# A MODULAR APPROACH TO FAULT TREE AND RELIABILITY ANALYSIS 

by<br>Jaime Olmos<br>Lothar Wolf

August 1977

DEPARTMENT OF NUCLEAR ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY Cambridge, Massachusetts 02139

# NUCLEAR EMCINEERING READING ROOM-M.I.T. 

# A MODULAR APPROACH TO FAULT TREE AND RELIABILITY ANALYSIS 

by

Jaime Olmos<br>Lothar Wolf

August 1977

Department of Nuclear Engineering
Massachusetts Institute of Technology


#### Abstract

An analytical method to descrioe fault tree diagrams in terms of their modular composition is developed. Fault tree structures are characterized by recursively relating the top tree event to all its basic component inputs through a set of equations defining each of the modules for the fault tree. It is shown that such a modular description is an extremely valuable tool for making a quantitative analysis of fault trees.

The modularization methodology has been implemented into the. PI-MOD computer code, written in PL/l language, which is capaile of modularizing fault trees containing replicated components and replicated modular gates. PI-MOD in addition can handle mutually exclusive inputs and explicit higher order symmetric (k-out of - n) gates.

The step-by-step modularization of fault trees performed by PL-MOD is demonstrated and it is shown how this procedure tis only made cossible through an extensive use of the list provessing tools available in PL/l.

A number of nuclear reactor safety system fault trees were analyzed. PL-MOD performed the modularization and evaluation of the modular occurrence probabilities and Veseiy-Fussell importance measures for these systems very efficiently. In particular its execution time for the modularization of a PWR High Pressure Injection System reduced fault tree Nas 25 times fastar than that necessary to generate its equivalent minimal cut-set description using MOCUS, a code considered to be fast by present standards.


Inquiries about this research and for the computer program should be directed to the second author at MIT.

TABLE OF CONTENTS

PAGE
1.7.1 SETS ..... 44
1.7.2 BAM ..... 47
1.8 Reliability Calculations by a Pattern Recognition Method ..... 59
1.9 The IMPORTANCE Computer Program ..... 68
CHAPTER 2: MODULAR REPRESENTATION OF FAULT TREES ..... 74
2.1 Introduction ..... 74
2.2 Modular Decomposition of Coherent Systems ..... 74
2.3 The Finest Modular Representation ..... 75
2.4 Reliability Evaluation of Modularized Fault Trees ..... 82
2.5 Reliability Importance of Modules ..... 88
2.5.1 Summary of Reliability Importance Measures ..... 88
2.5.2 The Birnbaum and Criticality
Measures of Importance for Modules ..... 90
2.5.3 The Vesely-Fussell Importance Measure for Modules ..... 92
2.5.4 Evaluation of the Vesely-Fussell Importance Measures for a Modular- ized Fault Tree ..... 95
CHAPTER 3: PL-MOD: A FAULT TREE MODULARIZATION COMPUTER PROGRAM WRITTEN IN PI/I ..... 101
3.1 Introduction ..... 101
3.2 Algorithm for the Modular Decomposition of Fault Trees ..... 102
3.3 PL/I Language Features Used for the Represen- tation and Modularization of Fault Trees 114
3.3.1 Introduction ..... 114
3.3.2 Structure Variables ..... 115
3.3.3 Pointers, Based and Controlled
Variables ..... 116
3.3.4 The Refer Option for Based Variables ..... 118
3.3.5 Bit String Variables ..... 122
3.4 Definition and Organization of the PROCEDUREUsed in PL-MOD for the Modularization ofFault Trees124
3.5 The Pressure Tank Rupture Fault Tree Example ..... 130
3.6 INITIAL and TREE-IN ..... 135
3.7 COALESCE ..... 149
3.8 MODULA ..... 158
3.9 BOOLEAN and SYMM ..... 181
3.9.1 Description of Higher Order Modules by Means of PROP,PER and VECTOR Structures ..... 181
3.9.2 Procedure SYMM ..... 187
3.9.3 Procedure BOOLEAN ..... 195
3.10 TRAVEL and TRAPEL ..... 226
3.11 Replicated Modules ..... 230
3.12 Dual State Replicated Components ..... 232
3.13 NUMERO ..... 235
3.13.1 PL-MOD's Quantitative Analysis of Modularized Fault Trees ..... 235
3.13.2 STAT-IN ..... 238
3.14 DOT,PLUS and MINUP ..... 238
3.15 EXPECT ..... 244
3.16 IMPORTANCE ..... 249
CHAPTER 4: NUCLEAR REACTOR SAFETY SYSTEM FAUIT TREE EXAMPLES ..... 260
4.1 Introduction ..... 260
4.2 TRIGA Scram Circuit ..... 261
4.3 Standby Protective Circuit ..... 269
4.4 High Pressure Injection System for a Pressurized Water Reactor ..... 275
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS ..... 307
5.1 Summary and Conclusions ..... 307
5.2 Recommendations for Future Work ..... 309
PAGE
REFERENCES ..... 311
APPENDIX: PL-MOD's Input and Output Description ..... 313

## IIST OF ILLUSTRATIONS

FIGURE PAGE
1.1 Standby Protective Circuit Diagram. ..... 2
1.2 Fault Tree for Standby Protective Circuit. ..... 3
1.3 Fault Tree Symbols. ..... 13
1.4 Fault Tree Example I. ..... 14
1.5 Higher Order Structures for a Set of Three Inputs ..... 22

1. 6 Dual Fault Tree for Example I. ..... 38
1.7 EXCLUSIVE OR-Gate and SPECIAL Gates Available in SETS. ..... 45
1.8 Fault Tree Including Mutually Exclusive Mainten- ance Events. ..... 53
1.9 Representation of an Event B, Dependent on the Occurrence of Event A. ..... 56
1.10 Representation of an Event $C$ Dependent on the Occurrence of Events $B$ and $A$. ..... 57
1.11 Fault Tree Including Common Mode Event A. ..... 58
1.12 Fault Tree Example II in Binary Gate Form. ..... 61
1.13 Fault Tree Example II in its Ordered Form ..... 61
1.14 Equivalent Binary Tree Patterns. ..... 62
1.15 PAT-REC's Library of Patterns Stored in a Tree- like Form ..... 63
1.16 Final Ordered Form for Fault Tree Example II. ..... 65
1.17 Fault Tree Dependencies Reduced Out When $y_{i}=0$ or $y_{i}=1$. ..... 67
2.1 Simple Sub-tree I with no Replications ..... 77
2.2 Finest Modular Representation of Sample Sub- Tree 1. ..... 78
2.3 Sample Sub-tree II with Replications ..... 80
2.4 Finest Modular Representation of Sample Sub- tree II ..... 81
2.5 AND-Gate Super-module ..... 97
2.6 OR-Gate Super-module ..... 97
2.7 Higher Order Prime Gate Super-module ..... 99
3.1 Fault Tree Modularization Algorithm Flow Chart ..... 104
3.2 Fault Tree NODES ..... 105
3.3. Fault Tree NODE.ROOTS ..... 106
3.4 Fault Tree Node Interconnections ..... 107
3.5 Fault Tree Bottom Branch Gate Nodes ..... 107
3.6 Coalesced Gateless Nodes ..... 108
3.7 Modularized Gateless Nodes ..... 110
3.8 Interdependent Nodes in Temporary Nested Module Form ..... 110
3.9 Complete Set of Nested Sub-Modules ..... 111
3.10 Modular Minimal Cut-set Representation ..... 112
3.11 Symmetric Modularized Gate ..... 113
3.12 Modularized Gates as Super-Components ..... 113
3.13 Fault Tree in Binary Gate From ..... 119
3.14 Sample Gate Node ..... 120
3.15 Interdependent Gate Interconnections ..... 126
3.16 Transfer of Gate Interconnections ..... 127
3.17 Internal Gate Interconnections ..... 128
3.18 Boolean Vector Representation ..... 129
3.19 Pressure Tank Example ..... 132
3.20 Pressure Tank Rupture Fault Tree ..... 133
3.21 Simple PROP Structures ..... 170
3.22 Symmetric Higher Order Modules ..... 171
3.23 Simple Gate Module ..... 182
PAGE
3.24 Higher Order Module ..... 182
3.25 Explicitiy Symmetric Modular Gate ..... 188
3.26 Symmetric Higher Order Modules ..... 197
3.27 Pressure Tank Fault Tree with Gates G4,G5:G9 Modularized ..... 199
3.28 Pressure Tank Fault Tree with Gates G4,G5,G9 Modularized and GI,G2,G3 Coalesced. ..... 200
3.29 Ordering of PROP Structure Allocations for a Higher Order Module ..... 206
3.30 Higher Order Modular Composition for the Pressure Tank Fault Tree ..... 209
3.31 OR-Parent Gate Higher Order Module Example I ..... 214
3.32 AND-Parent Gate Higher Order Module Example II ..... 215
3.33 Replicated Leaf Associated with a Module ..... 231
3.34 Dual Component States ..... 233
3.35 Interdependent Gates due to Mutually Exclusive States ..... 234
3.36 Simple Gate Modular Occurrence Probabilities ..... 240
3.37 Prime Gate Modular Occurrence Probability ..... 242
4.1 TRIGA Scram Circuit Diagram ..... 262
4.2 TRIGA Scram Fault Tree ..... 263
4.3 HPIS Simplified System Diagram ..... 276
4.4 HPIS Reduced Fault Tree ..... 277
4.5 "Empty" Nested AND Gate ..... 291
A. 1 SAMPLE Problem Fault Tree ..... 316

## LIST OF TABLES

## TABLE

PAGE
1.1 Minimal Cut-Sets for the SPC Fault Tree ..... 5
1.2 SPC Modularized Minimal Cut-Sets. ..... 7
1.3 Canonical Expansion for CIUC2 ..... 49
1.4 Canonical Expansion for $C_{1} U\left(C_{2} \Omega \bar{C}_{3}\right)$ ..... 50
1.5 Canonical Expansion for Fault Tree with Main- tenance Events ..... 54
1.6 Basic Event Importance Measures Computed by the IMPORTANCE Code ..... 69
3.1 Pressure Tank Rupture Fault Tree Failure Probabi- ..... 134 lity Data
3.2 Replicated Event Nomenclature ..... 143
4.1 Triga Scram Circuit Basic Event Data ..... 267
4.2 Occurrence Probabilities and V.F. Importance Values for the Triga Scram Circuit ..... 270
4.3 Standby Protective Circuit Data ..... 272
4.4 Unavailabilities and Vesely-Fussell Importance Values for SPC Fault Tree ..... 274
4.5 PWR System Identification Code ..... 283
4.6 Component Code ..... 284
4.7 Failure Mode Code ..... 286
4.8 HPIS Reduced Fault Tree Basic Event Data ..... 292
4.9 HPIS Reduced Fault Tree Minimal Cut-Set Boolean Matrix ..... 298
4.10 HPIS Reduced Fault Tree Modular Components ..... 299
4.11 HPIS Reduced Fault Tree Modular Unavailabilities ..... 304
4.12 HPIS Reduced Fault Tree Vesely-Fussell Modular Importances ..... 306
A-1 Sample Problem Input ..... 317
A-2 Sample Problem Output ..... 319

## ACKNOWLEDGEMENTS

The work summarized in this report was partly performed under the auspices of the U.S. Nuclear Regulatory Commission. We are especially indebted to Dr. William E. Vesely, Special Assistant for Methodolgy at NRC, for providing the financial support.

In addition, we express our sincere appreciation to Professor Norman C. Rasmussen for his useful criticism, suggestions and for his guidance and interest in this research. The authors wish to thank Rachel Morton who, with her limitless patience, helped to unravel the intricacies of the PL/I programming and the compiler at MIT-IPC.

## INTRODUCTION

The objective of this research has been to develop and implement the modularization technique for the analysis of operating systems modeled by means of fault trees, and to apply this methodology to safety systems commonly found in nuclear reactors.

In the past the usual approach has been to describe the structure of a fault tree in terms of the minimal sets of basic event failures (cut-sets) causing overall system failure. However since for complex systems, a complete enumeration of its minimal cut-sets is not feasible, it is common practice to generate only the dominant contributor cut-sets, i.e., single, double and triple event fault cut-sets.

Figures 1.1 and 1.2 show the system and fault tree diagrams for a Standby Protective Circuit (SPC) found in reactor safety systems [18]. Inspection of the fault tree demonstrates that it is composed of 29 event inputs and 19 gates. In Table 1.1 a list is provided of the 100 minimal cut-sets associated with the SPC fault tree.

A closer scrutiny of the SPC fault tree diagram and minimal cut-set table indicates that certain classes of minimal cut-sets are closely associated to each other. Thus for example, if gate G8 is thought of as a super-component (i.e., a module) given by

$$
G 8=\{C 17, C 18, C 19, C 20, C 21, C 22 ; U\}
$$



F-Inline Fuse
TS - Test switches - used monthly test
LS - Level switch - tested yearly
MS - Manual switch - tested monthly
PS - Pressure switch - tested yearly

Figure ]. 1 Standby Protective Circuit for Comparison Studies



Pigure 1.2 Continued
Fault Tree for Standby Protection Circuit

TABLE 1.1
MINIMAL CUT-SETS FOR THE S.P.C. FAULT TREE

## SINGLE CUT-SETS

1) $C 10$
2) $C 3$
3) Cll
4) Cl 2
5) $C 13$
6) $C 16$
7) C 2
8) Cl 5

DOUBLE CUT-SETS

1) $\mathrm{C} 17, \mathrm{Cl}$
2) $\mathrm{Cl}, \mathrm{Cl} 4$
3) $\mathrm{CIB}, \mathrm{CI}$
4) $\mathrm{Cl}, \mathrm{Cl} 4$
5) $\mathrm{Cl}, \mathrm{Cl}$
6) $\mathrm{Cl} 9, \mathrm{Cl} 4$
7) $\mathrm{C} 21, \mathrm{Cl}$
8) $\mathrm{C} 21, \mathrm{Cl} 4$
9) $\mathrm{C} 20, \mathrm{Cl}$
10) $\mathrm{C4}, \mathrm{C5}, \mathrm{Cb}$
11) $C 7, C 5, C 6$
12) $\mathrm{c4}, \mathrm{c}, \mathrm{c} 6$
13) $\mathrm{C} 7, \mathrm{C8}, \mathrm{C6}$
14) $\mathrm{Cl} 7, \mathrm{C} 25, \mathrm{C} 24$
15) $C 4, C 5, C 9$
16) $\mathrm{C} 18, \mathrm{C} 25, \mathrm{C} 24$
17) $\mathrm{Cl} 9, \mathrm{C} 25, \mathrm{C} 24$
18) $\mathrm{C} 7, \mathrm{C} 5, \mathrm{C} 9$
19) $\mathrm{C} 21, \mathrm{C} 25, \mathrm{C} 24$
20) $\mathrm{C} 20, \mathrm{C} 25, \mathrm{C} 24$
21) $\mathrm{C} 22, \mathrm{C} 25, \mathrm{C} 24$
22) $\mathrm{C} 17, \mathrm{C} 27, \mathrm{C} 24$
23) $\mathrm{C4}, \mathrm{C8}, \mathrm{C9}$
24) $\mathrm{C} 18, \mathrm{C} 27, \mathrm{C} 24$
25) C19,C27,C24
26) C21, $\mathrm{C} 27, \mathrm{C} 24$
27) $\mathrm{C} 7, \mathrm{C8}, \mathrm{C} 9$
28) $\mathrm{C} 20, \mathrm{C} 27, \mathrm{C} 24$
29) $\mathrm{C} 22, \mathrm{c} 27, \mathrm{C} 24$
30) $\mathrm{C} 17, \mathrm{C} 25, \mathrm{C} 26$
31) $\mathrm{C} 17, \mathrm{C} 25, \mathrm{C} 28$
32) $\mathrm{C} 17, \mathrm{C} 25, \mathrm{C} 29$
33) $\mathrm{C} 18, \mathrm{C} 25, \mathrm{C} 26$
34) $\mathrm{C} 18, \mathrm{C} 25, \mathrm{C} 28$
35) $\mathrm{C} 18,025,029$
36) $\mathrm{C} 19,025,026$

TABLE I.I. CONTINUED
28) C19,C25, 228
29) C19,C25,C29
30) C21,C25, C26
.31) C21,C25,C28
32) $\mathrm{C} 21,025,029$
33) C20,C25,C26
34) $\mathbf{C 2 0 , C 2 5 , C 2 8}$
35) $\mathrm{C} 20, \mathrm{C} 25, \mathrm{C} 29$
36) C22,C25,026
37) $\mathrm{C} 22, \mathrm{C} 25, \mathrm{C} 28$
38) C22,C25, C 29
39) C17,C27,C26
40) C17,C27,C28
41) C17,C27,C29
42) $\mathrm{C} 18, \mathrm{C} 27, \mathrm{C} 26$
43) C18,C27,C28
44) C18,C27,C29
45) C19,C27,C26
46) C19, C27,C28
47).C19, C27,C29
48) C21, C27, C26
49) C21,C27,C28
50) C2I,C27,C29
51) $\mathrm{C} 20,027, \mathrm{C} 26$
52) $\mathrm{C} 20, \mathrm{C} 27, \mathrm{C} 28$
53) $\mathrm{C} 20, \mathrm{C} 27, \mathrm{C} 29$
54): C22,C27,C26
55) C22, $\mathrm{C} 27, \mathrm{c} 28$
56). $\mathrm{C} 22, \mathrm{C} 27, \mathrm{C} 29$
57) C17,C23,C26
58) C17, C23, C28
59) C18, C23,C26
60). C18, C23, C28
61) C19,C23,C26
62) C19, C23, C28
63) $\mathrm{C} 21, \mathrm{c} 23,026$
64) C21, C23, C28
65) $\mathrm{C} 20, \mathrm{C} 23, \mathrm{C} 26$
66) $\mathrm{C} 20, \mathrm{C} 23, \mathrm{c} 28$
67) C22,C23,026
68) C22,C23, C28
69) C17,C19,C26
70) C17,C29,C28
71) C18,C29,C26
72) C18, C29, C28
73) C19,029,026
74) C19,029,028
75) C21,C29,C26
76) C21, $\mathrm{C} 29,028$
77) C20, 229,026
78) C20, C29, C28
79) C22,C29,C26
80) C22,C29,028

TABLE 1.2
MODULARIZED MINIMAL CUT-SETS
$\mathrm{G} 8=\{\mathrm{Cl} 7, \mathrm{C} 18, \mathrm{C} 19, \mathrm{C} 2 \mathrm{O}, \mathrm{C} 21 ; \mathrm{U}\}$
Cut-sets

1) $(G 8, C 1)$
2) $(G 8, C 14)$
3) $(G 8, C 25, C 24)$
4) $(G 8, C 25, C 26)$
5) ( $G 8, C 27, C 24)$
6) $(G 8, C 25, C 28)$
7) $(G 8, C 25, C 29)$
8) $(G 8, C 27, C 26)$
9) $(G 8, C 27, C 28)$
10) ( $\mathrm{G}, \mathrm{C} 27, \mathrm{C} 29$ )
11) ( $G 8, C 23, C 26)$
12) $(\mathrm{G} 8, \mathrm{C} 23, \mathrm{C} 28)$
13) ( $G 8, C 29, C 26)$
14) (G8, C29,C28)

It becomes clear that for every minimal cut-set containing component Cl7, five other similar cut-sets may be found with component $\mathrm{Cl} 8, \mathrm{Cl9}, \mathrm{C} 20, \mathrm{C} 21$, or C 22 replacing component C17, e.g. (C17,Cl), (C18,Cl), C19,Cl), (C20,C1), (C21,CI), (C22,C1). In fact by modularizing gate G8, 14 groups of similar cut-sets will be found. Therefore, as shown in Table 1.2 , the listing of 84 different minimal cut-sets would be unnecessary to describe the SPC fault tree structure by keeping track of the cutsets affected by the modularization of gate $G 8$.

It is clear then that there are advantages to be gained by using the modularization procedure to describe fault trees as illustrated by the above example. In this thesis, the formalism necessary to characterize fault trees in terms of their modular structures shall be presented. And the methodology adopted by the computer program PL-MOD in order to implement a modular approach to fault tree and reliability analysis will also be discussed.

The organization of the thesis is as follows:
Chapter One consists of a summary of the concepts used and of the methods devised for the safety and reliability analysis of operating systems by the fault tree technique. The structural relationship between a system and its components shall be defined in terms of a deterministic coherent structure function, while the reliability of a system will be determined as a function of the probabilistic reliabilities of its components.

Coherent structure function relationships will be shown
to be describable by means of minimal cut-set and path-set representations and by Boolean algebra and truth-table methods.

Since the exact computation of the system reliability parameters is in general too difficult, appropriate bounds will be given which can be easily computed. Also, probabilistic importance measures will be introduced for the purpose of numerically ranking the various sets of fault events leading to the occurrence of the top event in order of their significance.

Chapter Two deals with the means by which the structural as well as the probabilistic analysis of fault trees may be accomplished in terms of a modular tree description.

A module is defined to be a set of components behaving as a super-component, $1 . e_{\wedge}$, the set affects the overall system performance only through the operational state of the super-component. Modules will be classified into "simple" (AND and OR) gate modules and higher order "prime" gate modules describable by a set of Boolean state vector equations. Exact expressions as well as bounds will be given for the probability of occurrence ("reliability") and importance value of a modular gate event, and it will be shown how these quantities of interest can be straightforwardly computed.

In Chapter Three the computer program PL-MOD written in PL-1 language will be described. It will be shown how to implement an algorithm for the modularization of fault trees directly from their diagram description. The procedure which is to accomplish this task was only made possible by an extensive use of a number of unique tools available in PL-1, among
them are the options to use dynamical variables, based structures, pointers, bit-string variables, Boolean operations and functions, etc.

In Chapter IV, results are presented for the analysis performed by PL-MOD on a number of nuclear reactor safety system fault tree, namely: A Triga Scram Circuit, a Standby Protective Circuit and a PWR High Pressure Coolant Injection System. The performance of the PL-MOD code is assessed with these examples and the advantages of modularizing large fault trees instead of generating their minimal cut-set event description is demonstrated.

In Chapter $V$ the modular approach developed throughout this thesis is summarized and a discussion is given of further possibie extensions to the PL-MOD computer code.

FAULT TREE AND RELIABIIITY ANALYSIS CONCEPTS AND METHODS

## I.I. Introduction

Fault tree analysis is one of the principal methods to analyze safety systems. It is a valuable tool for identifying potential accidents in a system design, and for predicting the most likely causes of system failure in the event of system breakdown [3].

In this chapter the basic concepts necessary for the structural analysis and probabilistic evaluation of fault trees are presented. In addition a review is given of the current methods used to analyze the logical structure of a fault tree diagram and for making a quantitative assessment of the reliability characteristics of safety systems modeled by fault trees.

## I.2. Fault Tree Analysis

Fault tree analysis is a systematic procedure used to identify and record the various combinations of component fault states and other events that can result in a predefined undesired state of a system [19]. Fault trees are schematically represented by a logic diagram in which the various component failures and fault events combine through a set of logical gate operators leading to the top tree event defined as an undesired state of the system.

The term event, denotes a dynamical change of state occurring to a system element or to a set of system elements [3].

The symbols shown in Figure 1.3 represent the different type of tree events and logical gate operators commonly found in fault trees. In addition to the usual AND and OR gate operators, the less often used NOT, gate operator has been included. A fault tree example is given in Figure 1.4 which will be used throughout to illustrate some of the concepts and methods dealt with in this chapter. Notice that for the example I fault tree the basic fault events 3 and 7 are twice replicated in the fault tree.

The following definitions will be used to develop the subject of fault tree analysis [7].

Branch: when a fault event is further developed, the subtree which results is called a branch. Thus, for the fault tree example $I$, a branch corresponds to each intermediate gate event $\mathrm{E} 2, \mathrm{E} 3, \mathrm{E} 4, \mathrm{E} 5, \mathrm{E} 6, \mathrm{E} 7, \mathrm{E} 8$.

Gate Domain: The set of all basic events that logically interact to produce an intermediate gate event is defined to be the domain for the intermediate gate.

Independent Gate Branch: If the domain of an intermediate gate is disjoint from the rest of the branches found elsewhere in the tree, then it is called an independent gate branch. Thus, for fault tree example I only gate events E4 and E5 are independent branches since they include no basic event replicated elsewhere in the fault tree.

Module: Since an independent gate branch does not contain in its domain any basic events appearing elsewhere in the tree, then the effect that these basic events have on the


TRANSFERS:

## FIGURE 1.3 FAULT TREE SYMBOLS



FIGURE 1.4 FAULT TREE EXAMPLE I
event is only through the functional state (failed or unfailed) of the gate event for the branch. Hence, it interacts with the rest of the tree as a super-component which in the context of coherent structure theory is equivalent to a module. Thus, for fault tree example I gates E4 and E5 corresponds to modules M4, M5 given by

$$
\begin{aligned}
& M_{5}=\{8,9, U\} \\
& M_{4}=\left\{1,2, M_{5} ; \Omega\right\}
\end{aligned}
$$

Where $U \equiv$ event union (OR) operator and $\Omega \equiv$ event intersection (AND) operator.

It should be mentioned here that since both basic events and complete fault trees are fully characterized, as far as the tree logic is concerned, by being either in a failed or unfailed functional state, they therefore may also be considered to be modules.

## I.3. Coherent Structure Theory

Let $N=\left(C_{1}, C_{2} \ldots, C_{n}\right)$ be a set of basic events, and let

$$
y_{i}=\left\{\begin{array}{l}
1 \text { if basic event } 1 \text { has occurred (1.1) } \\
0 \text { otherwise }
\end{array}\right.
$$

Then $Z^{N}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ defines the vector of basic event outcomes, and the Boolean structure function $[1] \Phi\left(Y^{N}\right)$ determines the overall state of the system, i.e.

$$
\Phi\left(\underline{Y}_{\underset{\sim}{N}}^{\underset{\sim}{>}}\right)=\left\{\begin{array}{l}
1 \text { if the TOP event occurs }  \tag{1.2}\\
0 \text { otherwise }
\end{array}\right.
$$

Consider the basic AND and OR logic gates operating on the set $N$ of inputs. The structure function representing an AND gate is given by

$$
\begin{equation*}
\phi_{\operatorname{AND}\left(\underline{Y}^{N}\right)=Y_{I}, Y_{2}, \ldots, Y_{n} \equiv \prod_{i-1}^{n} Y_{i}, ~}^{n} \tag{1.3}
\end{equation*}
$$

while an $O R$ gate is represented by

$$
\begin{align*}
\phi_{O R}\left(Y^{N}\right) & =1-\left(1-y_{1}\right)\left(1-Y_{2}\right) \ldots\left(1-y_{n}\right) \\
& \equiv \prod_{i=1}^{n} y_{i} . \tag{1.4}
\end{align*}
$$

In general a Boolean structure function will define a coherent system provided
(a) $\phi\left(Y^{N}\right)$ is an increasing function of each basic event Boolean indicator $y_{i}$, i.e.,

$$
\begin{aligned}
\phi\left(Y_{1}, Y_{2}, \ldots, Y_{1}=0, \ldots, Y_{n}\right) & \leq \phi\left(Y_{1}, Y_{2}, \ldots Y_{i}\right. \\
& \left.=I, \ldots, Y_{n}\right)
\end{aligned}
$$

(b) each basic event is relevant to the outcome, i.e., no basic event Boolean indicator $y_{1}$ exists such that

$$
\phi\left(y_{1}, y_{2}, \ldots, y_{i}=0, \ldots, y_{n}\right)=\phi\left(y_{1}, y_{2}, \ldots, y_{i}=1, \ldots, y_{n}\right)
$$

for all values of $y_{j}(j-1,2, \ldots, i-1, i+1, \ldots n)$
Using the following notational convention
$\phi\left(y_{1}, \ldots, y_{i}=1, \ldots, y_{n}\right)=\left(I_{i}, Y\right),\left(Y_{1}, \ldots, y_{i}=0, \ldots, y_{n}\right)=\left(0_{i}, Y\right)$ conditions (a) and (b) may be rewritten as
(a) $\phi\left(O_{i}, Y\right) \leq \phi\left(I_{1}, Y\right)$ for all $(1, Y)$

$$
\begin{equation*}
\text { and (b) } \phi\left(O_{i}, Y\right) \neq \phi\left(I_{i}, V\right) \text { for some }(1, Y) \tag{1.8}
\end{equation*}
$$

with $(1, Y)$ representing any of the $2^{n-1}$ vectors $\left(y_{1}, y_{2}, \ldots, y_{i}\right.$ fixed, $y_{i+1}, \ldots, y_{n}$.

It should be pointed out that fault tree diagrams which include the NOT gate operator do not obey condition (a) and are therefore represented by a Boolean function which is not coherent. Thus, a single event $Y_{i}$ operated by a NOT gate will be given by

$$
\begin{equation*}
\phi_{N O T}\left(Y_{i}\right)=1-Y_{i} \tag{1.9}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi_{\mathrm{NOT}}(0)=1>\phi_{\mathrm{NOT}}(1)=0 \tag{1.10}
\end{equation*}
$$

## I.3.1. Dual Coherent Structures

A fault tree used for studying a safety system will have as its top event an overall system malfunction. However, for reliability considerations one may be interested in modeling the system with a diagram showing the occurrence of an unfailed functional state as its top event. Such a diagram may be easily obtained from the original fault tree by replacing its OR gates by AND gates and viceversa, and by replacing
all basic event failures by the non-occurrence of such faults. The resulting diagram is called a dual fault tree.

In terms of coherent structures, the Boolean function describing a dual fault tree will be given by

$$
\begin{equation*}
\dot{\phi}^{D}\left(Y^{\prime}\right)=1-\phi\left(\mp-耳^{\prime}\right) \tag{1.11}
\end{equation*}
$$

with $\phi$ associated with the original tree, $\underset{\rightarrow}{Y}$ representing the Boolean vector of basic success events and $1-\underset{\rightarrow}{Y}=\left(I-Y_{i}^{\prime}\right.$, I-Y $\left.{ }_{2}^{\prime}, \ldots, 1-Y_{n}^{\prime}\right)$.

Thus, as expected, AND gate structure functions will be dual to $O R$ gates and viceversa since

$$
\begin{aligned}
\phi_{A N D}\left(7^{N}\right)=y_{1}, y_{2}, \ldots y_{n} \Rightarrow \phi_{A N D}^{D} & =1-\left(1-y_{1}\right),,\left(1-y_{n}\right) \\
& =\phi_{O R}
\end{aligned}
$$

and

$$
\begin{align*}
\phi_{O R}\left(y^{n}\right)=1-\left(1-y_{1}\right) \ldots\left(1-y_{n}\right) & =\phi_{O R}^{D}=1-\left(1-\left(1-1+y_{1}\right)\right. \\
& , \ldots,\left(1-1+y_{n}\right)=\phi_{\text {AND }} \tag{1.13}
\end{align*}
$$

## I.3.2. Minimal Cut-Set and Path-Set Representations of Coherent structures

A cut-set is a group of basic fault events whose occurrence will cause the top tree fault event to occur, while a path-
set is a group of basic fault events whose non-occurrence will Insure the non-occurrence of the top tree fault event. Furthermore a cut-set (or path-set) is minimal if it cannot be further reduced and still remains being a cut-set (or path-set).

As may be verified the minimal cut-sets corresponding to fault tree example 1 are

$$
\begin{aligned}
& \mathrm{K}_{1}=(3,6,7) \\
& \mathrm{K}_{2}=(4,5,6,7) \\
& \mathrm{K}_{3}=(1,2,5,6,7,8) \\
& \mathrm{K}_{4}=(1,2,5,6,7,9)
\end{aligned}
$$

From this, the minimal path-sets may now be derived by taking minimal groups of elements $P_{1}$ such that no minimal cut-set may be found which contains no element in the group $P_{i}$. Thus, for example element 7 by itself forms a minimal path-set since It is found in all universal cut-sets $K_{1}, K_{2}, K_{3}, K_{4}$. Hence $P_{1}=(7)$, similarly, the remaining min. path-sets for the fault tree may be deduced to be

$$
\begin{aligned}
& P_{2}=(6) \\
& P_{3}=(3,5) \\
& P_{4}=(2,3,4) \\
& P_{5}=(1,3,4) \\
& P_{6}=(3,4,8,9)
\end{aligned}
$$

Given the complete set of minimal cut-sets $K_{j}(j=1,2, \ldots$,
t) for a fault tree, its coherent structure may be expressed In terms of a set of minimal cut-set structure functions defined by

$$
\begin{gather*}
k_{j}=\prod_{\varepsilon^{K j}} Y_{i}  \tag{1.14}\\
(j=1,2, \ldots, t)
\end{gather*}
$$

as follows

$$
\phi\left(Y^{N}\right)=1-\prod_{y=1}^{t}\left(1-k_{j}\right)=\prod_{j=1}^{t} k_{j}
$$

should all elements in a min cut-set $K_{j}$ fail (i.e., $y_{i}=1$ for all $i_{\varepsilon} K_{j}$ ) then $\Rightarrow k_{j}=I \Rightarrow \phi=1$.

In a similar way the coherent structure for a fault tree may be expressed in terms of its min path-set structure function defined by

$$
\begin{gather*}
P_{j}=1-{\underset{i \varepsilon}{ } \mathbb{P}_{j}}^{m}\left(1-y_{i}\right)={\underset{i \varepsilon^{P}}{j}}^{1} y_{i}  \tag{1.16}\\
(j=1,2, \ldots, h)
\end{gather*}
$$

as

$$
\begin{equation*}
\phi\left(\underline{Y}^{N}\right)=\prod_{j=1}^{h} P_{j} \tag{1.17}
\end{equation*}
$$

Should all elements in a min path-set not fail (i.e., $y_{i}=0$ for all $\left.i_{\varepsilon} P_{j}\right) \Rightarrow P_{j}=0 \Rightarrow \phi=0$.

## I.3.3. Simple and Higher Order Coherent Structure Gates

The minimal cut-set representation for an AND gate structure consists of a single cut-set

$$
\begin{equation*}
K=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \tag{1.18}
\end{equation*}
$$

21
with $C_{i}$ denoting the $i-t h$ event input to the $A N D$ gate, hence

$$
\phi_{\mathrm{AND}}=k=\prod_{i=1}^{n} y_{i}
$$

Similarly the minimal path-set representation for an OR gate structure consists of a single path-set

$$
\begin{equation*}
P=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \tag{1.20}
\end{equation*}
$$

hence

$$
{ }_{o n}=P=\prod_{i=1}^{n} y_{i}
$$

Because of their simple cut-set and path-set representation, AND and OR gates are named 'simple' coherent structure gates. It is possible however to define other gates $\sigma\left({\underset{\sim}{Y}}^{N}\right)$ which operate on the set of Boolean indicator inputs ( $y_{1}, y_{2}, \ldots$, $y_{n}$ ) by characterizing them in terms of two or more minimal cutsets or path-sets. Such gates are defined to be higher order gate structures. Thus for example given a set of three basic events $\left(C_{1}, C_{2}, C_{3}\right)$, the following higher order gates may be defined (Figure 1.5)
$\sigma$ 1: ( $C_{1}$ ).

$$
\left(C_{2}, c_{3}\right)
$$

$\sigma 2 ;\left(C_{1}, C_{2}\right)$

$$
\left(C_{2}, c_{3}\right)
$$



FIGURE 1.5
HIGHER ORDER STRUCTURES FOR A SET OF THREE INPUTS

$$
\begin{array}{r}
\sigma 3:\left(c_{1}, c_{2}\right) \\
\left(c_{1}, c_{3}\right) \\
\left(c_{2}, c_{3}\right)
\end{array}
$$

Each of the above gates exemplify the different characteristics that a higher order gate structure $\sigma\left(Y^{N}\right)$ operating on a set of event ( $C_{1}, C_{2} \ldots, C_{n}$ ) may have. Thus, since for gate $\sigma_{1}$ its two cut-sets are disjoint, a fault tree diagram including no replicated events may be drawn which represents the gate. Furthermore $\sigma_{1}$ may be decomposed into two disjoint coherent structures $\sigma_{1}, \sigma_{2}$ as

$$
\begin{aligned}
& \sigma_{1}=1-\left(1-\phi_{1}\right)\left(1-\phi_{2}\right) \text { with } \phi_{1}=y_{1} \text {, and } \\
& \phi_{2}=\mathrm{y}_{2} \mathrm{y}_{3} .
\end{aligned}
$$

In Chapter Two it will be shown that such a decomposition amounts the modularization of a fault tree.

Both gates, $\sigma_{2}$ and $\sigma_{3}$, do not contain any minimal cut-set which are disjoint to the others defining the gate structure. As a result such higher order structures will be called 'prime' gates since they do not allow for any further structural decomposition. If a higher order prime gate is represented by an equivalent diagram of $A N D$ and $O R$ gates, then the gate at the . top of the diagram is named the parent gate for the higher order structure.

Gate $\sigma_{3}$ is called symmetric since the order of its inputs does not alter its structure, i.e.

$$
\begin{align*}
& \sigma_{3}\left(y_{1}, y_{2}, y_{3}\right)=\sigma_{3}\left(y_{1}, y_{3}, y_{2}\right)=\sigma_{3}\left(y_{3}, y_{2}, y_{1}\right) \\
= & \sigma_{3}\left(y_{2}, y_{1}, y_{3}\right)=\sigma_{3}\left(y_{2}, y_{3}, y_{1}\right)=\sigma_{3}\left(y_{3}, y_{1}, y_{2}\right) \tag{1.20}
\end{align*}
$$

Symmetric gates are in fact completely defined by specifying the number $k$ out of the $n$ basic events necessary to cause the gate event to occur (k-out of $-n$ ). In contrast gate $\sigma_{2}$ is an asymmetric prime gate requiring its full min cut-set listing for its definition.

In terms of a higher order structure, fault tree example I is given by

$$
\begin{align*}
\text { TOP: } & \left(C_{3}, M_{1}\right) \\
& \left(C_{4}, C_{5}, M_{1}\right)  \tag{1.21}\\
& \left(M_{2}, M_{1}\right)
\end{align*}
$$

with

$$
\begin{aligned}
& \phi_{\mathrm{M} 2}=\phi_{1} \cdot \phi_{2}, \phi_{1}=y_{1} \cdot y_{2}, \phi_{2}=1=\left(1-y_{8}\right)\left(1-y_{9}\right) \\
& \text { and } \phi_{M 1}=y_{6} \cdot y_{7}
\end{aligned}
$$

## I.4. Probabilistic Evaluation of Fault Trees

Given a coherent structure function $\Phi\left(Y^{N}\right)$ which relates the occurrence of a top event to a set $\left(C_{1}, C_{2}, \ldots, C_{n}\right)$ of basic event occurrences each represented by a Boolean indicator variable $Y_{i}(1, I, 2, \ldots, n)$ in the coherent structure expression it should be possible to find the probability of occurrence for the TOP event, $P(T O P)$, as a function of the occurrence probabilities for each basic event $P_{i}(i=1,2, \ldots, n)$.

Formally, the occurrence probability for event $C_{i}$ is obtained by applying the expectation value operator $E$ to the Boolean variable $Y_{i}, 1 . e .$,

$$
\begin{equation*}
P_{1}=E_{Y_{1}}=P\left(Y_{1}=1\right) \tag{1.22}
\end{equation*}
$$

similarly, for the coherent structure $\phi\left(\mathcal{Y}^{N}\right)$ the TOP event occurrence $P(T O P)$ is given by

$$
\begin{equation*}
P(T O P)=E \phi\left({\underset{Y}{Y}}^{N}\right)=P\left(\phi\left(\underline{Y}^{N}\right)=1\right) \tag{1.23}
\end{equation*}
$$

Assuming all basic event probabilities to be statistically independent it is possible to express $P(T O P)$ as

$$
\begin{align*}
& P(T O P)=P\left(\phi\left(\Psi^{N}\right)=1\right)=h(P) \\
& \text { with } P=\left(P, P_{2}, \ldots, P_{n}\right) \tag{1.24}
\end{align*}
$$

$h(P)$ is commonly referred to as the reliability function by coherent structure theorists [I]. It must be realized however that when the coherent structure represents a fault tree, $h(P)$ measures the unreliability of a system defined as the probability that the system is in a failed state.

In general the occurrence probability $P_{i}$ for each basic fault event input will be a time dependent function, i.e., $P_{i}(t)$. For these cases one is interested in addition to find the unreliability of the system as a function of time, in evaluating the asymptotic system unavailability: given by

$$
U=\lim _{t \rightarrow \infty} h(P(t))=h(\psi)
$$

with $q=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ measuring the unavailability for component 1 , i.e. $u_{i}=\lim P_{i}(t)$.
$t \rightarrow \infty$

By using a minimal cut-set or path-set representation for the coherent structure function (equations 1.15 and 1.17) $h(p)$ may be computed as

$$
\begin{equation*}
h(p)=E\left(\prod_{j=1}^{t} \prod_{\varepsilon^{K}} \prod_{j} y_{i}\right)=E\left(\prod_{j=1}^{h} \prod_{\varepsilon_{j}}^{p_{j}} y_{i}\right) \tag{1.26}
\end{equation*}
$$

However since in general a basic event may appear in more than one min cut-set (or path-set) it follows that the probability of occurrence for a min cut-set (or path-set) event is not statistically independent of the other min cut-sets (or path-sets) defining the structure. Hence, the expectation value operator does not commute with the first
(Pi) operator and (ip) operator indicated in Equation (1.26). To illustrate this, consider the coherent structure example $\sigma_{2}$ given in Equation (1.22).

$$
\begin{equation*}
\sigma_{2}=\frac{1}{j=1} \quad \prod_{i^{2} K_{j}}^{\pi} y_{i}=\prod_{j=1}^{2} \prod_{i_{\varepsilon}^{P} j} y_{i} \tag{1.27}
\end{equation*}
$$

with $K_{1}=\left(C_{1}, C_{2}\right), K_{2}=\left(C_{2}, C_{3}\right)$ and $P_{1}=\left(C_{2}\right), P_{2}=\left(C_{1}, C_{3}\right)$. $P_{2}\left(y_{1}, y_{2}, y_{3}\right)$ will be given by either of the following two expressions

$$
\begin{align*}
& \sigma_{2}=1-\left(1-y_{1} y_{2}\right)\left(1-y_{2} y_{3}\right) \text { (cut-sets) }  \tag{1.28}\\
& \sigma_{2}=y_{2}\left(1-\left(1-y_{1}\right)\left(1-y_{3}\right)\right) \text { (path-sets) } \tag{1.29}
\end{align*}
$$

Since a Boolean variable $y_{i}$ may only equal 0 or $l$, then the idempotency rule applies, i.e., $y_{1}{ }^{2}=y_{i}$. Hence equations (1.28) and (1.29) further reduce to

$$
\begin{align*}
\sigma_{2} & =1-\left(1-y_{1} y_{2}-y_{2} y_{3}+y_{1} y_{2} y_{3}\right) \\
\text { and } \sigma_{2} & =y_{2}-y_{2}\left(1+y_{1} y_{3}-y_{1}-y_{3}\right) \tag{1.30}
\end{align*}
$$

therefore

$$
\begin{equation*}
\sigma_{2}=y_{1} y_{2}+y_{2} y_{3}-y_{1} y_{2} y_{3} \tag{1.31}
\end{equation*}
$$

and

$$
E \sigma_{2}=P_{1} P_{2}+P_{2} P_{3}-P_{1} P_{2} P_{3}
$$

however

$$
\begin{equation*}
E \sigma_{2} \neq \prod_{j=1}^{2} E\left(\prod_{1^{K}} K_{j} \quad y_{1}\right)=P_{1} P_{2}+P_{2} P_{3}-P_{1} P_{2}{ }^{2} P_{3} \tag{1.32}
\end{equation*}
$$

Thus, in general ${ }_{t}$
h

$$
\begin{equation*}
h(p) \neq \prod_{j=1} \prod_{i^{K} K_{j}} P_{i} \text { and } h(p) \neq \prod_{j=1} \prod_{i^{P} P_{j}} P_{i} \tag{1.33}
\end{equation*}
$$

Esary and Proschan [8] have nevertheless proved that the above expressions give an upper and lower bound for $h(P)$, 1.e.

$$
\begin{equation*}
\prod_{j=1}^{h} \sum_{i}^{n} \prod_{j} P_{i} \leq P(T O P)=h(P) \leq \prod_{j=1}^{t} \prod_{\varepsilon} K_{j} P_{i} \tag{1.34}
\end{equation*}
$$

These bounds are known respectively as the minimal cut upper bound and minimal path lower bound.

The minimal cut upper bound may be further simplified by making a first order expansion of the full expression yielding

$$
h(P) \leq \sum_{j=1}^{t}{ }_{i} \|_{K_{j}} P_{1}
$$

which is the rare-event approximation to the minimal cut upper bound and neglects the simultaneous occurrence of minimal cut-sets. For values of $P_{i}<10^{-2}$ Equation (1.35) may be safely used.

## I.5. Importance Measures for System Components and Fault Tree Events

Given a system made up by a network of components which performs a specific task or function, as a result of the system's structural arrangement only, some components will be more critical than others to the functioning of the system. Moreover a component's reliability will also be a factor in assessing its importance in determining the overall functional state of the system.

## I.5.1. Structural Importance

The importance of a component purely by virtue of the role it plays in a system's structure characterized by the coherent structure $\phi(\neq)$ may be measured by

$$
\begin{equation*}
\left.I_{\phi}^{S}(i)=\frac{1}{2^{n-1}} \quad \sum_{\dot{Y}, y_{i}} \underset{f 1 \times \operatorname{Xed}}{\left[\phi\left(1_{i}, Y\right)\right.}-\phi\left(O_{i}, \Psi\right)\right] \tag{1.36}
\end{equation*}
$$

By fixing the value of Boolean variable $y_{i}, 2^{n-1}$ possible state vectors ( $y_{1}, y_{2}, \ldots, y_{1-1}, y_{1}$ fixed, $y_{1+1}, \ldots, y_{n}$ ) may be found for each such vector the 1 -th event will be critical to the overall state of the system if

$$
\begin{gather*}
\phi\left(I_{1} ; Y\right)=1 \text { and } \phi\left(0_{1}, Y\right)=0, \text { i.e. } \\
\phi\left(I_{1}, Y\right)-\phi\left(0_{1}, Y\right)=1 \tag{1.37}
\end{gather*}
$$

Hence the structural importance $I_{\phi}^{S}(1)$ will rank each basic event $i$ according to the number of critical state vectors that may be associated with the event.

## I.5.2. Birnbaum's Importance

In terms of $\phi\left(I_{1}, \Psi\right)$ and $\phi\left(O_{1}, \Psi\right)$, the coherent structure function $\phi(\Psi)$ is given by

$$
\begin{equation*}
\phi(Y)=Y_{1} \phi\left(I_{i}, Y\right)+\left(1-Y_{i}\right) \phi\left(O_{i}, Y\right) \tag{1.38}
\end{equation*}
$$

as may be verified since $\phi\left(0_{1}, Y\right)=(0) \phi\left(I_{1}, Y\right)+(1-0) \phi\left(0_{1}, Y\right)$ and $\phi\left(I_{i}, \underline{Y}\right)=(I) \phi\left(I_{i}, \underline{Y}\right)+(I-I) \phi\left(O_{1}, \underline{Y}\right)$. Therefore by applying the expectation value operator $E$ to equation (1.38) $h(P)$ will be found to be given by

$$
\begin{align*}
& h(P)=E \phi(Y)=\left(E Y_{i}\right)\left(E \phi\left(I_{i}, Y\right)\right)+\left(1-E Y_{i}\right)\left(E \phi\left(O_{i}, Y\right)\right) \\
& \Rightarrow h(P)=P_{i} h\left(I_{i}, P\right)+\left(1-P_{i}\right) h\left(O_{i}, P\right)(i=1,2, \ldots n) \tag{1.39}
\end{align*}
$$

Birnmaum's importance measure for event $i$ is defined to be the partial derivative of $h(P)$ with respect to $P_{i}, i . e .$,

$$
\begin{equation*}
I_{1}^{B}(P)=\frac{\partial h(P)}{\partial P_{1}}=h\left(I_{1} ; P\right)-h\left(O_{1}, P\right) \tag{1.40}
\end{equation*}
$$

It is seen from Equation (1.40) that the Birnbaum importance for event $i$ is independent of its occurrence probability $P_{1}$.

## I.5.3. Criticality Importance

The criticality importance for fault tree event 1 is defined as the probability that event i is in a failed state and at the same time is critical to the system's failure given that the system has failed, i.e.

$$
\begin{equation*}
I_{1}{ }^{C_{r}}=\frac{P \pm\left(h\left(I_{1}, P\right)-h\left(0_{1} ; R\right)\right)}{h(P)} \tag{1.41}
\end{equation*}
$$

## I.5.4. Vesely-Fussell Importance

The failure of a component $c_{i}$ will contribute to system failure provided at least one min cut-set containing $C_{i}$ has failed. Hence, the probability for the occurrence of the union event of all minimal cut-sets containing $c_{i}$ will measure the contribution of the component to the system's fallure, i.e.,

$$
\begin{equation*}
\underset{1_{\varepsilon} K_{j}}{P\left(U, K_{j}\right)}=P\left(X_{K}^{1}(\neq)=1\right) \tag{1.42}
\end{equation*}
$$

where $X_{K}^{i}(\Psi)$ is the Boolean indicator function for the union of all cut set functions containing Boolean variable $y_{i}$, thus

$$
X_{K}^{i}(¥)=\prod_{j=1}^{N_{k}^{1}} \quad \prod_{\sum_{\varepsilon} K_{j}}^{1_{\varepsilon} K_{j}} \quad y_{\ell}
$$

with $N_{k}^{i}=$ total number of min cut-sets containing the ith component.

The Vesely-Fussell importance measure [10] is defined as the probability that component $c_{i}$ contributes to system failure given that the system has failed, hence

$$
\begin{equation*}
I_{i} V \cdot F \cdot=\frac{h_{1}(P)}{h(P)} \tag{1.44}
\end{equation*}
$$

with

$$
\begin{equation*}
h_{1}(P)=E X_{K}^{1}(\underset{\sim}{Y})=P\left(X_{K}^{1}(\underset{\sim}{Y})=I\right) \tag{1.45}
\end{equation*}
$$

The Vesely-Fussell and criticality importance measures differ from each other in that component $c_{i}$ will contribute to a system's failure and still not be critical to the system if at least two minimal cut-sets have failed, one containing $c_{1}$ and another one not containing $c_{1}$. Nevertheless, as shown below, if the minimal cut-upper bound is used in the rare event approximation form, to evaluate both $h_{1}(P)$ and $h(P)$, then the value obtained for both importance measures will coincide

$$
h_{i}(p) \approx \sum_{j=1}^{N_{k}^{i}} \quad \sum_{\ell} \quad \begin{align*}
& \ell_{j} K_{j} \\
&  \tag{1.46}\\
& \\
& i_{\varepsilon} K_{j}
\end{align*} \quad P_{\ell}
$$

and

$$
\begin{equation*}
h(p) \simeq \sum_{j=1}^{N} \prod_{\ell} K_{\ell} P_{\ell} \tag{1.47}
\end{equation*}
$$

hence

$$
\begin{equation*}
I_{1}^{V \cdot F}=\frac{h_{i}(P)}{h(P)} \simeq \frac{\left(\sum_{\sum_{K}^{N}}^{N_{\ell}} \varepsilon_{\varepsilon} K_{j} P_{\ell}\right)}{\left(\sum_{j=1}^{N} \ell_{j} \sum_{j}^{K_{\ell}} P_{\ell}\right)} \tag{1.48}
\end{equation*}
$$

at the same time

$$
\begin{equation*}
h(p) \simeq \sum_{j=1}^{N-N_{k}^{1}} \quad \prod_{\ell}^{\frac{1}{\ell} K_{j} K_{j}} \quad P_{\ell}+\sum_{j=1}^{N_{k}^{1}} \prod_{\ell}^{1} \varepsilon_{\varepsilon}^{K_{j}} \quad P_{\ell} \tag{1.49}
\end{equation*}
$$

therefore

$$
\begin{aligned}
& \mathrm{N}-\mathrm{N}_{\mathrm{k}}^{1} \quad \mathrm{~N}_{\mathrm{k}}^{1}
\end{aligned}
$$

and

Hence
(1.50)


Thus comparing Equations (1.48) and (1.50) it is found that

$$
\begin{equation*}
I_{1}{ }^{C}=I_{i}^{V} \cdot F . \tag{1.51}
\end{equation*}
$$

In the rare-event approximation.
I.6. Methods for the Generation of a Minimal Cut-Set or Path Set Fault Tree Description

For a large fault tree made up of hundreds of logical gates and basic events, its total number of min cut-sets can easily amount to thousands of cut-sets. Therefore a computer program will be needed even to generate the minimal cut-set which contribute the most to system failure [22], (i.e., single, double and triple fault cut-sets).

Computer programs MOCUS [9], TREEL and MICSUP [16] implement two different algorithms for the generation of a fault tree's minimal cut-sets. Both algorithms are based on the fact that AND gates increase the size of a cut-set while OR gate increase the number of cut-sets in a fault tree. Both MOCUS and TREEL \& MICSUP were written in FORTRAN and are restricted to fault tree diagrams operated by AND and OR gates only. Thus NOT gates are not allowed by either of the two codes.
I.6.1. MOCUS

Computer program MOCUS [9] was written to replace PREP [23] as a minimal cut-set generator for computer programs KITT-1 and KITT-2 which evaluate time dependent fault trees in the framework of Kinetic Tree Theory [23]. As shown in Chapter IV for the particular case of a Standby Protective Circuit, it is a considerable improvement over PREP's deterministic minimal cut-set generation option COMBO. COMBO determines the minimal cut-sets for a fault tree by considering a combination of fault events at a time and testing if the fault tree logic implies that the combination considered causes the occurrence of the TOP tree event.

The algorithm used by MOCUS starts with the TOP event of the fault tree and proceeds, by successive substitution of gate equations, to move down the tree until only basic events remain in the list of possible TOP tree event occurrence causes.

For fault tree example $I$ the process takes the following form

STEP 1
GI
STEP 2
G2, G3
STEP 3
G4, G3
G6, G3
STEP 4
G4, 6, 7, G8
G6, 6, 7, G8
STEP 5
1, 2, G5, 6, 7, G8
3, 6, 7, G8
G7, 6, 7, G8
STEP 6
$1,2,8,6,7, G 8$
1, 2, 9, 6, 7, G8
3, 6, 7, G8
STEP 7
7, 4, 6, 7, G8
$1,2,8,6,7,5$
$1,2,8,6,7,3$
1, 2, 9, 6, 7, 5
1, 2, 9, 6, 7, 3
3, 6, 7, 5
3; 6, 7, 3
4, 6, 7, 5
4, 6, 7, 3
Thus, the idea of the algorithm is to replace each gate by its input gates and basic events until a list matrix
is constructed, all of whose entries are basic events. Each time an $O R$ gate is substituted, rows are added to the matrix, while a substituted AND gate results in the addition of elements to an existing row.

The cut-sets obtained this way are called Boolean Indicated Cut-Sets (BICS). For fault tree example I its list of BICS will be

BICS

| (i) | $1,2,5,6,7,8$ | minimal |
| :--- | :--- | :--- |
| (ii) | $1,2,3,6,7,8$ | non-minimal |
| (iii) | $1,2,5,6,7,9$ | minimal |
| (iv) | $1,2,3,6,7,9$ | non-minimal |
| (v) | $3,5,6,7$ | non-minimal |
| (vi) | $3,6,7$ | minimal |
| (vii) | $4,5,6,7$ | minimal |
| (viii) | $3,4,6,7$ | non-minimal |

If a fault tree contains replicated events then its set of BICS will include certain cut-sets which are not minimal. The minimal cut-sets (MICS) are obtained by discarding those rows which are non-minimal since they are super-sets for another row in the list. For fault tree example I the second, fourth, fifth and eighth rows are supersets for the cutset given in the sixth row $(3,6,7)$. Hence they must be discarded in order to obtain a list of MICS for the fault tree

MICS
1, 2, 5, 6, 7, 8
$1,2,5,6,7,9$
3, 6, 7
4, 5, 6, 7

The minimal path sets for a given fault tree may be easily obtained by applying the same algorithm to its dual fault tree. Thus, for fault tree example $I$, MOCUS will find its min path sets by applying the algorithm to the tree diagram shown in Figure 1.6 as follows

| STEP | 1 | GI |
| :---: | :---: | :---: |
| STEP | 2 | G2 |
|  |  | G3 |
| STEP | 3 | G4, G6 |
|  |  | 6 |
|  |  | 7 |
|  |  | G8 |
| STEP | 4 | 1 G 6 |
|  |  | 2 G6 |
|  |  | G5 G6 |
|  |  | 6 |
|  |  | 7 |
|  |  | 5, 3 |
| STEP | 5 | 1, 3, G7 |
|  |  | 2, 3, G7 |




FIGURE 1.6 DUAL FAULT TREE FOR EXAMPLE 1

$$
\begin{aligned}
& 8,9,3, G 7 \\
& 6 \\
& 7 \\
& 5,3 \\
& 1,3,4 \\
& 1,3,7 \\
& 2,3,4 \\
& 2,3,7 \\
& 8,9,3,4 \\
& 8,9,3,4 \\
& 6 \\
& 7 \\
& 3,5
\end{aligned}
$$

$$
\text { STEP } 6 \quad 1,3,4
$$

Again here since the second, fourth and sixth rows are supersets to minimal path set (7), they must be discarded to obtain the set of minimal path-sets for the original fault tree

$$
1,3,4
$$

2, 3, 4
3, 4, 8, 9
3, 5
6
7

## I.6.2. TREEL \& MICSUP

The minimal cut-set upward algorithm [16] program obtains minimal cut-sets starting with the lowest level gate basic inputs and working upward to the TOP tree event. TREEL
is a preprocessing program needed to execute MICSUP. TREEL transforms the tree into a form convenient for computer analy= sis, checks for possible errors in the tree construction and provides the number and maximum size for the Boolean Indicated Cut-sets and Path Sets. These numbers are useful since they provide an upper bound on the number and size of minimal cutsets and path sets which characterize the fault tree, hence on that basis the user may decide to have MICSUP determine either a minimal cut-set or path-set description for the fault tree. The algorithm used in MICSUP was given by Chatterjee [6]. As mentioned earlier it starts out with lowest level gates defined to be those gates which have basic event inputs only. The minimal cut-sets for these gates are found and are substituted as a representation for these gates. The procedure is repeated with those gates directly attached to the lowest level gates and so on, until the Boolean indicated cut-sets are found for the top event.

For fault tree example I the procedure takes the following form

| STEP 1 | G5: 8 |
| :---: | :---: |
|  | 9 |
|  | G7: 4, 7 |
|  | G8: 3, |
|  | 5 |
| STEP 2 | G4: 1, 2, |
|  | 1, 2, 9 |
|  | G6: 3 |

4, 7

STEP 3
G3: $\quad \begin{array}{ll}6,7,3 \\ 6,7,5\end{array}$
G2: $\quad 1,2,8$
1, 2, 9
3,
4, 7
G3: $6,7,3$
6, 7, 5
STEP 4
GI: $\quad 1,2,8,6,7,3$
1, 2, 8, 6, 7, 5
1, 2, 9, 6, 7, 3
1, 2, 9, 6, 7, 5
3, 6, 7
3, 6, 7, 5
4, 7, 6, 6, 3
4, 7, 6, 5
therefore the BICS for the top event are

$$
\begin{array}{ll}
1,2,3,6,7,8 & \text { non-minimal } \\
1,2,5,6,7,8 & \text { minimal } \\
1,2,3,6,7,9 & \text { non-minimal } \\
1,2,5,6,7,9 & \text { minimal } \\
3,5,6,7 & \text { non-minimal } \\
3,4,6,7 & \text { minimal } \\
4,5,6,7 & \text { minimal }
\end{array}
$$

yielding the expected TOP event MICS

$$
\begin{aligned}
& 1,2,5,6,7,8 \\
& 1,2,5,6,7,9 \\
& 3,6,7 \\
& 4,5,6,7
\end{aligned}
$$

It should be noticed that in contrast to MOCUS, the MICSUP algorithm offers the advantage of generating the BICS for each gate in the tree. Therefore the minimal cut-set composition for each sub-tree in the system will be obtained. by discarding at each level any non-minimal cut-sets that may appear. As a result for fault trees which inciude many event replications, a significant reduction in storage requirements will take place by discarding non-minimal BICS as soon as they appear for an intermediate gate in the tree. In Chapter III it will be shown that the computer program PI-MOD modularizes fault trees by an algorithm similar to that used in MICSUP In that it starts with the lowest level gates and proceeds upwards to the top event. Hence an analogous advantage to that cited for MICSUP will thereby apply for PL-MOD.

## I.7. Methods for the Manipulation of Boolean Equations Describing a Fault Tree

In section I. 3.2 coherent structure functions were expressed in terms of their minimal cut-set description as

$$
\begin{equation*}
\phi\left({\underset{Y}{N}}^{N}\right)=\prod_{j=1}^{t} k_{j}=\prod_{j=1}^{t} \prod_{\varepsilon} K_{J}^{K_{i}} \tag{1.5.2}
\end{equation*}
$$

What this equation signifies is that the TQP event of a fault tree is given by the union of all its minimal cut-set event

$$
\begin{align*}
& K_{1}( \pm-1,2, \ldots, t 2, \text { thus } \\
& T O P=K_{1} U K_{2} U, \ldots U K_{t} \tag{1,53}
\end{align*}
$$

with

$$
\begin{equation*}
K_{1}=C C_{ \pm_{1}}, C_{ \pm_{2}}, \cdots, C_{ \pm_{n_{1}}} ; \Omega L \tag{CI. 542}
\end{equation*}
$$

In section T.7.1. It will be discussed how the computer program SETS [21] generates the set of Equations (1.54) by a direct manipulation of the Boolean logic equations describing a fault tree. A feature particular to SETS is that In addition to the $A N D$ and $O R$ gates commonly found in fault trees, it can also handle NOT gates, EXCLUSIVE OR gates and SPECIAL gates which are previously defined by the user in terms of a specific set of Boolean equations.

In section I.7.2, the BAM [18] (Boolean Arithmetic Model) computer program will be discussed which evaluates the TOP event occurrence probabılity

$$
\begin{equation*}
P(T O P)=P\left(K_{1} U K_{2} U, \ldots, K_{t} L\right. \tag{1,55}
\end{equation*}
$$

by expanding the Boolean expression corresponding to the top event in a series of mutually exclusive events. As will be shown, such an expansion is only made possible by simultaneously considering the set of basic events $\left(c_{1}, \ldots, c_{n}\right.$ ) as well as their corresponding complement events $\left(\bar{c}_{1}, \bar{c}_{2}, \ldots, \bar{c}_{n}\right)$ outained
by applying the complement (upper bar) operation to the original basic events and defined by

$$
\begin{equation*}
c U \bar{C}=S \tag{1.56}
\end{equation*}
$$

where $S=$ the universal set.
By including complement state events in its formalism, BAM succeeds to incorporate dependent as well as mutually exclusive events. As a result BAM is capable of computing the unavailabilities for systems undergoing test and maintenance procedures as well as for systems which are subject to common mode failures.

## I.7.1. SETS

The Set Equation Transformation System [2l] symbol1cally manipulates Boolean equations formed by a set of events operated on by a particular set of union, intersection and complement operators.

Given a fault tree, a Boolean equation is established to represent each intermediate event as a function of its input events. In addition to $A N D$ and $O R$ gates, intermediate events may also be related.by EXCLUSIVE OR gates and SPECIAL gates (Figure 1.7) to their inputs. For an EXCLUSIVE OR gate, its output event will occur only if exactly one of the input events occurs while the other inputs do not occur. Thus if the EXCLUSIVE OR gate operates on two events $\left(c_{1}, c_{2}\right)$ then its output is given by

$$
\begin{equation*}
\text { EXCLUSIVE - OR }\left(c_{1}, c_{2}\right)=\left(c_{1} \Omega \bar{c}_{2}\right) U\left(\bar{c}_{1} \Omega c_{2}\right) \tag{1.57}
\end{equation*}
$$



FIGURE 1.7
EXCLUSIVE OR GATE AND SPECIAL GATES AVAILABLE IN SETS

Special gates are uniquely defined by a Boolean equation provided by the user. Thus, if for example a SPECIAL 2 - out of - 3 gate is wanted, then it must be defined by
$\operatorname{SPECIALGATE} \mathcal{G}_{1}\left(c_{1}, c_{2}, c_{3}\right)=\left(c_{1} \Omega c_{2}\right) U\left(c_{1} \Omega c_{3}\right) U\left(c_{2} \Omega c_{3}\right)$

The computer program SETS offers the user the option to develop the set of Boolean equations describing the fault tree in such a way as to directly derive the set of "prime implicants" [17] corresponding to any desired intermediate gate event.

Each prime implicant for an intermediate gate will correspond to one of its minimal cut-set events with the restriction that there be no simultaneous occurrence of a basic event (c) and its complement ( $\bar{c}$ ) in the cut-set.

SETS derives the prime implicant description for an intermediate gate by using a set of substitutions and successively applying the distributive law

$$
\begin{equation*}
A \Omega(B U C)=(A \Omega B) U(A \Omega C) \tag{1.59}
\end{equation*}
$$

Suppose for example that SETS has been commanded to derive a representation for gate $G 2$ of fault tree example $I$. The following procedure would take place

$$
\text { STEP I } \quad \begin{aligned}
G 2 & =G 4 U G 6 \\
G 4 & =C 1 \Omega C 2 \Omega G 5, \quad G 5=C 8 U C 9 \\
G 6 & =C 3 U G 7, \quad G 7=C 7 \Omega \mathrm{C} 4
\end{aligned}
$$

STEP 2

STEP 3
STEP 4

$$
\begin{aligned}
& G 6=C 3 U(C 7 \Omega C 4) \\
& G 4=C 1 \Omega C 2 \Omega(C 8 U C 9)
\end{aligned}
$$

$G 2=(C 1 \Omega C 2 \Omega(C 8 U C 9) U(C 3 U(C 7 \Omega C 4))$
Apply distributive law (equation 1.59)

$$
\Rightarrow G 2=(C 1 \Omega(C 2 \Omega C 8) U(C 2 \Omega C 9) U
$$

$$
((C 3) U(C 7 \Omega C 4)
$$

$$
\Rightarrow G 2=(C 1 \Omega C 2 \Omega C 8) U(C 1 \Omega C 2 \Omega C 9) U
$$ (C3) U(C7 $\mathrm{C} C 4)$

Hence the prime implicants (minimal cut-sets) for G2 are

$$
\begin{aligned}
& K_{1}=(C 1, C 2, C 8) \\
& K_{2}=(C 1, C 2, C 9) \\
& K_{3}=(C 3) \\
& K_{4}=(C 7, C 4)
\end{aligned}
$$

The above procedure is generally used to derive the prime implicants for any fault tree, however the additional identities

$$
\begin{equation*}
C_{i} \Omega C_{i}=C_{i}, C_{i} \Omega \bar{C}_{i}=\phi \text { (empty set) } \tag{1.60}
\end{equation*}
$$

may sometimes be needed.


#### Abstract

I.7.2 BAM

Computer program BAM [18] uses a Boolean algebra minimization technique to find intermediate and top event logic expressions from the input fault tree and calculates the point unavailabilities associated with these events.


By including basic events (on states) as well as their respective complements (OFF states) BAM is able to construct a truth table which describes each intermediate gate event in the fault tree as the union of mutually exclusive ( $O N$ and OFF) state events. Thus, for example consider an $O R$ gate operating on components (C1, C2).

Its coherent structure description will be (Equa-
tion 1.4)

$$
\begin{equation*}
\phi_{O R}=1-\left(1-y_{1}\right)\left(1-y_{2}\right) \tag{1.61}
\end{equation*}
$$

at the same time recall that (Equation 1.9)

$$
\begin{equation*}
\phi_{\mathrm{NOT}}(\mathrm{y})=1-\mathrm{y} \tag{1.62}
\end{equation*}
$$

hence

$$
\begin{equation*}
\phi_{O R}={ }^{\phi} \operatorname{NOT}\left({ }^{\phi} \mathrm{NOT}\left(\mathrm{y}_{1}\right) \cdot \phi_{\mathrm{NOT}}\left(\mathrm{y}_{2}\right)\right) \tag{1.63}
\end{equation*}
$$

The above equation may now be reexpressed in set theoretical form by replacing $A N D, O R$ and $N O T$ gates by union (U), intersection ( $\Omega$ ) and complement ( ${ }^{-}$) operations, thus

$$
\begin{equation*}
\left.c_{1} \cup c_{2}=\tau_{\tau_{1}}^{\Omega} \bar{c}_{2}\right) \tag{1.64}
\end{equation*}
$$

Using now the identity

$$
\begin{equation*}
S=(C 1 \Omega C 2) U(C 1 \Omega \bar{C} 2) U(\bar{C} 1 \Omega C 2) U(\bar{C} 1 \Omega \bar{C} 2) \tag{1.65}
\end{equation*}
$$

with $S=C U \bar{C} \equiv$ the universal set. It follows that

$$
\begin{equation*}
C_{1} U C_{2}=\left(C_{1} \Omega \bar{C}_{2}\right) U\left(\bar{C}_{1} \Omega \bar{C}_{2}\right) U\left(C_{1} \Omega C_{2}\right) \tag{1.66}
\end{equation*}
$$

which is the desired expansion, since all events given in the right hand side of Equation (1.66) are mutually exclusive.

In Table 1.3 and 1.4 the truth tables [18] associated with the above logical expression $\left(C_{1} U C_{2}\right)$ as well as $C_{1} U\left(C_{2} \Omega \bar{C}_{3}\right)$ are given

| I | II |  | II |
| :---: | :---: | :---: | :---: |
| p-terms | $\mathrm{y}_{1}$ | $\mathrm{y}_{2}$ | $c_{1} \cup c_{2}$ |
| $c_{1} \Omega c_{2}$ | 1 | 1 | 1 |
| $\bar{c}_{1} \Omega c_{2}$ | 0 | 1 | 1 |
| $c_{1} \Omega \bar{c}_{2}$ | 1 | 0 | 1 |
| $\bar{c}_{1} \Omega \bar{c}_{2}$ | 0 | 0 | 0 |

Table 1.3 Canonical Expansion for $C_{1}$ U $C_{2}$
In general the truth table for an expression consisting of $N$ distinct logical variables is expanded using $2^{N}$ P-terms. Columns I and II are equivalent representations for each P-term needed for a canonical expansion. Thus, Column II can be derived from Column I by assigning a 1 value to $O N$ states. and a 0 value to OFF states. The canonical expansion (Column III) for a particular logical expression is then obtained by performing for each row in the truth table a series of Boolean arithmetic operations equivalent to the set of operations indicated in the logical expression. Thus, $C_{1} U C_{2}$ requires only that variables $y_{1}$ and $y_{2}$ be added at each row. While $C_{1} U\left(C_{2} \Omega \bar{C}_{3}\right)$ requires the set of operations
II

| P-terms | $y_{1}$ | $y_{2}$ | $y_{3}$ | $C_{2} \Omega \bar{C}_{3}$ | $C_{1} U\left(C_{2} \Omega \bar{C}_{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $C_{1} \Omega C_{2} \Omega C_{3}$ | 1 | 1 | 1 | 0 | 1 |
| $C_{1} \Omega C_{2} \Omega C_{3}$ | 1 | 1 | 0 | 1 | 1 |
| $C_{1} \Omega C_{2} \Omega C_{3}$ | 1 | 0 | 1 | 0 | 1 |
| $C_{1} \Omega C_{2} \Omega C_{3}$ | 1 | 0 | 0 | 0 | 1 |
| $C_{1} \Omega C_{2} \Omega C_{3}$ | 0 | 1 | 1 | 0 | 0 |
| $C_{1} \Omega C_{2} \Omega C_{3}$ | 0 | 1 | 0 | 1 | 1 |
| $C_{1} \Omega C_{2} \Omega C_{3}$ | 0 | 0 | 1 | 0 | 0 |
| $C_{1} \Omega C_{2} \Omega C_{3}$ | 0 | 0 | 0 | 0 | 0 |

Table 1.4 Canonical Expansion for $C_{1} U\left(C_{2} \Omega \bar{C}_{3}\right)$

$$
\begin{equation*}
\left.C_{1} \cup C_{2} \Omega \bar{c}_{3}\right)=y_{1}+\left(y_{2} \cdot \bar{y}_{3}\right) \tag{1.67}
\end{equation*}
$$

It should be recalled that the following identities apply for Boolean arithmetic variables

$$
\begin{align*}
1+1 & =1  \tag{1.68}\\
1+0 & =1 \\
1 \cdot 0 & =0 \\
1 \cdot 1 & =1 \\
0 \cdot 0 & =1 \\
\bar{O} & =1 \\
I & =0
\end{align*}
$$

Therefore the addition implied by $C_{1} \cup C_{2}$ will result in

$$
\begin{aligned}
& \text { lst row } 1+1=1 \\
& \text { 2nd row } 1+0=1 \\
& 3 \text { rd row } 0+1=1 \\
& 4 \text { th row } 0+0=0
\end{aligned}
$$

so as expected

$$
\begin{align*}
& C_{1} \cup C_{2}=\left(C_{1} \Omega C_{2}\right) U\left(C_{1} \Omega \bar{C}_{2}\right) U\left(\bar{C}_{1} \Omega C_{2}\right) \\
\Rightarrow & P\left(C_{1} U C_{2}\right)=P\left(C_{1} \Omega C_{2}\right)+P\left(C_{1} \Omega \bar{C}_{2}\right)+P\left(\bar{C}_{1} \Omega C_{2}\right) \\
\Rightarrow & P\left(C_{1} \cup C_{2}\right)=p_{1} p_{2}+p_{1}\left(1-p_{2}\right)+p_{2}\left(1-p_{1}\right) \\
= & P\left(C_{1} \cup C_{2}\right)=-p_{1} p_{2}+p_{1}+p_{2} \tag{1.69}
\end{align*}
$$

Similarly for $C_{1} U\left(C_{2} \quad \bar{C}_{3}\right)$ each row is applied the operation $y_{1}+\left(y_{2} \cdot \bar{y}_{3}\right)$.

Thus, it follows that

| lst row | $1+(1 \cdot \bar{I})=1+0=1$ |
| :--- | :--- |
| 2nd row | $1+(1 \cdot \overline{0})=1+1=1$ |
| etc. |  |

By inspection of Table 1.4 it is found that

$$
\begin{gather*}
\left.P\left(C_{1} \cup C C_{2} \Omega C_{3}\right)\right)=p_{1} p_{2} p_{3}+p_{1} p_{2}\left(1+p_{3}\right)+ \\
+p_{1}\left(1-p_{2}\right) p_{3}+p_{1}\left(1-p_{2}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)+\left(1-p_{1}\right) \\
p_{2}\left(1-p_{3}\right) \\
\left.=P\left(C_{1} \cup C C_{2} \Omega C_{3}\right)\right)=p_{1}+p_{2}-p_{1} p_{2}-p_{2} p_{3}+p_{1} p_{2} p_{3} \tag{1.70}
\end{gather*}
$$

The following examples illustrate how the BAM code is capable of handing fault trees which include mutually exclusive events and dependent failures.

Figure 1.8 depicts the fault tree for a system $C$, made up of two sub-systems $A$ and $B$ each of which may not be functioning due to either a hardward failure or because it is undergoing maintenance events MA and MB, should be mutually exclusive, hence the appearance of complement events $\overline{M A}$ and $\overline{M B}$ in the


FIGURE 1. 8 Fault Tree Including Mutually Exclusive Maintenance Events

TABLE 1.5
Canonical expression for fault tree with maintenance events

| $\begin{aligned} & C_{1} \\ & Y_{1} \end{aligned}$ | $\begin{aligned} & C_{2} \\ & Y_{2} \end{aligned}$ | $\begin{aligned} & c_{3} \\ & Y_{3} \end{aligned}$ | $\begin{aligned} & c_{4} \\ & Y_{4} \end{aligned}$ | $\begin{aligned} & G 2=C_{1} U\left(C_{2} \Omega \bar{C}_{3}\right) \\ & Z_{1}=Y_{1}+\left(Y_{2} \cdot \bar{Y}_{3}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 3_{3}=\mathrm{C}_{4} U\left(\mathrm{C}_{3} \Omega \bar{C}_{2}\right) \\ & z_{2}=Y_{4}+\left(Y_{3} \cdot \bar{Y}_{2}\right) \end{aligned}$ | $\begin{aligned} & G 1=G_{2} \Omega G_{3} \\ & Z=Z_{I} \cdot Z_{2} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1. | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

fault tree. Table 1.5 provides the truth table for the fault tree. Notice that even though

$$
\begin{equation*}
P(T O P) \neq P(G 2) \cdot P(G 3) \tag{1.71}
\end{equation*}
$$

since gates G2 and G3 are interdependent, it is however feasible to compute

$$
\begin{equation*}
P(T O P)=p_{1} p_{4}+p_{1} p_{3}+p_{4} p_{2} \tag{1.72}
\end{equation*}
$$

using the cannonical expansion for $G 1$ corresponding to

$$
z=z_{1} \cdot z_{2}
$$

In figure 1.9 an event $B$ dependent on the occurrence of event A is represented in terms of a tree logic diagram which includes the events
$B / A=$ Event $B$ given the occurrence of $A$
$B / \bar{A} \equiv$ Event $B$ given the occurrence of $\bar{A}$
as

$$
\begin{equation*}
B=(A \Omega B / A) U(\bar{A} \Omega B / \bar{A}) \tag{1.73}
\end{equation*}
$$

This representation is quite convenient for performing quantitative evaluations of a fault tree which includes event $B$ since
and

$$
\begin{align*}
& P(A \Omega B / A)=P(A) \cdot P(B / A) \\
& P(\bar{A} \Omega B / A)=P(\bar{A}) \cdot P(B / \bar{A}) \tag{1.74}
\end{align*}
$$

The above representation for an event dependent on the occurrence of a single event has been generalized in BAM for the case of events dependent on a multiple number of basic events


FIGURE 1.9 Representation of an Event $B$
Dependent on the Occurrence of Event $A$


FIGURE 1.10
REPRESENTATION OF AN EVENT C DEPENDENT ON THE OCCURRENCE OF EVENTS B AND A


FIGURE 1.11
FAULT TREE INCLUDING COMMON MODE EVENT A
(Figure l.l0) as well as to common mode failures depicted as a multiple set of events whose occurrence probability is dependent on a common initiating event (Figure l.11).

## I.8. Reliability Calculations by a Pattern Recognition Method

The computer program PATREC [2] relies on the recognition of sub-tree patterns whose probability combination laws have been previously stored in the computer code's library. The sub-tree is then replaced by a supercomponent with an associated occurrence probability equal to that of the recognized sub-tree. By repeating this process the whole tree is eventually transformed into a single super-component whose occurrence probability corresponds to that of the top tree event.

The elementary pattern recogniztion methodology used by PATREC entails that large amounts of non-numerical data interrelated on a complicated way be handled. To this end the computer language PL-I was chosen given its list processing capabilities.

The task of evaluating the TOP tree event occurrence probability is performed by PATREC through the following set of manipulations on the fault tree structure which is subject to the following restrictions:
(a) Pattern recognition is made possible by giving the fault tree diagram in a binary gate form (Fig. l.l2).
(b) Because of the binary gate form of the fault tree, to each gate there corresponds a left hand side and
a right hand side sub-tree.
(c) Before proceeding on to identify sub-tree patterns at each step in the tree reduction, PATREC internally reorders the fault tree diagram in a way such that if to every AND gate one unit of weight is assigned and to every $O R$ gate two units of weight are assigned, then for each gate its right hand sub-tree will be heavier than its left hand side. Figure 1.13 shows the fault tree example Il reordered according to the above rule. The above tree reordering is done in order to avoid the storage of different patterns which correspond to the same logic structure (Figure 1.14)
(d) Using list processing methods the pattern library is stored in the computer memory in a tree-like form. As a result redundant information about similar subpatterns isn't stored separately and moreover the largest pattern found in PATREC's library are guaranteed to be identified each time. In Figure 1.15 the tree representing the set of 12 basic patterns stored in PATREC is shown. Tree patterns are represented in reverse polish notation, thus

$$
\begin{align*}
& P_{I}=A B \Omega=A \Omega B  \tag{1.75}\\
& \vdots \\
& \dot{P}_{5}=A B C \Omega U=A U(B \Omega C) \\
& \vdots \\
& P_{8}=A B \Omega C D U=(A \Omega B) \Omega(C U D) \\
& \text { etc. }
\end{align*}
$$



FIGURE 1.12 FAULT TREE EXAMPLE II IN BINARY GATE FORM


FIGURE 1.13 FAULT TREE EXAMPLE II IN ITS ORDERED FORM


Pattern found in PAT-REC's library


Pattern not found in PAT-REC's library

FIGURE 1.14
EQUIVALENT BINARY TREE PATTERNS


PAT-REC'S LIBRARY OF PATTERNS STORED IN A TREE-LIKE FORM
(e) Basic components are required not to be replicated in the fault tree. Consequently, each time a sub-tree is found to correspond to a particular pattern in PATREC's library, it will be possible to replace it by a supercomponent having the same occurrence probability as that of the sub-tree's top event. Thus, since gate G2 of fault tree example II is the top gate for a sub-tree with the same structure as that of pattern $P_{5}$, it will be replaced by a supercomponent having an occurrence probability

$$
\begin{equation*}
P_{G 2}=P_{3}+\left(P_{2} \cdot P_{1}\right)-\left(P_{3} P_{2} P_{1}\right) \tag{1.76}
\end{equation*}
$$

Subsequently a new ordered representation for the fault tree will be found (Figure l.l6), which corresponds to pattern $P_{4}=A B C U$, hence the $T O P$ event occurrence probability is finally determined as

$$
\begin{equation*}
P(T O P)=P_{G 2}\left(P_{4}+P_{5}-P_{4} P_{5}\right) \tag{1.77}
\end{equation*}
$$

As explained above the procedure used by PATREC is restricted to fault trees which does not include replicated events. For most real problems however a number of basic components will be replicated several times in the fault tree. Therefore it is necessary that the methodology be somehow generalized to handle these situations. Computer code PATREC-DE [4] was created for this purpose. Its procedure is based on expressing the structure of a fault tree which includes replicated events in terms of a number of fault trees having no replications in their structure. Thus, recall that the dependency of a coherent structure


FIGURE 1.16
FINAL ORDERED FORM FOR FAULT TREE EXAMPLE II
function $\phi\left(Y^{N}\right)$ on any of its basic inputs $y_{i}$ may be explicitly indicated as

$$
\begin{align*}
& \phi(\underline{P})=Y_{1} \phi\left(I_{1}, Y\right)+\left(I-Y_{1}\right) \phi\left(O_{1}, Y\right)  \tag{1.38}\\
= & h(P)=P_{1} h\left(I_{1}, P\right)+\left(I-P_{1}\right) h\left(O_{1}, P\right) \tag{1.39}
\end{align*}
$$

This expansion has the effect of wiping out the dependency on $Y_{1}$ from the fault trees representing $\phi\left(I_{1}, Y\right)$ and $\phi\left(O_{1}, \Psi\right)$ (Figure 1.17). Therefore by repeatedly expanding in all variables $Y_{i}(1=1,2, \ldots$, ) which correspond to replicated basic events, it is possible to relate the original fault tree to a number of fault trees which include no replicated events in their structure, i.e.,

$$
\begin{equation*}
\phi\left(\Psi^{N}\right)=\sum_{\underset{Y}{R}} \quad \prod_{y=1}^{r} x_{j}^{Y_{j}}\left(1-x_{j}\right)^{1-y_{j}} \phi_{\phi}\left(\Psi^{R}, \Psi^{R^{C}}\right) \tag{.78}
\end{equation*}
$$

where the sum is extended over all of the $2^{r}$ binary vectors $\eta^{R}$ corresponding to a particular combination of $O N$ and OFF states for the replicated events, $R^{C}{ }^{C}=N$ and $0^{\circ} \equiv 1$.

The TOP event occurrence probability for the original fault tree will then be given by

$$
\begin{equation*}
P(T O P)=h(P)=\sum_{\neq R} \prod_{j=1}^{r} x_{j}^{Y_{j}}\left(1-X_{j}\right)^{1-Y_{j}}\left(\underset{\rightarrow}{Y^{R}}, P^{R^{C}}\right) \tag{1.79}
\end{equation*}
$$

Notice, however that this procedure has the disadvantage of

$\Rightarrow$


FIGURE 1.17
FAULT TREE DEPENDENCIES REDUCED OUT WHEN $Y_{i}=0$ OR $Y_{i}=1$
requiring that $2^{r}$ different fault tree $T O P$ event occurrence probabilities be evaluated.

## I.9. The IMPORTANCE Computer Program

IMPORTANCE [14] is a computer program which was developed to rank basic events and cut-sets according to various importance measures.

The IMPORTANCE computer code is capable of handing timedependent fault trees under the assumption that each basic component be statistically independent and that its failure and repair distribution be exponential in time. Thus to each basic event there correspond a set of parameters $(v, \lambda)_{1}$ such that the failure occurrence probability $P_{1}(t)$ obeys the equations

$$
\begin{align*}
& q(t)=1-p(t)  \tag{1.80}\\
& \frac{d q(t)}{d t}+\dot{x} q(t)=v p(t) \\
& \frac{d p(t)}{d t}+v p(t)=\lambda q(t) \\
& q(0)=1
\end{align*}
$$

Therefore $p(t)$ will be given by

$$
\begin{equation*}
p(t)=\frac{\lambda}{\lambda+v}\left(1-e^{-(\lambda+v) t}\right) \tag{1.81}
\end{equation*}
$$

and $U=\lim _{t \rightarrow \infty} P(t)=\frac{x}{\nu+\lambda}=\frac{\frac{1}{\mu}}{\frac{1}{\mu}+\frac{1}{\tau}}=\frac{\tau}{\tau+\mu}$

BASIC EVENT IMPORTANCE MEASURES COMPUTED BY THE IMPORTANCE CODE

## Measure

I. Birnbaum
2. Criticality
3. Upgrading Function
4. Vesely-Fussell
5. Barlow-Proschan
6. Steady State Barlow-Proschan (BP,SS)

$$
\frac{\left[h\left(I_{i}, \Psi\right)-h\left(o_{i}, \Psi\right)\right] / \mu_{i}+\tau_{i}}{n} \sum_{j=1}\left[h\left(I_{j}, \Psi\right)-h\left(0_{j}, \Psi\right)\right] / \mu_{i}+\tau_{j},
$$

## TABLE 1.6 (Continued)

## 7. Sequential Contributory

$$
\begin{aligned}
& {\underset{i \neq j}{j}}^{\sum \int_{0}^{t} \frac{\left[h\left(I_{1}, I_{j}, P\left(t^{I}\right)\right)-h\left(I_{1}, 0_{j}, P\left(t^{I}\right)\right] P_{i}\left(t^{I}\right) d W_{f, j}\left(t^{I}\right)\right.}{E\left[N_{j}(t)\right]}} \begin{array}{l}
\text { i\&j} \varepsilon_{\ell} K_{\ell} \\
\text { for some } \ell
\end{array}
\end{aligned}
$$

whene $\mu \equiv$ component mean time to failure and $\tau \equiv$ component mean time to repair (for convenience the component index i has been omitted in the above equations).

Table 1.6 lists the seven measures of basic event importance computed by the IMPORTANCE code.

The first four basic event importance measures relate to the fault tree at a certain point in time $t$. The first, second and fourth measures were previously discussed in section 1.5. The Upgrading Function Importance measure proposed by Lambert [14] offers the advantage that $\lambda_{1}$ as opposed to failure. probability $P_{1}(t)$ is a physically measurable parameter. Moreover Lambert has shown how the Upgrading Function may be used as a tool to decide on an optimal choice for system upgrade.

The fifth and seventh basic event importance measures are different in that they take into account the way components failed sequentially in time to cause system failure. Thus, the Barlow-Proschan importance [2] for component 1 measures the probability the system has failed by time t because a minimal cut-set critical to the system has failed with component $i$ failing last.

The Barlow-Proschan measure is obtained by integrating over the component failure density $W_{f}, i(t)$ and by dividing over the expected number of system failures $E\left[N_{S}(t)\right]$ by time $t$. $W_{f}, i(t) d t$ is defined as the probability that event i will fail In the time interval ( $t, t+d t$ ). Furthermore $W_{f}, s(t) d f$ is defined to be the probability that an overall system failure will occur in the interval ( $t, t+d t$ ). Murchland $[15]$ has shown that
the system failure density $W_{f}, s(t)$ may be given in terms of $W_{f}, i(t)$ as

$$
\begin{equation*}
W_{f}, s(t)=\sum_{i=1}^{n} \frac{\partial h\left(P_{f}(t)\right)}{\partial P_{i}(t)} W_{f}, i(t) \tag{1.82}
\end{equation*}
$$

From a knowledge of $W_{f}, s(t)$ the expected number of failures over the time interval $[0, t]$ will be given by

$$
\begin{equation*}
E\left[N_{s}(t)\right]=\int_{0}^{t} W_{f}, s(t) d t \tag{1.83}
\end{equation*}
$$

The sequential contributory importance measure is useful to assess the role of the failure of a component $i$ when any other component $f$ is the cause of system failure. For this case the failure of $i$ will contribute to system failure only if i and $j$ are contained in at least one minimal cut-set associated with the fault tree.

Finally the Barlow-Proschan steady-state importance measure is concerned with the asymptotic behavior of each component in the fault tree. Asymptotically the probability that a component is down is given by its unavailability (Equation 1.81)

$$
\begin{equation*}
u_{i}=\frac{\tau_{i}}{\mu_{i}+\tau_{i}} \tag{1.81}
\end{equation*}
$$

hence the asymptotic value of its probability density $W_{f}, i(t)$ will be

$$
\begin{equation*}
\lim _{t \rightarrow \infty} W_{f}, 1(t)=\frac{\frac{\tau_{1}}{\mu_{1}^{+} \tau_{1}}}{\tau_{1}}=\frac{1}{\mu_{1}+\tau_{i}} \tag{1.84}
\end{equation*}
$$

On the other hand the probability that component 1 causes system failure in the interval ( $t, t+d t$ ) is given by
$\frac{\left[h\left(I_{1}, f(t)\right)-h\left(0_{1}, f(t)\right] W_{f}, 1(t) d t\right.}{\sum_{j=1}^{n}\left[h\left(I_{j}, P(t)\right)-h\left(0_{f}, P(t)\right)\right] W_{f}, f(t) d t}$
therefore, the steady state probability that component 1 causes failure is
$I_{i} B P, S S=\frac{\left[h\left(I_{i}, \Psi\right)-h\left(O_{i}, \Psi\right)\right] \frac{I}{-\mu_{i}+\tau_{i}}}{\sum_{j=1}\left[h\left(I_{j}, \Psi\right)-h\left(O_{j}, \Psi\right)\right] \frac{I}{\mu_{j}+\tau_{j}}}$

## MODULAR REPRESENTATION OF FAULT TREES

## II.I. Introduction

Defined in terms of a reliability network diagram, a module is a group of components which behaves as a supercomponent. That means, it is completely sufficient to know the state of the super-component, and not the state of each component in the module, to determine the overall state of the system. In what follows, the properties associated with modularized fault trees and the computational advantages of analyzing fault trees by means of a modular decomposition will be presented.

## II.2. Modular Decomposition of Coherent Systems

In the context of the theory of coherent structures, a module is formally defined as follows [ l ]:

Let $\theta\left(\Psi^{N}\right)$ be the coherent structure function for a system having the vector ${\underset{Y}{ }}^{N}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ of basic input events. Then the subset $M$ of basic events contained in $N$ together with the coherent structure function $\sigma\left(\ddagger^{M}\right)$ define a module provided

$$
\begin{equation*}
\Theta\left(\Psi^{N}\right)=\alpha\left(\sigma\left(\Psi^{M}\right), Y^{M C}\right) \tag{2.1}
\end{equation*}
$$

where $\alpha$ is a coherent structure function operation on the super-component state $\sigma\left(\Psi^{M}\right)$ and on the set of events $\Psi^{\text {MC }}$ with $N=$ MUM $^{C}$.

Thus, a module $\sigma\left(\underline{Y}^{M}\right)$ for system $\theta\left({\underset{\sim}{Y}}^{N}\right)$ is a coherent subsystem acting as a super-component. It follows then that in terms of a fault tree diagram, an intermediate gate event will be a module to the top event if the basic events contained in the domain of this gate do not appear elsewhere in the fault tree.

Hence the modularization of fault trees having no replicated events or gates can be easily accomplished, since every intermediate gate for such a fault tree will be the top event for a tree sub-module. Nevertheless, as soon as replicated events and gates occur in the fault tree, the modular decomposition becomes a more involved procedure.

## II.3. The Finest Modular Representation

An algorithm to decompose a fault tree into its finest modular representation given its minimal cut-set structure composition, was originated by Chatterjee [ 7 ].

The finest modular representation for a coherent structure function $e\left(Y^{N}\right)$ is defined to be its mathematically equivalent fault tree diagram having the following properties:

1. All tree branches are independent, i.e., every intermediate gate event in the tree is modularizable;
2. . The logic function associated with each gate is either "prime", or "simple" having no inputs from other "simple" gates of the same type.

AND and OR gates are defined as the "simple" gates, since
they are characterized by a single cut-set and a single pathset, respectively. The second property requires that AND and OR gates present in the finest modular representation be of maximal size, i.e., if a simple gate has as inputs a number of simple gates of the same type, then all these gates must be collapsed together into one gate.

Higher order "prime" gates are defined to be Boolean logic functions which are not further modularizable. Prime logic functions are thus characterized by an irreducible set of Boolean cut-set vector equations.

Let $\sigma\left(\underline{Y}^{M}\right)$ be the coherent structure function corresponding to a prime gate having inputs $\underset{\sim}{Y}=\left(Y_{1}, Y_{2}, \ldots Y_{m}\right)$, then each of its minimal cut-sets will be represented by a Boolean vector

$$
\begin{aligned}
& S_{j}=\left(S_{I j}, S_{2 j}, \ldots S_{n j}\right) \\
& (j=1, \ldots, \ell), \text { with } S_{1 j}=1 \text { if the input i is contained }
\end{aligned}
$$

in the cut-set $f$ and $S_{i j}=0$ if the input $i$ is not contained In the cut-set $f(1=1,2, \ldots, n)$.

Thus, consider the sub-tree examples shown in Figures 2.1 and 2.3. Figure 2.1 represents a sub-tree having no replicated events, and its finest modular representation (Figure 2.2) is readily obtained by coalescing gates G1 and G2. Its modular structure is given by the following set of recursive equations.

$$
\begin{align*}
& M_{1}=\left\{M_{3}, M_{4}, M_{5} ; \Omega\right\}  \tag{2.3}\\
& M_{3}=\{a, b, c, ; \mathbb{U}\}  \tag{2.4}\\
& M_{4}=\{d, e, f ; u\} \\
& M_{5}=\{g, h, i ; u\}
\end{align*}
$$



FIGURE 2.1
SAMPLE SUB-TREE I WITH NO REPLICATIONS


FIGURE 2.2
FINEST MODULAR REPRESENTATION OF SAMPLE SUB-TREE I

Alternately, the sub-tree structure could have been described by listing its 27 different minimal cut-sets $(a, d, g),(b, d, g),(c, d, g)$, etc.

Figure 2.3 represents a sub-tree having replicated event $r$ as an input to gates $G 3$ and $G 5$. To obtain its finest modular representation (Figure 2.4) one must first realize that events ( $\mathrm{a}, \mathrm{b}$ ), ( $\mathrm{g}, \mathrm{i}$ ) and ( $\mathrm{d}, \mathrm{e}, \mathrm{f}$ ) form modules associated with simple OR gates

$$
\begin{align*}
& M_{3}=\prime\{a, b ; u\}  \tag{2.5}\\
& M_{4}=\{d, e, f ; u\} \\
& M_{5}=\{g, 1 ; u\}
\end{align*}
$$

Furthermore, these modules together with replicated event $r$ will become the inputs to a higher order prime gate $\sigma\left(Y_{r}, Y_{M 3}, Y_{M 4}, Y_{M 5}\right)$ characterized by a set of MODULAR minimal cut-sets represented in Boolean vector form as:

$$
\begin{align*}
& \Psi^{B}=\left(Y_{R}, Y_{M 3}, Y_{M 4}, Y_{M 5}\right)  \tag{2.6}\\
& S_{1}=(1,0,1,0)  \tag{2.7}\\
& S_{2}=(0,1,1,1)
\end{align*}
$$

It should be noted here how each of these modular minimal cut-sets is a compact representation for the usual basic event minimal cut-sets. Thus $S_{1}$ includes the 3 minimal cutsets $(r, d),(r, e),(r, f)$; while $S_{2}$ incorporates the other 12 remaining minimal cut-sets ( $a, d, g$ ), ( $b, d, g$ ), ( $a, d, i$ ), etc. It must be stressed here that the algorithm given by Chatterjee was devised for deriving the modular composition of a fault tree given the minimal cut-set structural description


FIGURE 2.3
SAMPLE SUB-TREE II WITH REPLICATIONS


FIGURE 2.4
of the fault tree. In complete contrast with this, the modularization algorithm given in Chapter III derives the modular composition of a fault tree directly from its diagram description.
II.4. Reliability Evaluation of Modularized Fault Trees

Once the modular structure of a fault tree has been derived, a quantitative evaluation of reliability and importance parameters of the fault tree may be efficiently performed. In particular, the probability of the occurrence of the top event, $P(T O P)$, is obtained by means of a series of recursive calculations requiring the evaluation of the probability expectation value of each of the modules contained in the tree.

Thus, if a particular module $M$ in the tree has a set $\left(M_{1}, M_{2}, \ldots, M_{n}\right)$ of modules as inputs, and is characterized by the coherent structure function $\sigma_{M}$
$\sigma_{M}=\beta\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$
with $\sigma_{i}=\sigma_{M_{1}}(i=1, \ldots, n)$, then its expectation value
$h_{\sigma}(P)$ is given by

$$
\begin{equation*}
h_{\sigma}(P)=h_{B}\left(h_{\sigma_{1}}\left(P_{\rightarrow}\right), h_{\sigma_{2}}(P), \ldots, h_{\sigma_{n}}(P)\right) \tag{2.9}
\end{equation*}
$$

For the case of simple $A N D$ and $O R$ gate modules, the expression for $h_{B}$ reduces to

$$
\begin{align*}
M & =\left\{M_{1}, M_{2}, \ldots, M_{n} ; \Omega\right\} \\
& \Rightarrow h_{\beta}=h_{\sigma_{1}} \cdot h_{\sigma_{2}} \cdots \cdot h_{\sigma_{n}}={ }_{1=1}^{n} h_{\sigma_{1}} \tag{2.10}
\end{align*}
$$

$$
M=\left\{M_{1}, M_{2}, \ldots, M_{n} ; 0\right\}
$$

$$
\begin{equation*}
\Rightarrow h_{B}=1-\left(1-h_{\sigma_{1}}\right)\left(1-h_{\sigma_{2}}\right) \cdots\left(1-h_{\sigma_{n}}\right)=\prod_{1=1}^{n} h_{\sigma_{1}} \tag{2.11}
\end{equation*}
$$

While for a higher order gate module $h_{\beta}(f)$ is given by
where $1 \varepsilon K_{j}$ includes all modules contained in the minimal cut-set $K_{j}, N_{k}$ is the total number of minimal cutsets representing the module structure $\sigma_{M}$ and $E$ represents the probability expectation value operator which when applied on the structure function $\sigma_{1}$ yields

$$
\begin{equation*}
E\left(\sigma_{1}\right)=h_{\sigma_{1}}(P) \tag{2.13}
\end{equation*}
$$

An exact computation of $h_{\beta}$ for a higher order gate may be done by performing the operations indicated on the right-hand side of equation (2.12) and using the idempotency property of $\sigma_{1}$ i.e. $\sigma_{1}^{2}=\sigma_{1}$. An expression for $\sigma_{\mathrm{M}}$ linearly dependent on $\sigma_{i}$ for all 1 will be thus obtained. It is then possible to apply equation (2.13) yielding $h_{B}$ as a function of $h_{\sigma_{1}}(1=1, \ldots, n)$.

For a higher-order module involving a large number of cut-sets, such an evaluation technique would be, however, too complex. So that for these cases it is preferred to use an approximation by applying the familiar minimal

$$
\begin{align*}
& \sigma_{M}=\int_{j=1}^{N_{k}} 1_{\varepsilon^{K}} K_{j} \quad \sigma_{1} \\
& \Rightarrow h_{B}=\Sigma\left(\prod_{j=1}^{K} i_{\varepsilon} \varepsilon_{j}^{\pi} \sigma_{i}\right) \tag{2.12}
\end{align*}
$$

cut-set upper bound formula

$$
\begin{equation*}
h_{\beta}(P) \leq \prod_{j=1}^{N_{k}} \sum_{i \varepsilon E_{j}}^{h_{\sigma_{ \pm}}(P)} \tag{2.14}
\end{equation*}
$$

which in its first order expansion reduces to the rareevent approximation

$$
\begin{equation*}
h_{\beta}(p) \leq \sum_{j=1}^{N_{k}} \stackrel{\pi}{i \in k j}_{\pi}^{h_{\sigma_{i}}(p)} \tag{2.15}
\end{equation*}
$$

It may be seen now that the top event occurrence probability, $P(T O P)$, can be derived by successivly using, whereever necessary, the minimal cut upper bound approximation for the evaluation of modular reliabilities contained in the fault tree.

The following theorem states that such a series of approximations will yield an upper bound value closer to $P(T O P)$ than that obtained by applying the minimal cut upper bound to the family of cut-sets characterizing the full fault tree. The proof of the theorem closely follows the line of arguments given by Barlow and Proschan [ I ] to show the analogous result for the minimal path lower bound approximation to $P(T O P)$.

Theorem: Let $\theta\left(母^{N}\right)$ be a coherent structure of independent components with modular decomposition

$$
\left\{\left(M_{1}, \sigma_{1}\right),\left(M_{2}, \sigma_{2}\right), \ldots,\left(M_{r}, \sigma_{r}\right)\right\}
$$

and organizing coherent structure function $\beta$ i.e.

$$
\begin{equation*}
\theta\left(\ddagger^{N}\right)=\beta\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right) \tag{2.16}
\end{equation*}
$$

with $M_{i} \Omega M_{j}=$ the empty set for $i \neq j$. Then

$$
\begin{align*}
& h_{\theta}(p) \leq u_{\beta}\left(u_{\sigma_{1}}(p), \ldots, v_{\sigma_{r}}(p)\right) \\
& \leq u_{\theta}(p) \tag{2.17}
\end{align*}
$$

Here $u_{\gamma}$ denotes the minimal cut upper bound for a coherent structure function $\gamma\left(y_{1}, \ldots, y_{m}\right)$ i.e.

$$
\begin{equation*}
\gamma\left(\mathcal{Z}^{M}\right)=\prod_{j=1}^{N_{k}} i_{\varepsilon^{K}}^{\pi} y_{i} \Rightarrow u_{\gamma}(P)=\prod_{j=1}^{N_{k}} i_{\varepsilon_{j}}^{\pi} P_{i} \tag{2.18}
\end{equation*}
$$

In order to prove the theorem (equation 2.17), it is necessary to first introduce the following Lemma:

Lemma: Let a coherent structure function $\gamma$ consist of n modules connected in series, that is

$$
\begin{equation*}
\gamma(Y)=\prod_{i=1}^{n} Y_{i}(Y) \tag{2.19}
\end{equation*}
$$

and consider all components to be statistically independent. Then

$$
\begin{equation*}
{\underset{i=1}{n} v_{\gamma_{i}}(p) \leq v_{\gamma}(p), ~(p)}^{n} \tag{2.20}
\end{equation*}
$$

Proof of Lemma: We may represent $\gamma_{i}$ in terms of its minimal cut-set structure functions $\lambda_{11}, \ldots, \lambda_{1 k_{i}}$ as

$$
\begin{equation*}
r_{1}=\prod_{j=1}^{K_{1}} \lambda 1 j(Y) \quad(1=1, \ldots, n) \tag{2.21}
\end{equation*}
$$

it follows that

$$
u_{1}(f)=\prod_{j=1}^{k_{1}} P\left(\lambda_{1 j}(q)=1\right)
$$

and hence

$$
\begin{equation*}
\prod_{i=1}^{n} u_{1}(p)=\prod_{1=1}^{n} \prod_{j=1}^{K_{1}} P\left(\lambda_{i j}(\eta)=1\right) \tag{2.23}
\end{equation*}
$$

Now, if we replace replicated components in the minimal cut-set representation for $\gamma_{\mathcal{1}}(\underset{\sim}{( })$ by identical but mutually independent components, we will obtain a new coherent structure function $\gamma^{1}$ having the same upper bound as $\gamma$ i.e.

$$
\begin{equation*}
u_{\gamma^{1}}(P)=v_{\gamma}(P) \tag{2.24}
\end{equation*}
$$

But by the definition of $\gamma^{1}$

$$
\begin{equation*}
h_{\gamma^{1}}(p)=\prod_{i=1}^{n} U_{\gamma_{i}}(p) \tag{2.25}
\end{equation*}
$$

therefore

$$
\prod_{i=1}^{n} u_{\gamma_{i}}(p) \leq u_{\gamma}(p)
$$

q.e.d.

Proof of theorem: Let $v_{1}, v_{2}, \ldots, v_{t}$ denote the minimal cut-set structure functions of the organizing coherent structure function $\beta\left(\sigma_{1}, \ldots, \sigma_{r}\right)$; let $\beta_{j}(\underset{q}{ })=v_{j}\left[\sigma_{1}(Y), \ldots\right.$, $\left.\sigma_{r}(\mp)\right]$ be the minimal cut-set indicator function constituted
by a number of modules ( $M_{11}, M_{i 2}, \ldots, M_{i v_{j}}$ ) which are necessarily connected in series. And let $\mu_{j l}, \mu_{j 2}, \ldots, \mu_{j t}$ denote the minimal cut-set structure functions for $\beta_{j}$ ( $j=1,2, \ldots .$.

Then

$$
\begin{array}{ll}
\left\{\mu_{j k}\right\} & k=1, \ldots, t_{j} \\
j=1, \ldots, t
\end{array}
$$

constitute the set of minimal cut-set structure function of $\theta\left(\Psi^{N}\right)$ since (a) each $\mu_{j k}$ is distinct given that the modules In the structure $B\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ are disjoint. (b) $\mu_{j k}=1$ $\Rightarrow \nu_{j}=1 \Rightarrow \beta=1 \Rightarrow \theta=1$ therefore $\mu_{j k}$ is a cut-set structure function of $\beta$. Moreover the sets $\mu_{j k}$ are minimal.

It follows that

$$
\begin{equation*}
u_{\theta}(P)=\prod_{j=1}^{t} \prod_{k=1}^{t} h_{\mu_{j k}}(P) \tag{2.27}
\end{equation*}
$$

Furthermore since the modular components of $v_{j}$ are connected in series, one may apply the above Lemma to obtain

$$
\begin{equation*}
h_{v_{j}}\left(u_{\sigma I}(p), \ldots, u_{\sigma r}(p)\right) \leq u_{\beta_{j}}(p) \tag{2.28}
\end{equation*}
$$

Finally, using (2.27) and (2.28) it follows that

$$
\begin{align*}
& u_{\beta}\left(u_{\sigma I}(p) \ldots, u_{\sigma r}(p)\right)=\prod_{y=1}^{t} h_{v_{f}}\left(u_{\sigma_{1}}(p), \ldots, u_{\sigma r}(p)\right) \\
& t  \tag{2.29}\\
& \leq{ }_{j=1} \quad u_{\beta j}(p)=\frac{1}{y=1} \prod_{k=1}^{t} h \mu_{j k}=u_{\phi}(p)
\end{align*}
$$

q.e.d.

## II.5. Reliability Importance of Modules

II.5.1 Summary of Reliability Importance Measures

It has been shown that for a modularized fault tree, the evaluation of the top event occurrence probability $P(T O P)$ requires that the occurrence probabilities of all the intermediate gate events corresponding to a module in the fault tree be evaluated in advance. It is obvious, however, that because of the recursive nature of the modular equations, the execution of this task may be done very efficiently. Furthermore, it will be shown in this section that the additional information obtained in this process, i.e., the modular reliabilities, is needed to evaluate the reliability importance of each of the modules and basic events contained in the fault tree.

In Chapter I several measures of importance were introduced and defined in terms of $h(\underset{\sim}{P})$ the top event occurrence probability given as a function of the occurrence probabilities of the basic events

$$
\begin{equation*}
P(T O P)=E\left(\theta\left(\Psi^{N}\right)\right)=\operatorname{Prob}[\theta(\neq)=1]=h\left(P_{\rightarrow}\right) \tag{2.30}
\end{equation*}
$$

with $\neq\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and $P=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$
derined as

$$
\begin{equation*}
E\left(y_{1}\right)=\operatorname{Prob}\left(y_{1}=1\right)=P_{1} \tag{2.31}
\end{equation*}
$$

Thus, Birnbaum's measure of importance for system's component 1 was defined as the rate of change of the overall system reliability as the reliability of component 1 is changed.

$$
\begin{equation*}
I_{1}^{B}=\frac{\partial h(P)}{\partial P_{1}}=h\left(I_{1}, P\right)-h\left(O_{1}, P\right) \tag{2.32}
\end{equation*}
$$

The criticality importance of component 1 was defined as the probability that the system is in a state in which component is both "critical" to the system and is in a failed state, given that the system has failed

$$
\begin{equation*}
I_{i}^{C r}=\frac{\operatorname{Prob}(i \text { critical }) \cdot P_{i}}{h(P)} \tag{2.33}
\end{equation*}
$$

Where component 1 is defined to be critical to the system if the system fails provided 1 is in a failed state but does not fail if component 1 is not in a failed state, i.e., it is required that the state vector $q$ be such that

$$
\left(I_{1}, Y\right)=1 \text { and } \quad\left(O_{i}, Y\right)=0
$$

(Recall $\left(I_{1}, Y\right) \equiv \theta\left(Y_{1}, Y_{2}, \ldots, Y_{1}=1, \ldots, Y_{n}\right)$
Hence

$$
\begin{align*}
& \operatorname{Prob}(1 \text { critical })=P\left(\left\{\theta\left(1_{1}, \Psi\right)-\theta\left(O_{1}, \Psi\right)\right\}=1\right) \\
= & P\left(\theta\left(I_{1}, \neq \neq 1\right)-P\left(\theta\left(O_{1}, Y\right)=1\right)\right.  \tag{2.34}\\
\Rightarrow & P(1 \text { critical })=h\left(I_{1}, P\right)-h\left(O_{1}, P\right) \tag{2.35}
\end{align*}
$$

By substituting equation (2.35) into equation (2.33), the following equation is derived:

$$
\begin{equation*}
I_{i}^{C r}=\frac{\left(h\left(I_{1}, P\right)-h\left(0_{1}, P\right)\right)}{h\left(P_{1}\right)} F_{i} \tag{2.36}
\end{equation*}
$$

The Vesely-Fussell importance measure for component 1
was defined as the probability that component 1 will contribute to system failure, given that the system is in a failed state. As component 1 contributes to system failure only if a cut-set containing $i$ has failed, it is convenient to define $\Theta_{k}^{1}(\mp)$ to be the Boolean operator function for the union of all cut-sets containing event i

$$
\begin{equation*}
\theta_{k}^{i}(\Psi)=N_{j=1}^{\frac{11}{i}} \underset{\substack{1 \varepsilon K j \\ 1 \varepsilon K j}}{\pi} \quad Y_{\ell} \tag{2.37}
\end{equation*}
$$

with $N_{k}^{1}=$ number of cut-sets containing basic event, 1 , $\ell_{\varepsilon} K_{j}$ and $i \varepsilon_{j} K_{j}$ implies index $\ell$ includes all basic events in cut-set $K j$ which necessarily contains event $i$. Then in terms of $\theta_{k}^{1}(\underset{\sim}{\eta})$ the Vesely-Fussell importance of component 1 is given by

$$
\begin{equation*}
I_{i}^{V \cdot F}=\frac{P\left(\theta \frac{1}{k}(\underset{f}{( })=1\right)}{P(\theta(\underset{\sim}{q})=1)}=\frac{h_{1}(P)}{h\left(\frac{P}{f}\right)} \tag{2.38}
\end{equation*}
$$

II.5.2 The Birnbaum and Criticality Measures of Importance for Modules

Since for a modularized fault tree each of its modules may be considered as a super-component independent of the rest of the tree, the above definitions may also correctly apply for modular importances. Thus, if $\sigma\left(\ddagger^{M}\right)$ is the coherent structure function associated with module $M$ for a fault tree characterized by coherent structure function $\theta\left(\Psi^{N}\right)$, 1.e.

$$
\begin{equation*}
\theta\left({\underset{F}{ }}^{N}\right)=\alpha\left(\sigma\left(\underline{Y}^{M}\right),{\underset{Y}{ }}^{M C}\right) \tag{2.39}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{\theta}(p)=h_{a}\left(h_{\sigma}\left(p^{M}\right), p^{M C}\right) \tag{2.40}
\end{equation*}
$$

then Birnbaum's importance measure for module $M$ will be

$$
\begin{equation*}
I_{\alpha, M}^{B}=\frac{\partial h_{\alpha}\left(h_{\sigma}\left(P^{M}\right), P^{M C}\right)}{\partial h_{\sigma}\left(F^{M}\right)} \tag{2.41}
\end{equation*}
$$

and since the set $M$ of inputs is disjoint from the rest of the tree, we can use a partial derivative chain rule to obtain the Birnbaum importance of input 1 contained in module $\mathrm{M}[5]$

$$
\begin{equation*}
I_{\theta, i}^{B}=\frac{\partial h_{\alpha}\left(h_{\sigma}\left(q^{M}\right), P^{M C}\right)}{\partial h_{\sigma}\left(P^{M}\right)} \cdot \frac{\partial h_{\sigma}\left(P^{M}\right)}{\partial P_{i}} \tag{2.42}
\end{equation*}
$$

(1عM)

$$
\begin{equation*}
\Rightarrow I_{\theta, 1}^{B}=I_{\alpha, M}^{B} I_{\sigma, 1}^{B} \tag{2.43}
\end{equation*}
$$

In words, the above chain-rule states that the Birnbaum importance of event 1 is given by the product of its Birnbaum importance with respect to the module to which it belongs and the Birnbaum importance of the module with respect to the top tree event.

The criticality importance measure for module $M$ is given by

$$
\begin{equation*}
I_{M}^{C r}=\frac{\partial h_{\alpha}\left(h_{\sigma}\left(\rho^{M}\right), p^{M C}\right)}{\partial h_{\sigma}\left(p^{M}\right)} \cdot \frac{h_{\sigma}\left(p^{M}\right)}{h_{\alpha}\left(h_{\sigma}\left(p^{M}\right), p^{M C}\right)} \tag{2.44}
\end{equation*}
$$

so a reliability change in module M proportional to its expectation value

$$
\begin{equation*}
\Delta h_{\sigma}=C_{M} h_{\sigma}\left(p^{M}\right) \tag{2.45}
\end{equation*}
$$

causes a system reliability fractional change given by

$$
\begin{equation*}
c_{\alpha}=\frac{\Delta h \alpha}{h_{\alpha}}=C_{M} I_{M}^{C r} \tag{2.46}
\end{equation*}
$$

II.5.3 The Vesely-Fussell Importance Measure for Modules

The Vesely-Fussell importance measure for module $M$ will be given by

$$
\begin{equation*}
I_{M}^{V} \cdot F \cdot=\frac{\operatorname{Prob}\left(\alpha_{K}^{M}\left(\sigma\left(\Psi^{M}\right),{\underset{Y}{ }}_{M C}^{M C}=1\right)\right.}{\operatorname{Prob}\left(\alpha\left(\sigma\left(\Psi^{M}\right), \Psi^{M C}\right)=1\right)} \tag{2.47}
\end{equation*}
$$

with $\alpha_{K}^{M}\left(\sigma(\underset{\neq}{\underset{M}{M}}),{\underset{T}{Y}}_{M C}^{M}\right)$ defined to be the Boolean operator function for the union of all cut-sets of $\alpha\left(\sigma\left({\underset{q}{ }}^{M}\right), \underline{q}^{\mathrm{MC}}\right)$ containing super-component event $\sigma\left(\Psi^{M}\right)$, i.e.

$$
\begin{equation*}
\left.\alpha_{K}^{M}\left(\sigma\left(\Psi^{M}\right), \Psi^{M C}\right)=\frac{\prod_{j=1}^{N_{K}^{\sigma}}}{\substack{\sigma_{\varepsilon} \varepsilon_{j}^{K}}} \Psi_{\ell}^{K_{j}}\right) \tag{2.48}
\end{equation*}
$$

with

$$
Y_{\ell} \varepsilon Y^{M C}, \sigma=\sigma\left(\Psi^{M}\right), \quad N_{k}^{\sigma}=\text { number of cut-sets }
$$

containing super-component $\sigma$ and $K_{j}$ a cut-set containing necessarily the super-component state $\sigma$.

Chatterjee [6] has shown that a chain-rule, analogous to the one given for the Birnbaum importance of component 1 In module $M$ (equation 2.43 ), holds for the Vesely-Fussell importance measure, namely

$$
\begin{equation*}
I_{\theta, I}^{V \cdot F}=I_{\alpha, M}^{V \cdot F \cdot} I_{\sigma, 1}^{V \cdot F} \tag{2.49}
\end{equation*}
$$

with

$$
\theta(\underline{Y})=\alpha\left(\sigma\left(\Psi^{M}\right), \Psi^{M C}\right) \text { and } Y_{i} \varepsilon \Psi^{M}
$$

This relation has been proven by Chatterjee as follows:
The family of minimal cut-sets of $\theta(Y)$ containing events
$i\left(=K_{\theta}(1)\right)$ may be generated by taking the family of minimal cut-sets of $\alpha\left(\sigma\left({\underset{7}{ }}^{M}\right), \Psi^{M C}\right)$ which include module $M(=K \alpha(M))$ and then substituting superevent $M$ by the family of minimal cut-sets of $\sigma\left(\Psi^{M}\right)$ which contain event $i\left(=K_{\sigma}(i)\right)$, therefore $K_{\theta}(1)=K_{\sigma}(1) \times\left\{K_{\alpha}(M)-(M)\right\}$

By defining the following events
$A=$ at least one of the minimal cut-sets of module $M$ which contains 1 fails, i.e., $K \sigma(1)$ fails.
$B=$ at least one of the minimal cut-sets of module $M$ fails, i.e. $K_{\sigma}$ fails (notice $A \propto B$ ).
$C=$ at least one of the elements of $K_{\alpha}(M)-(M)$ fails (notice event $C$ is disjoint with any event within the module).

It follows that $C \Omega B$ is the event = module causes system failure. And $A \Omega B \Omega C$ is the event $=$ module causes system
failure with event ifailing.
Also, one has

$$
\begin{equation*}
P(A \Omega B \Omega C)=P(B) \cdot P(A \Omega B \mid B) \cdot P(C) \tag{2.51}
\end{equation*}
$$

since event $C$ is independent of $A$ and $B$, and $P(A \Omega B \mid B)$ is the conditional probability that event $A \Omega B$ occurs, given that event $B$ has occurred.

Furthermore, since $A C B$ then $A \Omega B=A$ and since $C$ and $B$ are independent events $P(C) P(B)=P(C \Omega B)$, hence

$$
\begin{equation*}
P(A \Omega B \Omega C)=P(A \mid B) \cdot P(C \Omega B) \tag{2.52}
\end{equation*}
$$

It is now only necessary to realize that the following relations hold

$$
\begin{align*}
& I_{\theta, 1}^{V \cdot F}=\frac{P(1 \text { has failed with at least one of its minimal }}{\text { cut-sets) }} \\
& \Rightarrow \quad I_{\theta, 1}^{V \cdot F}=\frac{P(A \mid B) \cdot P(C \Omega B)}{h_{\theta}(P)}
\end{align*}
$$

also

$$
\begin{align*}
& I_{\sigma, 1}^{V \cdot F}=P(A \mid B)  \tag{2.54}\\
& I_{\alpha, M}^{V \cdot F \cdot}=\frac{P(C \Omega B)}{h_{\theta}(P)} \tag{2.55}
\end{align*}
$$

Hence

$$
\begin{equation*}
I_{\theta, I}^{V \cdot F}=I_{\alpha, M}^{V \cdot F} \cdot I_{\sigma, I}^{V \cdot F} \tag{2.56}
\end{equation*}
$$

q.e.d.
II.5.4 Evaluation of the Vesely-Fussell Importance Measures for a Modularized Fault Tree

In what follows it will be shown how the VeselyFussell importance for modules and basic events can be easily computed from a knowledge of the modular structure of a fault tree by a successive use of the recursive modular equations

$$
\begin{equation*}
\sigma_{M}=\beta\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right) \tag{2.57}
\end{equation*}
$$

and by using the Vesely-Fussell modular importance chainrule

$$
\begin{equation*}
I_{\theta, 1}^{V \cdot F \cdot}=I_{\alpha, M}^{V \cdot F} \cdot I_{\sigma, 1}^{V \cdot F} . \tag{2.58}
\end{equation*}
$$

Indeed, for the case of the super-module $\sigma M$ composed of modules $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, the Vesely-Fussell importance of each of these modules is given by

$$
\begin{aligned}
& \quad I_{\theta, \sigma_{j}}^{V \cdot F}=I_{\alpha, M}^{V \cdot F} \quad I_{B, \sigma_{j}}^{V \cdot F} . \\
& (j=1,2, \ldots n)
\end{aligned}
$$

with

$$
\begin{equation*}
\theta(\ddagger)=\alpha\left(\sigma_{M}\left(\ddagger^{M}\right), ¥^{M C}\right) \tag{2.60}
\end{equation*}
$$

Equation (2.59) giving the V.F. importance of modules $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ contained in $\sigma_{M}$ with respect to the TOP tree event, acquires a very simple form for the case of "simple" AND and OR gates. Thus, for an AND gate (Figure 2.5) supermodule the following equation results

$$
\begin{equation*}
\sigma_{\mathrm{M}}=\sigma_{\mathrm{AND}}={\underset{j=1}{\mathrm{n}} \sigma_{j} .}^{\sigma_{j}} \tag{2.61}
\end{equation*}
$$

Therefore, a failure of the super-module implies necessarily that all of 1 ts modules have failed, 1.e., the probability that module $\sigma_{j}(j=1,2, \ldots n)$ contributes to failure of $\sigma_{M}$ given that $\sigma_{M}$ has failed equals one

$$
\begin{align*}
& I_{B, \sigma_{j}}^{V \cdot F}=I .  \tag{2.62}\\
& I_{\theta}, \sigma_{j}=I_{\alpha, M}^{V \cdot F} . \tag{2.63}
\end{align*}
$$

In other words, a module $\sigma_{j}$ which is an input to an AND gate super-module $\sigma_{M}$ will have the same V.F. importance with respect to the TOP tree event as the super-module $\sigma_{M}$. For the case.of an OR gate super-module (Figure 2.6), the structure function will be given by

$$
\sigma_{M}=\sigma_{O R}=\frac{1}{n} \sigma_{j}
$$

Here, module $\sigma_{j}$ contributes to the failure of $\sigma_{M}$ only through the single event cut-set $\left(M_{j}\right)$. Therefore the probability that it contributes to the failure of $\sigma_{M}$ given that $\sigma_{\mathrm{M}}$ has failed is

$$
\begin{equation*}
I_{B, \sigma_{j}}^{V \cdot F}=\frac{h_{\sigma_{j}}\left(f^{M}\right)}{h_{\sigma_{M}}\left(P^{M}\right)} \tag{2.65}
\end{equation*}
$$

$\Rightarrow \quad I_{\theta, \sigma_{j}}^{V \cdot F}=I_{\alpha, M}^{V \cdot F} \cdot \frac{h_{\sigma_{j}}}{h_{\sigma}}$


FIGURE 2.5 AND GATE SUPER-MODULE


FIGURE 2.6 OR GATE SUPER-MODULE

It should be noticed here that $h \sigma_{j}$ and $h \sigma$ are the modular reliabilities which were needed to be evaluated in advance to fine the TOP tree event occurrence probability P(TOP).

Finally, the evaluation of the Vesely-Fussell importance of modules $\sigma_{j}$ which are inputs to a higher order prime module $\sigma_{\mathrm{M}}$ (Figure 2.7) have to be considered:

$$
\begin{align*}
& \sigma_{M}=\beta\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\int_{\ell=1}^{N_{k}^{j}} 1 \varepsilon \sum_{K \ell}^{\pi} \sigma_{1}  \tag{2.67}\\
& (1=1,2, \ldots, n)
\end{align*}
$$

The probability that module $\sigma_{i}$ will contribute to the failure of its parent module $\sigma_{M}$, given that the parent module has failed is given by

$$
\begin{equation*}
I_{\beta, \sigma_{j}}^{V \cdot F}=\frac{P\left(\beta_{K}^{j}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=1\right)}{P\left(\beta\left(\sigma_{1}, \ldots, \sigma_{n}\right)=1\right)} \tag{2.68}
\end{equation*}
$$

now

$$
\begin{align*}
& P\left(\beta\left(\sigma_{1}, \ldots, \sigma_{n}\right)=h_{\sigma_{M}}\right.  \tag{2.69}\\
& \text { and equation }(2.67) \text { implies that } \beta_{K}^{j} \text { is given by }
\end{align*}
$$

$$
\begin{equation*}
\beta_{\mathrm{K}}^{j}=\prod_{\ell=1}^{N_{\mathrm{K}}^{j}} \underset{\substack{\ell \varepsilon K_{\ell} \\ j \varepsilon K_{\ell}}}{\pi} \sigma \ell \tag{2.70}
\end{equation*}
$$

Thus, the V.F. importance for module $j$ with respect to the TOP event will be


FIGURE 2.7 HIGHER ORDER PRIME GATE SUPER-MODULE

CHAPTER THREE
PL-MOD: A FAUIT TREE MODULARIZATION COMPUTER PROGRAM WRITTEN IN PL-1

## III. 1 Introduction

As pointed out in Chapter II, it is possible to, find for any fault tree diagram an equivalent tree representation such that all of its intermediate gates correspond to a modular super-event independent from the rest of the tree. Furthermore, these modular gates are associated with Boolean logic functions which are either "prime", i.e., they are represented by an irreducible set of minimal cut-sets, or are "simple" of maximal size, 1.e., they are AND or OR gates having no inputs from other gates of the same type.

A number of computational advantages result by using this modular representation to analyze fault trees:
(a) Probabilities of occurrence for the TOP and intermediate gate events may be efficiently computed, by evaluating these modular events in the same order that they are generated;
(b) Modular and component importance measures are easily computed by starting at the TOP tree event and successively using a modular importance chain-rule;
(c) For complex fault trees necessitating the use of minimal cut-set upper bounds for their quantification, sharper bounds will result by using the minimal cut-set upper bound at the level of modular gates.

In this chapter, an algorithm will be given for arriving at the modular decomposition of fault trees. The implementation of the algorithm by the computer code PI-MOD will be discussed and its operation shall be illustrated by means of the familiar Pressure Tank Rupture fault tree example [l]. Finally, it will be shown how PL-MOD proceeds to use the modular information for the evaluation of modular event occurrence probabilities and of modular and component Vesely-Fussell importance measures.
III.2. Algorithm for the Modular Decomposition of Fault Trees

In Figure 3.1 a flow-chart is given for the algorithm used by PL-MOD to modularly decompose fault trees.

The tree modularization is achieved by performing a series of manipulations on its nodes as outiined by the following steps:
(a) Each NODE in the fault tree is defined as a gate operator (AND, OR, $K-o u t-o f-N$ ) together with a set of attached input gates and basic event components (Figure 3.2).
(b) A NODE's output will be an input to another NODE defined to be its NODE ROOT (Figure 3.3).
(c) NODES having common replicated inputs are interconnected (Figure 3.4). These interconnections then identify sets of nodes which are not immediately modularizable in the original form of the fault tree.
(d) The tree modular decomposition is simultaneously
started at all bottom branch gate nodes (Figure 3.5) defined to be those having no gate inputs (GATELESS NODES).
(e) Simple (AND, OR) gateless nodes having as NODE ROOT another gate of the same type (Figure 3.6), are coalesced with their NODE ROOT by transferring all their inputs to the NODE ROOT and thus reducing the number of gate inputs to the NODE ROOT.
(f). Simple gateless nodes having a gate of a different type as NODE ROOT are modularized (Figure 3.7). Those gateless nodes having replicated components or "nested sub-modules as inputs are temporarily transformed into "nested" modules (Figure 3.8), unless it is found that the set of replicated events within the gate is complete (Figure 3.9) in which case a modular minimal cut-set representation for its composition will be performed. The minimal cut-sets will then be constituted by replicated events and proper modules arising from each of the nested modules (Figure 3.10).
(g) Symmetric (K-out of-n) gate NODES are immediately modularized and given their Boolean representation (Figure 3.11).
(h) Nodes which have been transformed into proper modules or temporary nested sub-modules are attached to their NODE ROOT gate as additional component-like inputs thereby reducing the number of gate inputs to their NODE ROOT gate (Figure 3.12).
(1) As steps (e), (f), (g) and (h) reduce the number of gate inputs to each of the NODE ROOT gates attached to a gateless node, a new set of gateless nodes will necessarily be

104
FIGURE 3.1
FAULT TREE MODULARIZATION AIGORITHM



FIGURE 3.2
FAULT TREE NODES


FAULT TREE NODE.ROOTS


FIGURE 3.4 FAULT TREE NODE INTERCONNECTIONS


$80 \tau$

FIGURE 3.6 COALESCED GATELESS NODES


FIGURE 3.7 MODULARIZED GATELESS NODES


INTERDEPENDENT NODES IN TEMPORARY NESTED MODULES g3, g5


FIGURE 3.9
COMPLETE SET OF NESTED SUB-MODULES


FIGURE 3.10
MODULAR MINIMAL CUT-SET REPRESENTATION


FIGURE 3.11
SYMMETRIC MODULARIZED GATE

obtained. Therefore steps (e) through (h) will be successively applied to newly obtained sets of gateless nodes until the TOP tree event is reached, thus leading to a modularization of the whole tree.

Careful examination of the kinds of fault tree structural modifications needed to modularly decompose a fault tree, will lead to the conclusion that a quite involved logical procedure must be followed to accomplish this task. Therefore, in order to implement the modularization of fault trees by the computer program PL-MOD, it has been necessary to turn to a programming language capable of dynamically following the step-by-step structural changes effected by the modularization algorithm. In the following sections of the chapter, programming language PL-I, shall be shown to be particularly suited for this objective. Consequently the logical manipulations required to modularize fault trees will be illustrated throughout by the PL-1 statements contained in the PL-MOD code.
III.3. PL-I Language Features Used for the Representation and Modularization of Fault Trees

## III.3.1. Introduction

In Chapter I, it was discussed how the computer code PATREC [l2] utilized a number of PL-l language [1] tools for the analysis of non-replicated event fault trees by means of a pattern recognition technique. It was pointed out that its procedure relies on the recognition of sub-tree patterns with-

## 115

in the fault tree which conform to known tree patterns stored In the the computer code library. Each recognized sub-tree portion is then replaced by a super-component with an occurrence probability which has been computed by PATREC. New sub-tree patterns are then recognized which include these supercomponents until ultimately the tree reduces to a single supercomponent with an occurrence probability equal to the overall system reliability.

The approach taken by PL-MOD is quite different in that its purpose is to obtain the full structural information for the fault tree. This information is needed to allow for a much more extensive analysis of the fault tree, rather than the sole evaluation of the overall system reliability.

## III.3.2. Structure Variables

A structure in PL-1 is a hierarchical collection of related data items of different types.

In the computer code PL-MOD, a node is represented by a structure containing relevant information such as its NAME (chosen to be a number), its VALUE. (a number which equals 1 for $A N D$ gates and 2 for $O R$ gates), the number of gate inputs It contains $=G I N$, the number of non-replicated inputs it contains (called free leaves) $=$ LII, the number of replicated inputs it contains (called replicated leaves) $=D I R$, etc. Thus, the NODE structure has a declaration statement of the form

DECLARE | 1 | NODE |
| :--- | :--- |
| 2 | NAME FIXED, |
| 2 | VALUE FIXED, |
| 2 | GIN FIXED |
| 2 | LIL FIXED, |
| 2 | DIR FIXED, |
| 2 | etc. |

III.3.3. Pointers, Based and Controlled Variables

PL/l provides several facilities normally found only in assembler or in list-processing languages. The essence of list processing is the ability to dynamically allocate blocks of core storage, to link those blocks together into a structure, and to store and to retrieve data from the blocks. List processing for complicated data structures, such as those required by PL-MOD, are very difficult or impossible to achieve through manipulations of simple arrays.

Each individual block of list-processing storage is called a BASED VARIABLE and is usually defined as a data structure. Since several based variables with identical structures will in general exist at a time, a POINTER VARIABLE is required to point at a specific one.

Thus, in order to handle sets of similar NODE structures, it is necessary that they be declared as BASED variables

$$
\begin{aligned}
& \text { DECLARE } 1 \text { NODE BASED (NT), } \\
& 2 \text { NAME FIXED, } \\
& 2 \text { VAIUE FIXED, } \\
& 2 \text { GIN FIXED } \\
& 2 \text { IIL FIXED, } \\
& 2 \text { DIR FIXED, } \\
& 2 \text { etc. }
\end{aligned}
$$

Each time a NODE structure needs to be created, an ALLOCATE statement is used (ALIOCATE NODE) with pointer variable NT automatically acquiring a different value for each NODE structure. This set of different NT pointer values may be then kept in an array of pointers $\operatorname{SPINE}(I)(I=1,2$, ...,GUM $=$ total number of gates) for identification of each of the nodes in the tree.

The following statements allocate and identify a NODE associated with Gate I

ALIOCATE NODE;
SPINE (I) = NT;
After the node has been allocated, it will be possible to specifically refer to it through the qualified expression

SPINE (I) $\rightarrow$ NODE
Finally, whenever the NODE associated with Gate I is no longer needed, its storage space may be released by the statements

NT = SPINE (I);
FREE NODE;
Another type of variable used throughout PL-MOD is the

CONTROLIED variable. These variables are similar to BASED varlables in that they can be dynamically allocated and released at any time by means of the ALLOCATE and FREE statements. Nevertheless, two or more CONTROLLED variables having the same name cannot coexist, since they are only identified by their name and no pointer exists which locates them in the computer memory.
III.3.4. The REFER Option for Based Variables

In Chapter I, it was mentioned that the computer code PATREC requires that fault trees be represented in binary gate form (Figure 3.13). As a result each NODE structure in PATREC requires the same amount of storage. In the approach taken by PL-MOD no restriction exists on the number of gates and component inputs that a NODE may have, and thus it is necessary that the NODE structures in PL-MOD be made of input arrays having a variable number of dimensions.

The REFER option for based structure variable can fulfill such a task as illustrated by the NODE example of Figure 3.14: AND Gate 7 consists of two gate inputs $(8,9)$, three leaf inputs ( $3,5,7$ ) and one replicated leaf input (r-leaf) (20001). Therefore, NODE.NAME $=7$, NODE.VALUE $=1$, NODE.GIN $=2$, NODE.LIL $=$ 3 and NODE.DIR $=1$. Gate 7 is connected to its input gates by means of an array variable NODE.SPIT which stores the pointers corresponding to NODES 8 and 9 (i.e., SPINE (8) and SPINE (9)). NODE.SPIT is then a variably dimensioned array of pointers. Its dimension will be given by a variable (GINO) outside the NODE structure and its value shall be assigned to a


FIGURE 3.13 FAULT TREE IN BINARY GATE FORM


FIGURE 3.14
SAMPLE GATE NODE

NODE structure variable (NODE.GIN) as required by the PL/I REFER option:


In a similar way, the set of numerical values identifying the free leaf and r-leaf inputs of the NODE will be assigned to NODE.TIL(IILO REFER(NODE.IIL)) and NODE.TIR(IILO REFER (NODE.LIR)) respectively.

In addition, the pointer value locating the NODE for gate 5 will be assigned to structure variable NODE.ROOT.

The following statements allocate the required space and assign the desired set of inputs and output connection for NODE 7:

```
DECLARE 1 NODE BASED (NT),
    2 NAME FIXED,
    2 VALUE FIXED,
    2 GIN FIXED BINARY,
    2 LIL FIXED BINARY,
    2 DIR FIXED BINARY,
    2 SPIT (GINO REFER (NODE.GIN))POINTER,
```

```
2 TIR (LIRO REFER (NODE.DIR))FIXED,
2 TIL (LILO REFER (NODE.LIL))FIXED:
IIRO = I;
LILO = 3;
ALLOCATE NODE;
SPINE (7) = NT;
:
NT = SPINE (7);
NODE.TIL (I) = 3;
NODE.TIL (2) = 5;
NODE.TII (3) = 7;
NODE.TIR (1) = 20001;
NODE.SPIT (I) = SPINE (8);
NODE.SPIT (2) = SPINE (9);
NODE.ROOT = SPINE (5);
```

III.3.5. Bit String Variables

In Chapter II, it was shown how prime modular gates may be represented by a set of Boolean state vectors each representing a cut-set member of the family of minimal cut-sets characterizing the module structure function.

Boolean vectors can be conveniently depicted in PL/l by means of a string of BIT variables. A bit-string is simply a group of binary digits ( 0 or 1 ) enclosed in single quotes and followed by a B character (e.g., '01011'B).

A number of built-in functions and operations are provided in $P L / l$ for the effective handing and manipulation of bitstrings, as required by $P I-M O D$ to generate a Boolean vector represenation for higher order modular gates. Thus, consider for example the following set of controlled bit variables
DECLARE TOD BIT(LARG) CONTROLLED;
DECLARE DOTT BIT (WEST) CONTROLLED;
DECLARE KOF BIT (JUST) CONTROLLED;
DECLARE KOD BIT (JUST) CONTROLLED;
DECLARE TOG BIT (JUST) CONTROLLED;

After these variables have been allocated with dimensions WEST $=3$, LARG $=6$ and JUST $=$ LARG + WEST $=9$, the following operations and funtions existing in PL/l may be applied to them

Repeat function:
$K O D=$ REPEAT ( $\left.{ }^{\prime} O^{\prime} \mathrm{B}, \mathrm{JUST}\right)=\mathrm{KOD}=1000000000^{\prime} \mathrm{B}$
Substring pseudo-function
SUBSTR (KOD,LARG $+1,1$ ) $=11$ B $=K O D{ }^{\prime} 000000100^{\prime} B$
SUBSTR (KOF, NUB $+2, I$ ) $=1 I^{\prime} B=K O F=1000010000^{\prime} \mathrm{B}$
Substring function:
DOTT $=$ SUBSTR (KOD, LARG +1, WEST $)=$ DOTT $=1100^{\prime} \mathrm{B}$ INTERSECTION (\&), Union (/) and complement ( $\rightarrow$ ) operations:

```
TOG = KOF & KOD = TOG = '000000000'B
TOG = KOF KOD = TOG = '000010100'B
TOG = - KOF = TOG = '111101111'B
```

III.4. Definition and Organization of the Procedures Used in PL-MOD for the Modularization of Fault Trees

PL-MOD accomplishes the modularization of a fault tree by calling a number of procedures in the following order

CALL INITIAL;
CALL TREE-IN;
FLAG = 1;
DO WHILE (FLAG $\rightarrow=0$ );
CALL COALESCE;
CALL MODULA;
END;
Internal procedures TRAVEL and TRAPEL are called by procedures COALESCE and MODULA, while internal procedure BOOLEAN is only called by MODULA.

The task performed by each of these procedures is defined below.

INITIAL: This procedure allocates the necessary storage space for each of the nodes in the fault tree (including NODE space for replicated module sub-trees).

TREE-IN: Attaches to each NODE its corresponding set of gate and component inputs, interconnects interdependent gates having common replicated inputs and assigns to each NODE its output gate defined to be its NODE.ROOT.

COALESCE: Collapses simple gateless NODES with their NODE.ROOT gates if they are of the same type.

MODULA: (a) Transforms simple gateless NODES having no
replicated inputs into modular super-components and attaches them as inputs to their NODE.ROOT gate.
(b) Transforms simple gateless NODES having replicated inputs into temporary NESTED modules, unless the gate is the top event for a complete set of replicated events (i.e., a parent gate) in which case by calling BOOLEAN it modularizes the full set of NESTED modules into a higher order module whose inputs are the set of replicated events and a new set of proper modules in place of the temporary NESTED module set.
(c) Modularizes symmetric K-out of-n gates explicitly included in the fault tree.

Procedures COALESCE and MODULA are sequentially called one after the other until the TOP tree event is reached, at which time the complete fault tree will have been modularized.

TRAVEL and TRAPEL: As mentioned before, interdependent gate NODES are interconnected to insure that only proper modules are generated (Figure 3.15). Each interdependent gate will in general have two interconnections leading to other interdependent gates (e.g., NAII $\mathrm{G}_{4}$ and $W H I P_{G 4}$ due to replicated component $r_{1}$ ) for each replicated input it contains (these interconnections are given the names NODE.WHIP and NODE. NAIL) .

Particular care must be taken that these interconnections be kept each time the fault tree structure undergoes a transformation enacted by the COALESCE and MODULA procedures. Thus, whenever COALESCE collapses a simple gate containing replicated inputs with its NODE.ROOT gate, its WHIP and NAIL


Connections
$r_{1}$ WHIP

$r_{2}$ WHIP


G3


FIGURE 3.15

## SUB-TREE EXAMPLE



FIGURE 3.16

## SUB-TREE EXAMPLE


nested modules

$$
\begin{aligned}
& \mathrm{g} 2=\{\mathrm{rl}, \mathrm{~g} 6 ; \Omega\} \\
& \mathrm{g} 3=\{\mathrm{r} 3, \mathrm{~g} 7 ; \Omega\} \\
& \mathrm{g} 4=\{\mathrm{r} 2, \mathrm{r} 3 ; \Omega\} \\
& \mathrm{g} 5=\{\mathrm{r} 1, \mathrm{c} 1 ; \Omega\}
\end{aligned}
$$

## FIGURE 3.17

INTERNAL GATE INTERCONNECTIONS


FIGURE 3.18
interconnections must be transferred to the NODE.ROOT gate. Similarly when a gate with replicated inputs is temporarily transformed into a nested module input attached to its NODE. ROOT gate, its WHIP and NAIL connections must also be transferred (Figure 3.16).

Procedures TRAVEL and TRAPEL help perform this task. TRAVEL insures that NODES attached by means of a NAIL interconnection to another NODE which is to be absorbed by its NODE.ROOT gate in a COALESCE or MODULA step, are interconnected by a NAIL interconnection to the NODE.ROOT gate. Similarly, TRAPEL provides for the transfer of WHIP interconnections of NODES attached to a NODE which is collapsed or modularized by a COALESCE or MODULA step.

Notice that a set of nested modules will be complete, and thus representable by a higher order module, when a gate has been reached such that all its NAIL and WHIP interconnections are internal to the gate (Figure 3.17).

BOOLEAN: Yields a minimal cut-set representation in Boolean vector form for higher order modules.

Each state component in the Boolean vector corresponds to either a replicated event in the domaln of the set of nested modules or a proper module derived out of one of the nested modules (Figure 3.18).

## III.5. The Pressure Tank Rupture Fault Tree Example

The operation of each of the procedures in PL-MOD will be discussed in detail in the following sections of this chapter.

In order to clarify the discussion, at each step reference is made to a slightly modified version of the familiar pressure tank example due to Haasl [ 1 ]. The diagram of the system is given in Figure 3.19.

A hazard associated with the operation of the pressure tank system is the occurrence of a rupture of the pressure tank. Figure 3.20 is a fault tree showing the series of events leading to a pressure tank rupture.

The system is designed such that gas will start to be pumped into the pressure tank if the push-button switch $S 1$ is actuated. This causes a flow of current in the control circuit of the system and thus activates relay coil K2. Relay contacts $K 2$ will then close causing the pump motor to start. After about 20 seconds, the pressure switch contacts will open given an excess pressure has been detected by a 2-out of3 pressure switch device. Contacts $K 2$ will then open, shutting off the motor as soon as the K 2 coils have been de-energized due to a lack of current in the control circuit. For additional safety, in case of a pressure switch malfunction, a timer relay is set to open the circuit after 60 seconds thus shutting off the pump motor.

In the fault tree shown, a common cause failure event among the control circuit devices has been assumed to be the main contribution to the secondary failure of each of the control circuit components, i.e., Kl, K2 and T. Table 3.1 is a list of all the basic fault event inputs and of their occurrence probability.


FIGURE 3.19 PRESSURE TANK EXAMPLE


FIGURE 3.20 PRESSURE TANK RUPTURE FAULT TREE

TABLE 3.1
PRESSURE TANK RUPTURE FAULT TREE FAILURE PROBABIIITY DATA

| Basic Event 1 | Event Description $\quad$ Fail | Failure Rate r Loading Cycle) |
| :---: | :---: | :---: |
| 1 | Pressure Tank Faulure | 10-8 |
| 2 | Secondary failure of Pressure Tank Due to Improper Selection | 10-5 |
| 3 | Secondary failure of Pressure Tank Due to out-of-tolerance conditions | 10-5 |
| 4 | K2 relay contacts fail to open | 10-5 |
| 5 | Sl switch secondary failure | 10-5 |
| 6 | Sl switch contacts fail to open | 10-5 |
| 7 | External reset actuation force remains on switch Sl | $\text { ins } 10-5$ |
| 8 | KI relay contacts fail to open | 10-5 |
| 9 | Timer does not "time-off" due to improper setting | 10-5 |
| 10 | Timer relay contacts fail to open | 10-5 |
| 11 | Pressure switch not actuated by sensor 1 | $\text { sor } 10-5$ |
| 12 | Pressure switch not actuated by sensor 2 | $\text { isor } 10-5$ |
| 13 | Pressure switch not actuated by sensor 3 | sor $10-5$ |
| Replicated | $\text { d Event i Event Description } \begin{array}{r} \text { Fail } \\ \text { (Per Lo } \end{array}$ | Fallure Rate r Loading Cycle) |
| (3000)1 | Common Cause failure among relays $K_{1}, K_{2}$ and timer $T$ | $\lg \quad 10-5$ |

III.6. INITIAL and TREE-IN

INITIAL: The INITIAL procedure allocates the necessary storage for each of the NODES making up the fault tree. The value of $G U M=$ total number of gates in the fault tree, is read in and arrays

SPINE(GUM) POINTER CONTROLLED;
AGIN(GUM) FIXED CONTROLLED;
ALIL (GUM) FIXED CONTROLLED;
ALIR(GUM) FIXED CONTROLLED;
BOST(GUM) POINTER CONTROLLED;
are allocated.
Array SPINE is used to store the pointer values (NT) locating each NODE based structure. This allows that each of the different NODE structures allocated be assigned the set of input data corresponding to the gate they represent.

Arrays AGIN, ALIL and ALIR are used to store the number of gate, free leaf and replicated leaf inputs each node contains. Thus for the pressure tank example (Figure 3.20).

$$
\begin{array}{r}
\operatorname{AGIN}(1)=1, \operatorname{ALIL}(1)=2, \operatorname{ALIR}(1)=0, \\
\operatorname{AGIN}(2)=1, \operatorname{ALIL}(2)=1, \operatorname{ALIR}(2)=0, \\
\operatorname{AGIN}(3)=1, \operatorname{ALIL}(3)=1, \operatorname{ALIL}(3)=1, \\
\text { etc. }
\end{array}
$$

Finally, array BOST(GUM) will store the pointers locating each of the proper modules to be created by PL-MOD (clearly the number of modules to be found in a fault tree will be less than the number of gates (GUM) in the treel

A DO loop group follows
DO $I=1$ to GUM;
GET LIST (I, AGIN(I), ALIL (I), ALIR (I));

ZEN: ALLOCATE NODE;
$\vdots$
SPINE (I) $=N T$,
END;
which allocates the space needed by each node given the number of gate, leaf and r-leaf inputs it contains. In addition each array variable is initialized to be zero or NULL depending on whether the variable is a number (FIXED) or a pointer and the pointer $\mathrm{NT}_{1}$ associated with the NODE representing gate $I(I=I, 2, \ldots G U M)$, is assigned to SPINE (I) for later reference.

The value of $N O R=$ the number of dependent components is read in and arrays

SPRING (NOR) POINTER CONTROLLED;
F (NOR) FIXED CONTROLLED; are allocated. SPRING(K)
( $K=1,2, \ldots, N O R$ ) will later be used in TREE-IN to attach the NODE.WHIP and NODE.NAIL interconnections among interdependent gates having common replicated component $K$ as input. The numerical variable $F(K)$ is initialized to be zero and is later increased by one in TREE-IN, each time replicated component $K$ is read in as an input to some gate in the fault tree.

TREE-IN: Once each NODE has been allocated by INITIAL,

TREE-IN proceeds to assign initial values to each NODE varible as inferred from the node input data NODE IN which is read in. In addition, TREE-IN finds the initial set of "gateless" nodes which are to be processed by the set of procedures COALESCE and MODULA.

The full NODE structure is composed of the following var1ables

1 NODE BASED (NT),
2 TIPO FIXED
2 NAME FIXED,
2 VALUE FIXED,
2 GINT FIXED,
2 IILT FIXED,
2 LIRT FIXED,
2 LIMD FIXED,
2 LIMT FIXED,
2 NEST FIXED,
2 WHIZ FIXED,
2 ROOT POINTER,
2 LIP POINTER,
2 LID POINTER,
2 GIN FIXED BINARY,
2 LIL FIXED BINARY,
2 DIR FIXED BINARY,
2 NAIL(LIRO REFER (NODE.DIR)) POINTER
2 WHIP (LIRO REFER (NODE.DIR)) POINTER
2 TIR (LIRO REFER (NODE.DIR)) FIXED,

2 SPIT (GINO REFER (NODE.GIN)) POINTER 2 TIL (LILO REFER (NODE.LIL)) FIXED:

In Section III.3.4., variables NAME, VALUE, ROOT, GIN, LIL, DIR,TIR,SPIT and TIL have already been defined. As explained in section III.4., variables NAIL and WHIP are the arrays of pointers used for interconnecting NODES having common replicated events.

The methodology employed by PL-MOD to modularize a complete fault tree consists of piecewise collapsing and modularizing portions of the tree. As a consequence, at the intermediate stages of the modularization procedure some nodes are taken away from the tree while others undergo changes in the type and number of inputs they have. For this purpose, a number of variables need to be added to the NODE structure. Thus NODE.LIP is a pointer variable used to add on to the node a set of free leaf and r-leaf inputs which have been collapsed into the node. These additions to the NODE are done by means of based structure variables STIP.

NODE.LID is a pointer variable used to add on to the node free and nested module structures. . These additions are done through based structure variables STID.

NODE.GINT equals the total number of gate inputs to the node. Initially NODE.GINT = NODE.GIN, however, as each of the gate inputs is either collapsed or modularized to the node, NODE.GINT is reduced by one until it eventually equals zero (i.e., the node has become gateless).

NODE. IILT equals the total number of free leaf inputs to the node (initially NODE.LILT = NODE.LIL).

NODE.LIRT equals the total number of replicated inputs to the node (initially NODE.LIRT = NODE.LIR).

NODE. LIMD measures the number of nested modules directly attached as modular inputs to the node.

NODE.NEST measures the total number of nested modules in the domain of the node gate, these nested modules are therefore directly or indirectly connected to the node.

NODE.LIMT measures the total number of free modules attached as inputs to the node.

NODE. WHIZ is an index used by TREE-IN to keep track of the WHIP interconnections that are being attached to the node as the NODE IN data for each of the gates in the tree is read in.

NODE.TIPO equals 1 for every node in the tree. Its purpose is to distinguish NODE structures from other structures which are involved in the TRAVEL and TRAPEL procedures (thus STIP.TIPO - 2, STID.TIPE $=3$, MOD.TIPO $=4, \mathrm{AP}, \mathrm{TIPO}=0$ ).

The set of statements making up TREE-IN are


```
    PUT EDIT ('NODE=',NODEIN.NAME) (SKIP(2),A(5).E(5))
    ('VALUE=', MODEIN.VALIE) (X(2),A(6),P(5))
        ('GATE IMPITS=') (X(2).A(12)):
PUT LIST( NODEIN.PIT);
POT EDIT('PRFE LEAF INPOT:5=') (X(2).A(17));
PITT LIST (NODRIN.OTIL):
PUT EDIT ('OEP LEAP INPITS=1) (X(2).A(15));
        PUT LIST(NODEIM.QTIR):
        NT=SPI YE (NODETN.NAME);
        MODE.NAME=NOERINGNAME;
        NODE. VALUR= NODEIN.VALUP;
        NODE.TIL=NOREIN.OTIL:
        NODE.LILT=NODEIN.LILI:
        NODE. TIP=HUDEIN.OTIR;
        NODE.LIRT=HODEIN.IIIRI;
        IF(NODE.LIRT=0) TIEN GO TO LOCA:
        DO LA=1 TO LIRN;
        MA=NODE.TIR (LA):
        DA=-CEIL (-MA/10DOD):
        JA=-CEIL (-MN/1000) ;
        JAK=3N-10*0A:
        NA=MA-(100n)*JA;
        F(NA)=F(NA)+1:
        IF (F (NA) ==1) THEN GO TO IOCE:
        RLSE NODE.NAIL(LN)=NT:
        SPRING (NA) =NT;
        GO TO LOCO;
LOCE: NODE.NAIL(LA)=SPRIMG(NA);
        ARI=NT:
        IP(F NA ) =ODA THFN on Tn AMP;
        :P(JAK~=9) TIIPM GO TO LUXF;
        DO IX=1 TO RMON:
        IF(TRIM(IX)=MA) TIFN iO TO f.NC:%
        ZND;
LUCr: AllOCATE AR:
    PRIN (IX)=APT;
        AR.SEIT=PRIM(IX):
        PRIM(IX)->NODE-ROOT=NPT:
        GO TN LUCI:
LUXE: ALLOCATP AP;
        AP.SPIT=NULL;
    IUCI: ZA=NODE.WHIZ+1:
        NODE. पHIP(ZA)=APT;
        NODE. WIII%22A:
        IF(JAK=1|JAK=2) THEN AR.FRE=-DA;
        ELSE AP.REP=CA:
        AP.TIPO=C;
        AP.vallle=0:
        NF.NAP=MA;
```

PL/I OPTIMITING COMPILER POOGRAM $\quad$ *OULE */
STMT LEV HT


In anticipation of the set of initial gateless nodes to be found by TREE-IN, controlled pointer array variable ELM(GUM) is allocated (clearly the number of initial gateless nodes in the tree BUM is less than GUM) to store the locations of each gateless node.

The set of values associated with each node are read in by means of the controlled structure variable NODEIN.

```
I NODEIN CONTROLLED,
2 NAME FIXED,
2 VALUE FIXED,
2 GID FIXED,
2 PIT (GINO)FIXED
2 LILI FIXED,
2 QTIL (LILO) FIXED,
2 LIRI FIXED,
2 QTIR (LIRO) FIXED;
```

Thus, for our pressure tank example, the first NODEIN values read from the input are

1 NODEIN,
2 NAME = ́ㅡ́,
2 VALUE $=2$,
$2 G I D=1 \quad$ (GID $=$ NODE.GIN)
$2 \operatorname{PIT}(1)=2$
2 LILI $=2$ (LILI $=$ NODE.LIL
$2 \operatorname{QTIL}(1)=1, \operatorname{QTIL}(2)=2$,
2 LIRI = 1 (LIRI = NODE.LIR)
2 QTIR(LIRO) $=0$;
and they are passed on to the node whose pointer NT satisfies $N T=$ SPINE (NODEIN NAME). Thus a correspondence exists between

$$
\begin{aligned}
& \mathrm{NT}_{1}=\operatorname{SPINE}(1) \text { and } \operatorname{NODEIN} \cdot \mathrm{NAME}=1 \\
& \mathrm{NT}_{2}=\operatorname{SPINE}(2) \text { and NODEIN.NAME }=2 \\
& \text { etc. }
\end{aligned}
$$

Those nodes having replicated events (i.e., NODE.LIRT $\neq 0$ ) are processed by an internal loop (DO LA $=1$ to LIRO; ) which sets up the interconnections among interdependent nodes.

Replicated components are identified by means of a five digit number (Table 3.2). The three lower digits are reserved for numbering (this convention allows for a total of 999 replicated events. The next digit will be zero unless the event represents a replicated module (in which case it equals nine) or if the replicated component is operated by a NOT gate somewhere in the tree ( $O N$ and OFF states are then distinguished by a 1 or 2 value for the fourth digit.*

Finally, the last digit denotes the total number of times the replicated component appears in the tree.

|  | NOMENCLATURE |
| :--- | :--- |
| SIMPLE REPLICATED COMPONENT | AOBCD |
| REPLICATED MODULE | A9BCD |
| DUAL REPLICATED COMPONENT | ON AIBCD |
|  | OFF A2BCD |

( $A=$ Total number of appearances)

Table 3.2 Replicated Event Nomenclature

[^0]Each time a replicated component is found in a new NODE ${ }_{a}$ it is connected to the previous $N O D E_{b}$, containing the same replicated component by a NAIL pointer (i.e., NODE $E_{a}-N A I L=N T_{b}$ ), while the previous $\operatorname{NODE}_{b}$ is connected to the new $N O D E_{a}$ with a WHIP pointer (i.e., NODE ${ }_{b}$. WHIP $=N T_{a}$ ). At the same time, variable $F(K)$ is increased by one each time replicated component $K$ is found in a $\operatorname{NODE}(K=1,2, \ldots, N O R)$. When $F(K)$ equals the total number of appearances for $r$ - leaf $K$, a structure variable AP is allocated

1 AP BASED (APT),
2 TIPO FIXED,
2 NAP FIXED,
2 VALUE FIXED,
2 REP FIXED,
2 SPIT POINTER
and is interconnected by
means of a WHIP pointer to the last node including replicated event $K$.

The variables making up the AP structure have the following definitions: AP.TIPO $=0$ and AP.VALUE $=0$ for every AP strustructure, $A P . N A P=$ replicated input name, $A P \cdot R E P=$ number of appearances in the fault tree for the replicated input, AP.SPIT $=$ NULL for all AP structures except those associated with a replicated module input (See Section III.11).

For the pressure tank example the following NAIL and WHIP interconnections exist (Figure 3.20).

```
    I NODE BASED (NT = SPINE(3)),
```

    2 TIPO = 1,
    2 NAME \(=3\),
    2 VALUE \(=2\),
    2 DIR = 1,
    2 NAIL(1) \(=\operatorname{SPINE}(3)\),
    \(2 \operatorname{WHIP}(1)=\operatorname{SPINE}(7)\),
    \(:\)
    I NODE BASED (NT = SPINE(7))
    2 TIPO = 1
    2 NAME \(=7\),
    2 VALUE = 2,
    2 DIR = 1,
    \(2 \operatorname{NAIL}(1)=\operatorname{SPINE}(3)\)
    \(2 \operatorname{WHIP}(1)=\operatorname{SPINE}(8)\)
    1 NODE BASED (NT = SPINE(8)),
    2 TIPO = 1,
    2 NAME \(=8\)
    2 VALUE \(=2\),
    2 DIR = 1 ,
    2 NAIL(1) \(=\operatorname{SPINE}(7)\),
    ? $\operatorname{WHIP}(1)=$ APT $_{1}$,

1 AP BASED ( $\mathrm{APT}_{1}$ )
2 TIPO $=0$
2 NAP $=30001$,
2 VALUE $=0$
$2 \operatorname{REP}=3$,
2 SPIT = NULL;
Notice that the node with the first r-leaf appearance is "selfnailed" and that the node with the last r-leaf appearance has a whip interconnection to the AP structure corresponding to the particular replicated leaf. This last interconnection is needed later by BOOLEAN in order to set up a Boolean vector representation which includes the required r-leaf inputs.

Following the loop for the node interconnections, TREEIN proceeds to attach gate inputs and root connections to each node with the statements

```
IF (NODE.GINT = 0) THEN GO TO BOTTOM;
DO L = I TO GINO;
NODE.SPIT(L) = SPINE(NODEIN.PIT(L)O;
AT = NODE.SPIT(L);
AT->NODE.ROOT = NT;
END;
(AT is a pointer variable)
```

Thus, for the pressure tank example, the following connections would be established:

1 NODE BASED (NT = SPINE (1)),
2 TIPO = I,
2 NAME $=1$,

2 ROOT = NULL,
2 GIN $=1$,
$\vdots$
$!\operatorname{SPIT}(1)=\operatorname{SPINE}(2)$,

1 NODE BASED (NT = SPINE (2)),
2 TIPO = 1,
2 NAME = 2,
2 ROOT = SPINE (I),
$2 G I N=1$,
$2 \operatorname{SPIT}(1)=\operatorname{SPINE}(3)$,



At the same time the pointers locating all gateless nodes (i.e., NODE.GINT $=0$ ) are singled out for storage in array ELM BOTTOM: ELM(J) $=$ NT; $J=J+1 ;$

BOTE: FREE NODEIN;
END;
And at the end of TREE-IN's main external loop (DO I = 1 TO GUM), all these pointers are transferred to pointer array OLM (BUM) .

For the pressure tank example 3 gateless nodes are initially found, 1.e.,

$$
\begin{aligned}
& \operatorname{BUM}=3 ; \\
& \operatorname{OLM}(1)=\operatorname{SPINE}(6) ; \\
& \operatorname{OLM}(2)=\operatorname{SPINE}(8) ; \\
& \operatorname{OLM}(3)=\operatorname{SPINE}(9) ;
\end{aligned}
$$

Finally those controlled variables no longer needed for the rest of the program are released

FREE ELM;
FREE AGIN;
FREE ALIL;
FREE ALIR;
FREE SPINE;
FREE SPRING:
This storage saving capability of $\mathrm{PL} / 1$ is used throughout the procedures of PL-MOD.
III. 7 COALESCE

Inspection of the pressure tank fault tree example indicates that gates (G6, G7, G8) can be collapsed together with gate $G 5$. The COALESCE procedure, given by the following statements, will be shown to perform this task by successively allocating STIP structures and connecting them to the node corresponding to gate G5.

```
STMT LEV NT
367 2 1
369 2 1
369 2 1
370 2 2
371 2 2
372 2 2
373 2
374 2 2
379 2 2
376 2
377 2 1
378 2
379 2
330 2
381
383 2 2
384 2 2
305
386
387
388
384
390}
390 2 2
3?1 2 2
322
393
394
395
376
397
3ヶ8
397
400 2
401 2 2
402
403
405 2
476 2 1
407 2 1
408 2 ?
409 2 1
4:0 2 1
411 2 1
412 2 1
413 2 1
414 2 1
4i5 2 1
    STIP.TIR=NODR.TIR:
    IF (NODE.TIR(1)=0) THEN GO TO STACK;
    DO NAL=1 TO DIRO;
    LAD=CAT->MODE.पHIP(NAL):
    IP (LAD=CAT) THEN GO TO HAMR;
    CALl travEL (LAD, QUEEN, CAT);
    HaNK: LAD=CAT->NODE.NAIL(NAL):
    IF (LAD=CAT) TaEN GO TO SMACR;
    call frapel (lad, gMrer, Cat):
SNACX: END;
        ST=OUERN:
        NT=CAT:
    STACK: DO K=1 TO OIRO:
        IP( NODE.KHIP(K)=CAT) THEN STIP.GHIP (K) =ST;
        ELSR STIF.प्रIIR(K)=NODE.प|IP(K);
        IF( NODE.NAIL (K)=CAT) THEN STIP.NAIL (K)=ST;
        ELSR STLP.NAIL(K)=NODE.NAIL(R):
        END:
        SEARCH=DOG->NODE.LID;
        IF (SEARCH=N(GLL) THEN AJAX=1;
    FLSE AJAX=0:
        DO RHILE(SEARCH-*NOLL);
        SEAL=S EARCH:
        SEARCH=SEARCH->STID. LID;
        END;
        IF AJAX=1 THEN DOG->NODE.LID=CAT->NODE.LID;
        ELSE SFAL->STID.LID=CAT->HODE.LID;
    STIP.ITP=CNT->NODR.IIP;
        A=OOG ->NODE.GIN;
        B=CAT;
        NT=CNT:
        FRFE NODE;
        NT=DOG;
        00 J=1 T0 N:
        IF (NODE.SPIT (N)=0) THEN GO TO RENR;
        END:
    REDD: NODR.SPIT(J)=MILL:
        HODE.LILT=NODE.LILT+LEND;
        MODE.LIRT=NODR.LIRT+REMO:
        NODE.LIMT=HODg.LIMTHENO:
        NODE. LIMD=NODE.T.IME+MEDN;
        NODE.NEST=NODE.NEST+MEZO;
        NODE.GINT=NODR.GINT-1;
    IF(NODE.GINT~=O) THEN GO TO LEAP:
    ELD(JO) = DNG;
    50=50+1:
    go to LEAP:
SRIP:GOLM(M)=CAT;
    M=M+1;
```

STMT LRE NT


The array of initial gateless node pointers OLM(K)
( $K=1,2, \ldots, B U D$ ) is freed after its values have been passed on to array OLD. And in anticipation of the set of NODES to be modularized array GOLM is allocated.

For the pressure tank example it may be seen that once G8 has been collapsed with G7, G7 can immediately be collapsed With G5. Two nested loops (LOOP-1 and LOOP-2) are needed by COALESCE to be able to deal with this type of situations. Thus, In LOOP-2 every time a coalescing of a NODE pointed at by OLD(I) (for some I) unfold, a new gateless node, array ELD(JO) (JO = l,2,...BUD) will store the pointer location for the new gateless node pointers $O L D(I)(I=1,2, \ldots$, new $B U D$ value). And this new set is in turn processed by LOOP-2, and so on until no gate can be found which may be coalesced (i.e., until BUD $=0$ ). At this
point a set of NODES located by GOLD has to be modularized by MODULA before any further collapsing of gates is possible. For the pressure tank example, initially array OLD consists of

$$
\begin{aligned}
& \operatorname{OLD}(1)=\operatorname{SPINE}(6) ; \\
& \operatorname{OLD}(2)=\operatorname{SPINE}(8) ; \\
& \operatorname{OLD}(3)=\operatorname{SPINE}(9) ;
\end{aligned}
$$

The first set of iterations for LOOP-2 will find which nodes are to be coalesced and which must be collapsed. Thus for

$$
\begin{aligned}
& I=I: \quad \operatorname{CAT}=\operatorname{SPINE}(6), \quad \operatorname{DOG}=\operatorname{SPINE}(5) \\
& \Rightarrow \quad \therefore \text { CAT } \rightarrow \text { NODE.VALUE }=\text { DOG } \rightarrow \text { NODE.VALUE }=2 \\
& I=2: \quad \operatorname{CAT}=\operatorname{SPINE}(8), \operatorname{DOG}=\operatorname{SPINE}(7) \\
& \Rightarrow \quad \text { CAT } \rightarrow \text { NODE.VALUE }=\text { DOG } \rightarrow \text { NODE.VALUE }=2 \\
& I=3: \quad \operatorname{CAT}=\operatorname{SPINE}(9), \operatorname{DOG}=\operatorname{SPINE}(4) \\
& \Rightarrow \quad \text { CAT } \rightarrow \text { NODE.VALUE }=203 \neq \text { DOG } \rightarrow \text { NODE.VALUE }
\end{aligned}
$$

Therefore SPINE (9) $\rightarrow$ NODE must be modularized, while SPINE (6) $\rightarrow$ NODE and SPINE (8) $\rightarrow$ NODE should be freed and their inputs transferred to $\operatorname{SPINE}(5) \rightarrow \mathrm{NODE}$ and $\operatorname{SPINE}(7) \rightarrow$ NODE respectively, by means of two STIP structures. STIP structures have the following composition

1 STIP BASED(ST)
2 TIPO FIXED,
2 LIP POINTER,
2 DII FIXED BINARY,
2 DIR FIXED BINARY,
2 NAIL(DIRO REFER(STIP.DIR)) POINTER,
2 WHIP(DIRO REFER(STIP.DIR)) POINTER,
2 TIR(DIRO REFER(STIP.DIR)FIXED,
2 TIL(DILO REFER(STIP.DIL)) FIXED;
Variables DIL and TIL are needed for the storage of free leaf inputs, while DIR, TIR, NAIL and WHIP handle the information associated with r-leaf inputs including their interconnections with other structures in the tree.

Procedures TRAVEL and TRAPEL are called by COALESCE in order to reassign to the new STIP structure the NAIL and WHIP interconnections other structures originally had with the node which is replaced by the STIP structure.

For the pressure tank example the first two STIP structures created are

$$
\begin{aligned}
& 1 \operatorname{STIP} \operatorname{BASED}\left(\mathrm{ST}_{1}\right) \\
& 2 \operatorname{TIPO}=2, \\
& 2 \operatorname{LIP}=\mathrm{NULL}, \\
& 2 \operatorname{DIL}=3, \\
& 2 \operatorname{DIR}=1, \\
& 2 \operatorname{NAIL}(1)=\operatorname{NULL}, \\
& 2 \operatorname{WHIP}(1)=\operatorname{NULL},
\end{aligned}
$$

| $2 \operatorname{TIR}(1)=0$ |
| :--- |
| $2 \operatorname{TIL}(1)=5, \operatorname{TIL}(2)=6, \operatorname{TIL}(3)=7 ;$ |
| $1 \operatorname{STIP} \operatorname{BASED}\left(\operatorname{ST}_{2}\right)$ |
| $2 \operatorname{TIPO}=2$, |
| $2 \operatorname{LIP}=\operatorname{NULI}$ |
| $2 \operatorname{DIL}=2$, |
| $2 \operatorname{DIR}=1$, |
| $2 \operatorname{NAIL}(1)=\operatorname{SPINE}(7)$ |
| $2 \operatorname{WHIP}(1)=\operatorname{APT}_{1}$ |
| $2 \operatorname{TIR}(1)=30001$, |
| $2 \operatorname{TII}(1)=9, \operatorname{TILL}(2)=10 ;$ |

At the same time TRAPEL transfers the WHIP interconnection of SPINE (7) $\rightarrow$ NODE

```
1 NODE BASED (NT = SPINE(7)),
2 TIPO \(=1\),
2 NAME \(=7\),
2 VALUE \(=2\),
2 DIR = 1 ,
2 NAII(1) \(=\) SPINE(3)
\(?_{!}^{2} \operatorname{WHIP}(1)=S T_{2}\),
```

The two structures $S T_{1} \rightarrow$ STIP and $S T_{2} \rightarrow$ STIP, are attached to SPINE (5) $\rightarrow$ NODE and SPINE(7) $\rightarrow$ NODE respectively by the statements

```
SEARCH = DOG NODE.LIP;
IF(SEARCH = NULL, THEN AJAX = 1);
IF (AJAX = 1) THEN DOG }->\mathrm{ NODE.LIP = ST;
```

(Recall NODE.LIP was initialized to be NULL in INITIAL.
Similarly NODE.LID, STIP.LIP and STID.LID are also initialized to be NULL).

Hence $\operatorname{SPINE}(5) \rightarrow$ NODE. LIP $=S T_{1}$ and $\operatorname{SPINE}(7) \rightarrow$ NODE. LIP $=S T_{2}$.
The STIP.LIP pointer is necessary since more than one node may coalesce with the same NODE.ROOT. In fact, after a second iteration through LOOP-1 gates (G5, G6, G7, G8) will be collapsed together for the pressure tank rupture fault tree. The set of gates will then be represented by

$$
\begin{aligned}
& 1 \text { NODE BASED }(\operatorname{NT}=\operatorname{SPINE}(5)), \\
& 2 \text { TIPO }=1, \\
& 2 \text { NAME }=5, \\
& 2 \text { VALUE }=2, \\
& 2 \text { GINT }=0, \\
& 2 \text { LIIT }=6, \\
& 2 \text { LIRT }=2, \\
& 2 \text { LIMD }=0, \\
& 2 \text { LIMT }=0, \\
& 2 \text { NEST }=0, \\
& 2 \text { WHIZ }=0, \\
& 2 \text { ROOT }=\operatorname{SPINE}(4), \\
& 2 \operatorname{LIP}=\operatorname{ST} \\
& 1
\end{aligned}
$$

```
    2 LID = NULL,
    2GIN = 2,
    2 LIL = 1,
    2 DIR = 1,
    2 NAIL(1) = NULL,
    2 WHIP(1) = NULL,
    2 TIR(1) = 0,
    2 SPIT(1) = NULL, SPIT(2) = NULL,
    2 TIL(I) = 0;
    1 STIP BASED (ST
    2 TIPO = 2,
    2 LIP = ST}
    2 DIL = 3,
    2 DIR = 1,
    2 NAIL(1) = NULL,
    2 WHIP(I) = NULL,
    2 TIR(I) = 0,
    2 TIL(I) = 5,TIL(2) = 6, TIL(3) = 7;
    I STIP BASED (ST}3
    2 TIPO = 2,
    2LIP = ST 2
    2 DIL = 1,
    2 DIR = 1,
    2 NAIL(I) = SPINE(3),
    2 WHIP(I) = ST2,
```

```
2 TIR(I) = 30001,
2 TIL(1) = 8;
I STIP BASED (ST2)
2 TIPO = 2,
2 LIP = NULL,
2 DIL = 2,
2 DIR = I,
2 NAIL(I) = ST2
2 WHIP(1) = APPT ,
2 TIR(1) = 30001,
2 TIL(1) = 9,, TIL(2) = 10;
```

At this point gates $G 5$ and $G 9$ are ready to be processed by MODULA and no more gateless nodes can be found which may be coalesced, 1.e.,

```
\(B U D=0 ;\)
\(B U G=2 ;\)
GOLD (1) \(=\operatorname{SPINE}(5) ;\)
GOLD(2) \(=\operatorname{SPINE}(9) ;\)
```

III.8. MODULA

The objective of procedure MODULA, is to modularize all those gateless nodes which cannot be further coalesced with their root-node.

Recall that a gateless node will have WHIP and NAIL interconnections with other parts of the tree if the set of replica-
ted events within its domain is not complete. To allow for this possibility, MODULA temporarily allocates a MOD structure to represent a modularized node. A MOD structure, say MOD ${ }_{a}$, will then be transformed into a proper module (represented by a PROP structure) only if it shows no interconnections with other nodes in the tree. Otherwise procedures COALESCE and MODULA will need to further transform the tree

DO WHILE (FLAG $T=0$ ),
CALL COALESCE;
call modula;
END;
until a MOD structure is found connected to a set of MOD structures (nested modules) including $M_{a}$ and containing in its domain a complete set of replicated inputs.

This set of nested modules will then be given a higher order modular representation by procedure BOOLEAN. In general a tree will contain several complete sets of nested modules, and each time such a set is found BOOLEAN will be called by MODULA.

Structures MOD and PROP have the following composition

I MOD BASED (MT)
2 TIPO FIXED,
2 NAME FIXED,
2 VALUE FIXED,
2 NEST FIXED,

2 LIM FIXED BINARY,
2 RIM FIXED BINARY,
2 RIMO FIXED BINARY,
2 MIM FIXED BINARY,
2 MID FIXED BINARY,
2 NAIL (LIRO REFER(RIMO)) POINTER
2 WHIP (IIRO REFER(RIMO)) POINTER,
2 TIR (LIRE REFER(RIM)) POINTER,
2 TID (LIDE REFER(MID)) POINTER
2 PIM (LIME REFER(MOD.MIM)) POINTER,
2 TIM (LIME REFER(MOD.LIM)) FIXED;

1 PROP BASED (PT),
2 TIPO FIXED,
2 ROOT POINTER,
2 REZ FIXED BINARY,
2 NAME FIXED,
2 VALUE FIXED,
2 LIM FIXED BINARY,
2 MIM FIXED BINARY,
2 HOST POINTER,
2 REL (DEL REFER (PROP.REZ)) FLOAT,
2 TIL (IILE REFER (PROP.LIM)) FIXED,
2 PIM (LIME REFER(PROP.MIM)) POINTER;

Before proceeding on to define each of the variables contained in structures $P R O P$ and MOD, it is necessary to explain how STID
structures are used to represent MOD and PROP structures while their root node has not been modularized.

Structure STID has the following composition

1 STID BASED (SD),
2 TIPO FIXED,
2 LID POINTER,
2 STIM FIXED,
2 LTIM POINTER,
2 DIR FIXED BINARY,
2 NAIL (DIRO REFER (STID.DIR)) POINTER,
2 WHIP (DIRO REFER(STID.DIR)) POINTER;
(STID.TIPO $=3$ for all STIDs)
For every newly created PROP or MOD structure a STID structure is allocated and attached in its place as an input to the root node which corresponds to the MOD or PROP structure. Variables ITIM and STIM identify the structure represented by STID i.e.,

$$
\text { STID.LTIM }=\left\{\begin{array}{l}
\text { MT for MOD structures } \\
\text { PT for PROP structures }
\end{array}\right.
$$

STID.STIM $= \begin{cases}\text { MT } & \text { MOD. NAME } \\ P T & \text { PROP. NAME }\end{cases}$
If STID represents a nested module (i.e., a MOD structure) then necessarily a set of WHIP and NAIL interconnections exists between the nested module and other gates in the tree, these interconnections are therefore passed on from MOD to its STID representation, i.e.,

$$
\begin{aligned}
& \text { STID. NAIL }=\left\{\begin{array}{l}
\text { MOD.NAIL for nested modules } \\
\text { NULL for PROP modules }
\end{array}\right. \\
& \text { STID. WHIP }=\left\{\begin{array}{l}
\text { MOD. WHIP for nested modules } \\
\text { NULL for PROP modules }
\end{array}\right.
\end{aligned}
$$

Finally, STID.LID is necessary in case more than one MOD or PROP structures are attached as inputs to a node. In general a set of LID connections will exist of the form

1 NODE BASED (NT)
2 TIPO $=1$,
!
2 LIP,
${ }^{2} \operatorname{LID}=S D_{1}$,
1 STID BASED $\left(S D_{1}\right)$
2 TIPO $=3$,
2 IID $=S_{2}$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
1

A description of the variables contained in structure MOD follows:

MOD.TIPO $=4$ for every MOD structure. It is needed to distinguish MOD from the other type of structures (STIP, STID, NODE, AP) handles together by TRAVEL and TRAPEL. MOD.NAME is a number identifying the gate associated with the MOD structure (MOD.NAME $=$ NODE. NAME).

MOD. VALUE identifies the type of gate operator associated with the MOD structure (MOD.VALUE = NODE.VALUE).

MOD.NEST measures the total number of nested modules (MOD structures) within the domain of the gate associate with the MOD structure (MOD.NEST $=$ NODE.NEST).

MOD. LIM dimensions the array of free leaf inputs attached to MOD .

MOD.RIM dimensions the array of replicated leaf inputs attached to MOD.

MOD.RIMO dimensions the array of WHIP and NAIL interconnections attached to MOD (notice MOD.RIM $\neq$ MOD.RIMO).

MOD.MIM dimensions the array of independent module (PROP structures) inputs attached to MOD.

MOD.MID dimensions the array of nested modules (MOD structures) inputs directly attached to MOD (Notice MOD.MID $\neq$ MOD.NEST). MOD.NAIL and MOD.WHIP are the arrays of pointers interconnecting MOD with other parts of the tree which have replicated inputs in common to the full domain of MOD.

MOD.TIR is the array of replicated leaf inputs attached to MOD .

Thus MOD.PID(I) will be the pointer for the Ith nested module input to $\operatorname{MOD}\left(M O D . P I D(I)=M I_{I}\right.$ ) and MOD.TID will be the name of the Ith nested module input (MOD.TID $\left.(I)=M T_{1} M O D . N A M E\right)$

Arrays MOD.PIM and MOD.TIM identify the free module inputs attached to MOD. Thus MOD.PIM(J) is the pointer for the Jth free module input to $\operatorname{MOD}\left(\operatorname{MOD} \cdot \operatorname{PIM}(J)=P T_{J}\right)$ and MOD.TIM is the name of Jth free module input (MOD.TIM(J) $=\mathrm{PT}_{J}$ PROP. NAME). MOD.TIL is the array of free leaf inputs attached to MOD .

The procedure modula starts out by determining the storage space needed to allocate a MOD structure for gateless node $M$ ( $M=1,2, \ldots, B U G$ ) and assigns the values to variables MOD.VALUE, MOD.NAME, MOD.NEST and MOD.TIPO with the following statements:


| 464 | 2 | 1 |
| :--- | :--- | :--- |

Notice that structure MOD has a number of interconnections (WHIP (I) and NAIL(I), $I=1,2, \ldots, L I R O$ ) which is in general different from the number of replicated inputs (TIR(I) I $=1,2$, ...,LIRE) it contains, i.e., LIRO $\neq$ LIRE. This reflects the fact that structure MOD absorbs only those inputs contained in the structure $N O D E$ and all its connected STIP structures. At the same time, however, $M O D$ receives all interconnections attached to the NODE structure as well as its STIP and STID connected structures. This feature particular to MOD structures makes it possible to identify higher order modules contained in the tree. Indeed, a MOD structure will correspond to a higher order module only if all its interconnections are self-contained, i.e.,

$$
\begin{aligned}
& \text { MOD. } \operatorname{NAIL}(I)=M T \\
& \text { and } \\
& M O D \cdot \operatorname{WHIP}(I)=\left\{\begin{array}{l}
M T \\
\text { APT }_{J}
\end{array}\right.
\end{aligned}
$$

for all $I(I=1,2, \ldots, \operatorname{LIRO} ; J=1,2, \ldots, N U M ;$ with NUM $=$ total number of replicated components in the domain of the higher order module).

The next variables to be assigned values by MODULA. are MOD.TIL and MOD,TIR which get values from the NODE structure and the set of STIP structures connected to the NODE:

```
478 2 1 SEARS=NODR.EIP:
478
    OIR=0;
DO #HILE(SEARS`**HLLL):
ST=SEARS:
OIAL=STIP.DIL;
IP (DIAL=1 & STIP.TIL(1)=0) THPN DIAL=0;
IF DIAL=O THFK GO TO BACH;
DO I=1 TO DIAL;
MOD.TIL(BIL+I)=STIP.TIL(T):
ENO:
    BACII: DIAR=SIIP.DIR:
        IF (DIAR=1 & STIP.TIR(1)=0) THEN DIAR=0:
        IF DIAR=0 THEN GO TO MACH:
        DN I=1 TO DIAR;
        MOD.TIR(BIR+I)=STIR.TIR(I):
        EHD:
    MACII: BIL=BIL+DIAL:
    BIR=BIR+DIAR;
    SEARS*SEARS->STIP.LIP:
        EMD:
    DO I=|IL+1 TO LILR;
    J=T-EIL;
    MOD.TIL(I)=NODC.TII.(J);
        END:
    DO I=BIR+1 TO LIRE;
    J=I-BIn:
    MOD.TIR(I) =NODE.TIR(J):
    END:
```

At this point once all WHIP and NAIL interconnections in structure NODE and the set of STIPS connected to the NODE are transferred to MOD, then all these structures may be freed.


| 511 | 2 | 2 |
| :--- | :--- | :--- |
| 514 | 2 | 2 |
| 515 | 2 | 2 |
| 516 | 2 | 2 |
| 517 | 2 | 2 |
| 518 | 2 | 1 |
| 519 | 2 | 1 |
| 570 | 2 | 2 |
| 521 | 2 | 2 |
| 522 | 2 | 2 |
| 523 | 2 | 2 |
| 524 | 2 | 2 |
| 525 | 2 | 1 |
| 526 | 2 | 1 |
| 527 | 2 | 1 |
| 538 | 2 | 1 |
| 529 | 2 | 1 |
| 530 | 2 | 2 |
| 531 | 2 | 2 |
| 532 | 2 | 2 |
| 533 | 2 | 2 |
| 534 | 2 | 2 |
| 535 | 2 | 2 |
| 536 | 2 | 3 |
| 517 | 2 | 3 |
| 533 | 2 | 3 |
| 539 | 2 | 3 |
| 540 | 2 | 3 |
| 541 | 2 | 3 |
| 542 | 2 | 3 |
| 543 | 2 | 2 |
| 544 | 2 | 2 |
| 545 | 2 | 3 |
| 546 | 2 | 3 |
| 547 | 2 | 3 |
| 548 | 2 | 3 |
| 549 | 2 | 3 |
| 550 | 2 | 2 |
| 551 | 2 | 2 |
| 552 | 2 | 2 |
| 553 | 2 | 2 |
| 5 |  |  |
| 5 |  |  |

```
    CALL TMAVEL (LAD, DUPEN, CAT):
CITE: LAD=CAT->NOCE.NAIL(NAI.):
            IF LAD=CAT T!PN GO TO RTTE:
            CALL TRA?EL.(LAN, OIfFRN, CAT);
    RITF: END;
            NT=CAT:
            ON K=1 TO NIR;
            IF (NODE.HIIP(K)=CAT) TISN MOD.MHITP(K)=MT;
            ET.SE HOD.,WHIP(K)=NODE.WHIP (K);
            IF (NODE.NAII (K) =CAT) TITEN MOD.NAIL.(K) =MT:
            ELSE MOO.NAIL(K)=NODF.AAIL(K):
            END;
BITE: SFARCI=NODE.LIT:
            SEARS=NODR.LID:
            SEAN=NODE.ROOT:
            PRET NODE:
            DO YHILE (SEARCH~=N|LI.):
            SI=SENRCH;
            BAT:ST:
            SIR=STIP.OIP;
    IF (SIR=1 & STIR.TIR(1)=0) TITIN STR=0:
    IF SIR=0 TIEH GO TO BLTS;
    DO NAL=1 TO SIR;
    L.AD=BAT->STIE.WIIIP(NAL):
        IF (LAD=BATY THEN GO TO CI'TS:
    CALL FRAVEL (LAN. QUEFK. BAT);
CITS: LAD=BAT->STIR.NAII.(NAI.):
    IF(LAD=8AT) TIFN GO TO RITS;
    CALG TRAPRL (LAD, OUPEN, BAT):
RITS: ENO:
    ST= BAT:
    DO K=1 TO SIR;
    IF(STIF.WHIF(K)=ST) THPN MOD.GHIP(NIR+Y) = NT:
    ELSF MOD.WHIP(NIR+K)=STIP.WHIP(K):
    IP (STIP.NAII. (K)=ST) TIFFH MOD.NAIL(NIR+FI =MT:
    ELS% MOD.NAIL(NIR+K)=STI?.VAII(K);
        EHD:
    BITS: NIR=NIR+SIR;
        SEARCTI=SEARCH->STIP.LIP;
        PGEE STIP:
        EMD:
```

It should be noted that before freeing structure NODE, its pointer variable NODE.LID was assigned to variable SEARS. Keeping this pointer will make it possible to transmit to MOD all the values it receives from the set of STID structures previously connected to the NODE.

A loop similar to the one used for transmitting to MOD values from the STIP structures (DO WHILE (SEARCH T= NULL; ) follows for the set of STID structures

| 554 | 2 | 1 |
| :--- | :--- | :--- |
| 555 | 2 | 1 |
| 556 | 2 | 1 |
| 557 | 2 | 2 |
| 558 | 2 | 2 |
| 559 | 2 | 2 |
| 560 | 2 | 2 |
| 561 | 2 | 2 |

```
LAU=0;
PAIT=0;
DO MIIILE(SRARST&NULL):
SD=SEARS:
BAT=SD:
SET=STID.DIT:
IF (SIR=1 E STIn_NAIL(1)=NULL) TUEN STR=0;
IF SIR=O THEN GO TO BITA;
```

```
    DO YAL#1 TO SIR:
    LAN=BAT->STID.VNIP(NNL):
    IF(LAD=BAT ) THEN GO TO CTTA:
    cabl fa\vel (Lad, gilepN, bati:
CITA: LAD=BAT->STID.NAIT.(NAL):
    IF (LAD=BAT) THPN GO TO RITA;
    gall trapel (Lad, quEEN, oat):
RITA: END;
    SD=8AT:
    DO K=1 TO SIR;
    IF(STID. KGIP(K)=SO) THEN MOD.VITTP (NIR+K)=MT;
    ELSE MOD.WIIP (NIR+K) =STTD.WHIP(K):
    IF(STID.NAIL (K)=SD) THEM MOD.NAIL (NIR+K)=NT;
    ELSE HOD.NATL(AIR+K)=STID.HAIL(K);
    END;
    NIR=MIR+SIR;
        LNT=LAU+1;
        MOD.TID(LAUU)=STID.STIM:
        MOD.PID(LAII)=STID.S.TIM:
    go TO PITA:
BITA: PA|=PAO+1;
    YOD.TIM(PAI) =STID.STIM;
    MOD.PIM(PAU)=STID.LTIM;
PITA: SFARS=SEARS->STID.LID:
    PrEE SIID;
    END:
```

A STID structure will either transmit values to MOD.TIM and MOD.PIM if it represents a PROP structure (proper module) in which case STID includes no WHIP and NAIL interconnections, or it will transmit values to MOD.TID and MOD.PID as well as values to pointers MOD.WHIP and MOD.NAIL if it represents a MOD structure (nested module).

Each STID pertaining to the set is processed by the loop (SEARS $=$ SEARS $\rightarrow$ STID.IID; $\Rightarrow$ SEARS points each time at a new STID in the set after which its storage is released (FREE STID;).

At this point all variables contained in the new MOD structure have been assigned their values, so MODULA can proceed now
to check whether the MOD structure created represents a proper or a nested module.

Before allocating a MOD structure, variable ORO was used to distinguish those gateless nodes having no replicated events in their domain (IF (LIRO $=0$ ) THEN ORO $=1$; ELSE ORO $=0 ;$ ). The MOD structure for a gateless node having no replicated inputs may be immediately transformed into either a "simple" PROP structure (Figure 3.21) or into a set of PROP structures organized by a set of Boolean vectors characteristic of a symmetric (k-out of $-n$ ) gate (Figure 3.22).

Symmetric gates are allowed to appear explicitly in the fault tree, as long as each of their inputs is independent from the rest of the tree (i.e., each input to the gate is either a component or a super-component). Symmetric gate operators are represented by a three digit number (KON). The highest digit represents the minimum number of simultaneous failures necessary to cause a gate failure, the middle digit is always equal to zero, and the lowest digit represented the total number of inputs to the gate (Thus, a node having a 2-out of -4 gate operator has a NODE.VALUE $=204$ ).

In the next statements MODULA considers the two possibilities available for a non-replicated event MOD structure,

IF (ORO $=1 \&$ MOD.VALUE $>2$ ) THEN GO TO RED;
IF (ORO $=1 \&$ MOD.VALUE $<=2$ ) THEN GO TO HANA;
For the pressure tank example MODULA will allocate two MOD structures. The first one (GOLD(1)) associated with gate G5 does contain replicated events in its domain and will there-

( $M^{a}$ and $M^{b}$ are simple prop structures)

FIGURE 3.21 SIMPLE OR AND AND GATE PROP STRUCTURES


$$
\begin{aligned}
& \mathrm{Y}^{\mathrm{B}}=\left(\mathrm{Y}_{\mathrm{M} 1}, \mathrm{Y}_{\mathrm{M} 2}, \mathrm{Y}_{\mathrm{M} 3}\right) \\
& \mathrm{S}_{1}=(0,1,1) \\
& \mathrm{S}_{2}=(1,0,1) \\
& \mathrm{S}_{3}=(1,1,0)
\end{aligned}
$$



FIGURE 3.22 SYMMETRIC HIGHER ORDER MODULES
fore be later checked on whether it represents a nested module or the top event for a higher order module (1.e., the parent gate for a set of nested modules).

The second MOD structure associated with gate G9 (GOLD(2)) represents a symmetric gate module and will therefore be given its corresponding Boolean representation by procedure SYMM.

In the next section of this Chapter, the methods by which procedures BOOLEAN and SYMM derive a Boolean representation for higher order modules and for symmetric gate modules explicitly included in a fault tree, are discussed.

For the pressure tank example, the following MOD structures represent gates $G 5$ and $G 9$.

$$
\begin{aligned}
& 1 \operatorname{MOD} \text { BASED }\left(\mathrm{MT}_{1}\right), \\
& 2 \operatorname{TIPO}=4, \\
& 2 \operatorname{NAME}=5, \\
& 2 \operatorname{VALUE}=2, \\
& 2 \operatorname{NEST}=0, \\
& 2 \operatorname{LIM}=6, \\
& 2 \operatorname{RIM}=2, \\
& 2 \operatorname{RIMO}=2, \\
& 2 \operatorname{MIM}=1, \\
& 2 \operatorname{MID}=1, \\
& 2 \operatorname{NAIL}(1)=\operatorname{SPINE}(3), \operatorname{NAIL}(2)=M_{1}, \\
& 2 \operatorname{WHIP}(1)=\operatorname{MT}_{1}, \operatorname{WHIP}(2)=A P T_{1}, \\
& 2 \operatorname{TIR}(1)=30001, \operatorname{TIR}(2)=30001, \\
& 2 \operatorname{RID}(1)=\operatorname{NULL}^{2}, \\
& 2 \operatorname{TID}(1)=0,
\end{aligned}
$$

```
2 PIM(I) = NULL,
\(2 \operatorname{TIM}(1)=0\),
\(2 \operatorname{TIL}(1)=5, \operatorname{TIL}(2)=6, \operatorname{TIL}(5)=7, \operatorname{TIL}(4)=8\),
\(\operatorname{TIL}(5)=9, \operatorname{TIL}(6)=10 ;\)
```

It may be seen that this MOD structure, associated with gate G5 represents a nested module since the requirement MOD.NAIL $(I)=M T_{I}$ is not satisfied for $I=1$.

```
1 MOD BASED (MT2)
2 TIPO \(=4\),
2 NAME \(=9\),
2 VALUE \(=203\),
2 NEST \(=0\),
2 LIM = 3,
2 RIM \(=1\),
2 RIMO \(=1\),
\(2 M I D=I\),
2 NAIL(I) \(=\) NULL,
2 WHIP(I) = NULL,
\(2 \operatorname{TIR}(1)=0\),
2 PID(1) = NULL,
\(2 \operatorname{TID}(1)=0\),
\(2 \operatorname{PIM}(1)=\) NULL,
\(2 \operatorname{TIM}(I)=0\)
\(2 \operatorname{TIL}(1)=11, \operatorname{TIL}(2)=12, \operatorname{TIL}(3)=13 ;\)
```

procedure SYMM will automatically generate the Boolean representation for this MOD structure associated with gate G9

$$
\begin{aligned}
& Y^{B}=\left(y_{c 11}, Y_{c 12}, y_{c 13}\right) \\
& S_{1}=(1,0,1) \\
& S_{2}=(0,1,1) \\
& S_{3}=(1,1,0)
\end{aligned}
$$

and these vectors w1ll be attached to the PROP structure representing gate G9 (see section III.9.2).

The set of statements outlined below form the final part of the MODULA procedure. The tasks they perform include
(a) Testing if a MOD structure containing replicated components represents a nested or a higher order module.
(b) Calling procedures BOOLEAN and SYMM to generate minimal cut-set representations for higher order and explicitly symmetric modules.
(c) Allocating PROP structures for those MOD structures which include no replicated events.
(d) Allocating STID structures to represent PROP and MOD structures and attaching them to NODE structures in the fault tree.

```
\begin{tabular}{lll}
588 & 2 & 1 \\
589 & 2 & 1 \\
599 & 2 & 1 \\
591 & 2 & 1 \\
592 & 2 & 1 \\
593 & 2 & 1 \\
594 & 2 & 1 \\
597 & 2 & 2 \\
596 & 2 & 2 \\
597 & 2 & 2 \\
598 & 2 & 2 \\
599 & 2 & 2 \\
600 & 2 & 2 \\
601 & 2 & 2 \\
692 & 2 & 3 \\
603 & 2 & 3 \\
604 & 2 & 3 \\
605 & 2 & 3 \\
606 & 2 & 3 \\
607 & 2 & 3 \\
608 & 2 & 3 \\
609 & 2 & 3 \\
610 & 2 & 3
\end{tabular}
\begin{tabular}{ll}
611 & 2 \\
612 & 2 \\
613 & 2 \\
614 & 2 \\
615 & 2 \\
616 & 2 \\
617 & 2 \\
618 & 2
\end{tabular}
3
3
3
3
3
2
1
\begin{tabular}{lll}
617 & 2 & 1 \\
620 & 2 & 1 \\
621 & 2 & 1 \\
622 & 2 & 2 \\
623 & 2 & 2 \\
624 & 2 & 1 \\
625 & 2 & 1 \\
111 & 2 & 1 \\
112 & 2 & 1 \\
113 & 2 & 1 \\
114 & 2 & 1 \\
119 & 2 & 1 \\
116 & 2 & 1 \\
117 & 2 & 1 \\
119 & 2 & 1 \\
119 & 2 & 1 \\
120 & 2 & 1 \\
121 & 2 & 1 \\
122 & 2 & 1 \\
123 & 2 & 1 \\
124 & 2 & 1 \\
125 & 2 & 1 \\
126 & 2 & 1 \\
1127 & 2 & 1 \\
128 & 2 & 1 \\
129 & 2 & 1 \\
1130 & 2 & 1 \\
1131 & 2 & 1
\end{tabular}
```

```
    IF (ORO=1 & MOD.VALUR>2) TIIEN GO TO RED:
```

    IF (ORO=1 & MOD.VALUR>2) TIIEN GO TO RED:
    IF (ORO=1 F MOD.VNLUES=2) THEN GO TO HANA;
    IF (ORO=1 F MOD.VNLUES=2) THEN GO TO HANA;
    S#M=0;
    S#M=0;
    IR=1:
    IR=1:
        ALLOCATF GIT:
        ALLOCATF GIT:
    NOX=0;
    NOX=0;
    DO CAP=1 TO LIRO:
    DO CAP=1 TO LIRO:
    VIC= MON. NAIL (CAF):
    VIC= MON. NAIL (CAF):
    IF(VICनEMT) TIEN GO TO DANA;
    IF(VICनEMT) TIEN GO TO DANA;
    VIT=MOO. पHIP(CRP);
    VIT=MOO. पHIP(CRP);
    IF (VIT-FMT & VIT->NONR.TIPOص=0) TGEM GO TO DANA:
    IF (VIT-FMT & VIT->NONR.TIPOص=0) TGEM GO TO DANA:
    IF (VIT->NODE. TIPO-0) TIEN GN TO SANA;
    IF (VIT->NODE. TIPO-0) TIEN GN TO SANA;
    REV=VIT->RFP:
    REV=VIT->RFP:
        IF (RPV<0) THPN nO:
        IF (RPV<0) THPN nO:
    NOX=1:
    NOX=1:
    SUM=SUM-REV;
    SUM=SUM-REV;
    MA=\nablaIT->NAP;
    MA=\nablaIT->NAP;
    DA=-CEII. (-MA/10000):
    DA=-CEII. (-MA/10000):
    JA=-CEIL(-HA/1000):
    JA=-CEIL(-HA/1000):
    NA=MA-(1000)=3A;
    NA=MA-(1000)=3A;
    G1TT(IR)=10000*DA+1000+NA:
    G1TT(IR)=10000*DA+1000+NA:
    GIT(IR+1)=GUT(IR)+10NO;
    GIT(IR+1)=GUT(IR)+10NO;
    IR=IR+7;
    IR=IR+7;
    END:
    END:
    ELSE 0n:
    ELSE 0n:
    SUM=SUM+RPV :
    SUM=SUM+RPV :
    GUT (IR) =VIT->NAP;
    GUT (IR) =VIT->NAP;
        IR=IR+1;
        IR=IR+1;
    END:
    END:
    SNNA: END:
    SNNA: END:
    P#T EDIT('TOTAL SIM REP=',StM)
    P#T EDIT('TOTAL SIM REP=',StM)
    (SKIP(2),X(2),A(14),F(5)):
    (SKIP(2),X(2),A(14),F(5)):
    NUM=1R-1;
    NUM=1R-1;
    ALLOCATE POT:
    ALLOCATE POT:
    DO I=1 TO NUM:
    DO I=1 TO NUM:
        PHT(I)=GUT(I):
        PHT(I)=GUT(I):
        END;
        END;
        FREE GIT:
        FREE GIT:
        CALL BOOLFAN:
        CALL BOOLFAN:
        OIRO=1;
        OIRO=1;
        ALIOCATF STID;
        ALIOCATF STID;
        SFARS=SD;
        SFARS=SD;
        STID.NAII=NOLL;
        STID.NAII=NOLL;
        STID.WHIP*NULL;
        STID.WHIP*NULL;
        STID.LID=NIILL:
        STID.LID=NIILL:
        STID.STIN=STORK->PRON,NAME:
        STID.STIN=STORK->PRON,NAME:
            STID.LTIM= STORX;
            STID.LTIM= STORX;
            MT=MOCUL.DULL(M):
            MT=MOCUL.DULL(M):
            FREE MOO:
            FREE MOO:
            IF (SEAN=NULL_) TKEN GO TO REAL:
            IF (SEAN=NULL_) TKEN GO TO REAL:
        IF SEAN->NODE.TIPO=1 TIEN GO TO CANX;
        IF SEAN->NODE.TIPO=1 TIEN GO TO CANX;
            APT=SEAN;
            APT=SEAN;
            AP.STIT=STORK;
            AP.STIT=STORK;
            STORK-> PROP. RONTE SAAR:
            STORK-> PROP. RONTE SAAR:
            GO TO REAP:
            GO TO REAP:
    CANX: NT=STAN:
    CANX: NT=STAN:
            NOOE.LIMT=NODE.LIME+?:
            NOOE.LIMT=NODE.LIME+?:
            SIPRRA=NODE.LID:
            SIPRRA=NODE.LID:
        IF (SIERRA=NHLL) THEN NODF.LID=SEARS:
        IF (SIERRA=NHLL) THEN NODF.LID=SEARS:
            FLS: GO TO 2TAL;
    ```
            FLS: GO TO 2TAL;
```

```
PL/I O\capTIMIZING COMPILER /* MODIREE PROGRAM */
STMT LPV NT
\begin{tabular}{|c|c|c|c|c|}
\hline 11.32 & 2 & 1 & & GO TO VRAL; \\
\hline 1133 & 2 & 1 & RED: & \(N \| B=M O D . L I M: ~\) \\
\hline 1134 & 2 & 1 & & IP(NU3=1 \% KOD.TIL(1)=0) THEN NUM=0; \\
\hline 1135 & 2 & 1 & & ELSE NUMENUB; \\
\hline 91.36 & 2 & 1 & & WEST=MOD.MIM; \\
\hline 1137 & 2 & 1 & & IP(MEST=1 \& MOD.PIM (1) =NILL TIPM NE7T=0; \\
\hline 1138 & 2 & 1 & &  \\
\hline 1139 & 2 & 1 & & ALLOCATE PFR: \\
\hline 1140 & 2 & 1 & & PPT. TAR=MOD.TIL; \\
\hline 1741 & 2 & 1 & & PER. KIM \(=\) MOD. PIH; \\
\hline 1142 & 2 & 1 & & PFR. .JIY=MOD. TIM; \\
\hline 1143 & 2 & 1 & & LOST \(=\) PP: \\
\hline 1144 & 2 & 1 & & LILE=1; \\
\hline 1745 & 2 & 1 & & LIME1; \\
\hline 1746 & 2 & 1 & & ALLOCATT PROP; \\
\hline 1147 & 2 & 1 & & PROP.TIPO=5; \\
\hline 1148 & 2 & 1 & & IB=ID +1 ; \\
\hline 1149 & 2 & 1 & & STORK=PT; \\
\hline 1150 & 2 & 1 & & BDST (IR) =STORK; \\
\hline 1151 & 2 & 1 & & OD L=1 T0 XPST; \\
\hline 1192 & 2 & 2 & & AT-PFR.KIM (L) ; \\
\hline 1153 & 2 & 2 & &  \\
\hline 1174 & 2 & 2 & & END: \\
\hline 1195 & 2 & 1 & & PROP. NAMFEMOD. MAME; \\
\hline 1156 & 2 & 1 & & PROP.VALUF=MOD.VALUE; \\
\hline 1157 & 2 & 1 & . & PROP.TIL=0: \\
\hline 1158 & 2 & 1 & & PROR.TTM=0: \\
\hline 1159 & 2 & 1 & & PROP. PI \(=\) NULL; \\
\hline 1150 & 2 & 1 & & \begin{tabular}{l}
PUT EDIT ('SYMM MODHLP NAME=', PROC.NAME. VALDE=* \\

\end{tabular} \\
\hline 1161 & 2 & 1 & & PROP.HOST=LOST: \\
\hline 1952 & 2 & 1 & & LARG=NGM + MEZT; \\
\hline 1163 & 2 & 1 & & KAY= (PROP.VALIIP-LARG)/100: \\
\hline 1164 & 2 & 1 & & CALL SYMM: \\
\hline 1165 & 2 & 1 & & LOST->HRCTOR=2UPEN: \\
\hline 1166 & 2 & 1 & & PIT EDIT ('DEP COMPS=') (SKIP (1), A(10)) : \\
\hline 1167 & 2 & 1 & & PHT LIST(PER.TAR) ; \\
\hline 1168 & 2 & 1 & & PIT EDIT(CEE HODS*') (SKIP(1).A(9)): \\
\hline 1169 & 2 & 1 & & EqT LIST (PER-IIM) : \\
\hline 1170 & 2 & 1 & &  \\
\hline 1171 & 2 & 9 & & VITEPER, HECTOR; \\
\hline 1172 & 2 & 1 & & DO WHIIT: (VICTENILL) : \\
\hline 1173 & 2 & 2 & & VIC=VIT: \\
\hline 1174 & 2 & 2 & & PUT EDIT (VIC->COMP) (SKIP(1).P) ; \\
\hline 1175 & 2 & 2 & & VIT= YIC->FLOOR; \\
\hline 1976 & 2 & 2 & & EVD: \\
\hline 1177 & 2 & 1 & & GO TO CANA: \\
\hline
\end{tabular}
```

HANA: LILE=MOD.LIM: LIMF=MOD.MIM; ALLOCATE PROP:
PROP.TIPO=5:
STORK=PT:
PROP. HOST=NOLL:
FROP.NAMFI=AOD. NAME;
RROP. VALUE=MOD. VAITUE:
PROP.TIL=HOD.TIE:
PROP.TIM $=$ MOD.TIM:
PROP. PIM=MOD. PIM:
$A R I=P T:$
DO L=1 TO LIME:
AT=PROP. PIM (b):
IE (AT 2 NHLL) THEN AT->PROR.ROOT=ARI;
END:
PUT EDIT (PPREE GODILE NAMPF' EROR. MAME, VALUR=',
PROP.VALUE, 'NHM LEAE INPF', EROP. LIM, 'NIM MOD INP=', RROP. MIM) (SKIP(2), A (19), F(S),X(2),A(6),F(5),X(2),A(13),P(5),X(2), A(12).

```
PNT EDIT ('LEAP IMS=') (SKIN(1). A(T)):
```

ROT L.ISI ( PROP.TIL):
PUT EDIT('MUD IHS=1) (SKIC(1), N(8)):
PUT LIST(PROP.TIM):
IB=I $\mathrm{B}+1$ :
BOST (IB) $=P T$ :
FRFE HOD:
OIRO=1;
ALI.OCATE STID;
SFARS=SE:
STID.NAII=NUI.L:
STID. WIIIP=NULL;
STID.LID=NOLL;
STID.STIM=BOST (IR) - P PROP.NAMP;
STID. TITM=8OST (IB):
IF (SEAN=NULL) TIIEN GO TO REAL:
IF (SEAN-SNOD\&. TIPO=1) THEN GO TO TANF:
APT=SEAR:
AP.SEIT=STORR:
STORK->PROP. ROOT*SEAN:
GO TO REAP:
RANR: NTESEAN:
HOOE.LIMT F NODE.LIMT+1;
SIPRTA =NODE. I.In:
IF (SIERRA=NULL) THRN NODP.LID=SRAPS;
ELSEGO TO ZEAL:
GO TO VEAL;
DANA: OIROFMOD.RIMO:
ALLOCAFP STID:
STID. TIPN=3:
STARS=SD:
STID.STIM=MOD. AAMR;
VIC=MODUL.DULL (M):
MTFIC;
STID. LTTM=VIC:
PUT EDIT ('NESIID=',STTD.STIM)
$(S K I P(1) \cdot x(2), A(7), P(5)):$


| 1319 | 2 | 1 |
| :---: | :---: | :---: |
| 1302 | 2 | 1 |
| 1303 | 2 | 1 |
| 1304 | 2 | 2 |
| 1395 | 2 | 2 |
| 1306 | 2 | 2 |
| 1307 | 2 | 2 |
| 1308 | 7. | 2 |
| 1309 | 2 | 2 |
| 1310 | 2 | 2 |
| 1311 | 2 | 1 |
| 1312 | 2 | 1 |
| 1313 | 2 | 2 |
| 1.314 | 2 | 2 |
| 1315 | 2 | 2 |
| 1316 | 2 | 2 |
| 1317 | 2 | 2 |
| 1318 | 2 | 1 |
| 1319 | 2 | 1 |
| 1320 | 2 | 1 |
| 1321 | 2 | 1 |
| 1322 | 2 | 1 |
| 1323 | 2 | 1 |
| 1324 | 2 | 1 |
| 1325 | 2 | 1 |
| 1326 | 2 | 2 |
| 1327 | 2 | 2 |
| 1328 | 2 | 2 |
| 1329 | 2 | 1 |
| 13.30 | 2 | 1 |
| 1331 | 2 | 1 |
| 1332 | 2 | 1 |
| 1333 | 2 | 2 |
| 1334 | 2 | 2 |
| 1355 | 2 | 1 |
| 1336 | 2 | 1 |
| 1337 | 2 | 1 |
| 1338 | 2 | 1 |
| 1339 | 2 | 1 |
| 13:? | 2 | 1 |
| 1341 | 2 | 1 |
| 1.142 | 2 | 1 |
| 1343 | 2 | 1 |
| 1344 | 2 | 0 |
| 1345 | 2 | 0 |
| 1346 | 2 | 0 |
| 1347 | 2 | 1 |
| 1348 | 2 | 1 |
| 1349 | 2 | 0 |
| 1350 | 2 | 0 |
| 1351 | 2 | 0 |

```
    ST\perpU.bLU#NI:&ん:
        IF (STMN=NULL) TIIEN GO TO REAL!
    DO NAL=1 TO DINO:
    LA N=VIC->MOD.WUIP(NAL)
        IF (LAD=VIC) TIFN GO TO CETO:
    CALL TRAVEL (LAN,SFARS,VIC):
CITO: LAD=VIC PMOD.NAII. (NAT.):
    IF (LADEVIC) TIIEN GO TN RITO:
    CALL TRAPFL (LAD,SEARS,VIC):
RITO:
        END:
        SD= SEARS:
    DO K=1 TO DIRO:
    IF (MOT.WHIP(K)=VIC) THFM STIT.:UIIP(K)=SD;
```



```
    IF MOO.NAII (K)=VIC TUE:I STIO.NAIR.(K)=SO;
    ELSE STID.MAIL(R)=MON.NATL(P):
    END:
        HT=SEAN:
    NODF., LIMD=NODP.IIMD+1;
    NODF.NTST=NOCF.NEST+NOD.MFSTH1:
        SIERRA=NODE.T.ID;
    IP (SIERRA=NUI.L) THEN NODT.LID=SENRS;
    ELSE GO TO 7EAL:
    GO TO VPAL;
ZEAL: DO WHILE (SIFRTA-=M!TY.J.);
    IIFRRA=SIFRRA;
    SIERRA=SIERRA->STID.LID:
    EN!:
    TIPRRA->STID.I.ID=SRARS:
    GO TO VEAL:
FEAL: A=NODF.GIN;
    DO J=1 TO A:
        IP(NODE.SPIT(J)=CAT) TIIEN GO TO FRED;
        E|D:
PRED: NOCF.SEIT {J)=|ULL;
            NODE.GINT=NODE.GINT-1:
        IP(NODP.GINT~ZO) THEN GO TO REAP;
        FELD(MO)=S&AN:
            MO=MO+1;
        GO TO REAP:
        REAL: STORK->PROP.ROOT=NULLL:
        FLAG=n;
OEAP: FND
        B1/M=MO-1;
        AH.LOCATE OLH (BITM):
        DO I=1 TO BUM;
        OLM(I) =FELD(I):
        END:
        FMFTEFELD:
        RTTUTN;
    END MODHLA: . 
```

The set of statements following label HANA create PROP structures which represent simple gate modules. Variables PROP. NAME, PROP.VALUE, PROP.LIM, PROP.MIM, PROP.TIL, PROP.TIM and PROP.PIM have the same meaning and are therefore assigned the same values formerly associated with the MOD structure for the gate 1.e.,

PROP. NAME = MOD. NAME
PROP.PIM(J) $=$ MOD.PIM(J)(J $=1,2, \ldots, \operatorname{MIM})$
etc.

$$
\text { (PROP.TIPO }=5 \text { for all PROP structures) }
$$

In the numerical evaluation to be performed later by PL-MOD, modular occurrence probabilities and Vesely-Fussell importances will be computed. These values shall be stored for each PROP structure in PROP.REL(L) and PROP.REL(2) (thus parameter DEL must be set equal to 2).

Pointer variable PROP.HOST is only needed to attach to a parent gate the Boolean vector representation for its higher order symmetric or asymmetric structure. Therefore, PROP.HOST= NULL for the case of simple gate modules.

Inspection of the DO loop (DO CAP $=1$ TO LIRO; ) used to test if a MOD structure represents a higher order module or a nested module, reveals that nested modules are handled by the set of statements following label DANA.MOD structures representing nested modules may not be immediately freed. Therefore for this case the STID structure created locates a MOD structure and it contains the WHIP and NAIL interconnections which were passed on by MOD to the STID structure.

Both higher order modules and explicitly symmetric modules are handled by the statements following label CANA. However this is done only after they were previously processed by BOOLEAN or SYMM respectively.

In all cases, whether the STID represents a PROP structure (simple gate module, or higher order parent module) or a MOD structure (nested module), it is attached as a pseudo-component to its node root (SEAN $=$ CAT $\rightarrow$ NODE. ROOT). This therefore results in a decrease in the number of gates which are input to the nodes which are roots to the modularized gates (FRED: NODE. SPIT (J) $=$ NULL; NODE.GINT $=$ NODE.GINT-1; ). Hence a number of new gateless nodes (OLM(BUM)) will be found to which procedures COALESCE and MODULA may be then applied.
III. 9 BOOLEAN and SYMM
III.9.1. Description of Higher Order Modules by Means of PROP, PER and VECTOR Structures.
In its final form the modular structure for a fault tree will be given by a set of PROP structures each of them containing a set of basic events (free leaf and replicate leaf components ) and proper modules (PROP structures) as inputs.

For the case of simple modular gates (Figure 3.23) each input holds the same structural relation to its gate operator. Therefore a listing of the inputs to the PROP structure together with the gate operator (AND, OR) coupling the inputs, will completely define the module. Thus, the PROP structure

$$
\begin{aligned}
& 1 \text { PROP BASED }\left(\mathrm{PT}_{14}\right) \text {, } \\
& 2 \text { TIPO }=5 \text {, } \\
& 2 \mathrm{REZ}=2 \text {, } \\
& 2 \mathrm{ROOT}=\mathrm{PT}_{15} \text {, } \\
& 2 \text { NAME }=14 \text {, } \\
& 2 \text { VALUE }=2 \text {, } \\
& 2 \operatorname{LIM}=2, \\
& 2 \text { MIM }=3 \text {, } \\
& 2 \text { HOST = NULL, } \\
& 2 \text { REL(2) FLOAT, } \\
& 2 \operatorname{TIM}(1)=10, \operatorname{TIL}(2)=11, \\
& 2 \operatorname{TIM}(1)=13, \operatorname{TIM}(2)=12, \operatorname{TIM}(3)=11, \\
& 2 \operatorname{PIM}(1)=\mathrm{PT}_{13}, \operatorname{PIM}(2)=\mathrm{PT}_{12}, \operatorname{PIM}(3)=\mathrm{PT}_{11} ;
\end{aligned}
$$

uniquely defines module $M_{14}=\left\{C_{10}, C_{11}, M_{11}, M_{12}, M_{13} ; \mathrm{U}\right\}$, with

module $M_{14}$ included as an input to module $M_{15}$.
However, for the case of a higher order modular gate, all its inputs do not hold the same relation with the parent gate operator. Thus, consider the higher order modulae shown In Figure 3.24 (the pressure tank fault tree example shall later be shown to have a structure similar to that of Figure 3.24). Because of the appearance of replicated input $r_{1}$ in gates GI and G5, gates G 1 , $G 4$ and $G 5$ do not correspond to simple gate modules representable by a PROP structure. Instead, each of these gates can be seen to be composed of a proper and an improper part

Proper Part
Parent Gate GI
Nested Gate G4
Nested Gate G5
$M_{a}$
$M_{b}$
$M_{c}$

## Improper Part

$$
r_{1}, G_{4}
$$

$$
G_{5}
$$

$r_{1}$

The higher order module representing this fault tree may now be constructed by taking the proper part for each gate in the structure, as well as the replicated events which provide for the interdependencyamong the gates, i.e.,

$$
\theta G_{1}=\sigma\left(r_{1}, M_{1}, M_{4}, M_{5}\right)
$$

where $M_{1}$ denotes the proper part for each of the gates in the higher order module. Hence $M_{1}=M_{a}, M_{4}=M_{b}, M_{5}=M_{c}$.

The Boolean vector describing the minimal cut-set composition for the higher order module will then be

$$
\Psi^{B}=\left(y_{r_{1}}, y_{M_{1}}, y_{M_{4}}, y_{M_{5}}\right) \text { and as a result the }
$$

minimal cut-sets will be represented by

$$
\begin{aligned}
& S_{1}=(0,1,0,0) \\
& S_{2}=(1,0,0,0) \\
& S_{3}=(0,0,1,1)
\end{aligned}
$$

From this it follows that a higher order module may be described by a set of PROP structures associated with the proper part of the parent and nested module gates, together with a set of replicated events and a series of Boolean vectors denoting each of the minimal cut-sets for the module.

The approach taken by the procedures BOOLEAN and SYMM is to attach this minimal cut-set information to the PROP structure associated with the parent gate(Pointer variable PROP.HOST is used for this purpose). Thus, for the example given in Figure 3.24 , the parent gate $G 1$ is represented by a $\mathrm{PROP}_{I}$ structure containing information on its proper part $M_{I}$. In addition a structure $P E R$ will be attached to $\mathrm{PROP}_{1}$ containing the information on the structural composition of the higher order module whose parent gate is $G I$, that is, $P R O P_{1} \cdot H O S T=P R_{I}$, with PR locating a based structure PER.

Structure PER has the following composition
1 PER BASED (PR),
2 REZ FIXED BINARY,
2 HECTOR POINTER,
2 DEXTER POINTER,
2 RAM FIXED BINARY,
2 REL(DEL REFER (PER.REZ)) FLOAT,
2 TAR (NUM REFER(PER.RAM)) FIXED,

2 KIM (WEST REFER (PER.LEAL)) POINTER,
2 JIM (WEST REFER(PER.LEAI)) FIXED;
The variables contained on PER are defined as follows: PER.REZ dimensions array PER.REL which is used to store the reliability and importance information for the higher order module (normally DEL $=2 \Rightarrow$ PER. REZ $=2$ ).

PER.HECTOR is the pointer locating the list of VECTOR structures each defining a minimal cut-set for the higher order module.

VECTOR structures are defined by
1 VECTOR BASED (VT),
2 LORO FIXED BINARY,
2 FLOOR POINTER,
2 COMP BIT (LARG REFER (VECTOR.LORO));
The set of minimal cut-sets are then attached by PER.HECTOR $=$ $\mathrm{VT}_{1}, \mathrm{VT}_{1} \rightarrow$ VECTOR.FLOOR $=\mathrm{VT}_{2}, \ldots, \mathrm{VT}_{\mathrm{n}} \rightarrow \mathrm{VECTOR} . F L O O R=$ NULL. With VECTOR.COMP holding the Boolean bit-string representation for a minimal cut-set.

PER.DEXTER is a pointer locating a structure QER derived by procedure IMPORTANCE (see sections 3.15 and 3.16).

PER.RAM dimensions array PER.TAR which stores the number of variables identifying each of the replicated event inputs to the higher order module.

PER.LEAL dimensions arrays PER.KIM and PER.JIM, PER.LEAL equals the total number of nested modules in the domain of the parent gate.

PER.KIM contains the pointer locating the PROP structures
associated with each nested module, while PER.JIM contains the number variable identifying the structure (i.e., PER.KIM(I) $\rightarrow$ PROP.NAME $=\operatorname{PER} . J I M(I), I=k, 2, \ldots, P E R . L E A L)$.

Thus, the PER and VECTOR structures describing the higher order modular structure of Figure 3.24 are
$1 \operatorname{PER~BASED~(PR=PT})$,
$2 \operatorname{REZ}=2$,
$2 \mathrm{HECTOR}=\mathrm{VT}_{1}$,
2 DEXTER POINTER,
2 RAM $=1$,
2 LEAL = 2,
2 REL(2) FLOAT,
$2 \operatorname{TAR}(1)=20001$,
$2 \operatorname{KIM}(4)=\mathrm{PT}_{4}, \operatorname{KIM}(2)=\mathrm{PT}_{5}$,
$2 \operatorname{JIM}(1)=4, \operatorname{JIM}(2)=5 ;$
1 VECTOR BASED $\left(\mathrm{VT}_{1}\right)$
2 LORO $=4$,
2 FLOOR $=V T_{2}$,
2 COMP $=10100^{\prime} \mathrm{B} ;$
1 VECTOR BASED ( $\mathrm{VT}_{2}$ ),
2 LORO $=4$,
2 FLOOR $=V T H_{3}$
2 COMP $=11000$ 'B;
1 VECTOR BASED ( $\mathrm{UT}_{3}$ ),
2 LORO $=4$,
2 FLOOR = NULL,
2 COMP = $10011^{\prime} \mathrm{B}$;

# (With $\mathrm{PT}_{1}, \mathrm{PT}_{4}$ and $\mathrm{PT}_{5}$ locating the PROP structures corresponding to gates G1, G4 and G5.) 

III.9.2. Procedure SYMM

When a fault tree diagram explicitly includes a symmetric higher order module, procedure SYMM will be used to generate its Boolean vector representation. A restriction imposed by PL-MOD is that the inputs to the symmetric gate be either non-replicated basic events or modules (Figure 3.25).

Before procedure SYMM is called, the PROP and PER structure associated with the symmetric gate are created by a set of statements following label RED.

| 1133 | 2 | 1 | RED: |  |
| :---: | :---: | :---: | :---: | :---: |
| 11.34 | 2 | 1 |  | IF(MOS=1 \% MOD.TIL (1)=0) TAEM NITM=0: |
| 1135 | 2 | 1 |  | ELSE NUM=Nub; |
| 19.36 | 2 | 1 |  | WEST=MOD.MIR: |
| 1137 | 2 | 1 |  | IP(MEST= 18 GOD.PIM (1)=NTL |
| 1138 | 2 | 1 |  | ELSE NEZT=HEST: |
| 1139 | 2 | 1 |  | -allocate pra; |
| 1110 | 2 | 1 |  | PPR. TAR=MOD.TIL; |
| 1141 | 2 | $\dagger$ |  | PER.KIM= HOD. PIM; |
| 1192 | 2 | 1 |  | PPR. II T=MOD. TIM ; |
| 1913 | 2 | 1 |  | 205T-PF; |
| 1144 | 2 | 1 |  | IIIEEI: |
| 1145 | 2 | 1 |  | LIMEE1: |
| 1796 | 2 | 1 |  | ALLOCATP PROP; |
| 1147 | 2 | 1 |  | PROP. TIPO=5; |
| 1143 | 2 | 1 |  | IB $=18+1$; |
| 1149 | 2 | 1 |  | STORK=?T: |
| 1150 | 2 | 1 |  | BOST (IR) =STORK; |
| 1591 | 2 | 1 |  | DO L=1 TO Y Y PST; |
| 1152 | 2 | 2 |  | $A T=P \mathrm{FR}, \mathrm{XIM}$ (L) ; |
| 1953 | 2 | 2 |  |  |
| 1154 | 2 | 2 |  | EMD: |
| 1155 | 2 | 1 |  | PROP. NAMFFHOC. MAME; |
| 1156 | 2 | 1 |  | PROP. VALUEAKOO. VALUE: |
| 1157 | 2 | 1 | - | Proe.tiL $=0$; |
| 1158 | 2 | 1 |  | PROP.TTH=0: |
| 1159 | 2 | 1 |  |  |
| 1150 | 2 | 1 |  | PUT EDIT ('SYMM MODDLE MAMFF'.PROC.NAME.'VALDFE". PHOP. VALUE) (SKIP (2), A (17), P(5), 2(7), (6), (5)); |
| 115: | 2 | 1 |  | PROP. HAST=LOST: |
| 1152 | 2 | 1 |  | LARG= HIM + HEZT; $^{\text {a }}$ |
| 1153 | 2 | $\dagger$ |  | KAT $=$ (PROR, VALIER-LARG)/100; |
| 116\% | 2 | 1 |  | CALL STMM: |


$(r+s=n)$

FIGURE 3.25

| 1155 | 2 | 1 |
| :--- | :--- | :--- |
| 1165 | 2 | 1 |
| 1167 | 2 | 1 |
| 1168 | 2 | 1 |
| 1169 | 2 | 1 |
| 1170 | 2 | 1 |
| 1171 | 2 | 1 |
| 1172 | 2 | 1 |
| 1173 | 2 | 2 |
| 1174 | 2 | 2 |
| 1175 | 2 | 2 |
| 1176 | 2 | 2 |
| 1177 | 2 | 1 |

```
LOST->HRCTOR= OUEER;
    P|IT EDIT ('DEP COMPS=') (SKIP(1).A(10));
PIT LIST(PER.TAR):
pert EDIT(DES nODS=9) (SKIP(1),A(9)):
EHT LIST (PER.IIM);
P|T EDIT ('GIMTMAL CNT SETS') (SKIP(2).x(12).A(16)):
VIT=PER.HECTOR:
DO WHIL! (YICi=NTLL):
VIC=VIT:
POT EDIT (VIC->COMP) (SKIP(1),P);
VIT=VIC->FLAOR;
EMO:
go to cama;
```

It should be noticed here that for a symmetric gate, the role played by its free leaf inputs corresponds to that of the replicated inputs for a higher order module since
$\operatorname{PER} . \operatorname{TAR}(I)=\operatorname{MOD} . \operatorname{TIL}(1) I=I, \ldots, M O D . \operatorname{IIM}$
At the same time its modular inputs (MOD.TIM(J)) will play the role which corresponds to the nested gate PROP structures for a higher order module since

```
\(\operatorname{PER} \cdot \operatorname{KIM}(J)=\operatorname{MOD} \cdot \operatorname{PIM}(J) \quad J=I, \ldots, M O D \cdot M I M\)
\(\operatorname{PER} . \operatorname{PIM}(J)=\operatorname{MOD} \cdot \operatorname{TIM}(J)\)
```

As a result the PROP structure associated with a symmetric gate will have no direct inputs (PROP.TII $=0$, PROP. TIM = 0) .

For the pressure tank fault tree example gate $G 9$ is a $2-o u t$ of-3 symmetric gate. Its MOD structure was given in section III. 8 as

1 MOD BASED ( $\mathrm{MT}_{2}$ )
2 TIPO $=4$,
2 NAME $=9$
2 VALUE $=203$,

```
2 NEST = 0,
2 LIM = 3,
2 RIM = 1,
2 RIMO = 0,
2 MID = I,
2 NAIL(I) = NULL,
2 WHIP(I) = NULL,
2 TIR(I) = 0,
2 PID(1) = NULL,
2 TID(I) = 0,
2 PIM(I) = NULL,
2 TIM(1) = 0
2 TII(I) = 1I, TIL(I2), TIL(I3) = 13;
```

So for this particular example the Boolean state vector include no modular inputs (since MOD.TIM $=0$ ) but only basic component events (MOD.TIL(1), $I=1,2,3$ ).

The PROP and PER structure associated with gate G9 are
1 PROP BASED $\left(\mathrm{PT}_{1}\right)$,
2 TIPO $=5$,
$2 \operatorname{REZ}=2$,
2 ROOT POINTER,
2 NAME $=9$,
2 VALUE $=203$,
2 LIM $=1$,
$2 M I M=1$,
$2 \operatorname{HOST}=\mathrm{PR}_{I}$

2 REL(2) FLOAT,
$2 \operatorname{TIL}(1)=0$,
$2 \operatorname{TIM}(1)=0$,
2 PIM(1) = NULL;
(PROP.ROOT will later be assigned the pointer locating the PROP structure for gate G4.)

1 PER BASED ( $\mathrm{PR}_{1}$ )
$2 \operatorname{REZ}=2$,
2 HECTOR POINTER,
2 DEXTER POINTER,
2 RAM $=3$,
2 LEAL = 1,
2 REL(2) FLOAT,
$2 \operatorname{TAR}(1)=11, \operatorname{TAR}(2)=12, \operatorname{TAR}(3)=13$,
2. $\operatorname{KIM}(1)=$ NULL,
$2 \operatorname{JIM}(I)=0 ;$

Procedure SYMM, outlined by the statements given below, will generate the set of VECTOR structures for a symmetric gate given the values of LARG $=$ NUM +NEZT and KAY $=$ (PROP.VALUE LARG)/100.

|  |  |  |  | 1* | SYMEETRIC | GATPS | */ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1178 | 2 | 1 | STGM: | PROC: |  |  |  |
| 1179 | 3 | 1 | - | ALLOCATE | SOE; |  |  |
| 1180 | 3 | 1 |  | ALLOCATE | TOD: |  |  |
| 1181 | 3 | 1 |  | ALLOCATE | VECTOR; |  |  |
| 1182 | 3 | 1 |  | QUREN=VT: |  |  |  |
| 1183 | 3 | 1 |  | SOR= REPE | AT ('0'日, LARG) : |  |  |
| 1184 | 3 | 1 |  | SUBSTR150 | F. LARG, $11=11$ (R; |  |  |
| 1195 | 3 | 1 |  | VECTOR.COA | M ${ }^{\text {a }}$ SOF; |  |  |
| 1186 | 3 | 1 |  | LADY=VT: |  |  |  |
| 1137 | 3 | 1 |  | CO $I=1$ | TO LARG-3 : |  |  |
| 1188 | 3 | 2 |  | ALLOCATE | VECTOR; |  |  |
| 1139 | 3 | 2 |  | LADT $\rightarrow$ PLO | OR=VI: |  |  |
| 1170 | 3 | 2 |  |  |  |  |  |


| 1171 | 3 | 2 |
| :--- | :--- | :--- |
| 1192 | 3 | 2 |
| 1193 | 3 | 2 |
| 1194 | 3 | 2 |
| 1195 | 3 | 1 |
| 1195 | 3 | 1 |
| 1117 | 3 | 1 |
| 1193 | 3 | 1 |
| 1174 | 3 | 1 |
| 1200 | 3 | 1 |

SOF=RECEAT(POM, I.ARG):

VECTUR.COMP=SOP:
END:
al. LOCATE VPCTOR;
LANY->PLOOR=VT:
VECTOR.PLOOR=UIILL:
SOFRREFEAT(COTH, LARG):
SUnSTR (SOP, 2, 1) =11 R:
VECTOR.CCMP=SOR;
Up to here, SYMM has created a set of LARG-1 vectors which contain a single 'l' bit component. Consider for example a 3-out of -5 symmetric gate, then PROP.VALUE $=305$, LARG $=5 \Rightarrow$ KAY $=3$ and the vectors created are

$$
\begin{aligned}
& \text { I VECTOR BASED (VT }{ }_{1} \text { ), } \\
& 2 \text { LORO }=5 \text {, } \\
& 2 \mathrm{FLOOR}=\mathrm{VT}_{2} \text {, } \\
& 2 \text { COMP }=\text { '00001'B; } \\
& \left(\text { QUEEN }=V T_{1}\right) \\
& 1 \text { VECTOR BASED ( } \mathrm{VT}_{2} \text { ), } \\
& 2 \text { LORO }=5 \text {, } \\
& 2 \mathrm{FLOOR}=\mathrm{VT}_{3} \text {, } \\
& 2 \text { COMP = } 100010^{\prime} \mathrm{B} \text {; } \\
& 1 \text { VECTOR BASED }\left(\mathrm{VT}_{3}\right) \text {, } \\
& 2 \text { LORO }=5 \text {, } \\
& 2 \text { FLOOR }=V T_{4} \\
& 2 \text { COMP = '00100'B; . } \\
& 1 \text { VECTOR BASED ( } \mathrm{VT}_{4} \text { ) } \\
& 2 \text { LORO }=5 \text {, } \\
& 2 \text { FLOOR = NULL, } \\
& 2 \text { COMP }=101000^{\prime} \mathrm{B} \text {; }
\end{aligned}
$$

The minimal cut-sets for the 3 - out of -5 gate are then found
by adding ' 1 ' bits in any position to the left of the place where the first 'I' bit is found, and by successively repeating this operation KAY-1 times requiring that each final vector include a total of KAY ( $=3$ ) bits

Initial Vectors | $100001^{\prime} \mathrm{B}$ |  |
| :--- | :--- |
|  | $100010^{\prime} \mathrm{B}$ |
|  | $.00100^{\prime} \mathrm{B}$ |
|  | $101000^{\prime} \mathrm{B}$ |

Vectors After 1st Iteration '00011' B
'00101' B
'01001' B
('10001' B) Cancelled out
'00110' B
'01010' B
('10010' B) Cancelled out
'01100'. B
('10100' B) Cancelled out
('11000' B) Cancelled out

Minimal cut-set vectors found after 2nd iteration

$$
\begin{aligned}
& \text { '00111' B } \\
& \text { '01011' B } \\
& \text { '10011' B } \\
& \text { '01101' B } \\
& \text { '10101' B }
\end{aligned}
$$

> | $\prime 11001^{\prime} \mathrm{B}$ |
| :--- |
| $01110^{\prime} \mathrm{B}$ |
| $\prime 10110^{\prime} \mathrm{B}$ |
| $\prime 11010^{\prime} \mathrm{B}$ |
| $\prime 11100^{\prime} \mathrm{B}$ |

The following DO loop performs this operation (function INDEX (VECTOR.COMP, 'l'B) yields the number location for the first element of the string matching substring 'i'B, e.g.,

INDEX ('O1101' B, 'I'B) = 2).

| 1201 | 3 | 1 |  | On $I=2$ TO KAY: |
| :---: | :---: | :---: | :---: | :---: |
| 1202 | 3 | 2 |  | LAOY=0 \#FEN; |
| 1203 | 3 | 2 |  | DO WIILLP. (LACYつミNULL) ; |
| 1204 | 3 | 3 | ST1: | VT=LADV; |
| 1205 | 3 | 3 |  | J=INDEX (VECTOR.COMP.'9'n) : |
| 1206 | 3 | 3 |  | IF J=1 T! EN DO: |
| 1207 | 3 | 4 |  | IF LADY $=$ QUEEN TIEN DO: |
| 1208 | 3 | 5 |  | OUEPN=LADY->PLOOR: |
| 1279 | 3 | 5 |  | EREE VECTOR: |
| 1210 | 3 | 5 |  | LADY = OUFEN: |
| 1211 | 3 | 5 |  | END; |
| 1212 | 3 | 4 |  | ELSE DO: |
| 1213 | 3 | 5 |  |  |
| 12914 | 3 | 5 |  | FRPE VFCTOR: |
| 1215 | 3 | 5 |  | LADY =MOAN $->$ FLOOR: |
| 1216 | 3 | 5 |  | END: |
| 1217 | 3 | 4 |  | FND; |
| 1218 | 3 | 3 |  | ELSTP DO: |
| 1219 | 3 | 4 |  | TOM=YFCSOR.CCME; |
| 12.20 | 3 | 4 |  | DO L=1 TO J-1; |
| 1221 | 3 | 5 |  | ALIOCATE YECTOR: |
| 1222 | 3 | 5 |  | IP L=1 THEN KING=VT: |
| 1223 | 3 | 5 |  | ESOS PANN->PLOOR=VI: |
| 1224 | 3 | 5 |  |  |
| 1225 | 3 | 5 |  |  |
| 1225 | 3 | 5 |  | YECTOR.SOMP=SOF\|TOD: |
| 1227 | 3 | 5 |  | PAWN=VT; |
| 1228 | 3 | 5 |  | PAN8->PLOOR=NULL: |
| 1229 | 3 | 5 |  | END: |
| 1230 | 3 | 4 |  | IF LADY = QUPEN THEX DO: |
| 1231 | 3 | 5 |  | 2teme $=$ KING; |
| 1232 | 3 | 5 |  | PA $N \sim \rightarrow$ PLOOR=LADY $\rightarrow$ PLOOR; |
| 1233 | 3 | 5 |  | MOANEPKEX: |
| 12.34 | 3 | 5 |  | LADT $=$ PANN - PLCOR: |
| 1235 | 3 | 5 |  | END: |
| 1236 | 3 | 4 |  | ELSE DO: |
| 1237 | 3 | 5 |  | MOAN->FLOOR = KIMG; |
| 1238 | 3 | 5 |  | PAWN->PLOOR=LADY->PLOOR; |
| 1239 | 3 | 5 |  | MOAN=PAWN: |


| 1240 | 3 | 5 |
| :--- | :--- | :--- |
| 1241 | 3 | 5 |
| 1242 | 3 | 4 |
| 1243 | 3 | 3 |
| 1244 | 3 | 2 |
| 1245 | 3 | 1 |
| 1246 | 3 | 1 |
| 1247 | 3 | 1 |



For the pressure tank fault tree, procedure SYMM will thus yield the following vectors associated with gate $G 9$.

> 1 VECTOR ( $\mathrm{VT}_{1}$ ),
> 2 LORO = 3,
> 2 FLOOR $=V T T_{2}$,
> 2 COMP = '011' B;
> $1 \operatorname{VECTOR}\left(\mathrm{VT}_{2}\right)$,
> 2 LORO $=3$,
> $2 \mathrm{FLOOR}=\mathrm{VT}_{3}$,
> 2 COMP = '101'B;
> I VECTOR ( $\mathrm{VT}_{3}$ ),
> 2 LORO $=3$,
> 2 FLOOR = NULI,
> 2 COMP = '110' B;
> with $\mathrm{PR}_{1} \rightarrow$ PER. HECTOR $=\mathrm{VT}_{1}$.
III.9.3. Procedure BOOLEAN

The generation of a Boolean vector representation for a higher order module, composed of a set of replicated events and nested modules, is a quite complicated task as compared with that of finding a Boolean representation for an explicitly sym-
metric gate. PL-MOD's capability of handing higher order symmetric gates (Figure 3.26) in an explicit fashion is therefore a very desirable feature, since considerable savings will result by using this option for the analysis of systems containing a large number of symmetric redundencies.

In general, however, fault trees will be composed of higher order modules whose structural composition needs to be found. For these cases it will be necessary to call upon BOOLEAN to generate a minimal cut-set representation for the higher order module.

Consider the pressure tank fault tree example. Up to this point it has been shown how PL-MOD internally represents gate $G 9$ as a PROP structure $\left(P T_{1} \rightarrow P R O P\right)$ and gate $G 5$ as a nested MOD structure ( $\mathrm{MT}_{1} \rightarrow \mathrm{MOD}$ ). The following set of internal transformations still need to be performed by PL-MOD before the modularization for the full tree has been completed:
(a) G5 and G9 become nested module (MOD) and proper module (PROP) entries to a MOD structure asscciated with G4

1 MOD BASED $\left(\mathrm{MT}_{3}\right)$,
2 TIPO $=4$,
2 NAME $=4$,
2 VALUE $=1$,
2 NEST $=1$,
$2 \operatorname{LIM}=1$,
2 RIM $=1$,
2 RIMO $=2$,
2 MIM $=1$,


IMPLICIT FORM

$1=1,2,3$


FIGURE 3.26
SYMMETRIC HIGHER ORDER MODULES

```
2 MID = 1,
\(2 \operatorname{NAIL}(1)=\operatorname{SPINE}(3), \operatorname{NAIL}(2)=\mathrm{MT}_{3}\),
\(2 \operatorname{WHIP}(1)=\mathrm{MT}_{3}, \operatorname{WHIP}(2)=\mathrm{APT}_{1}\),
\(2 \operatorname{TIR}(1)=0\),
\(2 \operatorname{PID}(1)=M T_{1}\),
\(2 \operatorname{TID}(1)=5\),
\(2 \operatorname{PIM}(1)=\mathrm{PT}_{1}\),
\(2 \operatorname{TIM}(1)=9\),
\(2 \operatorname{TIL}(1)=0 ;\)
```

Since MOD.NAIL $(I)=\mathrm{MT}_{3}$ is not satisfied for $I=1$, then gate G4 does not correspond to a higher order module, so structures $M T_{1}+M O D$ (given in section III.8) and $M T_{3} \rightarrow$ MOD must be kept in the same form until the parent gate for the higher order module to which they belong is found (Figure 3.27).
(b) G3 will become a gateless node once $G 4$ is attached to it as a STID structure. Furthermore, since gates GI, G2 and G3 are all of the same type, procedure COALESCE will collapse them together (Figure 3.28). The NODE structure representing Gl will then be given by

$$
\begin{aligned}
& 1 \text { NODE BASED }(V T=\operatorname{SPINE}(1)), \\
& 2 \text { TIPO }=1 \\
& 2 \text { NAME }=1 \\
& 2 \text { VALVE }=2 \\
& 2 \text { GINT }=0 \\
& 2 \text { LILT }=4 \\
& 2 \text { LIRT }=1
\end{aligned}
$$



FIGURE 3.27
PRESSURE TANK FAULT TREE WITH GATES G4,G5,G9 MODULARIZED


FIGURE 3.28
PRESSURE TANK FAULT TREE WITH GATES G4, G5 AND G9 MODULARIZED AND GATES G1, G2, G3 COALESCED

```
2 LIMD = 1,
2 LIMT = 0 ,
2 NEST \(=2\),
2 WHIZ \(=1\),
2 ROOT = NULL,
\(2 \operatorname{LIP}=\mathrm{ST}_{4}\),
\(2 I I D=S D_{2}\)
2 GIN = I,
2 LIL = 2,
2 DIR \(=1\),
2 NAIL(I) \(=\) NULL,
2 WHIP(I) \(=\) NULL,
\(2 \operatorname{TIR}(1)=0\),
2 SPIT(I) \(=\) NULL,
\(2 \operatorname{TIL}(1)=1, \operatorname{TIL}(2)=2 ;\)
```

And the set of STIP and STID structures attached to the NODE are

```
1 STIP BASED (ST
                                    (Represents gate G2)
2 TIPO = 2,
2 LIP = ST 
2 DIL = I,
2 DIR = 1,
2 NAIL(I) = NULL,
2 WHIP(I) = NULL,
2 TIR(I) = 0,
2 TIL(I) = 3;
```

```
\(1 \operatorname{STIP} \operatorname{BASED}\left(\mathrm{ST}_{5}\right)\), (Represents Gate G3)
2 TIPO = 2,
2 LIP = NULL,
2 DIL = I,
2 DIR \(=1\),
\(2 \operatorname{NAIL}(I)=S T_{5}\),
2 WHIP (I) \(=S D_{2}\),
\(2 \operatorname{TIR}(1)=30001\),
\(2 \operatorname{TIL}(1)=4 ;\)
1 STID \(\operatorname{BASED}\left(\mathrm{SD}_{2}\right)\), (Represents Gate G4)
2 TIPO \(=3\),
2 LID = NULI,
2 STIM \(=4\),
2 LTIM \(=M T_{3}\),
\(2 \mathrm{DIR}=2\),
\(2 \operatorname{NAIL}(1)=S T_{5}, \operatorname{NAIL}(2)=S_{2}\),
\(2 \operatorname{WHIP}(1)=\operatorname{SD}_{2}, \operatorname{WHIP}(2)=\mathrm{APT}_{1}\),
```

(c) Brocedure MODULA will then create a MOD structure to represent SPINE(1) NODE including its attached STID and STIP structures

$$
\begin{aligned}
& 1 \operatorname{MOD} \operatorname{BASED}\left(\mathrm{MT}_{4}\right), \\
& 2 \operatorname{TIPO}=4 \\
& 2 \operatorname{NAME}=1 \\
& 2 \operatorname{VALUE}=2 \\
& 2 \operatorname{NEST}=2
\end{aligned}
$$

$2 \operatorname{LIM}=4$,
2 RIM $=1$,
2 RIMO $=3$,
$2 \operatorname{MIM}=1$,
$2 M I D=1$,
$2 \operatorname{NAIL}(1)=\mathrm{MT}_{4}, \operatorname{NAIL}(2)=\mathrm{MT}_{4}, \operatorname{NAIL}(3)=\mathrm{MT}_{4}$,
$2 \operatorname{WHIP}(1)=\mathrm{MT}_{4}, \operatorname{WHIP}(2)=\mathrm{MT}_{4}, \operatorname{WHIP}(3)=\mathrm{APT}_{1}$,
$2 \operatorname{TIR}(1)=30001$,
$2 \operatorname{PID}(1)=M T_{3}$,
$2 \operatorname{TID}(1)=4$,
$2 \operatorname{PIM}(1)=$ NULL,
$2 \operatorname{TIM}(1)=0$,
$2 \operatorname{TIL}(1)=1, \operatorname{TIL}(2)=2, \operatorname{TIL}(3)=3, \operatorname{TIL}(4)=4$,

Inspection of the MOD structure shows that the criterion

$$
\begin{aligned}
& \text { MOD. } \operatorname{NAII}(I)=\mathrm{MT}_{4} \\
& \operatorname{MOD} \cdot \operatorname{WHIP}(I)=\mathrm{MT}_{4} \text { or } \mathrm{APT}_{1}
\end{aligned}
$$

> is met. There-
fore BOOLEAN must derive a representation for the higher order module associated with $\mathrm{MT}_{4}+\mathrm{MOD}$.

Procedure BOOLEAN starts off by creating the PROP structures associated with the parent gate and each nested gate, as well as the PER structure containing the structural information for the higher order module

|  <br>  <br>  | $\xrightarrow{\sim}$ |  <br>  <br>  | 9 |
| :---: | :---: | :---: | :---: |
|  | $\omega$ |  | N |
| NNWWmmon | $\cdots$ |  |  |

CCHECK (TEST,LEG,EST,LOG,MEG, LABG, B1, POX,B3,C1,C2. FOG, XOD, C1C, XOG, C1Z, C2M,C27,KIF,KOD, TON, DOTT, HICS.SPU4)1:
BOOLEAN: PROC;
PUT SKIP LIST('BOOLEAN \|AS BPEN CALLPD'):
MT=MOOUL。DULE (M) :
WEST=MOO. NEST:
JRST=NEST +1 ;
NUB= XUM:
ALLOCATP PER;
PED. TAREPIT:
FREE PUT:
LOST=PR;
ALLOCATT PEA:
PROST=PN:
LILF=KOD.LIM:
LIMF=MOD.MIN:
ALLOCATE RROP:
PPOP.TIPO=?:
$I B=I B+1$ :
STORK=PT:
BOST (IR) =STORK;
RROP - NAMPEMOD. NARE:
PROP-VALIE=MOD, VALUR:
PROP.TIL=HOD. TIL:
PROP.TIH=HOD.TE:
PROP.PIM= 1 OOD. PIM:
POT EDIT ('PAREMT MODULE NAMEF', PROP. NAMP. VALUE='

(SXIP(2),A(19),F(5),X(2),A(5),F(5),X(2),A(13),F(5),X(2),A(1)),
FUT FOIT ('LENFINS=') (SKIC(1), A(9)):
POT LIST ( PROP-TII) ;
PUT EDIT('MOD INS=i) (SKIP(1), A(3)):
PUT LIST(PROP.TIM):
PROP:HOST=LOST:
FOG= MOD. MID:
$D O I=1$ TO FOG:
PER.KIN $(I)=$ HOC.PID (I):
PEN.IIN(I) =MOD.TID(I):
END:
LEG: FOG;
ALLOCATE DRUG:
FROG=MOD.PID;
ZEG=FOG;
GREG=ER:
GROG=1:
EST $=0$ :
$G R E Y=0 R$ :
OO HHILP (GTOGT=0):
LOG $=0$ :
DO $K=1$ TO MEG:
IF (FROG $(K) \rightarrow P I D(1)=N Q L L)$ THEN PPR:=0;
RLSE PFG=1:
LOG =LOG + PPR:
BND:
IF (LOG=0) TIIEN GROG=0;
- PR R=Z EG;

| 678 | 3 | 2 |
| :--- | :--- | :--- |
| 679 | 3 | 2 |
| 680 | 3 | 3 |
| 681 | 3 | 3 |
| 682 | 3 | 3 |
| 683 | 3 | 3 |
| 684 | 3 | 3 |
| 685 | 3 | 3 |
| 686 | 3 | 3 |
| 687 | 3 | 3 |
| 680 | 3 | 3 |
| 689 | 3 | 3 |
| 690 | 3 | 3 |
| 691 | 3 | 3 |
| 692 | 3 | 3 |
| 693 | 3 | 3 |
| 694 | 3 | 3 |
| 695 | 3 | 3 |
| 696 | 3 | 3 |
| 697 | 3 | 3 |
| 698 | 3 | 4 |
| 699 | 3 | 4 |
| 700 | 3 | 4 |

70133

```
    DR=GREY:
    OC O=1 TO MEG;
MT=FROG(0):
LILE=M\D.LIM:
LIME=MOO.MIM;
allocate gpop:
PROP.TIPO=5;
ARI=PT;
IB=IB+1;
BOST (IB) =PT:
    EST=EST+1:
PER.KIM(EST) =PT;
PER.JIM(EST)=MOD.NAER;
PROP.NAME=MOD.NAME;
PROP. VALTE=MOD. VALUE;
PROP.TIL=MOD.TIL;
PROP.TIM=MOD.TIM;
PROP.PIM=MOD.EIM:
PROR.ROOT=STORK:
DO L=1 TO LIME;
AT=PPOP.PIM (L);
IF (AT-NULL) TMEN AT->PMOP.RNOT=ANI;
                    END:
```

BUT FDIT ('NESTED MCDKLE NAMEF', PROE.MAMF,'VMLURE',
PROR.VALUE, 'NIM LPAE IKR=1, FROP. LIM, TMUM MOD INP=', PROP. MIM)
(SKIP(2),A(19), P(5),X(2),A(G),F(5),X(2),A(1,3),P(5),X(2),A(12),
pUT EDIT ('LEAF IN: ${ }^{\prime \prime}$ ) (SKIP(9), A(9)):
PUT RIST( PROR.TII):
PUT EDIT('MOD INS=1) (SKIP(1), A(8)):
PIUT EIST(PROP.TIM):
PROR. HOST=NHLT:
FOG = MOD. MID:
IP( FOG=1 6 MOL.PID(1)=NHLL) TTEN GO TO 1 NNO
on $\mathrm{I}=1$ TO FOG:
PFN.KIM (ZFG+I)=MOD. RID (I):
- PEN.JIN (TREG+I)=MOD.IID(I):
END:
2FG=2:G F FOG;
נMO: BND;
FREE DRIG:
bFG=ZEG-HER;
ALIRCATE DRUG;
GRFY=DR;
DO IC=1 TO LEG;
DRIG. $\operatorname{PROG}(I D)=F E N . X I N(K P R+I D)$;
END:
END:

PROP structures are allocated starting at the top with the parent gate and then proceeding to successively deeper levels of nested gate modules in the higher order structure. Figure 3.29 shows an example of a higher order module consisting of 3 levels of nested gates. In the diagram only the nested gates of the structure are portrayed and all other input details to the higher order module have not been included

(i.e., replicated inputs and proper modular inputs to each gate).

BOOLEAN succeeds to allocate the PROP structures in the desired order with the help of a set of DRUG structures which contain the pointer locations for each of the MOD structures at a given nested gate level. Structure DRUG is defined by

1 DRUG BASED (DR)
2. MEG FIXED BINARY,

2 FROG (LEF REFER(MEG)) POINTER;

Thus, for the example given in Figure (3.29), three DRUG structures would be needed by BOOLEAN

1 DRUG BASED ( $D R_{1}$ ),
2 MEG $=3$,
$2 \operatorname{FROG}(1)=\mathrm{MT}_{1}, \operatorname{FROG}(2)=M T_{2} \cdot \operatorname{FROG}(3)=M T_{3} ;$

1 DRUG BASED ( $D R_{2}$ ),
2 MEG $=4$,
$2 \operatorname{FROG}(1)=\mathrm{MT}_{4}, \operatorname{FROG}(2)=\mathrm{MT}_{5}$, $\operatorname{FROG}(3)=\mathrm{MT}_{6}, \operatorname{FROG}(4)=\mathrm{MT}_{7} ;$

1 DRUG BASED ( $\mathrm{DR}_{3}$ )
2 MEG $=2$,
$2 \operatorname{FROG}(1)=M T_{8}, \operatorname{FROG}(2)=M T_{9} ;$
Where this notation means that $\mathrm{MT}_{i}$ locates the MOD structure associated with the (1-th) nested gate.

While the name and pointer location for each nested gate PROP structure are stored in PER.JIM(I) and PER.KIM(I)
( $I=1,2, \ldots, W E S T$ ), the name and pointer location for the MOD structure associated with each nested gate are stored in the structure PEN defined by

1 PEN BASED (PN)
2 LEAL FIXED BINARY,
2 KIM (WEST REFER(PEN.LEAL)) POINTER,
2 JIN (WEST REFER (PEN.LEAL)) FIXED;
The higher order modular structure composition for the pressure tank fault tree example is quite simple, since only two nested gate levels exist each consisting of a single gate (Figure 3.30). Its PROP, PER and PEN structures are given by

```
1 PROP BASED ( \(\mathrm{PT}_{2}\) ),
    2 TIPO \(=5\),
    \(2 \mathrm{REZ}=2\),
    2 ROOT = NULL,
    2 NAME \(=1\),
    2 VALUE \(=2\),
    \(2 \operatorname{LIM}=4\),
    2 MIM \(=1\),
    2 HOST \(=\mathrm{PR}_{2}\),
    2 REL(2) FLOAT,
    \(2 \operatorname{TIL}(1)=1, \operatorname{TIL}(2)=2, \operatorname{TIL}(3)=3, \operatorname{TIL}(4)=4\),
    \(2 \operatorname{TIM}(1)=0\),
    2 PIM(I) = NULL;
```



FIGURE 3.30
HIGHER ORDER MODULAR COMPOSITION FOR THE PRESSURE TANK FAULT TREE

1 PROP BASED ( $\mathrm{PT}_{3}$ ),
2 TIPO $=5$,
$2 \operatorname{REZ}=2$,
$2 \mathrm{ROOT}=\mathrm{PT}_{2}$,
2 NAME $=4$,
2 VALUE $=1$,
2 LIM = I,
2 MIM $=1$,
2 HOST = NULL,
2 REL(2) FLOAT,
$2 \operatorname{TIL}(1)=0$,
$2 \operatorname{TIM}(1)=9$,
$2 \operatorname{PIM}(1)=P_{1} ;$

1 PROP BASED $\left(\mathrm{PT}_{4}\right)$,
2 TIPO $=5$,
$2 \mathrm{REZ}=2$,
2 ROOT $=\mathrm{PT}_{2}$
2 NAME $=5$,
2 VALUE $=2$,
$2 \operatorname{LIM}=6$,
2 MIM = 1,
2 HOST = NULL,
2 REL(2) FLOAT,
$2 \operatorname{TIL}(1)=5, \operatorname{TIL}(2)=6, \operatorname{TIL}(3)=7, T I L(4)=8$, $\operatorname{TIL}(5)=9, \operatorname{TIL}(6)=10$,
$2 \operatorname{TIM}(1)=0$,

```
2.PIM(I) = NULL;
```

$\left.1 \operatorname{PER~BASED~(PR})_{2}\right)$
$2 \operatorname{REZ}=2$,
$2 \operatorname{HECTOR}$ POINTER,
$2 \operatorname{DEXTER~POINTER,}$
$2 \operatorname{RAM}=1$,
$2 \operatorname{LEAL}=2$,
$2 \operatorname{REL}(2)$ FLOAT,
$2 \operatorname{TAR}(1)=30001$,
$2 \operatorname{KIM}(1)=P T_{3}, \operatorname{KIM}(2)=\mathrm{PT}_{4}$,
$2 \operatorname{JIM}(1)=4, \operatorname{JIM}(2)=5 ;$

1 PEN BASED ( $\mathrm{PN}_{1}$ )
2 LEGAL = 2,
$2 \operatorname{KIN}(1)=\mathrm{MT}_{3}, \operatorname{KIN}(2)=\mathrm{MT}_{1}$,
$2 \operatorname{JIN}(1)=4, \operatorname{JIN}(2)=5 ;$

Once BOOLEAN has mapped out the structural composition for the higher order module, it is then ready to proceed to generate the set of VECTOR structures representing the modular minimal cut-sets for the higher order structure.

The process by which each minimal cut-set VECTOR is found, is a recursive one. By starting with a Boolean representation for the parent gate given in terms of its improper modular inputs (MOD structures), each of the nested gates are explicitly incorporated by making a set of substitutions consistent with
the structural relationship each nested gate holds with the parent gate. Ultimately each minimal cut-set is given by a VECTOR structure of dimension LARG $=$ NUB $+1+$ WEST, where NUB $=$ total number of replicated event inputs to the higher order module and WEST $=$ total number of nested gates contained by the higher order module. That is

$$
Y^{B}=\left(y_{1}, y_{2}, \ldots, y_{\ell}\right) \quad(\ell=\text { LARG })
$$

the order in which each of the inputs to the higher order module is entered is given by

$$
Y^{B}=\left(y_{r_{1}}, y_{r_{2}}, \ldots, y_{r_{n}}, y_{m_{0}}, y_{m_{1}}, \ldots, y_{m_{n}}\right)
$$

with $r_{i}=$ replicated input $i, n=N U B, m_{0}=$ parent gate PROP input, $\mathrm{m}_{1}=$ ith nested gate PROP input, $\mathrm{w}=\mathrm{WEST}, \mathrm{n}+1+\mathrm{w}=\ell$.

However, as discussed earlier BOOLEAN derives this set of VECTORS by a series of substitutions of improper modules (MOD structures) by their replicated input (r-leaf) and proper input (PROP) parts. Therefore in order to make this feasible BOOLEAN needs to perform a set of manipulations with a set of SECTOR based structures defined by

1 SECTOR BASED (SR),
2 LORO FIXED BINARY,
2 DOOR POINTER,
2 COD BIT (JUST REFER(SECTOR.LORO));
with JUST $=$ LARG + WEST.
Every replicated input, $P R O P$ and $M O D$ structure in the higher order module will be represented by a Boolean variable
within each SECTOR structure in the following order

$$
\begin{aligned}
z^{B}= & \left(y_{r_{1}}, \ldots, y_{r_{n}}, y_{m_{0}}, y_{m_{1}}, \ldots, y_{m_{w}}, y_{d_{1}}, \ldots, y_{d_{w}}\right) \\
& z^{B}=\left(\underset{\rightarrow}{y^{B}}, \underset{\sim}{x^{B}}\right)
\end{aligned}
$$

with ${\underset{F}{ }}^{B}$ containing the same inputs as a VECTOR bit-string and $X^{B}=\left(y_{d_{1}}, \ldots, y_{d_{w}}\right)$ representing the nested MOD structures in the higher order module, i.e., $d_{1}=$ ith nested gate MOD structure.

The minimal cut-set generation procedure is begun by finding the set of VECTOR and SECTOR structures which initially represent the parent gate. Figures 3.31 and 3.32 illustrate the two possible instances of higher order modules with an ORoperator or an AND-operator parent gate. For the OR-parent gate, example $I$, the full modular structure consists of five nested gates and two replicated events. Its VECTOR and SECTOR bit-strings will therefore have the form

$$
\begin{aligned}
& \Psi^{B}=\left(Y_{r_{1}}, Y_{r_{2}}, Y_{m_{0}}, Y_{m_{1}}, Y_{m_{2}}, Y_{m_{3}}, Y_{m_{4}}, Y_{m_{5}}\right) \\
& {\underset{\sim}{Z}}^{B}=\left(Y^{B}, Y_{d_{1}}, Y_{d_{2}}, Y_{a_{3}}, Y_{d_{3}}, Y_{d_{4}}, Y_{d_{s}}\right)=\left(Y^{B}, X^{B}\right)
\end{aligned}
$$

and the parent gate shall be initially represented by

$$
\begin{array}{ll}
M_{0}=>Y_{m 0}=1 & 1 \operatorname{VECTOR} \operatorname{BASED}\left(V T_{1}\right), \\
& 2 L O R O=8 \\
& 2 \mathrm{FLOOR}=\mathrm{NULL}, \\
& 2 \mathrm{COMP}=100100000^{\prime} \mathrm{B} ; \\
G_{1}=>Y_{d l=1} & 1 \operatorname{SECTOR} \operatorname{BASED}\left(\mathrm{SR}_{1}\right), \\
& 2 L O R O=13,
\end{array}
$$



FIGURE 3.31 OR-PARENT GATE HIGHER ORDER MODULE EXAMPLE I


```
\(2 \mathrm{DOOR}=\mathrm{SR}_{2}\)
2 COMP \(=\frac{100000000, \frac{\text { WEST }}{\text { LARG }}}{}{ }^{\prime} \mathrm{B}^{\prime}\)
```

$$
\begin{array}{rl}
G_{2}=>Y_{d 2}=1 & 1 \text { SECTOR BASED }\left(\mathrm{SR}_{2}\right) \\
& 2 \text { LORO }=13, \\
& 2 \mathrm{DOOR}=\mathrm{NULI}, \\
& 2 \mathrm{COMP}=10000000001000^{\circ} \mathrm{B} ;
\end{array}
$$

For the AND-parent gate, example II, a single SECTOR shall initially represent it. Since the full modular structure for example II consists of one replicated event and four nested gates then

$$
\begin{aligned}
& Y^{B}=\left(Y_{r_{1}}, Y_{m_{0}}, Y_{m_{1}}, Y_{m_{2}}, Y_{m_{3}}, Y_{m_{4}}\right) \\
& Z^{B}=\left(\underset{\rightarrow}{Y^{B}}, Y_{d_{1}}, Y_{d_{2}}, Y_{d_{3}}, Y_{d_{4}}\right)=\left(\underset{\rightarrow}{Y^{B}}, X^{B}\right)
\end{aligned}
$$

so the initial representation for the parent gate shall be

$$
\begin{aligned}
& I \text { SECTOR BASED }\left(S R R_{1}\right), \\
& 2 \text { LORO }=10, \\
& 2 \text { DOOR }= \\
& 2 C O M P=\frac{10100001110^{\prime}}{L A R G} \mathrm{~B} \\
&\left(Y_{\mathrm{m}_{0}}=Y_{d_{1}}=Y_{d_{2}}=Y_{d_{3}}=I\right)
\end{aligned}
$$

The following statements outine the method used by BOOLEAN to derive the initial parent gate Boolean representation for a higher order module. For the OR-parent gate case (MOD.VALUE=

```
OP=2) the statements following label B2 apply, while for AND-
```

parent gates the statement following label Bl apply.


```
    MT=MODILL.BILL(M):
    LARG=NUN+MEST+1;
    JHST=1,ARG+MRST:
        hlLOCATP kOF:
        Algncate kod:
        ALLOCATF XOO:
ALLOCATE TOD:
    allocatt ontt:.
    Al&OCATE TOG;
    ALLOCATE XOG;
        OF=MOD.VALUE:
    LADT=[ULL,
        LOR D=N|LL:
            IE (OP=1) THEN GO TO B1:
        IF (OR=2) THFN GO TO D2:
        11: AlLORATE SECTOR:
            K\NG=SN:
            SFETOR.DOUR=NTILL:
    STCTOR.COD= RFPEAT('O'R,JUST);
        TOG=REPEAT('OH|.JNST):
    SUNSTR(TNG,um#*1.1)=1'年:
    SFCTOR.CRD=TOG:
            POX=HOC.RIK:
```



```
    DO 0=1 T0 POX:
    TEST=HOD.TIM(O);
        DO R=1 TO NHR;
        IF (TEST=PER.TAP(R)) THIN GO TO BIR;
        EMO;
84B: TOG=R2PFAT('0'B..7tST);
    SmBSTR (TOG;R,1)='19#:
        SRCTOR.COD=SRCTOR.CNDITOG:
        END:
        B1A:
            POG=MOD.MID;
            DO Q=1 TO FOG;
            TOG=REPEAT('OCB,JITST);
            SURSTR (TOG,LARG*O,1) ='1'B;
            SFCTOR.COD=SECTOR.CODITOG;
            END:
                ESTO=POG:
            GO T0 B.3:
                ALLOCATE \nablaECTOR;
    QOEFH=VT:
TOD=REPEAT('O'R,LARG):
    SURSIR(TOD,LARG-HEST,I)='1'D;
    VECTOR.COMP=TOU;
        VFCTOR.PLOOR=NHLL:
    LADY=OUEEN:
    POX=HON.RIM:
    IF (FOX=1 & mOD.TIR(1)=0) T!EN GO TO B2N:
    DO Q=1 T0 Pox:
    TEST=MOD.TIR(Q):
        DO R=1 TO NUR:
    IF (TEST=PER.TAR(R)) TIFN GO TM B2R;
    END: .
```

```
\begin{tabular}{lll}
778 & 3 & 2 \\
779 & 3 & 2 \\
780 & 3 & 2 \\
781 & 3 & 2 \\
732 & 3 & 2 \\
733 & 3 & 2 \\
784 & 3 & 2 \\
\(7: 35\) & 3 & 2 \\
786 & 3 & 1 \\
787 & 3 & 1 \\
738 & 3 & 1 \\
789 & 3 & 2 \\
790 & 3 & 2 \\
791 & 3 & 2 \\
792 & 3 & 2 \\
793 & 3 & 2 \\
794 & 3 & 2 \\
795 & 3 & 2 \\
& & \\
796 & 3 & 2 \\
797 & 3 & 2 \\
798 & 3 & 2 \\
799 & 3 & 2 \\
800 & 3 & 2 \\
801 & 3 & 2
\end{tabular}
        B2B: Allocate vFCTOR:
    IF(Q=FOX) THEN VFCTOR.FT,OOR=NILL;
        LADY->FL.OOR=VT:
        LADY=VT;
TOD=REPEAT('O'B,LARG):
    SUBSTR(TCO,R,1)=1'B;
    VECTOR.COMP=TOD:
        END:
    B2A:
        ESTO=POG:
        DO O=1 TO FOG;
            ALLOCATf 5FCTOR:
        IF (Q=FOG) THFN SPCTOR, OOOR=NILLI:
            IF (LOPRT=NULL) THFN GN TO B2C:
                KING=SR;
            LORD=SR:
        GO TO M20:
    B2C: LORD->DONR=SR:
        TORD=5R:
    820: SFCTOR.COD=RFPFAT('N'B.JUST):
        TOG=REPFAT('O'B,HOST):
        SHBSTR(TOG,LARG+2,1)='1'B;
        SECTOR.COD=TOG;
        END:
```

It should be noticed here that the SECTOR.COD bit strings associated with the parent gate imply a dependence on all nested gates contained within the higher order module. This dependence shows up through the non-zero entries in the $X^{B}$ portion of $z^{B}$ the SECTOR.COD bit string $\left(X^{B}=\operatorname{SUBSTR}\right.$ (SECTOR. COD, LARG + l, WEST). The objective of BOOLEAN will now be to substitute for each improper modular entry in SECTOR.COD an equivalent set of replicated leaf, proper module and improper modular entries.

Thus, for the two examples given above their dependence on nested gate $G 1$ may be eliminated (i.e., $Y_{d_{1}}$ may be set to zero) as follows:

Example I: $\quad G_{1}=\left\{M_{1} G_{3} G_{4} ; \Omega\right\}=$

$$
\Rightarrow\left(Y_{d_{1}}\right) \rightarrow\left(Y_{m_{1}}=1\right) \Omega\left(Y_{d_{3}}=1\right) \Omega\left(Y_{d_{4}}=1\right)
$$

Hence $S R_{1} \rightarrow$ SECTOR.COD $\mp 10000000010000^{\prime} \mathrm{B}$ is replaced by $\mathrm{SR}_{1} \rightarrow$ SECTOR.COD $=1000100000^{60110} \cdot \mathrm{~B}$

Example II: $G_{1}=\left\{M_{1}, G_{4} ; U\right\}$

$$
\Rightarrow\left(Y_{d_{1}}=1\right) \rightarrow\left(Y_{m_{1}}=I\right) U\left(Y_{d_{4}}=1\right)
$$

Hence $\mathrm{SR}_{1} \rightarrow$ SECTOR is replaced by the two new sectors with

$$
\begin{aligned}
& \mathrm{SR}_{1} \rightarrow \text { SECTOR.COD }=1010000110^{\prime} \mathrm{B} \\
& \mathrm{SR}_{2} \rightarrow \text { SECTOR. } \mathrm{COD}=0100000111^{\prime} \mathrm{B}
\end{aligned}
$$

By continuing this process all nested gate improper dependencies that a SECTOR might have will eventually be eliminated. That is, ultimately all SECTORS generated will contain a null substring $X^{B}=Q$, and therefore will have been transformed into Boolean Indicated cut-set VECTORS (BICS)[16].

An outline of the statements in Boolean which provide for the deduction of Boolean indicated cut-set VECTORS follows

```
\begin{tabular}{lll}
802 & 3 & 1 \\
803 & 3 & 2 \\
874 & 3 & 2 \\
805 & 3 & 2 \\
806 & 3 & 2 \\
807 & 3 & 2 \\
808 & 3 & 2 \\
809 & 3 & 2 \\
810 & 3 & 2 \\
811 & 3 & 2 \\
812 & 3 & 2 \\
813 & 3 & 2 \\
814 & 3 & 2 \\
815 & 3 & 2 \\
816 & 3 & 2 \\
817 & 3 & 3 \\
818 & 3 & 3 \\
819 & 3 & 4
\end{tabular}
33: DO IL=1 TO WEST:
MT= PPH.KIM(IL): OP=HOD.VALOE: PAON=RIMG:
XOD=RPPEAT('O'R.JTST):
XOG=REPEAT('O'B. SHTST):
strastr ( \(\times\) OD, LARG + IL, 1 )='1'B:
SUASTR (TOG,NUB+IL+1, 1)='1'B:
KOF=RFPEAT('0'8, JUST):
KOD=REPEAT ('O'B,JUST):
If (OP=1) THEN GO TO C1:
IF (DP=2) THEN GO TO C2:
C1:
FOX =MOD. FIM:
If (POX=1 E MOD. TIR(1)=0) THEN GO TO C1^;
\(00 \mathrm{Q}=1 \mathrm{TO}\) FOX:
TEST=HOD.TIR (O):
DO \(R=1\) TO NUB;
if (TRST=RER.tAR(R)) THEN GO TO CMB: -
```

```
820 3 4
    C1B:
        TDG=REPFAT('O'B.IUST):
        SUBSTR(TOG,R,1)=1'1'B;
        KOF=KOFITOG:
        END;
    C1A: FOG=MOD.MID;
        IF (FOG=1 & MOD.TID(1)=0) THEN GO TO CTC:
        DO Q=1 TO FOG:
        TOG=REPEAT('O'R,JU5T);
        SunSTR(TOG, LARG+0+ESTO,1)='1'B:
        KOD=KODITOG;
        END;
    ESTO=PSTO+FOG:
    C1C: DO HIILE(EAgN-=NURTT.);
        SR=PAMN:
        TOG=SECTOR.CODEXOD; *
    IF (TOG) THEN GO TO CIX;
    ELSP GO TO CiY;
            SFCTOR.COD=SRCTOR.COOR ( }~\mathrm{ XOD) ;
        SRCTOR.COD=SFCTOR.CODIROD;
    SRCT:%.COD=SECTOR.CNDIXOG:
    SECTOR.COD=SECTOR.CODIKOF;
    DOTT=REPEAT ('O'R,REST):
    DOTT=STBSTR (SECTOR.COD, LAPG+1, YRST) ;
```



```
    allocate vector;
    IF (LADY=NULL) THEN QUEEN=VT:
    ELSE LADY->ELOOR=VT;
    LADY=VT;
    VECTOR.FLOOR=NOLL;
    TECTOR.COMP=SUBSTR(SECTDR.COD.1,LARG);
    IP(SP=KING) TREN KIMG=SFCTOR.DONR;
    ELSE GO TO DI:
    PANN=KIMG:
    PREE SECTOR:
    IF (PAGN=NULL) THEN GO TO MICS:
    go TO ciz;
            PANN=SECTOR. COOR:
        gREE SECTOR;
        MOAN->DOOR=PAKN:
    GO TO C1z
    C1Y: MOAN=PATM:
    PAWN=STCTTOR.DOOR:
    C12: END;
    GO TO C2Z:
        Allocate sector;
    SECTOR.DOOR=NULL;
    KONG=SR:
    LFRD=SR;
    SFCTOR.COD=XOG;
    POX=MOD.RIM:
    IF (POX=1 & MOD.TIN(1)=0) THEN GO TO C2A:
        DN O=1 TO FOX:
    tEST>MOD.TIR(0):
    DO R=1 TO NUB:
        IF{TEST=PFR.TAR(R)) TMFN GO TO C2B;
    END:
C2B: Allocate sfCTOR;
    SP.CTOR -DOOR=NOL.R.;
                    LERD->DOOR=SR;
    LRRD=SR;
        TOG=REPEAT('OPR,JUST);
        SuESTR(TOG,R,1)='1'B;
    SECTOR.COD=TOG:
```



```
    EMD;
```

    EMD;
    C2A: FOG=NOD.MID:
    C2A: FOG=NOD.MID:
        IF(POG=! & MOD.TIN(1)=0) TIRN GO TO C2R:
        IF(POG=! & MOD.TIN(1)=0) TIRN GO TO C2R:
        DO O=1 TO POG;
        DO O=1 TO POG;
        ALLOCATE SECTOR:
        ALLOCATE SECTOR:
            SFCTOR. DOOR=NULL:
            SFCTOR. DOOR=NULL:
        C2F: LERD->DOOR=SA:
        C2F: LERD->DOOR=SA:
        LERD=SR;
        LERD=SR;
            SPCTUR.COD=REPEAT('OM.n.sHST):
            SPCTUR.COD=REPEAT('OM.n.sHST):
            TOG=REPEAT('O'B.JTST):
            TOG=REPEAT('O'B.JTST):
            SIIBSTA(TOG, LARG+O+ESTO, 1) = '1'B;
            SIIBSTA(TOG, LARG+O+ESTO, 1) = '1'B;
            sECTOR.COD=TOG;
            sECTOR.COD=TOG;
            END:
            END:
    C2E: ESTO=ESTO+POG:
C2E: ESTO=ESTO+POG:
C2U: MORN=NULL:
C2U: MORN=NULL:
DO MHIT.R(PAMKG=NIL\&);
DO MHIT.R(PAMKG=NIL\&);
ST=PNपN:
ST=PNपN:
KOFFREPEAT(*OBB,JUST):
KOFFREPEAT(*OBB,JUST):
TOD=REPEAT(PO'B,LARG):
TOD=REPEAT(PO'B,LARG):
TOO=STESTA (SECTOR.COD,1,LARS):
TOO=STESTA (SECTOR.COD,1,LARS):
SNESTR (KOR, 1, LARG)=TOD;
SNESTR (KOR, 1, LARG)=TOD;
KOD=REPFAT('OCB,JIEST):
KOD=REPFAT('OCB,JIEST):
DOTT=REPEAT (*O'B.पEST):
DOTT=REPEAT (*O'B.पEST):
DOTT=SUBSTR (SECTOR.COD,LARG+1,RPST);
DOTT=SUBSTR (SECTOR.COD,LARG+1,RPST);
SIJSTR (XOD,LARG+1,REST)=DOTT:
SIJSTR (XOD,LARG+1,REST)=DOTT:
TOR=RODEXOD;
TOR=RODEXOD;
IF (TOG) THEN GO TO C2N:
IF (TOG) THEN GO TO C2N:
ELSE GO T0 C2L;
ELSE GO T0 C2L;
PEON=RONG:
PEON=RONG:
LOTE=NILL;
LOTE=NILL;
KOD= KODS(-XOD);
KOD= KODS(-XOD);
DN HHILE (PEOND=NILL):
DN HHILE (PEOND=NILL):
allocate sector:
allocate sector:
SECTOR.DOOR=NULL:
SECTOR.DOOR=NULL:
SECTOR.COD=PEOR->SECTOR.CNOIROR:
SECTOR.COD=PEOR->SECTOR.CNOIROR:
SECTOR.COD=SECTOR.CODIKOD:

```
            SECTOR.COD=SECTOR.CODIKOD:
```




```
            DOTT=SUBSTR (SECTOR.COD,LARGFI,VEST):
```

            DOTT=SUBSTR (SECTOR.COD,LARGFI,VEST):
            If (DOTT=='0.B) THEM GO TO C2X;
            If (DOTT=='0.B) THEM GO TO C2X;
            Af.LOCATE vECTCR:
            Af.LOCATE vECTCR:
            IF (LADY=MULL) IIIEN OUEEN=VT:
            IF (LADY=MULL) IIIEN OUEEN=VT:
            ELSE LADT->PIOOR=VT;
            ELSE LADT->PIOOR=VT;
            LADT=VT;
            LADT=VT;
            PECTOR.FLOOR=NOLL;
            PECTOR.FLOOR=NOLL;
            VECTOR.COMP=SUASTR (SRCTOR.COD, 1, LARG):
            VECTOR.COMP=SUASTR (SRCTOR.COD, 1, LARG):
            FREE SECTOR:
            FREE SECTOR:
    GO TO C2T:
    GO TO C2T:
    C2X: IF (LUTE=NTLL) THEM RUNG=SR:
C2X: IF (LUTE=NTLL) THEM RUNG=SR:
ELSE LUTE->OCOR=SR:
ELSE LUTE->OCOR=SR:
LUTE=SR:
LUTE=SR:
C2Y: HOON=PRON;
C2Y: HOON=PRON;
PEON=MONN->SECTOR.DONP:
PEON=MONN->SECTOR.DONP:
END;
END;
SR=PARN:
SR=PARN:
IP (IUTE*NHLL E MOAN=AILLL) TIIFM GO TN C2Q:
IP (IUTE*NHLL E MOAN=AILLL) TIIFM GO TN C2Q:
ElSp GO TO C2R;
ElSp GO TO C2R;
IF (SFCTOR.DOORO=NULL) THEN GO TO C2K;
IF (SFCTOR.DOORO=NULL) THEN GO TO C2K;
FREE SFCTOR;

```
    FREE SFCTOR;
```

FL/I OPTIMIZING COMEIIER / MODITEE PROGRAM */

STMT LEV NT


The step-by-step process by which BOOLEAN derives the VECTOR BICS for the pressure tank fault tree example, is as follows

$$
\begin{aligned}
& \text { Replicated inputs: } r_{30001} \Rightarrow>N U B=1 \\
& \text { Parent gate GI, nested gates }\left(G_{4}, G_{5}\right) \Rightarrow \\
& \text { WEST }=2, \quad \text { LARG }=\text { NUM }+1+\text { WEST }=4 \mathrm{JUST}=6 \\
& Y^{B}=\left(Y_{r}, Y_{m 1}, Y_{m 4}, Y_{m 5}\right) \\
& Z^{B}=\left(Y^{B}, X_{P}^{B}\right), X_{Y}^{B}=\left(Y_{d 4}, Y_{d 5}\right)
\end{aligned}
$$

Step 1) Parent gate Boolean representation
$\left(Y_{m I}=1\right) U\left(Y_{r}=1\right) U\left(Y_{d_{4}}=1\right)$
1 VECTOR BASED $\left(V T_{1}\right)$,
2 LORO $=4$,
$2 F L O O R=V_{2}$,
2 COMP = $10100^{\prime} \mathrm{B}$;
1 VECTOR BASED $\left(\mathrm{VT}_{2}\right)$,
2 LORO $=4$,
2 FLOOR = NULL,
2 COMP $=11000^{\prime} \mathrm{B}$;
1 SECTOR BASED (SR ${ }_{1}$ ),
2 LORO $=6$,
2 DOOR = NULL,
$2 C O D=1000010^{\prime} B ;$

Step 2) Eliminate second nested gate (G4) by the substitution $Y_{d 4}=1\left(Y_{m 4}=1\right) \Omega\left(Y_{d 5}=1\right)$
$\Rightarrow \quad 1 \operatorname{SECTOR} \operatorname{BASED}\left(\mathrm{SR}_{1}\right)$,
2 LORO $=6$,
2 DOOR = NULL,
$2 C O D=' 001001 ' B ;$
Step 3) Eliminate second nested gate (G5) by the substitution $Y_{d 5=1} \rightarrow\left(Y_{m 5=I}\right) U\left(Y_{r}=I\right)$
$\Rightarrow \quad I$ SECTOR BASED $\left(S R_{1}\right)$,

2 LORO $=6$,
2 DOOR $=S R_{2}$,
$2 C O D=1001100^{\prime} B ;$
$1 \operatorname{SECTOR} \operatorname{BASED}\left(\mathrm{SR}_{2}\right)$,
2 LORO $=6$,
2 DOOR = NULL,
$2 \mathrm{COD}=1101000$ 'B;
Since $X^{B}=0$ for both $S R_{1} \rightarrow$ SECTOR.COD and $S R_{2} \rightarrow$ SECTOR.COD, they may be replaced by two new vectors

1 VECTOR BASED (VT3),
2 LORO $=4$,
$2 \mathrm{FLOOR}=\mathrm{VT}_{4}$,
2 COMP $=$ '0011' B ;
(with $\mathrm{VT}_{2} \rightarrow$ VECTOR.FLOOR $=V T_{3}$ )
1 VECTOR BASED ( $\mathrm{VT}_{4}$ ),
2 LORO = 4,
2 FLOOR + NULL,
2 COMP $={ }^{\prime} 1010 \% \mathrm{~B}$;
Hence, the set of BICS for the pressure tank fault tree is

$$
\begin{aligned}
& Y_{1}^{B}=(0,1,0,0) \\
& Y_{2}^{B}=(1,0,0,0) \\
& Y_{3}^{B}=(0,0,1,1) \\
& Y_{4}^{B}=(1,0,1,0)
\end{aligned}
$$

To obtain now the set of minimal cut-sets (MICS), it is only necessary to eliminate those BICS vectors containing a sub-set of non-zero elements which also form a BICS vector. For the
pressure tank fault tree $Y_{2}^{B}$ is contained in $Y_{4}^{B}$, therefore the set of MICS for the pressure tank fault tree consists only of $Y_{1}^{B}, \underset{+2}{Y}$, and $_{\rightarrow}^{Y} Y_{3}^{B}$.

The following BOOLEAN statements derive the set of MICS by eliminating the non-minimal cut-set vector included in the set of BICS.

|  |  |  |
| :--- | :--- | :--- |
| 971 | 3 | 1 |
| 972 | 3 | 1 |
| 973 | 3 | 1 |
| 974 | 3 | 2 |
| 975 | 3 | 2 |
| 976 | 3 | 2 |
| 977 | 3 | 2 |
| 978 | 3 | 1 |
| 979 | 3 | 1 |
| 980 | 3 | 1 |
| 981 | 3 | 2 |
| 982 | 3 | 2 |
| 983 | 3 | 2 |
| 984 | 3 | 3 |
| 985 | 3 | 3 |
| 986 | 3 | 3 |
| 987 | 3 | 3 |
| 988 | 3 | 3 |
| 989 | 3 | 3 |



```
    PUT SKIP LIST('BICS'):
    DO #HILE(LADY~FNOLL):
    VT=LNDY:
    PUT LIST('COMP=',VPCTOR.COMR):
        LADY=LADY - PT.OOत:
        END:
    LADY=OUTEN:
        ALLOCATF SOF:
        ON HULLE (LADY-*NULG);
        TOD=I.ADT->COME;
        MOON=QtIEFM:
        DO WHILP(MOUN->#NULL):
        IP (MOON=LAOY) THEY GO TO MS%;
        VT=MOON:
        IF(TOD=VECTOR.COMP) TIEN GO TO MSA;
        SOF= (TODEVECTOR - COMEI:
        IF (SOP=TOD) THFN GO TO MSA:
        IF (SOP=VECTOR.CONT) THEN GO TO MSB;
```

| 990 | 3 | 3 |
| :--- | :--- | :--- |
| 991 | 3 | 3 |
| 992 | 3 | 3 |
| 993 | 3 | 3 |
| 994 | 3 | 3 |
| 995 | 3 | 3 |
| 996 | 3 | 3 |
| 997 | 3 | 3 |
| 998 | 3 | 3 |
| 999 | 3 | 3 |
| 1000 | 3 | 3 |
| 1011 | 3 | 3 |
| 1002 | 3 | 3 |
| 1003 | 3 | 3 |
| 1004 | 3 | 3 |
| 1005 | 3 | 3 |
| 1096 | 3 | 3 |
| 1097 | 3 | 3 |
| 1008 | 3 | 3 |
| 1019 | 3 | 3 |
| 1010 | 3 | 3 |
| 1011 | 3 | 2 |
| 1012 | 3 | 2 |
| 1013 | 3 | 2 |

    MSA: TF (MOON=QUPPM) THEN QUFPY=MONN-PFI.OOR:
        ELSE GO TO MSO:
        FREE VECTOR:
        NOON=OUERK:
        G G TO MST:
    MSO: NOON->FLOOR=MOON- PFLOOR:
            PREE VECTOR:
            GO TO MSY:
    MSE: VT=LADY;
            IF (LADY=OUEEN) THEN OHEFN=I.ADT->FLONR:
        ELSE GO TO MSR:
        FREP VPCTOR:
        MOAN=QUEEN:
        GO TO MSX:
    MSR: MOAN- PFLOOR=LADY->FLONR:
            FREE VECTOR:
            GO TO MSX:
    H5Z: HOON=HOON:
        MSY: \(\quad\) HOON=NOON->FLOOR:
            ENO:
            MOAN=LAOT:
    MSX:
                        LADY=MOAN->FT.OOR:
    

## III. 10 TRAVEL and TRAPEL

Gates having replicated event inputs in common are interconnected by means of WHIP and NAIL pointer variables. However, since $P L-M O D$ arrives at the final modular decomposition through a series of different intermediate structural representations for the fault tree, at each step interdependent gate interconnections are attached to a different set of NODE,STIP, STID and MOD structures.

Procedures TRAVEL and TRAPEL are called by COALESCE and MODULAR to transfer NAIL and WHIP interconnections whenever a structural transformation is effected which involves interconnected structures.

Thus, given a set of structures $A_{i}(i=1,2, \ldots, n)$ attached by NAIL pointers to a structure $B$ (i.e., $A_{i}$.NAIL $j_{i}=$ pointer locating $B$ for some $j_{i}$ ) which is to be replaced by a new structure $C$. Then TRAVEL will replace the old NAIL pointers connecting the set of structures $A_{i}$ to $B$ by a new set connecting them to C (i.e., $A_{i}$.NAIL $j_{i}=$ pointer locating $C$ for $i=1,2, \ldots, n$ ). Similarly TRAPEL will replace all WHIP connections to structure $B$ by a new set of connections to structure $C$ (i.e., if originally $D_{i}$. WHIP $j_{i}=$ pointer locating $B$, then TRAPEL will change this to $D_{i}$.WHIP $j_{i}=$ pointer locating $\left.C i=I, \ldots, m\right)$.

For example, in Section III. 9 the NODE, STIP and STID structures representing the top gate for the pressure tank fault tree were given. In particular, structures $S T_{5} \rightarrow S T I P$ and $S D_{2} \rightarrow S T I D$ were interconnected by

$$
\operatorname{PRIM}(1)=\operatorname{SPINE}(4)
$$

The values of TRIM (IX) and $\operatorname{TRIN}(I X)(I X=1,2, \ldots, R M O D)$ are read in and the values corresponding to $P R I M(I X)$ are assigned in procedure INITIAL with the following statements DO IX = 1 to RMOD;

GET LIST (TRIM)(IX),TRIN(IX));
ICH $=$ TRIN (IX);
PRIM (IX) = SPINE(ICH);
END;

In Section III. 6 it was pointed out that for every replicated input a structure AP is allocated by procedure TREE-IN. Structure AP is connected to the tree by a WHIP pointer corresponding to a structure containing the particular replicated event. AP has the following composition

1 AP BASED (APT),
2 TIPO $=0$,
2 NAP = replicated event name,
2 REP = total number of appearances of the event in the fault tree,

2 SPIT POINTER,
(With A. WHIP ${ }_{j}=$ APT for some structure A)

Pointer AP.SPIT is in general NULI except when the replicated event represents a module. In that case TREE-IN will use AP.SPIT to store the pointer locating the top gate for the modular sub-tree (i.e. $A P . S P I T=P R I M(I X)$ for some $I X$ ).

$$
\begin{aligned}
& \mathrm{ST}_{5} \rightarrow \operatorname{STIP} \cdot \operatorname{NAIL}(1)=\mathrm{ST}_{5} \\
& \mathrm{ST}_{5} \rightarrow \operatorname{STIP} \cdot \operatorname{WHIP}(1)=\mathrm{SD}_{2} \\
& \mathrm{SD}_{2} \rightarrow \operatorname{STID} \cdot \operatorname{NAIL}(I)=\mathrm{ST}_{5} \\
& \operatorname{SD}_{2} \rightarrow \operatorname{STID} \cdot \operatorname{WHIP}(I)=\mathrm{SD}_{2} \\
& \operatorname{SD}_{2} \rightarrow \operatorname{STID} \cdot \operatorname{NAIL}(2)=\mathrm{SD}_{2} \\
& \operatorname{SD}_{2} \rightarrow \operatorname{STID} \cdot \operatorname{WHIP}(2)=\mathrm{APT}_{1}
\end{aligned}
$$

However, in the next stage of the tree modularization procedure, gate $B_{I}$ was represented by the single structure $M T_{4}$ MOD. Hence TRAVEL and TRAPEL were needed to transfer all NAIL and WHIP interconnection to $\mathrm{MT}_{4}$. Thus,

$$
\begin{aligned}
\operatorname{MT}_{4}= & \text { MOD.NAIL }(1)=\operatorname{MOD} \cdot \operatorname{NAIL}(2)=\operatorname{MOD} \cdot \operatorname{NAIL}(3) \\
& \text { and } \\
\text { MT }_{4}= & \operatorname{MOD} \cdot \operatorname{WHIP}(1)=\operatorname{MOD} \cdot W H I P(2)
\end{aligned}
$$

The statements corresponding to the TRAVEL AND TRAPEL procedures are given below.

| 297 | 1 | 0 | TRAVEL: PROC (GRIS,KING, MOON) : |
| :---: | :---: | :---: | :---: |
| 258 | 2 | 0 | DECLARE (GRIS. KING, MOON) POINTER: |
| 259 | 2 | 0 | GAL=GRIS->AODR.TIPO; |
| 260 | 2 | 0 |  |
| 261 | 2 | 0 | ELSE IP (GAL=1) THPN GO TU CIMP: |
| 262 | 2 | 0 | ELSE IF (GAL=2) TIIEN GO TO CIPP: |
| 263 | 2 | 0 | Elsp if (gala3) ther gn th cine: |
| 254 | 2 | 0 | ELSE IP (GAL=4) then go to cixe: |
| 265 | 2 | 0 | CINE: NT=GRIS; |
| 266 | 2 | 0 | FAL= NODF. DIR; |
| 257 | 2 | 0 | DO MAL=1 TO PAL; |
| 263 | 2 | 1 | If (NODE.NAIL (MaL) = MnOn) tmea go to lamp: |
| 259 | 2 | 1 | ENO: |
| 270 | 2 | 0 | LANP: NODR.NATL (MAL) =KI:G\% |

```
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN- & NNNNNNNNNNNNNNNNNNNNNNN \\
\hline \(000 \rightarrow-00000 \rightarrow-00000 \rightarrow-00000 \rightarrow-0000000000\) & 000--00000-30000-3000 \\
\hline
\end{tabular}
```

```
        RFTURN:
```

        RFTURN:
    CIPF: ST=GMIS:
    CIPF: ST=GMIS:
        FAL=STIP.DIR;
        FAL=STIP.DIR;
        C0 Mal=1 TO PAL:
        C0 Mal=1 TO PAL:
        IF (STIP.NAIL(MAL.) =HOON) THRN GO TO LAPF:
        IF (STIP.NAIL(MAL.) =HOON) THRN GO TO LAPF:
        END;
        END;
    LAPE: STTP.NAIL(MAL)=RING;
    LAPE: STTP.NAIL(MAL)=RING;
        RET!RN:
        RET!RN:
        CIDE: SN=GRIS;
        CIDE: SN=GRIS;
            FAl=STID.OIR:
            FAl=STID.OIR:
            CO MAL=1 TO EAL;
            CO MAL=1 TO EAL;
        IF (STID.NAIL(MAL)=HOON) THEN GO TO LADE:
        IF (STID.NAIL(MAL)=HOON) THEN GO TO LADE:
        END:
        END:
    LADE: STTD.NAIL(MAL)=KING;
LADE: STTD.NAIL(MAL)=KING;
RETtRA:
RETtRA:
CIXE: MT=GRIS;
CIXE: MT=GRIS;
FAL=MOD.RIMO;
FAL=MOD.RIMO;
dO mAl=1 TO PAL.;
dO mAl=1 TO PAL.;
If (MOD.NAIL(MAL) =%OON) THEN GO TO LAXE;
If (MOD.NAIL(MAL) =%OON) THEN GO TO LAXE;
END:
END:
LAXE: MOD.NAIL(MAL)=RING:
LAXE: MOD.NAIL(MAL)=RING:
CIME: RETURN:
CIME: RETURN:
RND TRAVEL:
RND TRAVEL:
/* TRAPEL */
/* TRAPEL */
TRAPEL: PROC (GRIS, KING, MONN):
TRAPEL: PROC (GRIS, KING, MONN):
dECLNRE (GOIS, KING, MDON) POTNT:P:
dECLNRE (GOIS, KING, MDON) POTNT:P:
GAL=GRIS->NODE.TIPD:
GAL=GRIS->NODE.TIPD:
If GAL=1 THEN GO TO CORN;
If GAL=1 THEN GO TO CORN;
IF (GAL=2) TTRN GO TO CORP;
IF (GAL=2) TTRN GO TO CORP;
IP (GAR.=3) TIEN GO TO CURD:
IP (GAR.=3) TIEN GO TO CURD:
IF GAL=4 THEN GO TO CORX;
IF GAL=4 THEN GO TO CORX;
CORN: NT=GRIS:
CORN: NT=GRIS:
PAL=NODE.OIR;
PAL=NODE.OIR;
DO MAL=1 TO PAL:

```
    DO MAL=1 TO PAL:
```




```
        END;
```

        END;
        LINE: NODR.RHIP(MNL) =KING;
        LINE: NODR.RHIP(MNL) =KING;
        RETURN:
        RETURN:
    CORP: ST=GRIS;
CORP: ST=GRIS;
PAL=STIP.DIR:
PAL=STIP.DIR:
DO Hal=1 TO FAL:
DO Hal=1 TO FAL:
IF (STIP.NHIP(MAL)=MONN) TIEN CO TO I.TPE:
IF (STIP.NHIP(MAL)=MONN) TIEN CO TO I.TPE:
EMD;
EMD;
LIPE: STIP.प्रIIP(MAL)=KING;
LIPE: STIP.प्रIIP(MAL)=KING;
RETURN;
RETURN;
CORD: SD=GRIS;
CORD: SD=GRIS;
PAL=STID.DIR:
PAL=STID.DIR:
DO MAL=1 TO EAT.;
DO MAL=1 TO EAT.;
IF (STID.WHIP(MAI.)=HOON) TMFN ती TO LYDF:
IF (STID.WHIP(MAI.)=HOON) TMFN ती TO LYDF:
END;
END;
LYDE: STID.RHIP(MAL)=KING:
LYDE: STID.RHIP(MAL)=KING:
gETURN:
gETURN:
CORX: MT=GRLS;
CORX: MT=GRLS;
EAL=MOD.RIHO:
EAL=MOD.RIHO:
CO MAL=1 TO FAL;
CO MAL=1 TO FAL;
IF (MOD.GMIP (MAL) =MOON) THEN GO TO LIXP:
IF (MOD.GMIP (MAL) =MOON) THEN GO TO LIXP:
END;
END;
LIXP: MOD.KHIP (MAL)=RING;
LIXP: MOD.KHIP (MAL)=RING;
RETURN;
RETURN;
END TRAPEL:

```
    END TRAPEL:
```

III.ll. Replicated Modules

An option exists in PL-MOD which provides for the analysis of fault trees containing smaller independent replicated subtrees (i.e., replicated: modules).

PL-MOD handies replicated modules by analyzing their subtree representation separately and by associating to each replicated module a replicated leaf input (Figure 3.33).

The total number of replicated modules RMOD in the tree is read in by procedure INITIAL which allocated the following four arrays

> GET LIST (RMOD);

IF (RMOD $=0$ ) THEN GO TO XEN;
ALIOCATE TRIM (RMOD);
ALIOCATE TRIN (RMOD);
ALIOCATE PRIM (RMOD);
ALIOCATE PRIN (RMOD)

## XEN:

Variables TRIM and TRIN are number arrays storing the replicated leaf and gate names associated with the top event of each replicated module. Thus, for the example given in Figure 3.33

RMOD $=1$
$\operatorname{TRIM}(1)=29001$
$\operatorname{TRIN}(1)=4$
Variable PRIM is a pointer array which stores the locations of the node structures associated with the replicated module TOP gates. Thus, for the above example $\operatorname{PRIM}(1)=\operatorname{SPINE}(4)=\mathrm{NT}_{4}$


REPLICATED LEAF ASSOCIATED WITH A MODULE

Moreover the top modular gate NODE.ROOT will point to AP (PRIM(IX) $\rightarrow$ NODE.ROOT $=A P T$ ) and the set of pointers APT associated with replicated modules will be stored by array PRIN(IX).

## III.12. Dual State Replicated Components

In Chapter I the NOT gate operator was shown to be a useful tool for handling common mode failure event dependencies and mutually exclusive events normally found in systems undergoing tests and maintenance [18]. PL-MOD contains an option that allows the handing of dual component states which arise by the application of the NOT gate operator (Figure 3.34). Applying the NOT operator to basic event b results in an event $b=\operatorname{NOT}(b)$. Since events $b$ and $b$ are mutually exclusive, the gates to which these dual states are attached become interdependent. Hence dual state components necessarily belong to the same higher order module (Figure 3.35).

As explained in Section III. 6 dual states are identified by the nomenclature $A 1 B C D, A 2 B C D(1=O N$ state, $2=O F F$ state $)$. Notice that since the three lower digits are the same for both the $O N$ and $O F F$ states of a dual component, procedure TREE-IN will attach WHIP and NAIL interconnections among mutually exclusive gates as desired. Therefore, if a higher order modular structure contains an $O N$ dual state, then it will also contain its corresponding OFF state.

In the following statements included in BOOLEAN, the cancellation of all modular minimal cut-sets which require the



INTERDEPENDENT GATES DUE TO MUTUALLY EXCLUSIVE DUAL COMPONENT STATES
simultaneous occurrence of mutually exclusive events will be ie acheived.

```
\begin{tabular}{|c|c|}
\hline 1046 & 31 \\
\hline 1047 & 32 \\
\hline 1048 & 32 \\
\hline 1049 & 32 \\
\hline 1050 & 32 \\
\hline 1051 & 32 \\
\hline 1052 & 32 \\
\hline 1053 & 33 \\
\hline 1054 & 33 \\
\hline 1055 & 33 \\
\hline 1056 & 33 \\
\hline 1057 & 314 \\
\hline 10ヶ\% & 34 \\
\hline 1059 & 318 \\
\hline 10 Cl & 33 \\
\hline 1061 & 32 \\
\hline 1062 & 32 \\
\hline 1053 & 33 \\
\hline 1054 & 33 \\
\hline 1065 & 33 \\
\hline 10 ¢6. & 33 \\
\hline 1067 & 34 \\
\hline 10.68 & 34 \\
\hline 1069 & 34 \\
\hline 1070 & 54 \\
\hline 1071 & 34 \\
\hline 1072 & 311 \\
\hline 1073 & 34 \\
\hline 1074 & 34 \\
\hline 1075 & 33 \\
\hline 1076 & 33 \\
\hline 1077 & 33 \\
\hline 1078 & 32 \\
\hline 1077 & 32 \\
\hline 1080 & 32 \\
\hline 1081 & 31 \\
\hline
\end{tabular}
```

```
* (AE~A) STATE CANCPLIATION *,
```

* (AE~A) STATE CANCPLIATION *,
IF (NOX=1) TIIFN DO:
IF (NOX=1) TIIFN DO:
PR=LOST:
PR=LOST:
NHM=PER. RAM:
NHM=PER. RAM:
ALIOCATP ZOTO:
ALIOCATP ZOTO:
ALLOCATF %OCO:
ALLOCATF %OCO:
2OTO=REPEAT('O'\#,NHM):
2OTO=REPEAT('O'\#,NHM):
DO KIX=1 TO NIH:
DO KIX=1 TO NIH:
MA=PER.TAR(KIX):
MA=PER.TAR(KIX):
DA=-CEIL (-MA/100n0):
DA=-CEIL (-MA/100n0):
JA=-CTILL(-HA/1000):
JA=-CTILL(-HA/1000):
IP((5A-10*NA)=1) TITRN NO:
IP((5A-10*NA)=1) TITRN NO:
sunsTs (7.0TO,KIX, 2)=:11'n:
sunsTs (7.0TO,KIX, 2)=:11'n:
KIX=rIX+1:
KIX=rIX+1:
END:
END:
END;
END;
VIT=OUFFM:
VIT=OUFFM:
CO प|IILP(\nablaIT`=N|LL):       CO प|IILP(\nablaIT`=N|LL):
\nablaT*VIT:
\nablaT*VIT:
ZOCO=STASTR (YECTOR,COMP,T,NUM):
ZOCO=STASTR (YECTOR,COMP,T,NUM):
70C0=20COE7.0TO:
70C0=20COE7.0TO:
IF (INDEX {ZOCO;'19'B) व=0} TIISN DO;
IF (INDEX {ZOCO;'19'B) व=0} TIISN DO;
IF VIT=OUEEN THEN QUEEM=VECTOR.PLOOR:
IF VIT=OUEEN THEN QUEEM=VECTOR.PLOOR:
ELSE GO TO SNU1;
ELSE GO TO SNU1;
FRER VRCTOA:
FRER VRCTOA:
TIT*QHPFM:
TIT*QHPFM:
GO TO SNU2:
GO TO SNU2:
SMU1: LAN->FI.OOR=VIT->FLOOR:
SMU1: LAN->FI.OOR=VIT->FLOOR:
FREE VICTOR:
FREE VICTOR:
END;
END;
FLSELAD=VIT:
FLSELAD=VIT:
SN02:
SN02:
VIT=LAE->FLOOR;
VIT=LAE->FLOOR;
FNO:
FNO:
PRFE ZUTO:
PRFE ZUTO:
PREE ZOCO;
PREE ZOCO;
END:
END:
LOST->HECTOR*QUEEN:

```
    LOST->HECTOR*QUEEN:
```

III. 13. NUMERO
III.13.1. $\frac{\text { PL-MOD's Quantitative Analysis of ModuIarized Fault }}{\text { Trees }}$

Up to now this Chapter has dealt with the methodology used by PL-MOD to obtain the modular decomposition for a fault tree. Once the modularization task has been accomplished, PL-MOD proceeds to evaluate modular event occurrence probabilities as well as Vesely-Fussell importance values for modular and basic component events. The set of procedures used by PL-MOD for this purpose are all contained within procedure NUMERO. Therefore $P L-M O D$ commands a quantitative analysis for a fault tree
by the statement

CALI NUMERO;

It should be stressed here that the modular structure information derived by PL-MOD is internally arranged in a manner which allows for an efficient numerical evaluation of the fault tree. Thus, storage space has been provided in structures PROP and PER for assigning reliability parameters to the simple and higher order modules represented by the structures


In the present PL-MOD version REZ $=2$ since only a set of occurrence probabilities and Vesely-Fussell importance point values are evaluated. It should be noticed here that the pointer location for each module is stored both as an input to another module (PROP.TIM(I) or PER.TAR(J) and as the root to other
modules (PROP.ROOT).
Procedure NUMERO internally calls the following procedures

CALL STAT-IN;
CALL EXPECT ;
CALL IMPORTANCE;
Procedure STAT-IN is used for reading in a list of input values for the basic event occurrence probabilities, such as those given in Table 3.1 for the pressure tank rupture fault tree. Having this information procedures EXPECT and IMPORTANCE then perform the evaluation of modular event occurrence probabilities and modular and basic component Vesely-Fussell importance measures respectively.
III.13.2 STAT-IN

Procedure STAT-IN is given by the following statements

```
\begin{tabular}{lll}
\(2 \overline{6}\) & 1 & 0 \\
27 & 2 & 0 \\
29 & 2 & 0 \\
29 & 2 & 0 \\
30 & 2 & 0 \\
31 & 2 & 0 \\
32 & 2 & 0 \\
33 & 2 & 0 \\
34 & 2 & 0 \\
35 & 2 & 0 \\
36 & 2 & 1 \\
37 & 2 & 1 \\
38 & 2 & 1 \\
39 & 2 & 0 \\
40 & 2 & 0 \\
41 & 2 & 1 \\
42 & 2 & 1 \\
43 & 2 & 1 \\
44 & 2 & 0
\end{tabular}
STAT_IN: PROC:
    P=DEL;
    GET LIST(PINN):
    POT EDIT('MMM FRER RTEHT IMRUTS=', PUN) (SXIP(2), \lambda(22),P(5)):
    GFT LIST (DUN):
PTT EDIT('NUM ROPLICATED EVENT INPUTS=',DUN) (SKIP (2), A(28),P(5));
    kllocate state:
        allocate statd;
gut edit('fref InPIT','bfitabILIty')
    (SKIP(2),X(2),N(10),X(1),N(11)):
    OC I=1 TO FtIN:
    GRT LIST(I,STATR(1,I)):
    ODT EDIT(I.STATF(1,I)) (SKIP(2).F(12).E(18,6)):
    END:
FUT EDIT('DEP INROT'.RELTABILITY')
                    (SXIP(2),X(3),A(9),X(1),A(11)):
    DO I=1 TO DUN:
    GET LIST(I.STATD(1.I));
    PUT EDIT(I,STATE(1,I)) (SKIP(2),P(12),5(18,6)):
    END:
    ENg STAT.IN;
```

The number of free event (FUN) and replicated event (DON) inputs is read in. And arrays STATE (P.FUN) and STATD(P.DON) are allocated with $P=2$. The free and replicated basic event probability values are read in and stored in STATE (I,I) and STATD (L, I). Later on the Vesely-Fussell importance corresponding to each free and replicated basic event will be stored in $\operatorname{STATE}(2, I)$ and $\operatorname{STATD}(2, J)$ respectively.
III. 14 DOT, PLUS and MINUP

Proceudres DOT, PLUS and MINUP are internally called by EXPECT to evaluate the occurrence probability for a simple AND, simple $O R$ and higher order prime module, given the set of occurrence probability values for all the inputs to the module. Moreover procedure MINUP is also called by IMPORTANCE to evaluate the Vesely-Fussell importance value for
events which are inputs to a higher order module.
Given the occurrence probabilities for the set of inputs to a simple gate PROP structure (Figure 3.36), the probability of occurrence for the modular gate event will be given by

OR gate: $P(M)=\operatorname{PLUS}\left(C_{1}, C_{2}, \ldots, C_{n} M_{1}, \ldots M_{P}\right)$
AND gate: $P C M=\operatorname{DOT}\left(C_{1}, C_{2}, \ldots, C_{n}, M_{1}, \ldots, M_{P}\right)$
In its present form procedure PLUS uses the rare-event approxImation to evaluate $O R$ gate modular event probabilities. Thus

while

$$
\operatorname{DOT}\left(C_{1}, C_{2}, \ldots, C_{n}, M_{1}, M_{2}, \ldots M_{P}=\left(\prod_{i=1}^{n} P_{i}\right)\left(\prod_{i=1}^{p} P_{M_{i}}\right)\right.
$$

Procedures PLUS and DOT are given by the following statements.

| 71 | 1 | 0 | PLUS: PROC (BAT, EXA) ; |
| :---: | :---: | :---: | :---: |
| 72 | 2 | 0 | DECLARE OAT POTNTER: |
| 73 | 2 | 0 | DECLARR EXA Label; |
| 74 | 2 | 0 | PT=BAT: |
| 75 | 2 | 0 | REX=0: |
| 78 | 2 | 0 | If (PROP.LIM=1 \& PROP.tTL(1)=0) THEM GO TO PLISA; |
| 77 | ? | 0 | DO $J=1$ TO PROP.LIM: |
| 78 | 2 | 1 | REX $=$ RTX +STA TE(1.PROP.TIL (J)) : |
| 79 | 2 | 1 | Enn; |
| 80 | 2 | 0 |  |
| $\cap 1$ | 2 | 0 | DO JP1 TO PROP.MIM; |
| 82 | 2 | 1 | IF (PROP. PIM (J) ->PROP. MOST-ENHTLU) THEN DO; |
| 33 | 2 | 2 | PP=PROP. PIM (J) $\rightarrow$ PPROP. 10 ST: |
| 34 | 2 | 2 | BEX=PEX + PER.REL(1) : |
| 45 | 2 | 2 | END; |
| 86 | 2 | 1 | ELSE RPX=RPX + PROP.PIM (J) - PPROP.REL (1) ; |
| 87 | 2 | 1 | END; |
| 88 | 2 | 0 | PLUE: PROP.REL(1)=RRX: |
| 89 | 2 | 0 | GO TO RXA; |
| 90 | 2 | 0 | END PLIIS; |
| 91 | 1 | 0 | DOT: PADC (BAT, EXA) : |
| 92 | 2 | 0 | dEclare bat pointer: |
| 93 | 2 | 0 | declare pra label; |
| 44 | 2 | 0 | $\mathrm{PT}=\mathrm{RAT}$ : |



FIGURE 3.36
SIMPLE GATE MODULAR OCCURRENCE PROBABILITIES

```
\begin{tabular}{rrr}
95 & 2 & 0 \\
95 & 2 & 0 \\
97 & 2 & 0 \\
98 & 2 & 1 \\
99 & 2 & 1 \\
100 & 2 & 0 \\
101 & 2 & 0 \\
102 & 2 & 1 \\
103 & 2 & 2 \\
104 & 2 & 2 \\
105 & 2 & 2 \\
106 & 2 & 1 \\
107 & 2 & 1 \\
108 & 2 & 0 \\
& - & - \\
109 & 2 & 0 \\
110 & 2 & 0
\end{tabular}
REX=1;
IF (PROR.LIM=1 \(\varepsilon\) PROP.TIL (1) =0) THEN GO TO DOTA;
DO J=1 TO PROP.LIM:
REX=REX*STATE(I,PROP.TIL (J)):
END;
DOTA: IP (PROP.MIM=1 \& PROP.PIM(1)=NILL) TMPM GO TO DOTB;
\(00 \mathrm{~J}=1\) TO PROP MTM:
IP (PROP. PIM (J) \(\rightarrow\) PROC. IIOST \(=\) NOLLL) THFN DO:
PR=PROP.FIM (J)->PROP. IIOST:
REX=REX*PRR.REL (1) :
EMD:
MLSE RTX=REK*RROP.PIM(J)-SPROP.REI. (1):
END;
COTB: PROR.RFL (1)=REX:
GO Tn PxA:
END DOT:
```

Since higher order modular structures (Figure 3.37) are characterized by a set of modular minimal cut-sets, their occurrence probability may be evaluated using the minimal cut upper bound In its rare-event approximation form (Equation 2.15) i.e.,

$$
P\left(M_{0}\right) \leq \sum_{j=1}^{N_{k}} \quad \prod_{1} K_{j} \quad P_{i}=\operatorname{MINUP}\left(r_{1}, \ldots, r_{n}, M_{0}, M_{1} \ldots, M_{w}\right)
$$

with $N_{k}=$ total number of cut-sets associated with the prime gate. Given the occurrence probabilities for each input to the prime gate, procedure EXPECT will store these values in a structure QER defined by

1 QER BASED (AT),
2 QEL FIXED BINARY,
2 QU (LARG REFER (QER.QEL)) FLOAT;
with PER.DEXTER = AT for the PER structure associated with a particular prime moduel, Procedure MINUP will then use the QER.QU(1) ( $I=1,2, \ldots$, LARG) values coupled with the set of MICS VECTORS for the prime module to evaluate tts occurrence probability as follows:

$$
P(M)=\operatorname{MINUP}\left(r_{1}, r_{2}, \ldots, M_{0}, M_{1}, \ldots, M_{W}\right)
$$

FIGURE 3.37
PRIME GATE MODULAR OCCURRENCE PROBABILITY


As shown in Sections III. 15 and III. 16 , each time procedure MINUP is called by EXPECT, variable EX equals zero. However whenever MINUP is called by the IMPORTANCE procedure, to evaluate nested gate and replicated event Vesely-Fussell importances, the value of EX is always different from zero.

Procedure MINUP essentially consists of a DO loop in which pointer VT successively locate a different MICS VECTOR for the prime gate module. The contribution of each vector to the minimal cut upper bound is found by multiplying the occurrence probab1lities (QER.QU(EL)) corresponding to non-zero bits in the vector (1.e. POW=SUBSTR (VECTOR.COMP,EL,I) $\neq$ ' O'B). Finally all the vector contributions are added together ( $R E Y=R E Y+R E X$ ) to obtain the rare-event approximation to the minimal cut-set upper bound. Notice however that that when EX is different from zero, only those contributions coming from a vector which has a 'l' bit in
the EX-th location are added together (IF POW = 'Q'B THEN REX $=0 ; 2$.
III.15. EXPECT

Modular occurrence probabilities are easily computed by procedure EXPECT following the same order in which the modules were originally created by procedure MODULAR. Each time a PROP structure was crested in MODULA, its pointer location was stored in array $B O S T(I B)$ and variable IB was increased by one. Hence the set of modular occurrence probabilities are computed in the desired order by means of the DO LOOP

```
DO I = I to IB;
CAT = BOST(I);
PT = CAT;
END;
```

For the case of simple $A N D$ and $O R$ gate modules, their occurrence probabilities are easily evaluated using the statements

CALL DOT(CAT,ESTA);
and
CALL PLUS (CAT;ESTA);
where the values for the modular input occurrence probabilities
are guaranteed to have been previously evaluated by EXPECT because of its recursive computational ordering (DO I = 1 to IB; ).

Particular care must however be taken for the ease of higher order modular structures (Figure 3.37). For this case BOOLEAN first allocated the PROP structure associated with the parent gate $\left(M_{0}\right)$ and later on allocate: the set of PROP structures associated with each of the nested gates ( $M_{1}, M_{2}, \ldots$, $M_{n}$ l included in the higher order module.

As explained in Section III.14, EXPECT calls procedure $\operatorname{MINUP}(E X)$ ( $E X=0$ ) to compute the higher order gate occurrence probability (PER.REL(1)). However to make this evaluation possible, it is necessary that EXPECT previously (a) compute the set of occurrence probabilities corresponding to each nested simple gate PROP structure (WEST = total number of nested gates) by calling procedures DOT and PLUS, and that (b) $\operatorname{QER} \cdot \operatorname{QU}(J)(J=1,2, \ldots, \operatorname{LARG} ; \operatorname{LARG}=\mathrm{NUM}+\mathrm{WEST}+1)$ be assigned the set of values associated with each replicated event and nested gate module contained in the prime gate module.

This set of tasks are performed by EXPECT through the following statements:


```
EXPECT: חROC:
    DO I=1 TO IB;
    CAT=BOST(I):
    RT=CAT:
        IF (PROR.HOST~ZNIILL) THEN GO TO CIITS;
    IP PROP.VALIE=I THEN CALL DOT(CAT,ESTA):
        IP PROR.VALUP=2 THEN CALL PLIS(CAT.ESTA):
CUTS: IF (FHOP.VAIUF<<2) THFN EYE=1:
    ELSE EYE=0;
    PR=PROR.HOST:
        TIERRA=PR:
    NUB=PER.RAM;
        IP (NUN=1 E PER.TAR(T)=0) THEN NUM=0:
    ELSE NUM=NTPB:
    #FST=PER.LEAL;
    IF (NEST=1 & PER.JIM(1)=0) THPN'NRT%=0;
        ELSF:NEZT=|EST:
    IF EYE=0 TIIEN LARG=NUM+NGZT:
    ELSE LARG=NUH+NEZT+1;
    ALLOCATE QER;
    PER.DEX*ER=QT:
    IP EYE=0 THEH GO TO CUTA:
    /* ASYMMFRTIC CASF */
        DO J=1 TO NUM;
    MA=PER.TAR(J);
    DA=-CEIL (-HA/10000);
    JA=-CEIL(-MA/1000):
    JAK=JA-10*DA:
    NA=MA-(1000)*JA;
        IP(JAK=0 |JAK=1) THEN DO:
    QER.OU(J)=STATD(1,MA);
    END:
    IF (NAK=2) THEN DO:
    QER. OU(J)=1-STATD(1;NA):
        END;
    IF (JAK=9) THEN DO;
    DO IX=1 TO RMOD:
    IP(TRIM(IX)=MA) THFM GO TO XIITA;
    END;
XUTA: APT=PRIN(IX):
    IF (AP.SPIT->PROR.HOST-NNLLG) TIEN DO:
        FR=AP.SPIT->PROP.HOST:
        STATD(1, HA) = PRR-REL (1);
        PR=TTERRA;
        END:
        ELSE STATN(1,NA)=AP.SPIT->PROP.RFL(1):
        QER.OIT (J)=STATT(I,NA);
```

NUMERO: FROCEDIIRP:

```
STMT LEV NT
157 2 3
    158 2 3
    159 2 2
    150 2 1
    161 2 1
    162 2 1
    163 2 
    164 2 1
    165 2
    166 2 1
    167 2 2
    168 2 2
    1.69 2 2
    170}22
    1712
    172 2 
    173 2 2
    75 2
    176 2 1
    180
    181
    182 2
    183-2 1
    184 2 1
    8
    88-2
    186 2 1
    187 2 2
    188 2 2
    139 2 1
    91
    O
    932
    194 2 2
    195 2 1
    196 2 1
    197 2 1
    198 2 1
    199 2
200 2 1
```

```
    PHT EDIT('REP MODULE=',AA,'RRL=',STATD(1,NA))
```

    PHT EDIT('REP MODULE=',AA,'RRL=',STATD(1,NA))
    (5KIP(1),A(11),P(5), X(2),A(4), R(18,6)):
    (5KIP(1),A(11),P(5), X(2),A(4), R(18,6)):
    ESD;
    ESD;
    EMC:
    EMC:
    IP pmop.valyg=1 them call ont (cat,rlsa):
    IP pmop.valyg=1 them call ont (cat,rlsa):
    If prop,yAl|P=? tIIEN CKll plif(CAT, ELSA):
    If prop,yAl|P=? tIIEN CKll plif(CAT, ELSA):
    ELSA: PITT SKIP R.IST('PATRIARC: SIBmODHLE');
ELSA: PITT SKIP R.IST('PATRIARC: SIBmODHLE');
PUT RDIT('MODHLE NAME='.PMOP.NAME,'REL=',PROP.REL(1))
PUT RDIT('MODHLE NAME='.PMOP.NAME,'REL=',PROP.REL(1))
(SKIP(1),A(12),F(5),X(2),N(4),E(18,6)):
(SKIP(1),A(12),F(5),X(2),N(4),E(18,6)):
QPR.OU(NTM+1]=EROR.REL(1);
QPR.OU(NTM+1]=EROR.REL(1);
BAT=PT:
BAT=PT:
DO IN=T+1 TO IFNPZT:
DO IN=T+1 TO IFNPZT:
LA D=BOST (IM):
LA D=BOST (IM):
PT=LAD;
PT=LAD;
IF PROP. VALOE=1 tHEN CALL DOT(LAD,ELMA):
IF PROP. VALOE=1 tHEN CALL DOT(LAD,ELMA):
IF PHOP. VALOEE2 THEM CALL PEUS (LAD, ELAA):
IF PHOP. VALOEE2 THEM CALL PEUS (LAD, ELAA):
ELMA: PUT SKIP LIST('NESTPD MODULE') :
ELMA: PUT SKIP LIST('NESTPD MODULE') :
PMT EOIT('MODMLE MAMEF',PROP.NAMR,'REL=',PROP.REL(1))
PMT EOIT('MODMLE MAMEF',PROP.NAMR,'REL=',PROP.REL(1))
(SKIP(1),A(12),P(5),X(2),A(4),E(18,6)):
(SKIP(1),A(12),P(5),X(2),A(4),E(18,6)):
QER.Q(S (NUM+1+IN-I)=PROP.RPL(1):
QER.Q(S (NUM+1+IN-I)=PROP.RPL(1):
EMD;
EMD;
EX=0;
EX=0;
CNLL MINIP(EX);
CNLL MINIP(EX);
PER.REZ(1)=REY;
PER.REZ(1)=REY;
POT SKIP LIST('PatrIarch mODOLE'):
POT SKIP LIST('PatrIarch mODOLE'):
I=I+NEZT:
I=I+NEZT:
PT=BAT;
PT=BAT;
PIT EDIT('MODILLF NAGEN', DROP.NAMO,'PRL=',PER.BEL(1))
PIT EDIT('MODILLF NAGEN', DROP.NAMO,'PRL=',PER.BEL(1))
(SKIP(1),A(12), P(5), X(2),A(4),只(18,5)):
(SKIP(1),A(12), P(5), X(2),A(4),只(18,5)):
GO TO PZTA;
GO TO PZTA;
/* Symmprtc c.nsr. */
/* Symmprtc c.nsr. */
CUTA: PROP.REI(1)=0:
CUTA: PROP.REI(1)=0:
EAT=PT;
EAT=PT;
I% NHM=0 THEN GO TO CIITr;
I% NHM=0 THEN GO TO CIITr;
DO J=1 TO MIM;
DO J=1 TO MIM;
QER.OU (T)=STATE(1, EER. TAR(N)):
QER.OU (T)=STATE(1, EER. TAR(N)):
END;
END;
CUTB: IP NEZT=O TIEN GO TO CTTP:
CUTB: IP NEZT=O TIEN GO TO CTTP:
DO IX=NGM+1 TO NOM+NEZT:
DO IX=NGM+1 TO NOM+NEZT:
PT=PER.KIM(IX-NUM);
PT=PER.KIM(IX-NUM);
IF (PROP.HOST=NMLLL) THPM QER.OT(TX)=PPOP.REL(I):
IF (PROP.HOST=NMLLL) THPM QER.OT(TX)=PPOP.REL(I):
ELSE QER.ON(TX)=PROP.HOST->PEP.RTL (1):
ELSE QER.ON(TX)=PROP.HOST->PEP.RTL (1):
END:
END:
CuTC: EX=n;
CuTC: EX=n;
CALL MINUP(EX);
CALL MINUP(EX);
PEP.REL (1)=9EY:
PEP.REL (1)=9EY:
एT=BAT:
एT=BAT:
PROP.AEL (1) =REY:
PROP.AEL (1) =REY:
PIOT SKIP LIST('TYMM SIT\GammaпBM\capOMLF'):

```
            PIOT SKIP LIST('TYMM SIT\GammaпBM\capOMLF'):
```


## STAT LEV NT

| 201 | 2 | 1 |
| :--- | :--- | :--- |
| 202 | 2 | 1 |
| 203 | 2 | 1 |
| 204 | 2 | 1 |
| 205 | 2 | 1 |
| 206 | 2 | 0 |

```
                                    PITT EDIT('MODUI,E NAME=',PROP.NAME,'RPL=',PER.NPL(1))
                                    (SXIP(1),A(12),F(5),X(2),A(4),E(13,5)):
                                    GO TO FZTA:
ESTA: PUT SKIP I.IST('FREF MODHLPO):
    PUT RDIT('MODNLE NAME= ,PMOP.NAME,'REL=',PPROPGRRL(1))
FZTA: END:
    (SKIP(1), A(12),P(5),X(2),A(4),E(18,6)):
    END EXPRCT:
```

For the pressure tank fault tree example procedure EXPECT computes the modular and top event occurrence probabilities in the following steps

STEP 1
Symmetric higher order module $M_{9}$

$$
Y^{B}=\left(Y_{11}, Y_{12}, Y_{13}\right)
$$

$$
K_{1}=(0,1,1)
$$

$$
K_{2}=(1,0,1)
$$

$$
K_{3}=(1,1,0)
$$

$$
P_{1}=P_{2}=P_{3}=10^{-5}
$$

$$
\Rightarrow P_{M_{9}}=3 \times 10^{-10}
$$

STEP 2 (a) Parent gate sub-module $M_{1}$

$$
\begin{aligned}
& M_{1}=\{1,2,3,4 ; U\} \\
& P_{1}=10^{-8}, P_{2}=P_{3}=P_{4}=10^{-5} \\
& \Rightarrow P_{M_{1}}=3.001 \times 10^{-5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) Nested gate module } M_{4} \\
& M_{4}=\left\{M_{g}\right\} \\
& \Rightarrow P_{M_{4}}=3 \times 10^{-10} \\
& \text { (c) Nested gate module } M_{5} \\
& M_{5}=\{5,6,7,8,9,10 ; U\} \\
& P_{5}=P_{6}=P_{7}=P_{8}=P_{9}=P_{10}=10^{-5} \\
& \Rightarrow P_{M_{5}}=6 \times 10^{-5}
\end{aligned}
$$

STEP 3 Top tree event higher order module $M$

$$
\begin{aligned}
& Y^{B}=\left(Y_{r}, Y_{M_{1}}, Y_{M_{4}}, Y_{M_{5}} I\right. \\
& K_{1}=(0,1,0,0) \\
& K_{2}=(1,0,0,0) \\
& K_{3}=(0,0,1,1) \\
& (r=30001) P_{r}=10^{-5} \\
& \Rightarrow P(T O P)=4.001 \times 10^{-5}
\end{aligned}
$$

## III. 16 IMPORTANCE

Procedure IMPORTANCE evaluates the Vesely-Fussell importance ( $I^{V} \cdot F \cdot$ ) for every modular event and every basic component In the fault tree. IMPORTANCE performs this evaluation by starting at the top tree gate event ( $I_{T O P}^{V, F}=1$ ) and proceeding down to the bottom branch modules of the tree by means of the
modular importance chain-rule (See Section II.5.4.)
For the case of simple $A N D$ and $O R$ gate modules, the modular importance chain rule takes the forms

$$
\begin{aligned}
\text { AND gate: } & I_{C_{1}}^{V} \cdot F \cdot=I_{M}^{V} \cdot F \cdot(1=1,2, \ldots, n) \\
& I_{M_{1}}^{V} \cdot F \cdot=I_{M}^{V} \cdot F \cdot(1=1,2, \ldots, n) \\
\text { OR gate: } \quad & I_{C_{1}}^{V} \cdot F \cdot=I_{M}^{V} \cdot F \cdot\left(\frac{P_{1}}{P_{M}}\right)(1=1,2, \ldots, n) \\
& I_{M_{I}}^{V} \cdot F \cdot
\end{aligned}
$$

For an AND gate module, all its inputs have the same importance as the module since the probability that any input has failed given that the AND gate module has failed equals one. However for an $O R$ gate, the probability that a given input is in a failed state given that the OR gate has failed is equal to

$$
\frac{P(\text { input has failed) }}{P_{M}}
$$

Notice that the required modular occurrence probabilities ( $\mathrm{P}_{\mathrm{M}}$ and $\mathrm{P}_{\mathrm{M}_{i}}$ ) were previously computed by EXPECT. For the case of higher order modular gates (Figure 3.37) the modular importance chain rule in the rare-event approximation takes the form

$$
\begin{aligned}
& \left.I_{r_{1}}^{V \cdot F \cdot}=I_{M}^{V} \cdot F \cdot \frac{\left(\sum_{1} r_{1} K_{j} P\left(K_{j}\right)\right.}{\left.\sum_{M} M\right)}\right)(1=1, \ldots, n) \\
& I_{M_{1}}^{V \cdot F}=I_{M}^{V} \cdot F \cdot\left(\frac{j, M_{1} \varepsilon K_{j}}{P\left(K_{j}\right)}\right. \\
& \text { With } P(M)=(1=0,1, \ldots, u) \\
&
\end{aligned}
$$

It should be recalled that the occurrence probability for a higher order module $P(M)$ was computed in EXPECT by calling procedure MINUP(EX) with EX $=0$. Nevertheless the expression appearing in the numerator

$$
\sum_{j, x \in K_{j}} P\left(K_{j} 2 \quad\left(x=r_{ \pm} \text {or } M_{ \pm}\right)\right.
$$

is yet to be evaluated by IMPORTANCE. To this end procedure MINUP(EX) will be called with variable EX locating the position in the VECTOR.COMP bit-string which corresponds to input x (See Section III.14).

Procedure IMPORTANCE starts out by assigning importance values to all modular and component inputs to the top gate event (First generation), and at the same time stores in array OLM(BUM) all the pointer locations for the modular gate inputs to the top gate module. This task is performed for simple and prime gate top event modules by the following statements

| NNNNNNNNNNNNNNNN <br>  | NNNNHNNNNNNNN NNNNNNNNN $\rightarrow \rightarrow \rightarrow \rightarrow$ <br>  | NNNNNNNNN $\vec{N} \vec{\sim} \vec{\omega} \vec{N} \rightarrow \overrightarrow{0}$ |
| :---: | :---: | :---: |
| NNNNNNNNNNNNNNNN | NNNNNNNNNNNNN | NNNNNNNN- |
| $\rightarrow \rightarrow \rightarrow-000 \rightarrow \rightarrow-0 \rightarrow \rightarrow-00$ | O-NN $\rightarrow$ - $\mathrm{O} \rightarrow \mathrm{N} \boldsymbol{N} \rightarrow \mathrm{O}$ | 0000000 |

```
        IMPORTANCF: IMQORTANCE (YESELY- PUSSELL) */
        IMPORTANCF: PROC:
        BUG=1:
        PT=STORK:
        IP PROR.HOST~=NULL TREN GO TO IMA;
        BIIM=PROP.MIM:
        ALLOCATT OLM (BUR);
        OLM=PROP.FIM;
        PROP.REL(2)=1;
        PIT EOIT('MOOULE=', PROP.NAMR,'IM!=", PROP.RPL(2))
        (5KIP(1),A(7),P(5),A(4),E(18,6)):
        IF PRO&.VALUE=1 THEN DO;
        IF (P:.jP.LIH=1 E PROP.IIL(1)=0) THEN TO TO IME;
        DO I=1 TO PROP.LIM:
        STATE(2.PROP.TIL(I))=1;
        END;
        END:
        IF PROP, VALUF=2 TREN DN:
        IF (PROP.LIM=1 & PROR.TTL(1)=0) TIIEN GO TO IME:
        DN I=1 TO PROP.LIM;
        STATE(2.PROR.TIL(I))=STATF(1,FROR.TIR.(I))/PROR.REL(1);
        END:
        END;
GO TO IME:
    /* CUTSET CASR */
IMA: EK=PROR.fIOST:
        IF (PROP.MIM=1 & PROP.EIM(1)=NOI,L) THPS DO;
        BIfM=0:
        BIN=0:
        EHD:
        ELSE DO:
        BOM=PROP.MIM:
        BITN = 1;
        END:
        BUM= DUM + PFR.EEAL:
            BH7=0日M:
            CO IK=1 TO PएP.RKY;
            MA=PER.TAR (IK):
    ON=-CEIL (-4%A/100\capn);
    JA=-CEIL(-MA/1000):
            \AK=J^-10* DA;
```

```
STMT LFY MT
\begin{tabular}{llll}
245 & 2 & 1 & \\
246 & 2 & 2 & \\
247 & 2 & 2 & \\
248 & 2 & 1 & \\
249 & 2 & 0 & \\
250 & 2 & 0 & \\
251 & 2 & 0 & \\
252 & 2 & 1 & \\
253 & 2 & 1 & GO TO \\
254 & 2 & 1 & \\
255 & 2 & 0 & \\
256 & 2 & 1 & \\
257 & 2 & 1 & \\
258 & 2 & 0 & \(I M A O:\) \\
259 & 2 & 1 & \\
260 & 2 & 1 & \\
269 & 2 & 0 & \\
262 & 2 & 1 & \\
263 & 2 & 2 & \\
264 & 2 & 2 & \\
265 & 2 & 2 & \\
266 & 2 & 2 & \\
267 & 2 & 2 & \\
268 & 2 & 3 & \\
267 & 2 & 4 & \\
270 & 2 & 4 & \\
271 & 2 & 3 & \(I M A 4:\) \\
272 & 2 & 3 & PUT
\end{tabular}
```

```
            IF SAK=9 TIEN DO:
```

            IF SAK=9 TIEN DO:
        BUM=BITM+1;
        BUM=BITM+1;
        ERD:
        ERD:
        END:
        END:
        BHT: = RIIM- BIZ;
        BHT: = RIIM- BIZ;
        ALLOCATE OLH (BUM):
        ALLOCATE OLH (BUM):
        IF BIN=O THEN DO:
        IF BIN=O THEN DO:
        I=\:
        I=\:
        G0 TO TMAO;
        END:
        END:
        CO I=1 TO PROP.MIM;
        CO I=1 TO PROP.MIM;
        OLM(I)=PROP.RIM(I):
        OLM(I)=PROP.RIM(I):
        ENO:
        ENO:
        DO Im=I+1 TO 8UM-BU7:
        OLM(IL) =PER.KIM(IL-I):
    END:
    IF (B0%-20) THEN DO:
    ```

```

    MA=PER.TAR(IK);
        A=-CFIL (-HA/10000):
        JA=-CFIL (-MA/1000):
        JAK=JA-10*OA;
            IF (JAK=9) TIIFN DO:
            ON IX=1 TO RMOD:
            IF (TNIM(IX)=MA) THEA GO TO TMA4;
            END:
    AA4: OLH(IL) = ERIN(IX)->AR.SPIT:
        PUT RDIT('IMDEX=',IL,'PROP=',OLM(IL)->PROP.NAME)
                        (SKIP(1),A(6),P(5),A(5),F(5)):
        IL=IT+1;
        END:
        END:
        END:
        PER.RELL(2)=1;
        P#T EDIT("PATR=", IROP.NAMT:'IMP=",PER.RFL(2))
            (SKIP(1),A(5);F(5),A(4), E(18,6));
            IF PROP. VAI.IIES2 TIEE GO TO TMA2:
            IF PROP.VALUE=1 TIIEN DO;
            IF (PAOP.LIN=1 E PROP.TII(1)=0) TRFM DO:
            PROP,REL(2)=0;
            GO TO IMA1:
            ENत;
            PROP.RRL(2)=1:
            DO I=1 TO RROY.L.IM:
            STATE(2,PROP.TLL(I))=1;
            END:
            END:
            IF PROR.VALUE=2 THPN DN:
            IF (FRON.LIM=1 & PRON.TEI.(1)=C) TMEN NO:
    ```

PL/L UPTIMITING COMPILER NHMEHO: PMOC:ONUR?:
```

STMT I.EV NT

```


At this point IMPORTANCE is ready to assign importance values to the second generation of fault tree inputs, and at the same time storing the pointers locating the second generation modules.: This process will then be continued on until a generation (last generation) is found which contains no modular inputs (i.e., no-gates). IMPORTANCE performs this task by means of a DO LOOP which stops when the last generation is found ( \(\Rightarrow B U G=0\) ).

Each generation of modules GOLD (BUG) is created by passIng on the old values of array OLM(BUMI found in the preVious sweep. Moreover, a new generation of module pointers is created and assigned to OLM(BUM) with the following statements
```

** LOOP STARTS HERP */
IHE: DO MHILE(BNG%=0):
BIG=8tfM:
P\PiT LIST ('RUG=', RUG): \#
IF {BUG=0) THEN GO TO IME;
ALLOCATE GOLD (BUG);
DO I=1 TO RIJG:
GOLD(I)=OLM(T):
PHT FDIT('GOLD=',I,'PROR=',GULN(I) - PNROP. NAME)
(SRIP(1),A(5),F(5),A(5),F(5));
END:
ERFF OR.M:
BIIM=0;
DO I=1 TO BUG:
PT=GOLD(I):
IF QROP.ltOST=NUIL THPN DO:
IP (PNOP.MIM=1 \& PROE.PIM(1)=NHLL) THEN GO TO IME3;
ELSE BOMmBHM+PROP.MIM:
GO TO IMR3;
ENI;:
EIST: PR=PROP.ITOST:
IF {PROP.MTM=1 \& PROP. PIM(1)=NITLL} THPN GO TO IME2:
ELSE BIM=RUM+CROP.MIM:
IME2: IF (PER.LEAL=1 \& PEP.KIM(1)=NUZL) TIEN GO TO IMEQ;
ELSE BIN=BUM+PER.LRAL.;
IME1: DO IX=1 TO PER.RAM:
MA=FER.TAR(IX):
DA=-CFIE (-MA/10000);
JA=-CEIL(-HA/1000):
JAK=JA-10*DA;
IF JAK=9 THFM DO:

```

\begin{tabular}{lll}
401 & 2 & 1 \\
402 & 2 & 2 \\
403 & 2 & 2 \\
404 & 2 & 2 \\
405 & 2 & 3 \\
406 & 2 & 3 \\
497 & 2 & 3 \\
408 & 2 & 3 \\
409 & 2 & 3 \\
410 & 2 & 4 \\
411 & 2 & 4 \\
412 & 2 & 4 \\
413 & 2 & 13 \\
414 & 2 & 4 \\
495 & 2 & 4 \\
410 & 2 & 3
\end{tabular}
```

I* ASSIGN IMPORTANCPS OP OLDER GRNERATION */
IMI3: DO I=1 TO BIIG:
PT=GOLD(I):
CNT=PROP.RONT:
IF (CAT->PROP.TIPO=O) TIEN DO;
AFT=CAT:
ma=Ap.NAP;
JA=-CFIL(-MN/1000);
NA=MA-(1000)*JA:
IF(PPOR-HOST->=NULL) THEN DO :
PR=PROP.HOST;
TIERRA=PR;
QT=PER.DFXTER:
PER.REL (2)=STATD (2,NA):
GO TO IMK3:
END;
ELSE PROP.REL (2)=STATD (2,NA):

```
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} &  & \[
\underset{\omega}{\underset{\omega}{\boldsymbol{E}} \underset{\omega}{\boldsymbol{E}}}
\]
\[
\omega N \rightarrow
\] & \begin{tabular}{l}
 WNMNNNNNNNが・•• \\

\end{tabular} \\
\hline NNNNNNNNNNNNNNNN & NNNNNNNNNNNNNNNNNNNNNNNN & NNN & NNNNNNN \\
\hline  & ¢ん以 & fw & NW以 \\
\hline
\end{tabular}
```

            GO TO IMX2;
            END:
            IF CAT - PROP.HOST =NIILI. TYEN GO TO EMA2:
            IP PROP. HOST-FNIILL THEN GO TO EMA1:
    IHK4: IF GAT~PPROP.VALUE=1 THFN FROP.RELL(2) =CAT->PROP.RFL(2):
ET.SF:PRON. REL (2) = PPOR. RFI (1) *CAT->PPOP.REL (2)/CAT-SPROP.REL (1):
IMK2: IF PROP.VALIE*I TIIEN ON:
IF (EPOP.IIM=1 \& PROR.TIL(1)=0) THEM GO TO AHE;
DO IT=1 TO PROP.I.IM:
STATE(2,PROP.TIL(IT))=PROT.REL(2):
END:
GO TO AME:
ENH:
ELSE DO:
IF (PPOP.J.IM=1 \& PROP.TIL(I)=0) THEN GO TO AMP;
DO IT=1 TO PROP.LIM:
STATE(2,PROR.TIL(IT))=STATF(1,PROP.TIL (IT))*PROP.REL(2)/
PTOP.QEL(1):
END:
GO TO AME:
ENO:
EMA1: PR=PROP.HOST:
TIERRA=PR:
QT=PER.OEXTER:
IF CAT->PROR,VALUF=1 THFN PPR.RRL(2) =CAT->PROR.AEL (2);
ELSE PRR.REL(2)=PFR.RFL(1)*CRT->PROP.RFL(2)/CAT->PROP.REL(1):
IMK.3: IF PRON.VAEDE=1 TIIEM DO:
IF (PROP.LIM=1 \& PROP.TIL(1)=0) TRPN DO:
PROP.REL(2) =0:
GO TO EHEI:
END;
PLSE PROP.REL(2)=PER. RRL(2) :
DO IT=1 TO PROP.LIM:
STATE(2.PGOP.TIL(IT))= PROP.REL(2):
ENE;
Gn TO EME1:
END:
TF PROP.VAT,UE=2 IILEN DN:
IF (PROP.LIM=1 \& PROP.TIL(i)=0) THEN DO:
PROP.AEL (2)=0:
GO TO EME1;
EN!;
ELSE gROR.REL(2)=PER.REL(2)*PROP.RRL(1)/FER.RFL(1):
DO IT=1 TO PROP.LIM;
STATE(7., PROP.TIL(IT))=STATE(1,PROP.TIL(IT))*PROP.REL(2)/
@ROP.REL(1):
EN!;
GO TO EME1:
END:
IF PROP.VALUE>2 TIIEH DO;
PROP.RER. (2)=0:
IF (PER.RAM=1 E PFF.TAR(1)=0) THPN GO TO AMP:
DO IT=1 TO PER.RAM:
EX=IT:
CALI. MINTPP(PX):
SLATE(2,PRR.TAR(IT))=RET*PER.REL(2)/PER.REL(1) ;
EMn:
GO TO KMF:
END:
EYR1: no IT=1 TO PFR,RAM:
EX=IT:
GALL MTNHP(FX):
MA=PER.TAR(IT):

```
\begin{tabular}{|c|c|c|c|}
\hline . 478 & 2 & 3 & DA=-CEIT. (-MA/100no): \\
\hline 479 & 2 & 3 & JA=-CEIL (-MA/1000): \\
\hline 480 & 2 & 3 & JAK=, \({ }^{\text {J }}\) - 10^DA; \\
\hline 481 & 2 & 3 & NA=MA-1000*J \({ }^{\text {a }}\) \\
\hline 4.32 & 2 & 3 & IF (JAK -2 ) THFN STATD (2,NA)=REY*PER-REL (2)/RER. REL (1) : \\
\hline 483 & 2 & 3 & IF \(J A K=2\) THEN DO: \\
\hline 434 & 2 & 4 & SNOT \(=\) R FY *PPR.RPL. (2)/PER.REL (1) : \\
\hline 485 & 2 & 4 & ```
PIIT EDIT("NOTSTATE=',MN,'IMP=',SNOT)
    (SKIP(2),A(9),F(5), X(2),N(4), F(18,5));
``` \\
\hline 486 & 2 & 4 & END: \\
\hline 487 & 2 & 3 & END; \\
\hline 488 & 2 & 2 & \begin{tabular}{l}
GO TO AME; \\
/* NESTED CASE /
\end{tabular} \\
\hline 489 & 2 & 2 & EMA 2: PR=CAT \(->P R O P \cdot I\) OST: \\
\hline 490 & 2 & 2 & IIERRA = PR: \\
\hline 491 & 2 & 2 & QT=PFR.DEXTER; \\
\hline 472 & 2 & 2 & DO IT=1 TO PER.LEAL; \\
\hline 49.3 & 2 & 3 & IE PER.KIM(IT) =GOLD(I) THFN GO TO PMA3: \\
\hline 494 & 2 & 3 & END: \\
\hline 495 & 2 & 2 & GO TO IMK4: \\
\hline 496 & 2 & 2 & EMA3: IP CAT->PROP.VALUFく=? THEN PX= [T+1+PRR.RAM: \\
\hline 497 & 2 & 2 & ELSE IP (PRR, RAM=1 \% FPR.TAR(I) =0) THFM EX=IT; \\
\hline 498 & 2 & 2 & ELSE EX=IT+PER.RAM: \\
\hline 499 & 2 & 2 & CALI. MINUP(EX): \\
\hline 500 & 2 & 2 & IF (RNOP. \(110 S T \rightarrow\) NULL) THFY DN: \\
\hline 501 & 2 & 3 & PROP.HOST- P PRF. RFL (2) = RET*PPR.RET. (2)/PEP. REL (1) : \\
\hline \(5 \cap 2\) & 2 & 3 & ER=PROP. HOST: \\
\hline 503 & 2 & 3 & TIERRR \({ }^{\text {P PR: }}\) \\
\hline 504 & 2 & 3 & QT=PFR.CEXTFF; \\
\hline 505 & 2 & 3 & GO TO [MR3: \\
\hline 506 & 2 & 3 & 日80: \\
\hline 507 & 2 & 2 & ELSE PROP.RSL (2) = REY*PER.RFL (2) / PRR.TEL(1) ; \\
\hline 598 & 2 & 2 & IP PROF.VALUE= 1 TIIEN DO: \\
\hline 509 & 2 & 3 & IFPPROP. IIM= ¢ ¢ PROP.TIT. \((9)=0\) ) TIPN GD TO AME; \\
\hline 510 & 2 & 3 & ELSE DO IT \(=1\) TO PROP.LT: \\
\hline 511 & 2 & 4 & STATE(2.PROP. ITL (IT) \(=\) PROR.RPL (2) : \\
\hline 512 & 2 & 4 & END; \\
\hline 513 & 2 & 3 & PND: \\
\hline 514 & 2 & 2 & IP PROP.VALUE=2 THEN OO: \\
\hline 515 & 2 & 3 &  \\
\hline 516 & 2 & 3 & ELSP 20 IT=1 TO PROP.LTY: \\
\hline 517 & 2 & 4 & STATP(2.FROP.TIL (IT))=STAT?(1, PROP.TIL(IT)) *PROP.RPI. (2) / FROP.RFL (1) ; \\
\hline 518 & 2 & 4 & END: \\
\hline 519 & 2 & 3 & ENT: \\
\hline 520 & 2 & 2 & AME: END: \\
\hline 521 & 2 & 1 & EREF GOLD: \\
\hline 522 & 2 & 1 & END; \\
\hline 523 & 2 & 0 & PITT SKIP(2) LIST(VVESFLT-FISSSFLL LMPOPTANCEST) ; \\
\hline 524 & 2 & 0 & PTT SKIP(2) [.IST('PREE EYPNTS') : \\
\hline 52.5 & 2 & 0 & DO \(I=1\) TO FUN; \\
\hline 526 & 2 & 1 & PUT SKIP dA TA(T, STATE(2,I)): \\
\hline 527 & 2 & 1 & END: \\
\hline 528 & 2 & 0 & - PIT SKIP(2) LIST('RETLICATFD EVENTS'); \\
\hline 529 & 2 & 0 & DO \(I=1\) TO DUN; \\
\hline 5.30 & 2 & 1 & Put SKIP DATA(I, STATD (2,I)) ; \\
\hline 531 & 2 & 1 & END: \\
\hline 532 & 2 & 0 & PUT SKIP(2) LIST('MOD(IR.RS') : \\
\hline 533 & 2 & 0 & DO I= 1 TOTE: \\
\hline 5.34 & 2 & 1 & PT=BnSt (I) : \\
\hline 535 & 2 & 1 & PUT EDTT('MODILLE NAMEZ', FTחN.NAME.'TMP=', PROP.RFL (2)) (SKIP(1),A(12),P(5),X(2),A(4), E(18, 6)): \\
\hline 536 & 2 & 1 &  \\
\hline 537 & 2 & 2 &  \\
\hline 538 & 2 & 2 &  \\
\hline 539 & 2 & 1 & END: \\
\hline 540 & 2 & 0 & END IMPORTANCR; \\
\hline 541 & 1 & 0 & END NHMERO: \\
\hline
\end{tabular}

For the pressure tank fault tree example, procedure IMPORTANCE assigns the modular and basic event Vesely-Fussell importance values in the following steps
\[
I_{M_{9}}^{V \cdot F \cdot}=I_{M_{4}}^{V \cdot F}=4.49887 \times 10^{-10}
\]
\[
I_{5}^{V \cdot F \cdot}=I_{6}^{V \cdot F \cdot}=I_{7}^{V \cdot F \cdot}=I_{8}^{V \cdot F \cdot}=I_{9}^{V \cdot F \cdot}=I_{10}^{V \cdot F \cdot}=
\]
\[
=I_{M_{5}}^{V} \cdot \frac{10^{-5}}{\mathrm{P}_{\mathrm{M}_{5}}}=7.49812 \times 10^{-11}
\]

STEP 3
\(I_{11} V_{1}=I_{12}^{V \cdot F}=I_{13}^{V \cdot F}=I_{M_{g}}^{V} \cdot F=\frac{2 \times\left(10^{-5}\right)^{2}}{P_{M_{9}}}=2.99924 \times 10^{-10}\)
\[
\begin{aligned}
& \text { STEP } 1 \quad I_{T O P}^{V} \cdot{ }^{\text {TOP }}=1 \\
& I_{r} V_{r}=\frac{P_{r}}{P(T O P)}=2.49937 \times 10^{-1} \\
& I_{M_{1}}^{V_{1}} \cdot \frac{{ }^{P_{M_{1}}}}{P(T O P)}=7.500625 \times 10^{-1} \\
& I_{M_{4}}^{V} \cdot F \cdot=I_{M_{5}}^{V \cdot F}=\frac{{ }_{M_{4}}{ }^{P} M_{5}}{P(T O P)}=4.49887 \times 10^{-1} \\
& I_{I}^{V . F .}=I_{M_{I}}^{V} \cdot F \cdot=\frac{P_{I}}{P_{M_{1}}}=2.49937 \times 10^{-4} \\
& I_{2}^{V \cdot F}=I_{3}^{V} \cdot F \cdot=I_{4}^{V} \cdot F \cdot=I_{M_{I}}^{V} \cdot F \cdot \frac{10^{-5}}{\mathrm{P}_{M_{I}}}=2.49937 \times 10^{-1} \\
& \text { STEP } 2
\end{aligned}
\]

\section*{NUCLEAR REACTOR SAFETY SYSTEM FAULT TREE EXAMPLES}
IV.I. Introduction

The PL-MOD code was used to analyze a number of nuclear reactor safety system fault trees, and its performance and results were compared to those obtained using the minimal cut-set generation codes PREP and MOCUS.

The safety systems analyzed included:
(a) a Triga Scram Circuit [14] fault tree composed of 22 simple \(A N D\) and \(O R\) gates, a 3-out of - 4 symmetric gate, 20 nonreplicated basic events and 2 replicated events.
(b) A Standby Protective Circuit [Id fault tree composed of 19 gates, 24 non-replicated basic events and 5 replicated basic events.

PL-MOD executed the modularization of the SPC fault tree in a time comparable to that taken by MOCUS (. 034 m 1 n.\()\) to list the set of 100 minimal cut-sets associated with the fault tree. However, the execution time taken by PREP's deterministic routine \(C O M B O\) was about 6 times longer (2 min.).
(c) A PWR High Pressure Coolent Injection
System [ 20 reduced fault tree composed
of 59 non-replicated gates, 4 replica-
ted modular gates, 142 non-replicated
basic components and 9 replicated
basic components.
The execution time taken by PL-MOD
to modularize this larger tree was
about 25 times smaller (. 081 min.)
than that taken by Mocus ( 2.015 min.)
to generate the set of 2724 single,
double, and triple fault cut-sets
associated with the fault tree.

\section*{IV.2. Triga Scram Circuit}

A simplified diagram of the TRIGA Scram Circuit [14] is shown in Figure 4.1, while Figure 4.2 shows the fault tree describing the possible combination of events causing a failure of the reactor to scram as required when the steady state reactor power exceeds a one megawatt level.

The triga circuit is turned on when an operator pushes the "power-on" switch. An operator key switch is placed in the reset position to momentarily energize relays \(R 19\) and \(R 20\), which in turn energize relays R7 to R12. The lower "B" contacts of each of the relays receive voltage from one of the corresponding instrument channels, thus maintaining the coils energized. The upper "A" contacts will maintain relay Kl energized and thus


FIGURE 4.1 TRIGA Scram Circuit


FIGURE 4.2 TRIGA Scram Fault Tree


FIGURE 4.2 Continued


FIGURE 4.2 Continued
provide power to the magnets and solenoid valve. However, when any instrumentation channel interrupts its voltage supply to the corresponding relay, a scram control rod drop should occur due to a de-energized scram magnet or solenoid valve.

For a successful TRIGA reactor shut-down, at least 2 out of the 4 control rods must be inserted in the reactor. Hence G2 is a 3 -out of -4 symmetric gate, since it is necessary that 3 out of the 4 control rod drop mechanisms fail to cause a TRIGA scram system failure. Notice that since relay Kl is common to each of the four rod-drop mechanisms, gate G8 may be taken as a direct input to gate \(G 1\).

In Table 4.1 the nomenclature identifying each basic event as well as its description and failure rate are given. The failure data are expressed in failures per cycle (there are 300 cycles per year assumed).

The modular structure determined by PL-MOD for the Triga scram fault tree is as follows:

G2: Symmetric 3-out of 4 module \(Y^{B}=\left(Y_{G 3}, Y_{G 5}, Y_{G 6}, Y_{7}\right)\)
\(K_{1}=(1,1,0,1)\)
\(K_{2}=(1,0,1,1)\)
\(K_{3}=(0,1,1,1)\)
\(\mathrm{K}_{4}=(1,1,1,0)\)
\(G_{3}=\{1,15 ; U\} \quad G_{5}=\{2\}, G_{6}=\{3\}, G_{7}=\{4\}\)

TABLE 4.1
TRIGA SCRAM CIRCUIT BASIC EVENT DATA

PL-MOD
Identifier

1

2

Alphanumeric Identifier

Event Description

Failure Rate (Per Cycle)

PE-1

PE-2

PE-3

PE-4

PE-5
PE-6
PE-7
PE-8
PE-9
PE-IO
PE-11
VE-1

VE-2
VE-3

VE-4

VE-5

VE-6

Solenoid Valve Fails \(\quad 10^{-4}\) to open
Electromagnet Safety \(10^{-5}\) rod shorts to ground
Electromagnet of Shim \(10^{-5}\) rod shorts to ground
Electromagnet of Regulat- \(10^{-5}\) ing rod shorts to ground
K1 Contacts fail to open \(10^{-5}\)
K7A Contacts fail to open \(10^{-5}\)
K8A contacts fail to open \(10^{-5}\)
K9A contacts fail toopen \(10^{-5}\)
KI9A Contacts fail to open \(10^{-5}\)
K19B Contacts fail to open \(10^{-5}\)
K19C Contacts fail to open \(10^{-5}\)
Mechanical jamming of control rods
\(10^{-6}\)
Gross movement of core \(10^{-6}\)
Control rods are of insufficient worth 10-6

Air Tube to Piston Chamber clogged \(10^{-5}\)

Linear Channel remains energized when \(P>1 M_{W} \quad 10^{-4}\)
\% Power Channel remains energized when \(P>I M_{W} \quad 10^{-4}\)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { PL-MOD } \\
\text { Identifier }
\end{gathered}
\] & Alphanumeric Identifier & Event
Description & Failure Rate (Per Cycle) \\
\hline 18 & VE-7 & Period Channel fails to de-energize when \(T<3\) sec. & \[
0 \quad 10^{-4}
\] \\
\hline 19 & HE-1 & \(T<3\) sec when \(P>1 M_{W}\) & 0.5 \\
\hline 20 & HE-2 & T 3 sec when \(P 1 M_{W}\) & 0.5 \\
\hline 30001 & VE-8 & Reset Switch sticks in reset position & \[
10^{-5}
\] \\
\hline 30002 & VE-9 & External Force preventi switch from opening & \[
\operatorname{lng}_{10^{-5}}
\] \\
\hline
\end{tabular}
\[
\begin{aligned}
& G 9=\text { Higher Order Module } \\
&\left(r_{1}=30001, r_{2}=30002\right) \\
& Y^{B}=\left(Y_{r_{1}}, Y_{r_{2}}, Y_{\mathrm{m}_{9}}, Y_{G 10}, Y_{G 13}, Y_{G 17}, Y_{G 18}, Y_{G 19}\right) \\
& K_{1}=(0,0,1, I, I, I, 0,0) \\
& K_{2}=(1,0,1,0,0,1,0,0) \\
& K_{3}=(0,1,1,0,0,1,0,0) \\
& K_{4}=(0,0,1,1,1,0,1,1) \\
& K_{5}=(1,0,1,0,0,0,1,0) \\
& K_{6}=(0,1,1,0,0,0,1,0)
\end{aligned}
\]

Gl: TOP gate event
\[
G 1=5,12,13,14, G 2, G 9 ; U
\]

Hence basic events \(5,12,13\) and 14 correspond to single event minimal cut-sets.

A list of all modular and single event minimal cut-set event occurrence probabilities (P) and Vesely-Fussell importance measures ( \(I^{\nabla . F \cdot}\) ) computed by PI-MOD for the fault tree after one cycle period is given in Table 4.2.
IV.3. Standby Protective Circuit

Figures 1.1 and 1.2 given in the thesis' Introduction illustrate a standby Protective Circuit System's diagram and fault tree [18]. This system is similar to reactor protective circuits and is normally found in a standby mode. The purpose of the system is to recognize an abnormal pressure or level condition and then close a relay which initiates other action.

TABLE 4.2
OCCURRENCE PROBABIIITIES AND VESELY-FUSSELL IMPORTANCE VALUES FOR THE TRIGA SCRAM FAULT TREE
\begin{tabular}{|c|c|c|}
\hline Module & P & \(I^{\text {V.F. }}\). \\
\hline G1 3 & \(3.3007 \times 10^{-5}\) & 1 \\
\hline G9 2 & \(2.0072 \times 10^{-5}\) & \(6.0614 \times 10^{-1}\) \\
\hline Gl0 1 & \(1.2 \times 10^{-4}\) & \(2.1816 \times 10^{-4}\) \\
\hline G13 1 & \(1.2 \times 10^{-4}\) & \(2.1816 \times 10^{-4}\) \\
\hline G17 0 & 0.5 & \(3.0318 \times 10^{-1}\) \\
\hline G18 0 & 0.5 & \(3.0296 \times 10-1\) \\
\hline G19 1 & \(1.2 \times 10^{-4}\) & \(2.6176 \times 10^{-8}\) \\
\hline G2 3 & \(3.4 \times 10-14\) & \(1.0301 \times 10-9\) \\
\hline G3 1 & \(1.1 \times 10^{-4}\) & 10-9 \\
\hline G5 1 & 10-5 & \(6.97 \times 10^{-10}\) \\
\hline G6 1 & 10-5 & \(6.97 \times 10^{-10}\) \\
\hline G7 1 & \(10^{-5}\) & \(6.97 \times 10^{-10}\) \\
\hline Single Event Cut-Set & t P & \(I^{\mathrm{V} . F}\). \\
\hline 5 & \(10^{-5}\) & \(3.0296 \times 10^{-1}\) \\
\hline 12 & \(10^{-6}\) & \(3.0296 \times 10^{-2}\) \\
\hline 13 & 10-6 & \(3.0296 \times 10^{-2}\) \\
\hline 14 & \(10^{-6}\) & \(3.0296 \times 10^{-2}\) \\
\hline
\end{tabular}

The fault tree's top event corresponds to a failure of relay R3 contact \#1 to close. Normally relays RI, R2 and R3 are deenergized. Relay RI receives power if one of the branches of contacts in line with it permit current to flow (such as contacts LSA \#1 and LSB \#1). To be energized relay R2 requires that either contact RI \#l or both manual switch MSI and MS2 be closed. Relay R3 becomes energized if one pressure switch (PSA, PSB, or PSC) and the contact associated with relay R2 are closed (test switches TSI and TS2 are not included in the fault tree). The nomenclature and unavailability data for each basic event are given in Table 4.3.

The minimal cut-set description for the SPC fault tree was given in Table 1.1 in the Introduction, while its modular structure determined by PL-MOD is as follows:
\[
\begin{aligned}
& G_{I 2}=\{4,7 ; U\} G_{I 3}=\{5,8 ; U\} G_{I 4}=\{6,9 ; U\} \\
& \left.G_{6}=\left\{G_{12}, G_{13}, G_{14} ; \Omega\right\} \quad \text { Triple cut-sets }\right) \\
& G_{8}=\{17,18,19,20,21,22 ; U\} \\
& G_{16}=\text { Higher Order Module } \\
& Y^{B}=\left(Y_{r_{1}}, Y_{I_{2}}, Y_{r_{3}}, Y_{I_{4}}, Y_{r_{5}}, Y_{m_{16}}, Y_{G_{17}}, Y_{G_{I 8}}, Y_{G_{I 9}}\right) \\
& K_{1}=(1,0,0,0,0,1,0,0, I) \\
& K_{2}=(1,0,1,0,0,1,0,0,0) \\
& K_{3}=(1,0,0,1,0,1,0,0,0) \\
& K_{4}=(1,0,0,0,1,1,0,0,0) \\
& K_{5}=(0,0,1,0,0,1,0,1,0) \\
& K_{6}=(0,1,1,0,0,1,0,0,0)
\end{aligned}
\]

TABLE 4.3
STANDBY PROTECTIVE CIRCUIT BASIC EVENT DATA

PL-MOD Identifier

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
\[
\begin{aligned}
& 17 \\
& 18
\end{aligned}
\]

19 20

21
22
23
24
20003
20004
20001
20002
20005

Alphanumeric Identifier
N.O.R1
N.O.R2
N.O.R3
APS
BPS
CPS
N.O.AP
N.O.BP
N.O.CP

FI
F2
BAT
WSC

R1
R2
R3
MSI
MS2
N.O.MSI
N.O.MS2

OP.MSI
OP.MS2
NO 2 LSA\#2
NO LSB\#2
NO. LSA\#1 NO. LSB\#1

\section*{ALS}

BLS
CLS
\begin{tabular}{|c|c|}
\hline Event Description & Unavailibility Per Demand \\
\hline Normally open contacts fail open & \(1.1 \times 10^{-4}\) \\
\hline Pressure sensor fails & \(10^{-4}\) \\
\hline Normally Open Pressure sensor contacts fail open & s \(4.3 \times 10^{-4}\) \\
\hline Fuse Fails Open & \(3 \times 10^{-4}\) \\
\hline Battery Fails & \(1.1 \times 10^{-3}\) \\
\hline Wires short in circuit & \(1.1 \times 10^{-4}\) \\
\hline Relay Fails on Demand & \(10^{-4}\) \\
\hline Manual switch fails to function on demand & \[
10^{-5}
\] \\
\hline Manual Switch fails to close & \(3.6 \times 10^{-5}\) \\
\hline Operator does not initiate manual swit & \(\operatorname{tch} 10^{-3}\) \\
\hline \begin{tabular}{l}
Normally Open Level \\
Sensor Contact fails Open
\end{tabular} & s \(4.3 \times 10^{-4}\) \\
\hline Level sensor fails & \(10^{-4}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \mathrm{K}_{7}=(0,0,1,0,1,1,0,0,0) \\
& \mathrm{K}_{8}=(0,1,0,0,0,1,0,0,1) \\
& \mathrm{K}_{9}=(0,1,0,1,0,1,0,0,0) \\
& \mathrm{K}_{10}=(0,1,0,0,1,1,0,0,0) \\
& \mathrm{K}_{11}=(0,0,0,1,0,1,0,1,0) \\
& \mathrm{K}_{12}=(0,0,0,1,1,1,0,0,0)
\end{aligned}
\]
\[
\text { with } \begin{aligned}
r_{1} & =20001, r_{2}=20003, r_{3} 20002, r_{4}=20004, \\
r_{5} & =20005 . \text { and }
\end{aligned}
\]
\[
\begin{aligned}
& M_{16}=\{\text { empty set }\} \\
& G_{17}=\{\text { empty set }\} \\
& G_{18}=\{23\} \\
& G_{19}=\{24\}
\end{aligned}
\]
\[
\begin{aligned}
& G_{9}=\{I, 4, G 16 ; U\} \\
& G_{7}=\left\{G_{8}, G_{g} ; \Omega\right\} \quad \text { (Double and Triple cut-sets) }
\end{aligned}
\]
\[
\text { TOP EVENT: } G_{1}=\{2,3,10,11,12,13,15,16, G 6, G 7 ; U\}
\]
\[
\text { Hence }(2,3,10,11,12,13,15,16) \text { are single event }
\] cut-sets.

In Table 4.4 a list is provided of all modular and single event minimal cut-set unavailabilities (U) and Vesely-Fussell importances values ( \(I^{\text {VF. }}\) ) computed by PL-MOD for the SPC fault tree.

TABLE 4.4
UNAVAILABILITIES AND VESELY-FUSSELL IMPORTANCE MEASURES FOR THE STANDBY PROTECTIVE CIRCUIT FAULT TREE
\begin{tabular}{|c|c|c|}
\hline Module & U & \(I^{\text {V.F. }}\) \\
\hline G1 & \(3.2204 \times 10^{-3}\) & 1 \\
\hline G6 & \(1.48 .9 \times 10^{-10}\) & \(4.623 \times 10^{-8}\) \\
\hline G7 & \(4.4115 \times 10^{-7}\) & \(1.37 \times 10^{-4}\) \\
\hline G8 & \(2.092 \times 10^{-3}\) & \(1.37 \times 10^{-4}\) \\
\hline G9 & \(2.1087 \times 10^{-4}\) & \(1.37 \times 10^{-4}\) \\
\hline G12 & \(5.3 \times 10^{-4}\) & \(4.623 \times 10^{-8}\) \\
\hline G13 & \(5.3 \times 10^{-4}\) & \(4.623 \times 10^{-8}\) \\
\hline G14 & \(5.3 \times 10^{-4}\) & \(4.623 \times 10^{-8}\) \\
\hline G16 & \(8.748 \times 10-7\) & \(5.6827 \times 10^{-7}\) \\
\hline G18 & \(1.1 \times 10^{-4}\) & \(3.858 \times 10^{-8}\) \\
\hline G19 & \(1.1 \times 10^{-4}\) & \(3.858 \times 10^{-8}\) \\
\hline
\end{tabular}

Single Event Cut-Set

2
3
10
11
12
15
16

\(1.1 \times 10^{-4}\)
\(1.1 \times 10^{-4}\)
\(3 \times 10^{-4}\)
\(3 \times 10^{-4}\)
\(1.1 \times 10^{-3}\)
\(10^{-4}\)
\(10^{-4}\)
\(I^{V . F}\).
\(3.416 \times 10^{-2}\)
\(3.416 \times 10^{-2}\)
\(9.315 \times 10^{-2}\)
\(9.315 \times 10^{-2}\)
\(3.416 \times 10^{-1}\)
\(3.105 \times 10^{-2}\)
\(3.105 \times 10^{-2}\)
IV.4. High Pressure Injection System for a Pressurized Water Reactor

The PWR High Pressure Injection System (HPIS) is a part of the emergency coolant injection system (ECIS) which provides a high pressure source of emergency cooling water to the reactor coolant system (RCS) [20]. The HPIS is mainly used for small loss of coolant accident (LOCA) or secondary (steam) ruptures such that the RCS pressure is not low enough for use of the low pressure injection system (LPIS) or accumulator injection.

Figure 4.3 shows a simplified system diagram for the HPIS. The high pressure charging pumps are used to draw water from the refueling water storage tank (RWST) and injects the water at normal RCS pressure into the cold legs. Another function of the HPIS is to push the 12 weight percent boric acid solution In the 900 gallon boron infection tank (BIT) into the RCS to provide for a reactivity suppresion when a steam rupture occurs. The required flow for successful infection is 150 gpm , which corresponds to at least one charging pump function.

During normal operation, one operating charging pump draws water from the volume control tank (VCT) and discharges to the RCS through the open valves 1289A and 1289B. However, when the safety injection control system (SICS) is activated the following changes take place in the HPIS system configuration:
(1) The supply valves \(1115 B\) and 1115 D are opened to allow the RWST to provide water for the HPIS pump suction.
(2) The standby charging pumps are started.


FIGURE 4.3
Simplificd System Diagram


FIGURE 9
REDUCED FAULT TREE OF THE HPIS


Figure 9 continued


Figure 9 continued

\(N\)
0
\(O\)

Figure 9 continued
(3) Isolation valves 1115 C and 1115 E are closed to prevent draining of the VCT.
(4) The normal charging Ine isolation valves 1289A and 1289 B are closed.
(5) The isolation valves 1867A and 1967B at the BIT tank inlet are opened as well as the isolation valves 1967 C and 1967 D at the BIT outlet.
(6) The boric acid recirculation line trip valves are closed terminating recirculation between the Boric Acid Tanks (BAT) and the Boron Injection Tank (BIT).
(7) Charging System mini-flow valves are closed so that all operable charging pumps will pump water from the RWST to discharge header CH-80 through HPIS line S1-57, through the BIT, and to the RCS cold legs.

In the Reactor Safety Study, the HPIS unavailability estimates obtained were
\(U \mathrm{med}=8.6 \times 10^{-3}\)
\(U\) lower \(=4.4 \times 10^{-3}\)
\(U\) upper \(=2.7 \times 10^{-2}\)
with the lower and upper bound evaluated by a Monte-Carlo simulation. The point estimates obtained were
\(u\) total \(=3.8 \times 10^{-3}\)
\(U\) singles \(=1.1 \times 10^{-3}\)
\(U\) doubles \(=2.5 \times 10^{-3}\)
U charging pump \(=7.0 \times 10^{-6}\)
\(U\) test and maintenance \(=\varepsilon \simeq 0\)
The reduced fault tree given in the Reactor Safety Study for the HPIS system is shown in Figure 4.4. Each basic input event in the fault tree is labeled by an eight character code name [ ]. The coding scheme specifies the system, component type, identifier and failure mode for each basic event as follows:

TABLE 4.5
PWR SYSTEM IDENTIFICATION CODE

CODE
A

\section*{SYSTEM NAME}

\section*{Accumulator (ACC)}

Containment Leakage (CL)
Consequence Limiting Control System (CLCS)
Containment Heat Removal System (CHRS)
Containment Spray Injection Systen (CSIS)
Containment Spray Recirculation System (CSRS)
Electrical Power (EPS)
High Pressure Injection System (HPCIS)
High Pressure Recirculation System (HPCRS)
Low Pressure Injection System (LPIS)
Low Pressure Recirculation System (LPRS)
Sodium Hydroxide Addition System (SHAS)
Reactor Protection System (RPS)
Safety Injection Control System (SICS)
Auxiliary Feedwater (AF)

TABLE 4.6
COAPONENT CODE

Mechanical Components
\begin{tabular}{|c|c|c|c|}
\hline Accumulator & AC & Sluice Gate & SL \\
\hline Blower & BL & Sump & SP \\
\hline Control Rod Drive Unit & CD. & Subtree & ST \\
\hline Cover Plate & FA & Tank & TK \\
\hline Demper & DM & Tubing & TG \\
\hline Diesel & DL & Turbine & TB \\
\hline Expansion Joint & XI & Valve, Ćheck & CV \\
\hline Filter or Strainer & FL & Valve, Explosive Operated & EV \\
\hline Gas Bottle & GB & Valve, Hydraulic Operated & HV \\
\hline Gasket & GK & Valve, Manual & XV \\
\hline Heat Exchanger & HE & Valve, Motor Oparated & MV \\
\hline Nozzle & NZ & Valve, Pneumatic Operated & AV \\
\hline Orifice & OR & Valve, Relief & RV \\
\hline Pipe & PP & Valve, Safety & SV \\
\hline Pipe Cap & CP & Valve, Solenoid Operated & KV \\
\hline Pressura Vessel & PV & Valve, Stop Check & DV \\
\hline Pump & PM & Valve, Vacuum Relief & VV \\
\hline Reactor Control Rod & \(E D\) & Vent & VT \\
\hline Refrigeration Unit & RF & Well & WL \\
\hline
\end{tabular}

TABLE 4.6 (Continued)
Electrical Components
\begin{tabular}{|c|c|c|c|}
\hline Amplifier & AM & Ground Switch & GS \\
\hline Annunciator & AN & Relay & RE \\
\hline Battery & BY & Relay or Switch Contact & CN \\
\hline Battery Charger & BC & Reset Switch & RS \\
\hline Bus & BS & Resistor, Temp. Divice & RT \\
\hline Cable & CA & Signal Comparator & \(A D\) \\
\hline Circuit Breaker & CB & Switch, Pressure & PS \\
\hline Clutch & CL & Switch, Torque & QS \\
\hline Control Switch & CS & Switch, Temperature & TS \\
\hline Coil & CO & Terminal Board & TM \\
\hline Detector & DI & Diode or Rectifier & DE \\
\hline DC Power Supply & DC & Fuse & FU \\
\hline Flow Switch & FS & Generator & GE \\
\hline Heating Element & HG & Heat Tracing & HT \\
\hline Input Module & IM & Test Pushbutton & SB \\
\hline Inverter (solid state) & IV & Thermal Overload & OL. \\
\hline Level Switch & ES & Timer & TI \\
\hline Light & LT & Transformer, Current & CT \\
\hline Limit Swtich & LS & Transformer, Potential (or control) & OT \\
\hline Manual Switch & SW & Transforner, Power & TR \\
\hline Motor & MO & Transmitter, Flow & TF \\
\hline Motor Starter & MS & Transmitter, Level & IL \\
\hline Neutron Detector & ND & Transmitter, Pressure & TP \\
\hline Potentiometer & PT & Transmitter, Temperature & TT \\
\hline Recorder & RC & Wire & WR \\
\hline Lightning Arrester & IA & Event (where no component involved) & 00 \\
\hline
\end{tabular}

\section*{TABLE 4.7}

FAILURE MODE CODE

Failure Mode
\begin{tabular}{|c|c|}
\hline Closed & C \\
\hline Disengaged & G \\
\hline Does Not Close & K \\
\hline Does Not Open & D \\
\hline Does Not Start & A \\
\hline Engaged & E \\
\hline Exceeds Iimit & M \\
\hline Leakage & L \\
\hline Loss of Function & F \\
\hline Maintenance Fault & \(\dot{Y}\) \\
\hline No Input & N \\
\hline Open & 0 \\
\hline Open Circuit & B \\
\hline Operational Fault & X \\
\hline Overload & H \\
\hline Plugsed & P \\
\hline Rupture & R \\
\hline Short Circuit & Q \\
\hline Short to Ground & S \\
\hline Fault Transfer & T \\
\hline
\end{tabular}

Thus, for example, basic event FMV866FX refers to a High Pressure Injection System Motor Operated Valve tailoring due to an Operators error.

A large number of basic events shown in the reduced fault tree do not contribute to the system's failure since their unavailabilities were found to be negligible \((\varepsilon \rightarrow 0)\) by the Reactor Safety Study. Table 4.8 is a list of those basic events which were included in the analysis performed by PL-MOD and MOCUS. The number 1dentifying each event input along with its unavailability and alphanumeric identifier are given in the Table. A total of 142 non-replicated basic events, 9 replicated events adn 4 replicated modular gates were included in the reduced fault tree. PL-MOD computed a point unavailability
\[
U=4.71 \times 10^{-3}
\]
for the HPIS reduced fault tree. The reduced fault tree was found to be representable by a 50 component Boolean vector higher order structure, 1.e.
\[
Y^{B}=\left(Y_{r_{1}}, \ldots, Y_{r_{13}}, Y_{m_{0}}, Y_{m_{1}}, \ldots, Y_{m_{36}}\right)
\]

Table 4.9 is the PL-MOD output giving the order in which each replicated event and nested module is listed in the Boolean vector, as well as the modular minimal cut-set matrix K representing the higher order gate.

Thus it may be seen by inspecting Table (4.9) that
\[
r_{1}=20006, r_{2}=20005, \ldots \ldots,, r_{13}=29010,
\]
\(M_{0}=G 1\) sub-module, \(M_{1}=G 8, M_{2}=G 9, \ldots, M_{35}=G 56, M_{36}=G 63\).
and
\[
K=\left[\begin{array}{c}
K_{1} \\
K_{2} \\
\vdots \\
\vdots \\
K_{63}
\end{array}\right]
\]

Notice that each modular cut-set may include single, double and triple basic event cut-sets. Thus for example \(K_{1}\) consists of a single modular event \(K_{1}=\left(M_{0}\right)\) corresponding to the proper port attached to top gate Gl. And as seen in Table (4.10)
\(M_{0}=\{48,49,50,51,52,53,54,55,1,2,3,12,13\), , G2, G38, G11; U\}
with \(G 2=\{G 5, G 6 ; \Omega\}\)
\[
G 5=\{4,5,6,7 ; U\} \quad G 6=\{8,9,10,11 ; U\}
\]
\[
G 38=\{56,57 ; \Omega\}
\]

Gll \(=\{G 17, G 18 ; \Omega\}\)
G17 \(=\{30,31,32,33,34 ; U\} \quad G 18=\{36,37,38,39 ; U\}\)
Hence, Kl includes single as well as double basic event minimal cut-sets.

The modular gate event occurrence probabilities (unavailabllities) computed by PL-MOD for the reduced fault tree are given in Table 4.11. Thus for example gates Gl, G5 and TOP
have the unavailabilities
\[
\begin{aligned}
& P(G I)=1.126 \times 10^{-3}, P(G 5)=2.7 \times 10^{-3}, \\
& P(T O P)=4.7118 \times 10^{-3}
\end{aligned}
\]

It should be mentioned that "empty" nested AND gates appearing In a higher order structure are given a unit probability of occurrence (Figure 4.5). Thus, the fault tree shown in Figure 4.5 has the following cut-set description
( \(M_{2}=\) empty AND gate)
\[
\begin{aligned}
& K_{1}=(0,1,0,0,0) \\
& K_{2}=(1,0,0,0,0) \\
& K_{3}=(0,0,1,1,1)
\end{aligned}
\]

However, since \(P\left(M_{2}\right) \equiv 1\), then \(P\left(K_{3}\right)=P_{M_{3}} P_{M_{4}}\) as required.
The modular Vesely-Fussell importance values are listed in Table (4.12). Thus, for example
\[
I_{T O P}^{V \cdot F}=I, I_{M_{0}}^{V \cdot F}=2.39 \times 10^{-1}, I_{G 59}^{V \cdot F}=2.08 \times 10^{-1}
\]

The evaluation of the Vesely-Fussell importances may be seen to be particularly useful for cutting off unimportant portions of the fault tree before proceeding on to make a Monte-Carlo simulation to find upper and lower bounds on the uncertainty in the overall system unavailability. Thus, if for the HPIS reduced fault tree one were to cut off modules having an importance smaller than \(2 \times 10^{-2}\), then its Boolean state vector representation would be considerably simplified to
\[
Y^{B}=\left(Y_{r_{1}}, \ldots, Y_{r_{13}}, Y_{M_{0}}, Y_{M_{1}}, \ldots, Y_{M_{13}}\right)
\]
with
\[
\begin{aligned}
& M 1=G 35 \\
& M 2=G 47 \\
& M 3=G 48 \\
& M 4=G 43 \\
& M 5=G 53 \\
& M 6=G 39 \\
& M 7=G 40 \\
& M 8=G 49 \\
& M 9=G 50 \\
& M 10=G 51 \\
& M 11=G 52 \\
& M 12=G 45 \\
& M 13=G 56
\end{aligned}
\]


FIGURE 4.5
"EMPTY" NESTED AND GATE
```

NUG freE EyENT INPUTS= 142
HOM REPLICATEE EVENT INPOTS= 13
FREE INPUT RELIABIlIIY
1 3.599999E-07
2-9.999999E-05
3 3.599999E-07
4 3.CONOOOR-04
5 1.30000cr-n3
6 9.999999E-05
7 9.999999E-04
8 9.999999を-04
9 3.000000z-04
9.999993E-04
11.....1.3000002-03
12 O.COOOOOF+OC

```

ALPHAN UMERIC
FPPCHEOH FCV：二：\(\because 1\) FTFIS13F FMV象CEX FCVO： 1 FCVO220D FCVS？36D FCVO300D： FMV \＆C．E．FX： FCVS737D FCVO3200． FTKSIO2R

TABLE 4.8 (CONTINUED)

\begin{tabular}{|c|c|c|}
\hline 43 & 9．999999E－04 & FWRCF1AH \\
\hline 44 & 1．799999E－05 & FCNZGTAC \\
\hline 45 & 9． \(994999 \mathrm{E}-04\) & 1：xטrniwx \\
\hline 46 & 2．500000E－03 & FHT261AD \\
\hline 47 & 2．5000008－03 & FST2EGAD \\
\hline 48 & 3．C00000E－04 & FXVSI24X \\
\hline 49 & 9．999999E－05 & FXVST2AC \\
\hline 50 & 9．999999E－05 & FCVSI25D \\
\hline 51 & S． \(999999 E-05\) & FXVCs25C \\
\hline 52 & 3．0000CCE－D4 & FXVCS：5x \\
\hline 53 & \(0 . C 00000 E+00\) & FPPIGSIP \\
\hline 54 & 4．400000E－07 & FVT0001p \\
\hline 55 & 4．40COOCE－07． & FPP10STH \\
\hline 56 & 3．000000E－04 & FLS 2530 K \\
\hline 57 & 3．000000E－04 & FLS 1500 K \\
\hline 58 & 2．20COCCE－C4 & FCN115UC \\
\hline 59 & 1．9C0000E－02 & FST11ち心0 \\
\hline 60 & 2．200000E－04 & FCNILSDC \\
\hline 61 & 1．9COOOCE－O2 & FST115DD \\
\hline 62 & 7．799998E－03 & FCN 115CK \\
\hline 63 & 9．99999EE－04 & FMO115CF \\
\hline 64 & 8．799999E－05 & FCN115C．0 \\
\hline 65 & ع．799999E－05 & FOL115CU \\
\hline 66 & 7．799998E－03 & FCN1L5EK \\
\hline 67 & 8．799999R－05 & FCN115EO \\
\hline 68 & 8．799999E－05 & FOL 115EB \\
\hline 69 & 9．999999E－04 & FMOLSEFF \\
\hline 70 & 3．000000z－04 & FTSSIS7I \\
\hline 71 & 2．9COOOCE－03 & FHTSIらてB \\
\hline 72 & 3．99999EE－04 & FTS S よ ¢ \％ \\
\hline
\end{tabular}

TABLE 4.8 （CONTINUED）
\begin{tabular}{|c|c|c|}
\hline 73 & 8．80000c：－03 & FTTSエ5： \(2 F\) \\
\hline 74 & 2．900000E－03 & FCBSI5てO \\
\hline 75 & 1．3000008－03 & FCNHTI1D \\
\hline 76 & 4．399999E－05 & FENHTL2K \\
\hline 77 & 1．1000002－03 & FTTSSZAF \\
\hline 78 & 9．999999E－05 & FTSS \(5+A X\) \\
\hline 79 & \(0.60000 C E+00\) & FANOGB：F \\
\hline 80 & 3．00000cz－02 & FANOESO． \\
\hline 81 & 1．3C000CE－03 & FCNEAO2K \\
\hline 82 & 2．2000002－04 & FCN ECTCC \\
\hline 83 & \(0 . C 00000 E+00\) & FMVBG7CP \\
\hline 84 & 1．9COOCCE－02 & FST8GZCD \\
\hline 85 & \(1.30000 \mathrm{CR}-03\) & \(F C N=せ 02 K\) \\
\hline 86 & 2．200000E－04 & FCNEGZDQ \\
\hline 87 & \(0.0000008+00\) & FMV家此 \\
\hline 88 & 1．9C0000E－02 & 「3T8心扎 \\
\hline 89 & 1．300000E－03 & FCN：AO1M \\
\hline 90 & 2．2000008－04 &  \\
\hline 91 & \(0.000006 \mathrm{E}+00\) & FMVAE：AF \\
\hline 92 & 1．9CCOOCE－02 & F3T 8GTA0 \\
\hline 93 & 1．300000E－03 & FCNS边1K \\
\hline 94 & 2．200000E－04 & FON 8G／3c \\
\hline 95 & 0．COOOOCE＋00 &  \\
\hline 96 & 1．9COOOCE－02 & FST861BD \\
\hline ¢ 7 & 1．1CCOOCE－04 & YAM 1 DCOFF \\
\hline 98 & 9．999999E－04 & Fkせ9343X \\
\hline 99 & 3．600000E－05 & FKEけ3•11 \\
\hline 100 & 1．100000F－02 & FTT9\％1BF： \\
\hline 101 & 1．1000008－02 & FRCずイUF \\
\hline 102 & \(1.100000 \mathrm{E}-04\) & FCNO31ux \\
\hline
\end{tabular}

TABLE 4.8 （CONTINUED）
\begin{tabular}{|c|c|c|c|c|}
\hline & & 103 & 9．999999E－05 & FTS S．9：K \\
\hline & & 104 & \(7.20000 \mathrm{CE}-05\) & FREBIHAQ \\
\hline & & 105. & 7．199999E－04 & FOl．UTい心込 \\
\hline & & 106 & 2．20000CE－04 & \(F C N B I H A Q\) \\
\hline － & & 107 & 7．199999E－04 & FHGBIHAR \\
\hline & & 108 & 7．200000E－05 & FCS9：4AK \\
\hline & & 109 & 9．999999E－04 & FTTG34AY \\
\hline & & 110 & 2．20000GE－02 & FTTのこへAF \\
\hline & & 111 & 2．20000CE－02 & FRCGSMAF \\
\hline & － & 112 & 5．79999eE－03 & FGTS1ヘMT \\
\hline & & 113 & \(1.330000 \mathrm{E}-03\) & F5TCFIAS \\
\hline & & 114 & 5．1900005－03 & FSTC：INF \\
\hline & & 115 & 9．999998E－03 & FxVPbswy \\
\hline & & 116 & 9．999999E－05 & FCVC267D \\
\hline & & 117 & 1．799999E－05 & FCNzecec \\
\hline & & 118 & 9．99999．5E－04 & FいRC「1！ \\
\hline & & 119 & 1．799999E－05 & VCN2G：AC \\
\hline － & & 120 & 9．999999E－04 & Fxvprssux \\
\hline & & 121 & 2．500000E－03 & FST2ESAD \\
\hline & & 122 & 2．500000E－03 & ！JT28GRD． \\
\hline & & 123 & 5．799998E－03 & FこTS」AらF \\
\hline & & 124 & 1．330000E－03 & FStcpldA \\
\hline & & 125 & 5．190000z－03 & Fifei－： \\
\hline & & 126 & 9．99999を\＃－03 & FxVfeswy \\
\hline & & 127 & 9．599999E－05 & FCWCsfod \\
\hline & & 128 & 1．7999998－05 & FCN2EGCCO \\
\hline － & & 129 & 9．999999E－04 & FWRCf：CH \\
\hline & & 130 & 1．799795E－05 & FC．NZ3OAC \\
\hline \(\cdots\) & & 131 & 9．9999998－04 &  \\
\hline & & 132 & 2．500000E－03 & F＇Tく \\
\hline
\end{tabular}

TABLE 4.8 （CONTINUED）
\begin{tabular}{|c|c|c|c|}
\hline & 133 & 2．50000cz－03 & FST \(28 G C D\) \\
\hline & 134 & 5．799998R－03 & FSTSIACF \\
\hline & 135 & 1．3300008－03 & F゙らT゙FIGA \\
\hline & 136 & 5．19000CE－03 & \(15 ¢\) \\
\hline & 137 & 1．960000E－02 & TFMCHIAY \\
\hline & 138 & 1．9000008－02 & PFMCHLIS \\
\hline & 139 & 1．9000008－02 & FアMCHI－ \\
\hline & 140 & 9．9999991－05 & FCNCBI2C \\
\hline & 141 & 4．6599598－05 & JaOU \\
\hline & 142 & 1．699999E－06 & \(J=c\) \\
\hline \multicolumn{4}{|l|}{dge inpot arliaaility} \\
\hline & 1 & 4．6999998－05 & JEOO \\
\hline & 2 & \[
4.0999998-05
\] & JFOO \\
\hline & 3 & 4．C99999E－05 & \(=1300\) \\
\hline & 4 & 1．099399E－06 & JKOO \\
\hline & 5 & 4．C59799E－05 & Ј ¢ ！ \\
\hline & 6 & 4．C99399E－05 & JHOCl \\
\hline & 7 & 5．799998E－03 & EIS \\
\hline & 8 & 5．799998E－03 & SIS 2 \\
\hline & 9 & 1．799999E－05 & FCNrie Ad \\
\hline & 10 & \(0.000000 E+00\) & Feg 34 \\
\hline & 11 & \(0.600000 E+0 C\) & \(F C F A\) \\
\hline & 12 & 0． \(0.000008+00\) & FCF！ \\
\hline & 13 & \(0.00000 c z+0 C\) & FCou \\
\hline
\end{tabular}

6 of 6


MIHIHAL CHI EETS
OUOUONOUOOOCO 100000 COOOUOCOOOCOOOOOOOCCOCCOOOOOOO \(0011000 C O C C O O U O O D O 10000 O O C C O C O O O C O O C O O O C O C O O O O O O O\)
 COUUOUO10COOUU1UOUOCCOOUUC 100COOOCOOCOOUOCCOODOODO UCCUOUOCO1000U100COCCOOOOCC100000000OCOOOOCOOO0000 000000 O 10100001000 OCCOOGOOCOOCOCCCOOOOOOOCOCOOOOOO
 \(00000010001000001000 C 000000001000000000000000000000\)
 \(00000001010000010000000000000 \operatorname{COCCOOOODOOCO0000000}\) OCCOCUOCCCSOOCCO1OGCCCCEOCEOOC I1OCOOCCCCECCCOODOOO 110000000000000010 CCCOOOOCCOOCOOCCOODOOO 000 COO 0000 0000000000000000010 COOOOOO 0000 CC 11 COOCCCCCSOCOOnO
 10CCOUOCCOOUOUOUO 10CCOCOOOOUOCCOC100OCCCCCCCOOOOOO \(1100000000 C 000000100000000000 \mathrm{COOCOOOOOOOOCOOO} 00000\) OO \(10010 C C C O O U 000 C O 10 C D O D U C C O C O C C C 1000 C O O C C C O O O O O O\)
 \(010110 C C 0000000000100000 C C 0000000000000 C 000 C O D O O\) 000000 COCCOOOOOOOJC100OOCOUCCOOOCO110OCECOCOOCOOO UOUOIUNCCCCOOOONONOC1COOCCCOOCOOOCCOICCCCCCCOCOOOO
 000cU0100000000000リ010000CCUOCOOUCOOICUS: CCCOCOOOD \(000000000 \mathrm{CC} 10000000 \mathrm{C} 100000 \mathrm{COOCOOOC0010000C00000000}\)
 \(000010000 C(10,10000) \mathrm{O}, 10000000000000000000(C G 0 G 0000\) CCUCCII CUOOOOOOUOOUOC10000COOCCOOCOONOO(10COCOOUOOO \(0000010000 C 10000000 \mathrm{CC} 10000000\) C,00000000000CONOCOOOO
 \(00 C C D 00001600000000 C 001000000000000000010 \mathrm{C} 00 n 70 n n 0\)
 \(0 C 0000010 C 000000000 C 001000000600000000001000000000\)

0000000101000000000000100 COOOCOOOCOOOCOOOCOCOOOO \(000000010 \mathrm{C} 1000000000001000 \mathrm{COOCCO000000000000000000}\) \(00000 \mathrm{COO10c00000000CCC1000000C0000000CCO10C00000n0}\) \(0000000011600000000000100 c 0000000000000000 c 00 \mathrm{COOOO}\) 0000000 C 1 C 100 COOOOOCOO 1000000000000000000000000000 \(0000000000 C O D 00000\) COOO1OCOOOCOCOCOOOOOOO110000000 0000000 CO 10000000000000100000 COOOCOODOCOC 10 COCCOOO 00000000001000000000000100000600060000000100000001 0000000100 COOOONOOOCOOOIOCCOOCOOOCCOOCOCCCICOOOCO 0000000101000000000000010 COOOCOOOCOOOOODODOOONOOOO 000000010010000000 CCCCC10ccooccerccoocrccecoor.0007 00000000100000000000000100000000000000000 C 100 ceonn \(0000000 \mathrm{C11} 10000000000001000000000 \mathrm{C} 000000 \mathrm{CC00c0000}\) \(0000000010100000000 \mathrm{C} 000100000 \mathrm{COOCRCDOODODC00000000}\)

 \(0000000000010000000 C 000010000000000000000070000000\) \(000000000 C 00000000\) O C \(000001000000000000 C E C O C C I 10000\) OCOOOOOOOOO 10000000 CCOOOO 100OCOOOCOOOCOOOCCOICOOOO COOODOOCOOOO1000000COOODO 1000000000000000000010000
 \(0001010 C 000000000000100000000000000100000 c 0000100 n\) \(0001110000 C 00000000010000 \mathrm{COOOCOOOCCOOCOCOCOCOO1000}\) \(0011010000000000000 C 100000000000000000000000001000\) \(0001011 \mathrm{COC} 000000000100000000000000000000 C 00001000\) 0001010000010000000 C 1000000000000 COOOCOOOODOO 01000 00 I110000C \(000000000001000 \mathrm{COOOCOOOCOOCOCOCCCOOOO170}\) 00110100000000000000010000000000000000000000000100
 COOO000 \(1000010000000000001000000000000 C O C C C O O O O 010\)
```

                                    TABLE 4.10
    HPIS Reduced Fault Tree Modular Components

```





TABLE 4.10 (CONTINUED)


TABLE 4.11
HPIS REDUCED FAULT TREE MODULAR UNAVAILABILITIES

\section*{fREE MOCULE} nuoule naek priz hocule MODULE KAEFE= prez notais HOCULE XAME= pres nocule hocule mane
5

BEL=
2. \(7 \mathrm{COCOOEE}-03\)
3. 5 Ccooce-03
2. 899999 1-03
5.029697E-03
e. 9999968-08
1.5299998-02

GOCULE SAME
\begin{tabular}{|c|c|}
\hline stL= & 3.5Ccooce-03 \\
\hline FEL* & 2.8999991-03 \\
\hline EEL= & 5.029697E-03 \\
\hline 8EL= & e. 9999968-08 \\
\hline 日EL= & 1.5299998-02 \\
\hline
\end{tabular}
2. 224599:-02
 HODULE NABE=

57
59
FREE HOLULE
MODUGE NAME=
60
EREE HOCULE
MOCULE MAFE=
FREE MOEULE
BOEJLE MAHEF
FREE HOLULE
ECEULE MAEz
FAEE MOEUET
BUCUKE MAE=
REP HODULE=490111
REP MCOULE=49013 RE
REP KOOULE=391112 RE
REP MUDULE=29U10
PBTRIARCH SUEHOCULS
BODULE KABE= 1 REI=
FESTEE MCEULE
MOEULE NAMSE
MESTEE NOZULE
nCtuin Matifz
WESTEL HOCULE
GODHLE NAKE=
MESTEE HOLULE
MODULE NAME=
MESTEE HULULE
HOCOLE NAMEZ
HESTEC ROEULE
HUEULE NANE=
MESIEE HOCULE
GODULE MAEEF
BESTEE HOLULE
HOEULE NAME
MESTEE MCEULE
HOCULE MPBEF
MESTEC MODULE HCCUE AAME
BESTEC HOCTLE GOCULE NAPET WESTEE EOTULE HODULE NAEE? HESTEE HOEUEE BUCULE MAEEZ HESTEC MODOLE GUCULE MAME=
NESTEE MOEULE
HOOEZE NARET
BESTEE HOLUKE
BODULE NAHE=
MESTET HOCULE
HOCULE NAREZ.
MESTEC HOCULE KCEULE MARE*
HESTEE HOEULE
HODOLE NARE=
MESTET MOKEZ
HOOULE NAEEZ 42 EELZ \(8.975994 E-03\)

TABLE 4.11 （CONTINUED）
\begin{tabular}{|c|c|c|c|c|}
\hline HODULE & NAHE＝ & 27 & 88L＝ & 1．9000009－02 \\
\hline UESTEL & HODUL8 & & & \\
\hline MODULE & MAEE＝ & 25 & EEL＝ & 1．9Cccooz－02 \\
\hline nESTEL & HODULE & & & \\
\hline MCEUEE & MABE＝ & 24 & 8\％ & 9．999999：－05 \\
\hline HESTEC & MOEULE & & & \\
\hline HODULE & ManE＝ & 29 & FEL \(=\) & C． \(6000008+00\) \\
\hline UESTEL & HODOLE & & & \\
\hline BODOLE & 明明を & 30 & EEL： & C． \(0000005+00\) \\
\hline YESTEE & HOEUEE & & & \\
\hline MOCULE & AAm8＊ & 49 & FEL & 2．C51999E－02 \\
\hline MESTEL & HODULE & & & \\
\hline BCEUEE & MAME＝ & 50 & 日Eち＝ & 2．CS 1999E－02． \\
\hline MESTEC & MOTOLE & & & \\
\hline MODULE & MAME \(=\) & 51 & 88L \(=\) & \(2.051999 \mathrm{E}-02\) \\
\hline MESTEE & mocule & & & \\
\hline HODULE & Marea & 52 & QEL＝ & 2．051999E－02 \\
\hline MESTEL & MOEULE & & & \\
\hline nOCut． & NAME＝ & 45 & FEL \(=\) & 3．254399E－n2 \\
\hline －EらTEL & HODELE & & & \\
\hline HCEULE & MAEEx & 55 & 581 \(=\) & 2．803999E－ワ3 \\
\hline NESTEC & HOCOLE & & & \\
\hline noduts & Matg＝ & 54 & 日EL＝ & 1． \(1000005-04\) \\
\hline NESTEL & HCOOLE & & & \\
\hline MODOLE & （atye & 28 & EEL＝ & 1．000000E＋00 \\
\hline HESTEL & cotols & & & \\
\hline Hocut 5 & Name & 31 & EEG＝ & 1． \(600000 \%+00\) \\
\hline HESTEC & HODULE & & & \\
\hline HOEJLE & Malle＝ & 56 & BEL＝ & 2．224599E－02 \\
\hline MESTEC & MOEDLE & & & \\
\hline MOOUL & NAHE＝ & 63 & 8EL \(=\) & 9．999999E－04 \\
\hline \multicolumn{5}{|l|}{PITEIARCH MODULE} \\
\hline HOOULE & MABE & 1 & 日ELIE & 4．711870E－03 \\
\hline IMEEX＝ & ถกп̃ & & & \\
\hline
\end{tabular}

TABLE 4.12
hPIS REDUCED FAULT TREE VESELY－FUSSELL MODULAR IMPORTANCES
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{HOOULES} \\
\hline nodut．？ & NAPE＝ & 5 \\
\hline HUCUbE & AAn厚 & 6 \\
\hline HOCULE & HAHE＝ & 17 \\
\hline HOCULE & NARE \(=\) & 18 \\
\hline HOOULE & NATE＝ & 38 \\
\hline HODULE & WAME & 44 \\
\hline KOCULE & MAME＝ & 57 \\
\hline HOCULE & NABE＝ & 59 \\
\hline HOCIILE & MADE & 60 \\
\hline MCCOLE & SARE＝ & 61 \\
\hline Hoctie & NAMEZ & 62 \\
\hline HOCLLE & EADE & 2 \\
\hline HODHLE & XAME＝ & 11 \\
\hline nodute & MAPE＝ & 1 \\
\hline mocult & XAHS＝ & 3 \\
\hline MOCIIR & MAPE＝ & 7 \\
\hline HOLILE & MAEP＝ & 35 \\
\hline HOCULE & SAKE＝ & 37 \\
\hline MOCHLE & MabEz & 22 \\
\hline HOCULE & NAPE＝ & 23 \\
\hline HODULE & MAEE＝ & 20 \\
\hline HOOULE & ＊ABE＝ & 21 \\
\hline Hovijut & NAPR＝ & 47 \\
\hline hocilif & MAME＝ & 43 \\
\hline ROEHL & NAME & 43 \\
\hline HOOULE & Mantz & 53 \\
\hline BUCOLE & WAnE & 13 \\
\hline HODOLE & gABE\＃ & 14 \\
\hline HOEJLE & AABE＝ & 15 \\
\hline BOCILE & HABE＊ & 16 \\
\hline HODULE & MAME \(=\) & 39 \\
\hline HODULE & NAME＝ & 40 \\
\hline HODIIE &  & 41 \\
\hline HODULF & MAnE＝ & 42 \\
\hline MODOLE & MAME＝ & 27 \\
\hline HOCULE & MAME＝ & 25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline HOEULE & MABE＝ & 24 \\
\hline HOCULE & 8AnE\％ & 23 \\
\hline houlle &  & 30 \\
\hline moduse & NANE＝ & 49 \\
\hline nociste & FAHE＝ & 50 \\
\hline NOCELE & NAME \(=\) & 51 \\
\hline H0cues & MAME＝ & 52 \\
\hline 500ILE & HABE＝ & 45 \\
\hline MOEIILE & SAME＝ & 55 \\
\hline HODIJLE & NAHC＝ & 54 \\
\hline HODULE &  & 28 \\
\hline HODILE & MAMEz & 31 \\
\hline HOUULE & BAMEz & 56 \\
\hline MOOULE & MAME＝ & 63 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline IMP＝ & 1．029656E－1） \\
\hline IMP＝ & \(0.00000 \mathrm{Cz}+00\) \\
\hline ITE＝ & \(0.000090 \mathrm{t}+70\) \\
\hline 149＝ & 1．14月009E－ 11 \\
\hline I．1F \(=\) & 1．148009E－D1 \\
\hline ¢ \(19 \mathrm{P}=\) & 1．14a003E－01 \\
\hline ［MF＝ & 1．143009E－01 \\
\hline IMg＝ & 1．056741E－11 \\
\hline L6E＝ & 7．935319E－135 \\
\hline 18P＝ & 1． \(992653 \mathrm{E}-13\) \\
\hline IRE＝ & 8． \(346520 E-73\) \\
\hline 1 \(18 \mathrm{P}=\) & S． \(435154 \mathrm{E}-173\) \\
\hline 14E＝ & 2．077488E－11 \\
\hline IME＝ & 1． 323 34 1E－1） \\
\hline
\end{tabular}

2． \(6628738-03\)
2．0620735－93
3．C95610 \(10-03\)
\(3.695610 \varepsilon-03\)
\(3.09<510 \mathrm{e}-13\)
\(3.09<510 \mathrm{E}-13\)
\(1.910067 \mathrm{E}-05\)
1． \(056777 \mathrm{E}-\mathrm{Cl}\)
2． 077489 t － 01
2．0877．31E－01
2． \(392970 \mathrm{E}-02\)
2． 35808 EE－C2
2． \(331232 \mathrm{E}-\mathrm{J}_{2}\)
2． 66287 1 \(5-23\)
3． 095610 E－03
2． \(389697 \mathrm{E}-01\)
1． \(372042 \mathrm{E}-02\)
1． \(374042 \mathrm{E}-92\)
7．873422E－02
1．7255E 刀E－02
3．498702E－0J
4． \(938856 \mathrm{E}-03\)
9． \(976272 \mathrm{~F}-23\)
5． 69 \％87，
1．4747838－91
\(1.47473 \pi z-01\)
1．056777E－01
2． \(088525 \mathrm{E}-71\)
1． \(36971 \mathrm{dE}=02\)
1． 35 C981E－02
1．3697111F－02
1．350981F－02
7．8566K 7E－02
7． \(256667 \mathrm{E}-02\)
\(1.717714 \mathrm{E}-02\)
1．717714E－02
3． \(503702 \mathrm{E}-03\)
J． \(306935 \mathrm{E}-\mathrm{nj}\)
\(I M P=\quad 1.0000003+170\)

\section*{CHAPTER FIVE}

\section*{CONCLUSIONS AND RECOMMENDATIONS}

\section*{V.1. Summary and Conclusions}

The methodology to analyze a fault tree in terms of its modular structure has been developed in this thesis. An algorithm to derive a fault tree's modular composition directly from its diagram was given. The procedure consists of piecewise collapsing and modularizing portions of the tree, until eventually the full tree structure is described as a set of modular equations recursively relating the top tree event to its basic component inputs.

The structural representation of fault trees containing replicated events was shown to necessitate the use of higher order gate modules. A Boolean vector representation was chosen to express the family of minimal cut-sets corresponding to a higher order gate.

Once the modular structure for a fault tree has been obtained, it was demonstrated how a quantitative evaluation of reliability and importance parameters may be efficiently performed. Thus, by following the same order in which the fault tree modules were originally found (i.e., starting with the bottom gate branches), each modular occurrence probability can can be easily computed as a function of the occurrence probabilities of its basic event and modular inputs. In contrast, basic event and modular Vesely-Fussell importance measures are best evaluated by starting at the top tree event and successively
applying the modular importance chain rule.
The modular approach to fault tree analysis outlined above was implemented into the computer program PL-MOD. The code was written in \(P L / I\) in order to take advantage of the list processing capabilities available in this computer language. In particular, extensive use was made of based structures, pointer variables and dynamical storage allocation. Moreover, the manipulation of Boolean state vectors, required to handle higher order modular structures, was convenfently performed using bit-string variables.

PL-MOD was used to analyze a number of nuclear reactor safety system fault trees, and its performance was tested against that of the minimal cut-set generation codes PREP and MOCUS. It was demonstrated that the code's execution time to modularize a larger sized fault tree will be significantly smaller than that taken to generate the thousands of minimal cut-sets required to characterize the fault tree. Thus, the execution time to modularize the High Pressure Injection System reduced fault tree, composed of 63 gates and 151 components, was 25 times faster than that taken by MOCUS to generate the 13 single event, 294 double event, and 2477 triple event minimal cut-sets associated with the fault tree. Furthermore, because of the structural organization of the modular information describing a fault tree, the evaluation of its reliability parameters is easier to perform using this information than from a mere listing of its minimal cut-sets.

\section*{V.2. Recommendations for Future Work}

In its present form PL-MOD generates a complete Boolean vector representation for the modular minimal cut-sets of a fault tree. In practice, however, it is sufficient to generate those minimal cut-sets. which significantly contribute to the occurrence of the top tree event. Thus, the incorporation in PI-MOD of a capability to generate only those modular minimal cut-sets which require the occurrence of less than \(N\) simultaneous modular events (with \(N=2,3,4\),etc.) would be highly desirable.

In the Reactor Safety Study reduced fault trees were derived by eliminating those basic events which contribute to the TOP tree event only through minimal cut-sets of high order, say quadruple or quintuple event cut-sets. This reduction procedure has however never been automated. PI-MOD would be particularly suited as a tool for deriving reduced fault trees, since the following two criteria for cutting off portions of a tree are available in the code:
(a) Modular events, rather than basic events, contributing to the top tree event only through minimal cut-sets of an order larger than \(N\) may be deleted as explained above.
(b) Once an upper limit \(N\) has been chosen, the VeselyFussell modular importances calculated by PL-MOD can be used to further reduce the tree by cutting of \(f\) modules whose importances are smaller than a preselected cut-off value.

In order to handle more effectively fault trees which extensively include common mode failure events, it is recommended that the following two capabilities be incorporated into the PLMOD code:
(a) In its present version, PL-MOD can only handle replicated modular gates, i.e., only replicated gates representing a supercomponent event independent from all other gates in the tree may be treated. In general, replicated gates may exist which do not represent a supercomponent event. Eliminating this restriction would significantly enhance the capabilities of the code.
(b) Similarly, PI-MOD allows the appearance of explicit symmetric ( \(k\)-out of \(-n\) ) gates, only if the inputs to these gates are non-replicated components or super-component events. It is proposed that symmetric gates be allowed to operate on input events which are replicated elsewhere in the fault tree.

Thus far, PL-MOD has been restricted to a deterministic evaluation of steady-state occurrence probabilities for a fault tree. Given the efficient recursive computational procedure used by the code, the inclusion of a time-dependent (kinetic) tree analysis capability as well as of a Monte-Carlo package enabling the code to perform a probabilistic distributional analysis would be justified.

\section*{REFERENCES}
1. R.E. Barlow and F. Proschan; Statistical Theory of Reliabibility and Life Testing; Holt, Reinhart and Winston (1975).
2. R.E. Barlow and F. Proschan; Importance of System Components and Fault Tree Analysis; ORC-74-3 (1974).
3. R.E. Barlow and H.E. Lambert; Introduction to Fault Tree Analysis, Reliability and Fault Tree Analysis; SIAM (1975).
4. A. Blin et al; PATREC-DE Code: Evaluation of Common Mode Failures Impact on Reliability; Transactions on European Nuclear Society Conference (April, 1975).
5. Z.W. Birnbaum; On the Importance of Different Components in a Multicomponent System, Multivariate Analysis II, edited by P. Krisnaiah; Academic Press (1969).
6. P. Chatterfee; Fault Tree Analysis: Rellabilitv Theory and Systems Safety Analysis; ORC 74-34(1974).
7. P. Chatterjee; Modularization of Fault Trees: A Method to Reduce the Cost of Analysis, Reliability and Fault Tree Analysis; SIAM (1975).
8. J.D. Esary and F. Proschan; Coherent Structures with NonIdentical Components; Technometrics 5 p. 191 (1963)
9. J.B. Fussell et al; MOCUS - A Computer Program to Obtain Minimal Sets from Fault Trees; Aerojet Nuclear Co. ANCR-1156 (August, 1974).
10. J.B. Fussell; Special Techniques for Fault Tree Analysis; Aerojet Nuclear No. (April, 1974).
11. I.B.M. Systems Reference Library; PL/l Language Reference Manual and Programmer's Guide; C28-8201-2 and C28 -6594.
12. B.V. Koen and A. Carnino; Reliability Calculations with a List Processing Technique; IEEE Transactions on Reliability Vol. B-23 No. I(April, 1974).
13. H.E. Lambert; Measures of Importance of Events and Cut-sets in Fault Trees, Reliability and Fault Tree Analysis; SIAM (1975).
14. H.E. Lambert; Fault Trees for Decision Making in Systems Analysis; UCRI-51829 (Oct., 1975).
15. J. Murchland; Fundamental Probability Relations for Repairable Items; NATO Advanced Study Institute on Generic Techniques in System Reliability Assessment, the University of Liverpool (July, 1973).
16. P.K. Pande et al; Computerized Fault Tree Analysis: TREEL and MICSUP; ORC 75-3 (1975).
17. W. Quine; The Problem of Simplifying Truth Functions, Am. Math. Monthly, 59(1952).
18. E.T. Rumble et al; Generalized Fault Tree Analysis for Reactor Safety; EPRI 217-2-2(1975).
19. Reactor Safety Study; Appendix II (Volume 1) Fault Tree Methodology; WASH-1400 Draft (August, 1974).
20. Reactor Safety Study; Appendix II (Volume 2) PWR Fault Trees; WASH-1400 Draft (August, 1974).

2I. R.B. Worrell; Using the Set Equation Transformation System in Fault Tree Analysis, Reliability and Fault Tree Analysis; SIAM (1975).
22. R.B. Worrell and G.R. Burdick; Qualitative Analysis in Reliability and Safety Studies; IEEE Transactions on Reliability, Volume R-25, Number 3 (August, 1976).
23. W.E. Vesely and R.E. Narum; PREP and KITT: Computer Codes for the Automatic Evaluation of Fault Trees; Idaho Nuclear Co. (1970).

\section*{APPENDIX}
PL-MOD'S INPUT AND OUTPUT DESCRIPTION

\section*{Data Input}

No FORMAT restrictions exist as far as the listing of data items is concerned. Each data item is only required to be delimited by one or more blank spaces or a comma.
lst Item: 'TITLE' \(=\) a set of CHARACTERS enclosed by a pair of single quote marks.

2nd Item: DEL \(=\) number of reliability parameters to be computed (FIXED DECIMAL). (In the present PL-MOD version DEL = 1 or 2)

3rd Item: GUM \(=\) total number of fault tree gates (FIXED DECIMAL):

4th Item: RMOD = total number of replicated modules (FIXED DECIMAL).

5th Item: (I, AGIN(I), ALIL(I),ALIR(I))(FIXED DECIMAL) \(I=\) gate number, \(\operatorname{AGIN}(I)=\) number of gate inputs, ALIL \((I)=\) number of free leaf inputs, \(A L I R(I)=\) number of replicated leaf inputs. ( \(1=1,2, \ldots\), GUM)

6th Item: (TRIM(IX), TRIN(IX))(FIXED DECIMAL)
TRIM (IX) = replicated leaf name associated with a module
\(\operatorname{TRIN}(I X)=\) replicated gate number
( \(\mathrm{IX}=1,2, \ldots, \mathrm{RMOD}\) )
7th Item: NOR \(=\) total number of replicated leaf inputs (FIXED DECIMAL).

8th Item:

NODEIN(J): (NAME, VALUE,GIN,PIT(GIN), LIL, TIL(LIL), LIR, TIR (IIR)) (FIXED DECIMAL)
( \(J=1,2, \ldots, G U M\) )
NAME = gate number
VALUE \(=\left\{\begin{array}{l}\text { I AND gate } \\ 2 \text { OR gate } \\ \text { KON K-out of-n gate }\end{array}\right.\)
\(G I N=\) number of gate inputs
PIT(I) \(=\) Ith gate input ( \(I-1,2, \ldots, G I N\) )
(If GIN \(=0\) then PIT \(=0\) )
LII = number of free leaf inputs
\(T I L(I)=\) Ith free leaf input ( \(I=1,2, \ldots, L I L)\)
(If LIL \(=0\) then TIL \(=0\) )
IIR \(=\) number of replicated leaf inputs
\(\operatorname{TIR}(I)=\) Ith replicated leaf input ( \(I=1,2, \ldots, L I R\) ) (If LIR \(=0\) then \(T I R=0\) )
(5th and 7 th Items must be listed in the same order)

9th Item: \(F O X=0\) if no numerical evaluation is desired, \(F O X=1\) otherwise

If \(F O X=0\) then delete 1 tems 10,11 and 12
10th Item: (FUN,DUN) (FIXED DECIMAL)
FUN \(=\) Total number of free leaf inputs
DUN = Total number of replicated leaf inputs
IIth Item: ( \(I, \operatorname{STATE}(1, I))\) (FIXED DECIMAL,FLOAT)
\(\operatorname{STATE}(1,1)=\) probability associated with Ith free input occurrence
\[
(I=1,2, \ldots, F U N)
\]

12th Item: ( \(I, \operatorname{STATD}(1, I)\) ) (FIXED DECIMAL, FLOAT) STATD (I,I) = probability associated with Ith replicated input (If Ith input is associated with a module then STAT D \((I, I)=0) \quad(I=I, \ldots, D U N)\)

An example of input data is given for the fault tree SAMPLE PROBLEM shown in Figure \(A-1\). Table \(A-1\) shows the input deck, whereas Table A-2 represents the output as given by PL-MOD.


SAMPLE FAULT TREE


TABLE A－I（CONTINUED）
\begin{tabular}{|c|c|c|c|c|}
\hline 5 & 1．0E－02 & & & \\
\hline 5 & 1．0E－61 & & & \\
\hline 7 & 1．0E－03 & & 9 & ．\(¢ \mathrm{E}-03\) \\
\hline 9 & \(1.0 E-03\) & & 10 & － 5 E－03 \\
\hline 11 & 1．0E－03 & & 12 & －ЈE－03 \\
\hline 13 & \(1.0 \bar{r}-03\) & & 14 & ． \(\mathrm{SE} \mathrm{E}-03\) \\
\hline 15 & 1．0F－03 & & 16 & －TF－03 \\
\hline 17 & 1．0F－03 & & 18 & －コEー03 \\
\hline 19 & 1．0E－r， 3 & & 20 & ． \(5 \mathrm{tc}-03\) \\
\hline 2.1 & 1．0E－03 & & 22 & ． \(5 E-03\) \\
\hline 23 & 1．0E－03 & & 24 & ． 2 － 03 \\
\hline 1 & 1．0E－01 & & & \\
\hline 2 & 0 & & & \\
\hline 3 & 1．05－01 & & & \\
\hline 4 & 1．0ビー02 & & & \\
\hline 5 & 1．0E－01 & & & \\
\hline 5 & ． 4 & & & \\
\hline 7 & 1．0r．01 & & & \\
\hline
\end{tabular}

TABLE A-2 SAMPLE PROBLEM OUTPUT

\section*{TREE ANALYSIS EY MODHLES}

THE TIMF IS
215554205
THE DATE IS
770620

SAMPLE PROBLEA

OPTIO: \(=2\)
NIM GATFG= 26
NUM REVLICATED HOD: : = \(\quad 1\)
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 1 & 0 \\
\hline \(\therefore\) & 1 & 0 & 1 \\
\hline J & 0 & 2 & 0 \\
\hline 4 & 1 & 1 & 1 \\
\hline 5 & 1 & 2 & 0 \\
\hline 6 & 2 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 \\
\hline 13 & 1 & 0 & 1 \\
\hline 9 & 0 & 2 & 1 \\
\hline 10 & 0 & 2 & 0 \\
\hline 11 & 2 & 2 & 0 \\
\hline 12 & 1 & 0 & 1 \\
\hline 13 & 0 & 1 & 1 \\
\hline 14 & 2 & 0 & 0 \\
\hline 15 & 1 & 1 & 1 \\
\hline 15. & 0 & 1 & 0 \\
\hline 17 & 1 & 0 & 1 \\
\hline 18 & 2 & 0 & 0 \\
\hline
\end{tabular}











\section*{NUCLEAR FIONEERING READING ruviM-M.IT.}```


[^0]:    * Replicated modules and dual state replicated components are discussed in Sections III.Il and III.12.

