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ABSTRACT

The use of the finite element method for solving two-dimensional
static neutron diffusion problems in hexagonal reactor configurations is
considered. It is investigated as a possible alternative to the low-order
finite difference method. Various piecewise polynomial spaces are ex-
amined for their use in hexagonal problems. The central questions
which arise in the design of tnese spaces are the degree of incomplete-
ness permissible and the advantages of using a low-order space fine-
mesh approach over that of a high-order space coarse-mesh one. There

is also the question of the degree of smoothness required. Two schemes
for the construction of spaces are described and a number of specific
spaces, constructed with the questions outlined above in mind, are pre-
sented. They range from a complete non-Lagrangian, non-Hermite quad-
ratic space to an incomplete ninth order space. Results are presented
for two-dimensional problems typical of a small high temperature gas-
cooled reactor. From the results it is concluded that the space used
should at least include the complete linear one. Complete spaces are

to be preferred to totally incomplete ones. Once function continuity is
imposed any additional degree of smoothness is of secondary impor-
tance. For flux shapes typical of the small high temperature gas-cocled
reactor the linear space fine-mesh alternative is to be preferred to the
perturbation quadratic space coarse-mesh one and the low-order finite
difference method is to be preferred over both finite element schemes.

Thesis Supervisor: Kent F. Hansen
Title: Professor of Nuclear Engineering
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Chapter 1
INTRODUCTION

We concern ourselves in this thesis with the general area of numer-
ical approximations to solve the analytic formulations of physical prob-
lems. To be more specific; the objective of this thesis is to examine the
possibility of using the finite element method as an alternative to the low-
order finite difference method for static neutron diffusion calculations in
hexagonal reactor configurations.

Numerical methods are generally regarded as being of 2 more power-
ful nature than analytic techniques owing to the sheer complexity of the
physical problem being simulated. Among numerical techniques, the low-

order finite difference me’chod4"5

is the one most widely used. Itis
relatively simple to implement and leads to coefficient matrices compara-
tively simple to invert. It also possesses a number of attractive mathe-
matical properties, one among which is that of convergence. The
technique, however, does lead to a large number of unknowns and with
computer storage space a finite quantity, this does indeed become a con-
straint on the use of the method. There is also the accompanying problem
of the associated large amount of computation time required with a large
number of unknowns.

Much work has been done to try to develop alternate techniques which
would give comparable accuracy and require comparable or less compu--
tation times with a fewer number of unknowns. We shall only mention one

1,7

of them, namely the finite element method. As with the finite difference
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method this method also lends itself to mathematical analysis.

1-3.6 applying the finite element method to rectangular

Recent work
configurations hés shown that results comparable in accuracy to those of
the low-order finite difference method can be obtained with a fewer num-
ber of unknowns. Even though the question of computation time is still
to be settled, that observation in itself was considered significant enough
to justify examination of the possibility of applying the technique to non-
rectangular reactor configurations.

With the advent of the HTGR and the fast breeder reactors the hexag-
onal reactor configuration has come to assume a position of increasing
importance. It was then natural to consider the feasibility of using the
finite element method in conjunction with the hexagonal geometry repre-
sentative of these particular reactor types.

We have attempted to present in the preceding paragraphs a brief
description of, and the accompanying rationale for, the objective of this
thesis. The remaining portion of this chapter is divided into two sections.
Section 1.1 restates the problem in a more detailed manner while sec-
tion 1.2 presents a description of the finite method.

The remainder of the thesis is arranged as follows. We discuss in
Chapter 2 the overall problem of constructing piecewise polynomial spaces
for use in the finite element method. Chapter 3 is concerned mainly with
the introduction of a number of specific piecewise polynomial spaces. A
rationale is given for the specific choices. The numerical results obtained
with these specific spaces are examined in the first half of Chapter 4 and
the conclusions drawn are presented in the latter half of the chapter along

with recommendations for future work.
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1.1 Introduction

Diffusion theory calculations in Nuclear Reactor Physics can be
divided into three general problem areas. These are namely

(i) The time independent neutron diffusion problem

(ii) Depletion calculations

(iii) Kinetics.

This classification is a natural division of the spectrum of possible tem-
poral behavior. Continuing in this vein area (i) can be regarded as being
the s1’:atic case and area (ii) as the quasistatic one. From 2 calculational
standpoint the class of static problems can be regarded as the area on
which the calculations of the other classes are built. It is the spatial
portion of the overall problem. In this sense it is then quite important
to understand the problems associated with this class of calculations, for
conclusions about them can be extrapolated to the other areas. This is
the area the thesis is concerned with.

Consider a reactor configuration defined by an open region Q and its
boundary 0.  consists of disjoint open subregions g £=1,2,...,L
each of which is bounded by 392. Figure 1.1 shows the reactor configuration.

Let r repfesent the spatial point and E the energy variable. We
also have that E € £ where £ = [E_. ,E ] The time independent

min Tmax
. . . 4 .
neutron diffusion equation can be written as

-V * D(r; E) Vé(r; E) + B0, E) (1, E) - [z dE' Z_(r, E'~E) ¢(r, E")

- 3X(E) f, dE' vEUr B ¢ E') = Q(r, E) (1.1)
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Fig. 1.1. General reactor configuration.

where
$(r, E) = neutron flux (n/cm2 sec)
D(r, E) = neutfron diffusion coefficient (cm)

ET(I'.’ E) = total macroscopic removal cross section (cm_l)

ZS(E’ E'~ E) = macroscopic scattering cross section from
E'to E (cm-l)

Ef(E’E) = macroscopic fission cross section (cm—l)

v = average number of neutrons produced per fission

X(E) = fission spectrum

Q(r; E) = neutron source/ em? sec

A = system multiplication constant.
The nuclear constants in equation (1.1), D, ZT, Z—?S and = ¢ are contin-
uous in each SZ2 and may be discontinuous on 891. On anﬁ the following-

set of interface conditions are used:
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¢(r, E) and D(r,E) ag—q)(r.E) are continuous. ’ (1.2)
7 =

where 831— is the outward normal derivative along the interface 892.
(
On 392, the exterior boundary, the boundary condition prescribed is:

é(r,E) =0 or E%-l_¢(£’ E)y=0 (1.3)

Equation (1.1) togethe‘r with the interface and boundary conditions
described above constitute the time independent neutron diffusion problem.

A word is in order here regarding the intersections of two or more
material interfaces. Diffusion theory does not hold at these singular
points.l Experience, however, has shown that the effect of these
singularities on reaction rates and integral properties in reactor prob-
iems is negligible and the approach taken in this thesis is to simply ignore
the fact that the use of diffusion theory is suspect at these points. We do
not attempt to introduce singular :t‘unctions7 to improve the rate of con-
vergence of the numerical solution.

With the advent of the HTGR and the fast breeder reactors the case
where aszl is hexagonal in shape has assumed increasing importance
vis a vis 892 a rectangular shape. Figure 1.2 is a top view of a typical
commercial HTGR. As can be seen from the figure each fuel block has
a hexagonal cross-section which is in contrast to the LWRs where the
cros=-section is rectangular. Hence, the inéreasing importance of
hexagonal aszl's. This thesis will be concerned with solving the static
neutron diffusion problem in such a hexagonal geometry.

An analytical calculation for so complex a problem is out of the ques-

tion and one must resort to numerical techniques. In dealing with numerical
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methods the two parameters of ifnportance are the accuracy attainable and
the corresponding computation time required to attain that accuracy. To
compare two methods a figure of merit such as the accuracy per unit
computation time would be needed. In practice, however, such fine

tuning is not required and simple comparisons of absolute errors and
absolute computation times are used. Consider figure 1. 3.

The regions I-IV shown in the figure are intended to be graphical
depictions of the classifications involved when numerical methods are
grouped on the basis of accuracy attained and computation time required.

One would prefer to work in region I and avoid region IV, but most
methods fall into either region II or region III. As most preliminary core
design and fuel management calculations fall into region III it was decided
to concentrate on this particular region.

The General Atomic company has a two-dimensional code, GAUG:E14
which is a computer implementation of a method which falls in region III.
It is a low-order finite difference code and as such exemplifies the method
most frequently used to carry out low-accuracy, low-computation time
calculations. The low-order finite difference method is the method which
provides the standard for comparison by virtue of it being the one which
is most frequently used in production codes and it is the one which this
thesis proposes to provide a viable alternative to. The point relation used
in GAUGE is the one shown in figure 1.4.

The unknowns to be solved for are the flux values at the center of a
hexagonal block and at the six corners. This leads to approximately

three variables per hexagonal block. As computation time is related to
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the number of unknowns, a coarse upper bound on the number of varizbles
which can be used is three unknowns per hexagonal block. It will be shown
later that this is a very coarse upper bound as the complexity of the equa-
tions to be solved enters in a very direct way into the computation time
‘required.

Turning to the question of accuracy errors typical for GAUGE are
€k pp) ~ 0.7% and € (peaking factors) ~ 7%. In summary any alternative
to the low-order finite difference method in region III should have the

following characteristics:
<
€ (kg gp) 0.7%

€ (peaking factors) < 7%

unknowns per hexagonal block <3,

where it should be noted that 3 unknowns per hexagonal block is a coarse
upper bound as it assumes that the computation time required per unknown
for the finite element method is roughly equal to that for the finite differ-
ence method. To derive a more precise bound we would have to examine
the structure of the matrices involved in more detail. Figure 1.4 shows
that the low-order finite difference method as implemented in GAUGE has
a 7-point coupling relation in its diffusion term. The finite element
schemes considered in this thesis have, typically, a 7-point block coupling
relation in the diffusion term. In addition, this coupling relation is also
present in the removal and in the source terms. Low order finite differ-
ence leads to diagonal matrices for the removal and source terms. This
briéf discussion indicates that the figure of 3 unknowns per hexagonal

block is indeed quite a coarse upper bound as the finite element equations
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have more coupling and therefore will necessarily require more compu-
tation time per unknown.

Workl"3 done over the past few years has shown that the finite ele-
ment method is a viable alternative to the low order finite difference
méthod in the solution of the static neutron diffusion problem for two-
dimensional reactor configurations typical of light water reactors. 8(22 in
this case is rectangular. The results obtained show that with higher-
order coarse-mesh finite element methods, a substantial decrease in
the number of variables used can be obtained without a significant
degeneration in the accuracy attainable. It still remains to be shown
that the increase in complexity of the equations to be solved does not
compensate for the reduction in number of variables. This however, does
not detract from the significance of the results and this thesis will exam-
ine the possibility of using the finite element method in hexagonal geom-
etry.

A fair synopsis of the objective of the thesis would then be that it is
to examine the possibility of using the finite element method as an alter-
native to the low-order finite difference method in region III of figure 1.3
for static neutron diffusion calculations in hexagonal geometry. This
implies a concentration on the construction of piecewise polynomial
spaces for the approximation of the flux. The next section, §1.2, which
describes the finite element method, will point this out in a more em-

phatic manner.
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1.2 The Finite Element Method

We present in this section a discussion of the finite element method.
Our treatment is to divide the presentation into two parts. Section 1.2.1
will give a general idea of the relative place of the finite element

me‘chod'7 -9, 11

in the area of numerical approximation schemes while
section 1.2.2 will concentrate on describing the body of the methodlo in

a more detailed fashion.
1.2.1 Galerkin Scheme

Our purpose in this section is to discuss the finite elem=nt method
in a broad context and at the same time not lose sight of th: fact that
our final aim is to apply it to solve the static neutron diffusion problem
expressed by the system of equations (1.1)-(1.3).

We begin by rewriting the integro-differential equation (1.1) in the

operational form
Ho(r, E) = Q(r; E) (1.4)

where the corresponding boundary and interface conditions are

9¢(r, E)
$(r, E) =0 or D—jfF—— =0
o on o2 (1.5)
9¢(r, E)
¢(r;E) and D ™ are continuous across 892 (1.6)
- [}

and

H=-V- Dir,E) V+ Z.(r E) - [; dB' T (r, B'~E)

~+X(E) f¢ aB' v Z(r, EY)
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There are two general approaches to solving this problem numeri-
cally. The first is to approximate the operator H and finite difference
falls into this category. The second is to approximate the solution. The
finite element method is an example of the second approach. What is
done is to write

m

S E) = $r.E) = = ad (r E) (1.7)
i=1

where {¢k(£, E)} are known functions and the coefficients {ak} are the
unknowns. The set {¢k(£, E)} will be referred to as the superelement

set and the finite dimensional approximation space it spans will be denoted
by the symbol M_ - One now has to obtain a set of equations to solve for
the {ak} and this is where the second approach can be further subdivided.
The finite element method obtains its equations by utilizing the weak

form of the operator equation (1.4). We now proceed to expcund upon the
weak form.>’ 6

Let Wl(SZ) be the class of functions which are continuous and have

square integrable first derivatives, that is,
ve whe) if [, (Vu-Vu +u?) Brt/2 < o

The weak form of the problem then is to find a function ¢ € W1 {<2) such
that

a(d(r, E), v(r, E)) = (Q(r, E), v(r,E)) forallve Wi@ (1.8

where



28

(a(r, B), v(z E)) = J, dE [o, & u(r Eyv(z B)

(1.9)
Q' = Qo
and the bilinear form a(¢(r, E), v(r, E)) is given by,
a(é(r, E)s v(r, E)) = *f{f% d’r (D(x, B)Vé(x, B), Vv(z, E)))
+ (Ro¢(r, E), v(r, E)) (1.10)
where
H=-V- D(r,E) V+R (1.11)
and

(w(r, E), v(r, E) = fg dE u(r; E)v(r, E)

To show that a solution to the weak form is a solution of the original
problem, we integrate a(¢(r, E), v(r, E)) in eq. (1.8) by parts and use

Gauss's theorem to obtain,

84 (r, E)
3 —
? IQQ d’r (Ho(r, E), v(z, E))g + ? ISQQ{dS(V(E’ E), D(r, E) ar_ll ) g}

= (Q(r, E), v(r, E)) ¢ v E Wl(sz) (1.12)

It has been shown that eq. (1.12) leads to the following Euler equa-

tions,

Hé(r, E) = Q(r, E) _I:eszﬂ (1.13)

and
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3¢(r, E) - |
=0 ' (1.14)

=J ds D

A solution of the weak problem is therefore a solution of the original
differential equation. The originél formulation of the problem, eq. (1.4),
requires ¢(r, E) to be twice continuously diffefentiable in Q2 and hence
restricts it to a class of functions C2 (2) smaller than W1 (). The weék
form is therefore preferred in the actual calculation of the approximate
solution as it allows us to look for an approximation in a wider class of

functions.
The finite element method belongs to that group of methods which
solves an approximation of the weak form of the original problem. It

looks for a?:(g. E)EM m such that
a@(r, E): ¥y (1, E) = Qs E), ¥ (r, E)  for all ¥y (r, E) € M,
(1.15)

with M_ a finite dimensional space of functions. Using eq. (1.7) we
have that eq (1.15) leads to the following matrix system of equations

for the expansion constants {a,k}

[(D(x, E)V dy(z, B), Vdy(z: E)) + (Réy(r, ), b5(r, E))] [a,]

= [(Q(z, B), Yy(r, )] i,j=1,....m
(1.16)
This is the system of equations the finite element method uses to

solve for the expansion coefficients {ak}. They shall be referred to as

the Galerkin equations as the approximation procedure implied by the
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use of eq. (1.15) is a scheme of the Galerkin type. With the use of the
weak form, Mm is no longer restricted to CZ(Q) but is allowed to become
a subset of the larger space W1 (). This enlarges the set of possible
trial functions ka(E, E).

The Euler equation, eq. (1.13) indicates that the Galerkin set of
equations eq. (1.16) is an equivalent restatement of the differential
neutron static diffusion equation, eq. (1.4) in some approximate integral
sense. We have up till now, neglected the question of the satisfaction of
the boundary and interface conditions, eqs. (1.5)-(1.6), as part of the
complete problem. We now address ourselves to this matter.

The Euler equation, eq. (1.14), shows that the Neumann boundary
condition of zero current and the normal current continuity condition
across a material interface are 'natural’ conditions.1 The Dirichlet
boundary condition, ¢(r, E)l 0a = 0, on the other hand, is an essential
boundary condition and many methods have been devised to ensure its
satisfaction. The one most frequently used is to restrict Mm to the sub-
space W(l)(ﬂ) of Wl(ﬂ) where the o subscript indicates that for Llli €Wc1)(ﬂ)

we must have,

4. € w'@)

and
"’ilasf_ 0

12,13

There are other possibilities and the use of Lagrangian multi-

pliers is a classical one. The deletion of certain superelement functions
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to satisfy the Dirichletcondition certainly leads to fewer coefficients
{akg} in eq. (1.16) to solve for. This implies a reduction in computation
time. It is however not quite certain what this deletion of trial functions
will do to the accuracy of the answer. One cah, after all, certainly con-
struct spaces in WI(Q) with the property that certain linear combinations
of the elements satisfy the Dirichlet condition without having the elements
themselves satisfy the Dirichlet condition. An example of a space of this
type is given in chapter 3. We choose to satisfy the Dirichlet condition
by working in W(l)(Q).

We have attempted to present in this section a general formulation
of the finite element method concentrating on those overall aspects which
allow one to obtain an idea of its relative place in the field of approxima-
tion schemes. We have also been able to indicate what the constraints on
the approximation space Mm are. In summary, for the Neumann prob-
lem Mm€ Wl () and for the Dirichlet problem MmCI Wcl)(SZ).

In the next section we present a more detailed and a more mecha-

nistic description of the method itself.
1.2.2 Equation Assemblage

Our objective in this section is to give an algorithmic treatment of
the various steps required to arrive at the form of the Galerkin equations,
eq. (1.16), preparatory to the actual inversion process. For this reason
we shall refer to this section as the section on equation assemblage.

We begin by introducing the multigroup forrnulation4 of eq. (1.1)
as this is the form which is actually numerically solved by using the

finite element method.
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The integro-differential eq. (1.1) can be reduced by the use of the

conventional multigroup formalism to a set of coupled differential equa-

tions
G
v Dg('{) Y¢g(£) ¥ zRg('I:‘) ¢g(£) i g'z=:1 ng'g(ﬁ) ¢g'(£)
g'#g
g X@®
* g.zzl—‘x— (VEg (D) ¢g(2)) + Q) g=1,...,G  (1.17)
where

ZRg(z) = Erg(z) - Z‘s g(y is the group removal crog= section.

g

In the multigroup formulation the corresponding boundary and inter-

face conditions are

9¢4(r)
¢g‘£’|asz=° or D, ~%n |39=0 (1.18)
9¢4(x) .
¢g(£) and Dg 5o are continuous across 8522 (1.19)

The multigroup formulation has allowed us to effectively remove
the energy variable from the problem and we will consider eq. (1.17) as
the starting point for our application of the finite element method.
Let us for the moment concentrate on giving a mechanistic outline
of the steps involved in solving eq. (1.17) by the finite element method.
One lays down a mesh composed of a set of straight line polygons

{ej|j=l,..L} on 2 as shown in Fig. 1.5.
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Fig. 1.5. General mesh.

We define a line segment to be the straight line lying between two
intersection points. The one restriction on the mesh is that the angle
between line segments should not be equal to 180°. The angle K in
Fig. 1.5 is an example of what is meant by the angle between line seg-
ments. The logic behind this restriction will be appreciated after the
discussion in chapter 2 is presented. The polygon ej shall be referred
to as the basic patch.

We now select a finite dimensional space of functions Mgn _ to approx-
imate the analytic solution of the problem over each of the basic patches
{ej}. That is to say each basic patch ej, has a corresponding space of
functions Mgn ‘which will be used to approximate the analytic solution in
that particular region eJ.. Mgn g in accordance with past work, is chosen
to be PN.’ a space of polynomials of maximum order va This means
that in aJej,

A\ ~ )
«bg(_I;) = PNjg(;_) r € ej | (1.20)

L

where N g(-]:) € PN is some polynomial of maximum ordor Nj’ the
j ]
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coefficients of which have to be determined.

The next step is to choose a set of functions {‘I!ig(_r_)]iﬂ..m} which
form a spanning set” for the space PN.’ It should be noted that to be
consistent with the definition of Py eath set {‘I’i g(5) vV i}T has support
only over the corresponding basic [gatch ej. We shall refer to the set
{‘Ifgg(g) Y i, j} as the basic element set. Since the set {‘I’;iig(z_) \v4 i} is a

spanning set for PN we have that,
J

m

5 b ¥ (r) (1.21)
=1 & 18- '

PNjg(z) =

As the functional forms of the {\Ifi g(z)\/i} are known, ti:e prob-
lem of determining the coefficients of PN g(_r_'_), and hence the approximate
solution $ g(_r_‘) in Oj, becomes one of calculating the set of coefficients
J .
{bi gV i}.

If the set {‘I’g(_rl) v i} forms a basis for P, then the number of un-

N
knowns {bgg Y/ i} will be a minimum and in addgtion one will not have to
worry about the significance of such questions as the possibility of
having piecewise linear dependence.

We now come to the major step; the problem of relating the basic

element set {‘I’:iig(_{) vV i, j} of eqs. (1.20)-(1.21) with the super element

set {Llikg(_{) Vk} of eq. (1.7) where we have converted \Pk(g, E) to its

*A spanning set for a function space is a set of functions which spans that
space. ,

Whenever there is a possible ambiguity we shall use the symbol ¥ to
denote that the accompanying indices are to vary over their respective
ranges. The indices not specified with ¥V are fixed in value.
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multigroup form. This is the question of determining the approximation
space Mm for $(_r_) given that for r € ej, @(3) = M}]:n We shall only
attempt to give a brief discussion of this problem l‘ilere. The detailed
presentation is left to chapter 2.

We begin by introducing the concept of a superpatch, G)J. The super-
patch is the polygon composed of a number of contiguous basic patches ej.
It is the region of support of the superelement function \bkg(g_). ¢kg(£) is
then composed of a set of basic element functions {‘I’iig(_zl)l (i.j) € _GJ}

where GJ is a set of ordered indices {(s, n)} such that en c @J and

Yeg ) = \Ifig(;‘_) ree (1.22)

We shall refer to the set of indices {n} for each superpatch G)J as G I
The process can be thought of as joining a set of shapes represented
by the function set {\I’gg(g) l (i,j) € 'GJ.} across the patch boundaries of the

J
Possible conditions of join are the analytic conditions of the exact

{ej,j € G J} which form the superpatch ©..

problem. These are equations (1.18)-(1.19). Another condition derivable

from eq. (1.17) and which could be of use in providing conditions of join

is that
aq
é(r, E) and NG ¢(r, E) are continuous for all q in QQ (1.23)
or
where

ER 94
-—-a - “—T——E’-“'—k
9 axl1 8x28x3

i+j+k=gq
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Once we have the set {¢kg(£)} we apply the procedure outlined in
§ 1.2.1 to obtain the Galerkin equations, eq. (l.16), for the set of coef-
ficients {akg}' In the two group external source free case where the
assumption is made that there is no upscattering and that no fission
neutrons are born in the thermal group, we have as an example of the

Galerkin equations,

225 = 513 (1.24)
where

(Eg)ul = (v Efg(£)¢i'(£)’ qli(z))ﬂ

(Sp)jir = (Zgp (;(1)s Y3 (1)), i, i'=1,...,m
m
A —
¢g(£) = ifl 3 Y. (r)
2g=C01{alg’aZg’.“’amg} g= 1,2 (1.25)

To solve this eigenvalue problem for the system multiplication con-
stant A\ we adopt the usual power iteration scheme..4 The power iteration

scheme can be written as
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) _ (t-1) (t-1)
A" =F 2)" " +F,2;

(L) _ (t)
Aya,’ =53

(2‘1“’3(1”) + @_‘;",a;%

A0 - t 1 1) o (t-1
RECETSURT A T
(t)
ot 2L
SENG!
(t)
o) 22
=2 " 4(t)
where (,) denotes an inner product (1.26)

The power method converges to the eigenvalue \, of the largest magnitude

and therefore gives us the dominant characteristic mode.

We have presented in this chapter a discussion of the specific prob-
lem area this thesis will be concerned with in terms of accuracy and
computation time. In addition, we have given an idea of the general
nature of the finite element method and have described in an algorithmic
fashion the steps required in using the method. It was pointed out that
the major step involved was in going from the {Mgn.\/ j} to the space M m"
In essence this is the area of the pre-Galerkin calculation phase where
we use conditions of join to reduce the basic coefficient set {bggv i, j} of
eqs. (1.20)-(1.21) to the super coefficient set {aig\/ i} of eq. (1.7). It
is the question of the construction of piecewise polynomial spaces and we

address ourselves to it in the next chapter.
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Chapter 2
CONSTRUCTION OF SPACES

We concern ourselves in this chaptef with the step in the assemblage
of the Galerkin equations, eq. (1.16), where we go from the basic ele-
ment set {\I’ig V i,j} of egs. (1.20)-(1.21) to the superelement set
{npk gV k} of eq. (1.7) where we have used the multigroup form of
4 (r, E). |

Section 2.1 discusses the general problems involved in this phase
of the finite element method; a phase which we shall refer to as the pre-
Galerkin phase as its net effect is to reduce the set of expansion coef-
ficients of egs. (1.20)-(1.21), the basic coefficient set {b;iig Y i,i} to
a smaller set of unknowns, the supercoefficient set {ak g \4 k} of eq.(1.7).
What is done is to apply conditions to relate the members of {bi g VY i, i}

in equations, different from the Galerkin equations, of the form

sz Al pl = 2.1
'ijAlgblg 0 (2.1)

This allows us to eliminate a set of variables V, {bg g}’ where we

will denote the set of ordered pairs (r, s) by L,

r .y gty o (2.2
et 2y Pl el @2
(i, j)gL

With this result we can rewrite eqs. (1.20)-(1.21) as

= = bl z BT’
4o Wi b} g{wlg(g) + G2 Bl ¥, g(_1_‘)}
(i, j)EL

=3 2.3
k akgw.pkg(_g) (2.3)
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which means that {akg V k} is the set of remaining bi g V' and

= > gl )
hg = W@ + = BlLelw (2.9

giving us the approximation space M_ for Qg(g).

This is the general scheme for the pre-Galerkin phase. We then
use the Galerkin equations to solve for the remaining unknowns; namely
those of the set V'. The use of the Galerkin equations implies certain
restrictions on the coefficients Big because of essential constraints
on the superelement functions ¢k g’ But in any case, it can be seen
that the crux of the matter is that eq. (2.1) should be simple enough to
solve algebraically. If simple enough equations can be developed, it
can be said that we can reduce the basic coefficient set {bzg ¥ i, j} to
a smaller set of unknowns, the supercoefficient set {akg A4 k} through
a series of mathematical manipulations which once carried out do not
have to be repeated for different problems using the same approxima-
tion space Mm' Section 2.1 mentions a number of possible :>onditions
which could be applied to affect this reduction in the number of unknowns.

In section 2.2 we discuss the various mesh schemes or, in other
words, the different sets of {GJ. Y j} which can be used in the case of
the hexagonal reactor configuration and in the final section, §2.3, we

present methods for constructing approximation spaces Mm.

2.1 Overall Problems

This section concerns itself with the questions which arise when we

attempt to go from the basic element set {\I/i g \4 i, j} to the superelement
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set {q’kg - k} which is to be used in the Galerkin formulation, eq. (1.16),
to find the unknowns {aig}'

- The whole issue revolves around the feasibility and desirability of
determining an appropriate set of additional constraints which when
applied to {\Ifi g v i, j} yield equations for the pre-Galerkin phase which
allow us to reduce the set {bi g A4 i, j} to the set of fewer unknowns,
{aig v i}. |

The essential constraints are the ones given to us by our use of the
weak form, namely q;k g = W;(SZ) for the Dirichlet problem and ¢kg S
WI(SZ) for the Neumann problem. These are examples of how the
final step in the equation assemblage influences the construction of the
approximation space M m" As will be seen later all the steps in the
assemblage have an effect on the construction of the approximation space.
Returning to the question of constraints, it was seen that the mathemat-
ics dictates the two essential constraints. There are also constraints,
which could possibly be used, dictated to us by the physics of the prob-
lem. As noted in section 1. 2.2 and reiterated here, these are (i) flux
continuity; (ii) current continuity; (iii) in the interior homogeneous
region, all thé.derivatives of the flux are continuous; (iv) satisfaction
of the diffusion equation within a particular homogeneous region. All of
these 'constraints' can be used to furthér reduce the number of vari-
ables which have to be solved for in the Galerkin phase. There are,
however, trade-offs involved.

Let us consider éonstraint_ (iv). This has already been used in the

Galerkin equations. Further usage of it leads to Galerkin coefficient
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matrices radically different from ones obtained by the conventional
approach. For example, suppose we force neutron conservation for
each ej by integrating the multigroup diffusion equation, eq. (1.17),
over ej. This gives us an equation which we can use to eliminate b{ g’

m

- ; _ _
bl = = A.(00Db]. 2.
g™ 2 A0 bl (2.5)

The coefficients {Ai(X)} are also functions of the material properties
but it is the A-dependence which gives the unique character of this ap-

proach; for then we can write

m. m.
A J s . . ) - .

= Z pl fud +Aa. 0¥ 1= = pd A (N €6..
¢glr) i=9 igl¥ig 4N ¥1g j=g 18 ig™ R

(2.6)

With this \-dependence in the trial functions, the coefficient ma-
trices of the Galerkin matrix will become \-dependent and new iterative
pfocesses will have to be devised. Reusage of condition (iv) does not
therefore appear to be a viable propositiori.‘

Conditions (i), (ii) and (iii) belong to the generic problem of join-
ing the {\II:Il g ¥ 1,3} across the boundaries of the {Bj V' j}. We shall
refer to these boundaries as the patch boundaries. It may seem quite
attractive to impose as many of these conditions as possible to mini-~
mize the number of unknowns remaining. However, when one uses
piecewise polynomial functions it turns out that the greater the number
of constraints one wants to impose the higher the order N;i of the poly-

nomial space PN one has to work in. - The dimension of PN is depen-
i , J
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dent on Nj and so if the constraint on the computation time, namely
less than 3 variables/fuel hexagon is not to be violated, one has to work
with a Mgn _ of increasingly large a defect.* This then brings in the
question ofJ the effect of incompleteness on accuracy. It must be noted
that condition (i) is a restatement of an essential condition, ‘Pkg € Wl(Q),
and therefore must be imposed. Imposition of conditions (i)-(iii) can be
considered a viable possibility.

Let us make one final comment before we delve into the various
problem areas. When we apply constraints of join we are actually de-
manding that each and every member of the set {kag V7 k} satisfy the
conditions required by the constraints. This is therefore n:ore exacting
than asking that the approximation $ g(_g) satisfy the constraints. It also
means that in joining the members of the set {\Iii g \v4 i, j}, the condition
of join applied has to be applied across all the patt':h boundaries of ®J,
otherwise $ g(E) will not satisfy the condition required.

As can be seen the general problem of constructing a set {%{gv k}

from a set {\II:: Vi, j} to generate solutions comparable in accuracy and

g
computation time with the finite difference method, knowing only that we

are restricted to spaces {PN v j} and a mesh of general polygons
J

*Let the dimension of P,., = d_ and the dimension of M) =d.. Then
Nj P mj M

j . - _ .
the defect of Mm. with respect to PN. : dp dM It is a measure of the

incompleteness of Mgn relative to PN . Whenever we use the word

"incomplete" in this thesis, it is to be understood that it is used rela-

tive to the complete polynomial space, PN .
i
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{Bj V' i} with the constraint q’kg € Wl(ﬂ)' or W(l)(ﬂ), is not trivia1,1%+19

To lend some order to the 'pre‘sentation we shall, accepting the con-
straints outlined in the prévious statement as given, discuss ‘the prob-
lem areas in an algorithmic fashion w_ith respect to the questions of
feasibility and desirabﬂity, always keeping in mind the fact that the dif-
ferent steps, in the final ané.lysis, are implicitly interrelated.
(a) Basic Patch. The basic patch is the polygon ej. In our hexago-
‘nal problem there appear to be three basic patches: | |
(i) Triangle; (ii) Quadrilateral; (iii) Hexagon.
Figure 2.1 illustrates some of the possibilities.
(b) Superpatch. We certainly do not want to use a space PN. with
a spanning set {\Iri g v i} such that all the \Ifi g 3re zero on the bgundafy
86, of the basic patch 0. Witha set {\Ili g V i} which has members
with nonzero function values along the patch boundary 89j one has to
join {\ng A4 i} with the sets corresponding to the contiguous patches
so th;ett {q:k g A4 k} has fuhction continuity. Let I‘J. refer to the set of
basic patches contiguous to ej. One could then repeat the process for
each ek € I‘j. The process ends when there is a closed boundary with
the function value equal to zero along it. We shall refer to this polygon
as the superpatch @j.* Each basic element function \II'I g is part of a
superelement function \pJ g which has suppoft ®J' One should then ask
the question of how large @) can be and how large it should be. Intui-

tively one would expect that a large ®J would decrease accuracy as one

*The concept of the superpatch was introduced in section 1. 2,2,
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would then have fewer degrees of freedom in the approximation. As for
feasibility, apart from the question of size, there is the question of
whether or not mixtures of the basic patches are permissible.

To provide an illustration of possible superpatches let us consider
the use of the Lagrangian cubics6 for the basic element set {\Iligv i, j}
with @, a triangle. We define the vector K

(xd;)

- xygg(zk,) D 0, K= 1,...,10. (2.7)

where the points Iy, are as shown in Fig. 2, 2.

Fig. 2.2.
The points Iy for the

definition of the cubic
Lagrangians.

The Lagrangian cubics are cubic polynomials each of which are
determined by the following condition on the corresponding _Igg vector

(K‘gg) =5, kK'=1,...,10, i=1,...,10. (2. 8)
Kig ), ,

We can classify the Lagrangian cubic set {\Ifgg A4 i} into three groups
according to the number of sides of ej,kL on which each \If;i]g is iden-

tically zero. One such set is the group {\Ir%gli = 1,.3} which has k; = L.
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The set {\I/igll =4,..., 9} has kL = 2. The membecrs of the last set
{\Ilgg!i = 10} are identically zero on all three sides of ej.

Now suppose we apply the constraint of function continuity in going
from the basic element set {\I/ig Y i,j} to the superelement set
{kag Avd k}. In order to obtain function continuity of the set '{lpkg \vd i},
certain elements of {\I'ig Vi, j} have to be joined across the inter-
patch boundaries. For the Lagrangian cubics, the set {\If%ogv j} does
not have to be joined. The set {\I/ig Vj!i =4,...,9} has to be joined
on one side of ej while the set {\I/'lg Vj]i = 1,3} has to be joined on
two sides. The superpatches so formed can also be classifiad into three

groups. These are shown in Fig. 2.3. We shall explain the notation

used in the figure in the next paragraph where we generalize the

Fig. 2.3. Classes of superpatches — cubic Lagrangian set.
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discussion . For this thesis we shall concentrate on the superpatch sets
which evolve out of this examination of the Lagrangian cubics. In'con-
cluding it shduld be noted that the superpatches are not all of one pat-
tern.

To generalize the approach let us start by classifying the {\If:iig\/ i}
in the case of 0. = a triangle. This grouping, a mixture of géometrical
conditions and function conditions, illustrates the close relation between
the geometry of the basic patch and the approximation space. We define
’I*kL.‘ as the set of those \I/'gg which are zero on exactly kL number of
sides of ej.

Assuming that function continuity across patch boundaries can be
imposed we arrive at the conclusion that if T0 is not used there are
three classes of superpatches, SkL, each of which forms the support
for a W composed of basic element functions \I'i only from T L. These
superpatch classes are depicted in Fig. 2.3. We shall refer to S1 as
the 1-ring superpatch.

it T is used, then there are other classes of superpatches which
are essentially concentric 'rings'. We shall refer to them by the num-
ber of 'rings' in the configuration.

Figure 2.3 shows that the use of the complete cubic Liagrangian set

2

for M:xln means that all three classes Sl, S™ and 83 will have to be

J
used. For the complete linear Lagrangian set only st has to be used
and only S1 can be used. The choice of a S L definitely implies a con-

straint in the choice of a Mgn .
J
As far as the reduction of number of variables is concerned, there
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is a real incentive to use only Sl. If we exclude TO from the discussion,
then the use of S! minimizes the number of variables {akg\c/ k}. This
is because the kag formed in this manner is composed‘of the greatest
number of basic element functions, \Ifgg, possible, thus reducing the
number of independent variables in {big} the most. We shall therefore
éoncentrate on S1 in this thesis.

Let us conclude this segment of the discussion by emphasizing a
point which this section brings out. This is that by applying the condi-
tions of join to {ka gV k} and not to $g(r), we have, in essence, shifted
the burden to the determination of the appropriate {\I/ig v i} set. One
has to anticipate the constraints which will be used to determine the
{ka gV k} in finding {\I/ig\q' i}. This implies that the conditions used
;;o determine {\Ifi g \/ i} should be concentrated on the perimeter aej
of ej. -

. It should be noted that the classification of {\It-z g Y i} into groups

T L can be logically extended to include subclasses based on the num-
ber of sides of GJ. on which the gradient and the higher derivatives are
zero. We shall not proceed any farther in this thesis with this particu-
lar concept.

We now address ourselves to the question of polynomial spaces.

(c) Polynomial Space. To every basic polygonal patch there appar-
ently is a corresponding canonical form for 'I\”N(_r:).

For a tri:a.ngle6

’I?N(x, y) = a. .xiyj (2.9)



49

KN = number of coefficients = %I-(N*-B) + 1. (2.10)

For a rectanglel

PN(x, y) = ‘ a..xiyj | (2.11)

Tz

K = number of coefficients = (N+1)2. (2.12)

These canonical forms appear to be forms which, allowing for the
constraints of continuity at the corner points of the polygon, permit
the determination of the function shape along each of the piecewise
linear edges of the polygon to be entirely independent processes. Impo-
sition of function continuity conditions across patch boundaries then be-
comes 'natural’.

It is possible to obtain the canonical form for the quadrilateral by
isoparametrically transforming the rectangle into the quadrilatera1.7
A canonical form for the hexagon is still lacking.

The assumption shall be made that the use of the canonical forms
is still appropriate when we try to impose conditions in addition to that
of function continuity across the interpatch boundaries.

Even with the general form of ’]:"’JN. prescribed we still have a great
deal of flexibility. We are faced with the choice of which subspace of
FN. to work in and with the determination of the spanning set {\Ifi gv i}.
WeJcould choose to determine the superelement set {ka g\-/ i} first and
accept the space spanned by the resulting basic element set {\If{ g \"4 i}

as our particular subspace Mgn . This approach, how ever, does make
J
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questions of completeness and piecewise linear dependence harder to
resolve. The possibility that the {MinV i} are not identical can also
arise. From this point of view it—is n?mre systematic to choose the
subspace first and then find the superelement set. We shall refer to the
second approach as the mathematical construction and to the first as the
physical construction. To determine the set {\Il'zg‘v’ i} one has to spec-
ify conditions satisfied by each member of the' set in order to find the
coefficients of the functional form. The problem of what these condi-
tions should be is closely tied in with the problem of joining the sets
across patch boundaries. We shall divide the conditions imposed in the
definition of the basic element functions into two classes. One class is
termed interpolation conditions and the other class, for the lack of a
better name, the noninterpolatoryconditions. The set {\I/i gV i, j} can
be defined by the imposition of conditions from either class but it is
much easier to see linear independence and completeness with condi-
tions from the interpolation class. This class contains conditions such
as the point specification of a value of the function or its derivative,
the specification of [ @-V\If{{g along a line, in other words, conditions
which specify a value.

(d) Conditions of Join. The noninterpolatory class is the class of
conditions which relate the basic element sets {\Il:llgv i} of contiguous
basic patches across patch boundaries. These ‘conditions are therefore
primarily oriented towards the determination of the superelement set
g ¥ K-

Function continuity definitely has to be imposed but there are other
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conditions, discussed in preceding sections, such as current continuity,
which could be imposed. Variations such as integrated current continuity
also fall into this class. Care must be taken not to impose function and
current continuity at a singular point as this can lead to {xpk gV k} with

*
zero gradients at these points.

Conceptually it should be possible to combine all the problem areas
(a)-(d) into a general formula relating the order of the polynomial N,
the number and type of conditions imposed, and the number of sides
which ej possesses for feasible sets {q’kg}' To resolve questions about
completeness and piecewise linear dependence one would still have to
break q’ig down into its basic element functions \I'l g’ but even so, such
a general formula would still be very valuable as a synthesis tool.19 How-
ever, it has apparently never been done.16 This thesis had to resort
to a case by case approach. We can not, therefore, claim to have treated
the general problem comprehensively but we can say that the sets we
come up with for our specific problem do provide answers to some of
the fundamental questions outlined in the preceding pages.

We have in the preceding section attempted to outline and discuss,
in a general manner, the questions which arise when the variousv steps
involved in trying to assemble the Galerkin equations, eq. (1.16), are
examined. We now turn our attention to specific areas beginning in the

next section, §2.2, with the different {®J V/ J} schemes possible.

*
Refer to Appendix D for a more detailed discussion.



52

2.2 Specific Superpatch Schemes

Let us begin by considering the 'coarsest' meshes possible with
the hexagonal reactor configuration which could potentially give us the
accuracy and computation time required. We will then construct 'finer!'
versions by a further subdivision of the basic patches ej. The inquiry
shall be restricted to regular meshes as it is only in the vicinity of
the outer boundary 392 that the use of an irregular mesh becomes
essential. Figures 2.4 and 2.5 show the possibilities. They are

(a) a fuel hexagon center — fuel hexagon corner mesh

(b) a fuel hexagon center — fuel hexagon center mesh

(c) a fuel hexagon center — adjoining fuel hexagon corner mesh

(d) the fuel hexagon map itself.

If we restrict ourselves to 'simple' superpatches ©_., then the largest
superpatches possible for each of the meshes (a)-(d) are those depicted
in Fig. 2.6. Before we discuss the various superpatches let us keep in
mind that the lowest order complete polynomial space, El’ has 3 un-
knowns in the triangular form and 4 in the rectangular cum quadrilateral
case. This means that the use of complete PN spaces requires the use
of at least 3 variables per ej. This does not necessarily translate into
a constraint of at least 3 variables per fuel hexagon because ej could
encompass more than one fuel hexagon. There is also a reduction in the
number of total variables when basic patches, Gj, are joined to form a
superpatch ®J as variables are then equated. |

It should be reemphasized that the superpatches of F1g 2.6 will be

considered the largest C"‘)J possible for the corresponding {Qj \ 4 j} set.
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- Mesh lines

Material
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Fig. 2.4. 'Coarsest! possible meshes.



. i—-—-—x Mesh lines

Material
hexagon

. Fig. 2.5. 'Coarsest' possible meshes.
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Fig. 2.6. Possible superpatches for each mesh scheme.
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It is entirely conceivable that the manner in which the space M‘x]n s
broken up into a set {\Ifig‘v’ i} will lead to a range of superpatches.
Consider the Lagranéian cubic example of Fig. 2.3. We shall restrict
ourselves to those spaces Mgn which can be split up such that there is
only one superpatch possible fJor each mesh {ej A4 j}; namely the types
depicted in Fig. 2.6. If we ignore mesh (d), -the ®J depicted in Fig. 2.6
are all of the ring type. As noted in section 2.1 this will minimize
the number of unknowns {ak gv k}.

We now consider eaéh of the meshes (a)-(d) separately and examine
the different possible subdivisions of the internal structure of the super-
patches, ej.

(a) Mesh (a) has a superpatch which can either be divided into {Bj =
equilateral triangle} or {ej =a 120° parallelogram}. Both cases give
three unknowns per fuel hexagon for the space Fl' The quadrilateral
option requires a transformation from the rectangular form and leads
to complicated square roots. For this reason and also for the reason
that the other meshes lead towards the triangular form we shall not
consider the quadrilateral possibility. Any complete PN. space of
order higher than one, combined with this superpatch, will violate the
constraint on the number of unknowns. Usage of this mesh scheme thus
restricts us to the linear Lagrangian funci:ions6 for {\If;ll gv i}.

(b) For mesh (b) there is again one superpatch.A It can be thought
of as being composed of either {ej = equilateral triangle‘}, or {Oj = a
quadrilateral, as shown in Fig. “ 2.6}. In constructing the 'finer' sub-

divisions we restrict ourselves to basic patches which lie entirely
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within homogeneous material regions. We then have that within the basic
patches the analytic solution for the flux will have as much smoothness
as the polynomial approximation.

If we use {Gj = equilateral triangle}, then $ g will have derivative
continuity instead of current continuity across fuel blqck interfaces. For
the triangular PN. space it can be seen that the highest complete space
which can possibly be used is the space 52. Any higher order incom-
plete space can have at the most 9 degrees of freedom; that is, three
superelement functions/fuel hexagon center.

The use of {Bj = quadrilateral} brings up many questions. First of
all, as has been noted earlier, the quadrilateral PN. space has compli-
cated functions. But even if we choose to work with the triangular PN.
space there is the question of geometry. We essentially have two !
rings of quadrilaterals. The conditions applied in the inner ring will
be different from the conditions applied in the outer ring. This makes
this particular configuration radically different and the question of fea-
sibility quite real. The advantage of the scheme is that the possibility
of imposing current continuity across fuel block interfaces is there.

(c) This is an interesting case. Once again we have the option of
using {Bj = large equilateral triangle}. The second option is {ej = either
a small equilateral triangle or a quadrilateral}. The same points which
came up in the discussion of (b) arise here but there is one additional
feature to the second option. We now have a mixture of ej's. This leads
to the coexistence of two superpatches which have different internal

structure. Consider superpatch (i). Here the outer boundary is part of
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the quadrilatefal only. In superpatch (ii) it is split up between the quad-
rilateral and the triangle. Imposition of identical conditions in the two
cases may lead to sets {\Itig} which are of different orders N. This will
be shown to be the case —in the next section.

It would seem, then, that for the simplest case there should be
considerable symmetry in our choice of a superpatch. The {ejlj e GJ}
which makes up the @J should be identical and, moreover, should be
placed in a geometric configuration such that an interchange in the basic
patches, ej, of the superpatch can be made without having to change the
conditions imposed at patch boundaries. In other words, the G)J should
consist only of one ring of similar basic patches.

The next order of difficulty would then occur when the basic patches
are not all identical. After that we would have to consider the class of
two-ring superpatches.

The order of difficulty is the order of difficulty associated with
trying to split the spaces Min into the set {\Ifi gV i} which have to sat-
isfy the number of joins specified by the geometrical configuration of the
superpatch. This question will be examined in section 2. 3.

We shall in this thesis concentrate on the one-ring superpatch,
that is, class Sl, with {ej = equilateral triangle}. The questions coupled
with the usage of this ciass of ®J are fundamental enough that clarifi-
cations here could be useful in the construction of the more complex
rings.

(d) We shall conclude this section by conjecturing on the possibility

of constructing superpatches using hexagons as basic patches. The use
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of {Bj = fuel hexagon} is attractive to the physical intuition as the slolu-
tioﬁ q:g in the fuel block has as much smoothness as a polynomial.

Flux continuity and current continuity conditions can then be applied
across fuel block interfaces. Applying the principles outlined in the
previous section, we see that superpatch (i) of Fig. 2.6(d) is where the
space M%\I has been split into functions which are nonzero only on one
side. The next two superpatches (ii) and (iii) split the space into func-
tions which are nonzero on two sides and three sides, respectively. The
corresponding cases of more than three sides lead to higher rings.

Case (iv) of Fig. 2.6(d) is the case of the six sides. Basic element func-~

tions, ‘I’i g’ of two classes ’I‘0 and T3 have to be combined.

2.3 Construction Methods

Given the superpatch configuration we have now to produce a set
{q:k gv k}. There are two approaches to the problem and there are two
;orresponding methods for constructing the approximation space Mm'
We introduced the two approaches in section 2.1 and termed them as

(i) the physical construction

(ii) the mathematical construction.
As the names imply, there is a basic difference in the attitude behind
the two approaches. In the case of (i), we appeal to physical intuition
to construct superelement functions L(Jk g and accept the space spanned
by {xpk gV k} as our approximation space. The conditions used to find
the'superelement functions are a mixture of the interpolatory and the

noninterpolatory sets. We shall refer to this method of construction
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as the hybrid method.

The second approach is much more mathematical in nature. Here
we start with a known space Ej E known in the sense that we have or
can derive a basis, {eg}, in terms of an interpolatory set of conditions.
We then apply the no.ninterpolatory conditions across the patch bound-
aries to the {eg} to obtain the {\pk g} which will be expressed in terms
of linear com‘binations of the {ei} This method will be termed the
generic scheme. .
| The relative advantages and disadvantages of the two methods are
examined in the following sections but before we discuss them let us
examine another possibility for constructing spaces. This is the possi-
bility of using a variational functional to determine the superelement
functions ¢kg given that Min -C PN.' The functional to be used would
have to be one which involved the diffusion equation, eq. (1.1). It can
be seen that the method would then suffer from the same liability which
use of eq. (1.1) as a constraint has. As pointed out in section 2.1, this
is the problem of the introduction of N into the Galerkin coefficient ma-
trices.

We now move on to a description of the hybrid method and the gen-

eric scheme.

2.3.1 Hybrid Method

Here one uses one's physical intuition in determining a set of
conditions to apply to the superpatch in order to find the coefficients of

"pkg' If a set of constraints is to produce a feasible superelement set
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{q;ig} in conjunction with a given superpatch, it is necessary that the
group of constraints satisfy the following test; the number of equations
as represented by the constraints must be equal to the number of coef-
ficients of kag which have to be solved for. This, however, is only a
necessary conditibn. For sufficiency we must also ensure that the con-
straints do not lead to a system of improper or redundant equations. By
an improper system we mean that the system is either inconsistent or
that the only solution is the trivial solution. Redundancy, on the other
hand, leads to a nonunique solution.

Conversely, these tests should enable us to determine the conditions
required to produce a feasible set {q;k g} given the superpatch configura-
tion. |

Let us demonstrate the procedure by considering mesh (c) of Fig. 2.6.
Even though this mesh will not be considered in the remainder of the the-
sis, this is an interesting case and will illustrate several points. Fig-
ure 2.7 is a more detailed illustration of the superpatches in question

and we shall refer to it.

AN VIN

4 5 5
Superpatch (i) Superpatch (ii)

Fig. 2.7. Superpatches of mesh (c) of Fig. 2. 3.
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Concentrating on triangle 145 of superpatch (i) we have, since we

~
are using the triangular PN,(E)' for the superelement function q‘kg which

J
has superpatch (i) for support, in triangle 145,

— N N-i i i
z a,.x yJ triangle 123
i=0 j=0 Y
\ng = ¢ = (2.13)
N N-i i
= b,.x'y’ quadrilateral 2354
S &
| i=0 j=0
Condition Number of Equations
¢, =1 1
¢,_o continuous across patch boundary 1-2 N/2
(point 1 is already prescribed)
$,_3 continuous across patch boundary 1-3 N/2
by5=0 N+1
$¢9_g continuous across patch boundary 2-3 N+1
$,_4 continuous across patch boundary 2-4 N-1/2

(points 2 and 4 function value already
continuous across patch boundary)

b3 5 continuous across patch boundary 3-5 N-1/2

(points 3 and 5 function value already
continuous across patch boundary)

Total number of equations for triangle 145 = 4N + 2
(2.14)

Total number of equations for superpatch = 6(4N+2) (2.15)

Total number of coefficients
using eq. (2.10) = 12 Ky = 6N(N+3) + 12. (2.16)
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We then have

N Number of Equations Number of Coefficients
1 36 36
2 60 72
3 84 120
4 108 180

Only at N = 1 do we have agreement. The other values of N lead to
infeasible sets. Now supposing we want to impose additional constraints
across the patch boundaries, namely those of current continuity. One

possibility is to add the following conditions.
Number of

Condition Equations
8.9 integrated normal current continuity [
ds D = 5 across patch boundary 1-2 plus
' — N-1/2
D Ei’_ normal current continuity across .
on patch boundary 1-2 at N-2 points |
9¢,_5 integrated normal current continuity |
S‘ ds D - across patch boundary 1-3 plus
L N-1/2
D ﬁ normal current continuity across
on patch boundary 1-3 at N-2 points _
9¢,_, integrated normal current continuity
S'ds D — across patch boundary 2-4 1/2
9%5_g integrated normal current continuity
S.ds D—5- across patch boundary 3-5 1/2
9%y _g normal current continuity across
D —5 patch boundary 2-3 N

on

e

Additional number of equations for triangle 145 = 2N
(2.17)
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Additional number of equations for superpatch = 12 N (2.18)

Now we have

N Number of Equations Number of Coefficients
1 48 36
2 84 72
3 120 120
4 156 180

A feasible set now occurs at N = 3.

It will be noticed that the interpolation and noninterpolatory condi-
tions imposed lead to an expression of the form (AN+ B) for the total
number of equations. This holds true in the genéral case and it leads
to a technique for eliminating conditions which would produce infeasible
sets. For example, let us suppose that we wanted to add conditions to
our original set containing function constraints only. We would then

require that

6(4N+2) + 6(AN+ B) = 6N(N+3) + 12 (2.19)
where
(AN+B) = additional equations introduced for triangle 145 by new
conditions.

We can rewrite this as

AN+B=N2-N N=1,2,3,... . (2. 20)

For each N we obtain an indeterminate equation for A and B. These
unknowns, however, have to be integer values and sets of A and B can

be found. However, one still has to resort to trial and error to obtain
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additional constraints consistent with these sets. In any case, eq. (2. 20)
is a simplified version of what was referred to in section 2.1 as a gen-
eral formula16 relating the order of the polynomial N, the number and
type of conditions imposed, and the number of sides which ej possesses,
for feasible sets {npk g}'

Let us now consider superpatch (ii) of mesh (c¢) which must coexist
with superpatch (i). Applying the function conditions to this superpatch

and concentrating again on triangle 145 we have

Condition Number of Equations

by =1 1

$;.3=0 N+1
¢3_5=0 N+1

¢2_3 continuous across patch boundary 2-3 N

¢5_; continuous across patch boundary 2-1 N/2

¢,_5 continuous across patch boundary 4-5 N-1/2

$,4_5 continuous across patch boundary 4-2 N-1/2

Total number of equations for triangle 145 =—g-N + 2

(2.21)

Total number of equations for superpatch = 6(-‘9—21-\I-+ 2) (2.22)

Total number of coefficients
using eq. (2.10) =12 Ky = 6N(N+3) + 12. (2.23)

One can see the problem of using mixtures of {Gj}. F.quation (2. 15)
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and eq. (2.22) are different. This means that in generai one will arrive
at different values of N for feasible sets with the same conditions.

There are a number of other points which can be brought up:

(i) The greater the number of constraints imposed, the higher the
polynomial order of the feasible set. Given the constraint on the num-
ber of variables, this means that there is a direct trade-off between the
defect of the approximation space and the physical conditions which can
be imposed in its definition.

(ii) Unless the physical noninterpolatory condition is imposed on all
the patch boundaries, the approximation 3 will not satisfy that condition.

As far as a critique of the method goes it becomes evident that the
choice of the proper conditions to impose can become quite complicated
when one desires more than one function 'centered' on the center of the
superpatch. There is always the question of whether the conditions lead
to a system of equations which are either improper or redundant. It may
not be possible to complete the space without bringing in all the {SkL},
and it is difficult to see when the need does occur. One may aléo obtain
piecewise-linear dependence without realizing it.

We now turn our attention to the more mathematical approach, the

generic scheme.

2.3.2 The Generic Scheme

It was seen in the last section that the major disadvantage of the
hybrid mefhod is its comparative lack of systematization. There is no

algorithmic procedure for a step-by-step examination of the question of
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redundant or improper equations. The generic method is much more
methodical in nature and gives us precisely that systematization which
the hybrid method lacks. It allows us to build up, step by step, a set
of conditions which do not lead to redundant or improper equations and
is essentially an exercise in Representation.6 We first concentrate on
the basic patch 6. to find a representation for the approximation space
M:I'n We then use these representations in the joining of the basic ele-
meth functions across the patch boundaries to find the approximation
space Mm for the superelement functions qug. In the process of car-
rying out these steps one can not only resolve the questions of redun-
dant or improper conditions methodically but can also redefine conditions
to eliminate these problems in a systematic manner.

Let us begin by examining the triangular FN(E) form. We have

from eq. (2.9) that a function &(r) in this PN space can be written as

N N-i .
Er)= = Z ai.xlyJ
i=0 j=0 Y
agy |1
=[11{aygl[1]1 +[1 x]
00 a o Hly
10 i
_ o
0 0 agff!
+[1 x xz] 0 a), 0 yi+.... (2. 24)
2
%0 ° ° 17

Equation (2. 24) emphasizes the shell nature of the functional form of
k C s
k-
£(r). Each term in the matrix form represents the shell ( z o .lxly ! )
- "i=0
quite like the shells present in a Taylor expansion in two independent

variables.
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Now suppose we can write

Ky
Er) = £ ait.(x,y) (2.25)
i=1
where
KN = dimension of PN'
Then
a, ]
(o =lt, 1| ¢ |=ETxy - A (2. 26)
N
a
KN 1

Let us introduce an operator J,

7= (2.27)

where the Li are taken from the group of operators used in the set of

interpolatory conditions. For illustrative purposes let us choose J

such that
B §(r,) T
JE(r) = e - & (2. 28)
| ap 98 By - VE@ |

where we consider ej to be a triangle abc and ﬁab = outward normal on ab
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We then have from eq. (2. 26)

a

1
s£=109g, ... JQKN] ; (2. 29)
a
Ky |
- 0—
; s, "£(0,0)]
(1), :
If Jg(x,y) = , then Do =gk
0 a
. | *Ky ;
L 0

T ety = | ),

We refer to gi as a standard function of J 1°

Equation (2. 29) can be rewritten as
171
It can be shown then that
_A-l
QJJl = QJIJ (2.31)

where
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QJJ1=[J1’,1 JgKN]. f (2.32)

To aid us in this approach we have two tools at our disposal. The

first is that we know of a simple set {gl(x,y), ceesbp (x,y)}. This is
N

the set Bo = {l,x, Vs oo } We do not know the corresponding operator
Jo. However, we do know the operators corresponding to the Lagrangian
basis sets. These are J, where (J E(r)). = &(r.).

Then the question whether a set of interpolation conditions is proper
and nonredundant reduces to a question about the corresponding opera-

tor J; namely does (QJJ )1 exist, which means that
o

J1 Jx ...| #o. (2.33)
If it is true, then we know that a basis for J is {Ig’—l’ .o os JQK },
N
where
(l‘)i
J-Ei = o |° | (2. 34)
0
| 0 _

To find the functional form for the {gi} is a matter of transforming

to the basis Bo, that is, find Jo'éi.

_ -1
3 ki" [QJJO] 35 (2.35)

Then using (2.26) we have
L(x,y) = 1 x y ...] 7 & (2. 36)

(0]
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Once we have a consistent and nonredundant set of interpolation
conditions, we can go on to look at the imposition of ﬁoninterpolatory
conditions.

To simplify matters, let us consider applying noninterpolatory con-
ditions to the triangle abc only. Suppose we require a function £(r) € PN

such that

ds,, V&) = [, dsT__ - VE(D). (2.37)

fab a

Let us definetwo KN row operators J A and JB such that

C &) 7]
I, = : (2.38)
| Jap ds By - VE |
and
[
Igé(r) = : : (2. 39)
_fac ds I?a.('.i ) vg_

That is to say, the only difference between the operators J A and J B

. . : A ] . A .
is that in one row, J A has [ ab ds 0,y V¢ while JB has [ ac ds n_ .

VE. Equation (2.37) then becomes

I, &(r) = J5E(x) (2. 40)
which is
Q £ = £, (2.41)
JAJBJB— JB—-—

an eigenvalue problem with eigenvalue 1. It must be noted that we



72

must first be certain that JA and JB are proper and nonredundant be-
fore we examine (2. 41).
Now suppose we have a mixture of interpolation conditions and non-

interpolatory conditions,

&(r,) 1
= 0 . (2.42)
fab ds Tap Vg.J -‘rac ds Tae” vE

Once again we define operatore J, and Jg, given by egs. (2. 38)-(2. 39).

Then we divide the problem into two parts
I\ E(r) = TE(r)

1

3 £ = where K = some constant. (2.43)

0
A .
K

One can then obtain conditions for a proper and nonredundant set of
constraints once again in terms of the elements of QJA JB.

It can be seen that the generic scheme rapidly becomes very involved
but it does provide a systematic procedure for generating basic element
functions \Ilgg and superelement functions ¢k g It is more a tool of
analysis than of synthesis but it does point out that a proper choice of
J A and JB can mean much simplification. A general rule is to try to
concentrate the elements of J A and JB symmetrically on the corners

of the triangle abc. This then simplifies the process of joining across

patch boundaries and as a by-product maximizes the number of super-
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patches which are of class Sl. After the corners, the sides of the
triangle should be used for the elements of these operators. The body
of the triangle should be left to the last.

We shall present in the next chapter a number of sets {¢kg} derived

by these methods.

Our main concern in this chapter was the discussion of the problems
involved in the various steps required to arrive at the form of the Galer-
kin equations, eq. (l.16), preparatory to the actual inversion process.
It can be seen that the central issue is the construction of the approxi-
mation space Mm’ One has to arrive at a set of conditions which will
give rise to a system of proper and nonredundant equations equal in
number to the number of coefficients of the required ¢k g and which will
lead to Mm with certain desired overall properties such as a specified
defect. This is in a sense similar to the task faced by nodal methods
where the situation is mitigated by the fact that the conditions are
applied to the approximate solution $ g(_x_') instead of to superelement
functions. The work presented in this thesis could therefore be of use
in constructing nodal schemes.

We have presented two methods of constructing Mm and in the
next chapter, Chapter 3, we will introduce a few specific spaces derived

by using these techniques.
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Chapter 3

SPECIFIC SPACES

We concern ourselves in this chapter with the introduction of a num-
ber of approximation spaces Mm derived by the techniques discussed
in the preceding pages. These spaces have all been constructed so as
not to violate the constraint of three or less than three unknowns per
fuel hexagon. They have also been constructed with the object of pro-
viding answers to some of the questions raised in Chapter 2 regarding
the overall problems involved in the various steps required to arrive at
the Galerkin equations, eq. (1.16).

As we are only interested in the S1 class of superpatches we restrict
ourselves to the T1 subspace of the PN. space. The specific ®J we use
are the ones presented in §2. 2. Given the constraint of three or less
than three variables per fuel hexagon we could divide up our set of
spaces into l1-element, 2-element or 3-element sets. As there is one
element function associated with each variable we shall use the term,
an e-element set, to denote a set which has e variables per fuel hexa-
gon. Rather than divide the spaces we have derived according to this
scheme, we shall discuss them under the broad classes of complete or
incomplete spaces. The a-element division will be made as a finer sub-
division.

Section 2.1 brought up the fact that the constraint of three or less
than three unknowns per fuel hexagon led to a choice between high order
incomplete spaces and low order complete ones. As noted in that sec-

tion, whenever we use the term incomplete we use it relative to the



75

space EN . The space .I;N is the space of all polynomials of maximum
] J

order Nj‘ The term, complete space, is used in reference to EN .
i
Let us now examine the question of the use of complete vis-a-vis incom-

plete ones for the approximation space Mm'

Intuitively one would feel that certain characteristics could be
missing if incomplete spaces are used. But it is not at all clear what
these characteristics are as it could also be said that low order complete
spaces are missing features of the higher order complete ones. From’

a geometrical point of view it would seem that incomplete spaces which
do not contain Fl would not converge to the analytic solution as they do
not contain plane surfaces. This, however, is a question of convergence.
We are con;:erned with accuracy and it is not at all certain how the lack
of this attribute would affect accuracy. It is also not clear if a higher
polynomial order would compensate for the defect of the space. We have
constructed incomplete spaces in section 3.1 with these questions in
mind, and in section 3.2 we present their complementary complete
counterparts.

It should be noted before we begin our presentation that the inclu-
sion of the three-element sets is rather academic from the viewpoint of
computation time, but for completeness of argument we shall include
them in the presentation.

The rationale behind the various choices will be discussed in the

final section, §3. 3.
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3.1 Incomplete Spaces18

Once incompleteness is allowed, our set of permissible spaces be-
comes much larger. There appears to be no fixed rule in making a
choice. We therefore have to resort to our physical intuition. In other
words, this is where we use the physical construction approach. We
apply the hybrid method to find superelement functions L.',Jkg.

For our l-element set, we construct a superelement function on ®J
which at the center of @J will represent the value of the flux. For our
2-element set, in addition to a flux function, we use another superele-
ment function which represents the normal component of the current
integrated around the boundary of G‘)J. We should thus be able to monitor
the net inflow of neutrons into a particular volume. To keep the functions
of the two elements distinct, we require that the integrated current ele-
ment should have a value zero at the center of ®J. In mathematical
terms this is similar to asking for linear independence of the two ele-
ments.

Continuing in this vein, we require our 3-element set to have one
superelement function for the flux at the center of G')J, one for the x-
component of the current and one for the y-component of the current at
the center of ®J. The same condition about keeping the functions of the
elements distinct required in the case of the 2-element set will be im-
posed here,.

It can be seen that we have three potential ¢~element sets which
have appealing physical characteristics. The conditions used in the

preceding paragraph are, however, not sufficient to define the sets.
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Most important of all, one still has to decide on the polynomial order N.
We choose to examine two possibilities N = 3 and N = 9. In passing let
us say that the choice of the cubic space is motivated in part by the en-
couraging resultsl-3 which have been obtained with it for rectangular
geometry. The rest of the argument will be left to a later section.

We have some more conditions left to be imposed and these will be
detailed with the mathematical formulation of the respective set,

We now turn to a detailed description of the various spaces. Our
discussion will be divided into two parts. The first section (3.1.1) will
examine the cubic incomplete spaces, that is, the case where N = 3.
The second section (3.1.2) will concern itself with the case N = 9, the

case of the QQ-order incomplete space.
3.1.1 Cubic Space

As discussed in the opening section of this chapter there are three
possible a-element sets. We have constructed three such sets for the
cubic incomplete space and will introduce them in the order of increasing

a where e¢=1,...,3.
(a) 1-element set

Consider the superpatch © J° hexagon abcdef, of Fig. 3.1 com-
posed of the basic patches {91, oo, 96}, i.e., triangles 1-6. We im-

pose the following conditions on each of the basic element functions
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Fig. 3.1. Superpatch — regular mesh.

1f 6f v¢F .. . . £ *f
{\IfJg, oo, \IfJg} which define the superelement function "pkg’

: it -
(i) \IrJg(O,O) =1

(ii) qf}fg(-a@J) =0

>kR.efer to section 1.2.2, eq. (1.22) for a more detailed statement of the
relation between the superelement function ¢kg and the basic element
functions \I/i g

TTo simplify notation superscript p has been added to the superelement
symbol Jg making it 4;'3 g’ the J!:E B-type superelement function. The
support for this superelement function is the superpatch ®J and we
shall refer to its 'center' as the Jﬂl- superpatch center. In addition,
the basic element function associated with this superelement function
over the basic patch ej will be denoted by the symbol \If}ﬁg, where it is
understood j is §uch that ej forms part of the superpatch @)J. ej is
the support of \I':]Iﬁg
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kf

it _ -

(iii) \Ing ng at ej Ao,

] A Logif oD . kf o

(iv) o V\IfJg D V‘I'Jg;at Bjﬂok ji,k=1,...,8,

A . .
where D normal to ej n 6, pointing from ej to 8, .

8®J = outer boundary of ®J.

In the case of a condition set with 60°-rotational symmetry, condi-
tions (iii) and (iv) become

]f

it
) \I’ngejﬂej_l ¥3g'o N,

N A jf A if
(vi) n, ,.-ved =1, , v
-1 Jg'e.Noe, +1 Jgle.Ne,
J-4 g it V-1 3J g i Ul
where it is understood that 60 = 96 and 67 = el. This simplifies mat-
ters enormously as we have now decoupled the system of equations for
G)J into identical subsystems for each Oj. This means we will only have

to concentrate on a single ej to solve for ®J' Let us concentrate on 96’

namely the triangle oab. We have that

2 3
Wi -1-4@) +3Q) -2 (-DE . G

In the finite element method it is much more convenient to think in
terms of geometrical shapes than in terms of functional notation as the
same geometric surface will have different functional notation depending
on how Gj is oriented and translated with respect to the x-y axis. We
shall refer to the geometrical shape represented by eq. (3.1) as

ICI

(x,y). The superscript stands for 1-element cubic incomplete set.

We should point out that the corresponding generic approach to obtain
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the result represented by eq. (3.1) is presented as a by-product in the
discussion of section 3.1.1(c) on the 3-element set.
We then have that the set {\I/';;, cee ,\I’E}fg} which makes up the super-

element function qug is {L iC I(El, ?1), cee, giCI

(is,ys)}, where the axes
(§6,§6) is the set (x,y) and the axes ('}Ek, §k) is the set (x,y) rotated

counterclockwise by km/3.

(b) 2-element set

P

We have here two qJJg to define. The conditions common to both

are

. iB _
(i) \Ir'J]g( 8®J) =0

s B _ kB
(ii) \IIJg ‘I’Jg at ejnek

(iii) S ds ﬁjk . V\Ifiljpg =[ ds ﬁjk . V\I)J{g at Gj Ne

. ~ . B oA kP
(iv) njk V\I/Jg njk V\IrJg

k

at a point r, on ej ne,.

Referring to Fig. 3.1 r_  is chosen to be the midpoint of Gj n 0,

0
The conditions which give the two pr g their distinct physical char-
acter are
f
¥ B
[flux function] [integrated current function]
ip -
(v)  ¥y7,(0,0) = 1 0
B -
(vi) S ds n, V\IrJg- 0 6
J
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o, = outward pointing normal on outer boundary of ©

1 J°

Once again in the case of a set of 60°-rotationally invariant condi-

tions we have that conditions (ii), (iii), and (iv) become

. g - glP
(vi) ] le Ne. l‘q’.JIg,ejne

j+1
I A . - Jp
(viii) [ ds n;_y; V\Ifnge ﬂe i [ ds n33+1 nge Ne
i a Jﬂ . volb
(i) My-15 " V¥ 'mldpomt R+l VY3 g ,midpoint'
8.Ne6 6.Ne.
i -l i g+l

We can then again concentrate only on triangle oab, obtaining

T =§2 (x,y). (3.3)

2CI

We refer to the shape represented by eq. (3.2) as (5 (x,y) and that by

2CI

eq. (3.3) as Lo (x,y). It is interesting to note that \Ilgg(x, y) can be

written as
- 1-36F 4G 20D |
\,_1: [- -——-—(1 T)J (3.4)

SO
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2,y = 1, y) + \f{—s_ 20, ). (3. 5)
W lﬁ Gﬁ . f .
e thus have that the set {\If ig? }correspondmg to prg is
2CI 2C CI -
{g (Xl’yl seeent] [(XG’ ys} and that the one for prg is {t_,z ®,.5,),

., §§C1(x6. ys)}.

(c) 3-element set

This set is quite complicated as we lose 60°-rotational symmetry.
It will be easier and will be more informative if we start off by looking
for a basis for the complete cubic space 133. Consider the triangle oab

of Fig. 3.1. Recalling the generic scheme, define
It =t 7

9t(o) [/ ox
9E(0)/ 8y
E(b)
9&(b) [ 8x
8&(b)/ 8y (3.6)
£(a)
9€(a)/ 3x
9t(a)/ 8y
| 9&(g)/ 3y

It can be shown that J 3¢ is proper and nonredundant. The operator
is also so defined that, allowing for the constraints of continuity at the
corners of the triangle, the determination of function shape along the

boundaries of the triangle are independent processes. We will therefore

*
We use the convention that §(e) = §(£a).



83

make use of it to find a basis for 53. But before we do so let us com-
ment on an interesting point. An operator Jéc defined so that the only
difference between Jg . and it is the replacement of 8£(g)/dy with

/ ab ds ﬁl - V§ would lead to, aside from one normalization factor, the
same basis functions. Certain combinations of conditions imply satis-
faction of combinations of other conditions. It becorries imperative to
use the generic scheme for higher order spaces if errors of redun-

cancy are to be avoided. In any case using the generic scheme we

have for §3 the basis

e -1-3 GF +2 () = e
o ey =2 (%) (1 -—%)2 = £3%x, y) (3.8)
vl () = 2 (—i;) (1 -%)2 = 3%, 3) (3.9)
B =2 (1-7) [ G) - (@) =i
and
J : ]

\I/kg(x,y) = r§1 dkrwrg(xl,yl) k=5,...,17

(3.11)
4
(x,y) = 2 dkr rg(xz,yz) k=8,...,10

where the axes (Xl’yl) and (xz,yz) are as shown in Fig. 3.1. With the

exception of \Ifig, which € T°, the set fu] } given above T!. This is
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in marked contrast to the cubic Lagrangian set discussed in section 2. 1.
As far as reduction of variables is concerned the cubic Lagrangian set
is less efficient. In passing let us note that \IfJig is identical to the
u°+(y)* of Kang's 1-D cubic Hermite set.! This draws attention to the
possibility of using the three natural axes of hexagonal/triangular geom-
etry to derive element sets. More will be said about this possibility in
the next section.

This basis for 1_53 has four fundamental shapes. These are the ones
given by eqgs. (3.7)-(3.10). We shall denote them as {t’,?c(x, y)} where

i=1,...,4. To find the three superelement functions, ﬁg of @)J we

apply the following set of conditions. The set of common conditions is

. B _
(i) xlf?] g(aGJ) =0

- iB _ kP

(ii) \p}]g = \IfJg at 9j n 8,

A iB T kp

(iii) njk V\IlJy njk V\IfJg at Gj n 0,

The conditions which give the distinct physical character are

¢§ g [glﬁztion] ¢§g [x-current] 4%’ g [y-current]
(iv) \If}ﬁg(o, 0 = 1 0 0
v) a% \pg"g(o,m . 0 1 0
(vi) 9?:? wg‘;(o, 0) = 0 0 1

;ESee eq. (3.186).
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As this set of conditions is not 60°-rotationally symmetrical, we
can not in this case just concentrate on triangle oab of Fig. 3.1, but
have to solve for the hexagon abcdef as a whole. The ngy are linear

combinations of the Z,,:.sc(x, y)i; a different combination for each 6..
1 J

4 .
B =z A 3c . .
¢Jg(£) 2 akﬁgk (x,y) re GJ (3.12)

We present the following tableau for the {aliﬁ}

£
Vg
° P o3 ®y % %
j
al. | 1 1 1 1 1 1
J
al. | o0 0 0 0 0 0 (3.13)
i
al. | o0 0 0 0 0 0
al, |-3/40 -3/a0 -3/40 -3/40 -3/40 -3/4¢
X
W
6, 8 83 8y °5 %%
j
al | o 0 0 0 0 0
al | N3/2 N3/2 o -N3/2 -NF2 O (3.14)
al .1/2 -1/2 -1 -1/2 1/2 1
al | © 0 1/2 0 0 -1/2
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Jg
! O ®3 %4 % %
ailly 0 0 0 0 0 0
aj2y 1/2 -1/2 -1 -1/2 1/2 1
(3.15)
a%y -N3/2 -N3/2 0 N3/2 N3z 0
aii;y 0 N3/3 -N3/6 0  -N3/3 N3/

It should be noted that the tableaux of eqgs. (3.13)-(3.15) are non-

J
4p
ness is due to the fact that in the space P3 our set of physical conditions

unique; specifically a can take on different values. This nonunique-
does not lead to sufficient equations to completely define our polyno-

%
mials and as such is a good example of a case where one should be
cautious in applying the physical construction approach. For q‘gg we
have chosen a‘l ¢ SO that this superelement function is identical to the

superelement function of the 1-element cubic incomplete set.

We now address ourselves to the Qm-order incomplete space.
3.1.2 Ninth-Order Space

This is an incomplete polynomial space PN with N = 9. We concern

ourselves here only with the 3-element set possibility.
(a) 3-element set

Consider the superpatch, hexagon abcdef, of Fig. 3.2. In hexago-

*Refer to Appendix D.
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x; (/y)
A
|
(-2/N3, 0) { b (/N3 0)
f X
c
x3‘/ \\xz

Fig. 3.2. Superpatch — regular mesh. Axes for ninth order
incomplete set.

nal/triangular geometry the natural set of axes is a three-axes set.
An example of such a set is the (xl,xz,x3) set shown in Fig. 3.2.

Consider the cubic Hermite set of Kang's1 in 1-D. These are

v—3(1+%)2_2(1+%)3 -0<x<0
ugx) = 3(1 -%)2 - 2(1 -—’15-)3 0<sxs<{ (3.16)
_.0 otherwise
o) (D) e
D eme BT
_‘0 otherwise

Using these we can form the following set.



88

q{f]g = u (x)) u_(x,) u_(x5) (3.18)
Lpgg = u,(x)) u (x,) uo();3) (3.19)
¢§g = \F_lg[uo(xl) u, (x5) uglxg) - u (x,) u (x;) u,(x3)] (3. 20)

It can be shown that this set of ninth-order piecewise polynomials
satisfy the following conditions. Conditions common to all three super-

element functions are

(i) w}ﬁg(a@J) =0

(ii) B - vwgﬁg(a@J) =0

(iii) \Iffg = \11152 at 6, 10,
(iv) ﬁjk . v\p}ﬁg = h‘jk : V‘I’}}:g at 0, N 9.

The conditions for the distinct physical character are

¢«flg [gmu}étion] q;}‘g [x-current] 4%’ o [y—currentl
V) wfi]pg(o, 0 = 1 0 0
v w}"g(o,o) = 0 1 0
(vii) 8—337 wg‘;(o, 0) = 0o 0 1

Condition (ii) is one which was not satisfied by any of the previous
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sets. This condition in conjunction with condition (iv) ensures that the
approximation, $g will have derivative continuity. All the previous
sets lead to $ g with discontinuities in the gradient.

This ninth-order set can in no sense be regarded as having been
derived from a set of conditions. There are not enough equations to
define it in the set of conditions (i)-(vii). The set was constructed by
appealing to the analogy in rectangular geometry and as such illus-
trates the fact that as we move up to higher order spaces our limited set
of physical conditions is insufficient to define our element functions.

We now turn our attention to the complete spaces.

3.2 Complete Spaces9

Before we present our various complete sets {\I/ig 74 i}, let us
dwell on a few features of our approach.

Given that the complete polynomial space EN- is to be used for
M:I'n , we still have to decide on the spanning set {.\]Iri g 4 i}. By restrict-
ing Jourselves to S! we have restricted {\Il‘lg\?’ i} to T! but even then
we still have a latitude of choice. We chose an approach which we shall
term the shell idea. The C,; shell set is the set {\Ifi g ¥ i} which forms
a basis for the space El‘ The (C+C,) shell set is the set {\Ifig V i}
which is a basis for the space 52. In general, then, the (C 1+C2 co +Ck)
shell set is a basis for Ek‘ This means that the Ck shell set spans the

- A *
space Pk n PL_ 1 This approach therefore raises the possibility of

5
The ' symbol indicates the complement.
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varying the accuracy attainable by systematically adding or deleting un-
knowns. It also offers us the possibility of using a low-order space
fine-mesh scheme simultaneously with a high-order space coarse-mesh
scheme. It is made all the more attractive by the fact that we are re-
stricted to superpatches ®J of the class Sl. From the programming
point of view all that is needed is to vary the number of unknowns
'centered' on the centers of the superpatches.

We conclude this discussion by pointing out a difference in attitudes
between the construction of the complete shell sets and the construction
of the incomplete sets of section 3. 2.

Physical intuition played a major part in the construction of the in-
complete sets. We went so far as to associate a 'physical' role with
each superelement function. In the case of the complete shell sets such
'physical' interpretations can be attributed through the interpolation
conditions used in defining the {\I/ig A4 i}. We choose, however, to think
more in terms of geometrical shapes than in terms of physical charac-
teristics. When we join across patch boundaries to form the superele-
ment function pr g using the constraint of function continuity, we attempt
to use the same basic element function \Ifi g in each of the basic patches
of ®J.
identical shapes on the sides of Gj for which it is nonzero; a property

This implies that the basic element function \Ifgg should have

%
which we shall refer to as line median symmetry. In other words, the

We shall refer to median symmetry as symmetry of \IfJ about the median
bisecting that particular side of 6, j on which \IIJ ig is 1dent1ca.11y zero.
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8. and their corresponding {\Ifig Y i} are related by linear coordi-
nate transformations. Completeness and linear independence are prop-
erties preserved under linear transformations. Function continuity

across the patch boundaries is guaranteed if the {\112 \/ i} has line

g
median symmetry, a property which is by no means always obtainable.
If we were to associate physical attributes, then we would in general
have to use different basic element functions \I':iig in the contiguous Gj
of a @)J before we would be able to form the ¢Jg. The 3-element in-
complete cubic set of section 3.1.1 is an example of such a construction.

Succinctly expressed, we attempt to transform shapes and not inter-
polation conditions in the construction of {ka gv k} for our complete
shell spaces.

We now turn our attention to describing the complete spaces. The
section is divided into 2-D and 1-D spaces. Section 3.2.1 discusses
2-D sets. We gradually build up shell sets starting with C1 and con-
cluding with (C 1+Cz+03) and in the process of doing so emphasize
various features of the approach. Section 3. 2.2 presents a 1-D 'ana-
logue' of the 2-D (C1+C2) shell set. It will enable us to examine in

1-D some of the questions which arise in the construction of the 2-D

spaces.

3.2.1 2-D Spaces

Equation (2. 24) pointed out the shell nature of the triangular form

of ’1\5N (r). One systematic procedure of adding functions to the set
J
{w! g \/ i} is to think of the process as the building up of shells. The
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C, shell is the basis for P. and the sum C, +C, ... +C, is the basis

1 k

for -P_k. As one increases the number of variables/fuel hexagon per-

missible, one can build up to higher and higher order shells. The sum
k

Z C. has an analogue in the Taylor series expansion in two indepen-
i=1

dent variables, and it is conjectured that it is possible to show that the

order of the truncation error will be the order of the truncation error
of the highest complete shell. If this is so, then there is the possibility

of having mixed orders of accuracy without having to alter mesh size

g}’
Consider the triangle oab of Fig. 3.1. Let us define an operator

by just adding functions to or subtracting functions from {ka

J 1s such that

g€(o)
Jlsé(x) = | &(a) (3.21)
&(b)

The standard functions for this operator is the set

; y
\Ifffgl(x, » =ty =(1-5) (3. 22)
\Il]Jchl(x, y) = L?l(xl,yl)
Vol y) = 15 (g0 3p) (3.23)

This set is the shell C, and it is a basis for the space i—;l' As it
also belongs to Tl, we only require Sl superpatches. The corresponding
superelement function qu’é, for the superpatch G‘)J, hexagon abcdef of
Fig. 3.1 is composed of the basic element function set {L(lzl(fl, )71), cees

Q?I(SES,S"G)} where gcl:l(x, y) is the fundamental geometrical shape for
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J,4» namely the one represented by eq. (3.22).

We can now add elements to Jls to obtain st,

£(o)
g(a)
£(b)

2s§ = foa ds aoa - VE . (3. 24)

A
Iob ds b \43

/N
Iab dsth, - vE

L .

where ﬁaﬁ is the normal to side ap of the triangle oab shown in Fig.3.1

pointing away from the interior of the triangle.

Three standard vectors of st are

o] (0] To]

0 0 0

0 0 101

1] lo| ond 0

0 1 0
Tas| O] T2\ %) stit

They form the shell C2 and in functional form are identical to the cur-
rent superelement function, eq. (3. 3), of the 2-element incomplete cubic

set. We have

yN3

y
Cz(x, y) = C,(lzz(x, y) = - 7 (1 _T\) (3T 25)

ol
og
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ic?2 2
\If,f)(fg (x,y) = écf (Xl’yl)
jc2 _ ,C2
\I'ag (x,y) = Ly (xz,yz). (3.26).

(C1+C2), the set {\IlJlg, e ’\I'Jsg} given by egs. (3.22)-(3.23) and egs.

(3.25)-(3.26), forms a basis for the space P2'

suffice. It is of interest to note that there is a difference between this

As C,€ T, s! win

basis and the Lagrangian quadratics which are determined with the oper-

ator J2L’

£(o)

£(a)
| &)

Jor € = (3.27)
2L £(g)

£(h)

6

where
g = point on oa

h = point on ob

i = point on ab.

" :
. As shown in Fig. 3.3 this leads to s! and S2 superpatches. The
Lagrangian quadratics are less efficient than our (C 1-i-Cz) set. We shall

also refer to this set as the perturbation quadratic set as one can think

of it in terms of the quadratic perturbation C2 being added to the linear

*
Refer to section 2.1 which presents a detailed discussion of the

Lagrangian cubics and the classification of superpatches.



Lagrangian quadratic functions § of class 'I‘1

o

\ - 7\
JAETAA

o
0\
g x h =
a 0 O 0 b
i
Legend

0 =& = 0 at this point
x = § = 1 at this point

=  corresponding superpatch

Fig. 3.3. Superpatches for Lagrangian quadratic set.T

n

TRefer to presentation in section 2.1 on Lagrangian cubics for a more

detailed discussion.
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set Cl' The corresponding superelement sethastwo functions ¢§g with
support ®J. These are q;f;; which is exactly the superelement function
for the C1 shell set and q;gz The corresponding basic element set

1 6 c2 . c2 - c2 -
{\I’ig’ ces ,\Ilig} for ng is the set {Ll &l’yl)’ PR (356, ys)} where
the axes G{k, Yy) are as shown in Fig. 3.1.

The remaining three standard vectors of st are the ones

— - g

1 0 0

0 1 0

0 0 1

K 0 and BE

0 0 0
JZSi-O_ J2sf..0._ JZS ..0_

It should be noted that these are not the J 2 vector form of the three

linear functions, egs. (3.22)-(3.23) of Cl' These are
1] To7] To]
0 1 0
0 0 1
x|’ X and b
x b X
J2s x st X J2s x
SR - . DU

where x represents a nonzero value.
To conclude this section on the space Fz we present a set of func-
tions which does not span the space .151 but which with the set C2 spans

the space 52.

. ¥ \2
\Irf;Q(x, =8, = (1 -7) (3.28)
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JRQ(X y) = QRQ(xl,yl)

\IrgI;Q(x, y) = ;?Q(xz, o) (3.29)

This set belongs to Tl, so once again only Sl need be used. It

shall be referred to as the regular quadratic set. As with the (C1+C2)
p

set is also has two superelement functions LIJJg with support GJ. These

are "ng and ¢JQ where the basic element set for LIJRQ

{L (xl, Yi)seeenty Q(is,ﬁa)}. We shall now turn our attention to the

space P3.

AJ operator could be constructed by adding elements to J 2g°

3s

[ &) ]

€(a)
£(b)

A .
Ioa ds n - vE

fob dsf . - VE

ob

(3.30)

3 N
3s fab ds n vE

ab
- v£(o)

v--B ’

9 ° v &(b)

r’ﬁ
m, - vé(a)

L&(r) _

where the unit vectors are as depicted in Fig. 3.4 and the operator L
is left undefined. The elements are added in two subshells, one of a

group of three and the other of a group of one. The group of three are
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b (£/N3,40)

Fig. 3.4. Basic patch for J3s operator of eq. (3. 30).

conditions centered on the corners of triangle oab. The group of one

is the remaining condition. The Cé subshell is formed by

0] To7 07 KB
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ' 2 . 0
R 0 and 0 while the C3 subshell consists of 0
1 0 0 0
0 1 0 0
0 0 1 0

X X _x_J i l‘

For Cé e T1 we have that C; is composed of the set,
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\n3°3(x ¥ = 135, y) = z( )(1 -7)

JC3 _,3c

jic3 3c
\IfJ (x,y) L3 (xz,yz). (3.31)

It should be noted that the shape represented by ggc(x, y) is that of

eq.(3.9). The remaining subshell Cg consists of

¥ 009 = AL, 9+ 1556, y )+ 05 vp) - (et B L300k, )]
(3.32)

where

A = a normalization factor

2oy - 2E) (1 -5)
30, - z<1 -%) @) - @]

a =Iob ds VQZ (x,y)

B=[__ds ﬁ:)é Végc(x, y)

oa
'ﬁY.e = outward normal of corresponding side.
The shapes represented by ggc(x, y) and ch(x, y) are those of egs. (3. 8)

and (3.10).
The subshell cé e T! but the subshell cg € T°. This leads to dif-

ficulties as S1 no longer suffices and S° will also have to be used.
It would appear from Fig. 3.4 that the 'natural' set of axes to use

in defining the operators J for the construction of these shells would
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be the set (x,y), (Xl‘yl) and (xz,yz). We conclude this section with
shell sets constructed by concentrating the interpolatory conditions on
the corners of triangle oab of Fig. 3.4 and using this 'natural' set of

axes. The corresponding operators st and J3s are

£(o)
£(a)
£(b)
T = | A, - vE(o) (3.33)
m, * VE(b)
_1?13 - vE(a) _
B (o) N
£(a)
£(b)
i, VE(o)
A\
m, * VE(b)
J3S§ = . (3. 34)
mg - VE(a)
k; + V&(o)
kK, + VE(b)
’123 - VE(a)
| L&)

C2 now becomes
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97 }’2)

\IIJ (x,y) =30 CI(x.y) + f—géém(xl, y) = '\/'_ 2CI(X

=y +-‘11—(3x2‘5y2)

v Gy = d__g?f‘(x, y) -3 2,y + £ = 57

1°71 20 Y2)

| 2CI 2C1 _
\Il6g(x,y) J_—_éz (x,y) + »J—; (x,,5,) NEY 2; (xz,yz)
= v, + 2y (32 - 552) (3. 35)

&% = - T (),

This is the current function of eq. (3.3). For C:I,, ETI, we have

where

that Cé is composed of

Wiy = 5%,

Jc3(x, y) = ’;2 (xz,yz) (3.34)

and C

7] o 003 = AL(1 --—)[3(0 (‘I)} (3.37)

where A = a normalizing factor.
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These are the functions of egs. (3.8) and (3.10). It can be seen
from eq. (3.36) that we have lost the property of line median symmetry.
Cg is now € T3 but C2 has become c T°. Cé remains € Tl. We have
not managed to avoid the use of S° and have in addition introduced the

use of S3. The operators of egs. (3.24) and (3. 30) are therefore to be

preferred to the operators of egs. (3.33)-(3. 34).
3.2.2 1-D Spaces

We present in this section a set of two quadratic functions constructed
by the use of the hybrid method. This set shall be referred to as the 1-D
hybrid quadratics.

Consider the 1-D 'superpatch' abcde, ®J, of Fig. 3.5. It consists

X X X X X
ﬂl- 2 j f-1 j+1 lﬂ j+2 ﬁ"l j+3 ,QI+2
0 | 1 | L
a b c d e

Fig. 3.5. ‘'Superpatch' for 1-D hybrid quadratics.

of the four 'basic patches' ab, bc, cd and de; ej, e, ej+3. We define
the two functions by imposing the following conditions. Conditions com-~

mon to both functions are

By = O GiBray -
\Ifig(a) = a—;\llig(a) =0

3B,y - 8 3B, -
\I'ig (e) -ax‘I'ig (e) =0



Bp) = ¢it1P
\Ifig(b) = \I,ig (b)

I 9 iBy = pitl 8 Gitlp
D ox ‘I'ig(b) D ox \I'ig (b)

j+ep _ o J+3B

" " " "
pit2 a% ! 2Bg) = pit3 a?}-{-wgggﬁ(d).
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(3.38)

The conditions which give the functions their unique physical character

are

Ll{g [flux function]

npicg [ current function]

kp -
\Ifig(c) 1 0
9 KBy =
Kk = j+1, j+2.
(3. 39)
These lead to the functions
w3y = S (xex,, )2 =t (x)
ig h2(1+a) £2+2 1
W2’y - - % (xxp?+1 = thw
g (a+n? ¢ 2
\If;.i+l(x) = - & (x-x )2 +1= Cf(X)
'€ (etDn® ¢ 2
o (x) = © 2 - f - ¢f (3. 40)
. X) =75 (X—X,Q—z) = él(x-xﬂ_2+x£+2) = gl(x+4h) .

g h%(1+a)
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f
for q;ig and

93000 = 2h(i+a) (x4, 9)% = L5

¥l 2% = - 5(':%% (x-x ) + (x-xp) = L5(x)

vl %0 = 2(—::—%); (x-x)? + (x-xp) = L5(x)

\I/gg(x) ilrwrvor (x-xﬂ_z)‘z: LS(xmxp_gtxgy,) = LS0xta) - (3.41)

for tpfg‘, where

,-Di i
DJ+2 Dj+1

h=Xpio " Xpp) T Xy “Xg TR T XKp ] TXg_ 9" Xp -

This set is an instructive one and we shall use it here to illustrate one
of the questions which arise when one uses the physical construction
approach.

The basic ambiguity or flexibility is that there is a choice of
where to 'center!’ \.p‘;g. We cannot center it at Xg as that leads to
linear dependence and we cannot center it at x 0+4 28 that will lead to
the unphysical condition of forcing the approximation '$g to be 0 at
point e. Even with the elimination of these possibilities we are still
left with a number of choices.

Suppose that we center it at x 043 This means that the spanning

set for MT% s {;f (x-3h), {S(x-3h)}. The spanning set for Mit3 s
mj+4 2 2 mj_{_3
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" .

{gf(x). tS(x), éf (x+h), £S(x+h)}. M? % and M3 are different spaces.
1 1 1 1 mj+4 mj_*_3 :

This is the difficulty which was alluded to in section 2. l(c) in the discus-

sion on polynomial spaces.
If we center q"iﬂg on Xy, We have that the M%\I are identical.

fjt4 gojtd ofits gejtdy

: #+3
The spanning set for My ° is then _{\I'ng’ ir1g Yg i

jt4
{Lg(x-Zh), gg(x-2h), gti(x), ;T(x)}. This spans the ID'Z space but does not
form a basis for it as t;fl(x) =-t2T gcl:(x). We shall use this 'centering'
scheme in all our work with the 1-D hybrid quadratics. This can be
regarded as our 1-D analogue of the 2-D P, space.

We reserve further discussion of the 'centering' problem to sec-

tion 3. 3.

3.3 Set Choice Rationale

The specific spaces discussed in sections 3.1 and 3.2 were all cho-
sen to illustrate and to resolve certain questions which arise in trying
to use the finite element method with our specific constraints.

We give below a discussion of what these questions are and how we
intend to answer them. Given the complexity of the problem it must be
understood at the start that we can only hope to resolve the questions in

numerical terms of accuracy versus computational time.
(1) 'Centering' Scheme — Physical Mesh versus Mathematical Mesh

The 'centering' question touched on in section 3,2,2 is part of the
larger problem of using the physical approach to contruct the mesh {ej}.

Up to this point we have only discussed the use of the two approaches,
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mathematical and physical, in relation with the construction of the func-
tion spaces. A corresponding distinction can also be made between the
approaches which could be used to construct the mesh {6].}. In all the
work of the previous sections we started off by choosing the basic
patches ej and constructed superpatches GJ by 'joining' ej in a manner
dictated by the choice of the approximation space Mm' This approach
will be termed the mathematical approach. But, just as we accepted
the Min as 'given' when we use the hybrid method to construct the
superelement functions ¢k g via the physical approach, we could also
resort to a physical approach in the construction of the mesh by starting
off with the superpatch, C-')J, appealing to physical intuition in the impo-
sition of superpatches on Q@ and accepting the resulting {Bj} as given.
In 2-D the choice is not only one of 'centering' but also of 'orienting’'.
The difficulties, however, are identical to the ones outlined in section
3.2.2 for the 1-D hybrid quadratics. We shall refer to the {ej} obtained
in this manner as a physical mesh and reserve the term mafhematical
mesh for the mathematical approach.

The physical mesh which will be used in this thesis is shown in
Fig. 3.6.

Two superpatches, the hexagons ABCDEF and abcdef, are depicted
in Fig. 3.6. The basic patches {Gj} are now the triangles of the osS
type and not the triangles of the ;)bc type which was the case for the
superpatches derived in the previous sections. What we héve done is
to allow the superpatch to have a physical identity of its own and imposed

it on the problem in a manner appealing to our physical intuition. In the
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Material
hexagon

Fig. 3.6.
Physical mesh.

Legend

——-— Superpatch boundary

case of Fig. 3.6, we have 'centered' it along with its accompanying
superelement function, on the center of a fuel hexagon and interpreted
it as representing the region of influence of the fuel hexagon on its neigh-
bours.

We shall use the following superelement sets {upi g} with the physical
mesh.

(i) The shell C, defined by egs. (3.22)-(3.23). With this mesh the
use of C1 can no longer be regarded as merely equating Min ~ with Fl'
Consider the basic patch triangle osS. The spanning set forJit {\I/?)Cgl,
\Ilglcgl, \IlJocgl, \Ingc;l} does span ;1 but there is a linear dependence present.

(ii) It appeals to the physical intuition to use the two-element incom-

plete set egs. (3.2)-(3.3) with the physical mesh. The integrated cur-

rent element function of this set will allot a degree of freedom to the net
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flow of neutrons into the adjoining fuel hexagons.

Let us conclude this section by pointing to an inherent difficulty of
the physical mesh idea. This is the question of boundaries. Consider
Fig. 3.6. In order to fit the boundary, we will have to shrink the super-
patches associated with the outer ring of fuel hexagons. This means
that the Mgn will not be identical. What was once a complete space
may becomeJ an incomplete space. This is the inherent drawback to
starting with G')J and not ej. To fit boundaries one has to devise var-

ious @J which aside from the difficulties pointed out in the preceding

text may not even be 'physically' appealing.
(2) Incompleteness

As pointed out in section 2.1, given the constraint of less than
three variables per fuel hexagon, we have a choice between low order
complete spaces and high order incomplete spaces.

The cubic incomplete spaces derived in section 3. 1.1 will be used
for the class of high order incomplete spaces. Those spaces were so
constructed that as we increase the number of by g per fuel hexagon
we decrease the defect of the space. It must be noted that these spaces
are 'completely' incomplete. They do not sﬁan 53, 52 and ?’1. This
is an important point as one could always construct a set of incomplete
cubics which does not span 53 but spans 52 and -131.

For the complete spaces we use our shell sets derived in sec-

tion 3.2.1. They will show the effect of increasing N, the order of the

polynomial space.
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(3) Condition of Join

As we are working in a piecewise polynomial space, the smooth-
ness of our approximation $ depends upon the degree of continuity we
impose in joining the {\IlJlg} to form the set {q;ig}.

We restrict our work to the sets {Gj} for which GJ. N Gk fall in
regions of homogeneous material composition. The analytical solution ¢
has all orders of continuity in these regions. Our ninth order set given
by egs. (3.18)-(3.20) leads to a $ with continuity of the first derivative.
The incomplete cubic sets lead to a $ with only function continuity. If
we compare the results of the two incomplete 3~-element sets we will
be combining questions of join condition with that of defect of space and
order of space. We will, however, obtain an ordering of importance of
the various competing effects. It should be noted that the ninth order

set is also 'completely' incomplete.
(4) Conditions within ej

As material interfaces fall within our basic patches the problem
of primary interest is whether or not derivative continuity at these in-
terfaces is an adequate alternative to current continuity. This question
has been addressed before.z—3 We shall endeavor to be slightly more
quantitative by presenting 1-D analytic and numerical parametric cal-
culations. The direction of our 2-D work was in part motivated by

these results.
(5) Low-Order Space Fine-Mesh versus High-Order Coarse-Mesh

This question is a complex one as the answer is dependent upon
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~ the flux shape being approximated. Nevertheless it is a real question
as we do have the choice of usihg either the fine mesh of Fig. 2.6(a)
with the complete linear space or the coarse mesh of Fig. 2.6(b) witﬁ
the complete quadratic space. The spaces in question are the shell set
C, or the double shell set {CI+C2} derived in section 3. 2. 1.

Our cbnclusions using fhese two sets can only be considered to be
valid for a range of flux shapes comparable to the one of our benchmark

problem.
(6) Boundary Treatment

The use of regular hexagonal superpatches with the coarse mesh of
Fig. 2.6(b) leads to difficulties with alignment of boundaries. One has
to resort to other irregular polygons for an exact alignment. This
makes it even more important to think initially in terms of ej rather
"than ®J. As our sets were actually derived by first finding {\It{g} and
then 'joining' using function continuity to form {\pk g} with the regular
hexagon as ©., there is no difficulty in extrapolating the logic and
jqining the {\Ilg g} to form ‘other polygonal ©; € st | |

As an initial attempt we restricted GJk to the regular hexagoxi‘andk
all thé calculations were done with the boundary ‘superpatches overlapping
into the region of zero material property adjoining . Calculations were
then redone for the more promising alternatives with the use of irregular

polygons to fit the boundary exactly.

We conclude this chapter by summarizing, in Fig. 3.7, the alter-

natives open to us, given the constraints of the problem, in terms o_f the
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4;
Physical \/ Mathematical

Fine Coarse
Incomplete Complete Boundary Fit
(1) 2-Element (1) Cl-Shell
Incomplete '
Cubic Complete
(1) C I-Shell
Approximation Exact
l;AA_g l
éﬁs
Incomplete Complete
(1) 1-Element Incomplete (1) C,-Shell
Cubic
(2) 2-Element Incomplete (2) C1+CZ Shell
Cubic
(3) 3-Element Incomplete
Cubic
(4) 3-Element Incomplete
9'm Order

Fig. 3.7. Algorithmic presentation of alternatives — meshes and super-
element sets.
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meshes and spaces discussed in this chapter and in the previous one.
The term 'Fine' refers to the fine mesh of Fig. 2.6(a).” 'Coarse'

is the mesh of Fig. 2.6(b). We have chosen to use this mesh as it is

the 'finest' of the coarse meshes possible and should therefore lead

to the best accuracy.
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Chapter 4

RESULTS AND CONCLUSIONS

In this chapter we first present our results and a discussion of the
implications. We then draw our conclusions and suggest possible areas

for future work.

4.1 Results

The presentation of the results will be divided into two parts, those
. pertaining to the question of accuracy and those relevant to the discus-
sion of computation time. The results pertaining to accuracy will be
further subdivided into analytic, 1-D numerical and 2-D numerical
work. The cross sections used were those typical of the HTGR and are

tabulated in Appendix A.

4.1.1 Accuracy

As noted and as discussed in the preceding chapters, there are
many questions involved in applying the various steps required to arrive
at the form of the Gal‘erkin equation, eq. (1.16), preparatory to the
actual inversion. In the final analysis, answers to these questions can
only be judged on the basis of the accuracy attainable. The questions
answered here in terms of accuracy attainable are the ones discussed
and summarized in section 3.3. For completeness we shall reiterate

them here in the form of a synopsis.
(1) Centering Scheme — Physical Mesh versus Mathematical Mesh

We use the specific physical mesh of Fig. 3.6 to judge the merit of
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constructing meshes via the physical approach vis-a-vis construction
using the mathematical approach. The mathematical counterpart to the
physical mesh used in this investigation is the coarse mesh of Fig. 2.6(b).
The results presented are obtained from 2-D numerical calculations
using the superelement sets Cl and the 2-element incomplete cubic

set.
(2) Incompleteness

The question of the principle involved in deciding on what degree of
incompleteness is to be incorporated into the approximation space Mgn .
is investigated in 2-D as a question of the accuracy of the completely
incomplete sets, the sets of section 3.1, and in 1-D as a question of the
accuracy of the sets derived from Kang's cubic Hermites and the hybrid
quadratic set of section 3.2.2, vis-a-vis the corresponding complete

2-D and 1-D sets of section 3. 2.
(3) Conditions of Join

The degree of smoothness to impose when joining the basic element
functions \If:iig across patqh boundaries to form the superelement func-
tion LoR g is examined both in 1-D and 2-D. In 1-D results are obtained
using Kang's cubic Hermites and in 2-D we use the totally incomplete
spaces of section 3.1. Results comparing the effect of varying the
degree of join, from complete disjointness to continuity of first deriva-

tive, for the approximation Qg(z) are presented.
(4) Conditions within ej

The main question here is the question of derivative continuity

e "
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as material interfaces fall within the basic patch GJ.. Analytic and 1-D
numerical results using the hybrid quadratic set of section 3.2.2 are
presented.
(5) Low-Order Space Fine-Mesh versus High-Order Space Coarse-
Mesh
We investigate this problem in 2-D and compare results obtained by
using the fine mesh of Fig. 2.6(a) with the set Cl’ with those obtained

by using the coarse mesh of Fig. 2.6(b) with the set C,.
(6) Boundary Treatment

As discussed in section 3.3, irregular polygonal superpatches will
have to be used for an exact fit with an arbitrary boundary. We first
carry out our calculations restricting ®J to the regular hexagon. These
results are then compared to ones obtained by allowing the use of irreg-
ular polygons for ®J to fit the boundary exactly.

Given the complexity of the problems, the answers can for the most
part only be evaluated in terms of actual computer simulations, that
is, in numerical terms. But, as can be seen from the above synopsis,
analytic work is not entirely proscribed and we have a mixture of ana-
lytic, 1-D and 2-D numerical results. As indicated in the introduction
of section 4.1 we present the results according to the classes: analytic,
1-D or 2-D numerical work. To clarify matters, we summarize here
the questions considered in each of these groups.

(1) Analytic work: question (4)

(2) 1-D numerical work: questions (2)-(4)

(3) 2-D numerical work: questions (1)-(3) and (5)-(6).
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We now consider each of these specific groups in turn.
(1) Analytic

(i) Conditions within ej: Derivative Continuity versus Current

Continuity

It has been shown in Appendix B that the error in the eigenvalue \

for the 1-D, l1-group, l-region Dirichlet problem of Fig. 4.1 when

Region 1 Region 2

0 L/2 L

Fig. 4.1. 1-D 2-region problem.

derivative continuity instead of current continuity is imposed at the inter-

face x = L/2 is

D B(D,/D.)
AX 2 "2/
—~— =a ==, 1) = —— (4.1)
iy (Dl )

2
n
! +l:2Xd(D2/D1)‘J

where
AN = )\c - )\d
L
- T
n(Ld’L) = L =

Q.
/—\
M| 5
~——~_

~.

[\V]
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and the functions ﬁ(Dz/Dl),Xd(Dz/Dl) are graphed in Figs. B.2 and B.3.
For odr range of interest, block sizes of about twice fhe diffusion length,
Figs. 4.2 and 4.3 indicate that for errors in the eigenvalue less than
1%, the difference between D, and D,, should be of the order of less than
25%. Tables 4.1 and 4.2 are the tabular counterparts of Figs. 4.2 and
4. 3.

The corresponding expression for the maximum error in the flux

eq. (B.35) is

) @C(DI/DZ) . sin Xd(Dz/Dl)

max E (D /Dy) = -1 -
2,(D,/Dy) sinX (D,/D))

sin {X,(D,/D,) M(D,/D,)}
sin {X_(D,/D,) M(D,/D,)}

pC(DI/Dz)
pg(D,/Dy)

(4.2)

-11 -

where
<I>J.(D /Do)

p(D./D,) = (4.3)
T2 gin X,(Dy/D,) sin {X,(D,/Dy) M(D,/D,)}

and subscript j=c or d.

The results are summarized in Figs. B.4-B.6 and Table B.3. For
our range of interest it can be seen from Fig. 4.4 that for max E1 less
than 10% we must have a 0.5 < Dz/Dl < 2. This leads to an average
error ~5% in the flux. Table 4.3 is the tabular counterpart of Fig. 4. 4.

The results summarized in Figs 4.3 and 4.4 have appealing physical
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Fraction error in eigenvalue \. Derivative vs current continuity — 1-group 1-D
2-region problem (Fig. 4.1).
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Table 4.1. Conditions within 6.. Fractional error in eigenvalue \

for L = 50 cmand L = 100 cm.
problem (Fig. 4.1).

-a(D, /D, 1)

l-group 1-D 2-region

Z =0.0025, D, = 1.31,

1

D,/D, L = 50 cm L =100 cm
0.2 0.22 0.0782
0.305 0.1607 0.0625
0.61 0.0368 0.0169
0.76 0.01 0.0055
1.0 0.0 0.0
1.716 0.0109 0.0066
2.145 0.0435 0.0235
4.29 0.252 0.144
6.55 0.43 0.2537

Table 4.2. Conditions within SJ..

as a function of n and D2
problem (Fig. 4.1).

-a(DZ/Dla Tl)

Fractional error in eigenvalue \

l-group 1-D 2-region

Do/Dy

» 0.2 0.176 1.9 6.1
0 0.577 0.018 0.1017 0. 1706
2 0. 455 0.013 0.063 0.27
4 0.2789 0.007 0.0298 0.095
6 0.1695 0.0042 0.0168 0.045
8 0.109 0.00267 0.009 0.026
10 1 0.075 0.0018 0.017




— 0.6

Max E

— 0.5

Fig. 4.4. Max EI(DZ/DI)' Maximum fraction error in flux. Derivative vs current continuity

~ l-group 1-D 2-region problem (Fig. 4.1).
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Table 4. 3. Conditions within 6.. Maximum error in
the flux as a function of D /D,. 1-group
1-D 2-region problem (Fig. 4.1).

D,/D, E,
1.6375 0.024
1.31 0.0069
1.00 0.0
0.524 0.0339
0.1637 0.5226

interpretations. One would intuitively expect that the error in N would
decrease with increasing problem size as N is a 'global' property and
the interface would play less and less of a role in its determination. In
the case of maximum flux error one would not expect the problem size,
namely the parameter 7, to be important as point flux error is a 'local’
property. One would also expect an increasing error for both X and
flux with increases in difference between the diffusion coefficients of the
two regions. One would not expect symmetry in the results about the point
DI/DZ, =1 as there is a third medium present, the vacuum. All these expec-
tations are borne out by Figs. 4.3 and 4. 4. The parameters n and DZ/DI
are physically significant dimensionless parameters which can be used to
characterize a problem.
(2) 1-D Numerical
(i) Conditions of Join

We investigate here the effect of not imposing flux continuity or cur-
rent continuity using Kang's Hermite cubic set as our {\Ifig} The 1-D

2-region problem, as shown in Fig. 4.1, is now treated in 2-groups with



Table 4.4. Condition of join. Eigenvalue N — 2-group 1-D 2-region problem.

L = problem size as in Fig. 4.1 (=100 cms)

Case

Description of Calculation A
1 Analytic .04256
- Homogeneous slab — Region 1
2 Flux continuity-current float material . 042577
3 Flux float-current float .042576
4 Flux continuity-current continuity . 10854
] Flux continuity-current float Region 1 # Region 2 . 10854
6 Flux float-current float .20707

1A
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the material properties taken from the 1-D set of Appendix A. The bound-
ary condition imposed is the Dirichlet condition.

Region 1 Region 2
2 2t —

———

Fig. 4.5. Superelement function set used — Kang's cubic Hermite.

The superelement functions {¢2g,¢2, g} shown in Fig. 4.5 are the
. 1
flux functions uo(x) of Kang's™ and {qug’ ¢3g’ ¢4g’ xpSg} are the current
functions ul(x). If we impose function continuity by joining by g and
¢2,g across the interface so that qug(L/Z) = ¢2,g(L/2), we have our
flux continuity-current float case. If, in addition, we impose current

continuity by joining ygq g and ag across the interface so that

d\p3g(L/ 2) dy 4g(L /2)

D; Tax =D Tax ¢

we have our flux continuity-current continuity case. When none of these
conditions are imposed we have our flux float-current float case.

Table 4. 4 lists the eigenvalues obtained. Notice the difference in
eigenvalue between case (6) and cases (4) and (5). To permit function
discontinuities in the set {LIJi g} is to violate the 'variational ‘principle.'

There is no such difference between the eigenvalues obtained for case(2)



Table 4.5. Condition of join. Supercoefficients {ak g} — 2-group 1-D 2-region problem.

L = problem size as in Fig. 4.1 (=100 cms)

i

Case (2) of Table 4.4

Case (3) of Table 4.4

Unknowns
g=1 g=2 g=1 g=2

-2 -3 -2 o -4
%1 0.24099 X 10 0.376608 X 10 -0.29956 X 10 ~0. 46818 X 10
3g {0.75285 x 1071 0.117656 X 10"} 20.93603 X 1072 | -0.14627 X 1072 ;
21 0.75285 x10"% || 0.117656 x 107} | 0.264819 x 107! | 0.41383 x 1072
23 -0.56455 x 10~% | -0.88287 Xx107° 0.70196 X 10°° 0.10975 X 10°°

-4 -5 -4 -5
4 0.5656 X 10 0.88346 X 10 0.19873 X 10 0.31062 X 10
25 -0.24098 X 10™2 | -0.376602 X107° | -0.84764 X 1073 | -0.13246 x 1073

setl
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and case (3). However, Table 4.5 shows that there is a difference be-

tween a2g and a for case (3). This means that flux continuity will

2'g
have to be imposed. Table 4.5 also shows that current continuity should

be imposed as the coefficients 234 and a,  of case (2) are not equal

4g
leading to current discontinuities. It does not make much of a difference
in the accuracy as the eigenvalue M\ is only off by less than 0.02% from

the analytic answer and the coefficients a3g,a 4g although not zero, which

they should be because of the symmetry, are a factor of 10”2 smaller

than the other coefficients. But it does reduce the number of unknowns
{aig}'
(ii) Incompleteness

Tables 4.6 and 4.7 show the convergence behavior of the following
{ka g} sets.

(i) Hermite Flux Set. This set is formed by deleting the current
function ul(x) of Kang's cubic Hermite set.1 This set is totally in-
complete as it does not éven span the 1—31 space. Looking at it from
another point of view, we have, by retaining only the flux function,
forced a fixed relation between the flux and the current at certain points.

(i) 1-D Hybrid Quadratic Set. This set is discussed in section 3.2.2.
The point to note here is that it spans ‘152.

| (iii) Hybrid Quadratic Flux Set. Here we only use the flux function
of the 1-D hybrid quadratic set. As with the Hei-mite flux set, this set

does not span -1;1.

The problem solved is the 2-group homogeneous case of the bare



Table 4.6.

Incompleteness.

Eigenvalue N\ as a function of mesh size — 2-group
1-D homogeneous slab problem.

L = problem size as in Fig. 4.1 (=100 cm)
N-analytic answer = 0.1034704

sk
2h = 'center-to-center' mesh spacing

N
h
(cm) 25 16.666 12.5 10.0 8. 33 7.14 6.25 5.555
Set
(1) I];,Iﬁfxmite 0.094491 0.096601 ] 0.09692]|0.0970940.097178] 0.097277}0.097319
(ii) 1-D Hybrid |, 1034491 0.103464 | 0. 103469
Quadratic
(iii) 1-D |
Hybrid 14 091855(0.092712{0.093170/ 0. 09340 0.093533( 0.093589/ 0. 093671 0.093701
Quadratic -
Flux
>:‘x X X X -'¢ mesh centers for h=12,5 cms
0 L/2 L

L2t



Table 4. 7. Incompleteness. Eigenvalue M as a function of number of unknowns — 2-group
1-D homogeneous slab problem.

L = problem size as in Fig. 4.1 (=100 cm)
A-analytic answer = 0.1034704
Rn = number of unknowns/group

)N

R
n 1 2 3 4 5 6 7 8

Set

() IF{f;'xmite 0.094491 0.096601 | 0.096920 |0.097094 | 0.097178 | 0.09727710.097319

(ii) 1-D Hybrid

Quadratic 0.103449 0.103464 0.103469

(iii) 1-D

Hybrid 19 091855{0.092712|0.093170|0.093403|0.093533 |0.093589 | 0.093671 | 0. 093701
Quadratic . ;

Flux

8¢l
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slab problem of Fig. 4.1 with the material composition as given in Appen-
dix A. Table 4.6 tabulates the eigenvalue \ as a function of h where
2h is the ‘center-to-center' mesh spacing. Table 4.7 presents the
same results for \ tabulated against the corresponding number of un-
knowns per group, Rn‘ It can be seen from the tables that the two totally
incomplete spaces converge to answers different from the analytic result.
In contrast, the 1-D hybrid quadratic set does converge to the analytic
answer. For mesh sizes roughly comparable to those which will be
used in the 2-D sets, M\ is off by ~5% for set (i) and ~8% for set (iii),
while the error for set (ii) is in the sixth significant figure.

(iii) Conditions within ej«- Current Continuity versusDerivative
Continuity.

Figure 4.6 shows the 2-group problem used. It can be regarded as al-D

NN\

Material Mate rlal Material

BINNCAN

[ I ]

1 \ i : KXo

0 L/4 L/2 3L/4 L

% —3e- X mesh centers for h = 25 cms

X X ——X: X X X X mesh centers for h = 8.333 cms
0 L/2 L results

Fig. 4.6. 1-D 3-block section problem.

section through the coarse mesh superpatch we will use in our 2-D work.We

center our 1-D hybrid quadratic set on the material block centers 0, L/ 2
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and L. The boundary conditions used are that the flux is zeroat x = 0
and x = L. We can, by adjusting the parameter a of this set, impose
either derivative continuity or current continuity at the interfaces

x = L/4 and x = 3L /4. The results obtained by doing so are presented
in Table 4.8 where the eigenvalue M\ is tabulated as a function of the
ratio of the fast diffusion coefficients of the two materials. This dif-
ference in the fast diffusion coefficient is the only difference between
material I and material II. The reference values were obtained by
using the code CHD with a mesh spacing fine enough to ensure a con-
verged value of A.

It appears from the table that for a 'center-to-center' spacing,
2h, of 50 cm, derivative continuity gives better accuracy than current
continuity. Apparently as far as N is concerned the analytic solution
to the derivative continuity problem is close to the analytic solution to
the current continuity problem, that is, the exact problem. But the
numerical solution to the derivative continuity problem converges at a
rate slower than that of the numerical solution to the current continuity
problem. This is borne out by the h = 8.333 cm results of Table 4.8.
The decrease in mesh size has resulted in a decrease in A-error much
greater for the current continuity case.

Figure 4.7 shows how the shapes of the 1-D hybrid quadratic set
flux and current functions vary with a.

We conclude this section by presenting results for larger 1-D prob-
lems composed of alternating material blocks. These problems are

as shown in Fig. 4.8.
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Table 4.8. Conditions within QJ.. Eigenvalue N — 2-group
3-block section problem.
L = 100 cms (Refer to Fig. 4.6)
A
DIII 1-D Hybrid Quadratic Seﬁt | Reference
h (cm) DI Derivative Current Solutlcz)n
1 Continuity Continuity CHD
25 0.2 0.10848 0.13772 0.11301
0.305 | 0.10757 0.12779 0.11019
0.61 0.10542 0.11199 0.10587
0.76 0.10457 0.10782 0.10472
1.31 0.10226 0.10008 0.10243
1.9 0.10063 0.096864 0.10150
6.1 0.096445 0.083401 0.068374
8.333 | 0.2 0.11179 0.11578 0.11301
i
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SRS

.Material\ aterial | Material [Materia Problem (b)
I I N 1 \ II
, X N
. : : \ X—>
0 L/2 ‘ L 3L/2
Xx- X - X X mesh centers
Material Materlal\ Material Material Problem
I I
\\\ : \\{\\ I (c)

| I | l | X—>
0 L/2 L 3L/2 2L
X X X- X- X mesh
' centers

Fig. 4.8. 1-D 4-block section problem — problem (b). 1-D 5-block
section problem — problem (c).

Problem (a) is the problem of Fig. 4.7. The same mesh spacing
and centering scheme is used for all three problems.

The results are presented in Table 4.9. The error in A for the
1-D hybrid quadratic set is less than 0.5% for both current and deriva-
tive continuity. Use of derivative continuity instead of current continuity
within Gj should . tfxerefore give acceptable answers for the range of
material properties typical of the HTGR. The possible exception is at
the core-reflector interface. It should be noted that for the material

compositions used here, DIII/D{ = 0.985.



Table 4. 9. Conditions within ej.

problems of Figs. 4.7-4.8.

L = 100 cms (refer to Fig. 4.7 and Fig. 4.8)

1-D Hybrid Quadratic

Eigenvalue M — 2-group 1-D block section

A
Hybrid Quadratic Flux
: Hermite
Problern Flux Derivative Current
Continuity Continuity
(a) 0.34296 0. 33456
(b) 0.36764 0.36204 0.36267
(c) 0.39052 0.38793 0.38857

Derivative
Continuity

0.35974
0.38054

0.40009

Current
Continuity

0.36057
0.38132

0.40083

4

Solution
CHD?

o

0.36150
0.38228

0.40185

Reference

Pel
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(3) 2-D Numerical

A word is in order here regarding the benchmark problem. This is
the small HTGR problem used by G.A. and ié shown in Fig. 4.9. The
reactor consists of patches of seven hexagonal blocks. The outer ring
of patches is the graphite reflector. The central hexagonal block of each
of the patches which éonstitute the core contains a control rod. The
remaining blocks of the core patches are of fuel material of the same
composition. Cross sections are homogenized over a block and all the
calculations will be done in two groups. We restrict ourselves to those
rod configurations for which the problem has 60°-rotational symmetry
as we shall only solve for a 60° sector of the reactor.

To be considered as a possible alternative our method must at the
very least provide an answer of comparable accuracy for the completely
unrodded case. This case has the least heterogeneity and the flux
should be the smoothest. The imposition of derivative continuity in-
stead of current continuity should, from an approximation pcint of view,
be at its 'best' here.

To be accepted as a potential alternative the method must provide
more accurate answers for the fully rodded case. This case has the
greatest heterogeneity and the flux shape should vary the most.

To summarize, we have a reflected heterogeneous reactor sector
with flux equal to zero at the outer boundary and conditions of rotational
symmetry at the edges of the sector. In terms of diffusion lengths the
core is about twenty diffusion lengths across and the reflector has a

thickness of about two diffusion lengths. We shall consider the fully
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l/Gth (60°) sector

i
WWOTIUTI
’> ¥ ,—,/.Q{%———Patches
? // 17 /',',"/

TN

Fig. 4.9. Small HTGR — 2-D benchmark problem. -
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rodded case to be the deciding benchmark problem.

We conclude this section by elaborating on the questions céncerning
the boundary referred to in sections 1. 2.1 and 3. 3.

Section 1.2.1 pointed out that we choose to satisfy the Dirichlet
conditions by working in W(l)(Q). If we use {C1+C2} for Mgn and con-
struct Mm such that Mm - WI(Q) but Mm 52’ Wé(ﬂ), we arri:]ve at the

conclusion that the Dirichlet condition can be satisfied if

5:2 + ac2

=0
1g Jg
where {afgz, aj g2 } are the unknowns in the supercoefficient set {ak g}

corresponding to the superelement functions {Lpicgz, up;gz }, the c2-type
superelement functions centered on the Gj corners lying on 9. For

this particular benchmark problem, there is 60°-rotational symmetry
and the number of such corners force the solution a;:gz = a?é
3

means that for this particular problem, we shall obtain the same solu-

= 0. This

tion whether or not we delete elements so that Mm C W})(Q).

Section 3.3 pointed out that for the coarse mesh option, irregular
polygons for ej would have to be used if the boundary is to be fitted
exactly. It is to be noted that Tables 4.12-4.13 are, in the sense of
section 3. 3, initial calculations; that is, calculations where the bound-
ary has not been fitted exactly. Table 4.14 is a second phase calcula-
tion; calculations Whére the boundary has been fitted exactly.  Fig-
ure 4.10 shows the initial calculation mesh and Fig. 4.11 the second

phase mesh.
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==+ Boundary
< Material
‘ hexagon

Fig. 4.10. 1/6"
; mesh — boundary not fitted exactly.

Legend

e 1/6 th rotational

symmetry bound-
. ary
f——X Mesh lines

Core-reflector
interface fuel
. hexagon :

sector small HTGR — 2-D benchmark problem. Coarse v



egend

e ¥/ 68 rota-
tional
boundary

Boundary ¥—* Mesh lines
» ' Core-reflec-

Material tor interface

hexagon fuel hexagon

*Fig. 4.11. I/Gth sector small HTGR — 2-D benchmark problem. Coarse’
mesh — boundary exact fit. _
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(i) Centering Scheme — Physical Mesh versus Mathematical Mesh

We first examine the behavior of the meshes in the case of the Neu-
mann problem. Triangle fgh in Fig. 4.12 is a region of homogene-
ous material and Neumann conditions are imposed on its boundaries.
The problem is therefore a simulation of the infinite medium problem.

As we use the C1 set, 'tent' functions are centered on the points

{f.g.h,s,p.q, r}.k

Material hexagon

Fig. 4.12. 2-D triangular Neumann problem.

In the case of the physical mesh we rely on the variational principle
¢
to force the satisfaction of the natural condition o - 0 along the sides
of the triangle. For the mathematical coarse mesh case of Fig. 2.6(b)

. we impose more conditions: we force apg = asg = aqg = arg and afg =
ay g’ so the two computational problems are not strictly identical. How-
ever, the results do show that for the physical mesh the Neumann prob-
lem is unstable. This can be seen from Table 4.10. The error in

the eigenvalue M for h = 57.73 cm is due to the positive off-diagonal

elements in the [(qu;i, prj) + (Erq;i, q:J.)] matrix. The positive sign



Table 4.10. Centering scheme. Eigenvalue N and supercoefficients {ak } Physical

mesh 2-group 2-D homogeneous triangular Neumann problem %Fig. 4.12).

Type of A a_* a a
- gg pg sg
Calculation group 1
' group 2
Analytic 0.14507 5.699 0.0 5. 699
1 0 1
Th=57.73cm | 1.001314 -0.33106 0.514271 ~0.120298
-0.88094 x 107! | 0.136844 -0.320105 X 10~
h=10cm |0.145068 0.165399 0.838760 X 10°3 | 0.165399
0.290199 X 10"} | 0.147163 x10°8 | 0.290199 x 107}
‘h=0.1cm |O0.144688 0. 164982 0.836647 X 10°0 | 0.164982
0.289221 x 10" | 0.146668 x 1078 | 0.289221 x 107}
h=0.0001cm| 0.184894 X 10”4 | 0.184931 x 1072 | 0.937814 x 107'2 | 0.184931 x 107
0.377419 X 10" | 0.191304 x 107*% | 0.377419 x 1078

&
As no. attempt is made to standardize the normalization of the supercoefficient sets {ak } it is
the ratio of the coefficients which is to be considered of significance. g

"
7

Fuel block

B3



Table 4.11. Centering scheme. Eigenvalue M and supercoefficients {ak g}' Mathematical

mesh 2-group 2-D homogeneous triangular Neumann problem (Fig. 4.12).

. *
# T f Calculati N
ype of Calculation 2g Bsg 34g
(group 1, group 2)
1 Analytic 0.14507 5.699 5.699 5.699
1 1 1
2 Th= 46.188 cm 0.145077 0.165439 0.165439 0.165439
0.029027 0.029027 0.029027
3 h=1,0cm 0.145077 0.165439 0.165439 0.165439
0.029027 0.029027 0.029027
4 h=0.1cm 0.145077 0.165439 0.165439 0.165439
0.029027 0.029027 0.029027
5 h = 0.0001 cm 0.145080 0.165442 0.165442 0.165442
0.029028 0.029028 0.029028

* “ 3
As no attempt is made to standardize the normalization of the supercoefficients {a
it is the ratio of the coefficients which is to be considered of significance.

;
a

h

kg}’

Fuel block

A4
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Table 4.12. Centering scheme. Eigenvalue X\ — 2-group 2-D bench-
mark problem. Fully rodded set I.

Number Type of Calculation A
1 BUG-180* — Finest mesh. Finite 0.77087
difference (reference solution)
2 Physical mesh — 2-element incomplete 0.5151T%
cubic set
3 Mathematical mesh (coarse) — 2-element 0.6918

incomplete cubic set

*GA code. The mesh scheme used in BUG-180 is shown below in Fig.
4.13. The mesh spacing is half that of the one used in GAUGE. BUG-
180 uses a logarithmic boundary condition. To simulate the condition
of flux equal to zero on the boundary, a large negative number is input
for the logarithm.

7rBoundary fitted exactly.

IAnswer not converged — 50 iterations.

Fig. 4.13. Mesh scheme — BUG-180 code.
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occurs when h becomes larger than a critical value. One can no longer
guarantee positive solution vectors ag,4 and for this case the flux
solution 3 indeed does have negative values. For h very small, round-

20,21 This, however, does not explain

off error enters into the solution.
the drift in the eigenvalue A which occurs between (3) and (4). The prob-
lem seems to be unstable. Corresponding results for the mathematical
mesh are shown in Table 4.11. Note that the drift does not seem to occur
here. Insofar as the two cases are comparable, the mathematical mesh
appears to be preferable.

Table 4.12 presents results obtained for the benchmark problem
using the 2-element incomplete cubic set. The cross sections used are
those of the fully rodded set I. There again appears to be numerical
problems with the physical mesh. The calculation still had not con-
verged after 50 iterations whereas for the mathematical mesh only
25 iterations were required. In both cases the convergence criterion
was 10-6 on \. Comparison of the first five converged figures shows that

as far as accuracy is concerned the mathematical mesh is again preferred.

Let us examine the physical mesh more closely. In Fig. 4.14 we

Fig. 4.14.

2-D triangular Neumann problem —
closer examination of physical mesh.
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draw in the superpatch ®J centered on p. The basic patch is the triangle

sde. If we use the C1 set, it can be seen that there is a piecewise linear

dependency over the basic patch, as the basic element function set

{\I’ASde

ig } consists of four linear functions.

For the 2-element incomplete cubic set, it can be shown that piece-
wise linear dependency also occurs when the physical mesh is used. The
current functions centered on p and s are identical over triangle sde.
This is because the current function is a hyperbolic paraboloid and the
plane of symmetry for the ones centered on p and s is the plane perpen-
dicular to the paper passing through the line de.

We conjecture that the unstable behavior which occurred with the use
of this mesh for the Neumann problem of Fig. 4.12 is attributable to this
piecewise linear dependence.

The physical mesh was consequently dropped from further consid-
eration and the results presented in the following sections were all ob-

tained using the mathematical mesh approach.

(ii) Incompleteness

Table 4.13 is a comparison of the totally incomplete sets and the
shell sets. These results ihdicate that one should have at least .1;1 com-
pleteness. As variables are added they should be added so that the defect’
of the space is decreased for the éomplete sets are to be preferred.
The interpretation in terms of physical quantities éuch as flux and cur-
rent is of secondary importance to this principle of completeness and the

1-D results of the preceding section should be so construed.
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Table 4.13. Eigenvalue \ for various superelement function sets {“‘Jkg}'

2-group 2-D benchmark problem. Fully rodded set I.

Number Type of Calculation \

1 BUG-180 — finest mesh. Finite .7708
difference (reference solution)T

2 Coarse mesh — Cl shell set . 7695

3 Coarse mesh — (C1+C2) shell set L1743

4 Coarse mesh — regular quadratic set . 7743

5 Coarse mesh — 1-element cubic .6699
incomplete set

6 Coarse mesh — 2-element cubic .6918
incomplete set

7 Coarse mesh — 3-element cubic .6975
incomplete set

8 Coarse mesh — 3-element 9% -order . 2504

incomplete set

TBoundary fitted exactly.

It is of interest to note that the two complete quadratic sets, the

(C1+C 2) shell set and the regular quadratic set, yield identical answers

for N. Table 4.13 shows that both sets give 0.7743 for A. The two sets

lead to the same number of unknowns.

(iii) Conditions of Join

Table 4.13 shows that given a construction which imposes function

continuity, additional degrees of continuity in imposing a join are of

minor importance compared to reduction of the defect of the space. This
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can be seen By comparing the 3-element 9@—order incomplete set result
with the 3-element cubic incomplete set result. The Qm-order set leadsv
toa '4\> with normal current continuity whereas the cubic set does not.
As was mentioned in earlier chapters there is a direct trade-off be-
tween conditions of join and defect of space. This result points to lower
order spaces with smaller defects.
It should be mentioned that the apparent anomaly in Table 4. 13, the

convergence of the shell set's results to an answer different from that

of the reference BUG-180 solution is due to the inexact fit of the boundary.

(iv) High-Order Space Coarse-Mesh versus Low-Order Space

Fine-Mesh

Answers to this question have a limited range of extrapolation as it
really depends on what flux shape is being approximated. The choice is
between using the fine mesh of Fig. 2.6(a) with a complete linear space
and the coarse mesh of Fig. 2.6(b) with a complete quadratic space.
The results are shown in Table 4.14. A word is in order here regarding
the 'interface distortion' qualifier used in Table 4.14. The 'interface
distortion' refers to the use of irregular polygons at the core-reflector
interface. At the core-reflector interface the difference in diffusion
coefficienfs is a maximum with the ratio being of the order of ~0.67.
The use of the irregular polygons precludes the situation of having a
smooth polynomial defined across the interface and hence precludes
the imposition of derivative continuity at the interface. The mesh used

for these 'interface distortion' calculations is shown in Fig. 4.165.
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Table 4.14. High order space — coarse mesh versus low order space
— fine mesh. Eigenvalue N — 2-group 2-D benchmark

problem.
Fully Rodded
.: Fully
. i Cross Cross
# Type of Calculation | Section | Section Unrodded
| 11

!

1 | BUG-180 — finest mesh — finite | 0.77088 | 0. 77891 0.99869
difference (reference solution)

2 *GAUGE — fine mesh — finite 0.76903 | 0.77643 1.0043
difference
3 >kGAUGEFEM — fine mesh — 0.76382 | 0.77184 0.99889

C 1 shell set

4 | Coarse mesh — C1 shell set 0. 76499T

(without interface distortion)

5 | Coarse mesh — C1 shell set 0. 75951' 0. 76805T

(with interface distortion)

6 | Coarse mesh — (C 1+C2) shell 0.76745

set (without interface distor-
tion)

7 | Coarse mesh — (C 1+C2) shell 0.7598 0.76842 0.99742
set (with interface distortion)

-

*GA codes. :
GAUGEFEM is the fine mesh-linear space finite element version
-of GAUGE. Except for differences in the coarse mesh rebalance
section the two codes are algorithmically identical.

TNegative fluxes obtained.
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Apparently for flux shapes comparable to the one of the benchmark
problem, the fine-mesh linear space approach is to be preferred to the
coarse-mesh perturbation quadratic one. For the fully unrodded case
all the calculations do well. Comparatively speaking, the fully unrodded
case is a less demanding problem.

Figures 4.16 and 4. 17 provide an idea of the fast and thermal flux
shapes which have to be approximated for the fully rodded case II. The
values shown are from the reference BUG-180 solution.

Figure 4.18 is a comparison of power peaking factors for the fully
rodded problem II. The perturbation quadratics lead to errors of ~6%
for the control rod blocks and less than ~1% for the other core fuel blocks.
The fine mesh linear space option GAUGEFEM has an error of ~2%
in the control rod blocks and less than 1/2% for the other fuel blocks.
GAUGE is in error by ~4% in the central control rod block and less
than 1/2% in the outer control block. The average error in the other
blocks is ~3%. These power peaking factor results seem to point towards
the finite element schemes with the fine-mesh linear space approach
favored. The eigenvalue results, however, are in favor of GAUGE.
The GAUGE eigenvalue is in error by 0.32%, that of GAUGEFEM by
0.91%. The error with the coarse mesh-perturbation quadratics is
1.34%.

Figure 4.19 is a comparison of power peaking factors for the fully

unrodded case. All the approaches do quite well with this problem. It

TPower peaking factor = region averaged power density/core average
power density.
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* Fig. 4.16.  2-group 2-D benchmark problem — fully rodded set II. Material
_ hexagon averaged flux. Core power = 26.666 MW. g
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- Fig. 4,17, 2-group 2-D benchmark problem — fully rodded set II. Material
hexagon maximum and minimum flux. Core power = 26.666 MW.
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Legend-

Power
peaking
factors

www — GAUGE
xxx — BUG-180
yyYy — GAUGEFEM
zzz — Coarse mesh~(C1+Cz) shell set

(with interface distortion)

- Fig. 4.18. 2-group 2-D benchmark problem — fully rodded set II. Material
‘ hexagon power peaking factor. ‘ :
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* Figo 4. 190 '

(with interface distortion)

2-group 2-D benchmark problem — fully unrodded.

Material
hexagon power peaking factor.
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is not as démanding as the fully rodded case. When the power peaking
factors are compared GAUGE appears to do the worst. Towards the
center of the core the error is ~2%. Elsewhere the error is comparable
with the finite element results being of the order of less than 1%. The
eigenvalues are also very close. GAUGE is off by 0. 56%, GAUGE-
FEM by -0.02% and the coarse mesh-perturbation quadratics by 0.12%.

The results indicate that GAUGE is to be preferred over the finite
element approaches as the finite element schemes do not give acceptable
eigenvalues for the fully rodded case II. It also appears that the fine-
mesh linear space is preferable to the coarse-mesh perturbation quad-
ratic approach. Interestingly enough, the finite element technique seems
to give better flux results than eigenvalues. Kamg1 has shown that with
Hermite elements in rectangular geometry, the error in the flux is of
order higher than that of the eigenvalue. These results reinforce the
impression that the flux is better approximated in the finite element
scheme.

Let us conclude this section by commenting on the negative flux cases
of Table 4. 14.

The negative fluxes obtained for the coarse mesh-linear set are
due to the positive off-diagonal elements in the [(D Vi, V¢j)+(2r¢i, Llaj)]
matrix introdﬁced by the use of the irregular polygons to fit the boundary

and interface exactly. Consider the isosceles triangle ABC of Fig. 4.15.
vq;Ag . V¢Bg >0

as the angle between quAg and VLpBg is less than 7/2. This means that
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these off-diagonal elements can never be negative as N"Ag’ d"Bg) > 0. One

' e cias . 4
can not therefore guarantee positive solution vectors 2y

4.1.2 Computation Time

The computation phases which coﬁld lead to significant differences
in computation time for the various approaches would be

(i) As’semblage of the equations

(ii) Solution of the equations.

For large problems phase (ii) would dominate and we shall only con-
sider this phase.

Let us assume that phase (i) ends with the assemblage of the matrices

Ag and M g of the following equation,

- L
Ag, =5 Mb, (4. 4)

This is the preparatory form for the power iteration technique.

The mathematical mesh approach and the hexagonal superpatch leads
to a 7 'block! point relationship in both A g and M g Each block con-
sists of n elements where n is the number of variables 'centered*® on

the center of a superpatch. Let
tm = multiplication time of processing unit
t q = addition time of processing unit

NE = total number of variables

K., = number of inner iterations per source iteration.

E
Then TE' the computation time/source iteration for the finite ele-

ment method, is
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Ty & Np[7(nt_+t_ (n-1))+ 6t K +1). (4. 5)

E

For the finite difference scheme implemented in GAUGE, Ag has

a 7 point relation but M _ is diagonal. The computation time/source

g

iteration, TF’ in this case is
Tp T NF[(7tm +6t )Kp+ tm] (4. 6)

where

N total number of variables for this scheme

F

number of inner iterations per source iteration.

Kp

When multiplication time dominates we have that

T, N. 7n(K_ +1)
E_—E. 2%g (4.7)

F NF 7KF+1

For the fine mesh-linear space approach of GAUGEFEM, n=1

and we have for KE ~ 1 and KF ~1,

Tp ~ 1.75 Tp. (4. 8)

This is a conservative estimate as when KE and KF » 1 we have

Equality of TE and TF when n = 1 is then the lower bound.
Table 4.15 is a tabulation of timing statistics which compare GAUGE

and GAUGEFEM for the 1/6th small HTGR problem. They bear out

the general features of eq. (4.8). It is of interest to note that the number
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Table 4.15. Timing statistics. GAUGE (low-order finite difference)
compared with GAUGEFEM (low-order space — fine mesh
finite element) — 2-group 2-D benchmark problem.

Diffusion

r Number
Problem | Calculation | of Source . Sec/Source
Case Time (sec) | Time (sec) | Iterations  Iteration
1 | Fully unrodded
GAUGE 5.25 1.194 19 0.06
GAUGEFEM 6.64 2.269 19 0.12
2{Rod 1 in
| GAUGE 4,18 1.252 21 | 0.059
GAUGEFEM 5.44 1.825 18 0.101
3| Rod 2 inT
GAUGE 4.95 1.32 22 | 0.06
GAUGEFEM 6.88 3.249 23 0.14
4 | Fully roddedl
GAUGE 5.10 1.453 24 0.06
GAUGEFEM 6.64 3.119 23 0.135
Convergence criteria 107° on flux.

TSignificant difference in number of rebalance iterations between
GAUGE and GAUGEFEM calculations.
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of source iterations are roughly equal. This means that TE/TF will
also be the ratio of the total phase (ii) time. The number of source -
iterations for the coarse mesh-perturbation quadratic set is comparable
~25 with a convergence criterion of 10-6 on the flux and the eigenvalue.

For the perturbation quadratic set when KE ~ 1 andiK ~1 we

F
have that
e _SE28_2.28_,,
T, N 8 3 8
SO
Tp ~ 2.3 Tpe (4. 9)

This means that as far as computation time is concerned unless the
number of source iterations is significantly less, the perturbation quad-
ratic set is inferior to GAUGEFEM and to GAUGE. It should be pointed
out that this is a comparatively conservative estimate as when KE’KF » 1
we have TE ~1.3 TF' If we assume that we can extrapolate the statis-
tics of Table 4.15, then T/variable ~ 1.75 TF,/variable, This means

that for the perturbation quadratic set,

~1.75 T « 2 ~1.1T_.

Ty F 3 F

GAUGE still takes less time.

4,2 Conclusions

This thesis was concerned with the solution of the static neutron-
diffusion equation, eq. (1.1) in hexagonal geometry, using the finite

element method. The choice of the finite element method prescribed
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the uée of the .Gale'rkinv equations, 'eq.;‘(l. IG),V tO'_ca‘iculé.te,the approxi-
mation gg(_r_'). With the choice of the equations for the approximation
scheme so made, we concentrated on the formulation of the approxima-
tion space Mm‘

- Given the prescribed constraints on accuracy and computation time,
the results presented in section 4.1 allow us to draw the following con-
clusions regarding the construction and application of approximation
spaces.

(a) The mathemafical mesh is to be preferred over the physical
mesh.

(b) It is important to span at least the Fl space. One should try
for complete spaces over incomplete ones. The order of the
highest complete space which can be spahned given the constraint
on the number of variables should be maximized.

(c) Functiori continuity has to be imposed across the join. - However,
once we have function continuity across the join, it is much
more important to reduce the defect df the space than to in-
crease the degree of continuity acrdss «the,» join.

(e) For small HTGR problems, the fine mesh-linéar space ap-
approach sﬁoﬁld be chosen over the coarse mesh-pértdrbation
quadratic one.

Given our results comparing the low order finite difference bmethod,

as implemented in GAUGE, with our various finite element schemes it
is very tempting to draw the conclusion that for hexagonal geometry the

finite element method can not be regarded as a viable alternative to
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low order finite difference. Our 'res.ults-‘certain‘ly do point in that diréc- |
b'tion' but a word of caution is necessary here. The small HTGR benche

- mark problem used here is a relatively exacting probiem. For largef

- problems, problerﬁs which would'jb_e more frequéntly met, the flux shape
should bem'orésmooth, the sjste’m»should be less leakjr, and the bound—kl
ary less s’igr_lificant.‘ For LMFER problems there should be less
"péakin“g'. ‘In other words, our benchmark problem is probably at the
more difficult end of _the.spectrum. It is recommended, and specific
ideas will be proposed in the next section, that further work be done

before such a significant statement is made.

4.3 Recommendations

As a direct continuation of the sentiments expressed in the previous
- paragraph, we suggest the following. |

(i) LMFBR problems should be examined and then larger problems
shouid be investigated. To lend some order to the analysis, it would be-
~ useful to identify dimensionless parameters which chafactérize flux
shapes: numbe’rs such as the ratio of the difﬁision length to the mesh
size; the ratio of ‘material properties in ’k’a;djoining regions. Oné
would then be able to produée a more quahtttative analysis ;Of the range
for which one approach is to be preferred over Ianother.

(ii) The us'_ek of the Lagrangian quadratics should be investigated.
The extra 1/ ‘2' degree of freédoin per triangle may produce gfeater
accuracy itha’n‘ the perturbat'ion quadré.tic_ set. It would then‘remain_ to

be seen if this is compensated by the increase in computation time.

o . vt . e
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(iii) The shell sets open up the possibility of having ‘variable accu-
racy without changing mesh size by simply changing the number of func-
tions 'centered' at the superpatch centers. Analytical work proving or
refuting the conjecture that the accuracy in 63. is related to the order of
the highest complete space of Mm. would be welcome.

(iv) A general theory of space construction, as discussed in sec- -
tion 2.1 relating the number of sides of @3., the degree of the join, and
the order of the polynomial would be a valuable tool for synthesis.

(v) Finally it appears that more work will have to be done about
techniques to solve the Galerkin equatior;sﬂ. As discussed in section 4.1.2,
the possible reduction in the number of variables by using higher order
methods is accompanied by an increase in complexity of the equations
to be solved.

For large problems iterative techniques have to be used and for the
range of interest of this thesis it appears that less computzation time
per iteration is required by the low order finite difference method. This
means that the finite element method will have to resolve to iterative |
technique's which require fewer iterations.

We suggest one possible iterative technique. This is to tie all the
functions 'centered' at one superpatch center together and solve simul-
taheously for the coefficients of these suprafunctions. The functions at
~ each center are then untied and solved simultaneously center by center
and the cycle is repeated. This has similarities to the concepts of coarse

mesh rebalance and may aid in reducing the computation time involved.
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Appendix A

SETS OF MATERIAL CROSS SECTIONS USED

All the data presented are for two group calculations. The following
assumptions are made.
(a) There is no upscattering.
(b) No fission neutrons are born in the thermal group.
roup 1 value

g
The format of the Tables is .
roup 2 value



Table A.1. Cross Sections. 1-D numerical work of section 4.1.1(2).

v=2.43

Problem Composition D (cm) 2r v Zf Zsz«l
1 -1 -1
(cm ) (cm 7) {cm )
Condition of Region 1 1.6835 5.768 X 10”2 | 8.82X 107> | 1.83x 1073
join 1.29702 10.43% 10°3 | 1.46 x 1073
Region 2 1.65837 |2.755x 107> | 9.15%x 107> | 2.07 x 1073
1.29702 2.49 x1073 | 1.49 x 1073
Incompleteness Homogeneous 1.6835 5.768 X 10"3 21.43%x10°°| 1.83 x 10'3
slab 1.29702 10.43% 1073 | 3.547 x 1077
Conditions within {Material I 1.6835 5.768 X 10'3 21.43 X 10'5 1.83 X IO'3
®; — homogeneous 1.29702 10.43x 1072 | 3.547 x 1077
slab
Material II | As in Thl. 4.8 | 5.768 X 107> | 21.43x 10"°| 1.83 x 10~
1.29702 10.43 x 1073 | 3.547 x 10™°
Conditions within |Material I 1.68350 | 5.678 X 107> | 21.43x 1075 | 1.83x 107>
ej — block section 1.29702 10.43 % 10-3 3.547 X 10
problems
Material II 1.65837 2.755 x 10" |22.234 x 1072 | 2.07 x 1073
1.29702 2.49 x 1073 13.6207 x 10°°>

991



Table A.2.

Cross Sections.

2-D numerical work of section 4.1.1(3).

v=2.43
. ys = v pD
Problem Composition D (cm) r f s2+1
(cm"l) ‘ (cm‘l) (cm'l)

Homogeneous | Homogeneous | 1.68350 | 5.768 x 1073 | 21.43 x107% |1.83x 1073
triangular material .29702 10.43 x1073 1 3.847 x10°°>
Neumann
problem
Benchmark Core, rod in . 6835 6.0749 x 10™3 ! 2.14326 x 10°% | 1.80 x 1073
problem -3 -3
By e dded 29702 | 1.01706 X 10 3.54780 X 10
set I i

Core, regular | 1.47493 | 3.73399 x 10”3 | 3.8637 x 10~ | 2.25x 1073

14155 | 3.96169 X 10”3 | 6.1722 X 107
Reflector 0.968992 ' 4.98523 x 10> .98 X 1073
0.789889 | 2.9600 X 10“4

Benchmark Core, rod in .6835 5.9365 X 10"3 2.14326 X 10'4 .83 X 10'3
problem -2 -3 :
D e 1ded 29702 | 1.03 X 10 3.5478 X 10
set I1

Core, regul~» | 1.47493 | 3.58649 x 1077 | 3.8637 x 10°% | 2.25 x 1073

.14155 ' 4.07584 X 10”2 | 6.1722 x 1073

91



v=2.43

Problem Composition D (cm) 2:r v Zf z"s2.~-1
-1 -1 -1
(cm ) (cm ) (cm )
Reflector 0.968992 | 4.98523 X 107> 4.98 x 1073
0.789889 } 2.9600 x 10~%
Benchmark Core, rod out | 1.65837 2.92134 X 10'3 2.22345 X 10'4 ? 2.07 X 10'3
problem -3 -3
D iy anrodded 1.29702 | 2.36030 X 10 3.62070 X 1077 |
set
Core, regular | 1.47493 | 3.58649 x 107> | 3.86370 x 10™% | 2.25 x 1073
1.14155 | 4.07584 X 10~ | 6.17220 x 10~3
Reflector 0.968992 | 4.98523 X 10~ 4.98 x 1073
0.789889 | 2.9600 x 10~%

{
{
i

891
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Appendix‘B
ANALYTIC EXAMINATION OF CURRENT CONTINUITY
VERSUS DERIVATIVE CONTINUITY

We sblve here the two region 1 group 1-D problem .
shown in Figure B.1 for two céses,
(a) one when derivative continuity is imposed atvthe
interface L/2

(b) the other where current continuity is imposed.

Region 1 Region 2

0] L/2 L
X=—r
Fig. B.1. 1-D problem for analytic investigation of

current continuity versus derivative
continuity

Starting with the 1 group 1-D diffusion equation we have,

_a% [ v Z%/A —‘Ej ] JL

= k2 | ' | B.1
K2 ¢ - (B.1)

where

region index

[N
"



170

and we have dropped the group'ndtation for simplification.

The boundary conditions are
- $(0)
¢ (L)

0
0

We then have

¢l =B; sin k;x 0 < x < L/2 (B.2)

$2 =B, sin ky(L-x) L/2 < x < L (B.3)

Applying the continuity conditions at the interface,

function continuity: B;sin k;L/2 = B,sin k,L/2 (B.4)
derivative continuity: B;k; cos k;L/2 = ~szL cos koL/2
(B.5)
current continuity: B;k;D; cos k;L/2 = - Byk,D, cos k,L/2
(B.6)
So, for case (a)
L tan k,L/2 = - = tan k,L/2 (B.7)
kl 1 k2 2  : hd
for case (b)
1 _ 1
kiD; tan kL/2 = - k2Dzbtan koL/2 . (B.8)

We shall now restrict ourselves to

1 = yr2
vzf VES
gl = 22 |

This means from (B.1l) that
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K D 1/2 ‘ ' |
ol <_2> / (B.9)

Equations (B.7) and (B.8) then reduce to

Case (a)
Dy \1/2 L D,\1/2 L
tan D_l- kg'é‘ = - ﬁ; tan k2'§ (B.10)
Case (b)
D,\1/2 L Dj\1/2 L
tan i k2§ = - E tan kg—z- (B.11)

This means

d (Dz Do 9

k2 =d|g5-  L)|=%4|p57) T (B.12)
\

e Dz \ . Dz ) .

kz = C B-l_ ,L/ = ‘{C 3{ E (B.lo)
D D

a _ 1 _ 1 g_ 1

kS = d (ﬁZ ,L) = X4 (b—z) = (B.14)

c _ - 2 N

kl = C <b—; ,L) = };c \"’"’D2> L (Bglﬁ)

where the subscripts and superscripts refer to:

d derivative continuity

c current continuity
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Now
o = fractional error in x» = N

r-

1 1

= v ( (gz , )D;J,Z) (dzk— L\D2+L)

[ ¢2(D, /D, ,L)+Z]

=3 (B.16)

f

So o can be written as,
a(gé ,L,Dz) =D J!giﬁfl_
(d“D;+ZL)
D, [xé (12_3 - xg@%) :I
T %]

(B.17)

D, _ X,(D2/Dy) 2
B('ﬁT) TP \R@mD (|

D, , | |
1- e(—) : (B.18)

Dy

D, Dy %
o _D—l ;L’DZ = G‘]')_]'.' » N

B 8(D,/D1)
- .1
[1 +“{2Xd(82/D1)}2}__ | B
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where

1 L | | »
n(L;,L) = ——— = — . (B.20)
d /D, i/2 Ly

It can be shown that the functions 8(D,/D;) and

'B(Dz/Dl) havé the following properties

86(Dy/Dy)

8(Dy/Dy)

8(D;/Dy)

8(D;/D,)

]

We have thus identified the two dimensionless param-
‘eters of importance. These are D,/D; and L/Ld , both
of which appeal to the physical intuition. The functions
B(D,/D;y) , Xd(Dz/Dl) and Xc(Dz/D1) are graphed in
Figs. B.2 and B.3. Table B.l1l is the tabular counterpart of
these figures. Numerical results for o(D,/D;,n) are
presented in Section 4.1.1.

We can extend the above calculation to errors in the

flux. From equations (B.2) - (B.4) we can write for both

(a) and (b),
sin k, L/2
B, sin k; L/2 sin k;x 0 <x <L/2
¢ = ,
B, sin k,(L-x) - L/2 <x <L (B,Zl)

Normalizing so that



+
—B(D2/Dy)
— 0.6

L

‘Fig. B.2.

[N NN W UONE TR DN S

The function B(Dy/D;) - For use in determining eigenvalue error,
1-Group 1-D 2-Region problem (Fig. B.1).

(Dz/Dl)& >
. 2.0

yLl
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4 4

2 2 ' ‘
X % o 3\

— 5 ' \t‘

— 2 Legend
- Xg+——~f
X2 x %
| 3
; (D,/Dy)* ~»
; 0.1 0.2 0.3‘ 0.4 0.5 0.6 0.7 0.8 0.9 lio 1.1 1.2
—_ 1 4 — i i 1 i i | { 1

Fig. B.3. The Functions X§(Dp/D;) ; X2(Dp/D;). For use in
determining eigenvalue error.
1-Group 1-D 2-Region problem (Fig. B.1l).



Table B.1, Tabulated values of the functiong Xd(Dz/Dl),
Xc(Dz/Dl) and B(D,/D;) for use in eq. (B.19).

D, D, \? D,\ D, D)\
By (TJT> -Xd(ﬁ) Xc<m> ‘B<‘n‘:)
0.2 0.447 1.935 2.43 0.577
0.305 0.55 1.885 2.18 0.337
0.61 0.78 1.74 - 1.792 0.06
0.76 0.87 1.672 1.687 0.018
1.0 1.0 1.57b9 1.5709 0.0
1.9 1.38 1.289 1.353 0.1017
6.1 2.47 | 0.79 1.032 0.706

176
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L
jv thbdx = A _
5
we have
_ ‘.Al
Bz B sin k L
v 1 ) . L 1 L
"k i, (cos ki 3 -1) + e (1-cos k; 3)
sin k; 3 2
= T A' | | (B.22)
5 R(D1/D;) :
where A' = A
\)Zf

Then the error in ¢! is,
_ . d . d
€] = (B2d ay sin k;y x - B2c a, sin ki x) (B.23)

sin kg

where aj = sin kg

Dol ol

and the error in ¢2 is,
ey = {§2d sin kJ(L-x) - B,_ sin kg(L-x)] (B.24)

For the fractional error we write,

. d
‘ B a sin kix
_[ __z_q.ag.______] | (5.25)



€2
EZ = C
By, sin k, (L-x)
- ’ . d
B sin kj(L-x)
_ 2d
= - |1 - 5 . S
P2¢ sin k,(L-x)

Let us define,

D,
& f =—
J(Dz

D1 ~j
Rj<ﬁ;>-81n k1

B D, D\ |
sin Xj 5;) sin Xj ﬁ;>

o

= $ <z /Dl R Dl

where the subscript

We can then write,

N—
/)]
'—l.
o]
e
(N Te] o
Nl i

178

(B.26)

(B.27)
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Dy ,
B ’¢c<ﬁ§) sin k¢ L&
B = oy cg (B.28)
2¢ o (1) sin ki 3
d\D,,

Substitution of eq. (B.28) into egs. (B.25) and (B.26)

gives us,
. B ‘D, | .
D, ) °c(ﬁ§) sin k§ £ sin k§ x
D, o El}' sin kg % sin k? X
d\ Dy,
L J
[ D, ]
. <D1 ) . Qc(ﬁ})‘ sin k§ 2 sin k§ (L-x)
2l v— X | = = - B
D2 o [P1) sin k¥ 3 sin k§ (L-x)
da\ D,

- (B.29)

To quantify matters, let us only consider the points

X = X5 oy amd x = X9 max ’ where E; and E, take on their

maximum values.

~The stationary point of E;(D;/D,y,x) occurs at

3E;/3x = 0 which is
k¥ tan k¢ x = k9 tan $ x . | (B.30)
We can therefore write
L, (D R a1
X1 max_-EM ﬁz— . . » A(B.y )
The stationary point of E,(D;/D,,x) occurs at

kS tan k3(L-x) = k9 tan k$(L-x) . (B.32)



This means

2 (L-x) = M(D,/D;)

Therefore

N

X2 max [2 - M(Dz/Dl)]

To find M(D;/D,) we have to solve eq. (B.30).

rewrite eq. (B.30) as

SN /k‘f
tan | — (kix) = = tan kix
LS \kl
which is
tan by = b tan y
where
k{ xy
b = — = —
kf Xc

180

(B.33)

Let us

(B.34)

Table (B.2) contains the relevant range of values.



Table B.2. Tabulated values of function b(D,/D;)
for use in eq. (B.34).

D; /D, b

5.0 0.7963

3.275 0.86467

1.637 0.9709

i.31 0.9911

0.524 0.9526

0.1637 0.7655
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For b > % eq. (B.34) has only the trivial solution. This
corresponds to the boundaries of the block where the mini-
mum occurs. There is no turning point for the maximum and

the maximum therefore occurs at the extreme point, x = L/2.

We can then write that

-
O

max E, —T) = -q¢1 -

D,
Dz\ ¢c<—z> sin Xd

(B.35)

The functions ¢,(Dy/D;) , ¢4(D1/D;) , uy(D1/Dy) and
“d(Dl/DZ) are graphed in Figs (B.4) and (B.5). We define

u,(D1/Dy) and ud(Dl/Dz) as



2,(D1/Dy) ~

Fig. B.4. The Functions @C(D1/D2) and ¢d(D1/D2). For use in determining flux error.

1-Group 1-D 2-Region Problem (Fig. B.1l).

| 4
™
— 1.2 £
8
— o
(=]
— 1.0
— Legend
f— .8
0 Qc(Dl/Dg) f————
- 24(D1/Dy) —
(Dz/Dl)é >
- 0.5 1.0 . 1.5 2.0
[T N R U A NN NUNN W NN AU DUNUNS NN SO SN S M R N

€81



ug(P1/D2) >
uo(D1/D2) ~

I
=
o

Legend

Ho(D1/D2) +—

Hq(D1/D2) #—

\&; s - .

- (Dz/Dl)ée
0.5 1.0 1.5 | 2.0

- Fig. B.5. The functions uc(Dl/Dz) and Ud(Dl/Dz)- For use in determining flux error.

-

1-Group 1-D 2-Region Problem (Fig, B.1),

¥81



; b
— 2.5

M(D;y/Dy)
— 2.0
— 1.5
L 0.5
(Dy/Dy) ~+
0.5 ; 1.5 2.0 2.5 3.0 '3.5 4.0
| | | | | [ ]

Fig. B.6. The function M(D,/D;)., For use in determining point of Max Flux Error. .

1-Group 1-D 2-Region Problem (Fig. B.1).

s81



186

/Dl\
oL =
/D1y J(Dz) - 25
{1 = . B.
“i\p7) T o (22 x(Dl\MDl - (B.36)
sin X.| = | sin A= —
D1, 3\D2 | "\Dy
where subscript j = ¢ or d

The function M(Dz/Dl)‘ is shown in E}g. B.6. Table B.3
is the tabular counterpart of Figs. (§.4) and (B.5).
Numerical results for max E;(D;/D;) are presented :n
Section 4.1.1.

For the range of (D,/D;) where M(Dy/D;) =1 , we

have that max E; = max E,.



Table B.3. Tabulated values of the functions Qd(Dl/Dz),
ud(Dl/Dz), @c(Dl/Dz) and UC(Dl/Dz) for use

in eq. (B.35).

D; D; D, D; D;
w | dm) | e | s | )
1.6375 1.2279 1.2749 1.257 1.306
1.31 1.2577 1.273 1.268 1.282
1.00 1.273 1.273 1.273 1.273
0.524 1.199 1.274 1.2296 1.3176
0.1637 0.8475 1.2809 0.8528 1.9502
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Appendix C
INNER PRODUCTS

This appendix presents the inner products réquired for the 1-D and
2-D Galerkin calculations. We divide the 2-D work into two broad classes:
one concerned with the physical mesh and the other with the mathematical
mesh. The standard geometrical configurafion for the calculation of the
inner products is different for the two classes. We further subdivide these
classes on the basis of symmetry properties of the {Lbkg} sets. These
properties enable us to reduce the number of inner products which have to

be calculated.

The only superelement function set {¢k g} which concerns us here is
the 1-D hybrid quadratic set. The inner products for Kang's cubic Her-
mite set can be found in his thesis,l Table C.1 is the list of inner prod-
ucts required for the centering scheme shown in Fig. C.1 and the 1-D

hybrid quadratic functions of eqgs. (3.40)-(3.41).

Fig. C.1. Standard 'superpatch' corifiguration for
1-D hybrid quadratics.



1-D hybrid quadratics.

Table C.1. Inner products — standard 'superpatch' configuration of Fig. C.1.

je BY e iB
(\Ilgg, \Ilkg) (vwﬂg, v\pkg)
h 4
: 2
5(1+a)2 3(1+a) " h
h2 2
10(1+oz)2 3(l+a)2
h3 h
2 2
20(1+a) 3(1+a)
2« az 4 az
hi{l - + > 33
3(1+a)  (l14o )5 h(l+a)

2[1 (2+7a) a(1+2a)]
bz * 2
(14a)12  (l+a) 10

h3~l__(2a+l).+(l+2a)2_l‘
-3 (at+l)4

(1+a) 20

2|1  (1+20)
(1+a) | 2 7 3(1+a)

(l+2af)2

(1+a)

h[l _(20+1)+

3(l-§-af)2

|

681



joo 3P
({'ﬂg’ ‘I’kg)

k
2
i h[l- 20, @ >
3(1+a) 5(l+a )
hZ %__ (2+7a) + a(l+2a)
12(1+a)
' 2
h3 l__(2a+1) (1+20a)
3 (at+l)4 (1+a)
(42 ah l_ 1]
1+ (I+a) |3~ 5(1+a)

]

(1+a)210

ahz l._
2(1+a) | 3

o

ah’ 1 _(l+20)
(I+a)1 4 ~ 10(1+a)

_ ah3 1
2(1+a) | 4

(2a+1)
10(1+a)

]

(1+a)5

|

2
b [1 _(zatl) | (1+Za)2]
(1+a) 3(1+a)

3(1+a)2
2a 1 (2a+1)
(1+a) | 2 ~ 3(1+a)

ha 1 (2a+1)
T M+e) |2 7 3(1+a)

061



jo  _iB ja ip
i f f h 5 42
5(14a) 3(l+a) h
2
f c h > 2 5
10(1+a) 3(1+a)
N I RS h
20(l+af)‘2 3(1+oz)2
. h 1 1 4
i+2 f f — = . ——) - ————
(1+a) {3 (1+a)5] (1)
2 A
£ c b7 1 _(2ta) 2 |1 (2ta)
(14a) {4  10(1+a) (1+4a) |2 3(140)
1 ___hi_[l__.l__.} 2
Z(14a) | 3 ~ 5(14a) ()
3 ‘
c c ) h 1 (2+a) . h 1 (2+a)
2(14a) | 4 10(1+a) ! (14a) |2 3(1+a)
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We need only concern ourselves with the set

1f J1c . 2f _2c¢ _3f _3c . 3f 3¢ 4f _4c _4f 4c
{\I,ig’ \Pig ' g’ \I'ig ’ \Ilig’ ‘I(ig ’ \I/i+2g’ it2g’ “ig’ \I’ig ? \I/i+2g’ ‘I’i+2g}'
All the inner products can be formulated in terms of the inner prod-

ucts of this set over the standard geometrical configuration of Fig. C. 1.

cC.2 2-D

In 2-D the meshes we consider lead to two standard geormetrical con-
figurations for the calculation of inner products. These two standard
configurations correspond to the physical mesh and the mathematical
mesh, respectively, and we divide the presentation into two sections:
one on the physical mesh and the second on the mathematical mesh.

In the section on the physical mesh we present tables of inner prod-
ucts for the following superelement functions kag’

(a) C,-shell functions
(b) 2-element incomplete cubic functions.

The section on the mathematical mesh is divided into two parts: one
on the regular meshes, that is, where the only ®J is the regular hexa-
gon; the other on the distorted meshes where we introduce irregular
polygons.

In the section on the regular meshes, we further subdivide the pre-
sentation into two parts. We first tabulate inner products for the sets
{ka g} which possess the properties of 60°-rotational symmetry and piece-

. . * .
wise median symmetry. The sets examined are then

%
The property of piecewise median symmetry is the superelement ex-
tension of the property of median symmetry discussed in section 3.2
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(a) l-element incomplete cubic set

(b) 2-element incomplete cubic set

(c) C,-shell set

(d) Cl+Cz-she11 set

(e) regular quadratic set.
We then tabulate the inner products for {Ll:kg} which do not possess
these properties. The sets examined are

(a) 3-element incomplete cubic set

(b) 3-element incomplete Qt—h-order set.

This completes the section on the regular meshes. For the irregular

meshes we present inner products for the following sets:

(a) C, -shell set

(b) C,+C,-shell set.

2
Both of these sets possess the properties of 60° -rotational symmetry and

piecewise median symmetry.

We now begin by presenting the discussion for the physical mesh.

C.2.1 Physical Mesh

It can be seen from Fig. 3.6 that the standard geometrical configura-

tion is the one of Fig. C. 2.
Triangle 4ef is the basic patch ej of the physical mesh. All the

inner products can be formulated in terms of the inner products over

for the basic element function set {\Ilgg} A superelement function, qlkg’
is said to possess piecewise median symmetry if the corresponding

basic element functions \If‘l g possess median symmetry.
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1. N3 ) Material hexagon. 1, N3 )
(22 Fn) s, daz  nilEh e

Fig. C.2. Standard basic patch configuration — physical mesh.

Adefa _ Adefa _Adefa
lg ,ng )Q3g 2

} by translation and rotation. The 60°-rotational

triangle 4ef and quadrilateral estf of the set {¥

Adefa _quad estfa
s
4g 4g

invariance of the inner products of {npk g} is due to the 60°-rotational

v

symmetry properties of the function sets we use. These sets are the

C1 shell set and the 2-element cubic incomplete set. In addition to this
symmetry property these sets also have what we shall refer to as me-
dian symmetry. To reiterate, this simply means that \I/‘?;St

wise function centered on 4 and zero along st, is symmetrical about the

, the piece-

median 24. These properties of 60>° -rotational symmetry and median
symmetry are required in order to conclude that the sets of inner prod-
ucts listed in Tables C.2-C.5 are sufficient sets. The definitions of the
function sets used are given in sections 3.2.1 and 3.1.1.

Let us use these standard products to formulate the inner products
Wiy i

As can be seen from Fig. C. 3, the physical mesh leads to a 13-point
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‘Table C.2. Inner products — physical mesh. Standard basic patch
configuration of Fig. C.2.

Cl shell set.

jcl jely -2
‘Ilf_g , \I’kg h

v jcl v jcl
Yog » Ve

Adef =1

Quad estf =2

0.049616038
0.01127637236
0.058637137
0.0157869214
2.2552745 E-3

0.0225527447

0.144337566
-0.072168783
-0.144337566

0.072168783
-0.072168783

0.4330127

Table C.3. Flux integrals — physical mesh. Standard basic patch
configuration of Fig. C.2.

Cl shell set.

jcl -2

j 0 (\I{g , l)h
Adef = 1 4 0.0721687837
Quad estf = 2 4 0.072168783
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Table C.4. Inner products — physical mesh. Standard basic patch
configuration of Fig. C.2.

2-Element cubic incomplete set.

i 0ok el o8 (\If‘iﬂ‘;, \Ir{fg)h‘z | (v fg, vw{g)
Aef | 4 | 4| £ £ | 0.0493160067057 0.2144014267
= £| c | -0.012220982 0.044791667

c| ¢ | 0.0037212029 0.018042197
4 { 1] £] £ | 0.0048817295 -0.0288675133
£ 1 ¢ | -0.007249814 0.0406249988
¢ | £ | -0.00158575144 -0.0062499978
c| ¢ | 0.0022552745 0.0135316467
a | 2| £ £| 0.057698781 -0.1250925625
£ | ¢ | -0.00870535743 -0.101041661
c| £ | -0.0167096816 -0.044791667
| c | ¢ | 0.00186060157 -0.0180421963
11 2] ¢ £ 0.00697691984409 -0.0097728566
£ | ¢ | -0.00070684532 0.0041666627
¢ | £ | -0.01011672243 -0.049739584
c | ¢ | 0.00107125547 -0.022552745
1 | 3£ | £| 0973258336034 E-4 | -0.0300703146
£ | ¢ | -0.0005115327 0.0432291664
¢ | £ | -0.0005115327 0.0432291664
¢ | ¢ | o0.00107125535 -0.0225527464
Quad t 4 | 4 | £ | £ | 0.0115119680836 0.3244588225
es: £ | ¢ | -0.0083147314286 -0.1114583333
c e 0.00710411464042 0.1262953714
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Table C.5. Flux integrals — physical mesh. Standard basic patch
configuration of Fig. C.2. ' .

2-Element cubic incomplete set.

ja -2

J [ a (‘I’ig, l)h

Adef =1 4 f 0.0712666738532
c -0.01953125

Quad estf = 2 4 f 0.0442033799848
c ~-0.04296875
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Material
hexagon

Fig. C.3. Standard superpatch configuration — physical mesh.

block relation. The block nature of the relation is due to the possibility
of having more than 1 function centered on a 'center'. Consider point p
in Fig. C.3. It can be seen that the surrounding centers which have
nonzero inner products with point p can be divided into two groups, an
outer ring {a,b, c,c',b!, a'} and an inner ring {d, e,f,g,h, i}. The inner

products (y. ,¢. ) then fall into two classes typified by
1g" Jg

(v P ) = (w )M + (\If16 \Ifla)M for the outer ring

pg "ag lg
(C.1)

and
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g, 48 ) = (w5 wph)+(w)f, \I/la)](M )

18
+ [2“1’1g 4g)+(\r2g Tyl M,
+ [2(\1112 4g)+(\1,;g \1'}1;)] Mp for the inner ring.
(C.2)
where
Mi = material property of hexagonal block with center i.
For inner products of functions both centered on p we have that
By f3
My_ , M+M+M+M+M+M\Il
K 4‘1c>g Ypg = ¢ gt Mt M g g
+ 6M ! C.3
¥ ). (C.3)

We now address ourselves to the mathematical mesh.

C.2.2 Mathematical Mesh

We first concentrate on the regular mesh and then discuss the dis-

torted version.

(A) Regular Mesh

Our choice of mesh and our sets {Lp;:g} give us translational invari-
ance of the inner products calculated over ej. This property reduces

the required number of standard inner products to those over the triangles

*Throughout this appendix the formulas for the inner products involving
the derivatives should be inferred by replacing \,ng with Vnpkg.
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abc and adb of Fig. C.4. If the sets {Llaﬁg} have 60°-rotational symmetry,

then we only have to concentrate on the triangle abc.

6

Fig. C.4. Standard superpatch configuration — mathematical mesh.

Let us begin by considering the sets which have 60°-rotational sym-

.metry. The standard basic patch configuration, the triangle abc, is

shown in more detail in Fig. C.5. We divide triangle abc into the three

quadrilateral regions IV, V, and VI.

y
(-2/N3, 2) 1
b .

e (L/N3,0)

Fig. C.5.

Standard basic patch-
configuration — math-

(_2/2,\/'3-’ 2/2) (2/2,\/?, 2/2) ematical mesh.
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The sets we consider are the 1-element and Z-élement incomplete
cubic sets and the two shell sets, C1 and {C1+C2}. These sets all have
median symmetry. With these properties, the sets of sufficient standard
inner products ére those of Tables C.6-C.13. The definitions of the
function sets can be found in sections 3.1 and 3.2. The notation ( .

)1-. is to indicate that the inner product is taken over the regionI'.

For pompleteness we present in Tables C.14 and C. 15 the corre-
sponding results for the regular quadratic set. This set is discussed
in section 3.2. It also has median symmetry.

We now use these standard inner products over the triangle abc to

assemble the inner products (L]Jia o’ ¢?g).

A
1
]
i
'
'
|

Material
hexagon

®

7\

Fig. C.6. Coarse mesh.

Figure C.6 shows that the regular mathematical mesh leads to a
7-point block relation; the coupling between point p and its nearest

neighbors the set {e,f, g,c,b, d}. As the set {q:;g} has 60°-rotational



Table C.6. Inner products — mathematical mesh. Standard basic patch configuration of Fig. C.5.

1-Element cubic incomplete set; j = Aabc = 1

£ jf -2 ( i jf

= IV r=YVY ' =VI

=1V r=V I =VI r

a|a} 0.98602611 { 0.9464698 0.9464698 0.2537489810 0.205101897 0.20510189

E-1 E-2 E-2

a [ c |0.20861636 | 0.20861635 | 0.57019315 | -0.1418428372 | -0.141842837 | -0.033856965

E-1 E-1 E-2

Table C.7. Flux integrals — mathematical mesh. Standard basic patch configuration of Fig. C.5.

l1-Element cubic incomplete set ; j = Aabc = 1.

jf ) -2
i Cp 18

r=1Iv r=Vv

r=yVI

a 0.13435866 0.033856958 0.033856958

20¢



Table C.8.

2-Element cubic incomplete set; j = Aabc = 1.

Inner products — mathematical mesh. Standard basic patch configuration of Fig. C.5.

je B -2 ja jg
—}" . B
r=1Iv r=YV | ' =VI =1V r=V I =VI
alalf 72883793 | .41100825| .41100827 | .292595381 | .123132407 ;| .123132407
E-1 E-2 E-2 ‘
f -.20213393 | -.35837781 | -.35837782 | .039043205 i -.052854937 | -.052854937
E-1 E-2 E-2 |
i
c 71352050 | .36492750 | .36492753 | .018710423 i .062813564 | .062813570
| E-2 E-2 E-2 Eo
alc|f .95313151 95313155 | .21297905 |-.123444260 | -.123444253 | -.012919109
E-2 E-2 E-2 !
i
f -.12673102 | -.42466847 | -.23262464 | .050385791 | -.011188274 | .010802469
E-1 E-2 E-2
c -.42466849 | -.12673100 | -.23262466 |-.011188273 | .050385802| .010802475
E-2 E-1 E-2
c .46850313 .46850306 | .265806387 | .012696357 | .012696360 | -.025392717
E-2 E-2 E-2

€02



Table C.9. Flux integrals — mathematical mesh. Standard basic patch configuration
of Fig. C.5.
2-Element cubic incomplete set; j = Aabc = 1.
ja -2
2 4 Wﬂg, 1 In ,Q
T -
r=1v r=V r =VI
a f 0.11342080 0.20269626 0.20269626
c -0.36265428 -0.23533948 -0.23533950
E-1 E-1 E-1
i
!
|

¥02
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Table C.10.  Inner products — mathematical mesh. Standard basic
patch configuration of Fig. C.5.

Ci shell set; j = Aabc =1
jel  jel) -2 | jel  _ jel
£ |k (\Ifﬂg , ‘I’kg): ¢ /NF (v\pﬂg » V¥, r/«l’ﬁ
L =1V r=v r=vli |r=IV|r=V I =VI
a | a |0.437242 | 0.591563 | 0.591563 | 1/9 = 1/9 . 1/9

E-1 E-2 E-2

a { c {0.120884 { 0.120884 | 0.360097 | -1/18 -1/18}—1/18
E-1 E-1 E-2 |

Table C.11. Flux integrals — mathematical mesh. Standard basic
patch configuration of Fig. C.5.

C1 shell set; j = Aabc = 1
jcl -2
[} (\Iflg , l)r L NI
r=1v r=V r=yVI
a 0.679012 0.216049 0.216049
E-1 E-1 E-1




Table C.12. Inner products — mathematical mesh. Standard basic patch configuration of Fig, C.5.

{C14C2} shell set; j = Aabc =1

'
je  _jp -2 Ja jP
g |k|a B (\Ifﬂg, wkg)rn (V\Ifﬂg, V‘I’kg)r
=1V r=v r =1V r=1v r=v I = VI
a|a|cl|cl | .75732665 | .10246184 | .10246185 | .19245007 | .19245007 | .19245007
E-1 E-1 E-1
cl | c2 |-.21219133 | -.60570981 | -.60570981 | .37037033 | -.10185184 | -.10185184
E-1 E-2 E-2 E-1
c2 | 62 | .7135205 | .3649275 | .3649275 | .18710423 | .62813564 | .62813564
E-2 E-2 E-2 E-1 E-1 E-1
ajc|ecl|ecl| .20937859 | .20937859 | .62368096 { -.96225033 | -.96225033 | -.96225033
E-1 E-1 E-2 E-1 E-1 E-1
cl | e2 | -.13387347 | -.75231472 | -.40895068 | .50925914 | -.18518520 | .50925919
E-1 E-2 E-2 E-1 E-1 E-1
c2 | cl | -.75231485 | -.13387345 | -.40895068 | -.18518520 | .50925920 | .50925925
E-2 E-1 E-2 E-1 E-1 E-1
c2 | c2 | .46850313 | .46850313 | .26580687 | .12696357 | .1269636  -.25392717
E-2 E-2 E-2 E-1 E-1 | E-l

902



Table C.13. Flux integrals — mathematical mesh. Standard basic patch
configuration of Fig. C.5.

{C14C;,} shell set; j = Aabc = 1.

. ja . -2
r=1v =V I =VI
a ¢l | 0.11760837 0.37420846 ' 0.37420849
E-1 E-1
c2 -0.36265428 | -0.23533948 -0.23533950
E-1 E-1 E-1

L02



Table C.14. Inner products — mathematical mesh. Standard basic patch configuration of Fig. C.5.

Regular quadratic set; j = Aabc =1

e B\, jo _ ip
Lik|a |B (\Ifﬁg, qug>rn (V\Ifig, V‘I’kg)r
C=1V L=V L=Vl r=1v r=v r=vi
aja|RO|RQ| .36242783 | .11236154 | .11236154 | .30293066 | .40984736  .40984739
E-1 E-2 E~-2 E-1 E-1
RO | c2 | -.12980108 | -.18432782 | -.18432784 | .58641968 |-.29320984 -.29320487
E-01 E-2 E~-2 I E-1 E-~1 E-1
c2 | c2 | .71352050 36492750 | .36492753 | .18710423 | .62813564  .62813570
E-2 E-2 E-2 E-1 E-1 E-1
alc|RQ|IRQ| .30392071 130392065 | .33658976 | -.41875717 |-.41875711 -.12473619
E-2- E-2 E-3 E-1 E-1 E-1
RO | c2 | -.797755384 } -.21133399 { -.10202334 | .65586405 |-.38580257  .21604935
E-2 E-2 E-2 E-1 E-2  E-l
¢2 |RQ| -.21133404 | -.79775374 | -.10202334 | -.38580255 | .65586414 : .21604941
E-2 E-2 | E-2 E-2 E-1  E-1
c2 | c2 | .46850313 46850306 | .26850687 | .12696357 | .12696360 -.25392717
-? E-2 ; E-2 E-2 E-1 E-1 E-1

8072
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Table C.15. Flux integrals — mathematical mesh. Staﬁdard basic
patch configuration of Fig. C.5.

Regular quadratic set; j = Aabc = 1

a | RQ 0.75732665 E-1 0.10246185 E-1 0.10246185 E-1

c2 -0.36265428 E-1 | -0.23533948 E-1 -0.23533950 E-1
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symmetry, that is, each 63. of G)J can be rotated into each other about

the 'center' of @J without altering the form of the superelement, we

have that

a ) 18 _la 218
(gl i) = v fll wlo v el wlfy )

18 la 1P
+M (‘I' \ch)VI + Mg(\l’ag cg)VI

+Mf{(\1:;l 1‘3)V (~~Irlfs (C.4)

cg IV}

is the inner product pattern for point p with its nearest neighbors and

p wlP 1
(Mo $pg) = SM (W, 2,0 )py + (Mg + M+ M+ M+ My + M)
. lP !B
el w g Yaghy T (¥ g ag VD (C. 5)

is the pattern for both functions having the same ®J.

We now turn our attention to those sets which do not possess this
property of 60°~-rotational symmetry. These are the 3-element incom-
plete cubic set and the 3-element Qm—order incomplete set.

Let us consider the 3-element 9t-}-1—order incomplete set first. The
standard geometrical configuration is the triangle abc of Fig. ‘C.1.

To simplify matters here, we will think in terms of geometrical
shapes. This was the approach advocated in section 3.2. We define

the following shapes over the triangle abc,
£9 (x,y) = u (x;) ul(x,) ul(x.) (C.6)
ag XY T Uot¥y) U iXgl U iXg .

Lg% ¥ = ~uhlx)) ui(x,) ujlxg) (c.7)
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X
A

(-2/N3, 0) b\ z /c (L/NF, )

II1 II
\\/F
(g/2N3,2/2) T 1 (2/2N73, 2/2)

Fig. C.7. Standard basic patch configuration — mathematical
mesh (same as that of Fig. C.5 except that here,
axes (xl,xz, x3) are also shown).

Qgg(x, y) = u-;-(xl) u;(xz) u;(xg) (C.8)

Lo glx ) = ul(x)) ujlx,) u (xg) (C.9)

where the subscript a indicates that these shapes are 'centered' on
point a and are zero on the opposite side, bc.

The list of sufficient inner products is shown in Tables C. 16 and
C.17. Let us call the triangle abc of Fig. C.7 the standard triangle
and denote it by the letter H. We now have to transform our results
with H to the (q;;zg, q;?g) of Fig. C.6. In the case of 60° -rotational sym-
metry this was relatively simple. In the case under consideration
there are a few more steps involved. We have to relate the hexagon

cbdefg of Fig. C.4 to H. It was stated in the opening paragraph of



Table C.16. Inner products — mathematical mesh. Standard basic patch configuration of Fig. C.7.

3-Element 9th order incomplete set.

y
a B -4 o g -2
r=1 r =1 r =11 r=1 | Tr=1I r = I
alalolo]| 60471726 | .11813969| .11813969| .434358653 | .595238755| .595238755
E-10"2 E-20"2 E-20"2 2= E-10"2 E-10"2
0| 1| .59524114 | .28979538 | .12022076 | .794280552 | -.396501555| .85274259
E-2¢"1 E-30"1 E-3¢"1 E-10"} E-2¢"1 E-20"1
ol 2| .10172272 | 32783217 | .32783218 | -.102668405 | -.86436618 | -.86436618
E-10"1 E-3¢"! E-30"1 E-14"} E-2¢"1 E-20"1
0! 3{-.59524114 | -.12022876 | -.28979539 | -.794280552 | -.85274259 | .396501555
E-20"1 E-3¢"1 E-3¢"1 E-10"1 E-20"1 E-20"1
11 1] .80574855 | .71448051| .16083686 | .35895786 | .113899942| .212958212
E-3 E-4 E-4 E-1 E-2 E-2
11 21 11329617 | .80408680 | .33974351 | -.138048810 | .164548191 + -.49547928
E-2 E-4 E-4 E-2 ; E-2 . E-3

212



a ¢} -4

a B -2
(Vgﬂg' ngg)l" U

r=I r=1I C =1 r=1 =1 rC = II
-.54686221 | -.28642338 | -.28642338 | .3481513 27571529 | .27571529
E-3 E-4 E-4 E-2 E-3 E-3
.19095866 | .91172935 | .91172937| .559812640 | .282539627 | .282539627
E-2 E-4 E-4 E-2 E-2 E-2
11329617 | -.33974351 | -.80408682 | .138048810 | .49547928 | .164548191
E-2 E-4 E-4 E-2 E-3 E-2
80574855 | .16083686| .71448053 | .35895786 | .212958212 | .113899942
E-3 E-4 E-4 E-1 E-2 E-2
.33856690 | .33856691 |. .39630243 | -.902619611 } -.902619611 | -.83021424
E-2¢-2 E-20-2 E-39"2 E-10"2 E-12"2 E-20"%
34971346 | .34971347| .93024782 | -.132836778 | ~.105523864 | -.637948127
E-30"! E-3¢"1 E-40"1 E-12"1 E-12"1 E-20"1
97467719 | .80087349 | .11683658 | -.242494814 | -.146031382 | -.21649887
E-3¢"! E-3¢"1 E-39"1 E-10"! E-1p"1 E-20"1

€12



( a B ) -4
gﬂg’ gkg I‘2

vl vl )

r=1 C =1 r = II =1 C=1II

-.87294758 | -.63923587 | -.69120364 | .319551435 | .129497842
E-30"1 E-30"1 E-40"1 E-10"1 E-12"1
63923584 | 87294759 | .69120364 | -.26534404 | .69937102
E-3¢"] E-30"1 E-40"! E-20"! E-20"1
.62489345 | .87693588 | .16111997 | ~.96275509 | .281964943
E-4 E-4 E-4 E-3 E-2
.18200876 | .20447427 | .20196051 | -.6995035 75439563
E-3 E-3 E-4 E-3 E-3

-.16367283 | ~.16367283 | -.11760043 | .17947133 | .115515197
E-3 E-3 E-4 E-2 E-2
.80087347 | .9746772 | .11683685 | .8797269 102109641
E-3¢"1 E-3¢"1 E-3¢"1 E-3¢"1 E-14"1
85660160 | .10229351 | .27462475 | .110632465 | .453541882
E-4 E-3 E-4 E-2 E-2

e o e

r =1III

264526616

E-10"1

.14997946

E-20"1

.2683367640

E-3

40314334

E-3

.5820606

E-4

40527939

E-ZQ'1

214226491

E-2

vie



.a ﬁ | »
Q’Qg: gkg T »Q

a B -2
(Vgﬂg’ Vg'kg)l'_"!Z

r=1I

o aad

r=1I

C=1 C=1II r =1 C=1I

.22985505 | .22985506 | .34400149 | .360992590 | .135749671| .110937364
E-3 E-3 E-4 E-3 E-2 E-2
.20447426 | -.18200876 | -.20196051 | -.50672868 | .10021049 | -.815868
E-3 E-3 E-4 E-3 E-2 E-3
34971346 | -.34971347 | -.93024782 | .26141079 | .167835491 | -.145663557
E-3¢"1 E-3¢"! E-49"1 E-10"1 E-1¢"1 E-2¢"1
47709926 | -.47709928 | -.21962795 | .182712287 | -.814944 974457665
E-4 E-4 E-4 E-2 E-5 E-3
.10229350 | -.85660164 | -.27462475 | .69826981 .28118845 | -.406477098
E-3 E-4 E-4 E-2 E-2 E-3
.87693584 | .62489348 | .16111997 | -.83508964 | -.33561119 | .258055885
E-4 E-4 E-4 E-2 E-2 E-3

q12



3-Element 9th order incomplete set.

o -3
(5 1)rt

Table C.17. Flux integrals — mathematical mesh. Standard basic patch configuration
of Fig. C.7.

r=1I C =1 r = III
0.98866883 0.97229648 0.97229652
E-1¢"1 E-20"1 E-2¢0"!
0.11107561 0.24336381 0.10966708
E-1 E-2 E-2
0.18622459 0.2773136 0.27731361
E-1 E-2 E-2
-0.11107561 -0.10966708 -0.24336383
E-1 E-2 E-2

912
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section C. 2. 2 that we would only have to consider triangles abc and abd

of Fig. C.4. This is true but it is also true that we could equally

well just consider ‘triangles aef and afg. To avoid possible confusion

with H and to correspond more closely with the algorithm of the com-

puter programs we shall choose to use triangles aef and afg.

Tables C.18 and C.19 are lists of the required inner products. To

obtain these from the inner products over H tabulated in Tables C. 16

and C.17 we need the information presented below for the basic ele-

ment function set {\11:7]‘;} of each of the superelement functions qJ;g cen-

tered at the points {a, g, f, e} over the triangles aef and afg of Fig. C.4.

We arrange the relationships in the vector form

[ 40 ] 0
Yag Sag
41 | _ 1
Yag| ~ Sag
42 1 2 3
o —_ -
| og | @_{cag e,
:I,éo' B g'(S ]
ag ag
I 2
ag tag
32 1 3 1
N} — {- -
s| | g5 Thertedl

for convenience.

(C.10)

(C.11)
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Table C.18. Inner products — mathematical mesh. Standard super-
patch configuration of Fig. C.4.

3-Element 9th order incomplete set; \Ifja \Iljﬁ and V\Ifja ’V\Q[!jﬁ
P '\ Lg’ “kg/T Lg’ kg/T

required for the foilowing combinations of {j, @, B, £, k, '}.

(A) J 2 k
Aaef =3 a [/
f
I‘=I-IH{0:=O-2{£3=O-Z —
Aafg =4 f
g
(B) £ k a B
a a 0 0
1
r
2
I‘=I-III-[:j=1-6 -
1 1
2
2 2
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Table C.19. Flux integrals — mathematical mesh. Standard super -
patch configuration of Fig. C.4.

. ja
3-Element 9th order incomplete set; (\Iflg’ I)I‘ required

for the following combinations of {j, «, £, I'}

¢ o
-
; ' a 0
I‘=I-III-{j=l—6 —
1
2




cg

w31

eg

\1132

eg
e

and the superelement functions 'centered' at point a, {¢° s

composed of the following basic element functions:

\1,10
ag

\1:11
ag

12

L
N3

L1

N3

! \Ilag
f— i

— .

L
N3

e ¢

1
{'ggg )

eg

3
_geg

1
(S

0
tag

1

Lag

-12+¢

a

2 4|
ggg}

2
cg!

-

3
ag)

ag

1
Yag

220

(C.12)

(C.13)

(C.14)

(C.15)

q;i g} are

(C.16)
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20 T 0 =
ag | éag E
21 . 3 j
\I/ag% = Lag (C.17)
22 | 1 1 .2
v = (¢! - ,
Vee| | 75 egtad
o301 0 =
ag | Sag 1 |
31| _ L2
Wag = ;ag (C.18)
32 1 3 1
o= (-5 -t )
ag i a a
_cel s e e
40 | 0 =
ag Sag
41| _ 1
Yag | © tag (C.19)
242 w? -¢3)

. :
2 <, »
51 _ 3 |
Yag | © tag (C. 20)
52 1,2 1
28] | V3 Cag gagi_
(280 T (0 B
ag ag
61| _ 2 |
Yag Cag - (C.21)
62 1 3 1
B — (> +
ee| |7 ar"ted

b~ e

We now have to relate these inner products over triangies aef and

afg of Fig. C.4 with the general case shown in Fig. C.6.



222

The algorithm of the program is constructed so that (Mub;g. lbgg),

(Mngg" ¢ig)' (MQJ;g,M\‘Jgg) and (MLng, Lbzg) are the only inner products

required. We have that

6 L 6 m ..
oyl P y=m oz @, e vz m oz (e, e

pg’ 'pg Py-y Pg opgl 4,70 pop PE pg'T

(C.22)

where Table C. 20 shows the convention to be used for the material prop-

erties Mj

oy L ef ) = £ {te*e, %) Mmel 4 (w32, 3P 82} (C.23)
pg'Teg’ " ;" ag’ gl T ag’ "eg’ 7T )

ol )= B {0, 93) wil s wte, v ) w2} (C.24)
pg’ g T pg ag’ fg'T’' ' T ag’ fg’ T ’

oy L eP = Ig {tz32, e3Py M8 4 (wie, P vBZ) (C. 25)
pg’ 'gg pp 0 28 egT T ag’ gg "T” )

The corresponding table for the material properties is Table C.21
Equations (C. 22)-(C. 25) are more general than the equations derived
previously, egs. (C. 4)-(C.5), for the case of 60°-rotational symmetry.
Those equations are a subset of this system and this is the reason why
the equations actually programmed are eqgs. (C.22)-(C. 25).

We now turn our attention to the 3-element incomplete cubic set.
This is treated in exactly the same fashion as the 3-element 9’21-1-order
incomplete set was treated. Tables C.22-C.23 are the tables corre-
sponding to Tables C. 16-C. 17 for this set. In terms of the notation of

this chapter we have
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‘Table C.20. Indexing scheme for material properties of eq. (C.22).

Table C.21. Indexing scheme for material properties of
egs. (C.23)-(C.25).

r Vid mE? M M? mé! ME2
I M, M, M, M, M, M,
I Mg Me Me Mg Mg Mg
111 Me Mg Ms Mg M, Mg




Table C.22.

3-Element cubic incomplete set.

Inner products — mathematical mesh. Standard basic patch configuration of Fig. C.5.

*(a B -4 o B -2
C=1 =1 I =1 C=I C =1 C = I
alalo .87355496 | .58094120| .58094123 | .34248984 | .1751652 17516521
R - - -2 -2 -2
E-10"2 E-20"2 E-20"2 2 0 0
0 -.10842022 | .57491018 | -.57491024 | .32526065 @ .18724275 | -.18724278
E-18¢"1 E-3¢"1 E-30"1 E-180"' | E-1¢°! - E-107!
0 15985002 | .16300025 | .16300025 | .24234453 ' .45617794 | .45617797
E-1¢-1 E-2¢0-1 E-20"1 E-1070 1 E-107! ‘ E-1¢"1
{ !
0 -.70398622 | -.19786429 } -.19786429 |, .78405580 | -.71278572 | -.71278158
E-2¢-1 E-24-1 E-2¢-1 E-14-1 ~ E-3¢7! E-34"1
1 32406761 | .67073363 | .67073372 | .397670735  .36381373 | .36381373
E-3 E-4 E-4 E-1 . E-2 E-2
i
1 -.10164395 | .16018113 | -.16018115 | .32526065 E 47839495 | -.47839501
E-19 E-3 E-3 E-18 . E-2 E-2
|

pee



* _' a B -4
(gﬁg’ gkg.)l‘ﬂ

o B\ -2
(Vgﬁg’ w’kg)f‘!Z

C=1 r=1I C =11 r=I r=1I r =1l
67762636 | -.14292383 | .14292383 | -.102999206| .61213967 | -.61213967
E-20 E-3 E-3 E-16 E-2 E-2
32068235 | .45855327 | .45855330 | .14344658 | .12072678 | .12072679
E-2 E-3 E-3 E-10° E-1 E-1
16017472 | -.57376990 | -.57376990 | .30293063 | -.15146554 | -.15146543
E-2 E-3 E-3 E-2 E-2 L E-2
12219053 | .12219054  .12219054 | .51320008 | .51320001 | .51320001
E-2 E-2 E-2 E-1 E-1 E-1
13410436 | .13410434 | 20466448 | -.11244075 | -.11244073 | -.63793649
E-1¢"2 E-12"2 E-20"% 22 g2 E-10"%
.13978030 | -.68832079 | .10199609 | -.13631667 | -.43287032 | -.10905351
E-20"! | E.3p”! E-30"1 E-20"1 E-10"1 E-10""
38957076 | .30570612 | .60777077 | -.30159424 | -.98452443 | -.17730358
E-20"1 E-20"1 E-30"} E-1¢"! E-20"1 E-12"1

s22



*( o« B -4
§£g9 Lkg r L

a B ) -2
vglg ’ vg'kg r!

$
1

C=1I C=1II I =11 r=1I L =1 r = I
-.70398605| -.19786422 | -.19786432| .78405584 | -.71276475 | -.71278040
E-2¢"1 E-20Y . E-207! E-140"1 E-3¢"1 E-3¢"!

.68832048 | .13978022 | -.10199614 | .432870427| .1363170 .109053519
E-3¢"1 E-2¢"1 E-30"1 E-10"1 ! ¢! -1
-.92603412 | -.92603414 | -.57158957 | -.73653758 ' -.73653758 | -.83157437
{
E-4 E-4 E-5 E-2 i E-2 E-3
i
19075785 | .30340262 { -.31197617 | .12345681 | .115740734| .31635808
E-3 E-3 E-4 E-1 ) E-2
.18696760 | -.14292374 | .14292387 | .204794128 | .61214007 | -.61214007
{
E-9 E-3 E-3 E-7 . E-2 E-2
30570618 | .38957069 | .60777077 |-.98452463 | -.3015942 | -.17730358
E-2¢"1 E-2¢"1 E-30"1 E-2¢"1 E-1¢"1 E-1¢"!
-.30340278 | -.19075795 | .31197603 |-.11574075 %-.12345678 -.31635805
E-3 E-3 E-4 E-2 - E-1 E-2

922



* 3 _ .3 _ .3
It should be noted that t_.,ag(x, y) = ng(x, y) = ch(X, y)

* o B -4 a <] -2

r=1 r =11 r =1III r=1 r=1II r =111
.88357741 .88357726 | .18025701 .23610770 | -.23610766 | -.4900350
E-3 E-3 E-3 E-2 E-2 E-2
.16017469 | -.57376970 | -.5737700 .30293081 -.15146497 | -.15146539
E-2 E-3 E-3 E-2 E-2 E-2
.19786432 | -.70398632 | -.19786432| -.712789 .7840558 -.712783
E-2¢"1 E-zf1 E-2¢"1 E-30"1 E-lﬂ'l E-3ﬁ'l
.14292390 | .17933637 | -.14292382| -.612139803| .5 61213999 -
E-3 E-9 E-3 E-2 E-8 E-2
.57376998 | -.16017473 | -.57376998 | -.15146566 .302930354 | -.15146566
E-3 E-2 E-3 E-2 E-2 E-2
.12219051 .12219052 | .12219055| .51320013 .51320013 .51320013
E-2 E-2 E-2 E-1 E-1 E-1

122



Table C.23.

228

Flux integrals — mathematical mesh. Standard basic
patch configuration of Fig. C.5.

3-Element cubic incomplete set.

a -3
(;ﬂg’ I)I‘ 2

r=1 =11 r =111
0.12473615 0.24234453 0.24234455
g1 E-1 971 E-1 91
-0.10842022 0.22890941 -0.22890944
E-18 E-2 E-2
0.24501745 0.69941344 0.69941349
E-1 E-2 E-2
-0.12830006 -0.12830006 -0.12830006
E-1 E-1 E-1
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tagl® ) =81%ny Ll tny) =135y

Lo oM =00y Ll ) = 13 %y

where the shapes are as defined by egs. (3.7)-(3.10). The equations
corresponding to the system, egs. (C.10)-(C.21), are eﬁs. (3.13)-(3.15)
of section 3.1.1. The remaining tables required for the algdrithmare
Tables C.18-C. 21. These tables can be thought of as being common for

all the sets used with the regular mathematical mesh.

(B) Distorted Mesh

This mesh introduces irregular polygons into the set of superpatches.

Figure C. 8 shows one of the possibilities.

Material
hexagon

Fig. C.8. Distorted mesh.

With the introduction of irregular polygons it becomes imperative

to look at the assemblage of inner products from the viewpoint of triangles.
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There are basically three types of triangles involved: a large equilat-
eral triangle such as triangle fqg, an isosceles triangle typified by tri-
angle ghg, and a small equilateral triangle ghi.

The inner products over the large equilateral triangle are exactly
those obtained earlier in the section for the standard geometrical con-
figurations of Figs. C.5and C. 7. The inner products for the small
equilateral triangle can be obtained from those results by the use of

coordinate transformations.

M
A
(-2/3,4N3/3) b c' (2/3,4N3/3)
X'
(0,0)
8.'

Fig. C.9. Basic patch — small equilateral triangle —
distorted mesh.

Figure C.9 shows the small equilateral triangle. The required

transformation between triangle abc of Fig. C.5 and this triangle is

xN3
3

y,\/'3— (C.26)
-

<
"



231

We then have that

ka kB 1 Ja Jja
dx'dy" T %(x', y') OP(x!, yt) = — dxdy ¥ (x,y) ¥)°(x,
Aa{g’ct y' e ey ¥ (xt,yh) = 3 AJ;fbc Yy Tgglxy) T (x,y)

(C.27)
where
vgord,y) = Wi (V3x, N3y j=Aabe k= Aatbie.

(C.28)

Equation (C. 28) is a logical extension of the discussion in section 3.2
where the sets {lpkg} were constructed by rotating specific shapes and
joining the corresponding {Bj} to form ®J' We transform shapes and not
interpolation conditions. The shell sets C1 and {C1+C2} were constructed
by rotations of shapes and eqs. (C.27)-(C. 28) will be applied in the use

of these sets with the distorted mesh.

Continuing, we have that

ka k
dx'dyt - VO %%, v - UV (x!, V!

Aatbct
= I dxdy - V\Irléa (x,y) - VT (%, ). (C. 29)
Aabc g vg
t
A |
L N3 (O/NZ, 83
7 ' Fig. C.10.
e .
II I g Basic patch — isos-
celes triangle —
distorted mesh.

a' (0,0)



232

The corresponding equations for the isosceles triangle a'b'c' of

Fig. C.10 are

Y
y =5 (C. 30)

[]  daxtdy' = ‘Ifle(ag(x'.y') ‘I’I;Z(X':Y')

Aa'blc!
=L ] dxdy \IIJa (x y) \IIJQ (x y) (C. 31)
Aabce |
vgolx,y) = ¥ x', y) (C.32)

and

ka kB
dxtdy! « v 1yt - U t oyt
Aa{{)tc' i og™ ") vg* )

- 3 gie 8 gl ja ja ]
= Aiﬂc dXdY[3 9xX \Ileg( :Y) ‘I" (X y)+3 3}’ \I’gg(x »Y) ay ‘I'Yg(XaY)

(C. 33)

Tables C. 24-C. 25 list the inner products for the {CI+C2} shell set
over the equilateral triangle a'b'c! of Fig. C.9. The C1 shell set inner
products are, by the design of the shell sets, obtainable from this table
by simply deleting the entries where ¢ or B = 2. Tables C.26-C. 27
list the corresponding results for the isosceles triangle a'b'c' of Fig.

C. 10.
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Table C.24. Inner products — distorted mesh. Basic patch of Fig. C.9.

{C1+C2} shell set; j = equilateral triangle a'b’c' (Figure C.9).

el e e | (o)
a' a' 1 1 0.09622503 0.57735021
1 2 -0.0333333 -0.16666666
2 2 0.01443375 0.14433755
a' c! 1 1 0.048112509 -0.288675126
1 2 -0.025 0.08333333
2 1 -0.025 0.08333333
2 2 0.01202813 0.0

Table C.25. Flux integrals — distorted mesh. Basic patch of Fig. C.9.

{C;+C,} shell set; j = equilateral triangle a'b'c’' (Figure C.9).

jo -2
,Q o ‘I’ﬂg, 1 32
al 1 0.19245005
2 -0.0833333




Table C.26. Inner products — distorted mesh. Basic patch of Fig. C.10.
{C,+C, } shell set; j = isosceles triangle a'b'c’ (Figure C.10).

« | (s )™ (vsdz. v%)/3
r=1 r=1I r=1 r =11
1 1 48112516 E-1 48112516 E-1 .288675105 .288675105
1 2 | -.166666 E-1 -.1666666 E-1 -.8333333 E-1 -.833333 E-1
2 | 2 .7216877 E-1 7216877 E-2 .7216877 E-1 .7216877 E-1
1 1 .841968319 E-1 .12028133 E-1 .9622506 E-1 .9622506 E~1
1 {2 |-.260416509 E-1 -.72916707 E-2 .0 -.555555 E-1
2 |2 99232 E-2 45105515 E-2 .120281247 E-~1 .360843943 E-1
1 1 .12028133 E-1 .841968319 E-1 .9622506 E-1 .9622506 E-1
1 |2 |-.72916707 E-2 -.260416509 E~1 { ~.555555 E-~1 .0
2 |2 45105515 E-2 99232 E-2 .360843943 E-1 120281247 Ii-1
1 1 12021 E-1 .360843 E-1 -.144337 -.144337

12 %4



¢ | | (\Ilj;;, \Irifg)r 30 (V\IIJ;;, V\I/{g)r/s
=1 r =1 r=I r=1
-.624999 E-2 -.187496 E-1 416666 E-1 416666 E-1
-.83333 E-2 -.166666 E-1 .833333 E-1 0
4209838 E-2 781828 E-2 -.180421 E-1 180421 E-1
¢ | at 360843 E-1 12021 E-1 -.144337 -.144337
-.187496 E-1 -.624999 E-2 416666 E-1 416666 E-1
-.166666 E-1 -.83333 E-2 .0 833333 E-1
781828 E-2 4209838 E-2 .180421 E-1 -.180421 E-1
¢t | b 24056256 E-1 24056256 E-1 | .481124 E-1 481124 E-1
-.15624997 E-1 | -.93750039 E-2 | -.27778 E-1 .0
-.9374996 E-2 -.156250043 E-1| .0 -.27778 E-1
60140627 E-2 60140627 E-2 .0 .0

.6€2
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Table C.27. Flux integrals — distorted mesh. Basic patch of

Fig. C.10.

{c,+C,} shell set; j = isosceles triangle a'b'c' (Figure C.10).
172 J g g

g a <\1f}2“g, l)r 0723
r=1 .
a 1 0.96224 E-1 0.96224 El
2 -0.416666 E-1 -0.416666 E-1
b 1 0.48111336 E-1 0.14433872

2 -0.312500144 E-1

1 0.14433872

2 -0.520833116 E-1

-0.520833116 E-1

0.48111336 E-1

-0.312500144 E-1
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Appendix D
IMPOSITION OF CONDITIONS AT SINGULAR POINTS

We consider in this appendix the implications of applying the condi-
tions of flux continuity and current continuity at a singular point. It is an
example of an examination of how the various conditions applied relate to
each other in terms of the equations they give rise to. The results ob-
tained have a direct bearing on the case where function continuity and de-
rivative continuity are simultaneously applied across intersecting patch
boundaries and this aspect of the problem is also included in the discus-
sion. |

Consider Fig. D.1. Regions 1,2,...,K are regions containing

Fig. D.1. Singular point
configuration.

different material with the corresponding diffusion coefficients D1 yeees

DK' Point ¢, (0,0), is the intersection point of all the material inter-

faces. The unit normal to these interfaces is denoted by /ﬁk and the unit

vector parallel to the interface is 'r\'k. We have
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A . .
r, = -bk_l_ +ak_J_. (D.1)

Normal current continuity across each interface gives

b (D.2)

Dylagyar* o byl = Loy g+ oy oyl D

k] k+1

where

and region (K+1) is understood to be region 1. ‘With function continuity

%
we have that lim % - Vi (r_+|€|?)  is continuous across material
ig'—c k
le|~o0
interfaces. This means

b, +a b, + a (D. 3)

Tk T %ky®k T T%k+1x°k © %k+1y%k

Equations (D.2) and (D. 3) lead to the following system of homogeneous

equations.

%
= point c.
I, =P



_
- - - A
Djap  Dyby -Dpap -Dpby 0 Ceax 0
_b1 a -2, 0 0 | ; jaly ]
0 0 D3, Dpbp -D3a, -Djb, %2x
0 -b2 a, b2 -a, ; %y
Djag Db O “kx
b -a 0 a 0
. K K JL® L]
(D. 4)

A, B, O 0
o A, B, 0
. 0 | a=0 (D. 5)
0 By,
By O Ay
where
Diay  Dyby “Dii12k “Pi+1Px
A = and B, =
K K
-by ay by -3y

For the case where all the regions contain the same material, that is,

the homogeneous case we have

A, =-B, (D. 6)
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Equation (D. 5) then reduces to

A -4 0
A, —A‘2 0
a=0 (D. 7
0 'AK- 1
__'AK 0 A ]
By adding columns we can reduce the coefficient matrix to
— —
Ay 0
0 A, 0
C = 0 (D. 8)
0
-AK -AK 0
As [C[ = 0 this means that the constraints of function continuity and

normal derivative continuity across interfaces lead to redundant equations
and consequently a nonunique solution.

Now let us examine the general inhomogeneous case, eq. (D.4). If
we add to the (2k+1)JEh column the (Zk)il-ll column multiplied by bk/ a,;
set bK =0 and g = 1, and transpose the resulting coefficient matrix,

we obtain
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D 12 +D bl/a 0. -D, -bl/a1
a; 0 -1
C = . 0 (D. 9)
DK 0
1

If we choose K = 3, (al’bl) = (-1/2,N3/2) and (a,,b,) = (-1/2,=N3/2), it

can be shown, by expanding the resulting determinant, that

!C] #0 in general. (D.10)

This means that ICI is not identically zero with the consequence that the
only solution of ¢ is the trivial solution 0. In other words, the imposi-
tion of normal current continuity and function continuity can lead to zero
gradients at point c¢c. As flux continuity is an essential condition, this
means that normal current continuity should not be imposed at singular

points.
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Appendix E

COMPUTER PROGRAMS

It should be emphasized at the start that the programs
written during the course of this thesis were not meant to
be 'Production' versions. They were designed solely as
research tools with definite limitations as far as the
range of problems is concerned and should be so regarded.
Modifications were made as objectives changed and the logic
of many of the codes reflect this hybridizing process.

This introduction should serve as a note of caution against
further modification of the programs as they now stand. If
modifications are strongly desired it is recommended that
the codes be rewritten using modules of algorithms taken
from the current versions.

The programs are the computer implementation of the
finite element method to solve the multigroup static neu-
tron diffusion problem, egs. (1.17) - (1.19); that is to
say they assemble and solve the Galerkin system of equa-
tions, eq. (1.18). All the programs are limited to two
group calculations with the assumptions that,

(i) There is no upscattering

(ii) No fission neutrons are born in the thermal group.
The equations actually programmed are those of egs. (1.24) -

(1.25). The orthodox power iteration scheme, eq. (1.26),
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is used to solve the eigenvalue problem for the system
multiplication constant, the eigenvalue A. We shall divide

the codes into two sets on the basis of the number of spa-
tial dimensions treated. For the 1-D set we have the
following programs

(a) 1-D FLOAT

(b) 1-D SECTION.
In 2-D we further subdivide the set into groups of programs
using the physical mesh shown in Fig. 3.6 and those utili-
zing the mathematical coarse mesh of Fig. 2.6(b). The
physical meshkgroup consists of

(a) 2-D PHYMESH
while the mathematical coarse mesh group is composed of

(a) 2-D MATHFIT

(b) 2-~D MATHNO

We now present a short description of each code to-
gether with the corresponding input for a sample problem.
The 1-Dcodes are discussed in section E.l and the presentation on
the 2-D codes follows in sections E.2 and E.3;‘ All the
programs are written in FORTRAN IV for the IBM 370/168
computer system. The source listings are presented in

Appendix F.
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E.1 1-D Programs

We first discuss 1-D FLOAT and then 1-D SECTION.

E.1.1 1-D FLOAT

(a) Description

1-D FLOAT was written to investigate the question of

the condition of join in 1-D. The problem simulated is

the one of Fig. 4.2. For convenience we repeat that Fig.

here

Region 1 Region 2

0 L/2 L

Fig. E.l1l. 1-D 2 Region Problem.

The version listed in Appendix F has the following restric-

tions

(1)

Hermite set.

(ii)

The superelement set used is Kang's cubic

1

Only five superelement functions wkg can be used.

These are the ones shown in Fig. E.2.

Fig. E.2.

3
Superelement function set used.Kang's cubic Hermite

1
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The numbers on the fig. are the indices_of'the super-
element functions as used in the program. The program is set
up for the flux continuity-current float case. The places
where modifications are required for the other cases are
indicated in the source listing‘in Appendix F.
We present next a summary of the subroutines involved
MAIN: - This forms the Galerkin coefficient matrices and
uses the power iteration technique to solve the-
resulting matrix equation. The solution is then
normalized to the input fission rate.

HPOLY: - This subroutine returns the value of the power of
the mesh spacing H, for the inner product involved.

- Table of coefficients for the inner products

o

Vy. V. .
( wlg, wjg)
- Table of coefficients for the inner products

XIMQ: - Standard IBM subroutine for solving a linear system

|

of equations.

Figure E.3 shows the general code logic. We now present the

input preparation.
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HPOLY Form Galerkin
coefficien; matrices

l

Use Power iteration

<<::§:::>>_§_ scheme to solve

eigenvalue problem

/

|

Calculate Fission rate
for normalization

End

Fig. E.3. Flow chart for 1-D FLOAT.

(b) Input Preparation

Card 1 -~ IS5

MAXITR - Maximum number of outer iterations

Card 2 - E10.8

H - Mesh spacing (superelement function center-

center)
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Card 3 - 2E10.8
ERMOD - Solution convergence criterion

EREIG - Eigenvalue convergence criterion

Card 4 - 15, E10.8, 2I5
NUMVAR - Number of unknowns per group
POWIN - Fission rate for normalization
NIMAX - Number of non-zero entries in lower
triangular part of the Galerkin
coefficient matrix

NREGIN - Number of different material compositions

Card 5 - 15, 7E10.8
IREGIN - Material composition index (beginning

with 1 and ending with NREGIN)

S1GR1 (IREGIN) Group 1 removal cross section

S1GR2 (IREGIN) Group 2 removal cross section

DIFF1 (IREGIN) Group 1 diffusion coefficient

DIFF2 (IREGIN) Group 2 diffusion coefficient

SIFNU1 (IREGIN) -~ vzfl

SIFNU2 (IREGIN) - vzfz
S1GS21 (IREGIN) ~ Outscattering cross section;

Group 1 to Group 2.

Card 5 has to be repeated NREGIN times
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Card 6 - 7I5
IREGIN - Material composition of the region over
which the inner product specified by

the information on this card is formed.
h

I - 1 Indices required to specify the I*“row and

J - , Jth column entry of the Galerkin coeffi-
cient matrix

N - Pointer passed to subroutine F to determine

the coefficient of the inner produce
(wig.wjg).
IRDFUN - Order of mesh spacing of . .
p g <w1g,wgg)

I1 - Pointer passed to subroutine D to determine

the coefficient of the inner product

V. VY.

( wlg, ng)

IRDDER - Order of mesh spacing of (Vwig,ijg).

Card 6 is repeated for all the non-zero entries in

the lower triangular part of the Galerkin coefficient
matrix; i.e. NIMAX times.

A list of input cards is presented on the next page for

the sample problem illustrated by Figs. E.l1 - E.2 .
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50
EC1
E-03 .1 E-3
5 .1 E 3 11
15.7682 E-310.43
2 2.7555E-3 2.46

1 1 M
1 2 12
1 1 3 13
1 2 2 14
1 pi 3 15
1 3 3 11
2 2 uy 17
2 2 5 18
2 4 u 11
2 4 5 13
2 5 5 1

2

E-31.6835C2E 1.237017EC 8.8200E-5 1.4600E-3 1.8300:k-3

E-31.658375E 1,297G17E

3

WWWRHOHNWEN W

- W e YN = N E WY

-

9.1500E-5 1.490GE-3 2.07.

E-3

1NPLC I
1INFLIIND
1DFLCON3
1DFLOY L
1DFLIJNS
1DTTIING
1DFLODD7
1DP1.2508
1DFLY0)9
1DPLCO10
1DFLYD 11
1DFLO012
1DFLIN13
1DFLON 14
1DPLOO1S
THFLYM6
1HFLONT
1DPLLDS

6¥2
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E.l.2 1-D SECTION
(a) Description
This program was designed to simulate the 1-D section
problems discussed in section 4.1.1(2) and shown in Figs.
4.6 and 4.8 . The version listed in Appendix F uses
the 1-D Hybrid Quadratic superelement set and is set up
for the current continuity cases. The changes necessary
for the derivative continuity cases are indicated in the
listing.
We present below a summary of the subroutines
MAIN: This sets up the Galerkin coefficient matrices and
uses the power iteration scheme to solve the eigen-
value problem. It also initiates the logic to

compute the power to normalize the solution.

FISRT: This is where the calculation of the power is

actually carried out.

SINGD: SINGD calculates the parameter a of the 1-D Hybrid
Quadratic set for inner products of superelement
functions centered on the same mesh point.

DIFFD: This subroutine computes the parameter o of the 1-D
Hybrid Quadratic set for inner products of super-
element functions centered on different points.

XIMQ: The function of this standard IBM subroutine is to

solve a system of linear algebraic equations.
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The remaining subroutines are tabiés of inner products
and flux integrals. Subroutine F is the table of the
function inner products (wig’wjg) while D is the table of
the derivative inner products (vwig,ijg). As the logic of
the two subroutines are identical we shall only discuss F
and the subroutine RINTEG which is the table of flux inte-
grals.

E: The indexing scheme for the superelement functions is
to refer to each function by a number ab
where,
1l .. Left side of centering point
2 .. Right side of centering point

and

b=1- 4 .. indicating the type of basic

element function.

The option ab = 5 is the null function.
The general flow diagram to determine the value of
(ab,cd) is shown in Fig. E.4.

RINTEG: The flow diagram for determining the value of

(ab,1) is shown in Fig. E.5.

This completes the description of the program. Fig.
E.6 shows the general flow of logic. We now present the

data preparation.
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Fig. E.4. Logic for subroutine F.
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Fig. E.5. Logic for subroutine RINTEG.

DIFFD

J

Form Galerkin
coefficient matrices

l

Use power iteration
scheme to solve
eigenvalue problem

Calculate power
for normalization

END < RINTEG /

Fig. E.6. Flow chart for 1-D SECTION.

el




(b)

Card

Card

Card

Card

Card

Card

Card
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Input Preparation
1 - I5

MAXITR - Maximum number of power iterations.

2 - 2E10.8
ERMOD - Convergence criterion for solution

EREIG - Convergence criterion for eigenvalue.

3 - 2E10.8
POWIN - Power for normalization

RNU - v.

4 ~ I5

NUMLAP -~ Number of basic patches per superpatch.

5 - I5

IHMAX - Number of sets of different H problems
The cards below are to be repeated IHMAX times.

6 -~ E10.8
H - The h of the 1-D Hybrid Quadratic set. Refer to

egs. (3.40) - (3.41).

7 - 3I5
NUMVAR - Total number of unknowns per group
NIMAX - Number of non-zero entries in lower triangular

' part of the Galerkin coefficient matrix.
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NREGIN - Total number of different material

compositions.

The set of Cards 8 - 9 are to be repeated NUMVAR

times.

Card 8 - 215

Card

Card

Card

I - Superelement function index (from 1 to NUMVAR).

h

MESHPT - Mesh point on which 1t superelement function

is centered.

Card 9 is to be repeated NUMLAP times.

9 - 2I5

ITYPE ~ Index for type of basic element function of

Ith

superelement function over the basic patch.
(Basic patches indexed from 1 to NUMLAP. Type
- index from 1 - 4.)

MREGIN - Material composition number of material in

this basic patch.

10 - I5

IMATMX - Number of sets of different material problems.
The cards below have to be repeated IMATMX times.

11 - Same as Card 5 of 1-D FLOAT.
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Card 12 - 215

th th

I -) Indices required to specify the I row and J

J - column non-zero entry of the lower triangular
part of the Galerkin coefficient matrix.

Card 12 is to be repeated NIMAX times.

We present on the next page a listing of the input
cards required for the sample problem shown in Fig. 4.6.
The mesh used is the one for the h =8.333 cms results.

We now turn our attention to the 2-D codes beginning
with the mathematical mesh group in Section E.2 and con-

cluding with the physical mesh group in Section E.3.

E.2 2-D Mathematical Mesh Programs

There are two programs to be discussed, 2-D MATHFIT
and 2-D MATHNO. We shall discuss 2-D MATHFIT first and in
detail as the other 2-D programs are quite similar to it.
Reference will be continually made to Appendix C as the
inner products and flux integrals used in these codes are
presented there along with the definitions of the conventions
adhered to.

We should make one comment here about the problem
solved in the 2-D programs. This problem is the 60° sector
of the small HTGR shown in Fig. 4.9. The conditions applied

along the edges of the sector are those of rotational
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THIS IS THE SAMPLE INPUT FCR 1-D SECTICN

E-03 .1
E032.43

NN ENDDN S WNDNON @WN = aa N ma aDaaaeaaad

E-3

10SC0001
1DSCCQ02
1DSCN)03
1DSCO00L
1DSc0005
1DSCCON6
1DSC0927
15¢0038
1D5C0I09Y
1PSC0N1n
1DSCC011
1bSC0I12
1DSCC013
1DsScCo1n
1DSCI015
1DsC0016
1DSCGC17
1DSCN018
1DSCH019
1bSC2020
1DsC0021

1DSC0022

1DSCC023
1DsSCcNo24
1nscNo2s
125C0726
1DSCc0027
1MSCo028
1D05C0N29
1DSC2030
1DSCI031
1DSCCN32
105C0033
108CN034
105CCA135
1195Cc0036

N

LS



22
21
7
13
14
24
23
8
11
12
22
21
9
13
14
24
23
1)
1M
12
22
21
1M
13
14
24
23
12
13
4
5
5
1
15.7682 E-310.43 E-31.683502E 1.297017£021.4326E-5 3.5473E-3 1.830CE-3
25.7682 E-310.43 [E-30.3367 L[ 1,297017E021.4326E-5 3.5078E-3 1.8300F-3
1 1

- D NP @ NN i N DA DN NDNaAaNNNNDNUVONNND SN

1DsScl037
10s5Cc0338
1DSCR039
1DSC0949
1DSCOn41
1hscCou?2
1DsSconNy3
1DSCCouy
1DSCOH0US5
1DSCCNL6
10scCou?
1DSCCOu8
1DSCOI49
1DSCOA5C
1DsSCcens
1IDSCIHH2
1hscins3
1DSCCO5HN
1DSCENKS
105CC056
1DSC3057
1DSCG058
1NsScdns9
108C0%6C
1DsSCO061
1DSCOCH2
1DSCON6 3
1NSCIN6U
1DSCCY65
1DSClCo6
1DSCCN67
1DSC2068
1DSCYN69
1D5¢C270
1DSCuLNT1
1L5CaNT2

[z
wn

(0]



oy
ODPOVOOWOWIOCONNNOITORNNITN VNV E EEEWWWNNNND =

I
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12

JF Y
Wead DO DO NOIdIANIITUdONOTENNST WS WNDWN

D ed od cmd —d wd
RN aNawaDamD

1DSCOC73
1D5CNDT74
1DsSCclt75
1DSCONT76
1DsCcC077
1DsCn078
1NSCcII79
1Dscod80
10sc0081
10SC0082
1bscCn83
1DScCiNAnY
1DSCCI8S
1DSCONBA
1DSCH0g7
1NSCS088
1DSCON8Y
1DSCQY 10
mMscenNon
1DSCNDI2
1H5C2D93
1DSCRO9Y
1DSCCNYS
1DSCA296
1DSC8097
1DSC0098
1D5CCII99
1DSC2100
1DSCI 191
1DS8Co1N2
1SCN103
1DSCO14
1DsSCcl105
1DS8CI176
1DSCG107
1D5C0108

N
(S))
O
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symmetry. To set up those conditions in the programs, data
about the neighbouring sectors must be input and they must
reflect this 60° rotational symmetry. Material compositions,
superelement function indices, etc., must all have this
symmetry. The minimuﬁ region of the neighboring sectors for
which this data must be input is the region which falls
within the superpatches of the benchmark problem.

We will now discuss 2-D MATHFIT.

E.2.1 2-D MATHFIT
(a) Description

This program was written to solve a 60° sector of the
small HTGR; that is the benchmark problem of Fig. 4.9. It
should be noted that the conditions on the straight edges
of the sector are conditions of rotational symmetry. The
mesh used is the coarse mesh of Fig. 4.15. The boundary
has been fitted exactly and interface distortion is also
included. A known error was deliberately made in this code
with the result that the power is not calculated correctly
for the boundary row of material hexagons. As far as our
results are concerned this is of no consequence as the
benchmark problem has only reflector material in that
particular area.

The version listed in Appendix F cannot be used to

throw out the interface distortion. The superelement set
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used is the Perturbation Quadratic one.
We now summarize the function of each subroutine.

MAIN: This can be divided into three parts. In the first

part sweeps ére made through the mesh to form the
Galerkin matrices. The mesh is divided into two
groups of superpatches, the regular hexagons and the
irregular polygons. We first sweep through all the
regular hexagons, center by center, collecting
together all the inner products formed by the
superelement functions 'centered' at these centers.
We then concern ourselves with the irregular polygons.
These superpatches are decomposed into their consti-
tuent basic patches which are discussed in Section
C.2.2 (b). The basic patches are the large equila-
teral triangle of Fig. C.5, the small equilateral
triangle of Fig. C.9 and the isosceles triangle of
Fig. C.10. The sweep through the large equilateral
triangle is made in the same loop with the sweep
through the regular hexagons. After this sweep we
concern ourselves first with the small equilateral
triangles and then with the isosceles triangle. We
start with the outer boundary on the first iteration
through the loop and end with the core-reflector

interface.
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- The second phase of MAIN is the implementation
of the power iteration technique to solve the eigen-
value problem. The final portion of MAIN initiates
the calculation of the material hexagon powers
normalized to the core power input on the data cards.
This subroutine performs in essense the same function
as the first part of MAIN. It sweeps through the
mesh to collect the terms for the material hexagon
powers. The logic is essentially that of the first
part of MAIN. We first sweep through the regular
hexagon superpatches, center by center, and then
concern ourselves with the irregular polygons treat-
ing first the large equilateral triangles, then the
small equilateral triangles and finally the isosceles
triangles.
This is where the powers are actually summed for
- each material hexagon. There are three different
branches in this subroutine. The first branch is
to compute the powers for the regular hexagon super-
patches and the large equilateral triangles. The
second branch is for the small equilateral tri-
angle. The final alternative calculates the power

contribution of the isosceles triangles.
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RINEQT:

RINIST:
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The summation of the inner products over the

reguiar hexagon superpatches and the large equi-

lateral triangles are actually carried out in this

subroutine. There are four branches involved.

The first one leads to the equations patterned
after eq. (C.23). The second alternative is the
implementation of the equation (C.24). The third
branch are the equations patterned after eq.
(C.25). All these branches are involved with
calculating the 'cross' inner products, that is
inner products of superelement functions 'centered'
on different centers. The 'self' inner products
are computed in the fourth and final branch. This
is the implementation of the equation (C.22).

This is the small equilateral triangle equivalent
of RINPRD. It sums the inner products over the
small equilateral triangle. 1In this case matters
are simpler as there is only one possible 'cross'
inner product and only one possible 'self' inner
product.

This is actually an entry point to the subroutine
RINEQT but for convenience we shall examine it here
as though it had a seperate entity of its own.

There are three typeé of 'cross' inner products and
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three types of 'self' inner products dictated by
the geometry of the triangle. This can be seen
from Table C.26 by examining the indices {4 and k
which are related to the geometry. The relation-
ship between these indices and the branches pro-
grammed into the subroutine will become clearer
when we examine the subroutines CSxypF and CSxyRD.
XIMO: This is the standard IBM subroutine for solving a

set of linear algebraic equations.

The remaining subroutines to be discussed are all
tables of either inner products or flux integrals. We
divide the inner product tables into three groups. Those
concerned with the small equilateral triangle have names of
the form EQTaB. The tables for the isosceles triangle are
denoted as CSxyCB. The remaining tables are concerned with
the large equilateral triangle and therefore by implication
with the regular hexagon superpatch. They have names of the
form B6z. The option B = F are the tables of the 'function'
inner products, (ng,wag)r while B = D are those of the
‘derivative' inner products, (vwgg,vwag)r.
division we have the finer subdivision of 'cross' or 'self'

Within this

inner products. Here o = S, y = S and 6 = S indicates
'self' tables while o = C, y # S and 6 # S indicates ‘'cross'

tables. Table E.l is a tabulation of the subroutines



Table E.l1. Subroutines for table data used in 2-D MATHFIT.

Inner Products

Basic Function Derivative Flux
Patch Cross self Cross Self Integrals
Small EQTCF EQTSF EQTCD EQTSD EQTPW
Equilateral
Triangle
Isosceles CS12CF, [ CS1SCF,CS2SCF, CSl2Cp, | CS1sCp,CS2SCD, CSPOW 1,
Triangle CS13CF, | CS3SCF Ccsl3ch, | €¢s3sch CSPOW 2,

CS23CF CS23CD
Large FE1l,FE2 | FS1,FS2 DEl,DE2 | DS1,DS2 RPOW 1, RPOW 2
Equilateral FF1l,FF2 | FS3 DF1,DF2 | DS3 RPOW 3
Triangle FGl,FG2 DG1,DG2

s9¢
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according to these subdivisions. For completeness the flux

integral subroutines are also included.

We now discuss one

subroutine from each category as the logic for subroutines

of the same category is common. We start with the small

equilateral triangle.

(i) Small equilateral triangle: In the case of the

'cross' tables the ordering scheme is ITYPl =

where ITYP1

on a' (Fig. C.9)

ITYP2

on ¢c' (Fig. C.9).

1-3-ITYP2=1-3

Index of superelement function centered

Index of superelement function centered

In the case of the ‘'self' tables the scheme is,

ITYP1 = 1 -3 -[ITYP2 = ITYP1 - 3.

In the case of the flux integral tables,

ITYP1 = 1 - 3.

(ii) Isosceles triangle: For the 'cross'

INDEX 1-2 -[ITYP1 =1-3

where INDEX

ITYP1

on point x,

ITYP2

on point y,

tables we have,

-{ITYP2 = 1 -3

Area indicator (Fig. C.10),

Index of superlement function centered

Index of superelement function centered
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and {x,y} are given by the form of the subroutine name,
CSxyCB8. For these tables the numerals {1,2,3)} represent
the points {c',b',a'} of Fig. C.10.

For the 'self' tables we have,

IROT 1-2 ~ITYP1 = 1-3 -{ITYP2 = ITYPl -3

where now

IROT Area index (Fig. C.10).

Finally, for the flux integral tables,
IROT = 1 -3 -[ITYPl = 1-3

with a change in definition of the programming variables.
We now have that

IROT = Triangle corner index

ITYP1 = Index of superelement function centered

on point IROT

and x of the subroutine name CSPOWx is now the area indi-

cator.

(iii) Large equilateral triangle: For the 'cross'

tables we have,

INDEX 1-3 -[1TYPl = 1-3 -[ITYP2 = 1-3

|

where

INDEX Area indicator
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ITYPl = Index of superelement function
centered on point a,
ITYP2 = Index of superelement function

centered on point 6,

and 6 is given by the subroutine name F8z or D6z. The
character z refers to the particular triangle concerned
in accordance with the convention shown in Fig. E.7.

Reference should be made to egs. (C.23) - (C.25) and Fig. C.6.

triangIé 1 triangle 2

Fig. E.7. Convention for labelling triangles used in
F6z and D6z.

The ordering scheme for the 'self' tables is

IROT = 1-6 -[ITYPl = 1-3 -{ITYPZ2 = ITYPl -3

IROT Triangle index (Fig. C.4).
Finally, we have for the flux integral tables,

IROT =1 - 6 -[ITYPl1 =1-3

and the area indicator is now z, part of the subroutine name

RPOWz.
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This concludes the discussion on the subroutines.
Fig. E.8 shows the general logic of the program. We now

turn our attention to the preparation of the input data.

(b) Input Preparation
Card 1 - IS5
MAXITR - Maximum number of iterations for power

iteration.

Card 2 - 2El10.8
ERMOD - Solution convergence criterion

EREIG - Eigenvalue convergence criterion.

Card 3 - 2E10.8

POWIN - Core power for normalization

RNU - v.

Card 4 - IS5
NUMTYP - Maximum number of superelement functions per

group 'centered' on a mesh center.

Card 5 - 1I5

THMAX - Maximum number of different H'cases.
The cards below have to be repeated IHMAX times.

Card 6 - E10.8

H - Material hexagon center to material hexagon center



Enter

RINPRD

inner pro- |
ducts - large

equilateral
trianglei//

inner pro-
ducts - small
equilateral
triangle
tables

inner pro-
ducts - isos-
celes triangl
tables

Fig. E.8.

sweep through
regular hexagons

sweep through large
equilateral triangles

Do (a)
Boundary

sweep through small
equilateral triangles

A

sweep through isosceles

triangles

270

Form
Galerkin
coefficient
matrices

use power iteration
scheme to solve eigen-
value problem

I

calculate material
hexagon powers

flux
integral
tables

~ | _

Flow chart for 2-D MATHFIT.
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length. (A word of caution is necessary here.
Some tables use a different length to measure
mesh size. Have to check that tables are

consistent with input H.)

Card 7 - 315
NUMVAR - Tot;l'number of unknowns per group
MAXBLK - Tétal number of material hexagons. All
material hexagons used in thé formation of
the inner products have to be included in
this count.

NREGIN - Total number of different material compositions.

Card 8 - IS5
IMATMX ~ Total number of cases with different sets of

materials.
The cards below have to be repeated IMATMX times.

Card 9 - I5, 7E10.8
IREGIN - Material composition index. Must run from 1
to NREGIN

SIGR1

Group 1 Removal cross section
SIGR2 - Group 2 Removal cross section
DIFF1l - Group 1 Diffusion coefficient

DIFF2 - Group 2 Diffusion coefficient
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SIFNU1l vzfl

SIFNU2 vZfz |
SIGS21 - Outscattering cross section group 1 to

group 2.

10 - 2E10.8
BSQl - Group 1 transverse buckling

BSQ2 - Group 2 transverse buckling.
Cards 9 and 10 have to be repeated NREGIN times.

A word is in order here, before we list the remaining

cards, about the indexing scheme used. Each material

hexagon is assigned a number, called the block number and

there are arrays which relate the block numbers to material

compositions and to a set of coordinates (m,n). Block

numbers cannot be assigned on an arbitrary basis. They

must

made

conform to the following sequence. Reference should be

to Fig. E.9. The central material hexagon is block

number 1. Then the non-boundary non-interface hexagons are

to be labelled, IBLK1l - IBLK2 where IBLK1l has to be 2.

Next, the boundary hexagons are to be numbered in sequence,

IBLK1L - IBLK2L. We then turn to the hexagons on the L side

of the interface, IBLK5SL - IBLK6L and after that the

hexagons on the R side of the interface, IBLK7R - IBLKS8R.

Finally the hexagons which are bisected by the line ac,



3

~ H/ o ﬁ/) U
eif ko | |

', - ‘
. . > )

. Fig. E.9. Block numbering sequence and (m,n) axes for 2-D
MATHFIT.
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IBLKS5 - IBLK6, are to be numbered in sequence. All
remaining material hexagons can be labelled in an arbitrary
manner. We now present the remaining data cards. The
triangular problem refers to the Triangular Neumann problem

of Fig. 4.12.

Card 11 - 215
IBLKl = 2

IBLK2

Card 12 - 2I5

IBLK3 = 0 For triangular problem } = block s
IBLK4 = 0 = block s
Card 13 - 215
IBLKS
IBLK6
Card 14 - 215
IBLK7 = 0 - For triangular problem } = block f
IBLKS = 0 = block £
Card 15 - 2I5
IBLK9 = 0 For triangular problem = block r
= block r

IBLK1O0 = 0
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Card 16 - I5

IBLK1ll = 0 For triangular problem = block h

Card 17 - 2I5
IBLK1L

IBLK2L

Card 18 - 215
IBLK3R

IBLK4R

Card 19 - 215
IBLKSL

IBLK6L

Card 20 - 2I5
IBLK7R

IBLKSR
Cards 21 - 22 are to be repeated MAXBLK times.

Card 21 - 415
IBLK -‘Material hexagon block number.
IPROP - Material composition index of material
contained in this hexagon.
M - m-coordinate of this material hexagon.

N - n-coordinate of this material hexagon.



276

Card 22 - 1015
(IFUNCT (IBLK, ITYP), ITYP = 1, NUMTYP) - Index of
superelement function ‘'centered' on material
hexagon numbered IBLK and of type ITYP (must be

between 1 and NUMVAR).

The cards below contain information regarding the

irregular polygons.

Card 23 - 1615

NEQTR1 - type
\ (

NEQTR2 - type

NEQTR3 - type
> Number of large equilateral triangle<

NEQTR4 - type

NEQTR5 - type
\

NEQTR6 - type

Refer to Fig. E.10 for the definition of the different

types.

Fig. E.10.

m-axis

n-axis

Convention for large equilateral triangles.
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Card 24 - 1615
(IEQTR1 (J) J = 1, NEQTR1l) - Block number of material
hexagon in which the Jth large equiléteral triangle

of type 1 falls.

Card 25 - 1615
(IEQTR2 (J), J = 1, NEQTR2) - Equivalent of Card 24

for type 2.

Card 26 - 16I5
(IEQTR3 (J), Jg =1, NEQTR3) - Equivalent of Card 24

for type 3.

Card 27 - 16I5

(IEQTR4 (J), J = 1, NEQTR4)

Equivalent of Card 24

for type 4.

Card 28 - 161I5

(IEQTR5 (J), J = 1, NEQTRS) Equivalent of Card 24

for type 5.

‘Card 29 - 1615

(IEQTR6 (J), J = 1, NEQTR6) Equivalent of Card 24

for type 6.

If NEQTRx is zero then the corresponding data card of

the set 24 - 29 should be dropped from the input.
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The remaining cards are data for the small equilateral
triangles and for the isosceles triangles. They should be
repeated twice. The first set is for the boundary. The

second is for the interface.

Card 30 - 16I5
NCORN - Number of corner points on
(a) Boundary - First set of data cards
(b) Interface ~ Second set of data cards.

The corner points are indexed 1 - NCORN.

Card 31 - 1615
((ICFUNC (I, ITYP), I = 1, NCORNP), ITYP = 1, (NUMTYP) -
Index of superelement function of type ITYP
centered on the corner point I where
NCORNP = NCORN + 1 (index must be between 1 and

NUMVAR) .

Card 32 - 16I5
((ICLFBK (ISIDE, I), I = 1, NCORN), ISIDE = 1,2) -
Block number of the material hexagons to the L
side and R side of the corner point I. ISIDE =1

is the L side.

Fig. E.1ll illustrates this point.
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Corner point

side

Either boundary or interface

L gide

Fig. E.ll. Convention for small equilateral triangle.

Card 33 - 16I5
((I3RDPT (ISIDE, I), I = 1, IBLKED), ISIDE = 1,2) -
Index of corner point which forms the third corner
of the‘Ith isosceles triangle on the ISIDE side
of
(a) Boundary - First set of data cards
(b) Interface - Second set of data cards.
The isosceles triangles on the ISIDE side are

indexed starting with the numeral 1.

Fig. E.12 is an illustration of the convention used.
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\

Isosceles triangle—— ) ?\/
. o I\
identified by <——Corner point
(ISIDE, I)

Fig. E.12. Convention for isosceles triangle.

It must be noted that IBLKED is the larger of the
following two numbers: the number of isosceles triangles
on the R side and the number of isosceles triangles on the
L side. This means that 0 will have to be input for some

of the array elements of I3RDPT (ISIDE, I).

In concluding this section on the input preparation

we should make the following comments.

(i) In the case of the interface the last material
hexagon on the L side should be such that the edge ac

bisects it as in Fig. E.1l3.

/

/
/

Lo

a

Fig. E.13. Last material hexagon on interface.
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(ii) If the number of superelement functions. centered
on a certain mesh center is less than NUMTYP then the value
0 should be input for the indices of the missing superelement
functions.

(iii) To ensure 60° rotational symmetry conditions on
the edges of the sector, the material compositions and the
indices of the supetelement functions in the neighbouring

- sectors must reflect this symmetry.

This completes the description of the data preparation.
We present on the next page a list of input cards for the
sample problem shown in Figs. E.14 - E.15 .

We now turn our attention to the second mathematical

mesh program.

E.2.2 2-D MATHNO
(a) Description

2-D MATHNO solves the same 60° sector small HTGR
problem which 2-D MATHFIT doeé but it does not fit the
boundary exactly. The mesh used is the one of Fig. 4.10;
that is to say the only superpatch used is the regular
hexagon. This is the program used for the 'initial' phase
calculations referred to in Section 3.3 (6). As can be
inferred much of the logic is similar to that of 2-D MATHFIT
and we will draw upon the presentation of Section E.2.1 in

our description.



c THIS TS THE SAMPLE INPUT FOR
50
G.1 E-J5 C.1 E-0S5
3.7037 2.43 ‘
2
1
34,64 =00
&4 55 4
1
15.93655D-31,030€3D-21.6835 1)
¢.0 0.0
23.58649D-34,07584D-31.47493DC
0.0 0.0
34.98523D-32.960C0D~-40.96399D0
0.0 0.0
4 0.0 DO 0.0 CC C.C DO
c.0 0.0 :
2 7
0 )
27 27
0 0
0 0
0
8 14
"] ¢
16 19
21 25
1 1 3 2
1 2
2 2 4 3
3 Y
3 2 5 3
5 6
4 2 5 4
7 8
5 1 5 5

1.29702D0C

1.14155DC

0.78988D3

2.0 Do

2-D MATHFII

2.14326D-43,54780D~-31.83 D=3
3.86370D-46.17220D-32.25000D-3

0.0 D6 0.0 DO 0. Do

2DMFC001
2DMPONG2
2DMFQC03
2DMFCONY
2DMFCCIS
2DMFC0N6
2DMFO007
2DMF5298
2DMFON0Q
2DMFC{1D
2DMFONM11
2DMFONT2
2DMFC213
2DMFC214
2DMFC015
2DMEINAA
2OME2617
2DMEPO01A
2TLMFO019
2DMFCC20
2DMFQON21
2DMFCR22
2DMFPON2 3
2DMFID 24
2DMe0025
2DMFN026
2DMF0027
ZD¥MFQ0D28
2bMPan29
2DMFC0O30
2DMPC0 31
2NMR(O0 32
2DMFS033
2LMPEIN3Y
2DMFON35

 2DMP0036

[\

Z8
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1
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13
39
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1
15
32
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15
17
11
18
12
19
13
2)
15
21
23
22
16
23

10
20
25
33
35
37
27
29
31
22
33

2
47
48
49
50
47

51

52

JDMP{C 37
2DMESO38
2DMPC0139

2D0MFJ0u4C

2DMF0241
2DMFCOU2
2DMF(CO43
2DMFOCUL

- 2DMFN045

2DMFCO46
2DMFCN47

2DMFQIU8

2DMFGTuU9
2DMPLA5D
2DMFON BT

C2DMRP2Q52

2DMFOI93
2DMFCNSY
2NDMPONSS5
2DMPCN56
2DMFC 357
2DMRQOO58
2DMRCOS0
2DMrI060
2DMFI0H
ZDMF0%62
2DMFDI63
2DMTF0O06U
2DMF00KS5
2DMF0 Y06
2DMPR0O67
2DMrP5068
2DMP0069
2DMFINT0
2DMPCOT71
2DMFOD72

[\

€8
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2DMF2121

2DMENT122
2DMFD2123
2DMTII20
2DMFN125
2DMFEN126
2DMEN127
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2DMFY129
2DMEFD 130
2PMFI1 31
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28

38
62
16
25

3

39
63
16
25

4

40
ou
17

1€
30

41
56
18

10
32
10
42

18

12
32
13
43

19

11
32
16
by

19

12
33

45

19

12
33

46

20

13
34

38

21

13
35

56

13
35

57

14
37

58

22

14
40

59

14

28

61

24

2DMFPI145
2DMTFC106
2DMFQ147
2DMPI148
2DMFO149
20MTE150
2DMPC151
2DM®P0152
2DMIN153
2DMF0154
2DMFC0155
2DMFPC156

98¢
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37
41 As

Fig. E.14. 2-D MATHFIT sample problem. Block numbers.




/ |

Fig. E.15. 2-D MATHFIT sample problem. Superelement function
indices.
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The version listed in Appendix F uses the Perturbation

Quadratic set for the superelement functions.

We now describe the subroutines.

MAIN: As with 2-D MATHFIT this subroutine can be divided
into three parts. The difference in the first part,
the formation of the Galerkin matrices, is that Qe
only have to sweep through regular hexagons. The
second parts are identical. In the final section
the difference is that the material hexagon powers
afe not stored.

FISR: 1Its function here is identical to its function in
2-D MATHFIT, the difference in logic being that it
only has to sweep through regular hexagons. In
addition no allowance is made for the storage of
material hexagon powers.

RINPOW: This can be considered as the RINPOW of 2-D MATHFIT
minus the branches for the small equilateral
triangles and the isosceles triangles and also
minus the logic for the storage of the material
hexagon powers.

RINPRD: RINPRD of 2-D MATHFIT was obtained from this sub-
routine by adding the option to sum inner products

over the large equilateral triangles.
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XIMQ: This is the standard IBM subroutine for solving a

set of linear algebraic equations.

The remaining subroutines ére tables. These are the
tables for the regulér hexagon superpatches and reference
should be made to the description presented in Section E.2.1.
The tables used in this program are the ones in the 'large
equilateral triangles' row of Table E.1.

This concludes the description of the subroutines.

We present in Fig. E.l16 a general flow diagram for the

program. The next section lists the input data required.

(b) Input Preparation

Card 1 - Card 22 same as that for 2-D MATHFIT. We
present on the next page a list of input cards for the
sample problem shown in Figs. E.17 - E.18 . The next

section discusses the physical mesh codes.

E.3 2-D Physical Mesh Programs

As stated in the introduction there is only one code

in this group, the code 2-D PHYMESH.

E.3.1 2-D PHYMESH
(a) Description
2-D PHYMESH is the physical mesh counterpart of 2-D

MATHNO. It solves the same 60° sector small HTGR problem



Cc THIS IS THE SAMPLE INPUT FOR

' 1 g-05 .1 E-05
3.7337 2.43
2
1
3a,.64 RQO
46 55 4
1
15.93655D-31.23003D~21.6835 DO
1.0 E-4-1.0 E-4
23.58649D-34,07584D~-31.47493D0)
1.0 E-4-1.0 E-4

34.98523D-32.96000D~40.96899DC
C.0 2.0 '

44.98523D-32.960C0C-40.96899LC
0.0 .0

2 23

3 ¢
34 36

0 0

0 0

2

1 1 3 2

i 2

2 2 4 3

3 4

3 2 5 3

5 6

4 2 7 4
19 20

5 3 9 5
41 4z

6 2 6 )
11 12

7 3 8 5

2-D MATHNO

1.29702C0 2.14326D-42,5478CD-31.8 D=3
1.14155C3 3.86270D-46,1722{D-32.25092D-3
J.789838D0 0.9 Lo 0.9 DC 4.98000D-3

€.78988D0 0.0 DO 2.0 DY 4.98C072D-3

2DMNGO01
2DMNCOOQ02
ZDMNOQND3
2DMNO00Y
2LMNJN0S
2DMNDION6
2DMNTDD7
2DMNCOO8
2DMNO0069
2DMNCITO
2DMNC211
2DMNCO12
2DMNONT3
2DMNON 1y
2DMN2G15
2DOMNC316
2DMND01T
2DMNGOTR
ZDMNCN19
2DMNCO20
2DMNDD 21
2DMNDG22
2DMNID23
2DMNON 24
2DMND225
2DMNON26
2DMNGN2RT
2DMNDT28
2DMND029
2DMNNN 30
2DMNQOO031
2DMNNS 3D
20MNQCN 33
2DMNCO 34
2DMNCN 35

ZLUMNCN36 v
O

—
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17
19
29
11

12
13
13
15
14
21
15
23
16
25
17
27
18
33
19
35
29
37
21
35
22
43
23
45
24

12

2OMNCO 37
ZOMNT 338
2DMNCJI39
2DMNOD49
2DMNIO4N
2DUNOIU2
2DOMNCOH 3
2DMNJO44L
20MNOO4S
2DMNGONG
2DMNON4T
2DMNOCU8
2DMNCCH9
20MNCIS50
2DMNCTG51
2DMNOCS2
20MNNNS3
2DMNCO5u
2DMNT 255
2DMNODS56
2DMND2HY
2HMNN IS
2DMNG259
20MNOGH)
2DMN2051
20MN2062
2DMNO%03
2DMNCOo U
2OMNJC55
2DMNCOB6
2OMNGO67T
2DMNO068
2DMNJO69
ZDMNOQ7C
2DMNGOT71
2DMNODT2

3V

26
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2DMNI073
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Fig. E.16. Flow chart for 2-D MATHNO and 2-D PHYMESH.



.Fig. E.17. 2-D MATHNO sample problem. Block numbers.



indices.
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without fitting the boundary exactly. The mesh used is the
one -discussed in Section 3.3 (1) and shown in Fig. 3.6.
There is only one superpatch, the regular hexagon. The
logic of the program is quite similar to that of 2-D

MATHNO and we shall refer to Section E.2.2 in this
presentation.

The superelement function set used in the version
listed in Appendix F 1is the Perturbation Quadratic set. It
should be noted that this is not the version used to solve
the Triangular Neumann problem discussed in Section 4.1.1
(3). The Appendix F version is also restricted to two
superelement functions per mesh center.

We now describe the subroutines of the program.

MAIN: This performs the same function as the MAIN of

2-D MATHNO and the logic is quite similar. The main
difference is that the individual material hexagon
powers are not printed.

FISR: It sweeps through the regular hexagon superpatches

to collect the terms for the material hexagon powers;
in other words, it carries out the same function as
FISR in 2-D MATHNO.
RINPOW: As with the RINPOW of 2-D MATHNO this is where
the material hexégon powers are actually computed

and summed.
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RINPRD: This subroutine computes the inner products. It
has three branches. Two branches are for ‘'cross'
products and the remaining one is for 'self'
product. One of the 'cross' product branches is
concerned with the outer ring discussed in Section
C.2.1. It implements eq. (C.l). The other branch
leads to eqg. (C.2), that is, it calculates the
inner products for the inner ring. The 'self'
branch implements eq. (C.3).

XIMQ: This is a standard IBM subroutine to solve a set of

linear algebraic equations.

The remaining subroutines are tables of inner products
and flux integrals. Subroutines F and D are tables of
'cross' inner products. FS and DS are tables of 'self'
inner products while POW is a table of flux integrals.

In our presentation below we do not examine the tables for
the derivative inner products (Vwig,ijg), D and DS as the
tables F and FS for the function inner products (wig'wjg)
are logically quite similar to their derivative counter-

parts.

E: The ordering scheme is,

I1=1-2 112 =1-3 -{ITYP1 = 1-2 ~[ITYP2 = 1 -2



300

where ITYPl is the type of the superelement function
centered on point Il and ITYP2 is the type of.the
superelement function centered on the point (II2 + 1).
Reference should be made to Fig. C.2 for the geometrical
relationship between the points.

FS: For this subroutine the ordering used is

PR,

INDEX = 1 -2 -[ITYPl =1-2 -[ITYP2 = 1 -2

where ITYPl and ITYP2 are the respective types of the

superelement functions centered on point 4 in Fig. C.2

and,
INDEX = 1 refers to triangle 4ex
INDEX = 2 refers to quadrilateral estf.

We use the following ordering,

te
=

ITYP1 = 1 -2 —[INDEX = 1-2

where ITYPl is the type of the superelement function
centered on point 4 in Fig. C.2 and INDEX has the

meaning it has in subroutine FS.

We conclude the description of the program with Fig.
E.16 which is a general logic diagram for the code. The

next section is concerned with the data preparation.
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(b) Input Preparation

Card 1 - Card 10 same as that for 2-D MATHFIT.

As in the case of 2-D MATHFIT each material hexagon
has a block number associated with it. These block numbers
cannot be assigned on an arbitrary basis but should conform
to the following sequence. Reference should be made to Fig.
E.19. The central hexagon is IBLK1l and should be assigned
the number 1. The hexagon contiguous t§ it is IBLK2 and
should be numbered 2. The next sequence to be numbered is
the sequence IBLK3-IBLK4, the hexagons bisected by the edges
ab. The sequence IBLK15 - IBLK16, the hexagons which 'fill
the gaps' between the hexagons IBLK3 - IBLK4 are then to be
labelled. After this the hexagons which '£fill the gaps'
for the edge ac, IBLK17 - IBLK18 are to be labelled. The
remaining material hexagons, IBLK21l - IBLK22 are then to be
numbered. Sweeps are to be made parallel to the n-axis.
The remaining hexagons to be numbered, IBLK23 - IBLK24, can
be labelled in any sequence with the exception of the hexa-
gons bisected by the edge ac. These also appear in the

input as IBLK5 - IBLK6 and must be labelled in sequence.

Card 11 - 2I5
IBLK1 = 1

IBLK2

2



'Fig. E.19. Block numberlng sequence and (m,n) axis for 2-D
PHYMESH.



Card

Card

Card

Card

Card

Card

Card

12 - 215
IBLK3

IBLK4

13 - 2I5
IBLKS

IBLK6

14 - 215

IBLK7

I "
o o

IBLKS

15 - 2I5
IBLKY9 = 0

IBLK10 = 10

16 - 215
IBLK1l = 0
IBLK12 = 0
17 - 2I5
IBLK13 = 0
"IBLK1l4 = 0
18 - 215
IBLK15

IBLK16

303
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Card 19 - 2I5
IBLK17

IBLK18

Card 20 - 215

IBLK19

I
o

I
o

IBLK20

Card 21 - 2I5
IBLK21

IBLK22

Card 22 - 2I5
IBLK23

INLK24

The cards below are to be repeated MAXBLK times.

Card 23 - Same as Card 21 of 2-D MATHFIT.

Card 24 - Same as Card 22 of 2-D MATHFIT.

The list of input cards for the sample problem shown
in Figs. (E.17) and (E.20) is on the next page. The block
numbers are the same as the ones for the 2-D MATHNO sample
problem. Itshould be noted that for the version listed in

Appendix F, the superelement functions centered on block



c TAIS IS THE SAMPLE INPUT FOR

. 1 E-OS O. 1 E_QS
1 E 03 2.43

46 55 4

15.936550-31.03003D-21.6835 LI
1.0 E-4-1.0 E-4

23.58649D~34.,07584D-31.47493D0
1.0 E-4-1.0 E-4

34,98523D~32.96000D-40.96895D0
C.0 C.0

4 2.0 DO C.C L3 0.0 DJ
Cc.0 D.0

1 2
3 5
34 36
6 7
8 10
11 23
24 55
1 1 3 2
1 2
2 2 4 3
3 4
3 2 5 3
5 6
4 pA 7 4

2-D PHYMFSH

1.29702tL5
1.14155D0
0.78988LC

c.0 DO

2.14326D-43.5478CD-31.83  D-3
3.86379D-46.17220D-32.25009D-3
0.0 DO 9.0 D) 4.98000D-3

0.0 DO 0.0 DO 0.0 DO

2DPHN00
2DPH0CI2
2DPICO03
2DPHOCOU
2DPHNNNS
20PHCOO6
20PHN027
2DPHC0N8
2DPHC0I9
2DPHNC10

~20PHON N

2DPHC012
2DPHCO13
2DPHCO 14
2DPHECTS
2DPHCO 16
20PHE017
2nrPiHcC18
2NPPHCI19
20PHND2C
2DPHA2021
2DPH(N22
2DPHCC23
2DPHCI24
Z2DPHCO25
20PH0ON26
2DPH0027
2DPHCC28
20P10129
2DPH0d3C
2DPHN031
2DPHOC32
2DPHON33
2DPHOQO3Y
20PHAN 35
ZDPHON36 W
o
un



19 20 2DPHA037

5 3 9 5 2DPHON3R
41 42 2DPH2039
6 2 6 4 2DPHIUQ
11 12 2DPHCOUN
7 3 8 5 2DPHOCU2
31 32 ' 2DPHONY 3
8 1 5 5 2DPHOQG L
9 1C 2DPHOJ4S
9 3 6 7 ' 2DPHCOU46
17 18 2DPHC QU7
10 3 7 9 2DPHCOU S
29 30 2DPHOO49
11 2 5 4 2DPHOISC
7 8 IDPHODS51
12 2 6 5 2DPHANS2
13 14 2DPHONSG3
13 2 6 6 2DPHUISU
15 16 2DPHENSGS
14 3 7 5 2DPHGCS56
21 22 2DDPHONST
15 3 7 6 2DPHO0S58
23 24 2DPHOOS9
16 3 7 7 2DPHOOAO
25 26 2DPHINKA
17 3 7 8 2DPHONG?
27 28 2DPHOCK I
18 3 8 6 2DPHOO6U
33 34 , 2DPHN065
19 3 e 7 2DPHONAG
35 36 2DPHYNAKT
20 3 8 8 2DPH2IR Y
37 38 2DPH0OAY
21 3 8 g 2DPHCHTO
39 ug 200H0571
22 3 9 6 2DPHNNT L

“ W
o
o
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10
10
10
10

10
11
10

1

2DPHCOT3
2DPHOOT U4
2DPHCQTS
2DPHC276
2DPHAOTT
2DPHOCT8
2DPHCOT9
2DPHONKO
2DPHI081
2DPHCC 82
2prHCN83
2DPHOCSU
2DPHOOBS
2DPHCO86
2DPHA037T
2DPHOCHH
2DPHCO8Y
2DPHICIC
2DPHGQ91
2DPH0092
2DPHON93
2DPHOOIY
2bPHOD9S
2DPHCI96
2DPHO097
2DPHNOI8

- 2DPHCOQ39

2DPHO100
2DPHC1921
2DPHO102
2DPH01%3
2bPHC1D4
2DPHC1DS
2DPHMA1D6
2DPHOINT

2DPHC108 W
o

~



1
41
31
42

43
Yy
45
21
46
43
47
48
49

50

51

52
53
54
55
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3]

10

~N w

2DPHL1I9
2DPHN11D
2DPHO 111
2DPHL112
20PHC113
2DPHC114
2DPHO115
2bPHC 116
20PH2117
2DpPHc118
2DPHO119
2DPHC120
2DPUC 121
2NDHC122
2ppudi123
2DPHMT24
2DPHI125
2DPHC126
2DPHNM127
2DPHO128R
2DPHC129
2DDPHC 13T
2DPHO 131
2DPHN 132
2DPHN133
2DPHC 134
2DPHG13S
2DPHOT36
2DPHD137
2DPHO138
2NPHY139

80¢€



Fig. E.20. 2-D PHYMESH sample problem. Superelement function
indices.
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number 1 must be indexed 1 and 2. The ones centered on
block 2 have to be numbered 3 and 4 while those centered

on IBLK5 must be numbered 5 and 6.
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Appendix F

SOURCE LISTING OF COMPUTER PROGRAMS
(M.I.T. Library copies only)



