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ABSTRACT

The use of the finite element method for solving two-dimensional
static neutron diffusion problems in hexagonal reactor configurations is
considered. It is investigated as a possible alternative to the low-order
finite difference method. Various piecewise polynomial spaces are ex-
amined for their use in hexagonal problems. The central questions
which arise in thc design of these spaces are the degree of incomplete-
ness permissible and the advantages of using a low-order space fine-
mesh approach over that of a high-order space coarse-mesh one. There
is also the question of the degree of smoothness required. Two schemes
for the construction of spaces are described and a number of specific
spaces, constructed with the questions outlined above in mind, are pre-
sented. They range from a complete non-Lagrangian, non-Hermite qua d-
ratic space to an incomplete ninth order space. Results are presented
for two-dimensional problems typical of a small high temperature gas-
cooled reactor. From the results it is concluded that the space used
should at least include the complete linear one. Complete spaces are
to be preferred to totally incomplete ones. Once function continuity is
imposed any additional degree of smoothness is of secondary impor-
tance. For flux shapes typical of the small high temperature gas-cooled
reactor the linear space fine-mesh alternative is to be preferred to the
perturbation quadratic space coarse-mesh one and the low-order finite
difference method is to be preferred over both finite element schemes.

Thesis Supervisor: Kent F. Hansen
Title: Professor of Nuclear Engineering
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Chapter 1

INTRODUCTION

We concern ourselves in this thesis with the general area of numer-

ical approximations to solve the analytic formulations of physical prob-

lems. To be more specific; the objective of this thesis is to examine the

possibility of using the finite element method as an alternative to the low-

order finite difference method for static neutron diffusion calculations in

hexagonal reactor configurations.

Numerical methods are generally regarded as being of a more power-

ful nature than analytic techniques owing to the sheer complexity of the

physical problem being simulated. Among numerical techniques, the low-

order finite difference method4-5 is the one most widely used. It is

relatively simple to implement and leads to coefficient matrices compara-

tively simple to invert. It also possesses a number of attractive mathe-

matical properties, one among which is that of convergence. The

technique, however, does lead to a large number of unknowns and with

computer storage space a finite quantity, this does indeed become a con-

straint on the use of the method. There is also the accompanying problem

of the associated large amount of computation time required with a large

number of unknowns.

Much work has been done to try to develop alternate techniques which

would give comparable accuracy and require comparable or less compu-

tation times with a fewer number of unknowns. We shall only mention one

of them, namely the finite element method. 1 ' 7 As with the finite difference
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method this method also lends itself to mathematical analysis.

Recent work 1 -3, 6 applying the finite element method to rectangular

configurations has shown that results comparable in accuracy to those of

the low-order finite difference method can be obtained with a fewer num-

ber of unknowns. Even though the question of computation time is still

to be settled, that observation in itself was considered significant enough

to justify examination of the possibility of applying the technique to non-

rectangular reactor configurations.

With the advent of the HTGR and the fast breeder reactors the hexag-

onal reactor configuration has come to assume a position of increasing

importance. It was then natural to consider the feasibility of using the

finite element method in conjunction with the hexagonal geometry repre-

sentative of these particular reactor types.

We have attempted to present in the preceding paragraphs a brief

description of, and the accompanying rationale for, the objective of this

thesis. The remaining portion of this chapter is divided into two sections.

Section 1. I restates the problem in a more detailed manner while sec-

tion 1. 2 presents a description of the finite method.

The remainder of the thesis is arranged as follows. We discuss in

Chapter 2 the overall problem of constructing piecewise polynomial spaces

for use in the finite element method. Chapter 3 is concerned mainly with

the introduction of a number of specific piecewise polynomial spaces. A

rationale is given for the specific choices. The numerical results obtained

with these specific spaces are examined in the first half of Chapter 4 and

the .conclusions drawn are presented in the latter half of the chapter along

with recommendations for future work.
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1. 1 Introduction

Diffusion theory calculations in Nuclear Reactor Physics can be

divided into three general problem areas. These are namely

(i) The time independent neutron diffusion problem

(ii) Depletion calculations

(iii) Kinetics.

This classification is a natural division of the spectrum of possible tem-

poral behavior. Continuing in this vein area (i) can be regarded as being

the static case and area (ii) as the quasistatic one. From a calculational

standpoint the class of static problems can be regarded as the area on

which the calculations of the other classes are built. It is the spatial

portion of the overall problem. In this sense it is then quite important

to understand the problems associated with this class of calculations, for

conclusions about them can be extrapolated to the other areas. This is

the area the thesis is concerned with.

Consider a reactor configuration defined by an open region 0 and its

boundary 8Q. i consists of disjoint open subregions Of, I = 1, 2, .. ., L

each of which is bounded by 802. Figure 1.1 shows the reactor configuration.

Let r represent the spatial point and E the energy variable. We

also have that E E g where = [Emin, E m ]. The time independent

4
neutron diffusion equation can be written as

-V D(r, E) V4(r, E) + 2;T,(r, E) 4(rE) - f dE' Is(r, E'- E) oo(r, E')

- vX (E) f dE 'E vf(r, E'-) ( (r, E'1) =Q(r, E) (.1
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Fig. 1. 1. General reactor configuration.

where

c (r, E) = neutron flux (n/cm2 sec)

D(r, E) = neutron diffusion coefficient (cm)

zT(r, E) = total macroscopic removal cross section (cm~)

Is(r, E' E) = macroscopic scattering cross section from

E' to E (cm1)

z f(rE) = macroscopic fission cross section (cm )

v = average number of neutrons produced per fission

X(E) = fission spectrum

Q(r, E) = neutron source/cm3 sec

X = system multiplication constant.

The nuclear constants in equation (1. 1), D, ZT' s andZf, are contin-

uous in each Qj and may be discontinuous on 0,. On 30f the following-

set of interface conditions are used:
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84(r, E) and D(r, E) 4(r, E) are continuous. (1. 2)

where is the outward normal derivative along the interface Mpg.

On 80, the exterior boundary, the boundary condition prescribed is:

4(r, E) = 0 or a-(r, E) = 0 (1.3)

Equation (1. 1) together with the interface and boundary conditions

described above constitute the time independent neutron diffusion problem.

A word is in order here regarding the intersections of two or more

material interfaces. Diffusion theory does not hold at these singular

points. Experience, however, has shown that the effect of these

singularities on reaction rates and integral properties in reactor prob-

icms is negligible and the approach taken in this thesis is to simply ignore

the fact that the use of diffusion theory is suspect at these points. We do

not attempt to introduce singular functions to improve the rate of con-

vergence of the numerical solution.

With the advent of the HTGR and the fast breeder reactors the case

where 80 is hexagonal in shape has assumed increasing importance

vis a vis 80 a rectangular shape. Figure 1.2 is a top view of a typical

commercial HTGR. As can be seen from the figure each fuel block has

a hexagonal cross-section which is in contrast to the LWRs where the

cros--section is rectangular. Hence, the increasing importance of

hexagonal 80 f 's. This thesis will be concerned with solving the static

neutron diffusion problem in such a hexagonal geometry.

An analytical calculation for so complex a problem is out of the ques-

tion and one must resort to numerical techniques. In dealing with numerical
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)

Fig. 1.2.

'UEL REGION \
BOUNDARtIES SEGMENT

IDENT IF ICATION

Core layout - typical commercial HTGR. [From Delmarva
Power and Light Co., Spmmit Power Station PSAR.]
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methods the two parameters of importance are the accuracy attainable and

the corresponding computation time required to attain that accuracy. To

compare two methods a figure of merit such as the accuracy per unit

computation time would be needed. In practice, however, such fine

tuning is not required and simple comparisons of absolute errors and

absolute computation times are used. Consider figure 1. 3.

The regions I-IV shown in the figure are intended to be graphical

depictions of the classifications involved when numerical methods are

grouped on the basis of accuracy attained and computation time required.

One would prefer to work in region I and avoid region IV, but most

methods fall into either region II or region III. As most preliminary core

design and fuel management calculations fall into region III it was decided

to concentrate on this particular region.

The General Atomic company has a two-dimensional code, GAUGE 1 4

which is a computer implementation of a method which falls in region III.

It is a low-order finite difference code and as such exemplifies the method

most frequently used to carry out low-accuracy, low-computation time

calculations. The low-order finite difference method is the method which

provides the standard for comparison by virtue of it being the one which

is most frequently used in production codes and it is the one which this

thesis proposes to provide a viable alternative to. The point relation used

in GAUGE is the one shown in figure 1.4.

The unknowns to be solved for are the flux values at the center of a

hexagonal block and at the six corners. This leads to approximately

three variables per hexagonal block. As computation time is related to



Accuracy

High

Low

I

III

II

1 I

- -1
I I

Computation
time

IV

Low High

Fig. 1. 3. Methods classification scheme.

Material hexagon

Finite differencing
points

Fig. 1.4. Mesh scheme - low order finite difference method -
GAUGE code.
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the number of unknowns, a coarse upper bound on the number of variables

which can be used is three unknowns per hexagonal block. It will be shown

later that this is a very coarse upper bound as the complexity of the equa-

tions to be solved enters in a very direct way into the computation time

required.

Turning to the question of accuracy errors typical for GAUGE are

E (keff) ~ 0.7% and E(peaking factors) ~ 7%6. In summary any alternative

to the low-order finite difference method in region III should have the

following characteristics:

E (k ff) < 0.7%

E (peaking factors) < 7%

unknowns per hexagonal block <3,

where it should be noted that 3 unknowns per hexagonal block is a coarse

upper bound as it assumes that the computation time required per unknown

for the finite element method is roughly equal to that for the finite differ-

ence method. To derive a more precise bound we would have to examine

the structure of the matrices involved in more detail. Figure 1.4 shows

that the low-order finite difference method as implemented in GAUGE has

a 7-point coupling relation in its diffusion term. The finite element

schemes considered in this thesis have, typically, a 7-point block coupling

relation in the diffusion term. In addition, this coupling relation is also

present in the removal and in the source terms. Low order finite differ-

ence leads to diagonal matrices for the removal and source terms. This

brief discussion indicates that the figure of 3 unknowns per hexagonal

block is indeed quite a coarse upper bound as the finite element equations
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have more coupling and therefore will necessarily require more compu-

tation time per unknown.

Workl-3 done over the past few years has shown that the finite ele-

ment method is a viable alternative to the low order finite difference

method in the solution of the static neutron diffusion problem for two-

dimensional reactor configurations typical of light water reactors. 80 Ain

this case is rectangular. The results obtained show that with higher-

order coarse-mesh finite element methods, a substantial decrease in

the number of variables used can be obtained without a significant

degeneration in the accuracy attainable. It still remains to be shown

that the increase in complexity of the equations to be solved does not

compensate for the reduction in number of variables. This however, does

not detract from the significance of the results and this thesis will exam-

ine the possibility of using the finite element method in hexagonal geom-

etry.

A fair synopsis of the objective of the thesis would then be that it is

to examine the possibility of using the finite element method as an alter-

native to the low-order finite difference method in region III of figure 1. 3

for static neutron diffusion calculations in hexagonal geometry. This

implies a concentration on the construction of piecewise polynomial

spaces for the approximation of the flux. The next section, §1. 2, which

describes the finite element method, will point this out in a more em-

phatic manner.
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1. 2 The Finite Element 1Method

We present in this section a discussion of the finite element method.

Our treatment is to divide the presentation into two parts. Section 1.2. 1

will give a general idea of the relative place of the finite element

method in the area of numerical approximation schemes while

section 1. 2. 2 will concentrate on describing the body of the method 10in

a more detailed fashion.

1. 2. 1 Galerkin Scheme

Our purpose in this section is to discuss the finite elenent method

in a broad context and at the same time not lose sight of th -1 fact that

our final aim is to apply it to solve the static neutron diffusion problem

expressed by the system of equations (1. 1)-(1. 3).

We begin by rewriting the integro- differential equation (1.- 1) in the

operational form

H4(r, E) = Q(r, E) (1.4)

where the corresponding boundary and interface conditions are

80(r E)
4(, )og=0 or D =0(r,E)I orOn 8 (1.5)

8O4(r, E)
4(r,E) and D 8 are continuous across 80 (1.6)

and

H =- - D(r, E) V+ T (r, E) -f dE' (r, E'-E)
X) d'-

-X(E) f dE' V Mf rE)



27

There are two general approaches to solving this problem numeri-

cally. The first is to approximate the operator H and finite difference

falls into this category. The second is to approximate the solution. The

finite element method is an example of the second approach. What is

done is to write

A m
*(r, E)~ (r, E)M= a k Lk(r, E) (1.7)

i= 1

where {($k(r, E)} are known functions and the coefficients {ak} are the

unknowns. The set {($k(r, E)} will be referred to as the superelement

set and the finite dimensional approximation space it spans will be denoted

by the symbol Mm. One now has to obtain a set of equations to solve for

the {ak} and this is where the second approach can be further subdivided.

The finite element method obtains its equations by utilizing the weak

form of the operator equation (1.4). We now proceed to expound upon the

weak form.1, 6

Let W1 (0) be the class of functions which are continuous and have

square integrable first derivatives, that is,

u EW 1 (0) if [f 0(Vu -Vu+u2) d3r]1/<o

The weak form of the problem then is to find a function * E W1(Q) such

that

a(* (r, E), v(r, E)) = (Q(r, E), v(r, E)) for all VE WI (i) (1.8)

where



28

(u(r, E), v(r, E)) = f dE f, d 3 r u(r, E)v(r, E)

(1.9)
Q' = Q\)o

and the bilinear form a(c(r, E), v(r, E)) is given by,

d 3 r (D(r, E)V(r, E), Vv(r, E)) g

where

(1.10)+ (R4 (r, E), v(r, E))

H=-V- D(r, E) 7 + R (1. 11)

and

(u(r, E), v(r, E))g = f dE u(r, E)v(r, E)

To show that a solution to the weak form is a solution of the original

problem, we integrate a( (r, E), v(r, E)) in eq. (1. 8) by parts and use

Gauss's theorem to obtain,

r d3 r(H (r, E), v(r, E)) + f 8 [ds v(r, E), D(r, E)

= (Q(r, E), v(r, E)) , V E W (0)

,E)

(1. 12)

It has been shown that eq. (1. 12) leads to the following Euler equa-

tions,

(1-13)H4(r, E) = Q(r, E)

and

a(*(r, E), v(r, E)) aI(g

8*(r
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854 (r, E)
ds D =0 (1.14)

A solution of the weak problem is therefore a solution of the original

differential equation. The original formulation of the problem, eq. (1. 4),

requires ct$(r, E) to be twice continuously differentiable in and hence

restricts it to a class of functions C2 (0) smaller than W1 (0). The weak

form is therefore preferred in the actual calculation of the approximate

solution as it allows us to look for an approximation in a wider class of

functions.

The finite element method belongs to that group of methods which

solves an approximation of the weak form of the original problem. It

looks for a ^(r, E) E Mm such that

a($(r, E), Lk(r, E)) = (Q(r, E), 1Pk(r, E)) for all 4 k(r, E) E Mm

(1.15)

with Mm a finite dimensional space of functions. Using eq. (1.7) we

have that eq (1. 15) leads to the following matrix system of equations

for the expansion constants {ak}.

[(D(r, E) V 4$ (r, E), V $P(r, E)) + (RLi(r, E), *4 i(r, E)) ] [a.

[(Q(r, E), i(r, E)) i, j =m

(1.16)

This is the system of equations the finite element method uses to

solve for the expansion coefficients {a}. They shall be referred to as

the Galerkin equations as the approximation procedure implied by the
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use of eq. (1. 15) is a scheme of the Galerkin type. With the use of the

weak form, Mm is no longer restricted to C 2 (Q) but is allowed to become

a subset of the larger space W (). This enlarges the set of possible

trial functions $k(r, E).

The Euler equation, eq. (1. 13) indicates that the Galerkin set of

equations eq. (1. 16) is an equivalent restatement of the differential

neutron static diffusion equation, eq. (1.4) in some approximate integral

sense. We have up till now, neglected the question of the satisfaction of

the boundary and interface conditions, eqs. (1. 5)-(1.6), as part of the

complete problem. We now address ourselves to this matter.

The Euler equation, eq. (1. 14), shows that the Neumann boundary

condition of zero current and the normal current continuity condition

across a material interface are 'natural' conditions. The Dirichlet

boundary condition, 4 (r, E) 18 = 0, on the other hand, is an essential

boundary condition and many methods have been devised to ensure its

satisfaction. The one most frequently used is to restrict Mm to the sub-
1 1 1space W1 (i) of W (0) where the o subscript indicates that for k*1 EWo (I)

we must have,

4$. E W P)
1

and

0

There are other possibilities12,13 and the use of Lagrangian multi-

pliers is a classical one. The deletion of certain superelement functions
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to satisfy the Dirichlet condition certainly leads to fewer coefficients

(a kgin eq. (1. 16) to solve for. This implies a reduction in computation

time. It is however not quite certain what this deletion of trial functions

will do to the accuracy of the answer. One can, after all, certainly con-

struct spaces in W1(0) with the property that certain linear combinations

of the elements satisfy the Dirichlet condition without having the elements

themselves satisfy the Dirichlet condition. An example of a space of this

type is given in chapter 3. We choose to satisfy the Dirichlet condition

by working in W 1 A.
0

We have attempted to present in this section a general formulation

of the finite element method concentrating on those overall aspects which

allow one to obtain an idea of its relative place in the field of approxima-

tion schemes. We have also been able to indicate what the constraints on

the approximation space Mm are. In summary, for the Neumann prob-

1 1
lem MmCW ( 1() and for the Dirichlet problem MmCWO (1).

In the next section we present a more detailed and a more mecha-

nistic description of the method itself.

1. 2. 2 Equation Assemblage

Our objective in this section is to give an algorithmic treatment of

the various steps required to arrive at the form of the Galerkin equations,

eq. (1. 16), preparatory to the actual inversion process. For this reason

we shall refer to this section as the section on equation assemblage.

We begin by introducing the multigroup formulation4 of eq. (1. 1)

as this is the form which is actually numerically solved byr using the

finite element method.
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The integro-differential eq. (1. 1) can be reduced by the use of the

conventional multigroup formalism to a set of coupled differential equa-

tions

G
-V D (r) V4 (r) + (r) (r)= sZ (r) g,(r)

g- - g-g g'=1 sgg- g
g'# g

G Xg)
+ (VM (r) ,(r)) + Q (r) g = 1,. .. ,G (1.17)

where

Rg ~ (r) - s g(r) is the group removal crosa section.

In the multigroup formulation the corresponding boundary and inter-

face conditions are
84 (r)

(r) 0 or D an =0 (1.18)

84~ (r)
+ (r) and D g- are continuous across 8O (1.19)9 g On

The multigroup formulation has allowed us to effectively remove

the energy variable from the problem and we will consider eq. (1. 17) as

the starting point for our application of the finite element method.

Let us for the moment concentrate on giving a mechanistic outline

of the steps involved in solving eq. (1. 17) by the finite element method.

One lays down a mesh composed of a set of straight line polygons

o Ij=1,..L} on o as shown in Fig. 1. 5.
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- e.

Fig. 1. 5. General mesh.

We define a line segment to be the straight line lying between two

intersection points. The one restriction on the mesh is that the angle

between line segments should not be equal to 180 *. The angle K in

Fig. 1. 5 is an example of what is meant by the angle between line seg-

ments. The logic behind this restriction will be appreciated after the

discussion in chapter 2 is presented. The polygon 0 . shall be referred

to as the basic patch.

We now select a finite dimensional space of functions M! to approx-m.M
imate the analytic solution of the problem over each of the basic patches

{6 . That is to say each basic patch 0., has a corresponding space of

functions M which will be used to approximate the analytic solution in
M

that particular region 0 . M ,in accordance with past work, is chosenf m.

to be PN. a space of polynomials of maximum order N. This means

that in a 0.,

pg(r) =PNg(r) r E 0. (1.20)

where PNg(r) E N is some polynomial of maximum ordcr N., the
3 3
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coefficients of which have to be determined.

The next step is to choose a set of functions (' (r) Ii=1..m} which

form a spanning set* for the space PN.. It should be noted that to be

consistent with the definition of PN each set (*4 (r) IV i)t has support

only over the corresponding basic patch 0.. We shall refer to the set

('' (r) V i, j} as the basic element set. Since the set (I (r) Vi il is a

spanning set for PN. we have that,

m.

P g(r) = M b$ W' (r) (1.21)Ng- 1 ig ig

As the functional forms of the (' (r) \ il are known, the prob-ig -

lem of determining the coefficients of PN g(r), and hence the approximate

solution cI (r) in 0 , becomes one of calculating the set of coefficients
9 - J

{b v il.ig
If the set (*4(r) V il forms a basis for PN. then the number of un-

knowns (b4 V il will be a minimum and in addition one will not have to
S19

worry about the significance of such questions as the possibility of

having piecewise linear dependence.

We now come to the major step; the problem of relating the basic

element setV r) Vi, j} of eqs. (1. 20)-(1. 21) with the super element

set {Lk g(r) IVk} of eq. (1.7) where we have converted *k(r, E) to its

*A spanning set for a function space is a set of functions which spans that
space.

tWhenever there is a possible ambiguity we shall use the symbol V to
denote that the accompanying indices are to vary over their respective
ranges. The indices not specified with V are fixed in value.
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multigroup form. This is the question of determining the approximation

A A
space M for 4(r) given that for r E 0., 4(r) EM . We shall onlym J - m.

attempt to give a brief discussion of this problem here. The detailed

presentation is left to chapter 2.

We begin by introducing the concept of a superpatch, ® . The super-

patch is the polygon composed of a number of contiguous basic patches .

It is the region of support of the superelement function 4 kg(r). jkg(r) is

then composed of a set of basic element functions (l (r) (i, j) EGTG }ig -

where U is a set of ordered indices {(s, n)} such that 0 n C e andJ n J

$kg) sg(r) r E 0(1.22)kg- sg- n

We shall refer to the set of indices {n} for each superpatch e as G .

The process can be thought of as joining a set of shapes represented

by the function set (Wf (r) I (i, j) E G.} across the patch boundaries of the19g-

{o6! j E Gj} which form the superpatch eg.

Possible conditions of join are the analytic conditions of the exact

problem. These are equations (1. 18)-(1.19). Another condition derivable

from eq. (1. 17) and which could be of use in providing conditions of join

is that

4(r, E) and - (r, E) are continuous for all q in O0 (1.23)
orq

where

- - =- i + j + k = q
3r x1- C)xJ 2
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Once we have the set {kg (r)} we apply the procedure outlined in

S 1.2.1 to obtain the Galerkin equations, eq. (1. 16), for the set of coef-

ficients {akg}. In the two group external source free case where the

assumption is made that there is no upscattering and that no fission

neutrons are born in the thermal group, we have as an example of the

Galerkin equations,

Ala, =iIIFla +F 2 2]

A2 a 2  S1 1 1 (1.24)

where

(A ) ii = (D (r)V L.,(r), V (r))o + (r) (r), (r))

(F ) = (v (r) ,(r), * (r))

(S ) = s2 1  i-(r)L'ji(r),4(r))2 i, i' = 1,. .., m

A m
- (r) = Z a. (r)
g i= 1 g1

a-g = col{a , a 2  .. a mg} g = 1,2 (1.25)

To solve this eigenvalue problem for the system multiplication con-

4
stant X we adopt the usual power iteration scheme.. The power iteration

scheme can be written as
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A t)M F (t- 1) + F2 4(t-1)

(t) (t)
22 1 1

(A t) + (t) a ( )
^(t) (21 'z 1+(22

- (t (t 1 (t) (t-1)22 ' -12 -2

a(
~(t)_-1t

-1 ^(t)

(t) _ a 2t

-2(t

where (,) denotes an inner product (1.26)

The power method converges to the eigenvalue X, of the largest magnitude

and therefore gives us the dominant characteristic mode.

We have presented in this chapter a discussion of the specific prob-

lem area this thesis will be concerned with in terms of accuracy and

computation time. In addition, we have given an idea of the general

nature of the finite element method and have described in an algorithmic

fashion the steps required in using the method. It was pointed out that

the major step involved was in going from the {ML j} to the space Mm

In essence this is the area of the pre-Galerkin calculation phase where

we use conditions of join to reduce the basic coefficient set (bJ / i, j} of

eqs. (1.20)-(1.21) to the super coefficient set {a. V il of eq. (1.7). It

is the question of the construction of piecewise polynomial spaces and we

address ourselves to it in the next chapter.
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Chapter 2

CONSTRUCTION OF SPACES

We concern ourselves in this chapter with the step in the assemblage

of the Galerkin equations, eq. (1. 16), where we go from the basic ele-

ment set (*' V i, j} of eqs. (1. 20)-(1. 21) to the superelement set1g

($kg V k} of eq. (1. 7) where we have used the multigroup form of

pk(r, E).

Section 2. 1 discusses the general problems involved in this phase

of the finite element method; a phase which we shall refer to as the pre-

Galerkin phase as its net effect is to reduce the set of expansion coef-

ficients of eqs. (1. 20)-(1. 21), the basic coefficient set {b4 V i, j}, to1g

a smaller set of unknowns, the supercoefficient set {akg V k} of eq. (1.7).

What is done is to apply conditions to relate the members of {b3 V i, j}ig

in equations, different from the Galerkin equations, of the form

A b = 0 (2.1)
*i . ig ig

This allows us to eliminate a set of variables V, {br }, where wesg

will denote the set of ordered pairs (r, s) by L,

br 3jr b3 (r, s) E L. (2. 2)
sg (ig ig

(i, j)%9L

With this result we can rewrite eqs. (1. 20)-(1. 21) as

4 (r) = b { (r) + 2 B4rr (r)
g -- s ) gr -- (r, s)EL is sg

(i, j) iL

- akgIk g(r) (2.3)
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which means that {akg V k} is the set of remaining b4 V' and

qk (r) = (r) + E Bjrqr (r) (2. 4)
ig- (r, s)EL 1s sg

giving us the approximation space Mm for p (r).

This is the general scheme for the pre-Galerkin phase. We then

use the Galerkin equations to solve for the remaining unknowns; namely

those of the set V'. The use of the Galerkin equations implies certain

restrictions on the coefficients B r because of essential constraintsis

on the superelement functions *jkg. But in any case, it can be seen

that the crux of the matter is that eq. (2. 1) should be simple enough to

solve algebraically. If simple enough equations can be developed, it

can be said that we can reduce the basic coefficient set {b V i, j} to

a smaller set of unknowns, the supercoefficient set {akg V k} through

a series of mathematical manipulations which once carried out do not

have to be repeated for different problems using the same approxima-

tion space Mm. Section 2. 1 mentions a number of possible conditions

which could be applied to affect this reduction in the number of unknowns.

In section 2. 2 we discuss the various mesh schemes or, in other

words, the different sets of {0 V j} which can be used in the case of

the hexagonal reactor configuration and in the final section, §2. 3, we

present methods for constructing approximation spaces Mm'

2. 1 Overall Problems

This section concerns itself with the questions which arise when we

attempt to go from the basic element set {(l. V i, j} to the superelement
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set (kg V k} which is to be used in the Galerkin formulation, eq. (1.16),

to find the unknowns {a. }.

The whole issue revolves around the feasibility and desirability of

determining an appropriate set of additional constraints which when

applied to {* g i, j} yield equations for the pre-Galerkin phase which

allow us to reduce the set b i, j} to the set of fewer unknowns,

{a. V i}.

The essential constraints are the ones given to us by our use of the

weak form, namely *kg E W (Q) for the Dirichlet problem and 4 k E4kg C o jg C

W (G) for the Neumann problem. These are examples of how the

final step in the equation assemblage influences the construction of the

approximation space MIn. As will be seen later all the steps in the

assemblage have an effect on the construction of the approximation space.

Returning to the question of constraints, it was seen that the mathemat-

ics dictates the two essential constraints. There are also constraints,

which could possibly be used, dictated to us by the physics of the prob-

lem. As noted in section 1. 2. 2 and reiterated here, these are (i) flux

continuity; (ii) current continuity; (iii) in the interior homogeneous

region, all the derivatives of the flux are continuous; (iv) satisfaction

of the diffusion equation within a particular homogeneous region. All of

these 'constraints' can be used to further reduce the number of vari-

ables which have to be solved for in the Galerkin phase. There are,

however, trade-offs involved.

Let us consider constraint (iv). This has already been used in the

Galerkin equations. Further usage of it leads to Galerkin coefficient
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matrices radically different from ones obtained by the conventional

approach. For example, suppose we force neutron conservation for

each 0 by integrating the multigroup diffusion equation, eq. (1. 17),

over 0. This gives us an equation which we can use to eliminate b,

.m.

b = Z A.() b 3 . (2.5)
1g i=2 1 ig

The coefficients (Ai()} are also functions of the material properties

but it is the X-dependence which gives the unique character of this ap-

proach; for then we can write

m. m.

J (r) = Z b {j +A.(k) *j} = b4 A (X) r -..
g- i=2 g g i=2 ig ig

(2.6)

With this X-dependence in the trial functions, the coefficient ma-

trices of the Galerkin matrix will become X-dependent and new iterative

processes will have to be devised. Reusage of condition (iv) does not

therefore appear to be a viable proposition.

Conditions (i), (ii) and (iii) belong to the generic problem of join-

ing the (*4 V i, j} across the boundaries of the {V j}. We shalligJ

refer to these boundaries as the patch boundaries. It may seem quite

attractive to impose as many of these conditions as possible to mini-

mize the number of unknowns remaining. However, when one uses

piecewise polynomial functions it turns out that the greater the number

of constraints one wants to impose the higher the order N. of the poly-

nomial space PN. one has to work in. The dimension of P N. is depen-
3 :
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dent on N. and so if the constraint on the computation time, namely

less than 3 variables/fuel hexagon is not to be violated, one has to work

with a M3  of increasingly large a defect. This then brings in theM.

question of the effect of incompleteness on accuracy. It must be noted

that condition (i) is a restatement of an essential condition, EPkg G W'(Q).

and therefore must be imposed. Imposition of conditions (i)-(iii) can be

considered a viable possibility.

Let us make one final comment before we delve into the various

problem areas. When we apply constraints of join we are actually de-

manding that each and every member of the set {$kg V k} satisfy the

conditions required by the constraints. This is therefore rlore exacting

than asking that the approximation 4) (r) satisfy the constraints. It also

means that in joining the members of the set ('q V i, j}, the conditionig

of join applied has to be applied across all the patch boundaries of EO,
A

otherwise 4 (r) will not satisfy the condition required.

As can be seen the general problem of constructing a set { 9g V k}

from a set {'3 V i, j} to generate solutions comparable in accuracy and
1g

computation time with the finite difference method, knowing only that we

are restricted to spaces (PN V j} and a mesh of general polygons

*
Let the dimension of P = d and the dimension of M = d ThenN. p m. M

the defect of MJ with respect to PN d - d It is a measure of theIn. p -M

incompleteness of M relative to PN.. Whenever we use the word

"incomplete" in this thesis, it is to be understood that it is used rela-

tive to the complete polynomial space, PN.J
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{9 V} it te aitI 1 16 1910 i j} with the constraint 4kg E W (12) or W (a), is not trivial.

To lend some order to the presentation we shall, accepting the con-

straints outlined in the previous statement as given, discuss the prob-

lem areas in an algorithmic fashion with respect to the questions of

feasibility and desirability, always keeping in mind the fact that the dif-

ferent steps, in the final analysis, are implicitly interrelated.

(a) Basic Patch. The basic patch is the polygon .. In our hexago-

nal problem there appear to be three basic patches:

(i) Triangle; (ii) Quadrilateral; (iii) Hexagon.

Figure 2. 1 illustrates some of the possibilities.

(b) Superpatch. We certainly do not want to use a space PN. with

a spanning set f(r V i} such that all the *4 are zero on the boundaryig 1
8E of the basic patch 8. With a set (l } which has members

3 ig 1
with nonzero function values along the patch boundary 80 one has to

join ( V i) with the sets corresponding to the contiguous patches

so that {$Jg V k} has function continuity. Let r refer to the set of

basic patches contiguous to 0.. One could then repeat the process for

each 0k Er The process ends when there is a closed boundary with

the function value equal to zero along it. We shall refer to this polygon

as the superpatch E . Each basic element function 'T is part of aig

superelement function 4 which has support O. One should then ask

the question of how large e can be and how large it should be. Intui-

tively one would expect that a large E) would decrease accuracy as one

Ts
The concept of the, superpatch was introduced in section 1. 2. 2.
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Legend

Hatched area indicates
basic patch

Material
hexagon

Fig. 2. 1. Possible basic patches.
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would then have fewer degrees of freedom in the approximation. As for

feasibility, apart from the question of size, there is the question of

whether or not mixtures of the basic patches are permissible.

To provide an illustration of possible superpatches let us consider

the use of the Lagrangian cubics 6 for the basic element set V}i, jj

with 0. a triangle. We define the vector K3

3 -ig

k j
=10. (2. 7)

where the points rk' are as shown in Fig. 2. 2.

1

4

5

2
6

8

10
9

7

~e.3

Fig. 2. 2.

The points Ekefor the

definition of the cubic
Lagrangians.

3

The Lagrangian cubics are cubic

determined by the following condition

) = .-ig k'ik'
=1 10,

polynomials each of which are

on the corresponding K vector

i = 1,...j10. (2.8)

We can classify the Lagrangian cubic set (q V ij into three groups

according to the number of sides of 0 , k on which each T is iden-jL ig

tically zero. One such set is the group (qq i = 1,.3} which has kL = 1.

Kpk'g) Ek'=
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The set 9 ji = 4,..., 9} has kL = 2. The membcrs of the last set

('' i = 10) are identically zero on all three sides of 0..ig J

Now suppose we apply the constraint of function continuity in going

from the basic element set ('q V i, j} to the superelement setig

{$kg V k}. In order to obtain function continuity of the set (Spkg V i}'

certain elements of (q V i, jj have to be joined across the inter-1g

patch boundaries. For the Lagrangian cubics, the set (/ g j} does

not have to be joined. The set (l V j I i = 4,..., 9} has to be joinedig

on one side of 0 while the set {I jI i = 1,.3} has to be joined onig

two sides. The superpatches so formed can also be classified into three

groups. These are shown in Fig. 2. 3. We shall explain the notation

used in the figure in the next paragraph where we generalize the

S S 2S 3

Fig. 2. 3. Classes of superpatches - cubic Lagrangian set.
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discussion For this thesis we shall concentrate on the superpatch sets

which evolve out of this examination of the Lagrangian cubics. In con-

cluding it should be noted that the superpatches are not all of one pat-

tern.

To generalize the approach let us start by classifying the (TW V i}

in the case of 0. = a triangle. This grouping, a mixture of geometrical

conditions and function conditions, illustrates the close relation between

the geometry of the basic patch and the approximation space. We define
kL

Tk as the set of those i which are zero on exactly k. number of
igL

sides of 0..

Assuming that function continuity across patch boundaries can be

imposed we arrive at the conclusion that if T0 is not used there are
kL

three classes of superpatches, Sk, each of which forms the support
k L

for a *k composed of basic element functions 9I only from T These

superpatch classes are depicted in Fig. 2. 3. We shall refer to S as

the 1-ring superpatch.

If To is used, then there are other classes of superpatches which

are essentially concentric 'rings'. We shall refer to them by the num-

ber of 'rings' in the configuration.

Figure 2. 3 shows that the use of the complete cubic Lagrangian set

for M3  means that all three classes SI, S2 and S3 will have to beM.
1

used. For the complete linear Lagrangian set only S has to be used
1 kL

and only SI can be used. The choice of a SkL definitely implies a con-

straint in the choice of a M.

As far as the reduction of number of variables is concerned, there
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is a real incentive to use only S1 . If we exclude T0 from the discussion,

then the use of S minimizes the number of variables (akg V/ k}. This

is because the $kg formed in this manner is composed of the greatest

number of basic element functions, Tg , possible, thus reducing the

number of independent variables in {b } the most. We shall therefore

concentrate on S in this thesis.

Let us conclude this segment of the discussion by emphasizing a

point which this section brings out. This is that by applying the condi-

tions of join to {kg V k} and not to (r), we have, in essence, shifted

the burden to the determination of the appropriate (q \ i} set. One

has to anticipate the constraints which will be used to determine the

{$kgy k} in finding ig V i}. This implies that the conditions used

to determine (Ti )V i} should be concentrated on the perimeter 0%

of e..
3
It should be noted that the classification of (A F i} into groups

kL
T can be logically extended to include subclasses based on the num-

ber of sides of . on which the gradient and the higher derivatives are

zero. We shall not proceed any farther in this thesis with this particu-

lar concept.

We now address ourselves to the question of polynomial spaces.

(c) Polynomial Space. To every basic polygonal patch there appar-

ently is a corresponding canonical form for PN(r)'

For a triangle6

N N-i
PN(X' Y) . . a .x y3  (2.9)

i=O j=0
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NKN number of coefficients = N(N+3) + 1. (2. 10)

For a rectangle

N N
PN'(xY) = Z. a..x ya (2.11)

i=0 J0

2
K = number of coefficients = (N+1)2. (2. 12)

These canonical forms appear to be forms which, allowing for the

constraints of continuity at the corner points of the polygon, permit

the determination of the function shape along each of the piecewise

linear edges of the polygon to be entirely independent processes. Impo-

sition of function continuity conditions across patch boundaries then be-

comes 'natural'.

It is possible to obtain the canonical form for the quadrilateral by

isoparametric ally transforming the rectangle into the quadrilateral. 7

A canonical form for the hexagon is still lacking.

The assumption shall be made that the use of the canonical forms

is still appropriate when we try to impose conditions in addition to that

of function continuity across the interpatch boundaries.

Even with the general form of PN. prescribed we still have a great

deal of flexibility. We are faced with the choice of which subspace of

P N to work in and with the determination of the spanning set (J9V i}.

We could choose to determine the superelement set {$kg V i} first and

accept the space spanned by the resulting basic element set (* ij

as our particular subspace M . This approach, how ever, does makeM.
3
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questions of completeness and piecewise linear dependence harder to

resolve. The possibility that the {ML ij are not identical can also

arise. From this point of view it is more systematic to choose the

subspace first and then find the superelement set. We shall refer to the

second approach as the mathematical construction and to the first as the

physical construction. To determine the set (V V i} one has to spec-

ify conditions satisfied by each member of the set in order to find the

coefficients of the functional form. The problem of what these condi-

tions should be is closely tied in with the problem of joining the sets

across patch boundaries. We shall divide the conditions imposed in the

definition of the basic element functions into two classes. One class is

termed interpolation conditions and the other class, for the lack of a

better name, the noninterpolatory conditions. The set { V i, j) can1g

be defined by the imposition of conditions from either class but it is

much easier to see linear independence and completeness with condi-

tions from the interpolation class. This class contains conditions such

as the point specification of a value of the function or its derivative,

the specification of f ds.VTW along a line, in other words, conditions

which specify a value.

(d) Conditions of Join. The noninterpolatory class is the class of

conditions which relate the basic element sets V i} of contiguous1g

basic patches across patch boundaries. These conditions are therefore

primarily oriented towards the determination of the superelement set

{tkg V k}.

Function continuity definitely has to be imposed but there are other



51

conditions, discussed in preceding sections, such as current continuity,

which could be imposed. Variations such as integrated current continuity

also fall into this class. Care must be taken not to impose function and

current continuity at a singular point as this can lead to {(+kg\; k} with

zero gradients at these points.

Conceptually it should be possible to combine all the problem areas

(a)-(d) into a general formula relating the order of the polynomial N,

the number and type of conditions imposed, and the number of sides

which 0. possesses for feasible sets {+kg}. To resolve questions about

completeness and piecewise linear dependence one would still have to

break 4i. down into its basic element functions I3, but even so, suchigig

a general formula would still be very valuable as a synthesis tool.19 How-

ever, it has apparently never been done.16 This thesis had to resort

to a case by case approach. We can not, therefore, claim to have treated

the general problem comprehensively but we can say that the sets we

come up with for our specific problem do provide answers to some of

the fundamental questions outlined in the preceding pages.

We have in the preceding section attempted to outline and discuss,

in a general manner, the questions which arise when the various steps

involved in trying to assemble the Galerkin equations, eq. (1. 16), are

examined. We now turn our attention to specific areas beginning in the

next section, §2. 2, with the different ({E V J} schemes possible.

Refer to Appendix D for a more detailed discussion.
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2. 2 Specific Superpatch Schemes

Let us begin by considering the 'coarsest' meshes possible with

the hexagonal reactor configuration which could potentially give us the

accuracy and computation time required. We will then construct 'finer'

versions by a further subdivision of the basic patches 0. The inquiry

shall be restricted to regular meshes as it is only in the vicinity of

the outer boundary 8 O that the use of an irregular mesh becomes

essential. Figures 2. 4 and 2. 5 show the possibilities. They are

(a) a fuel hexagon center - fuel hexagon corner mesh

(b) a fuel hexagon center - fuel hexagon center mesh

(c) a fuel hexagon center - adjoining fuel hexagon corner mesh

(d) the fuel hexagon map itself.

If we restrict ourselves to 'simple' superpatches E), then the largest

superpatches possible for each of the meshes (a)-(d) are those depicted

in Fig. 2.6. Before we discuss the various superpatches let us keep in

mind that the lowest order complete polynomial space, P1 , has 3 un-

knowns in the triangular form and 4 in the rectangular cum quadrilateral

case. This means that the use of complete PN spaces requires the use

of at least 3 variables per 0.. This does not necessarily translate into

a constraint of at least 3 variables per fuel hexagon because e. could

encompass more than one fuel hexagon. There is also a reduction in the

number of total variables when basic patches, 0., are joined to form a

superpatch E@ as variables are then equated.J

It should be reemphasized that the superpatches of Fig. 2.6 will be

considered the largest Og possible for the corresponding {e V j) set.
J3
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Legend

Mesh lines

Material
hexagon

Fig. 2. 4. 'Coarsest' possible meshes.
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Mesh (c)

Mesh lines

Material
hexagon

Fig. 2. 5. 'Coarsest' possible meshes.

O.
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quadrilateral

(a)

quadrilateral

(b)

equilatei
triangle

equilateral

(i)

(

/ (iii)

Legend

-. --- Indicates the bound-
aries of the superpatch

Q Material hexagon

i)-(iv) Superpatch indices

Fig. 2.6. Possible superpatches for each mesh scieme.
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It is entirely conceivable that the manner in which the space M3  isIn.
broken up into a set (k / i} will lead to a range of superpatches.

Consider the Lagrangian cubic example of Fig. 2. 3. We shall restrict

ourselves to those spaces M which can be split up such that there isIn.
3

only one superpatch possible for each mesh {e. V j}; namely the types

depicted in Fig. 2.6. If we ignore mesh (d), the E) depicted in Fig. 2.6

are all of the ring type. As noted in section 2. 1 this will minimize

the number of unknowns {akg V k}.

We now consider each of the meshes (a)-(d) separately and examine

the different possible subdivisions of the internal structure of the super-

patches, e..

(a) Mesh (a) has a superpatch which can either be divided into {e. =

equilateral triangle} or {0. = a 1200 parallelogram}. Both cases give

three unknowns per fuel hexagon for the space P 1 . The quadrilateral

option requires a transformation from the rectangular form and leads

to complicated square roots. For this reason and also for the reason

that the other meshes lead towards the triangular form we shall not

consider the quadrilateral possibility. Any complete PN. space of

order higher than one, combined with this superpatch, will violate the

constraint on the number of unknowns. Usage of this mesh scheme thus

restricts us to the linear Lagrangian functions 6 for (qP N ij.
. 1g

(b) For mesh (b) there is again one superpatch. It can be thought

of as being composed of either {9. = equilateral triangle}, or {o. = a

quadrilateral, as shown in Fig. 2.6}. In constructing the 'finer' sub-

divisions we restrict ourselves to basic patches which lie entirely
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within homogeneous material regions. We then have that within the basic

patches the analytic solution for the flux will have as much smoothness

as the polynomial approximation.
A

If we use {(j = equilateral triangle}, then 4'9will have derivative

continuity instead of current continuity across fuel block interfaces. For

the triangular PN. space it can be seen that the highest complete space

which can possibly be used is the space P 2 . Any higher order incom-

plete space can have at the most 9 degrees of freedom; that is, three

superelement functions/fuel hexagon center.

The use of {0. = quadrilateral} brings up many questions. First of

all, as has been noted earlier, the quadrilateral P N. space has compli-
3

cated functions. But even if we choose to work with the triangular PN.
3

space there is the question of geometry. We essentially have two

rings of quadrilaterals. The conditions applied in the inner ring will

be different from the conditions applied in the outer ring. This makes

this particular configuration radically different and the question of fea-

sibility quite real. The advantage of the scheme is that the possibility

of imposing current continuity across fuel block interfaces is there.

(c) This is an interesting case. Once again we have the option of

using {O. = large equilateral triangle}. The second option is (O = either

a small equilateral triangle or a quadrilateral}. The same points which

came up in the discussion of (b) arise here but there is one additional

feature to the second option. We now have a mixture of e j's. This leads

to the coexistence of two superpatches which have-different internal

structure. Consider superpatch (i). Here the outer boundary is part of
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the quadrilateral only. In superpatch (ii) it is split up between the quad-

rilateral and the triangle. Imposition of identical conditions in the two

cases may lead to sets (T } which are of different orders N. This will
-ig

be shown to be the case in the next section.

It would seem, then, that for the simplest case there should be

considerable symmetry in our choice of a superpatch. The (93 j E GJ}

which makes up the E) should be identical and, moreover, should be

placed in a geometric configuration such that an interchange in the basic

patches, e9. of the superpatch can be made without having to change the

conditions imposed at patch boundaries. In other words, the E3 shouldJ

consist only of one ring of similar basic patches.

The next order of difficulty would then occur when the basic patches

are not all identical. After that we would have to consider the class of

two-ring superpatches.

The order of difficulty is the order of difficulty associated with

trying to split the spaces M3 into the set (f V i} which have to sat-M. ig

isfy the number of joins specified by the geometrical configuration of the

superpatch. This question will be examined in section 2. 3.

We shall in this thesis concentrate on the one-ring superpatch,

that is, class S I, with {9 = equilateral triangle}. The questions coupled

with the usage of this class of E) are fundamental enough that clarifi-

cations here could be useful in the construction of the more complex

rings.

(d) We shall conclude this section by conjecturing on the possibility

of constructing superpatches using hexagons as basic patches. The use
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of {e. = fuel hexagon} is attractive to the physical intuition as the solu-

tion c in the fuel block has as much smoothness as a polynomial.
g

Flux continuity and current continuity conditions can then be applied

across fuel block interfaces. Applying the principles outlined in the

previous section, we see that superpatch (i) of Fig. 2. 6(d) is where the

space M3 has been split into functions which are nonzero only on oneN

side. The next two superpatches (ii) and (iii) split the space into func-

tions which are nonzero on two sides and three sides, respectively. The

corresponding cases of more than three sides lead to higher rings.

Case (iv) of Fig. 2.6(d) is the case of the six sides. Basic element func-

tions, 1 , of two classes To and T3 have to be combined.
ig'

2. 3 Construction Methods

Given the superpatch configuration we have now to produce a set

{+kgV k}. There are two approaches to the problem and there are two

corresponding methods for constructing the approximation space Mm'

We introduced the two approaches in section 2. 1 and termed them as

(i) the physical construction

(ii) the mathematical construction.

As the names imply, there is a basic difference in the attitude behind

the two approaches. In the case of (i), we appeal to physical intuition

to construct superelement functions *jkg and accept the space spanned

by {jkg y k} as our approximation space. The conditions used to find

the superelement functions are a mixture of the interpolatory and the

noninterpolatory sets. We shall refer to this method of construction
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as the hybrid method.

The second approach is much more mathematical in nature. Here

we start with a known space E , known in the sense that we have or
3

can derive a basis, (e(}, in terms of an interpolatory set of conditions.

We then apply the noninterpolatory conditions across the patch bound-

aries to the {ej} to obtain the {+kg} which will be expressed in terms

of linear combinations of the (e3}. This method will be termed the

generic scheme.

The relative advantages and disadvantages of the two methods are

examined in the following sections but before we discuss them let us

examine another possibility for constructing spaces. This is the possi-

bility of using a variational functional to determine the superelement

functions Skg given that M CP .. The functional to be used would
3 3

have to be one which involved the diffusion equation, eq. (1. 1). It can

be seen that the method would then suffer from the same liability which

use of eq. (1. 1) as a constraint has. As pointed out in section 2. 1, this

is the problem of the introduction of X into the Galerkin coefficient ma-

trices.

We now move on to a description of the hybrid method and the gen-

eric scheme.

2. 3. 1 Hybrid Method

Here one uses one's phyaical intuition in determining a set of

conditions to apply to the superpatch in order to find the coefficients of

4Skg. If a set of constraints is to produce a feasible superelement set
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(+P. } in conjunction with a given superpatch, it is necessary that the

group of constraints satisfy the following test; the number of equations

as represented by the constraints must be equal to the number of coef-

ficients of Lk which have to be solved for. This, however, is only a
kg

necessary condition. For sufficiency we must also ensure that the con-

straints do not lead to a system of improper or redundant equations. By

an improper system we mean that the system is either inconsistent or

that the only solution is the trivial solution. Redundancy, on the other

hand, leads to a nonunique solution.

Conversely, these tests should enable us to determine the conditions

required to produce a feasible set {kg} given the superpatch configura-

tion.

Let us demonstrate the procedure by considering mesh (c) of Fig. 2.6.

Even though this mesh will not be considered in the remainder of the the-

sis, this is an interesting case and will illustrate several points. Fig-

ure 2. 7 is a more detailed illustration of the superpatches in question

and we shall refer to it.

11 4 2- 1

2 3 3

4 5 5

Superpatch (i) Superpatch (ii)

Fig. 2. 7. Superpatches of mesh (c) of Fig. 2. .
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Concentrating on triangle 145 of superpatch (i) we have, since we

are using the triangular PN (r), for the superelement function 4 'kg which

has superpatch (i) for support, in triangle 145,

N N-i
M 2;a .x triangle 123

i=0 j=0

*kg = NN- (2. 13)

M T, b..jxlyj quadrilateral 2354
"i=0 j=0 l

Condition Number of Equations

* = 1 1

+1-2 continuous across patch boundary 1-2 N/2
(point 1 is already prescribed)

#1-3 continuous across patch boundary 1-3 N/2

*4-5= 0 N+1

#2-3 continuous across patch boundary 2-3 N+1

*2-4 continuous across patch boundary 2-4 N-1/2
(points 2 and 4 function value already
continuous across patch boundary)

43-5 continuous across patch boundary 3-5 N-1/2

(points 3 and 5 function value already
continuous across patch boundary)

Total number of equations for triangle 145 4N + 2

(2. 14)

Total number of equations for superpatch = 6(4N+2) (2. 15)

Total number of coefficients

using eq. (2. 10) = 12 K N = 6N(N+3) + 12. (2. 16)
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We then have

Number of Equations

36

60

84

108

Number of Coefficients

36

72

120

180

Only at N = 1 do we have agreement. The other values of N lead to

infeasible sets. Now supposing we want to impose additional constraints

across the patch boundaries, namely those of current continuity. One

possibility is to add the following conditions.
Number of

Condition

ds D ~an

an841-3)
De DO--

5ds D~

On

D an

ds D 8 -

dsD843-5dsD8n

integrated normal current continuity
across patch boundary 1-2 plus

normal current continuity across
patch boundary 1-2 at N-2 points

integrated normal current continuity
across patch boundary 1-3 plus

normal current continuity across
patch boundary 1-3 at N-2 points

integrated normal current continuity
across patch boundary 2-4

integrated normal current continuity
across patch boundary 3-5

i-
iF

Equations

N-1/2

N-1/2

1/2

1/2

N
"2- normal current continuity across

D A-3 patch boundary 2-3

Additional number of equations for triangle 145 = 2N

(2. 17)

_N

1

2

3

4
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Additional number of equations for superpatch = 12 N (2. 18)

Now we have

N Number of Equations Number of Coefficients

1 48 36

2 84 72

3 120 120

4 156 180

A feasible set now occurs at N = 3.

It will be noticed that the interpolation and noninterpolatory condi-

tions imposed lead to an expression of the form (AN+ B) for the total

number of equations. This holds true in the general case and it leads

to a technique for eliminating conditions which would produce infeasible

sets. For example, let us suppose that we wanted to add conditions to

our original set containing function constraints only. We would then

require that

6(4N+2) + 6(AN+ B) = 6N(N+3) + 12 (2. 19)
where

(AN+ B) = additional equations introduced for triangle 145 by new
conditions.

We can rewrite this as

AN + B = N2 - N N = 1, 2,3 .... (2.20)

For each N we obtain an indeterminate equation for A and B. These

unknowns, however, have to be integer values and sets of A and B can

be found. However, one still has to resort to trial and error to obtain
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additional constraints consistent with these sets. In any case, eq. (2. 20)

is a simplified version of what was referred to in section 2. 1 as a gen-

eral formula16 relating the order of the polynomial N, the number and

type of conditions imposed, and the number of sides which e. possesses,

for feasible sets {Ikg}'

Let us now consider superpatch (ii) of mesh (c) which must coexist

with superpatch (i). Applying the function conditions to this superpatch

and concentrating again on triangle 145 we have

Number of EquationsCondition

4= 1

= 0

= 0

1

N+1

N+1

42-3 continuous across patch boundary 2-3

$2-1 continuous across patch boundary 2-1

+4-5 continuous across patch boundary 4-5

*4-2 continuous across patch boundary 4-2

Total number of equations for triangle

Total number of equations for superpatch =

N

N/2

N-1/2

N-1/2

145 =9 N + 22
(2.21)

6(+2) (2.22)

Total number of coefficients

using eq. (2. 10) = 12 K N = 6N(N+3) + 12. (2. 23)

One can see the problem of using mixtures of {6 }. Equation (2. 15)

+1 -3

4)3-5
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and eq. (2. 22) are different. This means that in general one will arrive

at different values of N for feasible sets with the same conditions.

There are a number of other points which can be brought up:

(i) The greater the number of constraints imposed, the higher the

polynomial order of the feasible set. Given the constraint on the num-

ber of variables, this means that there is a direct trade-off between the

defect of the approximation space and the physical conditions which can

be imposed in its definition.

(ii) Unless the physical noninterpolatory condition is imposed on all

the patch boundaries, the approximation $ will not satisfy that condition.

As far as a critique of the method goes it becomes evident that the

choice of the proper conditions to impose can become quite complicated

when one desires more than one function 'centered' on the center of the

superpatch. There is always the question of whether the conditions lead

to a system of equations which are either improper or redundant. It may
k

not be possible to complete the space without bringing in all the {s L}

and it is difficult to see when the need does occur. One may also obtain

piecewise-linear dependence without realizing it.

We now turn our attention to the more mathematical approach, the

generic scheme.

2. 3. 2 The Generic Scheme

It was seen in the last section that the major disadvantage of the

hybrid method is its comparative lack of systematization. There is no

algorithmic procedure for a step-by-step examination of the question of
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redundant or improper equations. The generic method is much more

methodical in nature and gives us precisely that systematization which

the hybrid method lacks. It allows us to build up, step by step, a set

of conditions which do not lead to redundant or improper equations and

is essentially an exercise in Representation.6 We first concentrate on

the basic patch 6. to find a representation for the approximation space

M3. We then use these representations in the joining of the basic ele-M.
J

ment functions across the patch boundaries to find the approximation

space Mm for the superelement functions LPkg. In the process of car-

rying out these steps one can not only resolve the questions of redun-

dant or improper conditions methodically but can also redefine conditions

to eliminate these problems in a systematic manner.

Let us begin by examining the triangular PN(r) form. We have

from eq. (2. 9) that a function g(r) in this PN space can be written as

N N-i . .
(r = a..xWy,

i=O j=0

=[1]a[aj00I01
a 10 0 y

0 0 a02

+[ x2] 2 0  ay1 1  0 y+ (2.24)

a 20 0 0 y2

Equation (2. 24) emphasizes the shell nature of the functional form of

k i k-i
V(r). Each term in the matrix form represents the shell (M a ik- i i)

quite like the shells present in a Taylor expansion in two independent

variables.



Now suppose we can write

KN

((r) = E agg(x, y)
i= 1

where

KN = dimension of PN'

Then

= H T(x, y)
((r) = [G ('KN] [al

aK

I K N

Let us introduce an operator J,

L

LK
L NJ

where the L. are taken from the group of operators used in the set of

interpolatory conditions. For illustrative purposes let us choose J

such that

JM(r) =

(r )

d(r )a

- ab ds ^nab -V9(r)

(2.28)

Awhere we consider 0.to be a triangle abc and nab-otadnra na
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(2. 25)

A. (2.26)

(2.27)

= outward normal on ab
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We then have from eq. (2. 26)

[J ... (2.29)

aN

If J (x,y)

0

(1).
1

0

then

aKN

= =

(0, 0)

If the above is not true, then suppose that there is a

Jl~i (xt y) =

0

(1.).

1

Ji

We refer to C, as a standard function of J1 .

Equation (2. 29) can be rewritten as

JA = Qjj11 '.

It can be shown then that

Q Q= -QIjil, ii

such that

(2.30)

(2.31)

where
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(2. 32)

To aid us in this approach we have two tools at our disposal. The

first is that we know of a simple set ( I(x, Y, . . . (K (x, y)}. This is

the set B 0 = 1,x, y, . .. }. We do not know the corresponding operator

J . However, we do know the operators corresponding to the Lagrangian

basis sets. These are JfN where (J Nt(r)). = t)

Then the question whether a set of interpolation conditions is proper

and nonredundant reduces to a question about the corresponding opera-

tor J; namely does (Q i )~ exist, which means that

IJi Jx ...| I 0. (2.33)

If it is true,

where

J=i

then we

0

0

0

0

To find the functional

to the basis B0 , that is,

J ii = [QJ j
0 0

know that a basis for J is , .K . .

(2.34)

form for the (6 } is a matter of transforming

find , .

0

(2.35)i.

Then using (2.26) we have

(2.36)(x, y) = x y ... ] i .
0

Qjj I = ljN 0 . . . KN I
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Once we have a consistent and nonredundant set of interpolation

conditions, we can go on to look at the imposition of noninterpolatory

conditions.

To simplify matters, let us consider applying noninterpolatory con-

ditions to the triangle abc only. Suppose we require a function ((r) E PN

such that

ab ds ab - Vg(r) f dsi a
- ac ac

Let us definetwoKN row operators JA

lab ds nab

A =

and JB such that

'i

and

JB() = Lac

ds n a 
ac_

That is to say, the only difference between the operators JA and JB

is that in one row, JA has fab dsnab - V while JB has fac ds nac

V . Equation (2. 37) then becomes

JA = JBt(r)

which is

A B B i B

an eigenvalue problem with eigenvalue 1. I

SV (r). (2.37)

(2.38)

(2.39)

(2. 40)

(2.41)

It must be note-d that we
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must first be certain that JA and JB are proper and nonredundant be-

fore we examine (2.41).

Now suppose we have a mixture of interpolation conditions and non-

interpolatory conditions,

0 .(2. 42)

f ds n -Vt f ds n -vtab ab - - ac ac _4

Once again we define operatore J A and JB given by eqs. (2. 38)-(2. 39).

Then we divide the problem into two parts

JA JB r)

JA 0 where K = some constant. (2.43)
A-

KJ

One can then obtain conditions for a proper and nonredundant set of

constraints once again in terms of the elements of Q .

It can be seen that the generic scheme rapidly becomes very involved

but it does provide a systematic procedure for generating basic element

functions *4 and superelement functions . It is more a tool of

analysis than of synthesis but it does point out that a proper choice of

JA and JB can mean much simplification. A general rule is to try to

concentrate the elements of JA and JB symmetrically on the corners

of the triangle abc. This then simplifies the process of joining across

patch boundaries and as a by-product maximizes the number of super-
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patches which are of class S1 . After the corners, the sides of the

triangle should be used for the elements of these operators. The body

of the triangle should be left to the last.

We shall present in the next chapter a number of sets {4 g} derived

by these methods.

Our main concern in this chapter was the discussion of the problems

involved in the various steps required to arrive at the form of the Galer-

kin equations, eq. (1. 16), preparatory to the actual inversion process.

It can be seen that the central issue is the construction of the approxi-

mation space Mim. One has to arrive at a set of conditions which will

give rise to a system of proper and nonredundant equations equal in

number to the number of coefficients of the required 4*kg and which will

lead to Mm with certain desired overall properties such as a specified

defect. This is in a sense similar to the task faced by nodal methods

where the situation is mitigated by the fact that the conditions are

applied to the approximate solution ' (r) instead of to superelement

functions. The work presented in this thesis could therefore be of use

in constructing nodal schemes.

We have presented two methods of constructing Mm and in the

next chapter, Chapter 3, we will introduce a few specific spaces derived

by using these techniques.
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Chapter 3

SPECIFIC SPACES

We concern ourselves in this chapter with the introduction of a num-

ber of approximation spaces Mm derived by the techniques discussed

in the preceding pages. These spaces have all been constructed so as

not to violate the constraint of three or less than three unknowns per

fuel hexagon. They have also been constructed with the object of pro-

viding answers to some of the questions raised in Chapter 2 regarding

the overall problems involved in the various steps required to arrive at

the Galerkin equations, eq. (1. 16).

As we are only interested in the SI class of superpatches we restrict

ourselves to the T subspace of the PN space. The specific O we use

are the ones presented in §2. 2. Given the constraint of three or less

than three variables per fuel hexagon we could divide up our set of

spaces into 1-element, 2-element or 3-element sets. As there is one

element function associated with each variable we shall use the term,

an a-element set, to denote a set which has a variables per fuel hexa-

gon. Rather than divide the spaces we have derived according to this

scheme, we shall discuss them under the broad classes of complete or

incomplete spaces. The a-element division will be made as a finer sub-

division.

Section 2. 1 brought up the fact that the constraint of three or less

than three unknowns per fuel hexagon led to a choice between high order

incomplete spaces and low order complete ones. As noted in that sec-

tion, whenever we use the term incomplete we use it relative to the
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space PN.* The space PN. is the space of all polynomials of maximum

order N. The term, complete space, is used in reference to PN

Let us now examine the question of the use of complete vis-a-vis incom-

plete ones for the approximation space Mm'

Intuitively one would feel that certain characteristics could be

missing if incomplete spaces are used. But it is not at all clear what

these characteristics are as it could also be said that low order complete

spaces are missing features of the higher order complete ones. From

a geometrical point of view it would seem that incomplete spaces which

do not contain PIwould not converge to the analytic solution as they do

not contain plane surfaces. This, however, is a question of convergence.

We are concerned with accuracy and it is not at all certain how the lack

of this attribute would affect accuracy. It is also not clear if a higher

polynomial order would compensate for the defect of the space. We have

constructed incomplete spaces in section 3. 1 with these questions in

mind, and in section 3. 2 we present their complementary complete

counterparts.

It should be noted before we begin our presentation that the inclu-

sion of the three-element sets is rather academic from the viewpoint of

computation time, but for completeness of argument we shall include

them in the presentation.

The rationale behind the various choices will be discussed in the

final section, §3. 3.
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3.1 Incomplete Spaces 1 8

Once incompleteness is allowed, our set of permissible spaces be-

comes much larger. There appears to be no fixed rule in making a

choice. We therefore have to resort to our physical intuition. In other

words, this is where we use the physical construction approach. We

apply the hybrid method to find superelement functions Skg'

For our 1-element set, we construct a superelement function on e

which at the center of e will represent the value of the flux. For our

2-element set, in addition to a flux function, we use another superele-

ment function which represents the normal component of the current

integrated around the boundary of E). We should thus be able to monitor

the net inflow of neutrons into a particular volume. To keep the functions

of the two elements distinct, we require that the integrated current ele-

ment should have a value zero at the center of E). In mathematical

terms this is similar to asking for linear independence of the two ele-

ments.

Continuing in this vein, we require our 3-element set to have one

superelement function for the flux at the center of EO, one for the x-

component of the current and one for the y-component of the current at

the center of E. The same condition about keeping the functions of the

elements distinct required in the case of the 2-element set will be im-

posed here.

It can be seen that we have three potential a-element sets which

have appealing physical characteristics. The conditions used in the

preceding paragraph are, however, not sufficient to define the sets.
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Most important of all, one still has to decide on the polynomial order N.

We choose to examine two possibilities N = 3 and N = 9. In passing let

us say that the choice of the cubic space is motivated in part by the en-

couraging results 1-3 which have been obtained with it for rectangular

geometry. The rest of the argument will be left to a later section.

We have some more conditions left to be imposed and these will be

detailed with the mathematical formulation of the respective set.

We now turn to a detailed description of the various spaces. Our

discussion will be divided into two parts. The first section (3. 1. 1) will

examine the cubic incomplete spaces, that is, the case where N = 3.

The second section (3. 1. 2) will concern itself with the case N = 9, the

case of the 9--order incomplete space.

3. 1. 1 Cubic Space

As discussed in the opening section of this chapter there are three

possible a-element sets. We have constructed three such sets for the

cubic incomplete space and will introduce them in the order of increasing

a where a = 1,...,3.

(a) 1-element set

Consider the superpatch 9j, hexagon abcdef, of Fig. 3. 1 com-

posed of the basic patches { 10,..., e6}, i.e., triangles 1-6. We im-

pose the following conditions on each of the basic element functions
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3 2x (3!6)

72 74

y2  4 x 5
e .d

45
Y3

Fig. 3. 1. Superpatch - regular mesh.

If 6f fjf*({>,..., }~ which define the superelement function *kgJg Jgkg'

(i) f J( 0  0 ) = 1

(ii) *j (88gi) =0
Jg

*
Refer to section 1. 2. 2, eq. (1. 22) for a more detailed statement of the

relation between the superelement function 4'kg and the basic element

functions ' .

t To simplify notation superscript p has been added to the superelement

symbol LP making it -, the J p-type superelement function. TheJg 4Jjg*teh
support for this superelement function is the superpatch E) and we

shall refer to its 'center' as the Jh superpatch center. In addition,

the basic element function associated with this superelement function

over the basic patch 0 will be denoted by the symbol 9 , where it isJg'
understood j is such that e forms part of the superpatch e9 0 is

the support of J.
Jg*
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(ii) V = Tkf at .fal0
Jg Jgj k

(iv) jf.= n^.vi' kf at 0e no 0=1.(iv) njk Jgnjk-Jgk j, k=6,

where njk normal to e 0 ek pointing from 0 to 8k'

Re = outer boundary of E)

In the case of a condition set with 600-rotational symmetry, condi-

tions (iii) and (iv) become

(v) 'f'g I E l8AE)=j1 Jgi flO

J - J- Jj+1 j j+1

where it is understood that 0 06 and 87 = 0. This simplifies mat-

ters enormously as we have now decoupled the system of equations for

E) into identical subsystems for each 90. This means we will only have

to concentrate on a single 8 to solve for E) Let us concentrate on 6

namely the triangle oab. We have that

2 3
6f 9() y 9 iC((3.1

T (x, y) = 1 -+ - (1 -32 CI(x,y)..1)

In the finite element method it is much more convenient to think in

terms of geometrical shapes than in terms of functional notation as the

same geometric surface will have different functional notation depending

on how 0. is oriented and translated with respect to the x-y axis. We

shall refer to the geometrical shape represented by eq. (3. 1) as

ICI(x, y). The superscript stands for 1-element cubic incomplete set.

We should point out that the corresponding generic approach to obtain
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the result represented by eq. (3. 1) is presented as a by-product in the

discussion of section 3. 1. 1(c) on the 3-element set.

We then have that the set .. . ,T 6f I which makes up the super-
Jg Jg

element function LP is (ci (3 ,-) . ,i (x6 ' 6 )), where the axes

(i 6 '7 6) is the set (x, y) and the axes (5k k) is the set (x, y) rotated

counterclockwise by kir/3.

(b) 2-element set

We have here two + to define. The conditions common to both

are

(i) Ai (88E) =0
Jg J

(ii) * = ikP at O. fEJg Jg j k

(iii) fdsjk' -7v j =f ds.k-V at On fek

(iv) njk V g =jk J P at a point r 0 on 0 ne k'

Referring to Fig. 3. 1 r0 is chosen to be the midpoint of e n e k.

The conditions which give the two +Jg their distinct physical char-

acter are

f c
Jg LJjg

[flux function] [integrated current function]

(v) (0,0) 1 0

J(

where
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A
n = outward pointing normal on outer boundary of e.

I J,

Once again in the case of a set of 60*-rotationally invariant condi-

tions we have that conditions (ii), (iii), and (iv) become

(vii) 'r
J.

(viii) f ds n

Je=1  3 j+1I )eoj-1 9 3 j+l

- v I ,

(ix) n vxk'p
Jg midpoint

0.06.I
3 3-1i

jj+l Jg midpoint'
3 j+1

We can then again concentrate only on triangle oab, obtaining

6f
'IJg(*y (I1= 1

6% g(xY)

We refer

(1

(3.2)

(3.3)2CI
'2 (~)

2CI
to the shape represented by eq. (3. 2) as (x, y) and that by

eq. (3. 3) as '2C(x,y).

written as

l 6f(y)'IJg(iy

It is interesting to note that T6 (x, y) can be

9 y 4)y 2
(WI

+ -21 i

ds jj+ 1 J i j+1

so

.-4) (3.4)

- - 2 3 2
2CIX

= -
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(2CI (X C I-(X y) + -L- 2C I(x, y). (3. 5)21 1 1 -3C2

We thus have that the set {T , corresponding to g is
2CI 2C ,ig'' ig 2C

{ 12CI Y 2CI( 6'Y6 and that the one for + is (02
2CI -

(c) 3-element set

This set is quite complicated as we lose 60*-rotational symmetry.

It will be easier and will be more informative if we start off by looking

for a basis for the complete cubic space P 3 . Consider the triangle oab

of Fig. 3. 1. Recalling the generic scheme, define

J 3 c(x) YO)
86(o)/ax

89(o)/8y

9(b)

Bg(b)/8x

89(b)/By (3.6)

9(a)

8t(a)/ Ox

89(a)/ By

86(g)/ By

It can be shown that J3 c is proper and nonredundant. The operator

is also so defined that, allowing for the constraints of continuity at the

corners of the triangle, the determination of function shape along the

boundaries of the triangle are independent processes. We will therefore

*We use the convention that (a) = 6(r).
We se heconentontha (() ((-)
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make use of it to find a basis for P3. But before we do so let us com-

ment on an interesting point. An operator J1c defined so that the only

difference between J3c and it is the replacement of 89(g)/ay with

f ds $ni Vg would lead to, aside from one normalization factor, theab 1*

same basis functions. Certain combinations of conditions imply satis-

faction of combinations of other conditions. It becomes imperative to

use the generic scheme for higher order spaces if errors of redun-

cancy are

have for

-wif (x, y)

g (X, y).

Tj (x, y)

T1 (x, y)
4g

to be avoided. In any case using the generic scheme we

P 3 the basis

=1-3 + 2

y ,y 2
=2 (\)(1 -7)

= 2 ()1 -Y)2

- 3%

c(x, y)

c(x,y)

= 1 (1 - ~ x2 -Y 2] ~ 3c(xy)

and

4 .
*{(x, y) = 1 dk rgI' 'l

r=1
(3. 11)

. 4.
(xy)= 2 d (X )k9 (xy) = r 1kr rg 2' Y2

where the axes (x1 ,y 1 ) and (x 2 ,y 2 ) are

exception of Tjg, which E T3, the set.

k = 8,..., 10

as shown in Fig. 3. 1. With the

given above E T1. This is

(3.7)

(3.8)

(3.9)

(3. 10)

ea
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in marked contrast to the cubic Lagrangian set discussed in section 2. 1.

As far as reduction of variables is concerned the cubic Lagrangian set

is less efficient. In passing let us note that 'I' is identical to theIg

u+ (y)* of Kang's 1 -D cubic Hermite set.1 This draws attention to the

possibility of using the three natural axes of hexagonal/triangular geom-

etry to derive element sets. More will be said about this possibility in

the next section.

This basis for P 3 has four fundamental shapes. These are the ones

given by eqs. (3. 7)-(3. 10). We shall denote them as {4c(x, y)} where

i = 1, . . . , 4. To find the three superelement functions, 4pg of E) we

apply the following set of conditions. The set of common conditions is

(i) T (e8) = 0

at e. A n
j k

(iii) n jk jy jk V4 Jg at

The conditions which give the distinct

f [flux

*Jg function]

(iv) ip (0 0 ) = 1

(v) Ti (0 , 0 ) =8x Jg

(vi) b qjp( 0 , 0 ) =6y Jg

e. ekE)j n )k

physical character are

Jg [x-current] 4 [y-current]

0 0

010

0 0 1

See eq. (3. 16).

(ii) = k
Jg Jg
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As this set of conditions is not 60*-rotationally symmetrical, we

can not in this case just concentrate on triangle oab of Fig. 3. 1, but

have to solve for the hexagon abcdef as a whole. The p are linear

combinations of the (63c(x, y)}; a different combination for each 03.

4 .
jjg(r) = k =1a (x, y)

We present the following table

f

r E 8 .

au for the (a1p}:

1 02 3 04 5 06

11

0

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

-3/41 -3/41 -3/41 -3/41 -3/41 -3/41

8 2 03 84 05 06

0 0 0

4/2 r/2

- 1/2

0

0 -r/ 2 -r/2

-1 -1/2 1/2

0 0 /2 0 0 -1/2

(3. 12)

aji~f

aj
2 f

aj

aafa4 f

(3. 13)

x
Ij jg

0aj1x

aja2

a3

aj

1/2

0

0 (3.14)

1

0 0 1/2
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$A7
Jg

0 2 03 04 05 66

a' 0 0 0 0 0 01y

a2y 1/2 -1/2 -1 -1/2 1/2 1
2 y (3.15)

a3 -NF-/2 - F3/2 0 r3-/2 N/2 03 y

a 0 N/3 -r3/6 0 -4T/3 .J/64 y

It should be noted that the tableaux of eqs. (3. 13)-(3. 15) are non-

unique; specifically ap can take on different values. This nonunique-

ness is due to the fact that in the space P 3 our set of physical conditions

does not lead to sufficient equations to completely define our polyno-

mials* and as such is a good example of a case where one should be

cautious in applying the physical construction approach. For q)g we

have chosen ag so that this superelement function is identical to the4f

superelement function of the 1-element cubic incomplete set.

We now address ourselves to the 9k-order incomplete space.

3. 1. 2 Ninth-Order Space

This is an incomplete polynomial space PN with N = 9. We concern

ourselves here only with the 3-element set possibility.

(a) 3-element set

Consider the superpatch, hexagon abcdef, of Fig. 3. 2. In hexago-

Refer to Appendix D.
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x (/y)

a b (2
6

1 
51

V

/N3, 2)

x
C

X2

e d

Fig. 3. 2. Superpatch - regular mesh. Axes for ninth order
incomplete set.

nal/triangular geometry the natural set of axes is a three-axes set.

An example of such a set is the (x , x 2 'X 3 ) set shown in Fig. 3. 2.

Consider the cubic Hermite set of Kang's in 1-D.

2
3 (1 +

3(1 - x2

3
-2 (1 +

- 2 1 L- 3

These are

(3. 16)

otherwise

-2 < x < 0

(3. 17)

otherwise

Using these we can form the following set.

(-1/45,o

f

x 3

u(x)

0

-1+ 2

u (x) 2 3

0

+ + 3



f u (x ) u (x 2 ) u (x 3 )

= u(x ) u (x 2 ) u (x 3 )

x 1Ij~g =-[u 0(x I)u I(x 2)u 0(x) - u0 (x2) u0(x I) u 1 3)]

It can be shown that this set of ninth-order piecewise polynomials

satisfy the following conditions. Conditions common to all three super-

element functions are

(i) 'q4 (a) = 0Jg J

V p (ag)

= Jg

=

at o n ek

n.vipff 0 3 q
jk Jg jk Jg at e.

The conditions for the distinct physical character are

[ flux
Jig function]

x
LIJg [x-currentl qjy [y-current]Jg

(.v) '~(0., 0) =

(vi) Th Tp(0, 0)( x Jg

vi)~. L 4jp(Q,0)ay Jg

Condition (ii) is one which was not satisfied by any of the previous

88

(3. 18)

(3. 19)

(3.20)

(ii)

(iii)

(iv)

Jg

0 ek'

1

0

0

0

1

0

0

0

I
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sets. This condition in conjunction with condition (iv) ensures that the

approximation, 9 will have derivative continuity. All the previous
g

sets lead to c) with discontinuities in the gradient.

This ninth-order set can in no sense be regarded as having been

derived from a set of conditions. There are not enough equations to

define it in the set of conditions (i)-(vii). The set was constructed by

appealing to the analogy in rectangular geometry and as such illus-

trates the fact that as we move up to higher order spaces our limited set

of physical conditions is insufficient to define our element functions.

We now turn our attention to the complete spaces.

3. 2 Complete Spaces 9

Before we present our various complete sets {' V i}, let usig

dwell on a few features of our approach.

Given that the complete polynomial space PN. is to be used for

M3 we still have to decide on the spanning set {'I V i}. By restrict-
m. ig

ing ourselves to SI we have restricted (W g i} to T but even then

we still have a latitude of choice. We chose an approach which we shall

term the shell idea. The C1 shell set is the set (Ig V i} which forms

a basis for the space P 1 . The (C +C 2 ) shell set is the set (Ti V i}

which is a basis for the space P 2 . In general, then, the (C 1+C 2 ... +Ck)

shell set is a basis for Pk' This means that the Ck shell set spans the

spae Pfl 1  *space P k-1 This approach therefore raises the possibility of

*
The I symbol indicates the complement.
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varying the accuracy attainable by systematically adding or deleting un-

knowns. It also offers us the possibility of using a low-order space

fine-mesh scheme simultaneously with a high-order space coarse-mesh

scheme. It is made all the more attractive by the fact that we are re-

stricted to superpatches E) of the class S1 . From the programming

point of view all that is needed is to vary the number of unknowns

'centered' on the centers of the superpatches.

We conclude this discussion by pointing out a difference in attitudes

between the construction of the complete shell sets and the construction

of the incomplete sets of section 3. 2.

Physical intuition played a major part in the construction of the in-

complete sets. We went so far as to associate a 'physical' role with

each superelement function. In the case of the complete shell sets such

'physical' interpretations can be attributed through the interpolation

conditions used in defining the {& V i}. We choose, however, to think

more in terms of geometrical shapes than in terms of physical charac-

teristics. When we join across patch boundaries to form the superele-

ment function qJjg using the constraint of function continuity, we attempt

to use the same basic element function i in each of the basic patchesig

of E) This implies that the basic element function T should have

identical shapes on the sides of G. for which it is nonzero; a property

which we shall refer to as line median symmetry. In other words, the

We shall refer to median symmetry as symmetry of T4 about the median19
bisecting that particular side of 0. on which TP is identically zero.

j ig
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. and their corresponding ('j V i} are related by linear coordi-

nate transformations. Completeness and linear independence are prop-

erties preserved under linear transformations. Function continuity

across the patch boundaries is guaranteed if the {'f V i} has line

median symmetry, a property which is by no means always obtainable.

If we were to associate physical attributes, then we would in general

have to use different basic element functions % in the contiguous .ig

of a E) before we would be able to form the * The 3-element in-

complete cubic set of section 3. 1. 1 is an example of such a construction.

Succinctly expressed, we attempt to transform shapes and not inter-

polation conditions in the construction of {$JkgV k} for our complete

shell spaces.

We now turn our attention to describing the complete spaces. The

section is divided into 2-D and 1-D spaces. Section 3. 2. 1 discusses

2-D sets. We gradually build up shell sets starting with C and con-

cluding with (C 1 +C2 +C 3 ) and in the process of doing so emphasize

various features of the approach. Section 3. 2. 2 presents a 1 -D 'ana-

logue' of the 2-D (C 1+ 2) shell set. It will enable us to examine in

1-D some of the questions which arise in the construction of the 2-D

spaces.

3.2.1 2-D Spaces

Equation (2. 24) pointed out the shell nature of the triangular form

of PN.(r). One systematic procedure of adding functions to the set

V i} is to think of the process as the building up of shells. The
19
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C shell is the basis for P1 and the sum C + C2. + Ck is the basis

for Pk. As one increases the number of variables/fuel hexagon per-

missible, one can build up to higher and higher order shells. The sum
k
M C has an analogue in the Taylor series expansion in two indepen-

dent variables, and it is conjectured that it is possible to show that the

order of the truncation error will be the order of the truncation error

of the highest complete shell. If this is so, then there is the possibility

of having mixed orders of accuracy without having to alter mesh size

by just adding functions to or subtracting functions from (LPkgi*
Consider the triangle oab of Fig. 3. 1. Let us define an operator

J1s such that

V(O)

J s(x) = 9(a) (3.21)

L (b)

The standard functions for this operator is the set

*jc l 1 (x,y) 1 - (3.22)
og (,Y x"Y

q/ c1 (x, Y) c (

Jcl(xY) - (x2 ' 2) (3.23)
ag1 2'2

This set is the shell C and it is a basis for the space P 1 . As it

also belongs to T1 , we only require S superpatches. The corresponding

superelement function *lig, for the superpatch E), hexagon abcdef of

Fig. 3. 1 is composed of the basic element function set (c ( , y )..

Ecl (-6' Y6 )} where (x, y) is the fundamental geometrical shape for
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Js , namely the one represented by eq. (3. 22).

We can now add elements to J is to obtain J2s'

J 2sg =

V(o)

9(a)

t(b)

f ds noa oa

-T

(3.24)

Lobds nob*

fabdsrnab *VJ

where !i is the normal to side as of the triangle oab shown in Fig. 3. 1

pointing away from the interior of the triangle.

Three standard vectors of J2s are

o 0 0

0 0 0

0 0 0

1' 0 and 0

0 1 0

J2s 0 J2s10 12s

They form the shell C2 and in functional form are identical to the cur-

rent superelement function, eq. (3. 3), of the 2-element incomplete cubic

set. We have

= c2y fWi
Wjc 2 (X2Y) c(x,y) = 2-1

og121
(3. 25)
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9,ic2 (XY) c 2 (x

2,c2(XY) c 2 (2) (3. 26).
ag12'2

(C 1 +C 2), the set 9 given by eqs. (3. 22)-(3. 23) and eqs.

(3. 25)-(3. 26), forms a basis for the space P 2 . As C 2 E T, S' will

suffice. It is of interest to note that there is a difference between this

basis and the Lagrangian quadratics which are determined with the oper-

ator J2L'

9(o)

t(a)

J2L= (b) (3.27)
9(g)
9(h)

(i)

where

g = point on oa

h = point on ob

i = point on ab.

* 1 2
As shown in Fig. 3. 3 this leads to S and S superpatches. The

Lagrangian quadratics are less efficient than our (C1 2 ) set. We shall

also refer to this set as the perturbation quadratic set as one can think

of it in terms of the quadratic perturbation C 2 being added to the linear

Refer to section 2. 1 which presents a detailed discussion of the

Lagrangian cubics and the classification of superpatches.
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Lagrangian quadratic functions of class T

0
x

g h

a 0 -0 0 b
i

0
0

g x

0 0
i

h

- 0 b

/

Legend

0 E = 0 at this point

x = 1 at this point

== corresponding superpatch

Fig. 3. 3. Superpatches for Lagrangian quadratic set.1

a

tRefer to presentation in section 2.1 on Lagrangian cubics for a more
detailed discussion.



set C1 . The corresponding superelement set has t

support E8. These areI+ which is exactly the

for the C I shell set and 4j . The corresponding]

rc26f c2 c2(P ,...,1 } for 4j is the set {ig Jg

the axes (xk' k) are as shown in Fig. 3. 1.

The remaining three standard vectors of J2s

1 0 0

0 1 0

0 0 1

0 0 and 0

0 0 0

J2s 0 2 0 J 0

;wo functions

superelement

basic element

c2 
6

are the ones

It should be noted that these are not the J2s vector form of the three

linear functions, eqs. (3. 22)-(3. 23) of C These are

0 1 0

0 0 1
and

x x x

2s 2s 2sx

where x represents a nonzero value.

To conclude this section on the space P 2 we present a set of func-

tions which does not span the space P1 but which with the set C2 spans

the space P 2 '

R(xy) = 41 (x, y) = 1 - )2

96

g with

function

set

where

(3. 28)
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bgR(X, Y) 1 (xi, Y)

xjiRQ(X) RQ(329
ag(X, y = (x 2 'y 2 ) (3.29)

This set belongs to Ti, so once again only S need be used. It

shall be referred to as the regular quadratic set. As with the (C +C2
P1

set is also has two superelement functions +i with support E. These

are tc2 and J where the basic element set for 459 is

Q( R,7),. -Q- 6 '3 ;6 )}. We shall now turn our attention to the

space P 3.

A J3s operator could be constructed by adding elements to J2s'

9(o)

9(a)

((b)

f ds~ 9 -
oa oa

fob ds ' ob

3s fab ds Aab (3. 30)

m - (o)

m 2 - v9(b)

m3 . 9 (a)

L9(r)

where the unit vectors are as depicted in Fig. 3. 4 and the operator L

is left undefined. The elements are added in two subshells, one of a

group of three and the other of a group of one. The group of three are
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1l

y

a

k 3

x
2

Fig. 3. 4.1

yA K

0k

b (2/f J, .)

x

Basic patch for J3. operator of eq. (3. 30).

conditions centered on the corners of triangle oab. The group of one

is the remaining condition.

~0

0

0

0
01

0'

1

0

; J

~0

0

0

0

0

0

0

1

0

and

0

0

0

0

0

0

0

1

xi

The C3 subshell is formed by

2
while the C3 subshell consists of

0

0

0

0

0

0

0

0

For C1 E T we have that C3 is composed of the set,

y2
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yc3C 2

c3 3c
og ic(X' Y) 3 (X (~Y)

bgI -Y

ag c 2' Y2

It should be noted that the shape represented by 3c (x, y) is that of
23

eq. (3. 9). The remaining subshell C consists of

j Og(x, y) = A(63c 3c(x + 3c1 (2 3c

(3.32)

where

A = a normalization factor

,3 c(xY) = yQ)( )2

(iY)[(2 
-(Y )2]

af A 3cbdn, y V) -3(x, y)

=f ds n 3c
oa dn V 2

n = outward normal of corresponding side.

The shapes represented by (3c(x, y) and 3c(x, y) are those of eqs. (3. 8)

and (3. 10).

The subshell C3 E T but the subshell C E T . This leads to dif-

ficulties as S1 no longer suffices and S0 will also have to be used.

It would appear from Fig. 3. 4 that the 'natural' set of axes to use

in defining the operators J for the construction of these shells would
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be the set (x, y), (x 1 y1 ) and (x 2 ,Y 2 ). We conclude this section with

shell sets constructed by concentrating the interpolatory conditions on

the corners of triangle oab of Fig. 3. 4 and using this 'natural' set of

axes. The corresponding operators J2s and J3s are

'2 s

2st

(o)

9(a)

(b)

- Va(o)

- v6(b)

- Vt(a)

(o)

9(a)

g(b)

- V7(o)

- Vt(b)

- Vg(a)

k V(o)

k2 Vg(b)

k3- Vt(a)

L(r)

(3.33)

(3.34)

n12

-3

A

-2

m 3

C2 now becomes
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'4 (xy) = -- 2CI(x,y) + L2Cx y1 ) + &32CI(x2' Y2 )

= y+-(3x2-5y2)

5g
I 2CI

.,r -(3-y)

= y + 13x2

+ 2CI(x2'1Y2 )

- 5y2)

- I 2CI(xy) + - - 2CI(x - 2 CI(x 2' 2 )

= + + (3x2

,2CT(

This is the current function of

that CI is composed of

eq. (3. 3). For C I TcT

,jc3( X)
og

,Wjc3
b g

~,jc 3 (X Y)
ag

3% Yc) = S(H-) (I -y) 2
c2 2

3c
2 2'Y2)

=3%

~2 ( 2 -y 2 )

and C2isC3 i

q3j (x, y) =
log A-(1 -) 3[ 2 2] (3.37)

where A = a normalizing factor.

P3 (x,y)6g

where

y2

yNf~

(I14).

(3. 35)

we have

(3.34)

2CI (x , ydy)
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These are the functions of eqs. (3. 8) and (3. 10). It can be seen

from eq. (3. 36) that we have lost the property of line median symmetry.
2 3 a 1 1

C3 is now E T but C 2 has become E To. C remains E T . We have

not managed to avoid the use of S0 and have in addition introduced the

3
use of S . The operators of eqs. (3. 24) and (3. 30) are therefore to be

preferred to the operators of eqs. (3. 33)-(3. 34).

3. 2. 2 1 -D Spaces

We present in this section a set of two quadratic functions constructed

by the use of the hybrid method. This set shall be referred to as the 1 -D

hybrid quadratics.

Consider the 1-D 'superpatch' abcde, E , of Fig. 3. 5. It consists

xx x

2 -1 2+ f j+Z 1+ j+3 +

a b c d e

x -

Fig. 3. 5. 'Superpatch' for 1-D hybrid quadratics.

of the four 'basic patches' ab, bc, cd and de; 0 ,.. . , .j+3. We define

the two functions by imposing the following conditions. Conditions com-

mon to both functions are

(a) = NW(a) = 0+p +ax ig

T +3 (e)= a T 'i43p (e) = 0ig ax ig
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qW P(b) = 9j+1pb)ig ig

Di a i' (b) = DJ+ 1  3 T 1 p(b)a)x ig ax g

j+2p (d) = j+3p(d)
ig ig

Dj+2 j+ jaT+2P(d) = D j+ 3 'Ij+ 3 s(d).ax ig 8x ig (3.38)

The conditions which give the functions their unique physical character

are

[flux function]

1

Scig
[ current function]

0

k (c) 0 I

k = j+1, j+2.

(3.39)

These lead to the functions

*,U3 W)= 1 2 fW
a33 +22_ fIg~h 2(1+a) xP-2 1

T3+2fW a 2(X-x) + 1 =(ig (a+1)h

*j (xW=- a 2 + Wig (a+1)h2( f +1

(3. 40)S f (x) = 2a 2 f2 ) (x+4h)
ig h 2 ( -x+a) -2 ) r(X-XP +x ) = h

f
ig
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f
for Lig and

_ 1 i+3c( _ 1 (x + x)Ig 2h(1+a)

-j+2c (2a+1) 2 + - -

ig 2h(1+a) fx1x2

tj+1c() = (2a+1) 2 + - -
2h(1+a)

T (x)= - 2h( (x-x 2  - 2+x 2 +2) = - (x+4h) (3.41)
Zh(1+a)

for L? , where

Dj+3  Di
a -72 ~

h = x+2 ~f+1 = xI+1 - XP- 2 2 ~ XP-.1 2f--2 ~ 2f-1'

This set is an instructive one and we shall use it here to illustrate one

of the questions which arise when one uses the physical construction

approach.

The basic ambiguity or flexibility is that there is a choice of

where to 'center' +g. We cannot center it at xi as that leads to

linear dependence and we cannot center it at x2 +4 as that will lead to

Athe unphysical condition of forcing the approximation c+ to be 0 at

point e. Even with the elimination of these possibilities we are still

left with a number of choices.

Suppose that we center it at xP2+3. This means that the spanning

set for M is (t (x-3h), tc(x-3h)}. The spanning set for M i3
Mj+4 I 2 j+3 I
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-( (x), &(x), C (x+h) h)). Mj 4  and Mj+ 3  are different spaces.
1 1 1 1 m +4 m3+3

This is the difficulty which was alluded to in section 2. 1(c) in the discus-

sion on polynomial spaces.

If we center i1gon x we have that the MJ are identical.4i+ 1g x,2N
Mj+3 ~fj+4cj+4 .Jj+4 cj+41

The spanning set for is then (ifj+4 j+gj+4'i j+4
m j+4 - i+1g' i+1g'ig 'ig

{tf(x-2h), c(x-2h), rf(x), c(x)}. This spans the P2 space but does not

form a basis for it as 2c(x) We shall use this 'centering'

scheme in all our work with the 1-D hybrid quadratics. This can be

regarded as our 1-D analogue of the 2-D P 2 space.

We reserve further discussion of the 'centering' problem to sec-

tion 3. 3.

3. 3 Set Choice Rationale

The specific spaces discussed in sections 3. 1 and 3. 2 were all cho-

sen to illustrate and to resolve certain questions which arise in trying

to use the finite element method with our specific constraints.

We give below a discussion of what these questions are and how we

intend to answer them. Given the complexity of the problem it must be

understood at the start that we can only hope to resolve the questions in

numerical terms of accuracy versus computational time.

(1) 'Centering' Scheme - Physical Mesh versus Mathematical Mesh

The 'centering' question touched on in section 3.2.2 is part of the

larger problem of using the physical approach to contruct the mesh e i}.

Up to this point we have only discussed the use of the two approaches,
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mathematical and physical, in relation with the construction of the func-

tion spaces. A corresponding distinction can also be made between the

approaches which could be used to construct the mesh {e.}. In all the

work of the previous sections we started off by choosing the basic

patches 0. and constructed superpatches E) by 'joining' 0. in a manner

dictated by the choice of the approximation space M . This approach

will be termed the mathematical approach. But, just as we accepted

the M3  as 'given' when we use the hybrid method to construct theM.
J

superelement functions SPkg via the physical approach, we could also

resort to a physical approach in the construction of the mesh by starting

off with the superpatch, 8P, appealing to physical intuition in the impo-

sition of superpatches on 0 and accepting the resulting {0 } as given.

In 2-D the choice is not only one of 'centering' but also of 'orienting'.

The difficulties, however, are identical to the ones outlined in section

3. 2. 2 for the 1 -D hybrid quadratics. We shall refer to the {0 } obtained

in this manner as a physical mesh and reserve the term mathematical

mesh for the mathematical approach.

The physical mesh which will be used in this thesis is shown in

Fig. 3.6.

Two superpatches, the hexagons ABCDEF and abcdef, are depicted

in Fig. 3.6. The basic patches {6 } are now the triangles of the osS

type and not the triangles of the obc type which was the case for the

superpatches derived in the previous sections. What we have done is

to allow the superpatch to have a physical identity of its own and imposed

it on the problem in a manner appealing to our physical intuition. In the
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-Material
hexagon

F ig. 3. 6.

Physical mesh.

a V .d

\F 10 E

\ Legend

---- P- -- Superpatch boundary

case of Fig. 3.6, we have 'centered' it along with its accompanying

superelement function, on the center of a fuel hexagon and interpreted

it as representing the region of influence of the fuel hexagon on its neigh-

bours.

We shall use the following superelement sets {+J} with the physical

mesh.

(i) The shell C1 defined by eqs. (3. 22)-(3. 23). With this mesh the

use of C1 can no longer be regarded as merely equating M with P 1 .

Consider the basic patch triangle osS. The spanning set for it {jjclog
,,jcl 1 jCl .qljc1} does span P 1 but there is a linear dependence present.hg Og' gy1

(ii) It appeals to the physical intuition to use the two-element incom-

plete set eqs. (3. 2)-(3. 3) with the physical mesh. The integrated cur-

rent element function of this set will allot a degree of freedom to the net
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flow of neutrons into the adjoining fuel hexagons.

Let us conclude this section by pointing to an inherent difficulty of

the physical mesh idea. This is the question of boundaries. Consider

Fig. 3.6. In order to fit the boundary, we will have to shrink the super-

patches associated with the outer ring of fuel hexagons. This means

that the Mi will not be identical. What was once a complete spacem.
J

may become an incomplete space. This is the inherent drawback to

starting with E9 and not 0. To fit boundaries one has to devise var-
J3

ious E) which aside from the difficulties pointed out in the preceding

text may not even be 'physically' appealing.

(2) Incompleteness

As pointed out in section 2. 1, given the constraint of less than

three variables per fuel hexagon, we have a choice between low order

complete spaces and high order incomplete spaces.

The cubic incomplete spaces derived in section 3. 1. 1 will be used

for the class of high order incomplete spaces. Those spaces were so

constructed that as we increase the number of 4 'kg per fuel hexagon

we decrease the defect of the space. It must be noted that these spaces

are 'completely' incomplete. They do not span - P 2 and P1 . This

is an important point as one could always construct a set of incomplete

cubics which does not span P3 but spans P 2 and P .

For the complete spaces we use our shell sets derived in sec-

tion 3. 2. 1. They will show the effect of increasing N, the order of the

polynomial space.
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(3) Condition of Join

As we are working in a piecewise polynomial space, the smooth-

A
ness of our approximation 0 depends upon the degree of continuity we

impose in joining the (jgj } to form the set (+ }
- 1g

We restrict our work to the sets 1 0} for which e fl (k fall in

regions of homogeneous material composition. The analytical solution +

has all orders of continuity in these regions. Our ninth order set given

A
by eqs. (3. 18)-(3. 20) leads to a + with continuity of the first derivative.

The incomplete cubic sets lead to a # with only function continuity. If

we compare the results of the two incomplete 3-element sets we will

be combining questions of join condition with that of defect of space and

order of space. We will, however, obtain an ordering of importance of

the various competing effects. It should be noted that the ninth order

set is also 'completely' incomplete.

(4) Conditions within .

As material interfaces fall within our basic patches the problem

of primary interest is whether or not derivative continuity at these in-

terfaces is an adequate alternative to current continuity. This question

2-3
has been addressed before. We shall endeavor to be slightly more

quantitative by presenting 1-D analytic and numerical parametric cal-

culations. The direction of our 2-D work was in part motivated by

these results.

(5) Low-Order Space Fine-Mesh versus High-Order Coarse-Mesh

This question is a complex one as the answer is dependent upon
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the flux shape being approximated. Nevertheless it is a real question

as we do have the choice of using either the fine mesh of Fig. 2. 6(a)

with the complete linear space or the coarse mesh of Fig. 2.6(b) with

the complete quadratic space. The spaces in question are the shell set

C or the double shell set {Cl+C 2 } derived in section 3. 2. 1.

Our conclusions using these two sets can only be considered to be

valid for a range of flux shapes comparable to the one of our benchmark

problem.

(6) Boundary Treatment

The use of regular hexagonal superpatches with the coarse mesh of

Fig. 2.6(b) leads to difficulties with alignment of boundaries. One has

to resort to other irregular polygons for an exact alignment. This

makes it even more important to think initially in terms of 0. rather

than E . As our sets were actually derived by first finding (4 } and

then 'joining' using function continuity to form (+kg} with the regular

hexagon as E , there is no difficulty in extrapolating the logic and

joining the {9 } to form other polygonal e E S 1 .

As an initial attempt we restricted E to the regular hexagon andJ

all the calculations were done with the boundary superpatches overlapping

into the region of zero material property adjoining 0. Calculations were

then redone for the more promising alternatives with the use of irregular

polygons to fit the boundary eaactly.

We conclude this chapter by summarizing, in Fig. 3. 7, the alter-

natives open to us, given the constraints of the problem, in terms of the



(1) 2-Element (1) C 1 -Shell
Incomplete
Cubic

Approxin

Incomplete

(1) 1 -Element Incomplete
Cubic

(2) 2-Element Incomplete
Cubic

(3) 3-Element Incomplete
Cubic

(4) 3-Element Incomplete

9- Order

(1) C 1 -Shell

(1) C 1 -Shell

(2) C 1 +C 2 Shell

Fig. 3. 7. Algorithmic presentation of alternatives - meshes and super-
element sets.
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meshes and spaces discussed in this chapter and in the previous one.

The term 'Fine' refers to the fine mesh of Fig. 2.6(a). 'Coarse'

is the mesh of Fig. 2.6(b). We have chosen to use this mesh as it is

the 'finest' of the coarse meshes possible and should therefore lead

to the best accuracy.
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Chapter 4

RESULTS AND CONCLUSIONS

In this chapter we first present our results and a discussion of the

implications. We then draw our conclusions and suggest possible areas

for future work.

4. 1 Results

The presentation of the results will be divided into two parts, those

pertaining to the question of accuracy and those relevant to the discus-

sion of computation time. The results pertaining to accuracy will be

further subdivided into analytic, 1-D numerical and 2-D numerical

work. The cross sections used were those typical of the HTGR and are

tabulated in Appendix A.

4. 1. 1 Accuracy

As noted and as discussed in the preceding chapters, there are

many questions involved in applying the various steps required to arrive

at the form of the Galerkin equation, eq. (1. 16), preparatory to the

actual inversion. In the final analysis, answers to these questions can

only be judged on the basis of the accuracy attainable. The questions

answered here in terms of accuracy attainable are the ones discussed

and summarized in section 3. 3. For completeness we shall reiterate

them here in the form of a synopsis.

(1) Centering Scheme - Physical Mesh versus Mathematical Mesh

We use the specific physical mesh of Fig. 3. 6 to judge the merit of
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constructing meshes via the physical approach vis-a-vis construction

using the mathematical approach. The mathematical counterpart to the

physical mesh used in this investigation is the coarse mesh of Fig. 2.6(b).

The results presented are obtained from 2-D numerical calculations

using the superelement sets C, and the 2-element incomplete cubic

set.

(2) Incompleteness

The question of the principle involved in deciding on what degree of

incompleteness is to be incorporated into the approximation space M3
M.

J
is investigated in 2-D as a question of the accuracy of the completely

incomplete sets, the sets of section 3. 1, and in 1-D as a question of the

accuracy of the sets derived from Kang's cubic Hermites and the hybrid

quadratic set of section 3. 2. 2, vis-a-vis the corresponding complete

2-D and 1-D sets of section 3. 2.

(3) Conditions of Join

The degree of smoothness to impose when joining the basic element

functions q across patch boundaries to form the superelement func-

tion kkg is examined both in 1-D and 2 -D. In 1-D results are obtained

using Kang's cubic Hermites and in 2-D we use the totally incomplete

spaces of section 3. 1. Results comparing the effect of varying the

degree of join, from complete disjointness to continuity of first deriva-

tive, for the approximation (r) are presented.

(4) Conditions within 0.

The main question here is the question of derivative continuity
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as material interfaces fall within the basic patch e.. Analytic and 1-D

numerical results using the hybrid quadratic set of section 3. 2. 2 are

presented.

(5) Low-Order Space Fine-Mesh versus High-Order Space Coarse-

Mesh

We investigate this problem in 2-D and compare results obtained by

using the fine mesh of Fig. 2.6(a) with the set C , with those obtained

by using the coarse mesh of Fig. 2. 6(b) with the set C2.

(6) Boundary Treatment

As discussed in section 3.3, irregular polygonal superpatches will

have to be used for an exact fit with an arbitrary boundary. We first

carry out our calculations restricting e to the regular hexagon. These

results are then compared to ones obtained by allowing the u3e of irreg-

ular polygons for E) to fit the boundary exactly.

Given the complexity of the problems, the answers can for the most

part only be evaluated in terms of actual computer simulations, that

is, in numerical terms. But, as can be seen from the above synopsis,

analytic work is not entirely proscribed and we have a mixture of ana-

lytic, 1-D and 2-D numerical results. As indicated in the introduction

of section 4. 1 we present the results according to the classes: analytic,

1 -D or 2-D numerical work. To clarify matters, we summarize here

the questions considered in each of these groups.

(1) Analytic work: question (4)

(2) 1-D numerical work: questions (2)-(4)

(3) 2-D numerical work: questions (1)-(3) and (5)-(6).
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We now consider each of these specific groups in turn.

(1) Analytic

(i) Conditions within e.: Derivative Continuity versus Current

Continuity

It has been shown in Appendix B that the error in the eigenvalue

for the 1-D, 1-group, 1-region Dirichlet problem of Fig. 4. 1

gion 2

x

0

Fig. 4. 1.

L/2 L

I -D 2-region problem.

derivative continuity instead of current continuity is imposed at the inter-

face x = L/2 is

AX D 2aj5-aG ,

P(D 2 /D 1 )

2

1+2Xd(D2/D 1)

c d

L
(Ld, L) =L =d

X

when

where

(4. 1)

L

D 1/2
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and the functions p(D 2 /DI), Xd(D 2 /D ) are graphed in Figs. B. 2 and B.3.

For our range of interest, block sizes of about twice the diffusion length,

Figs. 4. 2 and 4. 3 indicate that for errors in the eigenvalue less than

1%, the difference between D and D2 should be of the order of less than

25%. Tables 4. 1 and 4. 2 are the tabular counterparts of Figs. 4. 2 and

4.3.

The corresponding expression for the maximum error in the flux

eq. (B..35) is

7 c (DI/D 2 ) sin Xd(D 2 /D1)
max EI(DI/D 2) L (/ snD

d(D (D /D 2) sin X(D2/D1)

sin {Xd(D 1 /D 2 ) M(D 1 /D 2

sin (Xc(D/D2) M(D/D2

Lc (D I/D 2)(.2
= ..J -J(4.2)

L d(D /D 2)

where

(DI /D 2)
(/D)= (4. 3)sin X (D 2 /D1 ) sin (Xj(D 1 /D 2 ) M(D 1 /D 2 )1

and subscript j = c or d.

The results are summarized in Figs. B. 4-B. 6 and Table B. 3. For

our range of interest it can be seen from Fig. 4. 4 that for max EI less

than 10% we must have a 0. 5 < D 2 /DI <2. This leads to an average

error -5% in the flux. Table 4. 3 is the tabular counterpart of Fig. 4. 4.

The results summarized in Figs 4. 3 and 4. 4 have appealing physical
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Fig. 4. 3. Fraction error in eigenvalue A. Derivative vs current continuity - 1 -group 1 -D
2-region problem (Fig. 4. 1).
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Table 4. 1. Conditions within e.. Fractional error in eigenvalue X

for L = 50 cm and L = 100 cm. 1-group 1-D 2-region
problem (Fig. 4. 1). ' = 0. 0025, D, = 1. 31.

-a(D 2 /D 1 , ii)

L = 50 cm

0.

0.

0.

0.

0.

0.

0.

0.

0.

22

1607

0368

01

0

0109

0435

252

43

L = 100 cm

0.0782

0.0625

0.0169

0. 0055

0.0

0.0066

0.0235

0.144

0.2537

Table 4. 2. Conditions within E.. Fractional

as a function of r and D 2 /D 1 .
problem (Fig. 4. 1).

error in eigenvalue X

1-group 1-D 2-region

-a(D2/DI i )

0

2

4

6

8

10

0. 2

0.577

0. 455

0.2789

0. 1695

0.109

0.075

0.76

0.018

0.013

0.007

0. 0042

0.00267

0.0018

1.9

0.1017

0.063

0.0298

0. 0168

0.009

6. 1

0.706

0.27

0.095

0.045

0.026

0.017

0.2

0.305

0.61

0. 76

1.0

1.716

2.145

4.29

6.55



0.5

(D2/D 1)1/

1.0 1.5
0 a I i l

.0

Fig. 4.4. Max EI(D 2 /D 1 ). Maximum fraction error in flux. Derivative vs current continuity

- 1-group 1-D 2.-region problem (Fig. 4. 1).
t'3

-0. 6

Max E1

- 0. 5

0.4

-0. 3

-0.2

- 0.1

4.0--1 I
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Table 4. 3. Conditions within 0.. Maximum error in

the flux as a function of DI/D 2 . 1-group

1 -D 2 -region problem (Fig. 4. 1).

DI/D 2 E1

1.6375 0.024

1.31 0.0069

1.00 0.0

0.524 0.0339

0.1637 0.5226

interpretations. One would intuitively expect that the error in X would

decrease with increasing problem size as X is a 'global' property and

the interface would play less and less of a role in its determination. In

the case of maximum flux error one would not expect the problem size,

namely the parameter -9, to be important as point flux error is a 'local'

property. One would also expect an increasing error for both X and

flux with increases in difference between the diffusion coefficients of the

two regions. One would not expect symmetry in the results about the point

D 1 /D 2 = 1 as there is a third medium present, the vacuum. All these expec-

tations are borne out by Figs. 4. 3 and 4. 4. The parameters 1 and D2/D

are physically significant dimensionless parameters which can be used to

characterize a problem.

(2) 1-D Numerical

(i) Conditions of Join

We investigate here the effect of not imposing flux continuity or cur-

rent continuity using Kang's Hermite cubic set as our { }. The 1-D

2-region problem, as shown in Fig. 4. 1, is now treated in 2-groups with



Table 4.4. Condition of join. Eigenvalue X - 2-group 1-D 2-region problem.

L = problem size as in Fig. 4. 1 (=100 cms)

Description of Calculation x

Analytic

Flux continuity-current float

Flux float-current float

Flux continuity-current conti

Flux continuity-current float

Flux float-current float

Homogeneous slab - Region 1
material

Region 1 # Region 2

Case

1

2

3

4

5

6

0.04256

0.042577

0.042576

0. 10854

0. 10854

0.20707
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the material properties taken from the 1 -D set of Appendix A. The bound-

ary condition imposed is the Dirichlet condition.

Region 1 Region 2

1 41

Fig. 4. 5. Superelement function set used - Kang's cubic Hermite.

The superelement functions (+P2g' J2'g} shown in Fig. 4. 5 are the

flux functions u 0 (x) of Kang's 1 and {l g 4 3g' 4 4g' 'P5g} are the current

functions u1 (x). If we impose function continuity by joining qJ2 g and

42'g across the interface so that $2g(L/2) = (L/2) , we have our

flux continuity-current float case. If, in addition, we impose current

continuity by joining P3g and 4 i4g across the interface so that

d4 3g(L/2) d 4 g (L/2)

D I dx =DII dx

we have our flux continuity-current continuity case. When none of these

conditions are imposed we have our flux float-current float case.

Table 4. 4 lists the eigenvalues obtained. Notice the difference in

eigenvalue between case (6) and cases (4) and (5). To permit function

discontinuities in the set (+ } is to violate the 'variational principle.'

There is no such difference between the eigenvalues obtained for case (2)



Table 4. 5. Condition of join.

L = problem size as in Fig. 4.

Case (2)
Unknowns

g=1

0. 24099 X

t0. 75285 X

LO. 75285 X

-0. 56455 X

0. 5656 X

-0. 24098 X

10 -2

10~1

10 1

10~ 4

10~ 4

10 -2

Supercoefficients {akg} - 2-group 1-D 2-region problem.

1 (=100 cms)

of Table 4.4 

S g=2 

0.

-0.

-0.

0.

-0.

376608

117656

117656,

88287

88346

376602

X( 10 -3

X 10~1

X1

X 10-5

x lo- 3

x lo- 1

x 1o-5x 10o-3 5

-0.

-0.

0.

0.

0.

-0.

29

93

26

70

19

84

Case (3) of Table 4.4

g=1 g=2

956 x 10 -2 -0. 46818 X 104

603 X 10 -2 -0. 14627 X 10 2

4819 X 101 0. 41383 X 10 -2

196 X 10-5 0. 10975 X 10-5

873 X 10~4 0. 31062 X 10-5

764 X 10 -3 -0. 13246 X 10o

~J1

aig

a2g

a2'g

a3g

a4g

a 5g
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and case (3). However, Table 4. 5 shows that there is a difference be-

tween a2g and a2' for case (3). This means that flux continuity will

have to be imposed. Table 4. 5 also shows that current continuity should

be imposed as the coefficients a3g and a4g of case (2) are not equal

leading to current discontinuities. It does not make much of a difference

in the accuracy as the eigenvalue X is only off by less than 0.02% from

the analytic answer and the coefficients a3ga4g although not zero, which

they should be because of the symmetry, are a factor of 10 2 smaller

than the other coefficients. But it does reduce the number of unknowns

{a. }.

(ii) Incompleteness

Tables 4.6 and 4. 7 show the convergence behavior of the following

{@kg) sets.

(i) Hermite Flux Set. This set is formed by deleting the current

function u (x) of Kang's cubic Hermite set. This set is totally in-

complete as it does not even span the P 1 space. Looking at it from

another point of view, we have, by retaining only the flux function,

forced a fixed relation between the flux and the current at certain points.

(ii) 1 -D Hybrid Quadratic Set. This set is discussed in section 3.2.2.

The point to note here is that it spans P 2 .

(iii) Hybrid Quadratic Flux Set. Here we only use the flux function

of the 1 -D hybrid quadratic set. As with the Hermite flux set, this set

does not span P .

The problem solved is the 2-group homogeneous case of the bare



Table 4.6. Incompleteness. Eigenvalue X as a function of mesh size - 2-group
1-D homogeneous slab problem.

L = problem size as in Fig. 4. 1 (=100 cm)

X-analytic answer = 0. 1034704
*2h = 'center-to-center' mesh spacing

h
(cm) 25 16. 666 12. 5 10.0 8.33

Set I I i i I
(i) Hermite

Flux

(ii) 1-D Hybrid
Quadratic

(iii) 1-D
Hybrid
Quadratic
Flux

0.094491

0. 1034491

0.091855

0. 103464

0.092712

0.096601

0. 103469

0.093170

0.09692

0.09340

0.097094

0.093533

7.14 6.25

0.097178 0.097277

0.093589 0.093671

mesh centers for h = 12. 5 cms

5. 555

0.097319

0.09,3701

0 L/2 L

N

x _ x x _x - -x



Incompleteness. Eigenvalue X as a function of number of unknowns - 2-group
1-D homogeneous slab problem.

L = problem size as in Fig. 4. 1 (=100 cm)

X-analytic answer = 0. 1034704

Rn = number of unknowns/group

x

R

Set

(i) Hermite
Flux

(ii) 1-D Hybrid
Quadratic

(iii) 1-D
Hybrid
Quadratic
Flux

1

0.094491

0.091855

2

0.092712

3

0.096601

0.093170

4

0.096920

0. 103449

0.093403

5 6 7

0.097094 t0.097178 10. 097277

0.093533

0. 103464

0.093589 0.093671

8

0.097319

0. 103469

0.093701

00A

Table 4. 7.
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slab problem of Fig. 4. 1 with the material composition as given in Appen-

dix A. Table 4. 6 tabulates the eigenvalue X as a function of h where

2h is the 'center-to-center' mesh spacing. Table 4. 7 presents the

same results for X tabulated against the corresponding number of un-

knowns per group, Rn. It can be seen from the tables that the two totally

incomplete spaces converge to answers different from the analytic result.

In contrast, the 1 -D hybrid quadratic set does converge to the analytic

answer. For mesh sizes roughly comparable to those which will be

used in the 2-D sets, X is off by ~5% for set (i) and ~8% for set (iii),

while the error for set (ii) is in the sixth significant figure.

(iii) Conditions within 0.,- Current Continuity versus Derivative

Continuity.

Figure 4.6 shows the 2-group problem used. It can be regarded as a 1 -D

Material Material Material
I II

BI II I

0 L/4 L/2 3L/4 L

x x mesh centers for h = 25 cms
lta1-1 C

.0 L/2 L i

x-x--x -x-x-x-x mesh centers for h = 8. 333 cms

0 L/2 L results

Fig. 4.6. 1-D 3-block section problem.

section through the coarse mesh superpatch we will use in our 2-D work. We

center our 1-D hybrid quadratic set on the material block centers 0, L/2

I
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and L. The boundary conditions used are that the flux is zero at x = 0

and x = L. We can, by adjusting the parameter a of this set, impose

either derivative continuity or current continuity at the interfaces

x = L/4 and x = 3L/4. The results obtained by doing so are presented

in Table 4. 8 where the eigenvalue X is tabulated as a function of the

ratio of the fast diffusion coefficients of the two materials. This dif-

ference in the fast diffusion coefficient is the only difference between

material I and material II. The reference values were obtained by

using the code CHD with a mesh spacing fine enough to ensure a con-

verged value of X.

It appears from the table that for a 'center-to-center' spacing,

2h, of 50 cm, derivative continuity gives better accuracy than current

continuity. Apparently as far as X is concerned the analytic solution

to the derivative continuity problem is close to the analytic solution to

the current continuity problem, that is, the exact problem. But the

numerical solution to the derivative continuity problem converges at a

rate slower than that of the numerical solution to the current continuity

problem. This is borne out by the h = 8. 333 cm results of Table 4.8.

The decrease in mesh size has resulted in a decrease in X-error much

greater for the current continuity case.

Figure 4. 7 shows how the shapes of the 1 -D hybrid quadratic set

flux and current functions vary with a.

We conclude this section by presenting results for larger 1 -D prob-

lems composed of alternating material blocks. These problems are

as shown in Fig. 4.8.



Table 4. 8. Conditions within09. Eigenvalue X

3-block section problem.
L = 100 cms (Refer to Fig. 4.6)

- 2-group

1 -D Hybrid Quadratic Set

0.13772

0.12779

0.11199

0.10782

0.10008

0.096864

0.093401

0.11578

Reference
Solution

CHD 2

0.11301

0.11019

0.10587

0.10472

0.10243

0.10150

0.099374

0.11301

131

x

h(cm)

25

8.333

0.305

0.61

0.76

1.31

1.9

6.1

0.2

0. 10848

0.10757

0.10542

0.10457

0.10226

0.10063

0.096445

0.11179



a = 0.2

Region II: Region I

a = 5.0 Lpik

Region II Region II Region I IRegion II

a= 1.0

Region II I

Fig. 4. 7.

Hybrid quadratic set -

variation in shape
with a.

Region I Region II

a' 0.76 k f~kg

Region II I Region I

a1.31

I Region II Region II i Region I

Legend

a=D /D

Region II

I
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Materia NMaterial Material itdrial Problem (b)

0 L/2 L 3L/2

x Xx x mesh centers

Material1aei Material Material aterial Problem
II (c)

I x-+
0 L/2 L 3L/2 2L

Sx x X mesh
centers

Fig. 4. 8. 1 -D 4-block section problem - problem (b). 1 -D 5-block
section problem - problem (c).

Problem (a) is the problem of Fig. 4. 7. The same mesh spacing

and centering scheme is used for all three problems.

The results are presented in Table 4. 9. The error in X for the

1-D hybr-id quadratic set is less than 0. 5% for both current and deriva-

tive continuity. Use of derivative continuity instead of current continuity

within E. should. therefore give acceptable answers for the range of

material properties typical of the HTGR. The possible exception is at

the core-reflector interface. It should be noted that for the material

compositions used here, D"/D' = 0. 985.



Table 4. 9. Conditions within 0.. Eigenvalue X - 2-group 1-D block section

problems of Figs. 4. 7-4. 8.

L = 100 cms (refer to Fig. 4. 7 and Fig. 4. 8)

Hybrid Quadratic Flux

Derivative
Continuity

0. 33456

0. 36204

0.38793

Current
Continuity

0. 36267

0.38857

1-D Hybrid

Derivative
Continuity

0.35974

0. 38054

0.40009

Quadratic R

Current
Continuity

0. 36057 0

0. 38132 C

0.40083

eference
olution

CHD 2

.36150

. 38228

0.40185

x

Problemn

(a)

(b)

(c)

Hermite
Flux

0. 34296

0. 36764

0.39052



135

(3) 2-D Numerical

A word is in order here regarding the benchmark problem. This is

the small HTGR problem used by G.A. and is shown in Fig. 4. 9. The

reactor consists of patches of seven hexagonal blocks. The outer ring

of patches is the graphite reflector. The central hexagonal block of each

of the patches which constitute the core contains a control rod. The

remaining blocks of the core patches are of fuel material of the same

composition. Cross sections are homogenized over a block and all the

calculations will be done in two groups. We restrict ourselves to those

rod configurations for which the problem has 600 -rotational symmetry

as we shall only solve for a 60* sector of the reactor.

To be considered as a possible alternative our method must at the

very least provide an answer of comparable accuracy for the completely

unrodded case. This case has the least heterogeneity andl the flux

should be the smoothest. The imposition of derivative continuity in-

stead of current continuity should, from an approximation point of view,

be at its 'best' here.

To be accepted as a potential alternative the method must provide

more accurate answers for the fully rodded case. This case has the

greatest heterogeneity and the flux shape should vary the most.

To summarize, we have a reflected heterogeneous reactor sector

with flux equal to zero at the outer boundary and conditions of rotational

symmetry at the edges of the sector. In terms of diffusion lengths the

core is about twenty diffusion lengths across and the reflector has a

thickness of about two diffusion lengths. We shall consider the fully
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Rod 2

1/6th (60*) sector

Rod 1

Small HTGR - 2-D benchmark problem.Fig. 4. 9.



137

rodded case to be the deciding benchmark problem.

We conclude this section by elaborating on the questions concerning

the boundary referred to in sections 1. 2. 1 and 3. 3.

Section 1. 2. 1 pointed out that we choose to satisfy the Dirichlet

conditions by working in W 1(Q). If we use {C +C 2 } for Mi and con-

struct Mm such that MmC W (Q) but Mm Z W (0), we arrive at the

conclusion that the Dirichlet condition can be satisfied if

ac2 +ac 2 =0ig jg

where {ac 2 , ac 2 } are the unknowns in the supercoefficient set {akg
.ig jg ag

corresponding to the superelement functions {,2, 4c2 }, the c2-typeig 3g
superelement functions centered on the e. corners lying on EM2. For

this particular benchmark problem, there is 60 -rotational symmetry

and the number of such corners force the solution ac 2 = ac 2 = 0. Thisig ig

means that for this particular problem, we shall obtain the same solu-

1
tion whether or not we delete elements so that MmC WI(Q).

m 0

Section 3. 3 pointed out that for the coarse mesh option, irregular

polygons for 0. would have to be used if the boundary is to be fitted

exactly. It is to be noted that Tables 4. 12-4. 13 are, in the sense of

section 3. 3, initial calculations; that is, calculations where the bound-

ary has not been fitted exactly. Table 4. 14 is a second phase calcula-

tion; calculations where the boundary has been fitted exactly. Fig-

ure 4. 10 shows the initial calculation mesh and Fig. 4. 11the second

phase mesh.
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Material \Core-reflector
(a iinterface fuel

hexagon hexagon

1/ 6 th sector small HTGR - 2-D benchmark problem. Coarse
mesh - boundary not fitted exactly.
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Core-reflec-
tor interface
fuel hexagon

Fig. 4. 1. 1 / 6 th sector small HTGR - 2-D benchmark problem. Coarse
mesh - boundary exact fit.
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(i) Centering Scheme - Physical Mesh versus Mathematical Mesh

We first examine the behavior of the meshes in the case of the Neu-

mann problem. Triangle fgh in Fig. 4. 12 is a region of homogene-

ous material and Neumann conditions are imposed on its boundaries.

The problem is therefore a simulation of the infinite medium problem.

As we use the C set, 'tent' functions are centered on the points

f, g, h, s, p, q, r}.

f

Material hexagon

Fig. 4. 12. 2-D triangular Neumann problem.

In the case of the physical mesh we rely on the variational principle
84

to force the satisfaction of the natural condition - = 0 along the sides

of the triangle. For the mathematical coarse mesh case of Fig. 2.6(b)

we impose more conditions: we force a Pg = asg = aqg = arg and a fg

ahg, so the two computational problems are not strictly identical. How-

ever, the results do show that for the physical mesh the Neumann prob-

lem is unstable. This can be seen from Table 4. 10. The error in

the eigenvalue X for h = 57. 73 cm is due to the positive off-diagonal

elements in the [(Dvqp, v. ) + (Zr 4i.)] matrix. The positive sign



Table 4. 10.

Type of
Calculation

Centering scheme. Eigenvalue X and supercoefficients {akg}. Physical

mesh 2-group 2-D homogeneous triangular Neumann problem (Fig. 4. 12).

x a g* a
pg

a

group
1
2

- I I I L ~ I ~

Analytic

th = 57.73 cm

h = 10 cm

h 0.1 cm

h= 0.0001 cm

0. 14507

1. 001314

0. 145068

0. 144688

0. 184894 X

5. 699

1

-0. 33106

-0.88094

0.

0.

0.

0.

0.

0.

x 10 1

165399

290199 X 10-

164982

289221 X 101

184931

377419

x

x

10 -

10-8

0.0

0

0.

0.

514271

136844

0. 838760

0. 147163

0. 836647

0. 146668

0.937814

0.191394

x

x

x

x

x

x

10-8

10- 8

10 -12

10-15

5. 699

1

-0. 120298

-0. 320105 X

0.

0.

0.

0.

0.

0.

165399

290199 X

10-1

10-1

164982

289221 X 10-

184931

377419

x

X

As no, attempt is made to standardize the normalization of the supercoefficient sets (akg}, it is
the ratio of the coefficients which is to be considered of significance.

h blc

Fuel block



Table 4.11. Centering scheme. Eigenvalue X and supercoefficients {akg}. Mathematical

mesh 2-group 2-D homogeneous triangular Neumann problem (Fig. 4. 12).

Type of Calculation

Analytic

Ih = 46. 188 cm

h = 1.0 cm

h = 0. 1 cm

h = 0.0001 cm

x

0. 14507

0.145077

0.145077

0.145077

0. 145080

As no attempt is made to standardize the
it is the ratio of the coefficients which is

Fuel block

*
a

gg

5. 699

1

0.

0.

0.

0.

0.

0.

0.

0.

165439

029027

165439

029027

165439

029027

165442

029028

a sg

5. 699

1

0.

0.

0.

0.

0.

0.

0.

0.

165439

029027

165439

029027

165439

029027

165442

029028'

afg
(group 1, group 2)

5. 699

1

0.

0.

0.

0.

0.

0.

0.

0.

165439

029027

165439

029027

165439

029027

165442

029028

normalization of the supercoefficients {akg'
to be considered of significance.

1

2

3

4

5
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Table 4. 12.-

Number

1

2

3

Centering scheme. Eigenvalue X - 2-group 2-D bench-
mark problem. Fully rodded set I.

Type of Calculation

BUG-180* - Finest mesh. Finite
difference (reference solution)

Physical mesh - 2-element incomplete
cubic set

Mathematical mesh (coarse) - 2-element
incomplete cubic set

.

0. 7708 I.

0. 5151 ti

0.6918

*
GA code. The mesh scheme used in BUG-180 is shown below in Fig.

4. 13. The mesh spacing is half that of the one used in GAUGE. BUG-

180 uses a logarithmic boundary condition. To simulate the condition

of flux equal to zero on the boundary, a large negative number is input

for the logarithm.

tBoundary fitted exactly.

$Answer not converged - 50 iterations.

Fig. 4. 13. Mesh scheme - BUG-180 code.

I 'A



144

occurs when h becomes larger than a critical value. One can no longer
4

guarantee positive solution vectors a g and for this case the flux

solution indeed does have negative values. For h very small, round-

off error enters into the solution. 20,21 This, however, does not explain

the drift in the eigenvalue X which occurs between (3) and (4). The prob-

lem seems to be unstable. Corresponding results for the mathematical

mesh are shown in Table 4. 11. Note that the drift does not seem to occur

here. Insofar as the two cases are comparable, the mathematical mesh

appears to be preferable.

Table 4. 12 presents results obtained for the benchmark problem

using the 2-element incomplete cubic set. The cross sections used are

those of the fully rodded set I. There again appears to be numerical

problems with the physical mesh. The calculation still had not con-

verged after 50 iterations whereas for the mathematical mesh only

25 iterations were required. In both cases the convergence criterion

was 10-6 on X. Comparison of the first five converged figures shows that

as far as accuracy is concerned the mathematical mesh is again preferred.

Let us examine the physical mesh more closely. In Fig. 4. 14 we

Fig. 4. 14.
2-D triangular Neumann problem -
closer examination of physical mesh.
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draw in the superpatch E) centered on p. The basic patch is the triangleJ

sde. If we use the C1 set, it can be seen that there is a piecewise linear

dependency over the basic patch, as the basic element function set

f Asde} consists of four linear functions.

For the 2-element incomplete cubic set, it can be shown that piece-

wise linear dependency also occurs when the physical mesh is used. The

current functions centered on p and s are identical over triangle sde.

This is because the current function is a hyperbolic paraboloid and the

plane of symmetry for the ones centered on p and s is the plane perpen-

dicular to the paper passing through the line de.

We conjecture that the un stable behavior which occurred with the use

of this mesh for the Neumann problem of Fig. 4. 12 is attributable to this

piecewise linear dependence.

The physical mesh was consequently dropped from further consid-

eration and the results presented in the following sections were all ob-

tained using the mathematical mesh approach.

(ii) Incompleteness

Table 4. 13 is a comparison of the totally incomplete sets and the

shell sets. These results indicate that one should have at least P1 com-

pleteness. As variables are added they should be added so that the defect

of the space is decreased for the complete sets are to be preferred.

The interpretation in terms of physical quantities such as flux and cur-

rent is of secondary importance to this principle of completeness and the

1 -D results of the preceding section should be so construed.
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Table 4. 13.

Number

Eigenvalue X for various superelement function

2-group 2-D benchmark problem. Fully rodded

Type of Calculation

BUG-180 - finest mesh. Finite

difference (reference solution)t

Coarse mesh - C 1 shell set

Coarse mesh - (C-I-C 2 ) shell set

Coarse mesh -

Coarse mesh -
incomplete set

Coarse mesh -
incomplete set

Coarse mesh -
incomplete set

Coarse mesh -
incomplete set

regular quadratic set

1 -element cubic

2-element cubic

3-element cubic

3-element 9t'h-order

sets {kg'
set I.

X

0. 7708

0. 7695

0. 7743

0.

0.

7743

6699

0.6918

0.6975

0. 2504

tBoundary fitted exactly.

It is of interest to note that the two complete quadratic sets, the

(C1 +C 2 ) shell set and the regular quadratic set, yield identical answers

for X. Table 4. 13 shows that both sets give 0. 7743 for X. The two sets

lead to the same number of unknowns.

(iii) Conditions of Join

Table 4. 13 shows that given a construction which imposes function

continuity, additional degrees of continuity in imposing a join are of

minor importance compared to reduction of the defect of the space. This
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can be seen by comparing the 3-element 9--order incomplete set result

with the 3-element cubic incomplete set result. The 9--order set leads

to a 9 with normal current continuity whereas the cubic set does not.

As was mentioned in earlier chapters there is a direct trade-off be-

tween conditions of join and defect of space. This result points to lower

order spaces with smaller defects.

It should be mentioned that the apparent anomaly in Table 4. 13, the

convergence of the shell set's results to an answer different from that

of the reference BUG-180 solution is due to the inexact fit of the boundary.

(iv) High-Order Space Coarse-Mesh versus Low-Order Space

Fine-Mesh

Answers to this question have a limited range of extrapolation as it

really depends on what flux shape is being approximated. The choice is

between using the fine mesh of Fig. 2. 6(a) with a complete linear space

and the coarse mesh of Fig. 2.6(b) with a complete quadratic space.

The results are shown in Table 4. 14. A word is in order here regarding

the 'interface distortion' qualifier used in Table 4. 14. The 'interface

distortion' refers to the use of irregular polygons at the core-reflector

interface. At the core-reflector interface the difference in diffusion

coefficients is a maximum with the ratio being of the order of "0. 67.

The use of the irregular polygons precludes the situation of having a

smooth polynomial defined across the interface and hence precludes

the imposition of derivative continuity at the interface. The mesh used

for these 'interface distortion' calculations is shown in Fig. 4. 15.
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Table 4.14. High order space - coarse mesh versus low order space
- fine mesh. Eigenvalue X - 2-group 2-D benchmark
problem.

Fully Rodded

Type of Calculation

1 1 BUG-180 - finest mesh - finite
difference (reference solution)

2 GAUGE - fine mesh - finite
difference

3 GAUGEFEM - fine mesh -
C1 shell set

4 Coarse mesh - C1 shell set

(without interface distortion)

5 Coarse mesh - C 1 shell set

(with interface distortion)

6 Coarse mesh - (C +C 2 ) shell

set (without interface distor-
tion)

7 Coarse mesh - (C 1+C 2) shell

set (with interface distortion)

Cross
Section

I

0. 77088

0. 76903

0. 76382

0.7595

0. 7598

Cross
Section

0. 77891

0. 77643

0.77184

0. 76499

0. 76805t

0. 76745

0. 76842

Fully
Unrodded

0. 99869

1. 0043

0. 99889

0. 99742

GA codes.
GAUGEFEM is the fine mesh-linear space finite element version
of GAUGE. Except for differences in the coarse mesh rebalance
section the two codes are algorithmically identical.

INegative fluxes obtained.
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Fig. 4.15.
~th1/6 sector small HTGR - 2-D benchmark problem. Coarse

mesh - boundary exact fit. Interface distortion.
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Apparently for flux shapes comparable to the one of the benchmark

problem, the fine-mesh linear space approach is to be preferred to the

coarse-mesh perturbation quadratic one. For the fully unrodded case

all the calculations do well. Comparatively speaking, the fully unrodded

case is a less demanding problem.

Figures 4. 16 and 4. 17 provide an idea of the fast and thermal flux

shapes which have to be approximated for the fully rodded case II. The

values shown are from the reference BUG-180 solution.

Figure 4. 18 is a comparison of power peaking factors for the fully

rodded problem II. The perturbation quadratics lead to errors of /6%

for the control rod blocks and less than ~1 % for the other core fuel blocks.

The fine mesh linear space option GAUGEFEM has an error of ~2%

in the control rod blocks and less than 1/2% for the other fuel blocks.

GAUGE is in error by ~4% in the central control rod block and less

than 1/2% in the outer control block. The average error in the other

blocks is -3%. These power peaking factor results seem to point towards

the finite element schemes with the fine-mesh linear space approach

favored. The eigenvalue results, however, are in favor of GAUGE.

The GAUGE eigenvalue is in error by 0. 32%, that of GAUGEFEM by

0. 91%. The error with the coarse mesh-perturbation quadratics is

1. 34%.

Figure 4. 19 is a comparison of power peaking factors for the fully

unrodded case. All the approaches do quite well with this problem. It

tPower peaking factor region averaged power density/core average
power density.
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Fig. 4. 16. 2-group 2-D benchmark problem - fully rodded set II. Material
hexagon averaged flux. Core power = 26.666 MW.
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www - Group 1 maxirmum
xxx - Group 1 minimum
yyy - Group 2 maximum
zzz - Group 2 minimum

2-group 2-D benchmark problem - fully rodded set II. Material
hexagon maximum and minimum flux. Core power = 26.666 MW.
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www - GAUGE
xxx - BUG-180
yyy - GAUGEFEM
zzz - Coarse mesh-(C 1 +C 2 ) shell set

(with interface distortion)
- Fig. 4. 18. 2-group 2-D benchmark problem - fully rodded set 11. Material

hexagon power peaking factor.
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Power
peaking
factors

www. - GAUGE
xxx - BUG-180
yyy - GAUGEFEM
zzz - Coarse mesh1-(C+ 2 ) shell set

(with interface distortion)
Fig. 4. 19. 2-group 2-D benchmark problem - fully unrodded. Material

hexagon power peaking factor.
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is not as demanding as the fully rodded case. When the power peaking

factors are compared GAUGE appears to do the worst. Towards the

center of the core the error is ~2%. Elsewhere the error is comparable

with the finite element results being of the order of less than 1%. The

eigenvalues are also very close. GAUGE is off by 0. 56%, GAUGE-

FEM by -0.02% and the coarse mesh-perturbation quadratics by 0.12%.

The results indicate that GAUGE is to be preferred over the finite

element approaches as the finite element schemes do not give acceptable

eigenvalues for the fully rodded case II. It also appears that the fine-

mesh linear space is preferable to the coarse-mesh perturbation quad-

ratic approach. Interestingly enough, the finite element technique seems

to give better flux results than eigenvalues. Kang has shown that with

Hermite elements in rectangular geometry, the error in the flux is of

order higher than that of the eigenvalue. These results reinforce the

impression that the flux is better approximated in the finite element

scheme.

Let us conclude this section by commenting on the negative flux cases

of Table 4. 14.

The negative fluxes obtained for the coarse mesh-linear set are

due to the positive off-diagonal elements in the [(D VLi.,5 VLi)+(Erqi' LPj

matrix introduced by the use of the irregular polygons to fit the boundary

and interface exactly. Consider the isosceles triangle ABC of Fig. 4. 15.

V+4 AgO VqjBg > 0

as the angle between V4PAg and VL5Bg is less than 1/2. This means that
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these off-diagonal elements can never be negative as ($Ag' Bg 0. One

4can not therefore guarantee positive solution vectors a .

4. 1. 2 Computation Time

The computation phases which could lead to significant differences

in computation time for the various approaches would be

(i) Assemblage of the equations

(ii) Solution of the equations.

For large problems phase (ii) would dominate and we shall only con-

sider this phase.

Let us assume that phase (i) ends with the assemblage of the matrices

A and M of the following equation,
g g

A04g= tM . (4.4)

This is the preparatory form for the power iteration technique.

The mathematical mesh approach and the hexagonal superpatch leads

to a 7 "blockt point relationship in both A and M . Each block con-
gg

sists of n elements where n is the number of variables 'centered' on

the center of a superpatch. Let

t = multiplication time of processing unit

ta = addition time of processing unit

NE = total number of variables

KE number of inner iterations per source iteration.

Then TE, the computation time/source iteration for the finite ele-

ment method, is
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T E '= E [ 7 (nt m + t a(n-) +ta]( E +1.(.5

For the finite difference scheme implemented in GAUGE, A has
g

a 7 point relation but M is diagonal. The computation time/source

iteration, TF, in this case is

TF ' NF[(7tm + 6ta) KF + tm] (4.6)

where

N F = total number of variables for this scheme

K = number of inner iterations per source iteration.

When multiplication time dominates we have that

T E N E 7n(KE + 1)
TB N 7 +(4 7)

TF NF 7 KF+l

For the fine mesh-linear space approach of GAUGEFEM, n = 1

and we have for KE ~ I and KF'l9

TE ~ 1. 75 T (4.8)

This is a conservative estimate as when KE and K F >> 1 we have

TE

TF

Equality of TE and TF when n = 1 is then the lower bound.

Table 4. 15 is a tabulation of timing statistics which compare GAUGE

and GAUGEFEM for the 1/6th small HTGR problem. They bear out

the general features of eq. (4. 8). It is of interest to note that the number
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Table 4. 15. Timing statistics. GAUGE (low-order finite difference)
compared with GAUGEFEM (low-order space - fine mesh
finite element) - 2-group 2-D benchmark problem.

Case

Fully unrodded

GAUGE

GAUGEFEM

Rod 1 in

GAUGE

GAUGEFEM

11

21

3

4C

C

Problem
Time (sec)

5.25

6.64

4.78

5.44

4.95

6.88

5.10

6.64

10- on flux.

Diffusion
Calculation
Time (sec)

1.194

2. 269

1.252

1.825

1.32

3. 249

1.453

3.119

Number
of Source
Iterations

19

19

21

18

22

23

24

23

Sec/Source
Iteration

0.06

0.12

0.059

0. 101

0.06

0.14

0.06

0.135

Significant difference in number of rebalance
GAUGE and GAUGEFEM calculations.

iterations between

Rod 2 int

GAUGE

GAUGEFEM

Fully roddedt

GAUGE

GAUGEFEM

onvergence criteria

i
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of source iterations are roughly equal. This means that TE/TF will

also be the ratio of the total phase (ii) time. The number of source

iterations for the coarse mesh-perturbation quadratic set is comparable

~25 with a convergence criterion of 10-6 on the flux and the eigenvalue.

For the perturbation quadratic set when KE ~ 1 and KF - 1 we

have that

T E N E 2 8  2 28
T F N ~F-8=32. 3

F F

so

T 2.3 TF(4.9)

This means that as far as computation time is concerned unless the

number of source iterations is significantly less, the perturbation quad-

ratic set is inferior to GAUGEFEM and to GAUGE. It should be pointed

out that this is a comparatively conservative estimate as when KE KF

we have TE ~ 1.3 TF. If we assume that we can extrapolate the statis -

tics of Table 4. 15, then TE/variable ~ 1. 75 TF/variable. This means

that for the perturbation quadratic set,

T ~ 1. 75T -2 ~, 1. 1 T
E F 3 F

GAUGE still takes less time.

4. 2 Conclusions

This thesis was concerned with the solution of the static neutron-

diffusion equation, eq. (1. 1) in hexagonal geometry, using the finite

element method. The choice of the finite element method prescribed
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the use of the Galerkin equations, eq. (1. 16), to calculate the approxi-

mation 6 (r). With the choice of the equations for the approximation

scheme so made, we concentrated on the formulation of the approxima-

tion space Mi.

Given the prescribed constraints on accuracy and computation time,

the results presented in section 4. 1 allow us to draw the following con-

clusions regarding the construction and application of approximation

spaces.

(a) The mathematical mesh is to be preferred over the physical

mesh.

(b) It is important to span at least the P space. One should try

for complete spaces over incomplete ones. The order of the

highest complete space which can be spanned given the constraint

on the number of variables should be maximized.

(c) Function continuity has to be imposed across the join. However,

once we have function continuity across the join, it is much

more important to reduce the defect of the space than to in-

crease the degree of continuity across the join.

(e) For small HTGR problems, the fine mesh-linear space ap-

approach should be chosen over the coarse mesh-perturbation

quadratic one.

Given our results comparing the low order finite difference method,

as implemented in GAUGE, with our various finite element schemes it

is very tempting to draw the conclusion that for hexagonal geometry the

finite element method can not be regarded as a viable alternative to
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low order finite difference. Our results certainly do point in that direc-

tion but a word of caution is necessary here. The small HTGR bench-

mark problem used here is a relatively exacting problem. For larger

problems, problems which would be more frequently met, the flux shape

should be more smooth, the system should be less leaky, and the bound-

ary less significant. For LMFER problems there should be less

'peaking'. In other words, our benchmark problem is probably at the

more difficult end of the spectrum. It is recommended, and specific

ideas will be proposed in the next section, that further work be done

before such a significant statement is made.

4. 3 Recommendations

As a direct continuation of the sentiments expressed in the previous

paragraph, we suggest the following.

(i) LMFBR problems should be examined and then larger problems

should be investigated. To lend some order to the analysis, it would be-

useful to identify dimensionless parameters which characterize flux

shapes: numbers such as the ratio of the diffusion length to the mesh

size; the ratio of material properties in adjoining regions. One

would then be able to produce a more quantitative analysis of the range

for which one approach is to be preferred over another.

(ii) The use of the Lagrangian quadratics should be investigated.

The extra '1/2' degree of freedom per triangle may produce greater

accuracy than the perturbation quadratic set. It would then remain to

be seen if this is compensated by the increase in computation time.



162

(iii) The shell sets open up the possibility of having variable accu-

racy without changing mesh size by simply changing the number of func-

tions 'centered' at the superpatch centers. Analytical work proving or

refuting the conjecture that the accuracy in . is related to the order of

the highest complete space of Mm would be welcome.

(iv) A general theory of space construction, as discussed in sec-

tion 2. 1 relating the number of sides of 0., the degree of the join, and

the order of the polynomial would be a valuable tool for synthesis.

(v) Finally it appears that more work will have to be done about

techniques to solve the Galerkin equations. As discussed in section 4.1.2,

the possible reduction in the number of variables by using hIgher order

methods is accompanied by an increase in complexity of the equations

to be solved.

For large problems iterative techniques have to be used and for the

range of interest of this thesis it appears that less computation time

per iteration is required by the low order finite difference method. This

means that the finite element method will have to resolve to iterative

techniques which require fewer iterations.

We suggest one possible iterative technique. This is to tie all the

functions 'centered' at one superpatch center together and solve simul-

taneously for the coefficients of these suprafunctions. The functions at

each center are then untied and solved simultaneously center by center

and the cycle is repeated. This has similarities to the concepts of coarse

mesh rebalance and may aid in reducing the computation time involved.
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Appendix A

SETS OF MATERIAL CROSS SECTIONS USED

All the data presented are for two group calculations. The following

assumptions are made.

(a) There is no upscattering.

(b) No fission neutrons are born in the thermal group.
roup 1 value

The format of the Tables is ?-
group 2 value



Cross Sections. 1- D numerical work of section 4. 1. 1(2).

= 2.43

Problem

Condition of
join

Incompleteness

Conditions within
0 -homogeneous

slab

Conditions within
0 - block section

problems

Composition

i q - -- -

Region 1

Region 2

Homogeneous
slab

Material I

Material II

Material I

Material II

D (cm)

1.6835

1.29702

1.65837

1. 29702

1.6835

1. 29702

1.6835

1.29702

As in Tbl. 4.8

1.29702

1. 68350

1. 29702

1.65837

1.29702

r

(cm

5.768 X 10-3

10.43 X10-3

2.755

2.49

x

x

5.768 x 10-3

10.43 X 10-3

5.768 x(10-3

10.43 X 10-3

5.768 X

10.43 X

10-3

10-3

5.678 X 10-3

10.43 X 10-3

2.755 X 10-3

2,49 x 10-3

v 2Zf

(cm )

8.82 X 10- 5

1.46 X 10-3

9.

1.

15 X 10- 5

49 X 10-3

21.43 x 10-5

3.547 X 10-3

21.43 X 10-5

3.547 X 10-3

21.43 X 10-53
3. 547 X< 10-3

3. .547 X 10-

22.234 X 10-

3.6207 X10-3

Es2.-1fs-1

.(cm

1.83 X10

2.07 X10-3

1.83 X 10-3

1.83 X 10~

1.83 X 10~

1.83 X 10-3

2.07 X 10-3
cr'
ON

Table A. 1.



Table A. 2. Cross Sections. 2-D numerical work of section 4.1. 1(3).

v = 2. 43

Problem

Homogeneous
triangular
Neumann
problem

Benchmark
problem
Fully rodded
set I

Benchmark
problem
Fully rodded
set II

Composition

Homogeneous
material

Core, rod in

Core, regular

Reflector

Core, rod in

Core, regular

D (cm)

1.68350

1.29702

1.6835

1.29702

1.47493

1.14155

0.968992

0.789889

1.6835

1.29702

1.47493

1.14155

r -E

(cm ) (cm)

5.768 X 10-3 21.43 X 10-

10.43 X 10- 3 3.547 X 10 3

6.0749

1.01706

3.73399

3.96169

X 10- 3

X 1o- 3

X 10-3

X 10 -3

4.98523 X 10-3

2.9600 X 10~ 4

5.9365 X 10-3

1.03 X lo-

3. 58649 X 10-3

4. 07584 X 10' 3

2. 14326 x 10''4

3.54780 x 10

3.8637

6.1722

X 10~4

X 10-3

0.0

0.0

2. 14326 X 10

3.5478 X103

3.8637 X 10~4

6. 1722 X 10-3

s2'-1I"s -1
(cm~

1.83 X 10

1.80 X 10-3

2.25 X 10-3

4.98 X 10-3

1.83 X 10-3

2.25 X 10-3



v 2.43

Problem

Benchmark
problem
Fully unrodded
set

Composition

Reflector

Core, rod out

Core, regular

Reflector

D (cm)

0.968992

0.789889

1.65837

1. 29702

1.47493

1.14155

0.968992

0.789889

r

(cm~

4.98523 X 10-3

2.9600 x 10~4

2.92134 X 10-3

2.36030 X 10- 3

3. 58649 x 10 -3

4. 07584 X 10-3

4.98523 x 10-3
2.9600 X 10~4

v E

(cm~ )

0.0

0.0

2. 22345 X 10~4

3. 62070 x 10 -3

3. 86370 X 10

6. 17220 x 10 3

0.0

0.0

1s2-1

(cm~I)

4.98 x 10-3

2.07 x 10-3

2.25 X 10-3

4.98 x 10-3

oo~
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Appendix B

ANALYTIC EXAMINATION OF CURRENT CONTINUITY

VERSUS DERIVATIVE CONTINUITY

We solve here the two region 1 group 1-D problem

shown in Figure B.1 for two cases,

(a) one when derivative continuity is imposed at the

interface L/2

(b) the other where current continuity is imposed.

0 L/2 L

Fig. B.1. 1-D problem for analytic investigation of
current continuity versus derivative
continuity

Starting with the 1 group 1-D diffusion equation we have,

dx2 f Di

(B.1)k

where

= region index

E= ET -E

Region 1 Region 2
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and we have dropped the group notation for simplification.

The boundary conditions are

$(0)= 0

$(L) = 0.

We then have

1 =Bi sin kix

$2 =B2 sin k2(L-x)

0 < x < L/2

L/2 < x < L

Applying the continuity conditions at the interface,

function continuity: Bisin kiL/2 = B2 sin k 2L/2

derivative continuity: Biki cos kiL/2 = -B2kL cos k2L/2
(B.5)

current continuity: BikiDi cos kiL/2 = - B2k2D 2 cos k2L/2
(B.6)

So, for case (a)

11 tan kiL/2 = - tan k 2 L/2

for case (b)

1 1tan kL/2 tan

kiDi k 2D2 tan k2L/2

We shall now restrict ourselves to

VZ 1  2f Vf
Z2

This means from (B.1) that

(B.2)

(B.3)

(B.4)

(B.7)

(B.8)



k (D2 1/2

Equations (B.7) and (B.8) then reduce to

Case (a)

D 2  /2 L
tan k2-: =

D2 1/2

- I}

Case (b)

t D 2 1/2 L
tan k = -

Di 1/2 L
D 2 )tan k 2 :

(B.11)

This means

d D2
k2 = d (DT

k2 = c

k d D

ki = c B

,L) =

,L=

,L) =

Xd (Di)

Xc (~
Xd (2)

Xc (~

2

2

2
L

(B. 12)

(B.13)

(B.1)

(B. 15)

where the subscripts and superscripts refer to:

d = derivative continuity

c = current continuity

171

(B.9)

tan k2L
2

(B.10)
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Now

= fractional error in = c d

c

C2 L D2+z (d2y

c2 (D2 /Di ,L)+X

VEf

1 D

T3D2

I
So a can be written as,

(D2Da ,L,D 2 1
D2 (d2 -c

2 )

(d 2 Di+E)

D2 ( D2

[D2x ( )

- X(

+L2

(B.17)

2
X c(D2/Dj)

=~ 1 d(D2/Dl)

= 1 -_____

D2o~i

=aD1

1 +
__2 (B.19)

2Xd(D2/Di )i'J

]+

(B.16)

Define

(D 2\D1)

Then

a D2( D

(B.18)
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where

n(Ld,L) 1/2 L (B.20)
/D2 Ld

It can be shown that the functions 6(D2/Dl) and

a(D2/Dl) have the following properties

O(D2 /Di) = e(Di/D 2)

s(D2/D) = (D,/D2 -

We have thus identified the two dimensionless param-

eters of importance. These are D2/Di and L/Ld , both

of which appeal to the physical intuition. The functions

(D2/Di) , Xd(D2/Di) and Xc(D2/Di) are graphed in

Figs. B.2 and B.3. Table B.1 is the tabular counterpart of

these figures. Numerical results for a(D2/Di,n) are

presented in Section 4.1.1.

We can extend the above calculation to errors in the

flux. From equations (B.2) - (B.4) we can write for both

(a) and (b),

sin k 2 L/2
B2 sin ki L/2 sin kx 0 < x < L/2

B 2 sin k2 (L-x) - L/2 < x < L (B.21)

Normalizing so that



-a(D 2 /Di)

- 0.6

- 0.5

-0.4

-0.3

- 0.2

-0.1

(D2 /Di)
0.5 1.0 1.5 . 2.0

Fig. B.2. The function a(D 2 /Di) - For use in determining eigenvalue error.
1-Group 1-D 2-Region problem (Fig. B.1).

t

-4
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t

X2 X2
d c

-- 5

L

4

3

2 Legend

c

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. B.3. The Functions Xa(D2/Di) ; X2(D 2 /Di)..

determining eigenvalue error.

For use in

1-Group 1-D 2-Region problem (Fig. B.1).

K-

K

1.0 1.1 1.2



Table B.1, Tabulated

XC(D2/Di)

values of the functions Xd(D2/Di),

and 8(D 2 /Di) for use in eq. (B.19).
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D2  D2 D 2 D D2

d XcD 1  1

0.2 0.447 1.935 2.43 0.577

0.305 0.55 1.885 2.18 0.337

0.61 0.78 1.74 1.792 0.06

0.76 0.87 1.672 1.687 0.018

1.0 1.0 1.5709 1.5709 0.0

1.9 1.38 1.289 1.353 0.1017

6.1 2.47 0.79 1.032 0.706
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L

$ dx A

0

we have

At
B2B- 1 sin k2  L

L (cos k -1) + (1-cos k2L L 1 (o k2 2sin ki

A
A (B.22)L

2 R(Di /D 2

where A = A

Then the error in $ is,

d c
6i = (B2d ad sin k1 x - B2 c ac sin k, x) (B.23)

sin k J22
where a sin kL

and the error in $ 2 is,

E2 =Br sin k d(L-x) B sin k (L-x) (B.24)

For the fractional error we write,

B2 c ac sin k x

d
B2 d ad sin kix (B.25)

S B2 c ac sin k x
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E2

Bc sin kc(L-x)

B2d
=

sin ki(L-x)

sin k2(L-x)
(B.26)

Let us define,

=R -sin k

D ) j D 2
sin X

[ D

sin X

X

sin
+

sin X - R12j\D 2 ) D

sin Xj(51)

+ jD2
X 

l

2
- cos

Di
Xj 

D2

D

\ D2

+Ycos X~(i I
where the subscript

We can then write,

B 2d

B2c

a d

ac

Di

ed D
(D1

j = c or d.

d Lsin k2 2
eLsin k2 2

(D

jKD2)

(B.27)

xjD

jD2
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B2 d

B2c

(D2)c 2 sin k -
- L

+ Dsin k-1
d 2 72

(B. 28)

Substitution of eq. (B.28) into eqs. (B.25) and (B.26)

gives us,

Ei -- x(5-12 -
E 1 (D 2  ,1j I

D2 d D2

D

D I-iE2 

- -
DD2 d D

I Lsin k2
c L

sin k2 2

sin kd

sin kL:

dlsin k1 x

sin k1 x

dsin k2 (L-x)

csin k2 (L-x)

(B.29)

To quantify matters, let us only consider the points

x = x1 max amd x = x2 max , where Ei and E 2 take on their

maximum values.

The stationary point of EI (Di /D 2 ,x) occurs at

aEi/ax = 0 which is

c d d c
kj tan k1 x k1 tan k1 x

We can therefore write

D

1 max p o

The stationary point of E2(D1/D2,x) occurs at

(B.30)

(B. 31)

k2 tan kd(L-x) = k tan k2 (L-x) . (B. 32)
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This means

2 (L-x) = M(D 2 /Di)

Therefore

x2 max = [2 - M(D 2/Di)] (B. 33)

To find M(Di/D 2 ) we have to solve eq. (B.30). Let

rewrite eq. (B.30) as

k d
tan -- (kjx)

k 1

ki )
= - tan kjx

k

which is

tan by = b tan y

where

k d X
b - _ Xd

k Xc

(B.34)

Table (B.2) contains the relevant range of values.
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Table B.2. Tabulated values of function b(D 2 /Di)

for use in eq. (B. 34).

Di /D 2  b

5,0 0.7963

3.275 0.86467

1.637 0.9709

1.31 0.9911

0.524 0-9526

0.1637 0.7655
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For b > I eq. (B.34) has only the trivial solution. This

corresponds to the boundaries of the block where the mini-

mum occurs. There is no turning point for the maximum and

the maximum therefore occurs at the extreme point, x = L/2.

We can then write

Di\
max Ei(-) - 1D2L

that

D1  

(D2)

(D) sin X c(7)

sin Xd M D2

D D
sin [Xc( D2) M D1Y2j]

(D2
max E2 ~{ 1

Di

~ D2

d (U2

sin Xd )

sn Dc
sin X CD

( \1
sin [Xd(D I) D1

(D -2

sin [X I-I MI-Il J
LcD1 \D1 /

(B. 35)

The functions 0 (Di/D 2) d(D/D2) 1c(Di/D2) and
Cd

Pd(Di/D2) are graphed in Figs (B.4) and (B.5). We define

pC (Di/D 2 ) and yd(Di/D2) as
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Legend

(D1 /D 2 )
IDdCD/2

0.5 1.0 1.5

IJL L Lt
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Fig. B.4. The Functions 4tc(D1/D2) and Dd(Di/D2). For use in determining flux error.

1-Group 1-D 2-Region Problem (Fig. B.1).
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1.6

1.5

1.4

Legend

P (Di /D 2 )

yd(DI/D2)

1.0

L~~i -- i~~ L I I

Fig. B.5. The functions uc(Di/Dz) and yd(Di/D2). For use in determining flux error.

1-Group 1-D 2-Region Problem (Fig, B,1).
00

(D 2 /Di) ->

2.01.5
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2.5 M(D2 /Dl)

2.0
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1.5 2.0 2.5 3.0
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Fig. B.6. The function M(D 2 /Di), For use in determining point of Max Flux Error.

1-Group 1-D 2-Region Problem (Fig. B.1). CO7
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/D, D2

j D i D (B.36)

where subscript j = c or d

The function M(D 2 /Di) is shown in Fig. B.6. Table B.3

is the tabular counterpart of Figs. (B.4) and (B.5).

Numerical results for max Ei(Di/D 2 ) are presented Ln

Section 4.1.1.

For the range of (D2 /Di) where M(D 2 /Di) 1 , we

have that max Ei = max E2 -



Table B.3.

1.6375

1.31

1.00

0.524

0.1637

Tabulated values of the functions Dd(Di/D2),

p d(Di/D2), c(Di/D 2 ) and pc(Di/D2) for use

in eq. (B.35).

1.2279

1.2577

1.273

1.199

0. 8475

1.2749

1.273

1.273

1.274

1.2809

1.

1.

1.

1.

0 .

257

268

273

2296

8528

1.306

1.282

1.273

1.3176

1.9503
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Di OdDi Di DiDi

D2 Pd d( D2 c (I-c2 D
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Appendix C

INNER PRODUC TS

This appendix presents the inner products required for the 1-D and

2-D Galerkin calculations. We divide the 2-D work into two broad classes:

one concerned with the physical mesh and the other with the mathematical

mesh. The standard geometrical configuration for the calculation of the

inner products is different for the two classes. We further subdivide these

classes on the basis of symmetry properties of the {$kg} sets. These

properties enable us to reduce the number of inner products which have to

be calculated.

C.1 1-D

The only superelement function set {$kg} which concerns us here is

the 1-D hybrid quadratic set. The inner products for Kang's cubic Her-

mite set can be found in his thesis. Table C. 1 is the list of inner prod-

ucts required for the centering scheme shown in Fig. C. 1 and the 1-D

hybrid quadratic functions of eqs. (3. 40)-(3. 41).

D D,

D 2 2

23

h xi i+2

Fig. C. 1. Standard 'superpatch' configuration for
1-D hybrid quadratics.



Inner products - standard 'superpatch' configuration of Fig. C..

1-D hybrid quadratics.
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Table C. 1.
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We need only concern ourselves with the set

~1 f,1 c 2f 2c,3 ~3lf Ilfg~ ~ 3c, 3f g3c g4f g4c g4f g4c
.ig' ig ' ig' ig ig' ig ' i+2g' i+2g' ig' ig' i+2g' i+2g 1 '

All the inner products can be formulated in terms of the inner prod-

ucts of this set over the standard geometrical configuration of Fig. C. 1.

C.2 2-D

In 2-D the meshes we consider lead to two standard geometrical con-

figurations for the calculation of inner products. These two standard

configurations correspond to the physical mesh and the mathematical

mesh, respectively, and we divide the presentation into two sections:

one on the physical mesh and the second on the mathematical mesh.

In the section on the physical mesh we present tables of inner prod-

ucts for the following superelement functions Skg'

(a) C 1 -shell functions

(b) 2-element incomplete cubic functions.

The section on the mathematical mesh is divided into two parts: one

on the regular meshes, that is, where the only E) is the regular hexa-

gon; the other on the distorted meshes where we introduce irregular

polygons.

In the section on the regular meshes, we further subdivide the pre-

sentation into two parts. We first tabulate inner products for the sets

(+kg} which possess the properties of 60*-rotational symmetry and piece-

wise median symmetry. The sets examined are then

The property of piecewise median symmetry is the superelement ex-

tension of the property of median symmetry discussed in section 3. 2
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(a) 1 -element incomplete cubic set

(b) 2-element incomplete cubic set

(c) C1 -shell set

(d) CI+C2-shell set

(e) regular quadratic set.

We then tabulate the inner products for {$kg} which do not possess

these properties. The sets examined are

(a) 3-element incomplete cubic set

th(b) 3-element incomplete 9--order set.

This completes the section on the regular meshes. For the irregular

meshes we present inner products for the following sets:

(a) C I -shell set

(b) C 1 +C 2 -shell set.

Both of these sets possess the properties of 60*-rotational symmetry and

piecewise median symmetry.

We now begin by presenting the discussion for the physical mesh.

C. 2. 1 Physical Mesh

It can be seen from Fig. 3. 6 that the standard geometrical configura-

tion is the one of Fig. C. 2.

Triangle 4ef is the basic patch e. of the physical mesh. All the

inner products can be formulated in terms of the inner products over

for the basic element function set (qq ). A superelement function, ,ig
is said to possess piecewise median symmetry if the corresponding

basic element functions q/4 possess median symmetry.1g
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1, E Material hexagon. t 1 3
h h s y h

/ e f
1 -, 3x

4

Fig. C. 2. Standard basic patch configuration - physical mesh.

fA4ef a A4efa ,IA4efatriangle 4ef and quadrilateral estf of the set , 1  :e2g ' 3g '

N A4efa gad estfa by translation and rotation. The 60 0 -rotational4g 4gqa eta

invariance of the inner products of {$kg} is due to the 60 0 -rotational

symmetry properties of the function sets we use. These sets are the

C1 shell set and the 2-element cubic incomplete set. In addition to this

symmetry property these sets also have what we shall refer to as me-

A4st
dian symmetry. To reiterate, this simply means that T &4g , the piece-

wise function centered on 4 and zero along st, is symmetrical about the

median 24. These properties of 60 0 -rotational symmetry and median

symmetry are required in order to conclude that the sets of inner prod-

ucts listed in Tables C. 2-C. 5 are sufficient sets. The definitions of the

function sets used are given in sections 3. 2. 1 and 3. 1. 1.

Let us use these standard products to formulate the inner products

a a

ig' cjg *
As can be seen from Fig. C. 3, the physical mesh leads to a 13-point
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Table C.2. Inner products -physical mesh. Standard basic patch

configuration of Fig. C.2.

Cshell set.

j

A4ef 1

Quad estf 2

f

4

4

4

1

1

4

k
jcl

(qfgtg ,I
jcl\ -2

'1 kg /h

0.049616038

0.01127637236

0.058637137

0.0157869214

2.2552745 E-3

0.0225527447

j1 Cl jcl1
jcl ,vikg,

0.144337566

-0.072168783

-0.144337566

0.072168783

-0.072168783

0.4330127

Table C.3. Flux integrals - physical mesh. Standard basic patch

configuration of Fig. C.2.

C, shell set.

j

A4ef 1

Quad estf 2

4

4

( 1, h-

0.0721687837

0.072168783

i i i
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Table C.4. Inner products - physical mesh. Standard basic patch

configuration of Fig. C.2.

2-Element cubic incomplete set.

(4 \I/ A h-2

0.0493160067057

-0.012220982

0.0037212029

0.0048817295

-0.007249814

-0.00158575144

0.0022552745

0.057698781

-0.0087053 5743

-0.0167096816

0.00186060157

0.00697691984409

-0.00070684532

-0.01011672243

0.00107125547

0.973258336034 E-4

-0.0005115327

-0.0005115327

0.00107125535

0.0115119680836

-0.0083147314286

0.00710411464042

( V4 \i )( V '1' kg

0.2144014267

0.044791667

0.018042197

-0.0288675133

0.0406249988

-0.0062499978

0.0135316467

-0.1250925625

-0.101041661

-0.044791667

-0.0180421963

-0.0097728566

0.0041666627

- 0.049739584

-0.022552745

-0.0300703146

0.0432291664

0.0432291664

-0.0225527464

0.3244588225

-0.1114583333

0.1262953714

aS

A4ef
=1

Quad
estf

= 2

k

4

4

4

1

S1

. 4

f

c

c

f

c

f

c

f

C

f

c

f

c

f

C

f

c

f

C

f

C

C



197

Table C.5. Flux integrals - physical mesh.
configuration of Fig. C.2.

Standard basic patch

2-Element cubic incomplete set.

j f a

i

A4ef=- 1

Quad estf

4

4

f

c

f

c

0.0712666738532

-0.01953125

0.0442033799848

-0.04296875

4ja, 1)h-2
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Material t- \
hexagon

Fig. C. 3. Standard superpatch configuration - physical mesh.

block relation. The block nature of the relation is due to the possibility

of having more than 1 function centered on a 'center'. Consider point p

in Fig. C. 3. It can be seen that the surrounding centers which have

nonzero inner products with point p can be divided into two groups, an

outer ring a, b, c, c', b', a'} and an inner ring {d, e, f, g, h, i}. The inner

products (4i. , *. ) then fall into two classes typified by

(M$P ,P ) (1 1g, ) Md + (1 ,a ) M for the outer ring

(C. 1)

and
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(MS , 4 ) = [(i 1)+(1 ,Na)](Md+"Mi)pg eg 1'g'2g ig' 2g vd+

+ [2(* , la\ )( a 1 P)]aML Ig* 4g (T2g 4g e

+ [ 2 (TI, ) +(T ,\I/ I a)] M for the inner ring.Ig4g 2g' 4g p

(C. 2)

where

M = material property of hexagonal block with center i.

For inner products of functions both centered on p we have that

(MPa ,$ ) = (Md+M +M + MM +Mh+aM)( ,2P)Pg .4,Pg (d e f g h . (\4g. 4g

+ 6M (,QI ., "P). (C. 3)
p 4g' 4g

We now address ourselves to the mathematical mesh.

C. 2. 2 Mathematical Mesh

We first concentrate on the regular mesh and then discuss the dis-

torted version.

(A) Regular Mesh

Our choice of mesh and our sets {a} give us translational invari-

ance of the inner products calculated over . This property reduces

the required number of standard inner products to those over the triangles

Throughout this appendix the formulas for the inner products involving

the derivatives should be inferred by replacing 4Skg with V~4kg'
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abc and adb of Fig. C. 4. If the sets {a } have 60 0 -rotational symmetry,

then we only have to concentrate on the triangle abc.

6

1

-Material
hexagon

2

Fig. C. 4. Standard superpatch configuration - mathematical mesh.

Let us begin by considering the sets which have 60*-rotational sym-

metry. The standard basic patch configuration, the triangle abc, is

shown in more detail in Fig. C. 5. We divide triangle abc into the three

quadrilateral regions IV, V, and VI.

b -

(-1/2 f5~, P/2)

y
A%

e (2/4, )

(2/2 N . I/2)

Fig. C. 5.

Standard basic patch
configuration - math-
ematical mesh.

x
a
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The sets we consider are the 1 -element and 2-element incomplete

cubic sets and the two shell sets, CI and {CI+C 2 }. These sets all have

median symmetry. With these properties, the sets of sufficient standard

inner products are those of Tables C. 6-C. 13. The definitions of the

function sets can be found in sections 3. 1 and 3. 2. The notation (

is to indicate that the inner product is taken over the region r.

For completeness we present in Tables C. 14 and C. 15 the corre-

sponding results for the regular quadratic set. This set is discussed

in section 3. 2. It also has median symmetry.

We now use these standard inner products over the triangle abc to

assemble the inner products (+a qp ).

ig jg

Material
hexagon

d*I -

e

Fig. C.6. Coarse mesh.

Figure C. 6 shows that the regular mathematical mesh leads to a

7-point block relation; the coupling between point p and its nearest

neighbors the set e, f, g, c, b, d}. As the set ( g} has 60 0-rotational



Table C.6. Inner products - mathematical mesh. Standard basic patch configuration of Fig. C.5.

1-Element cubic incomplete set; j = Aabc = 1

( 4 f-2

r =IV

0.98602611

E-1

0.20861636

E-1

r =V

0.9464698

E-2

0.20861635

E-1

r =VI

0.9464698

E-2

0.5701931

E-2

( jf jf

r = IV

0.2537489810

5 -0.1418428372

r =V

0.205101897

-0.141842837

P = VI

0.2 0510189

-0.033856965

Table C.7. Flux integrals - mathematical mesh. Standard basic patch configuration of Fig. C.5.

1-Element cubic incomplete set ; j = Aabc E 1.

(jf 1) -2
ig' r/

r = V r = vi

0.033856958 0.033856958

a

a

a

k

a

c

r = IV

0.13435866a



Table C.8. Inner products - mathematical mesh. Standard basic patch configuration of Fig. C.5.

2-Element cubic incomplete set; j = Aabc = 1.

r=iv

.72883793
E-1

-.20213393
E-1

.71352050
E-2

.95313151
E-2

-.12673102
E-1

-.42466849
E-2

.46850313
E-2

.41100825
.41100825

E-2

-.35837781
E-2

.36492750
E-2

.95313155
E-2

.42466847
E-2

a

a

vi -t

.41100827
E-2

-. 35837782
E-2

.36492753
E-2

.21297905
E-2

-. 23262464
E-2

-. 23262466
E-2

.26580687
E-2

(Vja jp3 \

r=Iv

.292595381

.039043205

.018710423

-. 123444260

.0 50385791

-. 011188273

.012696357

r =v

.123132407

-. 052854937

.062813564

-.123444253

-.011188274

.050385802

.012696360

r=vI

.123132407

-.052854937

.062813570

-.012919109

.010802469

.010802475

-. 025392717
N
a
('3

pf

-. 12673100
E-1

.46850306
E-2

k

a

c

a

f

c

fi

c

e

(*'c' ja jp -2

I I I ---

-



Table C.9. Flux integrals - mathematical mesh. Standard basic patch configuration

of Fig. C.5.

2-Element cubic incomplete set; j = Aabc = 1.

ja \ -2
2

I t I -~

r = IV

0.11342080

-0.36265428

E-1

r=V

0.20269626

-0.23533948

E-1

r=vi

0.20269626

-0.23533950

E-1

2 a

a f

c

N
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Table C.10. Inner products - mathematical mesh. Standard basic

patch configuration of Fig. C.5.

C1 shell set; j = Aabc 1

jci\ -z
'~'kg jF~ /NJW

S=V

0.591563

E-2

0.120884

E-1

r=VI

0.591563

E-2

0.360097

E-2

( jcl

r=IV r=v r=vI

1/9

-1/18

1/9

-1/18

1/9

-1/18

Table C.11. Flux integrals - mathematical mesh. Standard basic

patch configuration of Fig. C.5.

shell set; j = Aabc a 1

( jcl 
-

a

r =IV r = V

0.216049

r=VI

0.216049

E-1

k ( jcl

r=Iv

0.437242

E-1

0.120884

E-1

a a

a c

0.679012

E-1

i i I

jc1

E-1



Table C.12. Inner products - mathematical mesh. Standard basic patch configuration of Fig. C.5.

{C1+C 2 } shell set; j = Aabc = 1

a p (T,9 'X k,3

r=IV

.75732665
E-1

-.21219133
E-1

.7135205
E-2

.20937859
E-1

-.13387347
E-1

-.75231485
E-2

.46850313
E-2

.10246184
E-1

-.60570981
E-2

.3649275
E-2

.20937859
E-1

-. 75231472
E-2

-.13387345
E-1

.46850313
E-2

r=IV

.10246185
E-1

-.60570981
E-2

.3649275
E-2

.62368096
E-2

-.40895068
E-2

-. 40895068
E-2

.26580687
E-2

=IV

.19245007

.37037033
E-1

.18710423
E-1

-. 96225033
E-1

.50925914
E-1

-. 18518520
E-1

.12696357
E-1

.19245007

-. 10185184

.62813564
E-1

-.96225033
E-1

-. 18518520
E-1

.50925920
E-1

.1269636
E-1

'= VI

.19245007

-. 10185184

.62813564
E-1

-. 96225033
E-1

.50925919
E-1

.50925925
E-1

-. 25392717
E-1

a

a

k 2

0

(V'I(1gWiP\Vlkg 1

a

c

cl

c1

c2

cl

c1

c2

c2

ci

c2

c2

c1

c2

ci

c2

r =V - r= v



Table C.13. Flux integrals - mathematical mesh. Standard basic patch
configuration of Fig. C.5.

{C 1 +C2 } shell set; j = Aabc -=1.

4..-

r'IV

0.11760837

-0.36265428

E-1

r=V

0.37420846

E-1

-0.23533948

E-1

r =vi

0.37420849

E-1

-0.23533950

E-1

a

cI

c2

a

N
0

ja V 2
I g

i IF



Table C.14. Inner products - mathematical mesh. Standard basic patch configuration of Fig. C.5.

Regular quadratic set; j = Aabc = 1

(, Ijja 1- -2

r = IV

RQ

RQ

c2

RQ

RQ

c2

cz

r =V

.11236154
E-27

-. 18432782

r =VI

.11236154
E-2

-. 18432784
E-2 E2

.36492750 .36492753
E-2 E-2

.30392065 .33658976
E-2 E-3

-. 21133399 -. 10202334
E-2 E-2

-.79775374 -.10202334

E-2 E-2

.46850306 .26850687
E-2 E-2

I , P j
,, 19 kg/ r

r =IV

.30293066

.58641968
E-1

.18710423
E-1

-.41875717
E-1

.65586405
E-1

-.38580255
E-2

.12696357
E-1

r =V

.40984736
E-1

-. 29320984
E-1

.62813564
E-1

-. 41875711
E-1

-. 38580257
E-2

.65586414
E-1

.12696360
E-1

r = VI

.40984739
E-1

-.29320487

E-1

.62813570
E-1

-.12473619
E-1

.21604935
E-1

.21604941
E-1

.25392717

E-1

a

a

a

c

.36242783
E-1

-. 12980108
E-01

.71352050
E-2

.30392071
E-2

-. 797755384
E-2

-. 21133404
E-2

.46850313

RQ

c2

c2

RQ

c2

RQ

c2
N
0
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Table C.15. Flux integrals - mathematical mesh. Standard basic
patch configuration of Fig. C.5.

Regular quadratic set; j = Aabc 1

0.75732665 E-1

-0.36265428 E-1

0.10246185 E-1

-0.23533948 E-1

r =VI

0.10246185 E-1

-0.23533950 E-1

a

( , f 1-2
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symmetry, that is, each 0 of 8 can be rotated into each other about
J J

the 'center' of E without altering the form of the superelement, we

have that

(M4a )=a) a
pg' fg p g' cgV ag cg IV

+ M ( 1Pla) + M (NP' a .Lfi)e ag cg VI g ag cg VI

+M M l {( T ) + }q fIa (C. 4)f ag cg V ag' cg'IVI

is the inner product pattern for point p with its nearest neighbors and

(M54 I ) = 6M (11 1a , 1p) + (M +M +M +M +M +M
pg' pg p ag ag IV e f g c b d

C{(, T1P ) + ( ) (C. 5)ag-' ag V ag' 'agVIT C5

is the pattern for both functions having the same EO.

We now turn our attention to those sets which do not possess this

property of 60*-rotational symmetry. These are the 3-element incom-

thplete cubic set and the 3-element 9--order incomplete set.

thLet us consider the 3-element 9--order incomplete set first. The

standard geometrical configuration is the triangle abc of Fig. C. 7.

To simplify matters here, we will think in terms of geometrical

shapes. This was the approach advocated in section 3. 2. We define

the following shapes over the triangle abc,

a (x, y) = u (x ) u~(x2) u~(x (C. 6)
1g +

S(x, y) = -u +(x ) u (x2) u (x3(.7
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c (/W, I)

(2/2 r3, /2) (k/2NF 2P,/2)

x

xx 2

Fig. C. 7.

2
& (x, y)ag

3
3 (x, y)ag

Standard basic patch configuration - mathematical
mesh (same as that of Fig. C. 5 except that here,
axes (xix 2 PX3 ) are also shown).

= u(xi) u~(x2) u~(x3) (C. 8)

+ - -= u+(x ) u1 (x 2 ) u0 (x3 ) (C. 9)

where the subscript a indicates that these shapes are 'centered' on

point a and are zero on the opposite side, bc.

The list of sufficient inner products is shown in Tables C. 16 and

C. 17. Let us call the triangle abc of Fig. C. 7 the standard triangle

and denote it by the letter H. We now have to transform our results

with H to the (*, ) of Fig. C. 6. In the case of 60 0 -rotational sym-
ig jg

metry this was relatively simple. In the case under consideration

there are a few more steps involved. We have to relate the hexagon

cbdefg of Fig. C. 4 to H. It was stated in the opening paragraph of



Table C.16. Inner products - mathematical mesh. Standard basic patch configuration of Fig. C.7.

3-Element 9th order incomplete set.

Sg kg C

r=I

.60471726

E-11-2

.59524114

E-2 1 ~1

.10172272

E-11-1

-. 59524114

E-2 1

.80574855

E-3

.11329617

E-2

= II

.11813969

E-2f-2

.28979538

E-3f 1

.32783217

E-3f 1

-. 12022876

E-3 1 ~1

.71448051

E-4

.80408680

E-4

r = III

.11813969

E-2k-2

.120220761

E-3f1

.32783218

E-3f 1

-. 28979539

E-3f 1

.16083686

E-4

.33974351

E-4

a

( g' f

r =I

.434358653

C-2

.794280552

E-1268

-.102668405

0

1

2

3

1

2

g) -2

I = II

.595238755

E-1f- 2

-. 396501555

E-2f 1

-. 86436618

E-2f1

-.85274259

E-2f 1

.113899942

E-2

.164548191

E-2

r = III

.595238755

E-1C~ 2

.85274259

E-2f 1

-. 86436618

E-2f1

.396501555

E-21981

.212958Z2

-. 49547928

E-3

ak

aa

p

-. 794280552

E-1l

.35895786

E-1

-.138048810

E-2
N



a ,kIV p 2
\ g' kg r

-t-t---I-I I i I

r=I

-. 54686221

E-3

.19095866

E-2

-. 11329617

E-2

.80574855

E-3

.33856690

E-2f-2

.34971346

E-3 1

1.97467719

rv= II r= III
1 I 4

-. 28642338

E-4

.91172935

E-4

-. 33974351

E-4

.16083686

E-4

.33856691

E-21-2

.34971347

E-3f'

.80087349

E-31-1

-. 28642338

E-4

.91172937

E-4

-. 80408682

E-4

.71448053

E-4

.39630243

E-3-2

.93024782

E-41~

.11683658

E-3f-

r=I

.3481513

E-2

.559812640

E-2

.138048810

E-2

.35895786

E-1

-. 902619611

E-11- 2

-. 132836778

E- 14

-.242494814

r= II

.27571529

E-3

.282539627

E-2

.49547928

E-3

.212958212

E-2

-. 902619611

E-12 2

-. 105523864

E-1f~1

-. 146031382

E-1 1

r =111

.27571529

E-3

.282539627

E-2

.164548191

E-2

.113899942

E-2

-. 83021424

E-2f-2

-. 637948127

-. 21649887

a eC

N

p1 a 19 ,kgfr Ik



-4
(a I p1 , kg/r

r=1

-. 87294758

E-31 1

.63923584

E-3 1 ~

.62489345

E-4

.18200876

0

1]

1

1

1

2

2

r =i i

-. 63923587

E-31~I

.87294759

E-3f 1

.87693588

E-4

.20447427

E-3

-. 16367283

E-3

.9746772

E-3 1 ~1

.10229351

E-3

r = III

-. 69120364

E-41~-1

.69120364

E-4f~ 1

.16111997

E-4

.20196051

E-4

t

11760043

E-4

11683685

E -31

27462475

E-4

a p 1-2
Vig' Vkg r

r =1

.319551435

E-l 1

-. 26534404

E-2 1

-. 96275509

E-3

-. 6995035

E-3

.17947133

E-2

.8797269

E-3f~ 1

.110632465

E-2

r = II

.129497842

E-11 1

.69937102

E-2f-

.281964943

E-2

.75439563

E-3

.115515197

E-2

.102109641

E-1
1

.453541882

E-2

r =111

.264526616

E-1f1~

.14997946

E-2f1

.2683367640

E-3

.40314334

E-3

-. 5820606

E-4

.40527939

.214226491

E-2

a

E-3

16367283

E-3

80087347

85660160

E-4

p

3

0

1

2 ,

3

1 N

- . - .

. .

. .



( , kg )r

~t~t~1~t 4 4

r~i

.22985505

E-3

-. 20447426

E-3

-. 34971346

E-31~ 1

-. 47709926

E-4

-. 10229350

E-3

.87693584

E-4

I?= II

.22985506

E-3

-. 18200876

E-3

-. 34971347

E-31~-1

-. 47709928

E-4

-. 85660164

E-4

.62489348

E-4

r =III

.34400149

E-4

-. 20196051

E-4

-. 93024782

E-41~1

-. 21962795

E-4

-. 27462475

E-4

.16111997

E-4

fg' kgr

r=I

.360992590

E-3

-. 50672868

E-3

.26141079

S= II

.135749671

E-2

.10021049

E-2

.167835491

E-1 1

182712287 1-.814944

2

3

0

1

2

3

E-5

.28118845

E-2

-. 33561119

E-2

S= III

.110937364

E-2

-. 815868

E-3

-. 145663557

E-2f~I

-. 974457665

E-3

-. 406477098

E-3

.258055885

E-3

f a p

2

2

3

3

3

E-2

.69826981

E-2

-. 83508964

E-2

N
I.-



Table C.17. Flux integrals - mathematical mesh. Standard basic patch configuration

of Fig. C.7.

3-Element 9th order incomplete set.

0.98860883

E-11-1

0.11107561

E-1

0.18622459

E-1

-0.11107561

(g'a \ -3

r = II

0.97229648

E-2f-~1

0.24336381

E-2

0.2773136

E-2

-0.10966708

E-2

r =III

0.97229652

IE-2 1

0.10966708

E-2

0.27731361

E-2

-0.24336383

a

a

0

1

2

3

r = I

E-1 E-2
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section C. 2. 2 that we would only have to consider triangles abc and abd

of Fig. C. 4. This is true but it is also true that we could equally

well just consider triangles aef and afg. To avoid possible confusion

with H and to correspond more closely with the algorithm of the com-

puter programs we shall choose to use triangles aef and afg.

Tables C. 18 and C. 19 are lists of the required inner products. To

obtain these from the inner products over H tabulated in Tables C. 16

and C. 17 we need the information presented below for the basic ele-

ment function set (J } of each of the superelement functions $a cen-

tered at the points {a, g, f, e} over the triangles aef and afg of Fig. C.4.

j0
Jg

We arrange the relationships in the vector form 90 for convenience
J2gj
J2
Jg

40
ag

41
ag.

42
Lag]

3 0

ag

931
ag

32
ag

0
ag

ag

1 2 3
ag ag

0
ag

2
ag

1 q 3 1}N ag ag

(C. 10)

(C. 11)

.I
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Table C.18. Inner products - mathematical mesh. Standard super-

patch configuration of Fig. C.4.

3-Element 9th order incomplete set; 4 , g ) and

required for the following combinations of {j, a, P, , k, F}.

(A) j

Aaef 3 a

Aafg 4

(B) I

r = I - III-j = 1 - 6

Ka

k

a

a

0

1

2

k

f

P

0

1

2

1

2

2

\1ja Iv\/jkp
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Table C.19. Flux integrals - mathematical mesh. Standard super-
patch configuration of Fig. C.4.

3-Element 9th order incomplete set; jg , 1 required

for the following combinations of {j, a, 2, r}

r =1I- III .{j = 1 - 6
a

L
0

1

2



220

1

0
rgg

3
rgg

gg g

40
gg
41
gg
42
gg

30
fg

31!
fg

32
fg

40
fg

241
fg

42
fg

30
eg

31
eg

32
eg_

1

1

(C. 12)

2
gg

f3fg

0
fg
2
fg

fg fg

0
eg

3
eg

eg eg

(C. 13)

(C. 14)

(C. 15)

1
wjag'p 2 }areag

(C. 16)

and the superelement functions 'centered' at point a, {ag ,

composed of the following basic element functions:

10 ~ 0
ag ag

1

ag

a ag

fg

fg

ag

,12
agj
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20 0
ag ag
2913

a (C. 17)

22 1 1 2
ag- ag ag

30 0
4fag ag

V31 2 (C. 18)
ag ag
3 2  1 3 1
agj a ag

9 9.

40 0
ag ag

i -41-1 (C. 19)
ag ag

42 1 2 3
ag q -3 ag ag

50 ~ 0
ag ag

951 3 (C. 20)
ag ag

252 1 2 +( )
ag ag ag

-P60 0
aga ag

61 2 (C. 21)
ag ag

62 1 3+ 1

L.ag] ag ag

We now have to relate these inner products over triangles aef and

afg of Fig. C. 4 with the general case shown in Fig. C.6.
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The algorithm of the program is constructed so that (Ma S qjp

(M$a ,19 ),4(MPa ,M$) and (M4 , ) are the only inner productsPg eg Pg9 fg) Pggg
required. We have that

6 . ,.1 6 III .
(M4 Ma ,Pl ) =M E(Ja + M. (q ,W )

pg pg pg pg I _ ~ r=II pg pg r

(C. 22)

where Table C. 20 shows the convention to be used for the material prop-

erties M

(M$a ,P ) = {{,a P), M el+ (, 3 a 3 P) MeZ} (C.23)(MjPg qeg rZ ag ggF r r+(Pag P&eg r (.23

,,a{ITT 3 a ,73P fl 4a ,4P f21
(M$g ,g) = M ((Fag' fg)M + (qag' ) Mr (C.24)

11 3ca 3P gi ,,4a,
(MEg ,gg) = {{,agIe)r Mr + (ag94 ) Mg2. (C.25)

The corresponding table for the material properties is Table C.21

Equations (C. 2Z)-(C. 25) are more general than the equations derived

previously, eqs. (C. 4)-(C. 5), for the case of 60 0-rotational symmetry.

Those equations are a subset of this system and this is the reason why

the equations actually programmed are eqs. (C. 22)-(C. 25).

We now turn our attention to the 3-element incomplete cubic set.

This is treated in exactly the same fashion as the 3-element 9--order

incomplete set was treated. Tables C. 22-C. 23 are the tables corre-

sponding to Tables C. 16-C. 17 for this set. In terms of the notation of

this chapter we have
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Table C.20. Indexing scheme for material properties of eq. (C.22).

1

2

3

4

5

6

Md

Me

Mf

Mg

Mb

Table C.21.

rM

Indexing scheme for material properties of
eqs. (C.23)-(C.25).

M e2Mr M lMr MfMr Mr

4 I 4 $----1

Ma

Md

Me

Ma

Me

Mf

Ma

Me

Mf

Ma

Mf

Mg

Ma

Mg

r

I

II

III

r

Ma

Mf

Mg



Table C.22. Inner products - mathematical mesh. Standard basic patch configuration of Fig. C.5.

3-Element cubic incomplete set.

* agq ) -4

g' kg/ r

.87355496

-. 10842022

E-18f 1

.15985002

-. 70398622

E-21~ 1

.32406761

E-3

-. 10164395

.58094120

E-2 2

.57491018

E-3f~1

.16300025

E-21-1

-. 19786429

E-21~36

.67073363

E-4

.16018113

.58094123

E-2~2

-.57491024

E-30~01

.16300025

-.19786429

E-2 2I

.67073372

E-4

-. 16018115

( a P ) -2
\ g' Vkg)I-2

.34248984

-2

.32526065

E-18 1

.24234453

E-11-1

.78405580

E-61

.397670735

E-1

.32526065

.1751652

~ 24

.18724275

45617794

E-1f 1

71278572

E-3f

.36381373

E-2

.47839495

.17516521

~ 2

-.18724278

E-1f1~

.45617797

E-if~-

-.71278158

E-381

.36381373

E-2

-.47839501

E-18

a

N
N

.

- .

E- 19 E-3 E-3 E-2 E-2



*(~gp ~g)p2~4

r=1i

.67762636

E-20

.32068235

E-2

-. 16017472

E-2

.12219053

E-2

.13410436

E -11-2

-. 13978030

E -21-1

.38957076

E-2 1 1

r =1 I

-. 14292383

E-3

.45855327

E-3

-. 57376990

E-3

.12219054

E-2

.13410434

-. 68832079

E-3 12

.30570612

E-21-1

r.= III

.14292383

E-3

.45855330

E-3

-. 57376990

E-3

i12219054

E-2

.20466448

E-21-2

.10199609

E-370

.60777077

V9V kgF

r=I

-. 102999206

E-16

.14344658

E- 112

.30293063

E-2

.51320008

E-1

-. 11244075

V-2

-. 13631667

E-21~941

-.30159424

r = i

.61213967

E-2

.12072678

E-1

-. 15146554

E-2

.51320001

E-1

-. 11244073

3

2

3

1

2

r=III

-. 61213967

E-2

.12072679

E-1

-. 15146543

E-2

.51320001

E-1

-. 63793649

E-11-2

-. 1090535 1

E-11-

-. 17730358

E-1 1

k

C

p

43287032

E-l 1

98452443

E-2C

a

N
N

- .

- .



* (a pg) 1 -4
g , kgr

r = I

4

-.70398605

E-21~-1

.68832048

E-31~-1

-.92603412

E-4

.19075785

E-3

.18696760

E-9

.30570618

E-21~1

-.30340278

E-3

r = II

-.19786422V

.13978022

E-21~ 1

-.92603414

E-4

.30340262,

E-3

-.14292374

E-3

.38957069

.19075795

E-3

.1
r = III

-.19786432

E-21~ 1

-.10199614

E-3f1~

-.57158957

E-5

-.31197617

E-4

.14292387

E-3

.60777077

E-3k~ 1

.31197603

E-4

a pg) -2
Vfg * kgr

r = I

.78405584

.432870427

IE-i1

-.73653758

E-2

.12345681

E-1

.204794.128

E-7

-.98452463

E-21~4

-11574075

E-2

r = II

-.71276475

E-3f 1~

.1363170

C1

-.73653758

E-2

.115740734

E-2

.61214007

E-2

-.3015942

E-11~1

-.12345678

E-1

r = III

-.71278040

E I-3f-~

.109053519

C1

-.83157437

E-3

.31635808

E-2

-. 61214007

E-2

-.17730358

3

0

1

2

3

0

1

k p

-.31635805

E-2

N
11-

4 v 7 - - 1--I



r=I

.88357741

E-3

-.16017469

E-2

-.19786432

E-2f~1

.14292390

E-3

-.57376998

E-3

.12219051

E-2

*/ a p -4

r , kg r
r=II pg

.88357726

E-3

-.57376970

E-3

-. 70398632

E-2f

.17933637

E-9

-.16017473

E-2

.12219052

E-2

r?= III

.18025701

E-3

-.5737700

E-3

-.19786432

E-2f~

-. 14292382

E-3

-.57376998,

E-3

.12219055

E-2

r=I

-. 23610770

E-2

.30293081

E-2

-.712789

E-3f~ 1

-.612139803

E-2

-.15146566

E-2

.51320013

E-1

(a p \ -2Vegs V kg/r

17k r

-.23610766

E-2

-. 15146497

E-2

.7840558

E-l 1

.5

E-8

.302930354

E-2

.51320013

E-1

r = III

-.4900350

E-2

-. 15146539

E-2

-. 712783

E-3C

.61213999

E-2

-. 15146566

E-2

.51320013

E-1

It should be noted that & (x, y) = (x, y) = 3 (x, y)ag b g Cg

k a p

N



228

Table C.23. Flux integrals - mathematical mesh. Standard basic

patch configuration of Fig. C.5.

3-Element cubic incomplete set.

( 1 -3

0.12473615

1

-0.10842022

E-18

0.24501745

E-1

-0.12830006

0.24234453

E-1 1~1

0.22890941

E-2

0.69941344

E-2

-0.12830006

0.24234455

E-1 R~1

-0.22890944

E-2

0.69941349

E-2

-0.12830006

E-1

a

E-1 E-1



0 3c
I (x, y) = 0 (x3 I

& (x, y 2c

2 (XI 3c
ag 3c

33c
ag (x, A 4 (x, y)

where the shapes are as defined by eqs. (3. 7)-(3. 10). The equations

corresponding to the system, eqs. (C. 10)-(C. 21), are eqs. (3. 13)-(3. 15)

of section 3. 1. 1. The remaining tables required for the algorithm are

Tables C. 18-C. 21. These tables can be thought of as being common for

all the sets used with the regular mathematical mesh.

(B) Distorted Mesh

This mesh introduces irregular polygons into the set of superpatches.

Figure C. 8 shows one of the possibilities.

Material
hexagon ~

Fig. C. 8. Distorted mesh.

With the introduction of irregular polygons it becomes imperative

to look at the assemblage of inner products from the viewpoint of triangles.

229
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There are basically three types of triangles involved: a large equilat-

eral triangle such as triangle fqg, an isosceles triangle typified by tri-

angle qhg, and a small equilateral triangle qhi.

The inner products over the large equilateral triangle are exactly

those obtained earlier in the section for the standard geometrical con-

figurations of Figs. C. 5 and C. 7. The inner products for the small

equilateral triangle can be obtained from those results by the use of

coordinate transformations.

y'

c' (1/3,145/3)

(0,0)
a'

Fig. C. 9. Basic patch - small
distorted mesh.

equilateral triangle -

Figure C. 9 shows the small equilateral triangle. The required

transformation between triangle abc of Fig. C. 5 and this triangle is

X = 3
(C. 26)

y t = 3

( - I/3, 14-3/3) b I
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We then have that

Sff
Aalb' c'

dx'dy' Wka(XIy') * kp (x, y) =I f feg Yg 3Aabc
dxdy ag j

(C. 27)

where

a ,= a ( Nf3x','4-y') j Aabc k Aa'b'c'.

Equation (C. 28) is a logical extension of the discussion in section 3. 2

where the sets ($kg) were constructed by rotating specific shapes and

joining the corresponding { .} to form E. We transform shapes and not
J J.

interpolation conditions. The shell sets C1 and {C1 +C2 } were constructed

by rotations of shapes and eqs. (C. Z7)-(C. 28) will be applied in the use

of these sets with the distorted mesh.

Continuing, we have that

dx'dy' k- v' a,eg

= fc dxdy - VJaXY)
Aabc O

k ,

,da (x,y).

'Yg

(-/fIW,/3) 3 / ,/ c3-c
Fig. C.10.

Basic patch - isos-
celes triangle -
distorted mesh.

Ix I
a' (0,0)

(C. 28)

ff
Aa'b'c'

(C. 29)
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The corresponding equations for the isosceles triangle a'btc' of

Fig. C. 10 are

X' = x

y
yt = (C. 30)

ff dx'dy' = a (XY,) ,kp (x,)
Aa'b'c' g

f f dxdy jFja(X y) a (x, Y) (C. 31)
3 Aabc g

I ka(x' y) =Ia(xI, y') (C. 32)

and

ff dx'dy' V,ka(XIY) vkp XI y')
zab'c' eg Yg

= f ~ 8 ja, a,ja .a

S f dxdy ' a (x, y) + 3 q A

(C. 33)

Tables C. 24-C. Z5 list the inner products for the {C1 +C2 } shell set

over the equilateral triangle a'b'c' of Fig. C. 9. The C, shell set inner

products are, by the design of the shell sets, obtainable from this table

by simply deleting the entries where a or p = 2. Tables C.26-C. 27

list the corresponding results for the isosceles triangle a'b'c' of Fig.

C. 10.
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Table C.24. Inner products - distorted mesh. Basic patch of Fig. C.9.

{CG+C2} shell set; i = equilateral triangle a'b'c' (Figure C.9).

S32 

0.09622503

-0.0333333

0.01443375

0.048112509

-0.025

-0.025

0.01202813

kg)

0.57735021

-0.16666666

0.14433755

-0.288675126

0.08333333

0.08333333

0.0

Table C.25. Flux integrals - distorted mesh. Basic patch of Fig. C.9.

{C1+C2} shell set; j = equilateral triangle a'b'c' (Figure C.9).

0.19245005

-0.0833333

k

a'

c' t

I

a'

a'

a

1

1

2

1

1

2

2

p

1

2

2

1

2

1

2

2

a'

(J, -2
1)32

1

1

2

jI-,a



Table C.26. Inner products - distorted mesh. Basic patch of Fig. C.10.

{C 1 +C 2 } shell set; j =isosceles triangle alb'c' (Figure C.10).

(&av P)/ 3

1~ _______________________________

r= I

.48112516 E-1

-. 166666 E-1

.7216877 E-1

.841968319 E-1

-. 260416509 E-1

.99232 E-2

.12028133 E-1

-. 72916707 E-2

.45105515 E-2

.12021 E-1

r = II

.48112516 E-1

-. 1666666 E-1

.7216877 E-2

.12028133 E-1

-. 72916707 E-2

.45105515 E-2

.841968319 E-1

-. 260416509 E-1

.99232 E-2

.360843 E-1

.288675105

-. 8333333 E-1

.7216877 E-1

.9622506 E-1

.0

.120281247 E-1

.9622506 E-1

-.555555 E-1

.360843943 E-1

-.144337

r= II

.288675105

-. 833333 E-1

.7216877 E-1

.9622506 E-1

-.555555 E-1

.360843943 E-1

.9622506 E-1

.0

.120281247 E-1

-.144337

a'

c'

k

a'

c'

b'

a't N

, P -2(VI,129 , 111jkl 9 ).r 31



(ja
ig',

r =I1

-. 624999 E-2

-. 83333 E-2

.4209838 E-2

.360843 E-1

-. 187496 E-1

-.166666 E-1

.781828 E-2

.24056256 E-1

-.15624997 E-1

-.9374996 E-2

.60140627 E-2

if j p 323
Wkg r31

r = 11

-. 187496 E-1

-. 166666 E-1

.781828 E-2

.12021 E-1

-.624999 E-2

-. 83333 E-2

.4209838 E-2

.24056256 E-1

-. 93750039 E-2

-. 156250043 E-1

.60 140627 E-2

, V11 kg r/3

I-

.416666 E-1

.833333 E-1

-. 180421 E-1

-.144337

.416666 E-1

.0

.180421 E-1

.481124 E-1

-. 27778 E-1

.0

.0

r = II

.416666 E-1

.0

.180421 E-1

-. 144337

.416666 E-1

.833333 E-1

-. 180421 E-1

.481124 E-1

.0

-. 27778 E-1

.0

a pk

a'

,

c'

c'

N

(.Jl
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Table C.27. Flux integrals - distorted mesh. Basic patch of

Fig. C.10.

{C 1 +C 2} shell set; j =isosceles triangle afb'c' (Figure C.10).

1g 1 3

0.96224 E-1

-0.416666 E-1

0.48111336 E-1

-0.312500144 E-1

0.14433872

-0.520833116 E-1

0.96224 E-1

-0.416666 E-1

0.14433872

-0.520833116 E-1

0.48111336 E-1

-0.312500144 E-1

a'

c' I
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Appendix D

IMPOSITION OF CONDITIONS AT SINGULAR POINTS

We consider in this appendix the implications of applying the condi-

tions of flux continuity and current. continuity at a singular point. It is an

example of an examination of how the various conditions applied relate to

each other in terms of the equations they give rise to. The results ob-

tained have a direct bearing on the case where function continuity and de-

rivative continuity are simultaneously applied across intersecting patch

boundaries and this aspect of the problem is also included in the discus-

sion.

Consider Fig. D. 1. Regions 1,2,... , K are regions containing

ri K

2 
-'

(0, 0)

c / Fig. D. 1. Singular point
r2 3 n 2 configuration.

different material with the corresponding diffusion coefficients D ,...,

D K Point c, (0, 0), is the intersection point of all the material inter-

faces. The unit normal to these interfaces is denoted by nk and the unit

vector parallel to the interface is rk. We have
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S ai + bkj

(D. 1)rk = -b ki-+ akj.

Normal current continuity across each interface gives

Dk [akxak+akybk] = k k+1xak + ak+lybk] Dk+1

where

kx ax ig"-

a = -'.(r)
aky cy ig -

and region (K+1) is understood to be region 1. With function continuity

we have that lim
E1-+0

A irk ~ (r + IE rk is continuous across material

interfaces. This means

~kxbk + akyak -=-ak+lxbk + ak+lyak. (D. 3)

Equations (D. 2) and (D. 3) lead to the following system of homogeneous

equations.

r = point c.

(D. 2)



D b -Da -Db

a

0

0

-D bK

- aK

by -a 1 .

0

0 0

D 2 a 2 D b2 -D3a2 -D3b2

- b2
a2 -a 2

D a

-b

0

-DbaK

b K

a

2x

a2y

a

:kx

aky
LU

In block form this becomes

0

0A B2

0

0

BK-1

AK

Dkak Dkbkj

Ak -b bk a k

a =0

-Dk+1ak -Dk+1bkj
and Bk=

b k - ak

For the case where all the regions contain the same material, that is,

the homogeneous case we have

Ak = -Bk

239

0

0

0

0

(D. 4)

B
1A1

0

BK

0

0

where

(D. 5)

(D. 6)



Equation (D. 5) then reduces to

A -A 1

A
2

- A 2

0

-AK 0

By adding columns

A1

0

we can reduce the coefficient matrix to

0

A 2 0

0

0

(D. 8)

LAK -AK 0

As rC I = 0 this means that the constraints of function continuity and

normal derivative continuity across interfaces lead to redundant equations

and consequently a nonunique solution.

Now let us examine the general inhomogeneous case, eq. (D. 4). If
th thwe add to the (2k+1)-- column the (2k)-- column multiplied by bk/ak;

set bK = 0 and aK = 1, and transpose the resulting coefficient matrix,

we obtain

240

0

0

a0

-AK-1

AK

(D. 7)
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D a +D b 2 /a 0 -D -bj/a,
1 1 111

a1 0 -1

C =0 (D.9)

DK 0

If we choose K= 3, (a,,b 1 ) =(1/2,%3-/2) and (a 2 ,b 2 ) = (-1/2,-3I7), it

can be shown, by expanding the resulting determinant, that

IC 40 in general. (D. 10)

This means that ICI is not identically zero with the consequence that the

only solution of a is the trivial solution 0. In other words, the imposi-

tion of normal current continuity and function continuity can lead to zero

gradients at point c. As flux continuity is an essential condition, this

means that normal current continuity should not be imposed at singular

points.
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Appendix E

COMPUTER PROGRAMS

It should be emphasized at the start that the programs

written during the course of this thesis were not meant to

be 'Production' versions. They were designed solely as

research tools with definite limitations as far as the

range of problems is concerned and should be so regarded.

Modifications were made as objectives changed and the logic

of many of the codes reflect this hybridizing process.

This introduction should serve as a note of caution against

further modification of the programs as they now stand. If

modifications are strongly desired it is recommended that

the codes be rewritten using modules of algorithms taken

from the current versions.

The programs are the computer implementation of the

finite element method to solve the multigroup static neu-

tron diffusion problem, eqs. (1.17) - (1.19); that is to

say they assemble and solve the Galerkin system of equa-

tions, eq. (1.18). All the programs are limited to two

group calculations with the assumptions that,

(i) There is no upscattering

(ii) No fission neutrons are born in the thermal group.

The equations actually programmed are those of eqs. (1.24) -

(1.25). The orthodox power iteration scheme, eq. (1.26),
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is used to solve the eigenvalue problem for the system

multiplication constant, the eigenvalue X. We shall divide

the codes into two sets on the basis of the number of spa-

tial dimensions treated. For the l-D set we have the

following programs

(a) l-D FLOAT

(b) 1-D SECTION.

In 2-D we further subdivide the set into groups of programs

using the physical mesh shown in Fig. 3.6 and those utili-

zing the mathematical coarse mesh of Fig. 2.6(b). The

physical mesh group consists of

(a) 2-D PHYMESH

while the mathematical coarse mesh group is composed of

(a) 2-D MATHFIT

(b) 2-D MATHNO

We now present a short description of each code to-

gether with the corresponding input for a sample problem.

The l-D codes are discussed in section E. 1 and the presentation on

the 2-D codes follows in sections E.2 and E.3. All the

programs are written in FORTRAN IV for the IBM 370/168

computer system. The source listings are presented in

Appendix F.
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E.1 1-D Programs

We first discuss 1-D FLOAT and then 1-D SECTION.

E.1.1 1-D FLOAT

(a) Description

1-D FLOAT was written to investigate the question of

the condition of join in l-D. The problem simulated is

the one of Fig. 4.2. For convenience we repeat that Fig.

here

Region 1 Region 2

0 L/2 L

Fig. E.l. l-D 2 Region Problem.

The version listed in Appendix F has the following restric-

tions

(i) The superelement set used is Kang's cubic

Hermite set.
1

(ii) Only five superelement functions kg

These are the ones shown in Fig. E.2.

1

can be used.

2

Fig. E.2. Superelement function set used. Kang's cubic Hermite.

=20 wjg - M--pP,4



245

The numbers on the fig. are the indices of the super-

element functions as used in the program. The program is set

up for the flux continuity-current float case. The places

where modifications are required for the other cases are

indicated in the source listing in Appendix F.

We present next a summary of the subroutines involved

MAIN: - This forms the Galerkin coefficient matrices and

uses the power iteration technique to solve the

resulting matrix equation. The solution is then

normalized to the input fission rate.

HPOLY: -This subroutine returns the value of the power of

the mesh spacing H, for the inner product involved.

D: - Table of coefficients for the inner products

(V$i. ,v$i. ).ig jg

E: - Table of coefficients for the inner products

(ip. ,$p ).ig jg

XIMQ: - Standard IBM subroutine for solving a linear system

of equations.

Figure E.3 shows the general code logic. We now present the

input preparation.



HPOLY

F

D

Enter

Form Galerkin
coefficient matrices

Use Power iteration
scheme to solve

eigenvalue problem

Calculate Fission rate
for normalization

E nd

Fiq. E.3. Flow chart for 1-D FLOAT.

(b) Input Preparation

Card 1 - 15

MAXITR - Maximum number of outer iterations

Card 2 - E10.8

H - Mesh spacing (superelement function center-
center)

246

XIMQ
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Card 3 - 2E10.8

ERMOD - Solution convergence criterion

EREIG Eigenvalue convergence criterion

Card 4 - 15, E10.8, 215

NUMVAR - Number of unknowns per group

POWIN - Fission rate for normalization

NIMAX - Number of non-zero entries in lower

triangular part of the Galerkin

coefficient matrix

NREGIN - Number of different material compositions

Card 5 - 15, 7E10.8

IREGIN - Material composition index (beginning

with 1 and ending with NREGIN)

SlGRl(IREGIN) - Group 1 removal cross section

SlGR2(IREGIN) - Group 2 removal cross section

DIFFl(IREGIN) - Group 1 diffusion coefficient

DIFF2(IREGIN) - Group 2 diffusion coefficient

SIFNUl(IREGIN) - vEfl

SIFNU2(IREGIN) - VEf 2

SlGS21(IREGIN) - Outscattering cross section;

Group 1 to Group 2.

Card 5 has to be repeated NREGIN times
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Card 6 - 715

IREGIN - Material composition of the region over

which the inner product specified by

the information on this card is formed.

I - Indices required to specify the Ithrow and

j- J th column entry of the Galerkin coeffi-

cient matrix

N - Pointer passed to subroutine F to determine

the coefficient of the inner produce

Iiig jg

IRDFUN - Order of mesh spacing of ($ ,$2 )
ig gg

II - Pointer passed to subroutine D to determine

the coefficient of the inner product

(V4i. ,Vi )
ig jg

IRDDER - Order of mesh spacing of (Vip. ,V$_ ).ig Jg

Card 6 is repeated for all the non-zero entries in

the lower triangular part of the Galerkin coefficient

matrix; i.e. NIMAX times.

A list of input cards is presented on the next page for

the sample problem illustrated by Figs. E.1 - E.2 .



C THIS IS THE SAMPLE INPUT FCR 1-D FLOAT
50

1 E 3
7682 E-31
.7555E-3

1 1
1 2
1 3
2 2
2 3
3 3
2 4
2 5
4 4
4 5
5 5

E-3
11

0.43
2.49

11
12
13
14
15
11
17
18
11
13
11

2
E-31
E-31

3
2
3
1
2
3
2
2
3
3
3

.6835C2E

.658375E

3
4 -

2
1
6
6
1
3
1

1.297017EO
1.2970172

8.8200E-5
9.1500E-5

1.4600E-3 1.8300E-3
1.4900E-3 2.07 E-3

1

1
1

1

1
1
1

1 P1 LClalj

1 I FL C"0 3

1 D '' L')3)
1DFLO3))3
1 DFL000

1 DFL06)10

1 TYPL1 01

1DFL0012
1 DFL30 13
1 DFL') 14
1 !DFL3 01 r)
1 DFL )16

1 T) PL,-) 17
1 DIFLKC 18

0. 1 E01
E-03 .1

5 .
15.
2 2

2

1

2

1
1
1

222
2
2

N
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E.l.2 l-D SECTION

(a) Description

This program was designed to simulate the l-D section

problems discussed in section 4.1.1(2) and shown in Figs.

4.6 and 4.8 . The version listed in Appendix F uses

the l-D Hybrid Quadratic superelement set and is set up

for the current continuity cases. The changes necessary

for the derivative continuity cases are indicated in the

listing.

We present below a summary of the subroutines

MAIN: This sets up the Galerkin coefficient matrices and

uses the power iteration scheme to solve the eigen-

value problem. It also initiates the logic to

compute the power to normalize the solution.

FISRT: This is where the calculation of the power is

actually carried out.

SINGD: SINGD calculates the parameter a of the l-D Hybrid

Quadratic set for inner products of superelement

functions centered on the same mesh point.

DIFFD: This subroutine computes the parameter a of the l-D

Hybrid Quadratic set for inner products of super-

element functions centered on different points.

XIMQ: The function of this standard IBM-subroutine is to

solve a system of linear algebraic equations.
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The remaining subroutines are tables of inner products

and flux integrals. Subroutine F is the table of the

function inner products (ip. ,$j) while D is the table of

the derivative inner products (V* ,V$p) ). As the logic of

the two subroutines are identical we shall only discuss F

and the subroutine RINTEG which is the table of flux inte-

grals.

E: The indexing scheme for the superelement functions is

to refer to each function by a number ab

where,

1.. Left side of centering point
a-

2 .. Right side of centering point

and

b = 1 - 4 .. indicating the type of basic

element function.

The option ab = 5 is the null function.

The general flow diagram to determine the value of

(ab,cd) is shown in Fig. E.4.

RINTEG: The flow diagram for determining the value of

(ab,l) is shown in Fig. E.5.

This completes the description of the program. Fig.

E.6 shows the general flow of logic. We now present the

data preparation.
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ab or

cd =5?

F

F a and F a and F
ab cd? c 2? c = 1?

T T

b ? b =? b=?

51 61 1

d = ?d = ? d=?dd

61 11

Fig. E.4. Logic for subroutine F.

T
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g 5ab o 5

,)=0.0 F

T a ? F

71

Fig.s E. 5. Logic for subroutine RINTEG.

Fig. E.6. Flow chart for 1-D SECTION.
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(b) Input Preparation

Card 1 - 15

MAXITR - Maximum number of power iterations.

Card 2 - 2E10.8

ERMOD - Convergence criterion for solution

EREIG - Convergence criterion for eigenvalue.

Card 3 - 2E10.8

POWIN - Power for normalization

RNU - v.

Card 4 - 15

NUMLAP - Number of basic patches per superpatch.

Card 5 - 15

IHMAX - Number of sets of different H problems

The cards below are to be repeated IHMAX times.

Card 6 - E10.8

H - The h of the 1-D Hybrid Quadratic set. Refer to

eqs. (3.40) - (3.41).

Card 7 - 315

NUMVAR - Total number of unknowns per group

NIMAX - Number of non-zero entries in lower triangular

part of the Galerkin coefficient matrix.



255

NREGIN - Total number of different material

compositions.

The set of Cards 8 - 9 are to be repeated NUMVAR

times.

Card 8 - 215

I - Superelement function index (from 1 to NUMVAR).

MESHPT - Mesh point on which Ith superelement function

is centered.

Card 9 is to be repeated NUMLAP times.

Card 9 - 215

ITYPE - Index for type of basic element function of

I th superelement function over the basic patch.

(Basic patches indexed from 1 to NUMLAP. Type

index from 1 - 4.)

MREGIN - Material composition number of material in

this basic patch.

Card 10 - 15

IMATMX - Number of sets of different material problems.

The cards below have to be repeated IMATMX times.

Card 11 - Same as Card 5 of l-D FLOAT.
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Card 12 - 215

I - Indices required to specify the Ith row and Jth

_ column non-zero entry of the lower triangular

part of the Galerkin coefficient matrix.

Card 12 is to be repeated NIMAX times.

We present on the next page a listing of the input

cards required for the sample problem shown in Fig. 4.6.

The mesh used is the one for the h - 8.333 cms results.

We now turn our attention to the 2-D codes beginning

with the mathematical mesh group in Section E.2 and con-

cluding with the physical mesh group in Section E.3.

E.2 2-D Mathematical Mesh Programs

There are two programs to be discussed, 2-D MATHFIT

and 2-D MATHNO. We shall discuss 2-D MATHFIT first and in

detail as the other 2-D programs are quite similar to it.

Reference will be continually made to Appendix C as the

inner products and flux integrals used in these codes are

presented there along with the definitions of the conventions

adhered to.

We should make one comment here about the problem

solved in the 2-D programs. This problem is the 600 sector

of the small HTGR shown in Fig. 4.9. The conditions applied

along the edges of the sector are those of rotational
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4
1

8.3333
12
1
5
5

24
23
2
11
12
22
21
3
13
14
24
23
4
11
12
22
21
5
13
1 f
24
23

6
11
12

E-03 .1
E032.43

37

1
1
1
1
2
1
1
1
2
2
1
1
1
2
3
1
2
2
2
3
1
2
2
2
'4
2
2

E-3

2

0. 1
0. 1

1DSC0OO 1
1DSCO002
1DSC0003
1DSC0004
lDSCO005
1DSCC006
1DSCO027
1DSC00)8
1DS3C0009
1DSC0010
1DSC00'1 1
11DSC00312
10SC0013
1D9CC014
1DSC0015
1DSC0016

1DSC0017
1 DS coo 178

1DSCDl0 18

10SC0019
1DSC0020
105C0021
1DSCO 322
1DSCO023
1 DSCC024
1DSC0025
13SCO026
1DSCu027
1DSC0028
1DSCO029
10SC0030
1DSCO031
1DSC032
1 )SC033
1DSCO03410-SC0335

1 OSC0 0 35
11)SCO 0 3 6 N



22
21

7
13
14
24
23

8
11
12
22
21

9
13
14
24
23
10
11
12
22
21
11
13
14
24
23
12
13
14
5
5
1
15.
25.
1 1

E-31.683502E
E-30.3367 E

1.297017E021.4326E-5
1.297017E021.4326E-5

3.5473E-3
3. 51478E-3

1.8300E-3
1.8300F-3

10SC0037
1DSCO 38
1 D SC 0039
1DSC0040
10 SCO 4 1
1DSC0042
1 DSCO04 3
1 DSCO0044
1DSCO045
1DSC00>46
1DSCC047
1DSC0048

1DI)SC 004 C
1DSCO050

1 )SC052
1 DSCO -353
1DSCC 514
1 D S C ( 55

1 DSC0057
1 D SC) 0 58
1DSCO059

1 DSC0060
1DSCO061
1DSCO0062
1DSC0063
1 DSC064
1DSC0365
1DSCCCb6
1DSC 67
1 DSC006A
1DSC'069
1 DSCC0070
1 DSC2)7 1
1!:;C ')72 

7682 E-310.43
7682 E-310.43



1 2 1DSC0073
1 3 1rsc0074
2 2 1SC"7075
2 3 1DSCO76
2 4 1DSC0077
2 5 1DSC0078
3 3 1DSC0)79
3 4 1DSC0080
3 51DsC00 81
4 4 1DSCO082
4 5 1DSCC"83
4 6 1 DSCQ')84
4 7 1DSC0085
5 5 1DSCO086

5 7 1 DSC00C88
6 6 11DSC 0199
6 7 1DSCO))
6 8 10DSC0119 1
6 9 1DSC0092
7 7 1A)SC))1)3
7 8 1 tSC00094
7 9 1DSCCO95
8 8 1)SC0396
8 9 1DSC0097
8 10 1DSCO098
8 11 1 SC,099
9 9 1DSC0100
9 10 1DScU11
9 11 10SCO102

10 10 1 DSCO 103
10 11 lDSCO114
10 12 1DOSCO105
11 11 1DSC02126
11 12 1DSC0107
12 12 lDCO 108 N

%0
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symmetry. To set up those conditions in the programs, data

about the neighbouring sectors must be input and they must

reflect this 600 rotational symmetry. Material compositions,

superelement function indices, etc., must all have this

symmetry. The minimum region of the neighboring sectors for

which this data must be input is the region which falls

within the superpatches of the benchmark problem.

We will now discuss 2-D MATHFIT.

E.2.1 2-D MATHFIT

(a) Description

This program was written to solve a 600 sector of the

small HTGR; that is the benchmark problem of Fig. 4.9. It

should be noted that the conditions on the straight edges

of the sector are conditions of rotational symmetry. The

mesh used is the coarse mesh of Fig. 4.15. The boundary

has been fitted exactly and interface distortion is also

included. A known error was deliberately made in this code

with the result that the power is not calculated correctly

for the boundary row of material hexagons. As far as our

results are concerned this is of no consequence as the

benchmark problem has only reflector material in that

particular area.

The version listed in Appendix F cannot be used to

throw out the interface distortion. The superelement set
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used is the Perturbation Quadratic one.

We now summarize the function of each subroutine.

MAIN: This can be divided into three parts. In the first

part sweeps are made through the mesh to form the

Galerkin matrices. The mesh is divided into two

groups of superpatches, the regular hexagons and the

irregular polygons. We first sweep through all the

regular hexagons, center by center, collecting

together all the inner products formed by the

superelement functions 'centered' at these centers.

We then concern ourselves with the irregular polygons.

These superpatches are decomposed into their consti-

tuent basic patches which are discussed in Section

C.2.2 (b). The basic patches are the large equila-

teral triangle of Fig. C.5, the small equilateral

triangle of Fig. C.9 and the isosceles triangle of

Fig. C.10. The sweep through the large equilateral

triangle is made in the same loop with the sweep

through the regular hexagons. After this sweep we

concern ourselves first with the small equilateral

triangles and then with the isosceles triangle. We

start with the outer boundary on the first iteration

through the loop and end with the core-reflector

interface.
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The second phase of MAIN is the implementation

of the power iteration technique to solve the eigen-

value problem. The final portion of MAIN initiates

the calculation of the material hexagon powers

normalized to the core power input on the data cards.

FISR: This subroutine performs in essense the same function

as the first part of MAIN. It sweeps through the

mesh to collect the terms for the material hexagon

powers. The logic is essentially that of the first

part of MAIN. We first sweep through the regular

hexagon superpatches, center by center, and then

concern ourselves with the irregular polygons treat-

ing first the large equilateral triangles, then the

small equilateral triangles and finally the isosceles

triangles.

RINPOW: This is where the powers are actually summed for

each material hexagon. There are three different

branches in this subroutine. The first branch is

to compute the powers for the regular hexagon super-

patches and the large equilateral triangles. The

second branch is for the small equilateral tri-

angle. The final alternative calculates the power

contribution of the isosceles triangles.
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RINPRD: The summation of the inner products over the

regular hexagon superpatches and the large equi-

lateral triangles are actually carried out in this

subroutine. There are four branches involved.

The first one leads to the equations patterned

after eq. (C.23). The second alternative is the

implementation of the equation (C.24). The third

branch are the equations patterned after eq.

(C.25). All these branches are involved with

calculating the 'cross' inner products, that is

inner products of superelement functions 'centered'

on different centers. The 'self' inner products

are computed in the fourth and final branch. This

is the implementation of the equation (C.22).

RINEQT: This is the small equilateral triangle equivalent

of RINPRD. It sums the inner products over the

small equilateral triangle. In thiscase matters

are simpler as there is only one possible 'cross'

inner product and only one possible 'self' inner

product.

RINIST: This is actually an entry point to the subroutine

RINEQT but for convenience we shall examine it here

as though it had a seperate entity of its own.

There are three types of 'cross' inner products and
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three types of 'self' inner products dictated by

the geometry of the triangle. This can be seen

from Table C.26 by examining the indices k and k

which are related to the geometry. The relation-

ship between these indices and the branches pro-

grammed into the subroutine will become clearer

when we examine the subroutines CSxySF and CSxy5D.

XIMQ: This is the standard IBM subroutine for solving a

set of linear algebraic equations.

The remaining subroutines to be discussed are all

tables of either inner products or flux integrals. We

divide the inner product tables into three groups. Those

concerned with the small equilateral triangle have names of

the form EQTa. The tables for the isosceles triangle are

denoted as CSxyC5. The remaining tables are concerned with

the large equilateral triangle and therefore by implication

with the regular hexagon superpatch. They have names of the

form $Oz. The option 5 = F are the tables of the 'function'

inner products, (T ] while S = D are those of the

'derivative' inner products, (VT Vi Vy). Within thisZg' kg F*

division we have the finer subdivision of 'cross' or 'self'

inner products. Here a = S, y = S and 6 = S indicates

'self' tables while a = C, y y6 S and 6 y S indicates 'cross'

tables. Table E.1 is a tabulation of the subroutines



Table E.l. Subroutines for table data used in 2-D MATHFIT.

Inner Products

Basic Function Derivative Flux

Patch Cross Self Cross Self Integrals

Small EQTCF EQTSF EQTCD EQTSD EQTPW

Equilateral

Triangle

Isosceles CS12CF, CS1SCFCS2SCF, CS12CD, CS1SCD,CS2SCD, CSPOWl,

Triangle CSl3CF, CS3SCF CSl3CD, CS3SCD CSPOW2,

CS23CF CS23CD

Large FE1,FE2 FSlFS2 DE1,DE2 DSl,DS2 RPOW 1, RPOW 2

Equilateral FFlFF2 FS3 DFlDF2 DS3 RPOW 3

Triangle FG1,FG2 DGlDG2

N

U,
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according to these subdivisions. For completeness the flux

integral subroutines are also included. We now discuss one

subroutine from each category as the logic for subroutines

of the same category is common. We start with the small

equilateral triangle.

(i) Small equilateral triangle: In the case of the

'cross' tables the ordering scheme is ITYPl = - 3 -fITYP2 =1- 3

where ITYPl = Index of superelement function centered

on a' (Fig. C.9)

ITYP2 = Index of superelement function centered

on c' (Fig. C.9).

In the case of the 'self' tables the scheme is,

ITYPl = 1- 3 -[ITYP2 = ITYPl- 3.

In the case of the flux integral tables,

ITYPl = 1-3.

(ii) Isosceles triangle: For the 'cross' tables we have,

INDEX = 1-2 -[ITYPl = 1- 3 -[ITYP2 = 1- 3

where INDEX = Area indicator (Fig. C.10),

ITYPl = Index of superlement function centered

on point x,

ITYP2 = Index of superelement function centered

on point y,
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and {x,y} are given by the form of the subroutine name,

CSxyCS. For these tables the numerals {l,2,3} represent-

the points {c',b',a'} of Fig. C.10.

For the 'self' tables we have,

IROT = 1 - 2 -[ITYPl = 1 - 3 -[ITYP2 = ITYPl - 3

where now

IROT = Area index (Fig. C.10).

Finally, for the flux integral tables,

IROT = 1 - 3 -[ITYPl = 1 - 3

with a change in definition of the programming variables.

We now have that

IROT = Triangle corner index

ITYPl = Index of superelement function centered

on point IROT

and x of the subroutine name CSPOWx is now the area indi-

cator.

(iii) Large equilateral triangle: For the 'cross'

tables we have,

INDEX = 1 - 3 -[ITYPl = 1 - 3 -[ITYP2 = 1 - 3

where

INDEX = Area indicator
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ITYPl = Index of superelement function

centered on point a,

ITYP2 = Index of superelement function

centered on point 6,

and 8 is given by the subroutine name FOz or D6z. The

character z refers to the particular triangle concerned

in accordance with the convention shown in Fig. E.7.

Reference should be made to eqs. (C.23) - (C.25) and Fig. C.6.

trianale 1 triangle 2

Fig. E.7. Convention for labelling triangles used in
FOz and DOz.

The ordering scheme for the 'self' tables is

IROT = 1 - 6 -[ITYPl = 1 - 3 -[ITYP2 = ITYPl - 3

IROT = Triangle index (Fig. C.4).

Finally, we have for the flux integral tables,

IROT = 1 - 6 -[ITYPl = 1 - 3

and the area indicator is now z, part of the subroutine name

RPOWz.
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This concludes the discussion on the subroutines.

Fig. E.8 shows the general logic of the program. We now

turn our attention to the preparation of the input data.

(b) Input Preparation

Card 1 - 15

MAXITR - Maximum number of iterations for power

iteration.

Card 2 - 2E10.8

ERMOD - Solution convergence criterion

EREIG - Eigenvalue convergence criterion.

Card 3 - 2E10.8

POWIN - Core power for normalization

RNU - v.

Card 4 - 15

NUMTYP - Maximum number of superelement functions per

group 'centered' on a mesh center.

Card 5 - 15

IHMAX - Maximum number of different H cases.

The cards below have to be repeated IHMAX times.

Card 6 - E10.8

H - Material hexagon center to material hexagon center



Enter

sweep through
r, reqular hexagons

inner pro-
ducts -~larg
equilateral
\ triangles

/ inner pro-ducts - smal
equilateral
\triangle

inner 
ro-

dut - sos-
celes triangl

tables /

sweep through large
equilateral triangles

sweep through small
I equilateral triangles

Form
Galerkin
coefficient
matrices

use power iteration
scheme to solve eigen-
value problem

calculate material
hexagon powers

Fig. E.8. Flow chart for 2-D MATHFIT.

270
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length. (Avord of caution is necessary here.

Some tables use a different length to measure

mesh size. Have to check that tables are

consistent with input H.)

Card 7 - 315

NUMVAR -

MAXBLK -

NREGIN -

Card 8 - 15

IMATMX -

Total number of unknowns per group

Total number of material hexagons. All

material hexagons used in the formation of

the inner products have to be included in

this count.

Total number of different material compositions.

Total number of cases with different sets of

materials.

The cards below have to be repeated IMATMX times.

Card 9 - 15, 7E10.8

IREGIN - Material composition index. Must run from 1

to NREGIN

SIGRl - Group 1 Removal cross section

SIGR2 - Group 2 Removal cross section

DIFFl - Group 1 Diffusion coefficient

DIFF2 - Group 2 Diffusion coefficient
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SIFNUl V

SIFNU2 vZf 2

SIGS21 - Outscattering cross section group 1 to

group 2.

Card 10 - 2E10.8

BSQl - Group 1 transverse buckling

BSQ2 - Group 2 transverse buckling.

Cards 9 and 10 have to be repeated NREGIN times.

A word is in order here, before we list the remaining

data cards, about the indexing scheme used. Each material

hexagon is assigned a number, called the block number and

there are arrays which relate the block numbers to material

compositions and to a set of coordinates (m,n). Block

numbers cannot be assigned on an arbitrary basis. They

must conform to the following sequence. Reference should be

made to Fig. E.9. The central material hexagon is block

number 1. Then the non-boundary non-interface hexagons are

to be labelled, IBLKl - IBLK2 where IBLK1 has to be 2.

Next, the boundary hexagons are to be numbered in sequence,

IBLKlL - IBLK2L. We then turn to the hexagons on the L side

of the interface, IBLK5L - IBLK6L and after that the

hexagons on the R side of the interface, IBLK7R - IBLK8R.

Finally the hexagons which are bisected by the line ac,
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Fig. E.9. Block numbering sequence and (m,n) axes for 2-D
MATHFIT.
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IBLK5 - IBLK6, are to be numbered in sequence. All

remaining material hexagons can be labelled in an arbitrary

manner. We now present the remaining data cards. The

triangular problem refers to the Triangular Neumann problem

of Fig. 4.12.

Card 11 - 215

IBLKl = 2

IBLK2

Card 12 - 215

IBLK3 = 0

IBLK4 = 0

Card 13 - 215

IBLK5

IBLK6

Card 14 - 215

IBLK7 = 0

IBLK8 = 0

Card 15 - 215

IBLK9 = 0

IBLK1 = 0

For triangular problem = block s

= block s

For triangular problem = block f

= block f

For triangular problem = block r

I = block r
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Card 16 - 15

IBLKll = 0 For triangular problem = block h

Card 17 - 215

IBLKlL

IBLK2L

Card 18 - 215

IBLK3R

IBLK4R

Card 19 - 215

IBLK5L

IBLK6L

Card 20 - 215

IBLK7R

IBLK8R

Cards 21 - 22 are to be repeated MAXBLK times.

Card 21 - 415

IBLK - Material hexagon block number.

IPROP - Material composition index of material

contained in this hexagon.

M - m-coordinate of this material hexagon.

N - n-coordinate of this material hexagon.
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Card 22 - 1015

(IFUNCT (IBLK, ITYP), ITYP = 1, NUMTYP) - Index of

superelement function 'centered' on material

hexagon numbered IBLK and of type ITYP (must be

between 1 and NUMVAR).

The cards below contain information regarding the

irregular polygons.

Card 23 - 1615

NEQTR1 - - type 1

NEQTR2 - - type 2

NEQTR3 - - type 3

Number of large equilateral triangle
NEQTR4 - - type 4

NEQTR5 - - type 5

NEQTR6 - - type 6

Refer to Fig. E.10 for the definition of the different

types. m-axis

6 5

n-axis

2 3

Fig. E.10. Convention for large equilateral triangles.
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Card 24 - 1615

(IEQTRl (J) J = 1, NEQTR1) - Block number of material

th
hexagon in which the J large equilateral triangle

of type 1 falls.

Card 25 - 1615

(IEQTR2 (J)., J = 1, NEQTR2) - Equivalent of Card 24

for type 2.

Card 26 - 1615

(IEQTR3 (J), J = 1, NEQTR3) - Equivalent of Card 24

for type 3.

Card 27 - 1615

(IEQTR4 (J), J = 1, NEQTR4) - Equivalent of Card 24

for type 4.

Card 28 - 1615

(IEQTR5 (J), J = 1, NEQTR5) - Equivalent of Card 24

for type 5.

Card 29 - 1615

(IEQTR6 (J), J = 1, NEQTR6) - Equivalent of Card 24

for type 6.

If NEQTRx is zero then the corresponding data card of

the set 24 - 29 should be dropped from the input.
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The remaining cards are data for the small equilateral

triangles and for the isosceles triangles. They should be

repeated twice. The first set is for the boundary. The

second is for the interface.

Card 30 - 1615

NCORN - Number of corner points on

(a) Boundary - First set of data cards

(b) Interface - Second set of data cards.

The corner points are indexed 1 - NCORN.

Card 31 - 1615

((ICFUNC (I, ITYP), I = 1, NCORNP), ITYP = 1, (NUMTYP) -

Index of superelement function of type ITYP

centered on the corner point I where

NCORNP = NCORN + 1 (index must be between 1 and

NUMVAR).

Card 32 - 1615

((ICLFBK (ISIDE, I), I = 1, NCORN), ISIDE = 1,2) -

Block number of the material hexagons to the L

side and R side of the corner point I. ISIDE = 1

is the L side.

Fig. E.1l illustrates this point.
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Corner point

side

Either boundary or interface

L side

Fig. E.11. Convention for small equilateral triangle.

Card 33 - 1615

((I3RDPT (ISIDE, I), I = 1, IBLKED), ISIDE = 1,2) -

Index of corner point which forms the third corner

of the Ith isosceles triangle on the ISIDE side

of

(a) Boundary - First set of data cards

(b) Interface - Second set of data cards.

The isosceles triangles on the ISIDE side are

indexed starting with the numeral 1.

Fig. E.12 is an illustration of the convention used.
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Isosceles triangle-

identified by -- Corner point
(ISIDE, I)

Fig. E.12. Convention for isosceles triangle.

It must be noted that IBLKED is the larger of the

following two numbers: the number of isosceles triangles

on the R side and the number of isosceles triangles on the

L side. This means that 0 will have to be input for some

of the array elements of I3RDPT (ISIDE, I).

In concluding this section on the input preparation

we should make the following comments.

(i) In the case of the interface the last material

hexagon on the L side should be such that the edge ac

bisects it as in Fig. E.13.

a /c

Pig. E.13. Last material hexagon on interface.
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(ii) If the number of superelement functions centered

on a certain mesh center is less than NUMTYP then the. value

O should be input for the indices of the missing superelement

functions.

(iii) To ensure 60* rotational symmetry conditions on

the edges of the sector, the material compositions and the

indices of the superelement functions in the neighbouring

sectors must reflect this symmetry.

This completes the description of the data preparation.

We present on the next page a list of input cards for the

sample problem shown in Figs. E.14 - E.15

We now turn our attention to the second mathematical

mesh program.

E.2.2 2-D MATHNO

(a) Description

2-D MATHNO solves the same 60* sector small HTGR

problem which 2-D MATHFIT does but it does not fit the

boundary exactly. The mesh used is the one of Fig. 4.10;

that is to say the only superpatch used is the regular

hexagon. This is the program used for the 'initial' phase

calculations referred to in Section 3.3 (6). As can be

inferred much of the logic is similar to that of 2-D MATHFIT

and we will draw upon the presentation of Section E.2.1 in

our description.
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0.1 E-05 0.1 E-05
3.7037 2.43

2
1

34.64 OO
64 55 4

1
15.93655D-31.030C3D-21

0.0 0.0
23. 58649D-34.075e4D-31

0.0
34. 98523D-32.96

0.0
4 0.0 DO 0.0

0.0
7
0

27
0
0

14
0
19
25
1
2
2
4
2
6
2
8
1

.6835 DO

.47493DO

1.29702D0

1.14155DC

OCOD-40.96899D0 0.78988DO

2.14326D-43.54780D-31.83 D-3

3.86370D-46.17220D-32. 25000D-3

0.0 DO 0.0 DO 4.98000D-3

1EC 0.0 DO 0.0 DO 0.0 DO 0.0 DO 0.

3 2

4 3

5 3

5 4

5 5

2DMFC001
2DMP~O40"2
2DIF0003
2DMF0004
2DMFCC)5
2DM F0006
2DMF0007

2DMF01092DMF00101
2DM F 12
2DM FO1 112DM F00 11
2DMF012

2DM F03~'13
20 MF0"?14
2DMF0015

2 P) mF ') 1 7;
2 DM F)~ 17R

2DMFC020
2 D) M F 0~ ')211
2DM FCO 2
2DMF0029
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0.0
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2
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0
0
0
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0
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21
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2
3

4
7
5

N
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9 10 D 37
6 3 7 8 2DMFO038

19 20 2DMO039
7 3 8 6 2DMF0040

24 25 2DMFO341
8 3 9 5 2DMF042

32 33 2DIMF0)43
9 3 9 6 2DMF0044

34 35 2DMFI0045
10 3 9 7 2DMF0046
36 37 2DMF0047
11 3 3 7 2DMF0)48
26 27 2DMPOC49
12 3 8 8 2DMFrC0 50
28 29 2DM F0 51
13 3 8 9 2MP'052
30 31 2DMFO03
14 3 7 9 2DMFC54
21 22 2DM P'G455
15 3 6 8 2DMF0''56
32 33 2DMFJ. 'j57
16 2 7 4 2DMF0058
15 47 2DM ?JC-5Q
17 2 6 4 2DMF060
11 48 2D)M F0061
18 2 6 5 2DM F 0 62
12 49 2DM F063
19 2 6 6 2DMF0064
13 50 2DM FO0)65
2) 2 5 6 2DMF0'?b6
13 47 2DM0167
21 3 8 5 2DMF0068
23 51 2DMF0069
22 3 7 5 2DM F070
16 52 2DMF0071
23 3 7 6 2DMFO72 N

00
WA
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42
3

43
7

44
16
45
34
46

47
3

48
3

49
9
50
14
51
21
52

3
53
7

54
13
55
19
11
16
16
17
21
21
17

2
4
2
8
3

52
3

35
4

2
4
2
4
1
10
3

55
3

22
2
4
2
8
2

50
3

20
10
17
17
18
22
22
21

12
12

8 9 11 12

13
13

2 2

3 4

4 6

8

6 10

2 1

4 2

6 3

8 4

10 5

3 1

5 2

7 3

9 4

14

8 11 14

2DMF) 13)19
2DMF 0110
2DMFO111
21) M Fy112
2DMFl11 .3
2DMF 0 114
2DMFO0115
2DM F)116
2DMF0 117
2DMF0 118
2DII F0 119
2 DM Ff' 12C
2DM F121
2DMF')122
2DMF1123
21)M F 124
2MM F.n125
20) M F 12 6
2f) M F127
2DMF0128
2DM FK)129
2rMF01 30
2D)MFO131
2DM FP132
2DMF133
2DMF0I134
2DM F? 135
2DMFO136
2DMFO 137
2DMF0o1 38
2DMF01 39
2DMF014f0
2DM F0141
2DMF142
2DM70143
2DMFtC 144

5 7
8 9 10
8 9 10

11
11

9
18
18
21
23
23
23

5
19
19
24
24
24
24

25
25
25

N
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15 2DMP3 145
2 D M7,0'C 14 6
2DMFC147

8 9 9 1C 10 10 11 12 12 13 13 13 14 14 14 28 2DM F)148H
28 29 29 30 32 32 32 33 33 34 35 35 37 40 2TDMF0~1 49

2 4 7 8 10 13 16 2DM 7015C
9 2DMFC 151

38 39 40 41 42 43 44 45 46 38 56 57 58 59 60 61 2DMi0152
62 63 64 56 2DMF0O153
16 16 17 18 18 19 19 19 20 21 22 22 22 23 23 24 2)M F015 4
25 25 2DMF0155

3 4 6 9 0 2 5 7 8 10 2DMF)O15b

003
ON~
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Fig. E.14. 2-D MATHFIT sample problem. Block numbers.
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Fig. E.15. 2-D MATHFIT sample problem. Superelement function
indices.
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The version listed in Appendix F uses the Perturbation

Quadratic set for the superelement functions.

We now describe the subroutines.

MAIN: As with 2-D MATHFIT this subroutine can be divided

into three parts. The difference in the first part,

the formation of the Galerkin matrices, is that we

only have to sweep through regular hexagons. The

second parts are identical. In the final section

the difference is that the material hexagon powers

are not stored.

FISR: Its function here is identical to its function in

2-D MATHFIT, the difference in logic being that it

only has to sweep through regular hexagons. In

addition no allowance is made for the storage of

material hexagon powers.

RINPOW: This can be considered as the RINPOW of 2-D MATHFIT

minus the branches for the small equilateral

triangles and the isosceles triangles and also

minus the logic for the storage of the material

hexagon powers.

RINPRD: RINPRD of 2-D MATHFIT was obtained from this sub-

routine by adding the option to sum inner products

over the large equilateral triangles.
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XIMQ: This is the standard IBM subroutine for solving a

set of linear algebraic equations.

The remaining subroutines are tables. These are the

tables for the regular hexagon superpatches and reference

should be made to the description presented in Section E.2.1.

The tables used in this program are the ones in the 'large

equilateral triangles' row of Table E.l.

This concludes the description of the subroutines.

We present in Fig. E.16 a general flow diagram for the

program. The next section lists the input data required.

(b) Input Preparation

Card 1 - Card 22 same as that for 2-D MATHFIT. We

present on the next page a list of input cards for the

sample problem shown in Figs. E.17 - E.18 . The next

section discusses the physical mesh codes.

E.3 2-D Physical Mesh Programs

As stated in the introduction there is only one code

in this group, the code 2-D PHYMESH.

E.3.1 2-D PHYMESH

(a) Description

2-D PHYMESH is the physical mesh counterpart of 2-D

MATHNO. It solves the same 60* sector small HTGR problem



C THIS IS THE SAMPLE INPUT FOP
50

0.1 E-05 C.1 E-05
3.7037

2
1

34.64 EOO
46 55
1

2-D MATHNO

2.43

4

15.93655D-31.
1.0 E-4-1.0

23. 59649D-34.
1.0 E-4-1.0

34. 98523D-32.
0.0 '.0

44.98523D-32.
0.0 0.0

23
c
36
0
0

1
2
2
4
2
6
2

20
3

42
2

12
3

03003D-21.6835 DO
E-4
07584D-31.47493DO)
E-4
96000D-40.96899D0

96000D-40.96899tC

1.29702£00

1.141550O

3.78988D0

C.78988 DO

2.14326D-43.5478CD-31. 8 D-3

3.86370D-46.1722C D-32.2500CD-3

0.31

0.0

Do 0.) DO 4.98000D-3

DO 0.0 D3 4.9800'D-3

3 2

4 3

5 3

7 4

9 5

6 4

8 5

2D IN^>i)0 1
2DMN 0032
iDMN0003
2D)MN0004
2DMN0105
2DMN)01) 6
2DM NO ) 37
2DMN0028
2DIN0009
2 DM NO2110
2DM NC 311
2DMNOO12
2DMN0013
2DMN0014
2DMN00 15
2DMNC 316
2DMN)17
2DMN;1 P
2DMNO 019
2DMNC020
2DMNk021
2DMN0022
20 )MNOI 23
2D IN0024
2 D MN - 0-25
2 0 M N 1) 02 6
21MNO27
2 D M N-0 "'28
2DMN0029
2DMNO') 30
2DMN0031
2DM NI 32
2D MNO 33
2DMN0034
2DMN0135
.2DMNC036

2
0

34
0
0

1

2
3
3
5
4

19
5

41
6

11
7 N



31 32 2 DMN0037
8 1 5 5 2DMN" i 38
9 iC 20 M NC 039
9 3 6 7 2DMN0040

17 18 2 0MN)041
10 3 7 9 2DMNO)42
29 30 2DMNCO43
11 2 5 4 2D MN 3044

7 8 2i)MN0045
12 2 6 5 2DMN0046
13 14 2DMN0m47
13 2 6 6 2DMN0048
15 16 2DMNC049
14 3 7 5 2DM NO 50
21 22 2DMNO25 1
15 3 7 6 2DIN0052
23 24 20 1 N0 053
16 3 7 7 2DMN054
25 26 2DMN )55
17 3 7 8 21D MN 0056
27 28 2DMN%357
18 3 8 6 2,)MNO 58
33 34 2DM NOC) 59
19 3 8 7 2DMN0060
35 36 2D MN" 0 6 1
20 3 8 8 2DMN0062
37 38 2D M N 0%o3
21 3 8 9 21)M NC064
39 40 2)MN)0065
22 3 9 6 2DMNC066
43 44 2'MN0067
23 3 9 7 2DMN0068
45 46 2DM NOD) 6 9
24 4 10 6 20MN0070

2DM NC)07 1
25 4 10 7 2DMN0072 N
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44

7
45
21
46
43
47

48
3

49
9

50
17
51
29
52

3
53
7

54
15
55
27

4
2
8
3

22
3

44
4

2
4
1

10
3

18
3

30
2
4
2
8
2
16

3
28

3 4

4 6

5 8
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2DM NO 1
2DM NO 1

09
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in
es

Fig. E.16. Flow chart for 2-D MATHNO and 2-D PHYMESH.
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Fig. E.17. 2-D MATHNO sample problem. Block numbers.
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Fig. E.18. 2-D MATHNO sample problem. Superelement function
indices.
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without fitting the boundary exactly. The mesh used is the

one discussed in Section 3.3 (1) and shown in Fig. 3.6.

There is only one superpatch, the regular hexagon. The

logic of the program is quite similar to that of 2-D

MATHNO and we shall refer to Section E.2.2 in this

presentation.

The superelement function set used in the version

listed in Appendix F is the Perturbation Quadratic set. It

should be noted that this is not the version used to solve

the Triangular Neumann problem discussed in Section 4.1.1

(3). The Appendix F version is also restricted to two

superelement functions per mesh center.

We now describe the subroutines of the program.

MAIN: This performs the same function as the MAIN of

2-D MATHNO and the logic is quite similar. The main

difference is that the individual material hexagon

powers are not printed.

FISR: It sweeps through the regular hexagon superpatches

to collect the terms for the material hexagon powers;

in other words, it carries out the same function as

FISR in 2-D MATHNO.

RINPOW: As with the RINPOW of 2-D MATHNO this is where

the material hexagon powers are actually computed

and summed.
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RINPRD: This subroutine computes the inner products. It

has three branches. Two branches are for 'cross'

products and the remaining one is for 'self'

product. One of the 'cross' product branches is

concerned with the outer ring discussed in Section

C.2.1. It implements eq. (C.1). The other branch

leads to eq. (C.2), that is, it calculates the

inner products for the inner ring. The 'self'

branch implements eq. (C.3).

XIMQ: This is a standard IBM subroutine to solve a set of

linear algebraic equations.

The remaining subroutines are tables of inner products

and flux integrals. Subroutines F and D are tables of

'cross' inner products. FS and DS are tables of 'self'

inner products while POW is a table of flux integrals.

In our presentation below we do not examine the tables for

the derivative inner products (V 0 ,V4 ), D and DS as the
ig $g

tables F and FS for the function inner products ($. ,$ )
.1g jg

are logically quite similar to their derivative counter-

parts.

E: The ordering scheme is,

Il = 1 - 2 -[112 = 1 - 3 -[ITYPl = 1-2 -[ITYP2 = 1 - 2
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where ITYPl is the type of the superelement function

centered on point Il and ITYP2 is the type of the

superelement function centered on the point (112 + 1).

Reference should be made to Fig. C.2 for the geometrical

relationship between the points.

FS: For this subroutine the ordering used is

INDEX = 1- 2 -[ITYPl = 1- 2 -[ITYP2 = 1- 2

where ITYPl and ITYP2 are the respective types of the

superelement functions centered on point 4 in Fig. C.2

and,

INDEX = 1 refers to triangle 4ex

INDEX = 2 refers to quadrilateral estf.

POW: We use the following ordering,

ITYPl = 1- 2 -[INDEX = 1-2

where ITYPl is the type of the superelement function

centered on point 4 in Fig. C.2 and INDEX has the

meaning it has in subroutine FS.

We conclude the description of the program with Fig.

E.16 which is a general logic diagram for the code. The

next section is concerned with the data preparation.
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(b) Input Preparation

Card 1 - Card 10 same as that for 2-D MATHFIT.

As in the case of 2-D MATHFIT each material hexagon

has a block number associated with it. These block numbers

cannot be assigned on an arbitrary basis but should conform

to the following sequence. Reference should be made to Fig.

E.19. The central hexagon is IBLKl and should be assigned

the number 1. The hexagon contiguous to it is IBLK2 and

should be numbered 2. The next sequence to be numbered is

the sequence IBLK3-IBLK4, the hexagons bisected by the edges

ab. The sequence IBLK15 - IBLK16, the hexagons which 'fill

the gaps' between the hexagons IBLK3 - IBLK4 are then to be

labelled. After this the hexagons which 'fill the gaps'

for the edge ac, IBLKl7 - IBLKl8 are to be labelled. The

remaining material hexagons, IBLK21 - IBLK22 are then to be

numbered. Sweeps are to be made parallel to the n-axis.

The remaining hexagons to be numbered, IBLK23 - IBLK24, can

be labelled in any sequence with the exception of the hexa-

gons bisected by the edge ac. These also appear in the

input as IBLK5 - IBLK6 and must be labelled in sequence.

Card 11 - 215

IBLKl = 1

IBLK2 = 2
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Fig. E.19. Block numbering sequence and (m,n) axis for 2-D
PHYMESH.
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Card 12 - 215

IBLK3

IBLK4

Card 13 - 215

IBLK5

IBLK6

Card 14 - 215

IBLK7 = 0

IBLK8 = 0

Card 15 - 215

IBLK9 = 0

IBLK10 = 10

Card 16 - 215

IBLK11 = 0

IBLK12 = 0

Card 17 - 215

IBLK13 = 0

IBLK14 = 0

Card 18 - 215

IBLK15

IBLK16
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Card 19 - 215

IBLK17

IBLKl8

Card 20 - 215

IBLK19 = 0

IBLK20 = 0

Card 21 - 215

IBLK21

IBLK22

Card 22 - 215

IBLK23

INLK24

The cards below are to be repeated MAXBLK times.

Card 23 - Same as Card 21 of 2-D MATHFIT.

Card 24 - Same as Card 22 of 2-D MATHFIT.

The list of input cards for the sample problem shown

in Figs. (E.17) and (E.20) is on the next page. The block

numbers are the same as the ones for the 2-D MATHNO sample

problem. Itshould be noted that for the version listed in

Appendix F, the superelement functions centered on block



C THIS IS THE SAMPLE INPUT FOR 2-D PHYMFSH
50)

C.1 E-05 0.1 E-05
C.1 E 03 2.43

2
1

40.00
46 55 4

1
15.93655D-31

E-4-1.0
23. 58649D-34

.03003D-21 .6835
E-4

.07584D-31.4749
E-4-1.0 E-4

34. 98523D-32.96000D-40
0.0

40.0 DO
0.0

2
5

36

7
10

23
55
1
2
2
4
2
6
2 :

0.0

.9689

DO 1.29702r0

3DO

9D0

1. 14155D0

0.78988D0

2.14326D-43.5478CD-31.83 D-3

3. 86370D-46 .17220 D-32.2500OD-3

0.0 DO 0.0 DO 4.98000D-3

to 0.0 DO C.0 DO 0.0 DO 0.0 DO 0.0 DCo

3 2

4 3

5 3

7 4

2DPH'001
2D PH00) 2

2DPHI0003

2DPH0'C05
21) PH0006
2:DP H0007
2 DPHOO9
2DPFC009
2DPHO010
2'APH001 12 1). Pi 0C 0 122DPHKO012
2DPH0C31 3
2 PHC014

2DPrIC015
2DPHCO16
2DPTHI0017
2DPH0018

2 V)P IC)21 q

20PH'02 1

2DP11C023
2DPHC214
21) P HO 02 5
2DPH00232DPHC024

2DPH0027

2DPHn028

20PH0029

2DPH0031
2 DP 10032
2DPH"O033
21)PH0034
2DPilI"(' 35
2DPH09"36L) fr)3

un

1. 0

1.0

0.0

0. 0
1
3

34

6
8

11
24
1
1
2
3
3
5
4



19 20 2 TP HO 037
5 3 9 2D P H00 3

41 42 2DPH.C 039
6 2 6 4 2 DP H ) -) 40

11 12 2 D P H 0041
7 3 8 5 2DPHOC42

31 32 2DPi0043
8 1 5 5 2 P P H0C 44
9 10 2DPH0045
9 3 6 7 2DPHC046

17 18 2DPHCO47
10 3 7 9 2DPHO048
29 30 2DPH0049
11 2 5 4 2DPH)50

7 8 2DP H 0) 51
12 2 6 5 21)P 10052
13 14 2DPH0053
13 2 6 6 2 DP H 6 ) 54
15 16 2DPHC055
14 3 7 5 2DPHC 56
21 22 2DPH 057
15 3 7 6 2DPH0058
23 24 2DPH0059
16 3 7 7 2DPH0060
25 26 2DPHOO6 1
17 3 7 8 2D P H0 06?
27 28 2DPH 0063
18 3 8 6 2 T P H 006 4
33 34 2 DP H 0 065
19 3 8 7 2DPHO066
35 36 2 PH 0 6 7
20 3 8 8 2DPP H4 68
37 3P 2D P T, 00 6 (4
21 3 8 9 2u 1)I CC 70
39 40 20i!'007 1
22 3 9 6 2DP) ) N 72
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11
41
31
42

43
3

44
7

45
21
46
43
47

12
3
32
4

2
4
2
8
3

22
3

44
4

5 7

6 9

2 2

3 4

4 6

5 8

6 10

48 2 4 2

49 1 6 3

50 3 8 4

51 3 10 9

52 2 3 1

53 2 5 2

54 2 7 3

55 3 9 4

2D PHC 10 9
2DPF 1 1V
2DG0 111
2DP10112
2DPHC113
2DPH 0114
2DPH0 115
2DPHC 116
2DPH1 17
2DP HC1 18
2DPHO 119
21IC 120
2DPRC 121
2DDTC 122
2DP T1 23
2DPH 124
2DPH2 125
2DPIC 126
2DPHV 127
2DPH 0128
2DPHC 129
2D0C1 3\
2DPH 0131
2DPH 132
2DPHo 133
2D0 1C 134
2D"1!0 1 35
2DPHJ01 36
2DP!CO1 37
2DPHO138
2r)PHO 139

0
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3 x2
x 4

3 3 5
. 4 x4 - x6-

7 5 7 11 19
x8 x 6 x 8 x 12.0

il9~ 13 21 31 41
x 12 x 10 x 14 .' x22 x 32 42

21 19 215 -23 33 43-
x22 k 20 xM16 .x24 34 x 44

31 17 -25 35 45
x 32 x 18 x. 26 x- 36 x 46-

43 41--
x 44 42 27 37

x 28 x 38

29 3.9-
x 30 x 40 - -

Fig. E. 20. 2-D PHYMESH sample problem. Superelement function
indices.

f
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number 1 must be indexed 1 and 2. The ones centered on

block 2 have to be numbered 3 and 4 while those centered

on IBLK5 must be numbered 5 and 6.



31.1

Appendix F

SOURCE LISTING OF COMPUTER PROGRAMS

(M.I.T. Library copies only)


