Atp = t - t p. Alternatively, however, one may find *(tp+1

by using a difference technique which employs a weighting parameter 0.

In this case, the problem becomes
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*(t )- (t )

At R p (+1 + (1 -P) *(tp)I

so that

1 + R At (1 -0P)
p p

p+1 1-R At OP (
p p

By comparing the differenced solution to the exact, it becomes clear

that the difference technique will produce the exact result if

60 p= 1+1
RAtp p 1 - exp(R At )

p p

Clearly, then, for this simple problem a "proper" selection of the

0 parameters can enable one to reduce the error of the finite differ-

ence approach.

Of course, in more complex problems the exact solution is not

known a priori. Fortunately, however, the use of the 0' s often yields

fairly accurate results even if they are only approximated. And, in

fact, if one makes "good estimates" of approximate 0' s for equa-

tions (1. 16), it is quite possible to significantly reduce the error asso-

ciated with finite differencing equations (1. 15).

At this point it is noted that in order to obtain equations (1. 16)

from equations (1. 5) and (1.6) one must "0-difference" (1. 5) and (1.6)
11

as
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fV - [D I V[1 ]b -[A][ 0 ]+ (1 -pj) X v P21 T [ ] O
p p+1 p+1 p p p+*1 ooL

+ { [Dr] V[ - [A][ @]+ (1-p)[X v [ ] 1-6)

+ X. C. o + Ci 1~ - O6 [Xi] [v]- p+451 -Pi=, +1J 01o tp P p

(1. 17)

and

p vjj ] [ P + Lq](1 - )} -Xi Ci, p+1 +C1  1I - e)

=E { C i, p+ 1 - C i ,2 .I 1 8

If one solves equation (1. 18) for Ci, p+1 and eliminates this term

from (1. 17), the resulting e-equation takes the same form as one de-

scribing a subcritical assembly with an extended source. This equation

is used in the e-METHOD in the following way: Given that the values

of [<'] and C. are known, the terms Pp, Ap, and p. which appear
p I.,p i P

in equation (1. 16) may be computed. A value of At P is then selected

and the "point-kinetics" terms previously derived are used to select

the O's which appear in the 0-equation mentioned above. This equation

is then used to solve for [ Dp+1] which is, in turn, used in equation(1.18)

to find the Ci, p+1. In this manner one may step out in time, repeating

the procedure for each time step.

The preceding discussion of finite-difference approaches to solving
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equations (1. 5) and (1. 6) is not meant to be exhaustive. Rather, the

attempt here has been to categorize broadly a few of the direct approaches

to solving (1. 5) and (1. 6). When this is done, it becomes apparent that

the direct approaches themselves involve at least two classes of methods

- those which attempt to solve the semi-discrete diffusion equation in

the form of equation (1. 9) and those which go about solving the finite-,

differenced diffusion equations using the fact that they may be recast

into a "point -kinetics" form.

Although the use of a direct methodology enables one to attach error

bounds to the solution of the discretized equations over a time step, it

may necessitate purchasing a considerable amount of computer time.

Even moderately sized problems handling a few energy groups and a few

thousand mesh points are quite expensive when more than one dimension

is analyzed.

To circumvent this difficulty, modal and space-time synthesis

methods have been developed to reduce the number of independent vari-

ables that must be computed and thereby reduce the length and conse-

quently the cost of the computation.

Modal methods basically begin with the assumption that the multi-

group flux vector [ (r, t)I can be adequately represented during a tran-

sient as a sum of predetermined fixed shapes multiplied by coefficients

which are time-dependent. Thus, for most modal expansions, the flux

vector takes the form

K

(r, t)] ~I [kr)T k(t)]. (1. 19)

k= 1
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If the modal method being considered "fully collapses" the energy

groups, [$k(r)] is a column vector and [Tk(t)] becomes a scalar. Alter-

natively, a "non-collapsed" method treats [qk(r)] as a diagonal

matrix and [Tk(t)] as a column vector. "Fully collapsing" implies that

the group-to-group flux ratios are no longer completely free to vary

independently. "Non collapsing," on the other hand, purchases this

freedom in part by increasing the number of time-dependent equations

to be solved.

In general, the kind of approximation defined by equation (1. 19) is

not valid at all r and for all t. By the very nature of the approximation,

a real, linear vector space is generated by one's choice of the trial

function I+k(r)]. And, the solution of the approximate equations which

result from the application of equation (1. 19) must come from this vec-

tor space. Unfortunately, the space cannot usually be expected to con-

tain the exact solution to the time-dependent, multigroup diffusion

equation. To circumvent this difficulty, one may apply the method of

weighted residuals (or, alternatively, variational techniques) in order

to select from the approximate solution space that solution which lies

"closest" to the exact solution.

The application of the method of weighted residuals is accomplished

by substituting the modal approximation, equation (1. 19), into the time-

dependent, multigroup diffusion equations. The terms of the resulting

set of equations are then premultiplied by a series of weighting functions

and integrated over all space. The weighting matrices, [W (r )] must,

of course, be of a nature and number so as to generate the exact num-

ber of equations necessary to determine the unknown coefficients in
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the right-hand side of equation (1. 19).

The type of modal method employed is determined primarily by the

selection of the trial functions *k(r).

The 4jk() which ai-e defined by

2 2 -

V2k(r) + B kk(r) = 0

are known as HELMHOLTZ MODES.12 They have the advantage of being

complete, orthogonal functions which are easily tabulated. Unfortu-

nately, however, a very large number of modes must generally be used

to describe the reactor adequately.

Before investigating other choices of trial functions, a recasting

of equations (1. 5) and (1. 6) is in order. To accomplish this, the following

matrices are defined:

[L] -{9 -[D(it)] V - [A(r, t)]}

1-P) [4 + 0 [X]}v ]

[Md] M [)]
i ~

Applying the definitions to equations (1. 5) and (1.6) yields

[-L+M-Md][ R] + [ ] ACi = at[v] [ l (1.20)
i=1
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and

M ] - [X] XiCi = [Xi] I i = 1, 2,...I (1. 21)

If one denotes steady-state conditions by a "o"l subscript, then

LAMBDA MODES13 are defined by

[L0 ][ n' = + [Mo][ n
n

and OMEGA MODES 4

L +M -M d

[M 0]

Md

n

are defined by

0

[v 0

[I]
0

0

[I]

LAMBDA and OMEGA MODES have the advantage that they can be

tailored to a particular problem by using [L 0 ] and [M 0 ] appropriate for

that problem. Consequently the number of such modes required for an

adequate approximation is much smaller than the corresponding number

of HELMHOLTZ MODES. Unfortunately, these modes are difficult to

calculate; and, since they correspond to only one of the physical states

which the reactor experiences during a transient, they will be poor

1XI]CI

x~[ I]

0

-X [I]

[XilCi

[X1]C 1
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choices if the reactor deviates substantially from that state.

All of the choices of trial functions considered so far involve a set

of modes which correspond to only one operator. TIME SYNTHESIS15

is a modal approximation that uses modes which are associated with a

set of operators. Typically, the elements of the K, ) matrices

are fundamental modes belonging to a set of operators chosen to repre-

sent the reactor during the course of the transient. The emphasis is

then to use as much of one's knowledge and intuition about the dynamic

behavior of the reactor as possible in the selection of the set of oper-

ators.

The great advantage of synthesis procedures is that the trial functions

can be found by standard static methods and can be tailored very directly

to the problem at hand. In many cases, therefore, few of them are re-

quired. As an important result, it becomes possible to solve an ade-

quate approximation to the space-time diffusion equation with great

detail, accurately, and at a reasonable cost.

There are, however, some important objections to the time-

synthesis method. The modes do not form a complete set. There is

no orthogonality relationship among the modes. The selection of the

reactor conditions yielding the trial functions requires some intuitive

judgment about the dynamic characteristics of the reactor. In three-

dimensions, the cost to find three-dimensional trial and weight functions

may be substantial. A great deficiency is the lack of satisfactory error

bounds. Practically, care must be exercised to avoid using linearly

dependent trial functions.

The trade-off in advantages and disadvantages of the TIME
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SYNTHESIS METHOD depends on the type of problem one is attempting

to solve. For modeling the slow removal or insertion of a control rod,

the separability of the spatial and temporal behavior of the flux is a poor

approximation. For a small, uniform change in the boron content of

boron-poisoned coolant, the approximation would be too sophisticated.

However, for a range of interesting problems, the approximation is

quite attractive. For example, the method is well suited to describe

the flux behavior following a cold water injection, a loss of flow, or the

rapid ejection or insertion of a control rod.

The second category of indirect techniques for tackling equations

(1. 5) and (1. 6) springs from an attempt to circumvent the difficulties

imposed by time synthesis of finding three-dimensional trial and weight

functions for the entire reactor and of knowing a priori something

about the three-dimensional temperature profile of the reactor during

the transient. Procedures belonging to this category are usually refer-

red to as SPACE-TIME SYNTHESIS methods.

The idea behind space-time synthesis methods is to extend the

notion of time-synthesis so that one may select trial functions which

apply only to a region of the reactor. A consequence of doing this is

that the coefficients of expansion become functions of position as well

as time.

There are many types of space-time synthesis. In NODAL ANAL-

YSIS,16 one partitions the reactor into several subregions, Rn. For

the reactor, then, the flux is approximated by

N(n
[<(r,t] = Z r~' (r )[L(r )[ T(n)(t)]

n=1 n
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where

1n C R
n

10 n qt R n

SINGLE-CHANNEL SYNTHESIS may use either continuous or discon-

tinuous trial functions. In either case, the motivation is to make use of

the axially homogeneous nature of many reactors. The idea is to extend

the synthesis methodology by representing [ C( t)] as a linear combina-

tion of two-dimensional flux shapes appropriate to radial slices of the

core taken at different elevations and unknown functions of height and

time. For continuous trial functions, the assumption is

K
[(r, t)] = 1 [k(x y)][T k (z, t).

k= 1

The use of discontinuous trial functions permits one to use different

sets of the expansion functions [k(x, y)] at different elevations. Thus

the flux vector is approximated as

K
(r, t)] = Z [Lkn(x ny) (z,t) zn z 4 zn+1 n= 1, 2,. .N.

k=11

MULTICHANNEL SYNTHESIS18 is an extension of the idea of single-

channel synthesis whereby the x-y plane is itself partitioned into M

regions Rm. In the discontinuous trial function expansion given above

[pk, (x, y)] is defined to be [$k (x, y)] in R and zero elsewhere.

Thus the expansion becomes

K zn< z< zn+1; x, y c Rm

[rrr t)]I= Z [$Lk . (x y)][T knm(z t)]n=0,1 N M= .2. M
' k= 1knm ' knm' n=,1..N m1,2..M
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If a decision is made to use an indirect approach to solving equa-

tions (1. 5) and (1.6), another decision must then be made as to how one

should go about solving the resulting, approximate equations. Recalling

the structure that was observed with the development of direct approaches,

one can see that two choices are open. One may apply an indirect ap-

proach in a straightforward way to equations (1. 5) and (1.6) and solve

the resulting equations, or one may cast such equations into a "point

kinetics" form and go about the task of solving these reformulated equa-

tions. In this latter approach, the development of multimode kinetics

equations of a point kinetics form has been analyzed by Fuller, Hetrick and

Meneley 9 and shown to be the result of the application of a weighted

residual methodology to the spatial domain. If the reactor is divided

into M channels, and for each channel it is assumed that

K

[ m(r, t)] = Y [$ (r, t)][ T k(t)], (1. 22)
k=1

then the following equations may be derived by applying this expansion

to the time-dependent, multigroup, multiregion diffusion equations

(along with boundary and interface conditions), premultiplying the

resulting terms by an appropriate set of weighting functions, and per-

forming spatial integrations over each channel:

[T(t)] [A]~' IIII[p- [])]

d [C1(t)] [A]~' [p 1] -XI] 0 [C (t)I
dt(1. 23)

[C1 (t)] [A]~' [P I] -X I[I] [Cyt)



34

where the size of the sub-matrices depends on the kind of group col-

lapsing scheme chosen for the expansion (1. 22).

The selection of the kind of trial functions which appear in (1. 22)

determines the type of indirect method to be employed. If the entire

reactor is treated as one channel containing a single time-independent

shape function, then the sub-matrices of (1. 23) become scalars and the

equation becomes merely the familiar point-kinetics equation. If only

one channel is considered and a single shape function is defined by any

time step, p, by

[L][ cb( , p)] = [M] r(,p)

p

(where [L] and [M] are operators for the perturbed reactor in the pth

time step), then the ADIABATIC METHOD20 is being employed. Or,

if one attempts to improve on the ADIABATIC METHOD by using

[-L + M][ fl(r, p)] - rp [Z P( p-1
.. +o.r p-1

[vf 1 D [ )1 1
p

to define the shape function, then the QUASI-STATIC METHOD21 has

been adopted.

Nodal methods improve on the point reactor model by considering

one spatial trial function in each channel. Thus equation (1. 21) becomes

[ (M, 0) 1= [+ (r, t)][T mi(t)] m = 1,2,.. .M.

Alternatively, the reactor may be treated as one channel and omega
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modes on Helmholtz modes employed. Or, finally, one may choose to

adopt single-channel synthesis, multichannel synthesis, or time synthe-

sis in developing the multimode kinetics equations of the point-kinetics

form.

This section has been concerned with a review of several of the

current techniques of approximating equations (1. 5) and (1. 6). The

remainder of the thesis deals with one of these - the solution of the

multimode kinetics equations of the point-kinetics form.

1. 3 A Development of the Multimode Kinetics Equations

In this section, the multimode kinetics equations will be developed

in a point-kinetics form by the application of time synthesis to equations

(1. 5) and (1. 6). There are two reasons for doing this at this time. One

is to clarify the preceding discussion of using the method of weighted

residuals to develop the multimode kinetics equations in the form of

equations (1. 23). The other is to help set the stage for the next chapter

which will discuss how these equations are to be solved.

As discussed earlier, the application of time synthesis is

made by approximating the flux vector with the expansion given by equa-

tion (1. 19). This approximation is then introduced into equations (1. 20)

and (1. 21). The resulting equations are then premultiplied by a set of

arbitrary, time-independent weight functions [W p(r)] and integrated

over space. If the weighting functions are the neutron importance func-

tions, a reduction is made in the errors arising from the approximate

nature of the spatial trial functions employed.

The result is
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K d

k=1 {v [W ][-L+M-M ]iIk dv} [Tk] + Z f [W ][X ] X.Ci dv

Kk=1
k K {[Wp][]~ [*k dv} [ Tk(t)] p = 1, 2,. . .K (1. 24)

and

k[1 ( I Mj [k] dv [Tk i fv [Wp][xi] C dv

- 1vf[W p][Xi] Ci dv p = 1, 2, . .. K; i =1,2,..I (1. 25)

If equation (1. 19) is applied in a non-collapsed manner, then equa-

tions (1. 24) and (1. 25) represent G X K + G X K X I equations which can

be used to find the G X K unknown Tgk(t)'s and the G X K X I unknown

f dv W (r)X .r, t)'Is.
pg ig i

Equations (1. 24) and (1. 25) may be transformed into the point-

kinetics form in several ways. This flexibility stems from the fact

that in the point-kinetics formulation only ratios like -L and - must be
A A

specified.

Here, the following definitions are made:

P[pk v [W ][-L+M][kI dv

1 ipk v [Wv] M [+kI dv

[A]pk v p I F k[A]pk v W p11v_ 11 k I dv

([A][C ]} = col.{ fv [W ][Xi] Ci dv ... fv [Wk][ Xi][Ci] dv}
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Applying these definitions to equations(1. 29) and (1. 25) yields

d1
T [T] = [A~ [p-p][T] + Z Xj[C (1. 26)

i

d [Ci= [A]-' [pi][T] - k [C I i = 1, 2,.. . I (1. 27)

or, equivalently, equation (1. 23).

Noticing that equation (1. 23) may be written as

d
dt] = [A][W] (1. 28)

leads one to conclude that if the terms of the sub-matrices of equation

(1. 23) are constant over a time step, then the solution to the multimode

kinetics equations in a point-kinetics form over a time step At (=t p+-t )
is

=p+1 exp(At[A]) [ p]. (1. 29)

The next chapter discusses how one might approach solving equa-

tion (1. 26) and the kinds of approaches that one may choose to approxi-

mate equation (1. 29).
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CHAPTER II

A NEW APPROACH TO SOLVING THE

MULTIMODE KINETICS EQUATIONS

The preceding chapter was concerned in part with the development

of the multimode kinetics equations and the casting of these equations

into a point-kinetics form. It is the purpose of this chapter to present

a brief review of the current techniques used in solving such equations

and then to develop a new approach to their solution, based on approxi-

mating the exponential of equation (1. 29).

2. 1 A Review of Techniques for Solving Multimode Kinetics

Equations Which Have Been Cast in a Point-Kinetics

Form

The following discussion of the current methods for solving the

multimode kinetics equations in the form of equation (1. 29) begins with

a consideration of methods of solving the space-independent, point-

kinetics equations themselves. There are at least two good reasons

for taking the time now to do this. First, as was pointed out in Chap-

ter I, the point-kinetics equations in fact represent a specialization of

the multimode kinetics equations produced by treating the entire reactor

as one channel containing a single, time-independent mode. Second,

since it has been demonstrated that the multimode kinetics equations

can indeed be cast as matrix generalizations of the point-kinetics

equations, there is some cause to hope that one might look to the

methodology of solving the space-independent equations in order to

obtain a few clues as to how to go about solving the multimode kinetics
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equations. That this is the case will be demonstrated as the chapter

unfolds.

Because of the difficulty of analytic approaches22, 23 a considerable

number of approximate methods have been devised over the years to

solve the space-independent, point-kinetics equations. Most of these

methods fall into the following six categories:

(1) -methods based essentially on Taylor series expansions 2 4 ' 25

(2) methods based on convolution integrals using numerical inte-

gration
2 6 , 27

(3) methods based on integral equation formulations and approxi-

mation of the integrand
2 8 - 3 1

(4) methods based on some approximation of matrix exponen-

tials32-34

(5) methods based on extrapolation of low-order approximations35

(6) methods based on finite differencing36, 37

Of these methods, only one appears to have been extended to cases

where the parameters of the point-kinetics equations are themselves

square matrices. Generalizing the earlier work of Brittan38 and

Kaganove,28 Fuller, Meneley, and Hetrick39 have successfully em-

ployed the method of undetermined parameters in the temporal inte-

gration of the multimode kinetics equations. This approach stems

from the fact that the matrix equations (1. 26) and (1. 27) may be re-

formed into a single, integral matrix equation by performing the fol-

lowing operations. First, it is noted that the I equations (1. 27) may

be substituted into (1. 26) to eliminate the X A [Ci(t)] term and there-
1=1

by yield:
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d ~Id
$ [T(t)] =[] [p][T(t)] - [C (t)] (2. 1)dt ~.dt i

Secondly, in order to deal with the [C (t)] terms in (2. 1), equa-

tion (1. 27) is formally integrated over the interval tp < t < tp+1 to

yield:

t

t
p

[A]
-I (2. 2)

If one then differentiates (2. 2), the resulting expression,

-a [C (t)] = - [C (t p)] exp [-X (t-t p) + [A]~-'[ (t)] [T(t)]

- ist
t
p

(2.3)

may be substituted into equation (2. 1) to obtain the following matrix,

integral equation:

[ = [A]~1 [ p-P][T(t)] +
I

(2. 4)t+ 
tp
p

The method of undetermined parameters is then applied to the sol-

ution of equation (2. 4) by assuming that, in the time interval tp<t <tp+1

the matrices [T(t)] may be expressed as

[C i(t)] = [Ci (t p)] exp[-x (t-t p)]

[p (t' )] [T(t' )] exp [-X i(t-t' )] dt'

ki[Ci(tp)] exp[-Xi(t-tp)]

[pi(t')][T(t')] exp[-Xi(t-t')] dt'

[A 1[P (t')] [T(t' )] exp [- - (t-t' )] dt' ,
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kk
[T(t)] = k [Akk(t-t (2.5)

k=0

The unknown elements of the vectors [Ak] are then found by substi-

tuting equation (2. 5) into (2.4) and applying the method of weighted resid-

ual to the result. That is to say, the terms of the resulting equation

are multiplied by a set of weighting functions and integrated over the

time interval.

Typically, the application of the weighting functions forces one to require

that the residual vanish at K points (t , . . . tK), all lying within the

time interval. Thus, in stepping out in time from tp to tp+1, K integrals

must be evaluated. In this way K simultaneous, matrix equations are

generated, from which the [Ak] may be found.

The accuracy of this procedure depends both on the degree of the

piecewise matrix polynomial used in equation (2. 5) and on the kind of

weighting functions selected fro the temporal integration. Fuller,

Meneley, and Hetrick39 chose second degree polynomials in an attempt

to balance consistency requirements and calculational effort. In con-

sidering the sensitivity of the result on the choice of weighting functions,

Fuller40 has discussed three possibilities.. Collocation weighting uses

the Dirac delta functions, 6(t-tk); k = 1,... K. Subdomain weighting,

which was used by Brittan38 and Kaganove28 for point kinetics, uses

the unit step functions u(t) - u(t-tk); k = 1,... K. (Here it is suggested

(tp+ -tp)

that a good choice for the subdomains is tk = tp + k- ; k= 1,... K.)

Thirdly, Galerkin weighting uses the trial functions (t-tp ) k; k =

1, . .. K as weighting functions. Of these three choices, Galerkin



42

weighting appears to be the most capable of giving accurate solutions.

2. 2 An Alternate Approach to the Solution of the Multimode

Kinetics Equations - The Approximation of exp(At[A])

Recently a new method of solving the point-kinetics equations was

developed by da N6brega34 which proved to be fast and accurate and

which has the ability to reproduce all the features of space-independent

transients, including the prompt jump. Crucial to the success of this

new method was the development of an analytic technique to inver poly-

nomials of the point-kinetics matrix. This inversion has direct applic-

ability to the Padd approximations for the exponential; and, because of

its success in solving the point-kinetics equations, it forms the basis

for motivating one to consider the extension of the method to solving

the multimode kinetics equations.

The remainder of this chapter deals with this extension. Specifi-

cally, it deals with the application of an analytic inversion to both the

Pad6 (2, 0) and a modified Pad6 (1, 1) approximation to the exponential

of equation (1. 29). It is left to the rest of this section to provide some

insight into these two approximations and to develop more clearly the

motivation behind their selection and use.

Late in the nineteenth century Pad64 realized that any analytic

function

f(x) = a0 + a x + a22 + (2.6)

in the neighborhood of the origin might be approximated utilizing the

now classical analysis tool of rational approximation. Essentially, the
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idea is to express f(x) approximately by

n q(x)

f~x) = ar (x)d (x) p, q
p, q

where n (x) and d (x) are, respectively, polynomials of degree q

and p in x and where it is assumed that d (0) * 0. One then selects

for each pair of positive integers p and q those polynomials np q(x)

and d (x) such that a Taylor series expansion of rp q(x) agrees with

as many terms of (2.6) as possible. The coefficients of the polynomials

n (x) and d (x) are determined from the fact that

d (x) f(x) - n (x) =V( I x I p+q+1) as IxI -+ 0

This equation gives rise to p + q + 1 linear equations from which the

p + q + 1 essential unknown coefficients of r (x) may be found.

43For the function f(x) exp(x), Hummel and Seebeck have found

that a Pad6 (p, q) approximation is composed of

q (p+q-k)! qI kn (x) = z (+x)
pq k=0 (p+q)1 k! (q-k)!

and

p (p+q-k)! p! k
d Pq(x) = Z E (-x)k

pq k=0 (p+q)! k! (p-k)!

A Pad6 (2, 0) approximation for exp(x) is thus given by

exp(x) -
1 - x

1 -x----
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Varga42 notes that the Pad6 rational approximations for exp(x) can

can directly lead one to consider matrix approximations to exp(At[A]).

To see this one merely has to replace formally the x variable by At[A]

and let

exp(At[A]) [d ([A]At)]~ [n ([A]At] E E (At[A]) (2.8)

Thus one is led to the Pad6 (2, 0) and Pad6 (1, 1) approximations of

exp (At[A]). These are, respectively:

E 2 0 (At[A]) E[I] - At[A] + At [A]2 (2.9)

and

E ( At [A]) [I] - [A]] L[I] + [A]] (2.10)

As a final point in the development of these two matrix approxima-

tions, it is noted that over the time interval At, the parameters of the

multimode kinetics matrix [A] may change as the physical properties

of the reactor modeled by (1. 28) change. If one denotes as [A(t p)] the

matrix associated with the reactor at the beginning of the time step

when t = t and refers to the matrix At seconds later as [A(t +At)],
p p

then the requirement imposed when the solution of (1. 28) is expressed

as (1. 29) (i. e., the requirement that [A] be constant over a time step)

may be maintained by assuming that in equation (1. 29) [A] over At is

equal to I [[A(t )] + [A(t + At)]]. In the present work, this assumption
2 P p

is made in the case of the E 2 , 0 (At[A]) approximation.

In the case of the E  1(At[A]) approximation, however, an alter-

native approach is possible. To account for the change in [A] over At,
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one may modify the E (At[A]) approximation in the following way:

1,11

E' ( At [A]) ajI] - [A(t+ At] + (2.11)

Here, E' (At [A) clearly becomes E (At [A] ) for constant [A].

Equations (2. 9) and (2. 11) form the basis in the present work for

approximating the exponential of equation (1. 29). The motivation behind

their selection will unfold in a logical manner as the following discussion

of the properties of E 2 0 (At[A]) and E' (At[A]) develops.
2,0 1 (t[A

The discussion begins with a mathematically precise statement of

the problem at hand (see Richtmyer and Morton 45). For the purposes

of the present work, it is required that one find a one-parameter family

[4(t)] of elements of the Banach space such that the equation

dtdt [ip(t)] = [A(t)] [4(t)] 0 t 4 T (1. 28)

is satisfied. In this initial value problem, t is a real parameter,

[A(t)] is a linear operator whose domain is restricted to the set of all

real numbers, and [+p(O)] $9, where [+9] is a given element of the

9 space which may be used to describe the initial spatial distribution

of the neutron population of the reactor modeled by (1. 28).

A genuine solution to equation (1. 28) is the family of [4i(t)] which

lie in the domain of [A(t)] for each t in the interval 0 < t 4 T and which

satisfy

[ip(t+ At)] -- [ip(t)]
At - [A(t)][+p(t)] +0 as At + 0 t T

(2. 12)
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The following approximation for (1. 28) is now constricted:

[(tp+1= [E(At] [q(t p)]

where, in the present work, [E(At)] may be either E 2 , 0 (At[A]) or

El (At[A]) and At = t - t. Clearly, as At -+ 0, one would likeP+l p

[q(tp+1)]- [P(t )]
the expression At to be an approximation to the time

derivative d [iP(t)]. The implication of this requirment is that, as

At -+ 0, the ratio

[E(At)] [p(t)] - [ (t)]

At

be an approximation, in some sense, to [A(t)] [q(t)]. What is being

considered here in rather loose terms is the topic of consistency (see

Lax and Richtmyer 44). More formally, one may define this concept

in the following way45.

DEFINITION 2. 1. The family [E(At)] of operators provides a consis-

tent approximation for the initial value problem i [+(t)] = [A(t)] [4+(t)]

if, for every [tP(t)] in some class $ of genuine solutions whose initial

elements [$P(O)] are dense in the . space,

[E(At)] - [I]

At - [A(t)] [y(t)] + 0 as At -+ 0

Since [i(t)] has been defined in equation (2. 13) as a genuine solution,

the condition for consistency may be modified by combining (2. 12) with

(2. 13) to obtain

0 < t < T

(2. 13)
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[$p(t+ At)] - [E(At)] [$P(t)]

At 0 as At-O Ot<T

where the quantity under the norm is sometimes called the TRUNCA-

TION ERROR.

Equation (2. 19) poses the condition for consistency in a form which

allows one to examine the consistency of [E(At)] merely by taking a

matrix power series of [E(At)] near t for small At, and then comparing

the expansion to a Taylor series expansion of [q(t+ At)].

To do this, one has first to write the expansion of [$(t+ At)] as

I At 2  At
[$(t+ At)] = [k(t)] + At[(t)] + [()] + "t+2! [31) pt) 2 5

However, since [I(t)] = [A(t)] [q+(t)], equation (2. 15) may be expressed

exactly as

2
[Lp(t+ At)] = { [I] + At[A(t)] + 2! ([A(t)]2 + [A(t)]) + . . .} [(t)]

(2. 16)

providing [A(t)] is analytic. If one substitutes (2. 16) into equation

(2. 14), it should become apparent that the requirement for con-

sistency here is that matrix power series expansion of [E(At)] agree

at least through linear terms with the expansion on the right-hand side

of equation (2. 16).

Clearly, all Pad6 operators of the form E (At[A]) for which

p + q > 0 are by definition consistent approximations for the initial

value problem posed by equation (1. 28). In particular, for small At,

E 2 ,0(At[A]) may be expanded as



48

2
E 2 0 (At[A]) = [I] + At[A] + [A]2 + h. o. t. (2. 17)

For the general case, where [A] is itself a function of time, and the

constant-[A] approximation [A] = [[A(t)] + [A(t+ At)]] is adopted, one

may express the series as

2
E 2 0 (At [A]) = [I] + At[A(t)] + At2[ [A(t) 2] + [A(t)] + h. o. t.

(2. 18)

Comparing (2. 18) with (2. 16), one finds that the approximation

E 2 , 0 (At[A]) is indeed a consistent approximation for the initial value

problem (1. 28).

For the E' (At[A]) approximation, it is observed that for small

enough At:

AtA

ElI (At [A])= [I] + [A(t+)] + [A(t+ At)

+ At2[A(t + At)] [A(t)]

Then, since

+ At 2 [A(t + At)]2 + h. o. t.

2
[A(t+ At)] = [A(t)] + At[(A(t)] + -i-[A(t)] + . ..

write

E' ( At [A]) = [I]
2

+ At [A(t)] + -- [ [A(t)]2 + [A(t)] } + h. o. t.

(2. 19)

which agrees through quadratic terms with the expansion given by (2.16).

one may
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This establishes E' (At[A]) as a consistent approximation to the initial

value problem of (1. 28).

As a final point in this discussion of consistency, it is recalled that

a necessary condition for the existence of the expansion given by (2. 16)

is that the matrix [A(t)] must be analytic. Clearly, this requirement

also holds for the expansions (2. 18) and (2. 19). Thus, in situations

where the elements of the matrix [A(t)] undergo a step change, one must

formally halt the consideration of the problem at that instant and begin

to consider a new initial value problem defined in terms of the proper-

ties of the matrix [A(t)] after the step change.

Given, then, that the two approximations of interest are consistent

approximations, it would be valuable if one could next assume that after

N operations on the initial value function [*0] the discrete solution

[E(At)]N [ *] will approximate the exact solution [LP(N At)] to an even

closer degree as At shrinks in size and larger numbers of operations

are required to "step out" in time to a fixed t. If this occurs, one may

then say that the operator [E(At)] provides a convergent approximation

to the initial value problem.

Unfortunately, it cannot be assumed that E 2, 0 (At [A] ) and E (At [A])

are convergent approximations simply because they are consistent. How-

ever, by using a theorem due to Lax, 4 5 one may establish the conditions

under which the approximations are convergent. Lax's theorem states

that if the initial value problem is properly posed and a finite-difference

approximation to it is made which satisfies the consistency condition,

then stability is the necessary and sufficient condition for convergence.

To show that the initial value problem (1. 28) is properly posed,



50

one must establish that (1) even though a genuine solution may not exist

for some choice of initial element [pI in the M space, it is possible

to approximate this [$ I as closely as one wishes by another [+'] for

which a genuine solution does exist, and that (2) the solution of (1. 28)

depends continuously on the initial data. It will now be assumed that

the first of these two conditions does exist. The second condition will

be met if the operator [A(t)] is bounded, i. e. , if IIA(t)|| < K for 0 < t < T.

The criteria for the boundedness of [A(t)] stems from the definition,

given in Chapter I, of the matrix [A] which appears in [A(t)]. Since [A]

is inverted, care must be taken to avoid using linearly dependent trial

functions in the modal expansion of [(r, t)], thereby making [A] singu-

lar.

If this criteria is met, equation (1. 28) may be said to be properly

posed and the issue of convergence hangs on stability. The concern

here is that there should be some limit on the extent to which any com-

ponent of an initial function can be amplified as one steps out in time

from t = 0 to t = T. Since this numerical procedure involves a sequence

of operations which approach infinity as At approaches zero, the

requirement for stability may be expressed as

DEFINITION 2. 2. An approximation [E(At)] is said to be stable if, for

some T > 0, the oo set of operators

0 < At < T

[E (At)]n
0 nAtsT

is uniformly bounded.
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Varga42 points out that this condition is clearly met if the spectral

radius of [E(At)] is <1 for all t > 0. In some problems, however, it is

possible for a component of the exact solution to grow exponentially.

In such cases (for example, a supercritical reactor) taking the spec-

tral radius of [E(At)I < 1 as a requirement is too stringent; and, in

fact, its use would violate consistency.

Fortunately, a less stringent requirement for stability exists.

Richtmyer and Morton46 point out that if, for some G and some T > 0

JE(At)l 1 + GAt for 0 < At < T (2.20)

then stability is guaranteed, for then ||E(At) 1n < exp(GT), for 0 4

not < T.

For small enough At, it is now clear that both the E2, 0 (At[A])

and E' (At[A]) approximations are stable. To see this, one has only

to recall that either approximation may be written as

[E(At)] = [I] + At [A] + h. o. t.

Obviously, if the elements of [A] are bounded, a sufficiently small At

exists such that

11E(At)I1 =[I] + At[A] + h. o. t.| 1I GAt + 1

The stability of the E 2 0 (At[A]) and El ( At [A]) approximations

is thus assured for small enough At. There remains, however, one

final topic to be considered in this discussion of the properties of these

two approximations. The idea is somewhat akin to that of asymptotic

stability. Stated roughly, it is that in obtaining an approximate solu-

tion, one would like to minimize the influence of those eigenvalues of
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E 2 0 (At[A]) and El (At[A]) which correspond to eigenfunctions that

do not approximate closely a genuine solution of the initial value problem.

The question raised now is not so much what ahppens as At - 0 but,

rather, how accurate are the approximations for economically viable

time step sizes.

To deal with this issue in a more precise way, the following theo-

rem (established by Frobenius in 1878) is introduced: If A , X2' '.'' n

are the characteristic roots, distinct or not, of an n X n matrix [A], and

if G([A]) is any polynomial function of [A], then the characteristic roots

of G([A]) are G(I ), G(X2), . . . G(kn)'

The application of this theorem to the E2, O(At [A]) approximation

is straightforward. By inspection, it is clear that the eigenvalues of

1
E 2, O(At[A]) are given by +At X2 where X . is an eigenvalue

2 Q J1 --AtX.+--k
i 2 i

of [A].

In the case of the E'
1, 1 (At[A]) approximation, however, one is

confronted with the fact that the eigenvalues and eigenvectors of [A(t +At)]

are not the same as those of [A(t P)]. Consequently, one may not, by

inspection, claim that the eigenvalues of E (At[A]) are given by

At
2 i, o

A t
12 i, 1

(2. 22)

where X 0 is an eigenvalue of [A(tp)] and X 1 is an eigenvalue of

[A(t + At)]. Yet, in a qualitative sense, it can be maintained that since

the parameters of [A(t)1 do not change very much over a time step for

computationally realistic choices of At, the eigenvectors associated



53

with [A(tp +At)] are not very different from those associated with [A(t p)].

Given that this perturbation is slight, it then seems reasonable for one

to conclude that within reasonably close bounds the eigenvalues of

E I(At[A]) may be approximated by (2. 22).

These observations enable one to glean at least some qualitative

information about the two approximations, E 2 O(At [A]) and E (At [A]).

First, it seems clear that At must be chosen so that the denominators
1 +At At 2 )ad(I- -!At- i

(i +At + ) and - i do not equal 0. Furthermore,

one may now directly approach the question posed earlier of how to min-

imize the influence of those eigenvalues of E 2 0 (At[A]) and E' (At[A])

which corrupt the approximate solution. To do this, however, one must

obtain some knowledge about the eigenvalue spectrum of the matrix [A(t)].

For the quite stringent case of a symmetric reactivity matrix, [p(t)],

and constant, positive definite matrices [A] and [pi], Porshing4 7 has

analyzed the eigenvalue spectrum of [A(t)] in detail. Unfortunately, this

kind of analysis has not been accomplished as yet for more general situ-

ations.

In lieu of this, one might rely on Porsching's results to gain some

intuitive feeling for the spectrum of [A]. For example, it can be main-

tained that at least one of the eigenvalues of [A] will be large and negative

and that (even though the associated eigenfunction is dying away rapidly)

this eigenvalue will influence the approximation in a detrimental way.

It is then appropriate to turn to the E 2 , 0 (At[A]) approximation to ameli-

orate this situation. If X. and X are two different eigenvalues of [A],

and if |xii D IXO! i >0, then for the E2, 0 (At[A]) approximation
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IE2 0(Atx0 ) > E 2 , 0(At ) . It can consequently be argued that the

influence of that large root on the solution is diminshed, thereby estab-

lishing further the motivation for one's use of E2, 0 (At[A]) as an approx-

imation to the exponential.

The whole series of E (At[A]) approximations, however, suffer

to some extent from the necessity of assuming [A] constant over a time

step. Da Nobrega4 8 has shown that if one uses [A] = [[A(t )] +

[A(t + At)]], the approximation is automatically limited to a global
p

2
error of O(At2). Moreover, this assumption, when used in any of the

E (At[A]) approximations to the exponential, results in the reactor
p, q

model responding to a ramp reactivity insertion by considering it to be

a series of steps, each having its own small prompt jump. This pro-

duces a scalloped effect in the solution; and, in turn, motivates one to

turn to the E' 1 (At[A]) approximation in an effort to handle ramp in-

sertions better. This is really just a modification of the Crank-

Nicholson49 method which may be thought of as imposing the require-

ment that the forward derivative of the solution at t meet the backward
p

derivative of the solution at t + At at a point halfway through the time
p

(t P+ At) - tp
step (at t = 2

Finally, it should be pointed out that, although Porsching 2 9 has

directly applied the use of rational approximations of the Pade type

successfully to the point-kinetics equations, the direct application of

E2 (At[A]) and E' (At[A]) to the multimode kinetics equations

appears quite unattractive since it would require, at each time step,

the inversion of I - At [A] + -t [A]2 or I - t [A(t +At) ]. Here
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[A] may range from order (KX (1+I))2 to order (K X G X (1 + I))2 depend-

ing on whether or not the groups are collapsed. (Again, K = number of

trial functions; G = number of groups; I = number of delayed groups.)

To get around this requirement, one would like to find (generalizing

the work of da Nobrega 34) an analytic inversion for these two matrices.

The remainder of this chapter will describe such a generalization and

apply the result to the E2 0 (At[A]) and El ( At[A]) approximations.

2. 3 Development of an Analytic Inversion of [ [I] - 6 [A]]

Before attempting to find an analytic inversion for [I] - At [A] + At [A) 2]

and [I] - At [A(t +At)]j, it should be noted that both matrices really involve

inversions of a matrix of the form [[I] - 5[A]], where 6 is some number

(possibly complex). This is obvious in the case of [[I] - At [A(t +At)]]; but it

is also true for [I] - At[A] +At [A]2 since this matrix may be factored

into [[I] - T[A]][ [I] - 6[A]])~ = [[I] - 6[A] ][[I] - I[A]] , where 6
At - At

2 (1-i) and 6 2 - (1+i). This section, then, is concerned with in-

verting [[I] - 6[A]] where [A] is a matrix of the form given by equa-

tion (1. 28) and 5 is a constant, either real or imaginary.

This inversion may be obtained in a straightforward manner by

considering the matrix [A] with I delayed neutron groups. In this case,

[ [I) - 6[A] I may be written as



[[I] - S[A]]=

[I] - 6[A]~ [p-p]

-S6[ 4]

- 6[ y]

(2. 23)

where

The (I+1) X (I+1) unknown matrix elements of [[I] - 6[A]]I 

by using the general rule of partitioned matrices to solve

[I].
[I] - 8[A] ~ [[I] - 5[A] ]=[[I] - 5[A]] [I] - 5[A] ]

L 0

may be found

0

[I]]

(2. 24)

Equation (2. 24) represents (I+1) X (I+1) matrix equations in (I+1) X

(I+1) matrix unknowns. The unknown matrices may then be determined.

The result, which can be verified by substitution, can be written

as

[I]

1

E + X ]

1

E + E +1+
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-X [ii]

(1+6X.)[I]

-kX[I]

0

0
(1+6XI)[I]

[I-SA]-1 _=g



0 0

E

E 1 0

0 E
E +

where

[Y- 1]

0

0

[y]i

[I I[y]~1 = [I-[A] +1 1L-yr, E 1

If one then makes the following definitions:

[u] = col.

[V]T {[i]

[D] =

{[-I- E+X1

+ W I... E + X I

0

E

E +

E
C +

+

57

(2.25)

[T]

and

1

-1

E +X

}

0 (2.26)

I,

0



58

equation (2. 25) may be written as

[ [I] - S[A] ]~ = [U] [V]T -1] + [D]

Thus, providing [y] exists, an analytic inversion of the matrix

[I] - 5]A] ]~ does exist and is given by (2. 27). What must now be done

is to apply this inversion to the problem at hand, namely the solution of

Ip+1] = E 2, 0 (At [A] )[Lp] and [p1] = E 1(At[A])[%p].

It is the purpose of the next two sections to accomplish this task.

2. 4 Application of the Analytic Inversion to

p+ I= E 2, 0(At [A])[pI

This section begins with the substitution of equation (2. 27) into

E 2, 0(At [A]) = [[I] - 6[A] 1 [[I] - I[A]]~.

In this way, it is discovered that

E 2, 0 (At [A]) = [UI[V]T ] [V]T [Y-1] + [D] [D]

T 1 (.8+ [U][V] [-y][j] + [D][U][V] ] [2.28)

where the bars denote complex conjugates of the matrices defined by

(2. 26).

In spite of the emergence of complex constants in (2. 28) it should

be clear that E 2 0 (At[A]) is real, since E2, 0 (At [A]) = L[I] -At [A] +
-1

At 22 and [A] is real. This leads one to note that if the right-

(2. 27)

[A] 1
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hand side of (2. 28) may be factored into its real and imaginary parts,

yielding

E 2 0 (At[Aj) = [REAL] + [IMAG] (2.29)

it then follows that the imaginary part, [IMAG], must equal the null

matrix [0]. One is thus motivated to reform (2. 28) into (2. 29) and

thereby eliminate the imaginary part of the matrix.

At this point, the following definitions are introduced:

[D] 2 [D1 ] + i[D 2 ]

[U] [Ul] - i[U 2]

V TV] i[V 2]

[-y-] 2 [[a]+[b]i]

(2. 30)

[a] 2[I - AtX )[b][A]- [p] + ZAtP (+

[b] M[ [A]~' [p] -
2i

and

1

(1+ AtX)2 + 1

Using these definitions, equation (2. 28) may now be expanded to

yield the following:

where

AtP [lLi ]
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E 2 ,0(At[A]) [U1 ] [v,]T -y [u 1 ][v]T [V-

+ i[u 1][vi]T [y] [u ][v 2] T2 1

+ i[UI][v,] [v - [U 21[v1] [T

- [U]v v] [v- [U2] V 2 1 T@1

- i[U 1 ][\v21 [ [ u1] [Vlul Ei -

+ U T [I1 [U T -- 1[u11 2] 1 [ ][v21  [Y1

[Uv2T 1Y 2 -1

+ i[U 1 ][v 2T [yE IU 21Iv2] 1

- i[U 2][V1] [Y] - ul ][v1] I

+ [U 2 1]T Y1 lu1] [v 2 ] T@-1

+ [U 2] [Vi Y1 [U 2] Evi] T[ ]l

+ i [U 2 ][v2]T [Y' [U2] [V2] [yE1

- [u 2] [VT2] T y]- [ul] Evi 1 1 [y I

- ~u2][V1T []-1[u 21 T I-1
- i[u 2] [V2 ] [Y [U 1 [v 2 [ 1

+ U ][V1T ly-1 IulV]T 1-1'
- i[u 2 ][ 2 1 2 vi [ 2 [ 1 ] [yE

[U 2 ] v2 T 1 T

+{[n][i]}+[u 2][v] [vE '}
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- i[U 1 ] [V 2 T [y-1 [Dl - i[U 2] [V1 T [-y1 -'D

- [U 2] [V2 T [-1l [DI}+{[D][U [V, T  -1

+ i[DI[U ][V2 T [-1 + i[D T[U2 [ T -1

- [D][U2 1V 2 ] ~ [Y 1 } (2.31)

The motivation for eliminating the imaginary parts of E 2,0(At [A])

is now stronger than ever. To do this, however, requires that the

imaginary and real parts of equation (2. 20) be segregated. Accordingly,

the matrices [ZI and [E] are defined in the following way: If one

writes

[y]~ = [[a]+i[b]]~ = [z] + i[e]

it can be shown that [el = [ab~Ia+b]~ and [z] = [b~1ae] = [ba~'b+a]~.

(The proof is given in Appendix I.) [Z] is then defined as

I ZI]

and [El is defined as

DYi 0:
Finally, if [M ][U ][V.]T and [LI [D][D], then equation (2. 31)

may be written in the form of (2. 29), where



[I]'dZ 0

0 [0]

[] + f{[H~~] ZV -[Z] [ ZIA + [Z] ["V ] + [q] [
1
I]u

{Iz][ (I] + [ i[
T
]q ] + [a] Z JI ] + [,q][z[1I'+ ]- [ IIi] -

[,q] jAr] -[z] ["IV~] + [Z] [Z'IN] + [a][1 Ifl +

[Z]ATZ] + [a] [TZIA + [z] [Z w] + [Z] [TI/w] + r~U

[':II [Z][ZZV]+ [q][T"1A] + [] ['] + [Z][ 'IA]-} +

(~~) [] [Z';I] +[Zr] ["T] + [Z ["VV] + [] [IAI]}['C] +

Ia Zi -z [Izw + z [z w] +[a 1lq

['a] [a][yvN + [a][T JA] + [a][ TAq] + Z ql

{[a] [Zzlq] -[z][Tlzlq] + [7[Izi z ] + [a] ["ITAI]} [OVATI]
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In verifying that [IMAG] = 0, two identities arise. (The proof of

this is given in Appendix II.) Their existence stems from the way in

which [z] and [e] were defined, and the fact that [z] = [-e] + Lb]I [el -

zAt 2 P [bp] [] [e]. The identities are
i=1

[z]i[e] - [e][z] - M At 2 P X[[e][p ][z]
i= 1

- [z] [i] [e]] =o (2. 34)

and

[e] 2 + [Z 2 + z A t

+ [z] [p] [z]] [e] + [z] (2.35)

Although the identities (2. 34) and (2. 35) may indeed be used to

verify that [IMAG] = [0], their real importance here lies in their use in

the restructuring of [REAL] into a more tractable form. The result

of doing this (see Appendix III) is that the matrix [REAL] may be writ-

ten as

[REAL] = [A] + [[U1][vi]T - [U 2 1 [V2 T ][[Z] + [E]]

+ [[U] [V2 ]T + [U2 [v] T ][ [Z-E]] (2. 36)

And, since [IMAG] = [0], one finds that
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[kp+li = ([A] + [ [ul [V]T - [U 2 [v 2 ] T[[Z] + [El]

+ [ [ul[V 2 T+[U2] [ 1 l T ][[Z] - [El]} [* ] (2.37)

For the point-kinetics case, equation (2. 37) is identical with the result

given by N6brega. 3 4

Two final comments should be made concerning the result, given

by (2. 37), of applying the analytic inversion developed in the previous

section to the equation [ =p+1 -- E2, 0 (At[A])[*Pp 1. First, for changes in

Ta (the poison capture cross section) only the block diagonal matrices

[Z] and [E] change over At since only these matrices contain the reac-

tivity matrix [pl. Therefore, for transients for which the sole change

is in Z a, only these matrices must be recomputed at each time step.

The result is a substantial savings in computation time over the amount

of work which would have been required in using [REAL] as expressed

in equation (2. 33). Second, although at each time step two matrices

must be inverted, the matrices are quite small. The inversions occur

when [Z] and [E] are generated and involve the inversion of [b] and

[ab~ a+b]. If the number of trial functions in the modal approximation

is K and G energy groups are considered, then the maximum size of

these matrices is (G X K) X (G X K). For a fully collapsed approach,

their size is (K) X (K).

2. 5 Application of the Analytic Inversion to [+P 1

E' (At[A])[$ Ipt1 p

The application of the analytic inversion of [[I] - 6[A]] applies in

a straightforward way to the E' (At[A]) approximation. Since
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E' (At [Al) = [I] - [tt + [A(t t] [A(t )] , one may substitute

equation (2. 25), with = , directly into E' (At[A]) and obtain

E (At[A])= [{[U][VT} -11 + [D] ] [I] + [A(t)]

[M1 [I] + [A (t)] (2.38)

where the elements of [M1] are defined by equation (2. 26) and contain

those properties associated with the matrix [A] at the end of the time

step.

Applying equation (2. 38) to the matrix equation [ P 1 ] =

E' (At[A])[p], yields
1,1 p

[IP+1 = [{ [U [V] T -1 ] + [D] ] + A[A(t) (2.39)

Again, it should be noted that for transients for which the sole

change is in Z a, only the block diagonal matrix [ I] changes over a

time step. Here, the situation is even simpler than for the E 2 , 0 (At[A])

approximation. At each time step only one inversion must be made of

a matrix whose size is either (G X K) X (G X K) for an uncollapsed

treatment or (K) X (K) for a collapsed treatment (G number of groups;

K number of trial functions).

In the past three sections, a generalization has been made of an
34~

analytic inversion technique, developed by da Nobrega for the point-

kinetics matrix. It should now be clear that this generalization may be

applied to the multimode kinetics equations when these equations are

placed in a point-kinetics form. Specifically, this technique has been
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applied successfully to two consistent and stable approximations to

the exponential, exp (At[AI). Finally, the results of this application

have been used to generate the [$p+1] vector of equations (1. 29) from

[ thus "stepping out in time" from tp to tp+1. In the next chapter,

several numerical studies will be presented which are intended to dem-

onstrate the efficiency of this new approach (exemplified by equations

(2. 37 and (2. 39)) whenused to solve the multimode kinetics equations.
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CHAPTER III

NUMERICAL RESULTS

In Chapter I, a set of multimode kinetics equations were developed

in a point-kinetics form by the application of time synthesis to the time-

dependent, multigroup diffusion equations. In Chapter II, it was then

observed that one may solve these equations by using a temporal inte-

gration technique which utilizes the method of undetermined parameters.

Alternatively, however, it was also found that one may approach the

solution of these equations by generalizing the space-independent, point-

kinetics work of da NE'brega.39 This new approach, which involves the

application of nonanalytic inversion of the matrix [ [I] - 5[A] ] to

"ratios" of matrix polynomials, was applied to the E2, 0 (At[A]) and

El (At [A] ) approximations to the exponential, exp(At [A]), of equa-

tion (1. 29), and the results of that application were presented in equa-

tions (2. 37) and (2. 39). It is the purpose of the present chapter to

investigate the efficiency of these results by considering several numer-

ical examples.

To perform this investigation, two one-dimensional slab reactor

models were studied. Both reactors were described by multimodal

kinetics equations which had been derived by the application of time

synthesis in a fully collapsed manner, using two trial functions. Thus,

in these studies, the neutron flux was approximated by

[CI(x, t)] = [+P(x)I T,(t) + [$2(x)] T 2 (t) (3. 1)

where the vectors [+(x)] and LP2 (x)] were predetermined trial functions
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and the scalars T (t) and T 2 (t) were unknown amplitude functions.

For both slab reactors, the two trial functions were selected so

as to "bracket" the transient being considered. To do this, the first

trial function was picked to correspond to the initial value of the prob-

lem at hand (i. e., the steady-state neutron flux distribution of the un-

perturbed reactor). The second trial function then corresponds to the

steady-state flux distribution of a pseudo-critical, perturbed reactor.

This trial function was found for each transient by adjusting the number

of neutrons produced per fission in order to make critical the material

composition associated with the reactor at the end of the transient.

Also, for each slab, the weighting functions used were tne adjoint

functions calculated from the transpose of the operators associated

with the two trial functions. Botn the trial functions and the adjoints

were calculated using a computer program, DIFFUSE, which was

written principally by William Reed. 50

The first reactor considered has the same dimension and critical

composition as the reactor considered by Fuller, Meneley, and

Hetrick. 39 Furthermore, the analysis of this reactor paralleled the

numerical work of these authors in that the neutronics of the reactor

were described with one neutron energy group and one precursor group.

Three different reactivity insertions were analyzed for this slab

reactor: a large negative step insertion, a positive ramp insertion

that became prompt critical, and a sub-prompt critical, positive step

insertion. The spatial neutron distribution following each of these

insertions was predicted as a function of time by both the temporal

integration method presented by Fuller, Meneley, and Hetrick 3 9 and
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by the new method that is the thrust of the present work.

Four computer programs were used to perform and double-check

this analysis. The first, MITIM-E(2, 0), is a computer code based on

the algorithm of equation (2. 37). The second, MITIM-E'(1, 1), is a

code based on the algorithm of equation (2. 39). (Both MITIM-E(2, 0)

and MITIM-E'(1, 1) are described in Appendix IV.) The third program,

MOVER, was adopted directly from an advancement subroutine written

by E. L. Fuller 51 which utilizes the method of undetermined parameters

in a temporal integration. Second degree, piecewise polynomials and

subdomain weighting were used in the time integration. Finally, the

fourth computer program, SPATKIN, acted as an independent check of

the solutions for the multimode kinetics equations obtained by MITIM-

E(2, 0), MITIM-E'(1, 1), and by MOVER. This program was developed

by da N6brega52 and utilizes the e-method to predict accurately the

spatial distribution of the neutron population as a function of time.

The second slab reactor considered was described by a model

composed of two neutron energy groups and six precursor groups. A

positive ramp insertion was analyzed using MITIM-E(2, 0) and MITIM-

E'(1, 1) and the results were compared to those obtained from GAKIN,

a direct, one-dimensional, multigroup kinetics code developed by K. F.

Hansen and S. R. Johnson. 5 3

The remainder of this chapter is a presentation of the results of

these numerical studies. In section 3. 1, the analysis of the first reac-

tor is presented; the analysis of the second follows in section 3. 2.
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3. 1 Reactor Number One - One-Group Results

The first reactor considered was a 240-cm slab with the critical

parameters given in Table 111-1. The mesh spacing, Ax, is 4. 0 cm.

It was noted previously that the reactor was modeled with one pre-

cursor group. The delayed neutron fraction, P, was taken as 0. 0064

and the precursor decay constant, X, as 0. 08 sec~

Case 1: Large Negative Reactivity Insertion

The first of the three transients analyzed in this section was initi-

ated by the sudden insertion of a neutron absorber into Region III of the

slab reactor. This insertion amounts to a step change in the macro-

scopic absorption cross section, Z a, in Region III from Za = 0. 194962

cm~ to 0.021 cm~ .

Figure III-1 presents the trial and weight functions selected to

bracket this transient. The amplitudes associated with the two trial

functions are then separated at various times during the transient in

Table 111-2. These results are given for various selections of At, the

size of the time step selected.

In Table 111-2, the predictions of MITIM-E(2, 0) and MITIM-E'(1, 1)

are compared to those of two versions of MOVER. MOVER-I selects

its own time step by requiring that the rate of growth of the amplitude

functions be within a predetermined limit specified by the selection of

a parameter, E. MOVER-II, on the other hand, requires the user

to select a priori the size of At. As a consequence of this requirement,

MOVER-II provides greater utility than MOVER-I in comparing the
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Table 111-2. Comparison of Amplitude Functions

MOVER I MOVER II MITIM-E(2, 0) MITIM-EI(1, 1)

Time E = 104 E = 10-3 At = 10-3 At = 10- 2  At = 10-3 At = 10- 2  At = 10-3 At = 10-2

T 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0

T 2  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T .0373 .0373 .0378 - .0385 - .0263 -

.003
T2 .5696 .5700 .5690 - .5715 - .5784 -

T1  .0380 .0380 .0381 .6976 .0380 .0397 .0382 -. 811

.01
T2 .3627 .3627 .3624 -. 2685 .3637 .4013 .3619 1.03

T .0381 .0381 .0381 .3471 .0381 .0381 .0381 -. 6212

.03
T2 .3341 .3391 .3390 .0334 .3391 .3397 .3391 .983

T .0379 .0379 .0378 .0607 .0376 .0380 .0378 .3094

. 10
T2 .3379 .3379 .3380 .3153 .3379 .3379 .3379 .069

took 44 time steps to get to t = . 002934 sec

took 19 time steps to get to t = . 003098 sec
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efficiency of the method in that it enables one to observe how the method

fares under various choices of At, the size of the time step.

Finally, the results given in Table 111-2 for MOVER-I were obtained

for two values of epsilon. In order to compare these results easily with

those of the other codes, the amplitude functions predicted by MOVER-I

were linearly interpolated to correspond to the times shown.

When one considers the results of Table 111-2, at least two obser-

vations may be made immediately. First, the rather qualitative moti-

vation given in Chapter II for using the E 2 , 0 (At [A]) approximation

appears justified. The step insertion of a large amount of negative

reactivity served in this case as a test of the ability of each method to

deal with troublesome, large, negative eigenvalues of the matrix [A].

Table 111-2 shows that the E2, O(At[A]) approximation, acting as the

basis for MITIM-E(2, 0), responded favorably to the test, for it shows

that this approximation was more able to yield accurate predictions of

the amplitude functions with larger time steps than the approximations

on which MITIM-E'(1, 1) and MOVER-II were based.

The second observation concerns MOVER-I. For both values of

epsilon, accurate results were obtained. However, as noted in

Table 111-2, a substantial number of time steps were required early

in the transient. Since MOVER-II was able to produce adequate results

with a much smaller number of time steps, it would seem that, at least

in this case, the self-selection of time steps is an expensive alternate

to using one's knowledge about the transient to select, a priori, the size

of At.
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As a check on the accuracy of the time synthesis approximation and

the multimode approach, Table 111-3 compares the magnitude of the flux

predicted by SPATKIN at t = . I sec at various mesh points across the

reactor to the magnitude of the flux predicted at t = . 1 sec by recombining

the amplitude functions .0378 and . 3379 with their respective trial func-

tions. Table 111-2 and Table 111-3 show that these are the amplitude

functions predicted at t = . 1 sec by MOVER-I and, for a sufficiently

small time step, by MOVER-II, MITIM-E(2, 0) and by MITIM-E'(1, 1)

as well.

It appears that the multimode kinetics approximation adequately de-

scribes the transient for this case.

Case 2: A Super Prompt Critical Ramp Insertion of Reactivity

The second transient considered resulted from the ramp insertion

of well over a dollar of positive reactivity in the course of a second.

For this perturbation, Z in Region III changed from 0. 19 4 9 t 2 cm~ to

.018b001 cm~ in one second.

Figure 111-2 shows the two trial and weight functions selected to

bracket the transient. The amplitude functions, TI(t) and T 2 (t) are then

found at various times in Table 111-4, where the predictions of MITIM-

E(2,0), MITIM-E'(1, 1) and of MOVER-II are presented at various times

during the ramp for various choices of At, the size of the time step.

The results presented in Table 111-4 indicate first that the

E' (At[A]) approximation is more capable of handling this ramp

reactivity insertion than the E2, 0 (At[A]) approximation. In fact, the

results from MITIM-E(2, 0) indicate that the virtue of the E 2 , 0 (At[A])



Table 111-3.

Comparison with e-Method

Mesh Point #24 Mesh Point #32 Mesh Point #41
*

Time Method Magnitude (% error) Magnitude (% error) Magnitude (% error)
(sec)

a 1.160 (0.0) 1.137 (0.0) 1.163 (0.0)

0.0

b 1.160 (0.0) 1.157 (0.0) 1.163 (0.0)

a .399 (.99) .331 (.915) .433 (.46)

0. 1

b .403 (0.0) .328 (0.0) .435 (0.0)

SPA TKIN-MODAL
SPATKIN

a = multimode kinetics b = 0-methoderror

-'I
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Table 111-4. Comparison of Amplitude Functions

MITIM-
MOVER II E(2, 0) MITIM-E'(1, 1)

Time

At=10-3 At=10-2 At=5X10-2 At=10-3 At=10-3  At=10-2 At=5X10-2

Ti 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0

T2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T 1 1.027 .9903 1.047 1.027 1.027 1.032 1.0514

0. 1
T2 .1289 .01789 .1088 .1286 .1289 .1239 .1062

T 1.2472 1.2468 1.2601 1.248 1.2473 1.248 1.268

0. 3
T2 .5258 .5262 .51219 .5252 .5257 .5255 .5649

3 3 3 3 34
T .158 X10 .1585X10 .1596X10 3  .0171 .1582X10 .1662X10 -.320 X10 4

0.8
3 3 3 3 35

T2 .682 X1O .6837X10 .6615X10 3  .0346 .6821 X10 .7163X10 -. 1385X10 5

T -. 1135X108  -. 1117X10 8  -.1982X106  .5608 -.1142X108  2369X108  .5583X103

1.0

T 2 .4337X10 .4327X10 .1526X10 8  .1766X102  .4364X10 9  .9018X1 -. 6997X10
T2 .43l71 9 .371 9 91X0

-4
00
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approximation, namely, its ability to reduce properly the influence on

the solution of large negative eigenvalues of [A(t)], becomes a vice

when the reactor goes supercritical, since then it damps the physically

important effect of the large positive eigenvalue equally well.

Table 111-4 also seems to indicate that MOVER-II is a little better

than MITIM-E'(1, 1) in handling this transient. Before reaching this

conclusion, however, it is important to note that a comparison of run-

ning times on the IBM 370 model 155 reveals tnat for this problem

MITIM-E'(1, 1) takes less than half as long per time step as MOVER-IL.

Although this is clearly not a conclusive argument, it does indicate

that if one is concerned with comparing accuracy for the same amount

of computational effort, the two approaches are roughly equal in their

ability to handle this particular transient.

Again, the results were compared to those of SPATKIN as a check

on the accuracy of the time synthesis approximation and the multimode

approach. Table 111-5 compares the magnitude of the flux predicted by

SPATKIN at t = . 3 and 1.0 sec at various mesh points across the slab

to the magnitudes found by using T (. 3) = 1. 247 and T 2(. 3) = . 526 at

t = 0. 3 seconds, and by using T(1. 0) = .114 X 108 and T 2 (1. 0) = .436 X

109 at t = 1. 0 seconds. As in the first problem considered, adequate

accuracy was obtained with the multimode approximation.

Case 3: A Step Insertion of Reactivity Less than Prompt Critical

The last transient considered for this slab reactor was initiated by

the step insertion of about 2/3 of a dollar of positive reactivity. This

perturbation was produced by changing Fa in Region III abruptly from



Table 111-5.

Comparison with 0-Method

Mesh Point #24 Mesh Point #32 Mesh Point #41

Method Magnitude

a

b

a

b

1.160

1.160

2.094

2.090

a 52. 43 X 10 7

1.0

b 47.0 X 10 7

(% error)*

(0.0)

(0.0)

(.192)

(0.0)

(11. 5)

(0.0)

Magnitude

1.157

1.157

2. 168

2.189

60. 0 5 X 10

53. 84'X 10 7

(% error)

(0.0)

(0.0)

(.92)

(0.0)

(11. 5)

(0.0)

Magnitude

1.163

1.163

2. 1

2.05

48. 64 X 10

43. 47 X10

(% error)

(0.0)

(0.0)

(.244)

(0.0)

(9.6)

(0.0)

* r SPATKIN-MODAL% error- =SPATKIN a = multimode kinetics b = 0-method

Time
(sec)

0.0

0.3
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0. 194962 to 0. 190472 at t = 0

Figure 111-3 shows the two trial and weight functions used in equa-

tion (3. 1). The amplitude functions TI(t) and T 2 (t) are given in

Table 111-6 at various times from t = 0 to t = 1. 0 seconds. As in the

preceding example, Table 111-6 presents the predictions from MITIM-

E(2, 0), MITIM-E'(1, 1) and MOVER-II for different choices of At. These

results clearly show the superiority of E 2 , 0 (At[A]) approximation in

handling this step reactivity insertion. Even with At = . 5 seconds,

MITIM-E(2, 0) provided excellent results.

Finally, the SPATKIN results are presented at t = . 5 and t = 1. 0

in Table 111-7, along with the results produced from the amplitude func-

tions T 1 (. 5) = -. 174 and T 2 (. 5) = 3. 796 at t = . 5 seconds and T (1. 0) =

-.1999 and T 2 (1.0) = 4. 173 at t = 1. 0 seconds. As in the preceding

examples, the multimode approximation produced sufficiently accurate

results with two trial functions.

3.2 Reactor Number Two - Two-Group Results

The second slab reactor studied here was another 240-cm slab

with the critical parameters given in Table 111-8. The size of the mesh

spacing was 2. 5 cm.

This reactor consists of six precursor groups. The relevant infor-

mation about these groups is given in Table 111-9.

The transient studied for this reactor was a positive ramp, induced

2
by linearly decreasing a in Region I by 1% in 1 second. Figures 111-4a

and 111-5 show the trial and weight functions used to synthesize the flux

via equation (3. 1).
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Table 111-6. Comparison of Amplitude Functions

MOVER II MITIM-E(2, 0) MITIM-E'(1, 1)

Time -At=10-2 At= 10 At=.25 At=10 2 At= 10 At=.25 At=.5 At - 10 -2 -t**10 At= .25

T 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0

T 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T -. 1521 -. 1335 .8082 - -. 1535 -. 1447 - - .0217 -1. 191 -

0.1
T2 3.450 3.438 2.387 - 3.458 3.312 - - 3.289 5.254 -

T 0 -. 1738 -. 1601 .6055 ..8006 -. 1735 -. 1754 -.1753 -.1746 -.1752 -1.098 .8786

0. 5
T2 3.794 3.777 3.006 2.639 3.796 3.796 3.795 3.783 3.796 4.723 1.773

Ti -.1984 -.1848 .4140 .7267 -.1999 -.1999 -.1999 -.1999 -.1999 .6453 .8045

1.0
T2 4.171 4.154 4.140 3.217 4.173 4.173 4.172 4.171 4.173 3.329 2.761

003



SPATKIN-MODAL
SPATKIN a = multimode kinetics b = 9-method

SPATK00
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Table 111-8.

Parameters for Criticality

Parameter

(units)

D (cm)

D2 (cm)

vEf (cm~ 1

V E 2 (cm I
a

Region I

(0-40 cm)

1.5

0. 5

.01677548

.3355096

Region II

(40-200 cm)

.1.0

0. 5

.0083774

.166077252

Region III

(200-240 cm)

1.5

0. 5

.01677548

.3355096

1 (cm~4)a

Z2(cm~ I)
a

(cm~)

1x

2
xP

v1 (cm/sec)

v
2

(cm/sec)

1.0 X 10 7

3.0 X 105

1.0 X 10 7

3. 0 X 105

1.0 X 10

3.0 X 105

In the above table, Eg is the sum of the macroscopic fission anda
capture cross sections.

.026

.18

.015

.020

.08

.01

.026

.18

.015

1.0

0.0

1.0

0.0

1.0

0.0
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Table 111-9.

Delayed Neutron Parameters

Fractional Yield Fractional Yield Decay
Delayed into into

Group Neutron Group 1 Neutron Group 2 Constant (sec )

1 2. 5 X 10~ 4  0.0 1. 24 X 10- 2

2 1.69 X 10-3 0.0 3.05 X 10- 2

3 1. 47 X 10 -3 0.0 1. 11 X 101

4 2. 96 X 10 -3 0.0 3.01 X 101

5 8. 60 X 10~ 4  0.0 1.14

6 3. 20 X 10~4 0.0 3.01
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Table III-10 then shows the predictions of T 1 (t) and T 2 (t) made by

MITIM-E(2, 0) and by MITIM-E 1 (1, 1) during the course of the transient

for different values of At. Again, the E' (At[AI) approximation proved

to be better than the E 2 , 0(AtLAI) approximation in handling ramp inser-

tions.

The flux shapes found by recombining the trial and amplitude func-

tions are then compared in Table 111-11 to those predicted by GAKIN.

These comparisons are made at t = .5 and t = 1. 0 seconds at various

mesh points with the amplitude functions T 1 (. 5) = 0. 342 and T 2 (.5) =

.8'3 at t = .5 seconds and T (1. 0) = -. 1391 and T 2 (1. 0) = 3. 187 at t =

1. 0 seconds. A comparison of these results indicates that the multi-

mode approximation, fully collapsed with only two trial functions,

yielded quite satisfactory results.

In this chapter, the results of four numerical studies with two slab

reactors have been presented. The next chapter contains the important

conclusions to be drawn from these results and ends with some recom-

mendations for future work.



Table III-10. Comparison of Amplitude Functions

MITIM-E(2, 0) MITIM-E'(1, 1)
Time1

At=.0025 At=10-2 At=10~1  At=.5 At=.0025 At=10-2 At=10 At=.5

T 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0

T2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.2 T .7933 .8083 .8447 .7927 .7927 .7968

T2 .2722 .2523 .2043 .2729 .2729 .2693

0.5 T1  .3428 .3479 .4212 .7042 .3421 .3421 .3386 .3328

T2 .8724 .8659 .7961 .3937 .8734 .8734 .8766 .8840

0.8 -. 4482 -. 4401 -. 3134 -. 4493 -. 4493 -. 4473

T2 1.929 1.918 1.751 1.930 1.930 1.929

1.0 T1  -1.374 -1.3773 -1.1743 -. 4292 -1.391 -1.391 -1.391 -1.437

T2 3.064 3.170 2.902 1.913 3.187 3. 187 3.188 3.254

Here, MITIM-E(2, 0) apparently predicted T 2 with more accuracy using a At of 10 than it did using
At= .0025. This is thought to be due to the fact that differences are being taken between small numbers
which are being multiplied by At. Thus, if At gets too small, roundoff error becomes a problem.

0



Table 111-11. Comparison with GAKIN Method

Mesh Point #8 Mesh Point #40 Mesh Point #56 Mesh Point #91

Time Method Magnitude (% error) Magnitude (% error) Magnitude (% error) Magnitude (% error)
(sec)

a 1.8368 (0.0) .5760 (0.0) .5379 (0.0) 1.628 (0.0)
0.0

.b 1.8368 (0.0) .5760 (0.0) .5379 (0.0) 1.628 (0.0)

a 2.597 (4.17) .7121 (1.34) .5846 (1.62) 1.6684 (2.17)
F- 0.5

b 2.493 (0.0) .7027 (0.0) .5753 (0.0) 1.6329 (0.0)
0

a 4.629 (3.68) 1.091 (7.0) .7139 (2.3) 1.7919 (.35)
1.0

b 4.805 (0.0) 1.1732 (0.0) .7287 (0.0) 1.7314 (0.0)

a .1521 (0.0) .07234 (0.0) .06755 (0.0) .1348 (0.0)
0.0

b .1521 (0.0) .07234 (0.0) .06755 (0.0) .1348 (0.0)

a .2166 (4.5) .08947 (1.4) .0734 (1.52) .1381 (2.14)0.5
b .2072 (0.0) .0882 (0.0) .0723 (0.0) .1352 (0.0)

0

a .3891 (3.1) .1356 (7.9) .0897 (1.97) .14833 (3.43)
1.0

b .4016 (0.0) .1473 (0.0) .0915 (0.0) .1434 (0.0)

GAKIN-MODAL
GAKIN

a = multimode kinetics b = GAKIN methodo error
-'
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

In Chapter III, numerical results were presented for four problems

which were designed to test the efficiency of the E 2 , 0 (At[A]) and

E' (At[A]) approximations described in Chapter II. In the following

section of the present chapter an attempt is made to present a few con-

clusions gleaned from the numerical results of the previous chapter.

Section 4. 2 then recommends several topics worthy of future consider-

ation.

4. 1 Conclusions

The first conclusion that one should make from the results of Chap-

ter III is that the E2 0 (At[A]) and E' (At[A]) approximations behaved

in such a manner as to justify the theoretical motivation behind their

selection. For the step reactivity insertions, the E 2 , 0 (At [A]) approx-

imation proved more suited than the E' (At[A]) in effectively damping

out the influence of those large negative eigenvalues of [A]. (Unfortu-

nately, this same characteristic made the approximation grossly under-

estimate the growth of a prompt-critical reactor.) Also, as expected,

the E' J(At[A]) approximation proved superior in describing ramp-

induced transients.

In addition, one may state at least two other conclusions regarding

the successful generalization of da Nobrega's work in point kinetics 3 4

to attack the multimode kinetics equations considered by Fuller, Meneley,

39and Hetrick. First, it should be noted that in all the problems
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considered adequate agreement was obtained between the predictions of

the multimodal approximations and an independent method. More than

this, however, the E2 0 (At[A]) and El (At[A]) approximations seemed

to be at least roughly equal to, and usually better than, the temporal

integration approach taken by Fuller, Meneley, and Hetrick.39 Only in

the second transient considered did the temporal integration approach

appear at first glance to be somewhat better than the other two approach-

es. In more complicated models, however, the efficiency of the

E 2 0 (At[A]) and E' (At[A]) approximations vis a vis the approach
39taken by Fuller, Meneley, and Hetrick may increase since an increase

in the number of precursors considered will necessitate an increase in

the number of integrals and exponentials taken in the temporal integra-

tion procedure.

Secondly, the success of the new approach investigated stemmed

not only from the characteristics of the Pad6 approximations employed,

but in large part from the manner in which the E2 0 (At[A]) and

El (At [A]) approximations were applied to the solution of the multi-

mode kinetics equations. As a consequence of the way in which this

was done, one need only invert a relatively small matrix (at most of

2order (G X K) , where G number of groups and K number of trial

functions) to step out from tp to t p+1 Thus the application produced,

in each case, an advancement matrix with the capability of generating

quite cheaply the vector [Ip+]L in terms of the vector [Pp].

4. 2 Recommendations for Future Work

The present work suggests that there are at least two major areas

which require additional consideration. The first is concerned with
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the time synthesis approximation itself; the second is concerned with

the use of the E (At [A]) approximations of Chapter II to approximate

accurately the exponential, exp(At [A]) of equation (10. 29).

The first recommendation for future work stems from uncertainties

with the time synthesis approximation. At present, not much has been

published to indicate that there exists a very precise idea ofthe "near-

ness" of the solution space of the synthesized equations to that of the

multigroup diffusion equations. As a result, one is not able to put ade-

quate error bounds on the solutions of the synthesized equations. Thus

there is a constant danger of encountering cases for which the synthesis

approximation gives unexpectedly poor results. It appears, then, that

a theoretically clearer notion is needed of how to select trial functions

such that the resulting solution space contains vectors which accurately

approximate the solutions of the multigroup neutron diffusion equations.

The second recommendation for future work is concerned with the

capacity of the Pad6 matrix approximations to approximate accurately

exp(At[A]). In this regard, it would be valuable to extend the work of

47
Porsching in order to quantify the eigenvalue spectrum of the general

multimode kinetics matrix [A(t)]. If this were done, a precise theoret-

ical foundation could be established for specifying the accuracy of the

Pad6 matrix approximations.
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APPENDIX I

Proof of [e] = [ab a+bJ~1 and [zi = [b ae] = [ba b+a1 1

Proof:

Given that

y]~ = [a-bij = z+eij

prove that

[e) = [ab a+b]'

and that

[z] = Lb Iael = [ba 1 b+a]-

If

a-bill1 = Lz+ei]

then

a-bil z+ei) = I)

and

laz+be+(-bz+ae)ii = I.

This, in turn, implies that

Laz] = I-be] (I. 1)



and that

[bz] = [ael.

Therefore, one may write

IzI = [b~1 ae).

Substituting this expression for [z] into (I. 1) yields:

Iab~ aei = [I-be]

which may be rearranged as

lab 1 a+b) le) = WI].

Thus one may write

[e] = [ab~ a+b~ 1

and, from (I. 3)

z = [a+ba~ b.IE

99

(I. 2)

(I. 3)

Q. E. D.
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APPENDIX II

Proof of Identities

Given that

[z] = b 1 ae.

le] = [b+ab Ia

(II. 1)

(II. 2)

[a) = [I -
I

i

[b) = [A]' lip]
-I

AtP ( 1 +Atx ) l)

Atp i[LiiJ]

prove that

[z)[ e - [e] [z] - I

1= 1
At2P ) [e [] [z] - [z] Li) Le] I = 0 (II. 5)

and that

e] 2 + [z] 2 + I
i=1

At 2P [[e] [Ii] e+ [z] Ii] [z)] = [e] + [z].

From (II. 3) and (II. 4) one may write

[a] = -[b) + I + I At2PA

(II, 3)

(11.4)

(II. 6)

A[A]-' [p) +

(11.7)



Also, since [a-b i -1 = [z+e l

lz+e Il a-b ] = I = [za+eb+(ea-zb)il

which implies that

[z] = [eab~1 ].

Next, substituting (11. 7) into (II. 1) yields

[z] = -[e] + [b~Ie j+ I2 At P .X bj 1

i
[el (II.9)

and substituting (II. 7) into (II. 8) yields

[z e +[b]+ E At P X .[e] [ti.] [bi'.
i

(II. 10)

Applying (II. 9) and (II. 10) with I = 2 to equation (II. 5) completes the proof

of the first identity, since this yields

+[ej 2 - [eb e) -

-[e' 2+ [eb e] +

+i

At2P eb

IAt2 zP i e L b e

At 2 P X[e ie) - Z At 2 P .X.e 1 b 1 e)
i

- I AtZP i

- At2P Xe (e
i

+(Z At~ixi) (

At2P e bie

+ E At 2PA Xeb' I.e]

At 2P .Xeji b I eJ = 0.
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(II. 8)



To prove identity (II. 6), one first premultiplies (I. 9) by [b].

-[b][z] - [b][e] + [e] +
i= 1

Thus

At 2 P x e = 0.

Substituting (II. 1) yields

[-a-b][e] + [e] +
i= 1

At2P E el = 0.

Then, premultiplying by [e], one obtains:

[e] [-a-b] [e] + [e]2 -
i= 1

At 2 PA [e] = 0.

Also, from equation (II. 8), one may write

[el = [z] [b] [a]-

and, from (II. 1)

Eel = [a]' [b] [z].

Using (II. 12) and (II. 13) one may show that

[z] [a] [b) 1  [bE1 [a] [z].

Substituting (II. 11) into (II. 9) yields

-[e] - [z] + Eb]Il [z] [b] [a]~' +
2 -

I At P.x.[b1- 1 [b[zlLb] [aj.
1=1
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(II. 11)

(II. 12)

(II. 13)

(II. 14)
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Postmultiplying by [a] [b]~, premultiplying by [e] [a], and using (II. 14)

then yields

[z][-a-b][z] + [z]2 +
i= 1

At2PX[zI p.z] [z] = 0.

Adding (II. 15) and (II. 11) then reveals that

z]2 + e] 2 +
i= 1

At2PX.[ [z] [Iii) [z] + [e] ] [e]I

= [e] [a+b] [e] + [z][a+b] [z]. (II. 16)

Substituting (II. 13) into the right hand side of (II. 16) and making use of

the fact (proven in Appendix I) that [b] [e] = [I-[a] [z]], one may finally

show that

[e] [a+b] [e] + [z] [a+b] [z] = Eel + [z].

This completes the proof of the identity given by equation (II. 6).

(II. 15)
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APPENDIX III

An Example of How [REAL] May Be Structured

Using the Identities (2. 34) and (2. 35)

The following example is given to show how one might go about using

the identities considered in Appendix II to restructure the matrix [REAL]

of equation (2. 33). In performing the calculation two precursor groups

are considered.

With two groups of delayed neutron emitters [REAL] may be written

as

[RI 1] [R12] [R 131

[REAL] = [R2 1] [R 2 2 ] [R23] + [L] (III.1)

[R31] [R 3 2 ] [R 3 3

where the matrix elements [R..] are found by expanding the right-hand

side of equation (2. 33).

The matrix elements defined by this expansion, however, can be

quite complicated. The procedure discloses, for example, that

[R 1 1 ] = [z] + [e]2 + A t2 P1 X[z][sL 1 ][z] + At2PXe][IL][e]

+At 2 P 2 2  ][z] + t 2
2 2 e] [ [e]

Fortunately, the identities of equations (2. 34) and (2. 35) may be

used to simplify considerably the derived expressions for the matrices

[Rij]. Thus [Rj ] becomes, via the application of (2. 35), equal to [e] +

[z].

In a similar way the remaining matrix elements of [REAL] may be
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found by expanding the right-hand side of (2. 33) and then simplified

using (2. 34) and (2. 35).

If this is done, one finds that

[R11] = [z] + [e]

[R 1 2 ] = AtP Ay(2+Atk )[z]

[R 1 3] = AtP 2X 2(2+A tX2 )[z]

+ At2 P1 Xje]

+ At 2P2X?[e]

[R 2 1] = At 2 P X [F. ] [e] + AtP 1(2+AtX 1) [L 1 ] [z]

[R22] = At2 P 1X1(1-4PI-2At P X 1 L][e]

+ A tP 1X1 (1+2AtP 1 X 1) L] [z]

[R31] = zt 2 2 2 2] [e] + AtP2 (2+A tX2 ) [ 2 ] [z]

[R 3 2 ] = At P P 2 1 ((2+Atx 1 )(2+Atk 2 )-2)[. 2 ] [z]

+ At 2 PX 1(At 2 X 1 2)[] [e]

and

[R 3 3 ]= At 2
2 X 2 -4P 2 -2AtP 2 [j [e]

+ At 2 P 2 X(1+2AtP2 X2 )[ 2 ] [z]

It can be verified by substitution that equations (III. 2) may be written

in the form of (2. 36).

(III. 2)
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APPENDIX IV

Description of Computer Codes

4. 1 Input Specifications for MITIM-E(2, 0) and MITIM-E(1, 1)

CARD 1 (5D12. 5)

HT - Size of time step (sec.)

HX - Mesh spacing (cm.)

BETOT - Sum of effective delayed neutron fractions

TPRINT - Time at which flux is to be reconstructed and printed

TSTOP - Time at which calculation is terminated

CARD 2 (1015)

NTF - Number of trial functions

NG - Number of neutron groups

NDG - Number of delayed neutron groups

NMP - Number of inesh points

NR - Number of regions

(NMPR(I), I=1, NR) -Number of mesh points in each region

CARD 3 (4D20. 10)

((VSIGF(JK), K=1, NR), J=1, NG) - v Zf for each group in each

region
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CARD 4 (4D20. 10)

(((SIGSR(J, K, I), I=1, NR), K = 1, NG), J = 1, NG) - sJ-K
groups in each region

for all

CARD 5 (4D20. 10)

((SIGTR(J, K), K=1, NR), J=1, NG) - ZT, the total absorption

cross section, for each group in each region

CARD 6 (4D20.10)

((D1(J, K), K = 1, NR), J= 1, NG) - D, the diffusion constant, for

each group in each region

CARD 7 (4D20. 10)

(BET(I), I= 1, NDG) - Pi for each delayed group

CARD 8 (4D20. 10)

(CHIP(I), I= 1, NG) - X for each neutron group

CARD 9 (4D20. 10)

((CHID(I, JJ, J= 1, NG), 1= 1, NDG) - Xd, the fraction of neutrons

produced in each group from decay in each delayed group

CARD 10 (4D20. 10)

(V(I), I= 1, NG) - v , the neutron velocity for each group
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CARD 11 (4D20. 10)

(LAM(I), I= 1, NDG) - X, the decay constant, for each delayed group

Repeat Cards 12 and 13 for each trial function

Repeat Cards 12 and 13 for each neutron group

CARD 12 (6D12. 5)

(PHI(I, J), J= 1, NMP) - Value of Ith trial function of each mesh point

CARD 13 (6D12. 5)

(WPHI(I, J), J = 1, NMP) - Value of Ith weighting function at each mesh

point

CARD 14 (15, 2D12. 5)

ITP - index to perturbation

1 = step insertion

2 = ramp insertion

Temp1 - time at which reactivity insertion changes and new

time zone begins

Temp2 - time oven which ramp insertion is added

CARD 15 (4D20. 10)

((ALPHA(J, K), K=1, NR), J=1, NG)) - for ramp insertion, the

total change in It for each group in each region (leave blank

if ITP = 1)
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CARD 16 (4D20. 10)

((SIGTR(J, K), K=1, NR), J=1, NG) -for step insertion, the new

values of XT after insertion for each group in each region

(omit if ITP = 2)
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4. 2 Code listings for MITIM-E(2, 0) and MITIM-E'(1, 1)

(provided only in first six copies)


