NUCLEAR MITNE-209

A
o VUM - MULT

LR

A MODULAR APPROACH TO FAULT TREE
AND RELIABILITY ANALYSIS

by

Jaime Olmos
Lothar Wolf

August 1977

DEPARTMENT OF NUCLEAR ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts 02139

NUCLEAR EMCINEERING
~ READING ROOM - MLLT.

MITNE-209

A MODULAR APPROACH TO FAULT TREE
AND RELIABILITY ANALYSIS

by

Jalme Olmos

Lothar Wolf

August 1977

Department of Nuclear Engineering

Massachusetts Institute of Technology

ABSTRACT

An analytical method to describe fault tree diagrams in
terms of their modular composition is developed. Fault tree
structures are characterized by recursively relating the top
tree event tc all its basic component inputs through a set of
equations defining sach of the modules for the fault trese. It
is shown that such a2 mcdular description 1s an extremely valu-
able tool for making a gquantitative analysis of fault trees.

The modularizaticn methodology has been implemented into
the.PL-MOD computer code, written in PL/1 language, which is
capaple of mcdulzrizing fault trees containing replicated com-
ponents and replicated mecdular gates. PL-MOD in addition can
nandle mutually exclusive inputs and explicit higher order
svmmetric (k-cut of - n) gates. ‘

The step-by-step modularization of fault trees performed
oy PL-MOD is demonstrated and it is shown how this procedure
13 only made zcssible through an extensive use of the list pro-
cessing tools zvzilable in PL/1.

A number c¢f nuclear reactor safety system fault trees
were analyzed. PL-MOD performed the modularization and evalu-
ation of the mcdular occurrence prchbabilities and Vesely-Fussell
impertance mzasures for these systems very efficiently. 1In
particular its execution time for the modularization of a PWR
High Pressure Injectlon System reducsd fault tree was 25 times-
faster than that necessary to generate its equivalent mininmal
cut-set description using MOCUS, a code considered to be fast
by present standards.

wr
S
v

Inquiries about this research and for the computer program
should be directed to the second author at MIT,

ii

TABLE OF CONTENTS

PAGE
ABSTRACT 1
LIST OF ILLUSTRATIONS , vi‘r
LIST QF TABLES ix
" ACKNOWLEDGEMENTS Cx
INTRODUCTION 1
CHAPTER 1: FAULT TREE AND RELIABILITY ANALYSIS
" CONCEPTS AND METHODS 11
1.1 Introduction 11
1.2 Fault Tree Analysis 11
1.3 Coherent Structure Theory 15
1.3.1. D&al Coherent Structures 17
1.3.2. Minimal Cut-Set and Path-Set
. Representation of Coherent
Structures 18
1.3.3. Simple and Higher Order Coherent
Structure Gates : 20

1.4 Probabilistic Evaluation of Fault Trees 24

1.5 Importance Measures for System Components

and Fault Tree Events 28
1.5.1 Structural Importance 28
1.5.2 Birnbaum's Importance 29
1.5.3 Criticality Importance 30
1.5.4 Vesely-Fussell Importance 30

1.6 Methods for the Generation of a Minimal

Cut-Set or Path-Set .Fault Tree Descriptiom3
1.6.1 MOCUS 34
1.6.2 TREEL & MICSUP 39

1.7 Methods for the Manipulation of Boolean
Equations Describing a Fault Tree 42

1.8

1.9

CHAPTER 2:
2.1
2.2
2.3
2.4

2.5

CHAPTER 3:

3.1
3.2

3.3

3.4

111

PAGE
1.7.1 SETS I
Reliability Calculations by a Pattern
Recognition Method 59
The IMPORTANCE Computer Program 68
MODULAR REPRESENTATION OF FAULT TREES T4
Introduction T4
Modular Decomposlition of Coherent Systems TU
The Finest Modular Representation 75
Reliability Evaluation of Modularized
Fault Trees 82
Reliability Importance of Modules 88
2.5.1 Summary of Rellability Importance
Measures 88
2.5.2 The Birnbaum and Criticality
Measures of Importance for Modules 30
2.5.3 The Vesely-Fussell Importance Measure
for Modules ‘ 92
2.5.4 Evaluation of the Vesely-Fussell
Importance Measures for a Modular-
ized Fault Tree 95
PL-MOD: A FAULT TREE MODULARIZATION COMPUTER
PROGRAM WRITTEN IN PL/1 101
Introduction 101

Algorithm for the Modular Decomposition of
Fault Trees 102

PL/1 Language Features Used for the Represen-
tation and Modularization of Fault Trees 114

3.3.1 Introduction 114
3.3.2 Structure Variables 115
3.3.3 Pointers, Based and Controlled

Variables 116
3.3.4 The Refer Option for Based Variables 7118
3.3.5 Bit String Variables 122

Definition and Organization of the PROCEDURES
Used in PL-MOD for the Modularization of

Fault Trees 124

3.5

3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13

3.14
3.15
3.16
CHAPTER 4:

CHAPTER 5:
5.1
502

The Pressure Tank Rupture Fault Tree
Example

INITIAL and TREE-IN

COALESCE

MODULA

BOOLEAN and SYMM

3.9.1 Description of Higher Order Modules
by Means of PROP,PER and VECTOR

Structures
3.9.2 Procedure SYMM

*3.9.3 Procedure BOOLEAN

TRAVEL and TRAPEL

Replicated Modules

Dual State Replicated Components

NUMERO

3.13.1 PL=-MOD's Quantitative Analysis of
Modularized Fault Trees

3.13.2 STAT-IN

DOT,PLUS and MINUP

EXPECT

IMPORTANCE

NUCLEAR REACTOR SAFETY SYSTEM FAULT TREE
EXAMPLES

Introduction
TRIGA Scram Cilrcult
Standby Protective Circult

High Pressure Injectilion System for a
Pressurized Water Reactor

"CONCLUSIONS AND RECOMMENDATIONS
Summary and Conclusions

Recommendations for Future Work

PAGE
130
135
149
158
181

181
187
195
226
230
232
235
235
238
238
244

249

260
260
261
269

275
307
307
309

PAGE

REFERENCES 311
APPENDIX: PL-MOD's Input and Qutput Description 313

FIGURE

T = T S R I =
=

vi

LIST QOF ILLUSTRATIONS

Standby Protective Circuit Diagram.

Fault Tree for Standby Protective Circult.

Fault Tree Symbols.

Fault Tree Example I.

Higher Order Structures for a Set of Three Inputs
Dual Fault Tree for Example T. '

EXCLUSIVE OR-Gate and SPECIAL Gates Available in
SETS.

Fault Tree Including Mﬁtually Exclusive Mainten-
ance Events.

Representation of an Event B, Dependent on the
Occurrence of Event A.

Representation of an Event C Dependent on the

- Occurrence of Events B and A.

1.11
1.12
1.13
1.14
1.15

1.16
1.17

2.3
2.4

Fault Tree Including Common Mbde Event A.
Fault Tree Example II in Bilnary Gate Form.

Fault Tree Example II in its Ordered Form

Equivalent Binary Tree Patterns.

PAT-REC's Library of Patterns Stored in a Tree-
like Form

Final Ordered Form for Fault Tree Example II.

Fault Tree Dependencies Reduced Out When
vy = Q0 or vy = 1.
Simple Sub-tree I with no Replications

Finest Modular Representation of Sample Sub-
Tree 1.

Sample Sub-tree II with Replications

Finest Modular Representation of Sample Sub-
tree II

PAGE

13
14
22

38
45

53
56

57

58
61
61

62

63
65

67
T

78
80

81

2.5
2.6
2.7
3.1
3.2
3.3.
3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

vii

AND-Gate Super-module
OR-Gate Super-module

Higher Order Prime Gate Super-module

Fault Tree Modularization Algorithm Flow Chart

Fault Tree NODES

Fault Tree NODE.ROOTS

Fault Tree Node Interconnections
Fault Treé Bottom Branch Gate Nodes
Coalesced Gateless Nodes

Modularized Gateless Nodes

Interdependent Nodes in Temporary Nested Module’

Form

Complete Set of Nested Sﬁb-Modules
Modular Minimal Cut-set Representation
Symmetric Modularlzed Gate
Modularized Gates as Sﬁper-Components
Fault Tree in Binary Gate From

Sample Gate Node

Interdependent Gate Interconneétions
Transfer of Gaﬁe Interconnections
Internal Gate Interconnections
Boolean Vector Rep}esentation
Pressure Tank Example

Pressure .Tank Rupture Fault Tree
Simple PROP Structures

Symmetric Higher Order Modules

Simple Gate Module

PAGE
97

97
99
104

105
106
107
107
108
110

110
111
112
113
113
119
120
126
127
128

129

132
133

170
171
182

w W w

Lad

w w w w w

e Y s i VU R VY

.24
.25
.26
.27

.28

.29

.30

.31
.32
.33
.34
.35

viii

Higher Order Module
Explicitiy Symmetric Modular Gate
Symmetric Higher Order Modules

Pressure Tank Fault Tree with Gates G4,G5.G9S
Modularized

Pressure Tank Fault Tree with Gates G4,G5,G9
Modularized and G1,G2,G3 Coalesced.

Ordering of PROP Structure Allocations for a
Higher Order Module

Higher Order Modular Composition for the Pressure
Tank Fault Tree

OR-Parent Gate Higher Order Module Example I

AND-Parent Gate Higher Order Module Example II

Replicated Leaf Associated with a Module
Dual Component States

Interdependent Gates due to Mutually Exclusive
States

Simple Gate Mcdular Occurrence Probabilities
Prime Gate Modular Occurrence Probability
TRIGA Scram Circuit Diagram

TRIGA Scram Fault Tree

HPIS Simplified System Diagram

HPIS Reduced Fault Tree

"Empty" Nested AND Gate

SAMPLE Problem Fault Tree

PAGE
182

188
197

1399

200

206

209
214
215
231
233

234
240
242
262
263
276
277
291
316

ix

——

LIST OF TABLES

TABLE “ PAGE
1.1 Minimal Cut-Sets for the SPC Fault Tree 5
1.2 SPC Modularized Minimal Cut-Sets ' 7
1.3 Canonical Expansion for ClUC2 ~ 49
1.4 Canonical Expansion for C,U(C,0 53) 50
1.5 Canonical Expansion for Fault Tree with Main-
tenance Events 54
1.6 Basic Event Importance Measures Computed by the
- IMPORTANCE Code 69
3.1 Pressure Tank Rupture Fault Tree Failure Probabi- 134
lity Data
3.2 Replicated Event Nomenclature | 143
4.1 Triga Scram Circuilt Basic Event Data 267
4.2 Occurrence Probabilities and V.F. Importance
Values for the Triga Scram Circuilt ‘ 270
4.3 Standby Protective Circuit Data 272
4.4 Unavallabilities and Vesely-Fussell Importance
Values for SPC Fault Tree 274
4.5 PWR System Identification Code 283
4.6 Component Code . 284
L.,7 Fallure Mode Code 286
4.8 HPIS Reduced Fault Tree Basic Event Data 292
4,9 HPIS Reduced Fault Tree Minimal Cut-Set Boolean
Matrix 298
4.10 HPIS Reduced Fault Tree Modular Components 299

4,11 HPIS Reduced Fault Tree Modular Unavailabilities 304

4,12 HPIS Reduced Fault Tree Vesely-Fussell Modular
Importances 306

A-1 Sample Problem Input 317
A-2 Sample Problem Output ' _ 319

ACKNOWLEDGEMENTS

The work summarized in this report was partly performed
under the auspices of the U.S. Nuclear Regulatory Commission.

We are especilally indebted to Dr. William E. Vesely,
Speclal Assistant for Methodolgy at NRC, for providing the
financial support.

In addition, we express our sincere appreciation to
Professor Normaﬁ C. Rasmussen for his useful criticism,
suggestions and for his guidance and interest in this research.

The authors wish to thank Rachel Morton who, with her
limitless patience, helped to unravel the intricacies of the

PL/1 programming and the compiler at MIT-IPC.

1

INTRODUCTION

The objéctive of thls research has been to develop and
implement the modularization technique for the analysis of
operating systems modeled by means of fault trees, and to
apply this methodology to safety systems commonly found in
nuclear reactors.

In the past the usual approach has been to describe the
structure of a fault tree in terms of the minimal sets of basic
event fallures (cut-sets) causing overall system failure. How-
ever since for complex systems, a complete enumeration of its
minimal cut-sets is not feasible, it is common practicé to
generate oniy the dominant contributor cut-sets, i.e., single,
double and triple event fault cut-sets. '

Figures 1.1 and 1.2 show the system and fault tree diagrams
for a Standby Protective Circuit (SPC) found in reactor safety
systems [18. Inspection of the fault tree demonstrates that it
is composed of 29 event inputs and 19 gates. In Table 1.1 a
list is provided of the 100 minimal cut-sets associated with
the SPC fault tree.

A closer scrutiny of the SPC fault tree diagram and minimal
cut-set table indlcates that certain classes of minimal cut-sets
are closely assoclated to each other. Thus for example, 1f gate

G8 1s thought of as a super-component (i.e., a module) given by

G8 ={c1i7,c18,C19,C20,C21,C22;U}

| lwa __"'l: MSI __"L__PSA "L____ PSC
Lsa LSA #1
S — TS2 ——PSB
"l Jua T ws2 T T
. — LSB —— LSB
125 vt. D.C. —— TSI
BATTERY
- Lﬁl _4#2
——LSC — _LSC
t 3
— R2
'y n
@ RLY 6\(..L,:z.
’ 2 3 _roeﬂnei
' ' Success
IR3
__—_Cf—.?—:[Closes
" - Inline Tuse _
TS - Test switches - used monthly test
LS - Level switch - tested yearly
MS - Manual swltch - tested monthly
PS - Pressure switch - tested yearly
Mgure 1.1 Standby Protective Circuit for Comparison Studiles

CONTACT#* |

RELAY 3 N.O. CONTACTY = N.O.C.
DOES NOT CL .
[\
| |
INSUFFICIENT N.O.C RELAY R3
POWER ‘R3 DOES NOT
TO CKT. FAILS FUNCTION
[+ > [
~ 1
BATT. WIRE NO SIGNAL
FAILS JA\SHORT 70 RYL R3
elo cu ci2 ci3 cie ‘ }34
{
RELAY R2 %.0.C PRESSURE
DOES NOY 'hé) SW. DO NOT
FUNCTION FAILS FUNCTION
Nes & (e
L 1 L [r——— 1
, NO SIGNAL FAILURE OF FAILURE OF FAILURE OF
RLY R2 TO RLY R2 PRE SSURE PRESSURE PRESSURE
c13 FAILS , SWITCH A SWITCH B SWITCH B

([)er

NO SIGNAL NO SIGNAL |
THRU THRU RLYRI
MANUAL SW. CONTACT

A

Figure 1.2

Fault Tree for Standby Protection Circuit

Ge

i

NO SIGNAL
THRU MAN.

SWITCHES

A

1

69

N.O.CONTACT = N.O.C.

NO SIGNAL
THRU RLY RI
CONTACT

[Nen

1

RELAYRI
DOES NOT

FUNCTION

Q 615

NO SIGNAL ALY RI
TO RLY RI
. FAILS
cis I lsne ci4
r 1
LEVEL SEN. LEVEL SEN. LEVEL SEN.
AOR B A OR C 8 ORC
FAILS FAILS FAILS

(Ner

New

() oo

Pigure 1.2 Continued
Fault Tree for Standby Protection Circuit

N.O.C.
LSB#|
FAILS

ca2s8

- TABLE 1.1
MINIMAL CUT-SETS FOR THE S.P.C. FAULT TREE

SINGLE CUT-SETS

1) Clo0
2) C3
3) C11

. 4) c12
5) Cl3
6) C16
7) C2
8) C15

DOUBLE CUT-SETS

1) c17, c1 | 10) C€20,C1
2) C17, Cllu 11) c22,C1
3) Cc18, C1 12) C22,C1l4
4) Cc18, Ccl4

5) C19, Cl

6) C19, Cli

7) c21, C1

8) c21, Cl4

9) c20, C1

6
TABLE 1.1. CONTINUED

1) C4,Cé,C6 28) 019,C25,C28 55) C22,c27,c28
2) ¢7,C5,C6 © 29) €19,C25,C29 56) C22,027,C29
3) ch,c8,c6 30) C€21,C25,C26 57) C17,C23,C26
4) c7,C8,C6 .31) c21,c25,c28 58) c17,C23,Cc28
5) Cl7,C25,C24 32) C21,C25,C29 59) C18,c23,c26
6) qu,cs,cg 33) C20,C25,c26 6Q). Cc18,c23,c28
7) Cl18,C25,C24 34) ca20,C25,Cc28 61) €l9,C23,C26
8) C19,c25,C24 35) C€20,C25,C29 62) C€19,c23,C28
9) ¢7,C5,C9 36) c22,C25,c26 83) c21,C23,C26
10) c21,c25,Cc24 37) c22,c25,c28 64) c21,C23,c28
11) c20,c25,c24 38)-C22,C25,C29 65) C20,C23,C26
12) Cc22,C25,c24 39) c17,c27,C26 66) c20,c23,c28
13) Cci7,c27,C24 Lo) ci7,c27,c28 67) c22,C23,C26
14) CH,CS,C9A 41)-017,027,C29 68) c22,c23,c28
15) c18,c27,C24 42) c18,c27,C26 69) C17,C19,C26
16) C19,C27,C24 43) ci8,c27,c28 70) €cl7,C29,C28
17) c21,c27,C24 Ly) c18,c27,Cc29 | 71) C18,c29,c25
18) c7,c8,C9 4s) Cl19,C27,C26 72) C18,C29,C28
19) c20,c27,Cc24 4e) ci9,c27,c28 73) C19,C29,C26
20) c22,cC27,C24 47). c19,c27,c29 T4) Cl9,C29,c28
21) Cl7,Cc25,C26 48) ca21,c27,c26 75) C21,C29,C26
22) Cl17,C25,C28 49) c21,c27,c28 76) c21,C29,C28
23) Cl7,C25;C29 50) c21,c27,C29 77) C20,C29,C26
24) C18,C25,C26 51) c20,c27,C26 78) c20,C29,C28
25) Cl8,C25,c28 52) C20,C27,C28 79) C22,C29,C26
26) Cl8,C25;CZ9 53) c20,C27,C29 80) ca22,C29,Cc28

27) C19,025,026 54) c22,C27,026

TABLE 1.2
MODULARIZED MINIMAL CUT-SETS
@8 ={c17, c18, c19, €20, C21; U}
Cut-sets
1) (G8,c1)
2) (G8,c14)
3) (G8,c25,c24)
4) (G8,C25,C26)
5) (G8,c27,c24)
6) (G8,c25,c28)
7) (G8,C25,C29)
8) (G8,c27,C26)
9) (a8,c27,028)
10) (a8,c27,C29)
11) (G8,C23,C26)
12) (G8,c23,c28)
13) (G8,C29,C26)
14) (G8,c29,c28)

8

it becomes clear that for every minimal cut-set containing
component Cl7, five other similar cut-sets may be found with
component C18,C19,C20,C21, or C22 replacing component Cl7, e.g.
(ci7,c1), (ci8,c1), ci9,c1r), (ca20,C1), (C21,Cl), (C22,C1). 1In
fact by modularizing gate G8, 14 groups of similar cut-sets
willl be found. Therefore, as shown in Table 1,2, the listing
of 84 different minimal cut-sets would be unnecessary to des-
cribe the SPC fault tree structure by keeping track of the cut-
sets affected by the modularization of gate G8.

It 1s clear then that there are advantages to be gained by
using the modularization procedure to describe fault trees as
illustrated by the above example. 1In this thesis, the formalism
necessary to characterize fault trees in terms of their modular
structures shall be presented. And the methodology adopted by
the computer program PL-MOD in order to implement a modular
approach to fault tpee and reliability analysis will also be
discussed.

The organization of the thesls 1s as follows:

Chapter Oné consists of a summary of the concepts used
and of the methods devised for the safety and reliability
énalysis of operating systems by the fault tree technique. The
structural relationship between a system and its components
shall be defined in terms of a deterministic coherent structure
function, while the reliabllity of a system will be determined
as a function of the probabilistic reliabilities of its compo-
nents;

Coherent structure function relationships will be shown

9
to be describable by means of minimal cut-set and path-set

representations and by Boolean algebra and truth-table methods.

Since the exact computation of the system reliability
parameters is in general too difficult, appropriate bounds
will be given which can be easily computed. Also, probabilistic
importance measures will be introduced for the purpose of
numerically ranking the varibus sets of fault events leading to
~the .occurrence of the top event in order of their significance.

Chapter Two deals with the means by which the structural
as well as the probabilistic analysis of fault trees may be
accomplished in terms of a modular tree description.

A module 1s defined to be a set of components behaving as
a super-component, 1.e., the set affects the overall system per-
formance only through the operational state of the super-compo-
nent. Modules will be classified into "simple" (AND and OR)
gate modules and higher order '"prime" gate modules describable
by a set of Boolean state vector equations. Exact expressions
as well as bounds will be given for the pfobability of occur-~
rence ("reliability") and importance value of a modular gate
event, and it will be shown how these quantities of interest
can be straightforwardly computed.

In Chapter Three the computer program PL-MOD written in
PL-1 language will be described. It will be shown how to
implement an algorithm for the modulariiation of fault trees
directly from their diagram description. The procedure which
is to accomplish this task was only made possible by an ex-

tensive use of a number of unique tools avallable in PL-1, among

10

them are the options to use dynamical variables, based struc-
tures, pointers, bit-string variables, Boolean operations and
functions, etec. | ‘

In Chapter IV, results are presented for the analysis per-
formed by PL-MOD on a numbef of nuclear reactor safety system
fault free, namely: A Triga Scram Circuilt, a Standby Protec-
tive Circuit and a PWR High Pressure Coolant Injection System.
The performance of the PL-MOD code is assessed with these
examples and the advantages of modularizing large fault trees
instead of generating their minimal cut-set event description
is demonstrated.

In Chapter V the modular approach developed throughout
this thesis is summarized and a discussion is given of further

possible extensions to the PL-MOD computer code.

11
CHAPTER ONE

FAULT TREE AND RELIABILITY ANALYSIS CONCEPTS AND METHODS

I.1. Introduction

Fault tree analysis 1s one of the principal methods to
analyze safety systems. It is a valuable togl for identifying
potential accidents in a system design, and for predicting
fhe most likely causes of system failure in the event of sys=-
tem breakdown [3].

In this chapter the basic concepts necessary for the struc--.
tural analysis and probabilistic evaluation of fault trees are
presented. In addition a review 1s given of the current methods
used to analyze the logical structure of a fault tree diagram
andvfcr making sa quantitative assessment of the reliability
characteristics of safety systems modeled by fault trees.

.

I.2. Fault Tree Analysis

Fault tree analysis is a Systematic procedure used to
identify and record the various combinations'of component fault
states and other events that can result in a predefined unde-
sired state of a system (L9]. PFault trees are schematically
represented by a logic diagram in which the various component
failures and fault events combine through a set of logical
'gate operators leading to the top tree event defined as an
undesired state of the system.

The term event, denotes a dynamical change of state occur-

ring to a system element or to a set of system elements [3].

12

The symbols shown in Figure 1.3 represent the different
type of tree events and logical gate operators commonly found
in fault trees. In addition to the gsual AND and OR gate
operators, the less often used NOT. gate operator has been in-
cluded. A fault tree example isvé;ven in Figure 1.4 which
will be used throughout to 1llustrate some of the concepts
and methdds dealt with in this chapter. Notice that for the
example I fault tree the basic fault events 3 and 7 are twice
replicated in the fault tree.

The following definitions will be used to develop the sub-
ject of fault tree analysis [7].

Branch: when a fault event is further develbped, the sub-
tree which results 1is célled a branch. Thus, for the fault
tree example I, a branch corresponds to each intermediate
gate event E2,E3,E4,E5,E6,ET,E8. |

Gate Domain: The set of all basic events that logically
‘interact to produce an intermediate gate event 1s defined to
be the domain for the intermediate gate.

Independent Gate Branch: If the domain of an intermediate
gate is disjoint from the rest of the branches found elsewhere
| in the tree, then 1t is called an independent gate branch.
Thus, for fault tree example I only gate events E4 and E5 are
independent branches since they include no basic event repli-
cated elsewhere in the fault tree.

Module:; Since an independent gate branch does not con-
tain In 1its domain any basic. events appearing elséwhere in

the tree, then the effect that these basic events have on the

OUTPUTS

INPUTS
NOT Gate

(1‘X1) Xo = 1 - xl

0 <> 0

INTERMEDIATE EVENT: UNDEVELOPED EVENT PRIMARY INPUT EVENT
"i"

QUT

FIGURE 1.3 FAULT TREE SYMBOLS

TOP EVENT
E|

5

E2

G2

® © ® @

FIGURE 1.4 FAULT TREE EXAMPLE

G8

6

o

15
event 1s only through the functional state (failed or unfailed)
of the gate event for the branch. Hence, it interacts with the
rest of the tree as a super-component which in the context of
coherent structure theory is equivalent to a module. Thus,

for fault tree example I gates E4 and E5 corresponds to modules

M4 ,M5 given by

Mg = {8,9,U01

Mu = {1,2,M-;Q}

53
Where U = event union (OR) operator and

Q ¥ event intersection (AND) operator.

It should be mentioned here that since both basic events
and complete fault trees are fully characterized,'as far as
the tree logic is concerned, by being elither in a failed or
unfailed functional state,vthey therefore may also be con-

sidered to be modules.

I.3. Coherent Structure Theory

Let N = (Cl,Ca...,Cn) be a set of basic events, and let
3= 1 if basic event i has occurred (1.1)
174y otherwise

Then XN = (yl,yz,...,yﬁ) defines the vector of basic event
outcomes, and the Boolean structure function [1] @(ZN) deter-

mines the overall state of the system, i.e.

N /1 if the TOP event occurs
o(Y) =

ﬂ- (1.2)
=2 . 0 otherwise

16

Consider the basic AND and OR loglc gates operating on
the set N of inputs. The structure function representing an

AND gate is given by

Ny .
¢AND(X) = 'Yl’Y2"_“."Yn s ;T:T; Yi (1-3)

while an OR gate 1s represented by

borEN) = 1 = (1-y (L = ¥y) ...(1-y))

R (1.4)
_1%‘ Vi

In general a Boolean structure function will define a
coherént system provided
(a) ¢(1N) is an increasing functlion of each basic event
Boolean indicator Yy i.e.,
(1.5)

¢(Y1’Y2,..',Yi = O,o.c,Yn) —<-¢(Y1,Y2’..'Yi

(b) each basic event 1is relevant to the outcome, i.e.,

no basic event Boolean indlcator ¥y exists such that

¢(yl,y2,...,yi = 0,...,5.) = ¢(yl,y2,...,yi=l,...,yn)

n
for all values of yj (J=-1,2,...,i=1,i+1,...n)

Using the following notational convention

17
¢(yl,...,yi = l,...,yn) = (li,Y),(Yl,...,yi = O,...,yn) = (Oi,g)

conditions (a) and (b) may be rewritten as

(2) ¢(04,%) <¢(1,,Y) for all (1,%) (L.7)

and (b) ¢(0,,%) # ¢(1,,3) for some (i,z) (1.8)

with (1,Y) representing any of the on-1
-

ve?tors (yl,yz,...,yi
fixed, yi+l""’yn)'

. It should be pointed out that fault tree diagrams which
include the NOT gate operator do not obey condition (a) and
are therefore represented by a Boolean function which is not
coherent. Thus, a single event Y, operated by a NOT gate will

be given by

dnopl¥y) = 1-¥4 | (1.9)

with ¢NOT(O) = 1> ¢NOT(1) =0 (1.10)

I.3.1. Dual Coherent Structures

A féult tree used for studying‘a safety system willl have
as its top event an overall system malfunction. However, for
reliability considerations one may be interested in modeling
the system with a dlagram showing the occurrence of an unfailed
functional state as 1fts top event. Such a diagram may be
easlly obtained from the original fault tree by replacing its

OR gates by AND gates and viceversa, and by replacing

18

all basic event failures by the non-occurrence of such faults.
The resulting dilagram is called a dual fault tree,
In terms of coherent structures, the Boolean function des-

cribing a dual fault tree will be given by

D ' '
¢ (§') =1 -9(1~-3%") (1.11)

with ¢ associated Qith the original tree, g’ representing the
Boolean vector of basic success events and 1 - g' = (1l-Y!,
l—Yé,...,l—Yﬁ).

Thus, as expected, AND gate structure functions will be

dual to OR gates and viceversa since

(1.12)

N D
9 () = VsV oseeey =>¢ l“(l‘y):::(l‘y)
AND X 1292 n T AND 1l n

PR

and bor () = 1=(l-yp) ..o (l=y) =6 = 1-(1-(1-14y))

OR

seees (l=l+y)

- I.3.2. Minimal Cut-Set and Path-Set Representations of
Coherent Structures

A cut-set is a group of basic fault events whose occurrence

will cause the top tree fault event to occur, while a path-

19
set 1s a group of basilc fault events whose non-occurrence will

insure the non-occurrencé of the top tree fault event. Further-
more a cut-set (or path-set) is minimal if it cannot be further
reduced and still remains being a cut~-set (or path-set).

As may be verified the minimal cut-sets corresponding to

fault tree example 1 are

=
[}

l (3’637)

o, = (4,5,6,7)
(1,2,5,6,7,8)
(1,2,5,6,7:9)

w =
(] L]

=~
&=
i

From this, the minimal path-sets may now be derived by taking
minimal groups of elements Pi such that no minimal cut-set

may be found which contains no element in the group P Thus,

i'
for example element 7 by itself forms a minimal path-set since
1t is found in all universal cut-sets Kl’Kz’K3’Ku' Hence-
Pl = (7), similarly, the rémaining min. path-sets for the

fault tree may be deduced to be

g
[

o = (6)

(3,5)
(2,3,4)
(1,3,4)
(3,4,8,9)

Given the complete set of minimal cut-sets K

v W '
4=
[}] [}

o
(o))
[

j J =1,2,...,
t) for a fault tree, its coherent structure may be expressed
in térms of a set of minimal cut=set strﬁcture functions de-

fined by

-k, = I X (1.14)

(§=1,2,...,t)

£ ¢
as follows ¢(Z§) = 1 -7 (l-kj) =] k (1.15)
y=1 =1 J

should all elements in a min cut-set KJ fall (1.e., y; =1

for all ieK) then—sk, = 1 =>¢= 1,

J J
In a similar way the coherent structure for a fault tree

may be expressed in terms of its min path-set structure func-

tion defined by

v}
]

H
!
o=}

(1- y;) = f%g vy (1.16)
J _

Jd =1,2,...,h)

as

P
=1 J (1.17)

==

p(T) =

Should all elements in a min path-set not fail (i.e., yi=0

for all ier) =P, = 0=> ¢= 0,

J

I.3.3. Simple and Higher Qrder Coherent Structure Gates

The minimal cut-set representation for an AND gate struc-

ture consists of a slngle cut-set

n‘ (1.18)

21

with C, denoting the i-th event input to the AND gate, hence

i

Panp = Yy (1.19)
Similarly the minimal path-set representation for an OR gate

structure consists of a single path-set

P = (C1,C5,...5C)) (1.20)

hence

n
¢ =P =|| ¥y | (1.21)
“OR H’l 1

Because of thelr simple cut-set and path-set representa-
tion, AND and OR gates are named 'simple' coherent structure
gates. It is possible however to define other gates G(XN)
which operate on the set of Boolean indicator inputs (yl,yz,...,
yn) by‘characterizing them in terms of two or more minimal cut-
sets or path-sets. Such gates are defined to be higher order
gate structures. Thus for example given a set of three basic
events (Cl,Cg,C3), the following higher order gates may be
defined (Figure 1.5)

g 1l; ch)

(C2,C) (1.22)

3
o 2; (Cl,Cz)

CCZ,C3)

22

i=1,2,3

FIGURE 1.5

HIGHER ORDER STRUCTURES FOR A SET OF THREE INPUTS

23
o 3; (Cl,,C2)

(cy» C3)
‘QCZ,.C3)

Each of the above gates exemplify the different character-
istics that a higher order gate structure c(YN) operating on
a set of event (Cl’ 02....,Cn) may have. Thus, since for
~gate 9y its two cut-sets are disjoint, a fault tree diagram
including no replicated events may be drawn which represents
the gate. Furthermore oy may be decomposed into two disjoint

coherent structures g1s 95 as
g =1 - (1 -¢;)(1-¢,) with ¢; = y;, and

93 = Yo¥3:
In Chapter Two 1t will be shown that such a decomposition
amounts the modularization of a fault tree.

Both gates, P and 03, do not contain any minimal cut-set
which are disjoint to the others defining the gate structure.
As a result such higher order structures will be called 'prime'
gates since they do not allow for any further structural decom-
position. If a higher order prime gate 1is represented by an
equlvalent diagram of AND and OR gates, then the gate at the
top of the diagram is named the parent gate for the higher
order structure.

Gate <§ is called symmetric since the order of its i1nputs

does not alter 1ts structure, i.e.

24

03(¥y5¥,5¥3) = 03(ylfy3,y2)=c3(y3,y2,yl)
=c3(y2,yl,y3) = ,0'3(y.2:y‘3’y.’l) = U3(.Y3,yl:y2) (1.20)

Symmetfic gates are 1in fact completely defined by specifying
the number k out of the n basic events necessary to cause
the gate event to occur (k-out of-n). In contrast gate 9, is
an asymmetric prime gate requiring its full min cut-set list-
ing for 1ts definition.

In terms of a higher order structure, fault tree example

I is given by

rop: (C3-My)
(CQ,C5:M1)

(1.21)
with ¢M2' = ¢l. ¢2 s Cbl =y y2,¢2= l=(l-y8)(l-y9)

and ¢Nu.= Vg-q

I.4. Probabilistic Evaluation of Fault Trees

Given a coherent structure function Q(YN)_WhiCh relateé
the occurrence of a top event to a set (Cl,Cz,...,Cn) of basic
event occurrences each represented by a Boolean indicator
variable Yi(i,l,Z,...,n) in the coherent structure expression
it should be possible to find the probability of occﬁrrence
for the TOP évent, P(TOP), as a function of the occurrénce

probabilities for each basic event P, (i=1,2,...,n).

i

25

Formally,ﬂthe‘occurrence probability for event Ci is
obtained by applying the expectation value operator E to the

Boolean variablé:Yi, i.e;,

Py = E, = B(Y, = 1) (1.22)

i b4

i

'similarly, for the coherent structure ¢.(y") the TOP event

occurrence P(TOP) is given by
N N .
P(TOP) = E¢(Y) = P (¢(Y") = 1) (1.23)

Assuming all basic event probabilities to be statisti-

cally independent 1t 1is possible to éxpress P(TOP) as

P(TOP) = P(¢(g") = 1) = n(p)

‘ (1.24)
with B = (P Py,...,P).
.

h() 1s commonly referred to as the reliability func-
tion by coherent structure theorists [1]. It must be realized
however that when Fhe coherent structure represents a fault
tree, h(g) measures the unrellabllity of a system defined as
the probability that the system 1s in a failled state.

| In general the occurrence probability Pi for each basic
fault event input will be a time dependent function, i.e., Pi(t).
For these cases one 1s interested in addition to find the un-
reliability of the system as a function of time,‘in evaluating

the asymptotic system unavailability given by

26

U =1im h (B(t)) = h(y) (1.25)

tc)-oo

with y ='(u1,u2,...,un) measuring the unavailability for

component 1, i.e. u, = lim P, (t).

£+

By using a minimal cut-set or path-set representation
for the coherent structure function (equations 1.15 and 1.17)

h(R) may be computed as

t h
n(p) = E(T y,) = E(I y,) (1.26)
$ }£i 1K, 1 }ii 1P, 1

However since in general a basic event may appear in
more. than one min cut-set (or path-set) it follows that the
probability of occurrence for a min'cut-set'(or path-set)
event is not statiétically independent of the other min
cut-sets (or path-sets) defining the structure. Hence, the
expectation value operator does not commﬁte with the first

(P1) operator and (ip) operator indicated in Equation (1.26).
To .1llustrate this, consider the coherent structure example

05 given in Equation (1.22).

2 2
o, = I y, =8 || ¥ (1.27)
2 }él 1K, SR ip, 1

with Kl = (Cl’CZ)’ K2 = (02,03) and Pl = (02), P2 = (Cl,C3).

P2(yl,y2,y3) Wwlll be given by either of the following

two expressions .

27

g, = 3 - (l-ylya)(l-y2y3) (cut-sets) (1.28)

or o, = yz(l_(l-yl)(l-y3)) (path-sets) (1.29)

Since a Boolean variable yy may only equal 0 or 1,
‘then the‘idempotency rule applies, i.e., yi2 = yi. Hence
equations (1.28) and (1.29) further reduce to

Gy =1 = (1-y1¥, = ¥o¥3 + ¥1Y,73)

and 0, = y, - ya(l RS AT Sl y3) (1.30)
therefore
Oy = ¥1¥p * Jo¥3 = V3595 | (1.31)
and |
E02 = PlP2 + P2P3 - P1P2P3
"however ' 2 ' ‘
2
Eo, # JJI E(I yy) = PyPy+P Py = P1P,"P; (1.32)
J= iK
e™d
Thus; in‘generalt h

h(P) # i P, and h(P) # I P (1.33)
P &y 7 e iJ;EJ -

Esary and Proschan [8] have nevertheless proved that
the above expressions glve an upper and lower bound for h(P),

l.e.
t

h
I P, < P(TOP) = h(P)< I P @ 34)
i=1 1&%& 1= = %31 1 i

28

These bounds are known respectively as the minimal cut upper
bound and minimal path lower bound.
The minimal cut upper bound may be further simplified

by making a first order expansion of the full expression

'yielding
t
h()< z I P (1.35)
> ~y=1 1k, * ‘

e"J

which 1s the rare-event approximation to the minimal cut

upper bound and neglects the simultaneous occurrence of

minimal cut-sets. For values of P, <102

5 Equation (1.35)

may be safely used.

I.5. Importance Measures for System Components and Fault
Tree Events

Given a system made up by a network of components
which performs a specific task or function, as a result of
the system's structural arrangement only, some components
will be more critical than others to the functioning of the
system. Moreover a component's reliability will also be a
factor in assessing 1its importance in determining the overall

functional state of the system.

I.5.1. Structural Importance.

The importance of a component purely by virtue of the
role 1t plays 1n a system's structure characterized by the

coherent structure ¢(§) may be measured by

29
¥ (1) = —=— I [9(1,,%) - ¢(0,,¥)]
¢ on-1 ;,yi fized 1 103

| (1.36)

By fixing the value of Boolean variable yi,zﬁ'l possible
state vectors (yi,yz,..;,yi_l,yi fizxed, yi+l"‘°’yn) may
be found for each such vector the i-th event will be critical
- to the overall state of the system if

$(1,5%) = 1 and 6(04,3) = 0, i.e.
L (1, - e(0,Y) =2 (1.37)

Hence the structural importance Ii(i) will rank each basic
event 1 according to the number of critical state vectors

that may be associated with the event.

I.5.2. Birnbaum's Importance

In terms of ¢(li,§) and ¢(01,§), the coherent struc-

ture function ¢(Y) is given by

as may be verified since ¢(Oi,g) = (0) ¢(1i,1) + (1-0)¢(Oi,g)
and ¢(1,,¥) = (1)¢ (1,,¥) + (1-1) ¢(0,,Y). Therefore by
applying the expectation value operator E to equation (1.38)
h(P) will be féund to be given by

h(R) = E ¢¢¥) = (BY;)(E$(1y,¥)) +(1-EY,)(E¢(0,,Y))

= n(p) = P;h(1,,p) + (1-P,)h(0,,P) (1 = 1,2,...n)
(1.39)

30
Birnmaum's importance measure for event i 1is defined to be

the partial derivative of h(P) with respect to Py 1.e.,

IiB(R) = é%éfl- = h(1,, 83 - h(0,,B) | (1.40)

It 1s seen from Equation (1.40) that the Birnbaum importance

for event 1 1s independent of its occurrence probability Pi‘

I.5.3. Criticality Importance

The criticality importance for fault tree event 1
is defined_as the probability that event i 1s in a failed
state and at the same time is critical to the system's failure
given that the system has failed, 1.e.

PR PL(8(11,8) o b (01:2)) CRES

I.5.4. Vesely-Fussell Impoftance

The failure of a component ¢y will contribute to
system failure provided at least one min cut-set containing
Ci has falled. Hence, the probability for the occurrence of
the union event of all minimal cut-sets containing cy will
measure the contribution of the component to the system's
failure,'i.e.,

P(U,K,) = B(Xg (3) = 1) (1.42)
:LeKJ
‘where Xé(i) is the Boolean indicator function for the union

of all cut set functions containing Boolean variable Yy thus

31

1
Ng
1
X () = I v (1.43)
x ¥ ljl:-l LK, 2

1€KJ
with Ni = total number of min cut-sets containing the ith
component.
The Vesely-Fussell importance measure [10] is defined

as the probabllity that component ¢, contributes to system

i
failure given that the system has failed, hence

‘Ii i .8 —h-TET (1.44)
with

hy (B = EXp (D) = B A = D) (1.45)

The Vesely-Fussell and criticality importance measures
differ from each other in that component Cy wlll contribute
to a system’s failure and still not be critical to the system
if at leést two minimal cut-sets have failed, one containing
cy and another qne not containing Cy - Nevertheless, as shown
below, 1if the minimal cut-upper bound is used in the rare
event approximation form, to evaluate both hi(P) and h(P),

. then the value obtained for both importance measures will

coincide
i
Nk |
h,(P) = ¢ I P (1.46)
i - 2
j=1 lsKJ
ieKJ

and

hence

at the same time-

therefore

and

h(p) = I I P,
=1 1K,
: 1
N
(Y% , 1 B
) 2
hs (P) €
TE 1(3) = 421 1K)
h
5 (4% zsgsz)
\ N-N 'Ni
h(BP)~ T I P, + 2 I P
Y= B N '
Q‘QKJ zEKJ
1 1
NN N
h(l,,P)a © I P, + Iz (1) T
P Loy ot 5@
e J zeKJ
1#2
1 1
N-N, N
I T I
1 k,Fet g1 (O 4 k. By
J=1 zexg zexg
€ ____\»1§£_~_~’,J

(1.47)

(1.48)

(1.49)

33

Hence (1.50)
i
Ny
(018 3t 1k, b
c (a(1y,2) - h(oy, =1 1K
IPS ig ig Pi': ',Q,:Kg
1 h(p) N
(£ T Py
J=1 1K,

Thus comparing Equations (1.48) and (1.50) it is found

that

T =T V.F.. ‘ (1.51)

in the rare-event approximation..

I.6. Methods for the Generation of a Minimal Cut-Set or
Path Set Fault Tree Description

For a large fault tree made up of hundreds of logical
gates and basic events, its total number of min cut-sets can
easily amount to thousands of cut-sets. Therefore a computer
program will be needed even to generate the minimal cut-set
which contribute the most to system faililure [22], (i.e., single,

double and triple fault cut-sets).

3y

Computer programs MOCUS [9], TREEL and MICSUP [16]
implement two different algorithms for the generation of a
fault tree's minimal cut-sets. Both algorithms are based on
the fact that AND gates increase the size of a cut-set while
OR géte increase thé number of cut—sets in a fault tree. Both
MOCUS and TREEL & MICSUP were written in FORTRAN and are re-
stricted to fault tree dlagrams operated by AND and OR gates
only. Thus NOT gates are not allowed by either of the two

codes.

' I.6.1. MOCUS

Computer program MOCUS [9] was written to replace
PREP [2ﬂ'as a minimal cut-set generator for computer programs
KITT-1 and KITT-2 which evaluaée time dependent fault trees in
the framework of Kinetic f?ee Theory [23]. As shown in Chapter
'_IV for the particular case of a Standby Protective Circuit, it
1s a considerable improvement over PREP's deterministic minimal
cut-set generation option COMBO. COMBO determines the minimal
cut-sets for a fault tree by consildering a combination of fault
events at a time and testing if the fault tree logic implies
that the combination considered causes the occurrence of the
TOP tree event.

The algorithm used by MOCUS starts with the TOP event
of the fault tree and proceeds, by successive substitution of
gate equations, to move down the tree until only basic events

remain in the list of possible TCP tree event occurrence causes.

35

For fault tree example I the process takes the follow-

ing form
STEP 1 G
STEP 2 G2, G3
STEP 3 el, @3
66, G3
STEP 4 G4, 6, 7, G8
G6, 6, 7, G8
STEP 5 1, 2, G5, 6, 7, G8
3,6, 7, G8
G7, 6, 7, G8
STEP 6 1, 2, 8, 6, 7, G8
1, 2,9, 6, 7, G8
‘3‘, 6, 7, G8
STEP 7 7, 4, 6, 7, G8
1, 2, 8,6, 7,5
1, 2, 8, 6, 7, 3
1, 2,9, 6, 7,5
1, 2, 9, 6, 7, 3
3, 6, T, 5
3, 6, T, 3
4, 6, 7, 5
4, 6, 7, 3

Thus, the idea of the algorithm is to replace each

gate by its input gates and basic events until a list matrix

36

is constructed, all of whose entries are basic events. Each
time an OR gate 1s substituted, rows are added to the matrix,
) while a substituted AND gate results in the addition of elements
to an exlsting row.

The cut-sets obtained thls way are called Boolean
Indicated Cut-Sets (BICS). For fault tree example I its list
of BICS will be

BIcs

(1) 1, 2, 5,6, 7, 8 minimal
(11) 1, 2, 3, 6, 7, 8 non-minimal
(111) i, 2, 5,6, 7, 9 minimal
(Iv) -1, 2, 3, 6, 7, 9 non-minimal
(v) 3, 5, 6, 7 " non-minimal
(vi) 3, 6, 7 minimal
(vii) b, 5, 6, 7 minimal
(viii) 3, 4, 6,7 non-minimal

. If a fault tree contains replicated events then 1ts
set of BICS will include certain cut-sets which are not mini-
mal; The minimal cut-sets (MICS) are obtained by discarding
those rows which are non-minimal since they are super-sets
for another row in the 1list. For fault tree example I the
second, fourth, fifth and eighth rows are supersets for the cut-
set given in the sixth row (3,6,7). Hence they must be dis-

carded in order to obtain a list of MICS for the fault tree

37

MICS
1, 2, 5,6, 7, 8
1, 2, 5, 6, 7, 9
3, 6, 7
4, 5, 6, 7

The minimal path sets for a given fault tree may be
easily obtained by applyihg the same algorithm to 1ts dual
fault tree. Thus, for fault tree example I, MOCUS will find
its min path sets by applying the algorithm to the tree dia-

gram shown in Figure 1.6 as follows

STEP 1 G1
STEP 2 G2

G3
STEP 3 Gl, G6

STEP 4 1 G6
2 @6
G5 G6

STEP 5 1, 3, G7
2, 3, G7

FIGURE 1.6 DUAL FAULT TREE FOR EXAMPLE 1

G3

G8

8t

39

9, 3, G7

-

("
w

STEP 6

-
w
-

- " -
O W W
- ™ -
w w -3 = | =

-
=

(0 oo Qo n n [ol H Ul ~ (o) oo
™ -
O w
v ™

\l

3, 5
: Again here‘since the second, fourth and sixth rows
are supersets to minimal path set (7), they must be discarded to

obtain the set of miniﬁal path-sets for the original fault tree

1, 3, &4
2, 3, 4

3, 4, 8,9
3, 5

I.6.2. TREEL & MICSUP

The minimal cut-set upward algorithm [l6] program ob-
talns minimal cut-sets starting with the lowest level gate

baslic inputs and working upward to the TOP tree event. TREEL

b

is a preprocessing program needed to execute MICSUP. TREEL
transforms the tree into a form convenient for computer analy=
sis, checks for possible errors in the tree construction and
provides the number and maximum size for the Boolean Indicated
Cut-sets and Path Sets. These numbers are useful since they
provide an upper bound on the number and size of minimal cut-
sets and path sets which characterize the fault tree, hence on
that basis the user may decide to have MICSUP determine either
a minimal cut-set or path-set description for the fault tree.

The algorithm used in MICSUP was given by Chatterjee
[6]. As mentioned earlier it starts out with lowest level gates
defined to be those gates which have basic event inputs only.
The minimal cut-sets for these gates are found and are substi-
tuted as a representation for these gates. The procedure 1s
repeated with those gates directly attached to the lowest level
gates and so on, untll the Boolean indicated cut-sets are found
for the top event.

For fault tree exampie I the procedure takes the

following form

STEP 1 G5: 8
9
L G7: 4, 7
G8: 3,
5
STEP 2 G4: 1, 2, 8
1, 2, 9

G6: 3

G3:
STEP 3 G2:
G3:
STEP 4 Gl:

41

O o v w

-

~N WO o o WM W
-

7,
7,
T
7,

U w U w

7, 8
7, 8
7, 9
7, 9

non-minimal
minimal
non-minimal
minimal
non-minimal
minimal

minimal

42

'yielding the expected TOP event MICS

1, 2, 5,6, 7, 8
1, 2, 5,6, 7, 9
3, 6, 7

4, 5, 6, 7

It should be noticed that in contrast to MOCUS, the
MICSUP algorithm offers the advantage of generating the BICS
for each gate in the tree. Therefore the minimal cut-set
composition for each sub-tree in the system will be obtained.
by discarding at each level any non-minimal cut-sets that may
appear. As a result for fault trees which include many event
repllications, a significant reduction in storage requirements
will take place by discarding non-minimal BICS as soon as
théj appear for an intermediate gate in the tree. In Chapter
III it will be shown that the computer program PL-MOD modular-
izes fault trees by an algorithm similar to that used in MICSUP
in that 1t starts with the lowest level gates and proceeds up-
wards to the top event.' Hence an analogous advantage to that

cited for MICSUP will thereby apply for PL-MOD.

I.7. Methods for the Manipulation of Boolean Equations
Describing a Fault Tree

In section I.3.2 coherent structure functions were

expressed in terms of their minimal cut-set description as

t t
. _
o (¥) -ju k, ju i:Kin (1.52)

43

What this equatiqn signifies is that the TQP event of a fault

tree 1s given By the union of all its minimal cut-set event

Ki(1-1q&,”,tb thus

TOP = K,UK

1 2U...UK

s (1,53)

with
By = (C4 +C4 , «vvs Cy 30l (1.54)
1l 2 ny
In éection T.7.1. 1t will be discussed how the com=
puter program SETS [21] generates the set of Equations (1.5%4)
| by a direéf manipulation of the Boolean logic equatlons des-
cribing a fault tree. A féatﬁré particﬁlar to SETS 1s that
in addition to the AND and OR gates commonly found in fault
trees, 1t can also handle NOT gates, EXCLUSIVE OR gates and
SPECIAL gates which are previously defined by the user in
terms of a specific set of Boolean equations.
In section I.7.2. the BAM [18] (Boolean Arithmetic
Model) computer program will be discussed which evaluates the
TOP event occurrence probabllity
| | P(TOP) = P(K,UK,U,..,,K,) (1,551
by'expanding the Bboléan‘éxpression corresponding ta the top
event in a series of mutually exclusive events, As will be
shown, such an expansion is only made possible by simultaneously
conside;ing the set of basic evénts (cl,,.,,,cnlgas well as

their corresponding complement events C?l,32,...,€hl obtained

Ly

by applying the complement (upper bar)'operation to the original
' basic events and defined by
cUec =8 (1.56).

where S = the universal set.

By 1lncluding complement state events in its formalism,
BAM succeeds to incorporate dependent as well as mutually
exclusi#e events. As a result BAM is capable of computing
the unavallabilities for systems undergoing test and maintenance
procedures as well as for systems which are subject to common

mode fallures.

I.7.1. SETS
The Set Equation Transformation System [Rl] symbol-
ically manipula;es Boolean equations formed by a set of events
operated on by a particular set of union, intersection and com-
plement operators. |
Given a fault tree, a Boolean equation is established
to represent each intermediate event as a function of its input
events. In addition to AND and OR gates, intermediate events
may also be related.by EXCLUSIVE OR gates and SPECIAL gates
(Figure 1.7) to their inputs. For an EXCLUSIVE OR gate, its
output event will occur only 1f exactly one of the input events
occurs while the other inputs do not occur. Thus if the EXCLU-
SIVE OR gate operates on two events (cl; c2) then 1its output
is given by

EXCLUSIVE - OR (cy,cy5) =(cqf Eé)U(Ei c,) (1.57)

45

il 12' n

EXCLUSIVE OR-GATE

i 2

SPECIAL GATE

FIGURE 1.7
EXCLUSIVE OR GATE AND SPECIAL GATES AVAILABLE IN SETS

u6
Speclal gates are uniquely defined by a Boolean equa-
tion provided by the user. Thus, if for example a SPECIAL
’2 - 6&;“of —73 gate 1is wanted, then it must be defined by

SPECIAL GATEl(cl,cz,c3) = (c1S2c2)U(015203)U(c2903) (1.58)

The computer program SETS offers the user the option
to develop the set of Boolean equations deécribing the fault
tree in such a way as to directly derive the set of "prime
implicants" [17] corresponding to any desired intermediate gate
event.

Each prime impliqant‘for an intermediate gate will
correspond to one of its minimal cut-set events with the res-
triction that there be no simultaneous occurrence of a basic
é#ent (¢) and its complement (c) 1in the cut-set.

SETS derives the prime implicant description for an
intermedlate gate by using a set of substitutions and succes-

sively applying the distributive law

AQ(BUC) = (AQB)U(AQC) (1.59)
Suppose for example that SETS has been commanded to
derive a representation for gate G2 of fault tree example I.

The following procedure would take place

STEP 1 G2 = G4 U G6
Gl = C1QC2QG5, G5 = C8 U C9
G6 =C3UGT , G7 = C7 Q Ch

47

STEP 2 G6 = C3U(CT7RCY)

G4 = Cc1QC2Q(C8 U C9)
STEP 3 G2 = (ClQC2 QR(C8 U C9)U(C3 U (Cc7qCh))
STEP 4 Apply distributive law (equation 1.59)

= @2 = (C1lR(C2QC8)U(c2nc9)u
((C3) U (C7 Qqch)

= G2 = (C1QC2QC8)U(CLRC2RC9)U
(C3) U(CTQCck)

Hence the prime implicants (minimal cut-sets) for G2 are

]
"

(c1,c2, ¢8)

N
L}

(c1,c2, C9)

=~
(]

3 = (C3)

(CT7,CH)

~
=
[

The above procedure is generally used to derive the prime im-

plicants for any fault tree, however the additional identities

ci QC, = Cy, C,2 T, =9 (empty set) (1.60)

may sometimes be needed.

I.7.2 BAM

Computer program BAM [18 uses a Boolean algebra
minimization technique to find intermediate and top event logic
expressicns from the input fault tree and calculates the point

unavallabilities associated with these events.

4g
By including basic events (on states) as well as

thelr respective complements (OFF statés) BAM 1is able to con-
struct a truth table which describes each intermediate gate
event 1n the fault tree as the unlon of mutually exclusive (ON
and OFF) state events. Thus, for example consider an OR gate
operating on components (Cl, C2).

Its doherent strucfure description will be (Equa-

tion 1.4)

¢
at the same time recall that (Equation 1.9)

hence

O b b oy b
or = wnorl wnor(¥1) + "Nor(¥2)) (1.63)

The above equation may now be reexpressed in set theoretical
form by replacing AND, OR and NOT gates by union (U), inter-

section () and complement () operations, thus

(1.64)
Cp UC, = r&iﬂ 625
Using now the identity
S = (C1RC2) U(C1NC2)U(T1ac2)u(T1nc2) (1.65)'

with S = CUC = the universal set. It follows that

C; UG, = (Cq nﬁz)U(Elnﬁg)U(clncz) (1.66)

49
which 1is the desired expansion, since all events given in the
right hand side of Equation (1.66) are mutually exclusive.
In Table 1.3 and 1.4 the truth tables [18 associated
with the above logical expression (C:L U CZ) as well as clU(Cé?ﬁé)

are given

I . II IT
p-terms M 75 ¢ U 5
* cq ey 1 1 1
¢y ch 0 1 1
ey fc, 1 0 1
) Qc, 0 0 0

Tabie 1.3 Canonical Expansion for C, U C

1 2

In general the truth table for an expressidn consisting
of N distinct logical variables is expanded using 2N P-terms.’
Columns I and IT are equivalent representations for each P-term
needed for a canonical expansion. Thus, Coiumn II can be de-
rived from Column I by assigning a 1 value to ON states, and
a 0 value to OFF states. The canonical expansion (Column III)
for a particular logical expression 1s then obtained by per-
forming for each row in the truth table a series of Boolean
arithmetic operations equivalent to the set of operations
indicated in the logical expression. Thus, Cl U C2 requires
only that variables ¥, and Y5 be added at each row. While

c, U (023253) requires the set of operations

I IT III
P-terms Y1 Yo yé- 0295 : ClU(C2Q'53?
Cl Q 02 Q C3 1 1 1 0 1
Cl Q 02 Q C3 1 1 0 1 | 1
Cl Q 02 Q C3 1 0 l: 0 1
Cl Q 02 Q C3 1 Q 0 0 | 1
Cl f 02 Q C3 0 1 1 0 0
Cl Q 02 Q 03 0 1 0 1 1
Cl Y] 02 2 C3 0 0 1 0 0
ClQCZQC3 .O’ 0 - 0 o 0.
Table 1.4 Canonical_Expansion for

ClU(C2 QcC

3)

51
C, U CCy 03) = ¥y + (y2-§3) (1.67)

It should be recalled that the following identities apply for

Boolean arithmetic variables

(1.68)

o H K P
o +# o o
"

=
" "
O H H H O H

i
"

Therefore the addition implied by C; U C, will result in '

lst row 1 +

2nd row 1 +

]
o H B M

1
0
3rd row O + 1
0

4th row 0 +

so as expected

Cl U C2 ="'(Clﬂ Cz)U(CiQ 02) U (Clﬂ CZ)

= 1=(cl U 02) = P(c:1 902’) + P(clszcz) + P(clgcz)

=P(C; U Cy) = pyp, *+ p1(1 = py) + py(1l = py)

= P(Cq U C,) = -p;p, + Dy + Dy (1.69)

£2
Similarly for ClU (02 53) each row is applied the operation
yp * (¥ v3).
Thus, it follows that

1st row 1+ (1 --T1T)

=1+0=1
2nd row 1+ (1 -0)=1+1=1
etec.

B& inspection of Table 1.4 it 41s found that

P(Cy U CC, @C5)) = pyP,yPg + PiPo(1l + Do) +

+ pl(l-pz) Py * pl(l - py) (1 - pz)(l - p3) + (1-py)

= P(Cp U CCyaC3)) =Py + Py = PPy = PpP3 *+ PyPyPs
(1.70)
The followipg examples 1llustrate how the BAM code is capable
of handling fault trees which include mutually exclusive events
and dependent failures.

Figure 1.8 depicts the fault tree for a system C, made up
of two sub-systems A and B each of which may not be functioning
due to either a hardward failure or because 1t is undergoing
maintenance events MA and MB, should be mutually exclusive,

hence the appearance of complement events MA and MB in the

53

c

UNAVAILABLE

® | Gl

UNAVAILABLE

A

@

UNAVAIL ABLE

-+) 62 +]63
A IN @ 8 IN
MAIN TENANCE ca MAINTENANCE
ol Ga ®lgs
. <@ NOT GATE
@ @8 Mg @3
c2 c3 c3 c2

FIGURE 1.8 Fault Tree Including Mutually Exclusive
Maintenance Events

54

TABLE 1.5

CANONICAL EXPRESSION FOR FAULT TREE WITH MAINTENANCE EVENTS

G1=G29 G3

Z=24 -2,

——

G2=ClU(C20 C3) G3=CuU(C3QCZ)

ZI=Y1+(Y2:Y3) Z2=Yu+(Y3° 2)

55

fault tree. Table 1.5 provides the truth table for the fault
tree. Notice that even though
P(TOP) # P(G2) - P(G3) (1.71)

since gates G2 and G3 are interdependent, 1t is however

feasible to compute
P(TOP) ='plpu + plp3 + pupz (1'72)

using the cannonical expansion for Gl corresponding to

In figure 1.9 an event B dependent on the occurrence of event
A 1s represented in terms of a tree logic diagram which includes

the events

B/A = Event B given the occurrence of A

B/A = Event B given the occurrence of A

1]

as
B = (A QB/A) U (& QB/R) (1.73)
This representation is quite convenient for performing quanti-
tative evaluations of a fault tree which includes event B
since
P(AQB/A) = P(A) - P(B/A)
and P(X qB/A) = P(A)- PéB/K) (1.74)

The above representation for an event dependent on the occur-
rence of a single event has been generalized in BAM for the

case of events dependent on a multiple number of basic events

56

FIGURE 1.9 Representation of an Event B
Dependent on the Occurrence of Event A

o) (o | (o (9
@ GO 6 DB O @ 0 O

\O
>

FIGURE 1.10

REPRESENTATION OF AN EVENT C DEPENDENT ON THE OCCURRENCE OF EVENTS B AND A

58

J

TOP EVENT

13

+
o 'ol

(2;) FAULT
TREE FOR
8/
FIGURE 1.11

FAULT TREE INCLUDING COMMON MODE EVENT A

59

(Figure 1.10) as well as to common mode failures depicted as
a multiple set of events whose occurrence probabillity 1s depen-

dent on a common initilating event (Figure 1.11).

I.8. Reliability Calculations by a Pattern Recognition
"Method '

The computer program PATREC (2] relies on the recognition
of sub-tree patterns whose probability combination laws have
been previously stored in the compuéer code's library. The
sub-tree 1s then replaced by a supercomponent with an associated
occurrence probability equal to that of the recognized sub-tree.
By repeating this_process.the whole tree is eventually trans-
formed into a single super-component whose occurrence probabi-
lity corresponds to that of the top tree event.

The elementary pattern recogniztion methodology used by
PATREC entails that large amounts of non-numerical data inter-
related on a complicated way be handled. To this end the com-
puter language PL-1 was chosen given its listkprocessing capa=
bilities.

The task of evaluating the TOP tree event occurrence
probabillity 1s performed by PATREC through the following set of
manipulations on the fault tree structure which is subject to
the following restrictions:

(a) Pattern recognition is made possible by giving the

fault tree diagram in a binary gate form (Fig. 1.12).

(b) Because of the binary gaﬁe form of the fault tree;

to each gate there corresponds a left hand side and

(e)

(d)

60
a right hand side sub-tree.
Beforé proceeding on to identify sub-tree patterns
at each step in the tree réduction, PATREC intern-
ally reorders the fault tree diagram in a way such
that 1if to every AND gate. one unit of weight is
assigned and to every OR gate Eéo units of weight
are assigned, then for each gate its right hand
sub~tree will be heavier than its left hand side.
Figure 1.13 shows the fault tree example Il reordered
according to the above rule. The-above tree reorder-
ing is done in order to a§01d~\the storage of dif-
ferent patterns which cor;ésgdnd to the same logic
structure (Figure 1.14)
Using list processing methods the pattern library is-
stored in the computer memory in a tree-1like fofm.
As a result redundant information about similar sub-.
patterns isn't stored separately and moreover the
largest pattern found in PATREC's library are guaran-
teed to be identified each time. In Figure 1.15 the
tree representing the set of 12 basic¢c patterns stored
in PATREC is shown. Tree patterns are represented

in reverse pollsh notation, thus

Py

ABQ = AQB (1.75)

AU (BQC)

cetgecs
]

5 ABCQU

= ABQC DU = (AQB)Q(C UD)

et e
oo
[

FIGURE 1.12 FAULT TREE EXAMPLE II IN BINARY GATE FORM

FIGURE 1.13 FAULT TREE EXAMPLE II IN ITS ORDERED FORM

Pattern found in PAT-REC's Pattern not found in
library PAT-REC's 1library

FIGURE 1.14

EQUIVALENT BINARY TREE PATTERNS

¢9

€9

E
A
E
AB
eflfu
n 4
ABC ABN | P ABU | P,
In ol
ABCN ABCU ABNC ABUC
N lu. n lu 15 ‘E
ABCNN ABCNU ABCUN ABCUU ABNCD ABUCD
Ps Ps Pq P61 n u | lu
ABACDN ABNOCDU ABUCDU
n} [u nl ;u nl lu
agnconn | {asnconu ABNACDUN ABNCDUU ABUCDUN ABUCDUU
Ps Pu Pg P2 Pio Pia
FIGURE 1.15

PAT-REC'S LIBRARY OF PATTERNS STORED IN A TREE-LIKE FORM

64

(e) Basic components are required not to be replicated in
the fault tree. Consequently, each time a sub-tree is
found to correspond to a particular pattern in PATREC's
library, it will be possible to replace it by a super-
component having the same occurrence probability as
that of the sub-tree's top event. Thus, since gate G2
of fault tree example II 1is the top gate for a sub-tree
with the same structure as that of pattern P5’ 1t will

be replaced by a supercomponent having an occurrence

probability

- D . - :
Subsequently a new ordered representation for the fault
tree will be found (Filgure l}l6), which corresponds to pattern
Pu = ABC U , hence the TOP event occurrence probability is

finally determined as

P(TOP) = PGZ (Pu + P5 - Py P) (1.772

As explained above the procedure used by PATREC is restric-

ted to fault trees which does not include replicated events. For

most real problems however a number of basic components will be
replicated several times in the fault tree. Therefore it 1s
necessary that the methodology be somehow.genefalized to handle
these situations. Computer code PATREC-DE [4] was created for
this purpose. Its procedure is based on expressing the struc-
ture of a fault tree which includes replicated events in terms

of a number of fault trees having no replications in their struc-

ture. Thus, recall that the dependency of a coherent structure

65

FIGURE 1.16

FINAL ORDERED FORM FOR FAULT TREE EXAMPLE II

66

function ¢(YN) on any of its basic inputs y, may be explicitly
indicated as

6(= ¥, 6(1,0 + (1-1,) $(0,,1) (1.38)
= n(p) = B, A(1,,B) + (1 - 2,) h(0,,8) (1.39)

This expansion has the effect of wiping out the depen-
dency on Y, from the fault trees representing ¢(li,1) and
¢(Oi,§) (Figure 1.17). Therefore by repeatedly expanding in
all variables Yi (1=1,2,...,) which correspond to repli=-
cated basic events, 1t is possible to relate the original
fault tree to a number of fault trees which include no repli-

cated events in their structure, i.e.,

r ¥ 1-y C
J J R LR
o(gh) = Iy o omox TR s(EHE) (.78)
b y=1

where the sum is extended over all of the 2° binary vectors
ZR corresponding to a particular combination of ON and OFF

states for the replicated events, RURC = N and 0° = 1.
The TOP event occurrence probabilility for the originél

fault tree will then be given by

r oy 1-Y C
P(TOP) = h(®) =1 T x.0J (1-x,) 4,27
XR j=1 J J
(1.79)

Notice, however that this procedure has the disadvantage of

67

FIGURE 1.17

FAULT TREE DEPENDENCIES REDUCED OUT WHEN Y,=0 OR Yi

i

=

1

68

requiring that 2¥ different fault tree TOP event occurrence

probabllities be evaluated.

I.9. The IMPORTANCE Computer Program

IMPORTANCE [15] is a computer program which was developed
to rank basic events and cut-sets according to various importance
measures.

| The IMPORTANCE computer code 1s capable of handling time-
dependent fault trees under the assumption that each basic com-
ponent be statistically independent and that its failure and
repair distribution be exponential in time. Thus to each basic
event there correspond a set of parameters (v,k)i such that the

fallure occurrence probability Pi(t) obeys the equations

q(t).= 1 - p(t) (1.80)

g%%__)_ + Xq(t) = vp(t)
d &?) +Vp(t) = Aq(t)
q(0) =1

Therefore p(t) will be given by

A . =()\+
x b T
and U= 1im P('C) = Yy = = m

t o+

69

TABLE 1.6
BASIC‘EVENT IMPORTANCE MEASURES COMPUTED BY THE IMPORTANCE CODE

Measure Expression

1. Birnbaum 3h(B(t) _ -
FFoCET = BALEE) -
h(0,,B(¢))
o)) u(®)
2. Criticality . aPi(t7 © h(R(t))
A
3. Upgrading Function n(E % EE&%SEll.
4, Vesely-Fussell hi(g(t))
h(B(t))
ft[h(l r(t1)) - n(o,,P(tY)aw,, 1)
5. Barlow-Proschan o 1258 128 £
E[Ns(t)]

6. Steady State Barlow-Proschan (BP,SS)

[h<li’g') - h(oi,g)]/Lli +Ti
n
2 (8L Y) - BOLD I

J

70

TABLE 1.6 (Continued)

Sequential Contributory

t
: J; Ih(1,,1,, B8N - n(1,,0,,2060) 17, (shaw,)
J
171 E(N, (£)]
i&JeKz

for some &

71

whepe H Z component mean time to fallure and T = component
mean time to repailr (for convenience the component index i
has been omitted'in the above equations).

Table 1.6 lists the seven measures of basic event import-
ance computed by the IMPORTANCE code.

The first four basic event importance measures relate
to the fault tree at a certain point in time t. The first,
second and fourth measures were previously discussed'in section
1.5. The Upgrading Function Importance measure proposed by
Lambert [l4] offers the advantage that Xi as obposed to failure. |
probability Pi(t) is a physically measﬁfaglérﬁérameter. Moreover
Lémbert has shown how the Upgrading Function may be used as a
tool to decide on an optimal choice for system upgrade.

The fifth and seventh basic event 1importance measures
are different in that they take into account the way components
failed sequentially in time to cause system failure. Thus, the
Barlow-Proschan importance [2] for component i measures the
probability the system has failed by time t because a miniméi
cut-set critical to the system has failed with component 1
failing last.

The Barlow-Proschan measure is obtalined by integrating
over the component failure density wf,i(t) and by dividing over
the expected number of system faillures E[Ns(t)] by time ¢.
Wf,i(t)dt is defined as the probabillity that event i will fail
in the time interval (t,t+dt). Furthermore Wf,s(t) df is de-
fined ﬁo be the probability that an overall system failure will

ocecur in the interval (t,t +dt). Murchland [15 has shown that

. 72
the system failure density Wf,s(t) may be given in terms of

wf,i(t) as

3n(B(t))
I, CET Wo,1(t) (1.82)

[T o e |

Wf,s(t) =

i=1

From a knowledge of Wf,s(t) the expected number of failures
over the time interval [0,t] will be given by
E[N (t)] = f: Wo,s{t)dt (1.83)

The sequential contributory importance measure 1s useful to
assess the role of the fallure of a comﬁonent 1 when any other
component J 1s the cause of system failure. For thié case
the failure of i will contribute to system failure only if i
and j are contained in at least one minimal cut-set associated
with the fault tree.

Finally the Barlow-Proschan steady-state importance mea-
sure 1s concerned with the asymptotic behavior of eachrcompoﬁent
in the fault tree. Asymptotically the probability that a com=-

ponent is down is given by its unavailability (Equation 1.81)

Ty | (1.81)

hence the asymptotic value of its probability density Wf,i(t)

will be Ti

S, T
lim W.,1(t) = 1 : i - 1+T (1.84)
ol T hi ' ui i

73
On the other hand the probability that component 1 causes

system failure in the interval (t, t+dt) 1s given by

(h(l,, B(t)) = h(0,, R(t)] W.,1(t) dt
- = e (1.85)

¥ [n(1,,R(6)) = B(0, B(E))T Wy, (t)de
=71 .)

J

therefore, the steady state probability that component 1 causes

failure is
_
I BP,SS = [h(li’g) = h(oi’g)] . :u.i"‘.'fri .
t n 1 (1.86)

————————

| Jilth(lj,g) - 1004, 17Uy +T,

T4
CHAPTER TWO

MODULAR REPRESENTATION OF FAULT TREES

ITI.1. Introduction

Defined in terms of a reliability network diagram, a
module is a group of components which behaves as a super-
.component. That means, if is completely sufficient to know
the state of the sﬁper-component, and not the state of each
component in the module, to determine the overall state of
the system. In what follows, the properties associated
with modularized fault trees and the computational advan-
tages of analyzing fault trees by means of a modular

decomposition will be presented.

IT.2. Modular Decomposition of Coherent Systems

In the context of the theory of cohereht structures, a
module is formally defined as follows [1 1J:
Let G(XN) be the coherent structure function for a

system having the vector XN = (Yl, Y ..,Yn) of basic

55 .
input events. Then the subse% M of basic events contained
in N together with the coherent structﬁre function U(XM)
define a module provided
&™) = al oz, M (2.1)
where a 1s a coherent structure function operation on
the super-component state U(XM) and on the set of events

TC with N = mumC,

75

Thus, a module c(gM) for system G(XN) is a coherent
subsystem acting as a super-cdmponent. It follows then
that in terms of a fault tree diagram, an intermediate gate
event will be a module to the top event if the basic events
contained in the(domain of this gate do not appear else-
where in the fault tree.

Hence the modularization of fault trees having no
replicated events or gates can be easily acccmplished,\since
every intermediate gate for such ; fault tree will be the
top event for a tree sub-module. Nevertheless, as soon as
replicated events and gates occur in the fault tree, the

modular decomposition becomes a more Involved procedure.

II.3. The Finest Modular Representation

An algorithm to decompose;a fault tree intOvitsvfinest
ﬁodular representation given its minimal cut-set structure
composition, was originated by Chatterjee [7 1].

The finest modular representation for a coherent strud-
ture function: e(g@) is defined to be its mathematically
equivalent fault tree dlagram having the following properties:

1. All tree branches are independent, 1.e., every

intermediate gate event in the tree is modular-
izable;

2. . The logic function associated with each gate 1is

either "prime", or "simple" having no inputs
from other "simple" gates of the seme type.

AND and OR gates are defined as the "simple" gates, since

76
they are characterized by a single cut-set and a single path-

set, respectively. The second property requires that AND and
OR gates present in the finest modular representation be of
maximal size, i.e., if a simple gate has as inputs a number

of simple gates of the same type, then all these gates must be
collapsed together into one gate.

Higher order "prime" gates are defined to be Boolean
logic functions which are not further modularizable. Prime
logic functions are thus characterized by an irreducible set
of Boolean cut-set vector equations.

Let G(XM) be the coherent structure function corresponding
to a prime gate having inputs XM = (Yl’Yz""Ym)’ then each of

its minimal cut-sets will be represented by a Boolean vector

Sj = (slj’ SZJ""SnJ) (2.2)

(J = 1, ..., L), with SiJ = 1 if the input 1 is contained
in the cut-set j and Sij = 0 if the input 1 is not contained
in the cut-set jJ (1 = 1,2,...,n).

Thus, consider the sub-treé examples shown in Figures 2.1
and 2.3. Figﬁre 2.1 represents a sub-tree having no replicated
events, and its finest modular representation (Figure 2.2) is
readily obtained by coalescing gétes Gl and G2. Its modular

structure is given by the following set of recursive equations.

My ='{M3,Mu,M5;Q} (2.3)
My = {a,b,c,;u} ' (2.4)
Mu ='{d’e,fSU}.
Mz = {g,h,1;0}

77

Gl

G2 @>

G4

G3

Q

FIGURE 2.1
SAMPLE SUB-TREE I WITH NO REPLICATIONS

78

Gl

a3 G4

FIGURE 2.2
FINEST MODULAR REPRESENTATION OF SAMPLE SUB-TREE I

79
Alternately, the sub-tree structure could have been

described by listing its 27 different minimal cut-sets
(a,d,g), (b,d,g), (c,d,g), etc.
Figure 2.3 represents a sub-tree having replicated
event r as an input to gates G3 and G5. To obtain its finest
modular representation (Figure 2.4) one must first realize
that events (a,b), (g,1) and (d,e,f) form modules associated
with simple OR gates
My =" {a,b; Ul . (2.5)
My = {d,e,f; U}
My = {g,i;u}
Furthermore, these modules together with replicated
event r will become the inputs to a higher order prime gate
c(Yr, YM3’ Ty YMS) characterized by a set of MODULAR

minimal cut-sets represented 1ln Boolean vector form as:

I
8, = (1,0,1,0) : (2.7)
s, = (0,1,1,1) |

B

= (Y Y (2.6)

R’ Tm3» Tmys Iyg)

It should be noted here how each of these modular minimal
cut-sets is a compact representation for the usual basic
event minimal cut-sets. Thus S1 includes the 3 minimal cut-
sets (r,d), (r,e), (r,f); while S, incorporates the other
12 remaining minimal cut-sets (a,d,g), (b,d,g), (2,d,1), etc.
It must be stressed here that the algorithm given by Chatter-
Jee was devised for deriving the modular composition of a

fault tree given the minimal cut-set structural description

80

Gl

G2 G5

G4

G3

FIGURE 2.3
SAMPLE SUB-TREE II WITH REPLICATIONS

81

FIGURE 2.4

FINEST MODULAR REPRESENTATION OF SAMPLE SUB-TREE II

82
of the fault tree. 1In complete contrast with this, the

modularization algorithm given in Chapter III derives the
modular composition of a fault tree directly from 1ts

diagram description.

IT.4. Reliability Evaluation of Modularized Fault Trees

Once the modular structure of a fault tree has been
derived, a quantitative evaluation of reliabllity and impor-
tance parameters of the fault tree may be efficiently per-
formed. In particular, the probability of the occﬁrrence
of the top event, P(TOP), is obtalned by means of a series
of recursive calculations reduiring the evaluatlon of the
probability expectation wvalue of each of the modules con-
tained in the tree.

Thus, 1f a particular module M in the tree has a set

(Ml, M2 cees Mn) of modules as inputs, and is characterized
. b . .

by the coherent structure fﬁnction N

oy = B(cl,cz,...,cn) (2.8)
with oy = Oy (i=1,...,n), then its expectation value
‘ 1
hc(g) is given by
hc(E) =;hB(holcz),h02<g),...,hcn<g)> (2.9)

For the case of simple AND and OR gate modules, the
expression for hB reduces to

M= {Ml, M ..,Mn;ﬂ}

22
=>h,=h_+h_....n._ =7h (2.10)
B Topo; 9 1=1 %1

83
M= My, My, M0

n
=> hg = 1‘(l-h°1)(l-h°2)°°'(l-h°n)=££1h°1 (2.11)

While for a higher order gate module hs(g) is given by

» Nk
Oy = I of
w = L 1
Jj= isKJ

Ny
=% (1l O,)
B " ym1 1egky 1

=h

(2.12)

where iaKJ includes all modules contained in the
minimal cut-set KJ, N, is the total number of minimal cut-
sets representing the module structure Iy and E represents
the probability expectation value operator which when
applied on the structure function oy yields
E (9;) = By (2) | (2.13)

An exact computation of hB for a higher order gate
may be done by performing the operations indicated on the
right-hand side of equation (2.12) apd using the idem-
potency property of 9y l.e. ci =04 An expression for
oM linearly dependent on o4 for all i1 will be ﬁhus obtained.
It is then possible to apply equation (2.13) yielding hB

as a functign of hdi(i=i,...,n).

"For a higher-order module involving a large'number of
cut-sets, such an evaluation technique would be, however,
too complex. So that for these cases it 1s preferred to

use an approximation by applying the familiar minimal

84
cut-set upper bound formula
N

k .
h,(P) < ™ h_.(P) (2.14)
817 = }él tex, 9%
J
which in 1ts first order expansion reduces to the rare-
event approximation

Ny

PRl g NP 1)

It may be seen now that the top event occurrence proba-
bility, P(TOP), can be derived by successivly using, where-
ever necessary, the minimal cut upper bound approximation
for the evaluation of modular reliabilities contained in
the fault tree.

The foliowing theorem states that suych a series of
}approximations will yield an uppér bound value closgr to
P(TOP) than that obtained by applying the minimal cut
upper bound to the family of cut-sets characterizing the
full fault tree. The proof of the theorem closely follows
the line of arguments given by Barlow and Proschan [1]
to show the ahalogous result for the minimal path lower
bound appréximation to P(TOP).

Theorem: Let G(XN) be a coherent structure of
independent components with modular decomposition

| {(My507), (Myy05),0ee,(M,00}

and organizing coherent structure function g8 i.e.

@(XN) = 8(07,055...,0,) - (2.16)

85

with MiQMJ = the empty set for i# j. Then

he(B)2 UB(UGl(g)"""UGr(K))
< ve(®) | (2.17)

Here vy denotes the minimal cut upper bound for a

coherent structure function Y(yl,...,ym) i.e.

. My
v = mooyy=> v (B) =]| P1 (2.18)
| #=h 1K, YT TRk

In order to prove the theorem (equation 2.17), it is

necessary to first introduce the following Lemma:

Lemma: Let a coherent structure function y consist of

n modules connected in series, that is
. n . .
Y(¥) = 7 v, (¥) - (2.19)
i=1 -
and consider all components to be statistically inde=-

pendent. Then

n
111 uyi(ﬁ) < v (B) (2.20)

Proof of Lemma: We may represent Yy in terms of 1ts

minimal cut-set structure functions Ay s....,A as
711 iki
1
Yy =,il Ay (YD) (1=1,...,n) (2.21)

J=1

1t follows that

86
k

i
vy (B) =‘§_Ll POy = 1) (2.22)
and hence
K .
n n 1
o @)= om || POy (D)= (2.23)
i=1 i=1 J=1 :

Now, 1f we replace replicated components in the minimal
cut-set representation for Yi(}) by identical but mutually
independent‘components, we will obtain a new coherent

structure function Yl having the same upper bound as vy 1i.e.

uY1(g} = uY(z) (2.24)
But by the definition of yl
.
h () = 1:10*1(R) (2.25)
therefore
n
Tu, (B) < v () (2.26)
AR
g.e.d.

Proof of Theorem: Let Vis VoseeesVy denote the minimal

cut-set structure functions of the organizing coherent
structure function B(cl,...,cr); let BJ(X) = vj[cl(g),...,

ar(z)] be the minimal cut-set indicator function constituted

87
by a number of modules (Mil’ 412,...,Miv_) which‘are neces-
sarily connected in series. And let “Jl’ uj2""’“jtj
denote the minimal cut-set structure functions for BJ
(J=l,2,.f..t).
| Thén
‘{ujk} ksl,...,tJ

J=l,...,¢t
constitute the set of minimal cut-set structure function of
.G(XN) since (a) each My is distinct given that the modules
in the structure B(cl,...,or) are disjoint. (b) My = 1
-> “J =] => 8 =] => @ =] therefore qu 1s a cut-set
structure function of B. Moreover the sets ujk are minimal.
It follows that

o <z> - li Li (2) (2.27)

j=1 k=1 “Jk
Furthermore since the modular components of vj are

connected 1in series, one may aﬁply the above Lemma to

obtain

By (g @) s05n@D)5 vg () (2.28)

Finally, using (2.27) and (2. 28) it follows that

(Vg1)+ esvgyp §EE n,, Ucl(g),...,ucr(g))
t t t
= y=1 33(2) -J_L_Ll hujk = U(b(g) (2.29)

q.e.d.

88

II.5. Reliability Importance of Modules

IT.5.1 Summary of Reliliability Importance Measures

It has been shown that for a modularized féult tree,
the evaluation of the‘top event occurrence probability
P(TOP) requires that the occurrence probabilities of
all the intermediate gate events corresponding to a
module in the fault tree be evaluated in advance. It is
obvious, however, that because of the recursive nature éf
the modular equations, the execution of this task may be
done very efficiently. Furthermoré, it will be shown in

this section that the additional information obtained in
| thls process, 1.e., the modular reliabilities, is needed
to evaluate the reliability importance of each of the
modules and basic events contained in the fault tree.

In Chapter i several measures of importanée kere
introduced and defined in terms of h(P?) the top event
occurreﬁée probabllity given as a function of the occur-
rence probabilitles of the basic events

P(TOP) = E(8(Y™)) = Prob [6(F) = 1] = h(R) (2.30)

with ¥ = (yl, ya,...,yn) and P = (Pl, P2,..,,Pn)

defined as ' ~ .

‘,,)J
E(yi) = Prob (yi=l) = Pi (2.31)
Thus, Birnbaum's measure of importance for system's
component 1 was deflned as the rate of change of the
overall system reliability as the reliability of component

1 i1s changed.

89

B . . ;
Iy 35, h(l;, &) - (04, }) (2.32)
The criticality importance of component i was defined

as the probability that the system is in a state in which
component 1s both "ecritical" to the system and 1s in a failed

state, given that the system has failéd

Cr _ Prob (i critical)- P,

Iy B(E) (2.33)

where component 1 is defined to bé critical to the
system if the system falls provided 1 is in a failed state
but does not fail if component i1 is not in a failed state;
"-1.e., 1t 1s required that the state vector I be such that
(1, ¥) =1land (0, 1) = 0 |
(Recall (1,, Y)= 6(Y, Yp,...,%,=1,...,T)

n
Hence
Prob (1 eritical) =P({§Q,,¥)-0(0,,¥)}=1)
= P(8(1,,Y)=1) - P (0(0;, ¥)=1) (2.34)
=> P(1 critical) = h(1l,, E) - h(0y, §) (2.35)

By substituting equation (2.35) into equation (2.33),

the following equation is derived:

Igr =(h (1,, B) -n(0,, B)) Fy (2.36)
h(g)

The Vesely-Fussell importance measure for component 1

90
was definéd as the probablility that component 1 will

contribute to system failure, given that the system is in
a falled state. As component i contributes to system
failure only if a cut-set containing i1 has failed, it is
convenient to define ei(z) to be the Boolean operator

function for the union of all cut-sets containing event i

ol
. k
(=11 v oy (2.37)
3= Lek]
1eK]j
with N©

k = number of cut-sets contalning basic event 1,
2€K3 and ieKj implies index £ includes all basic events in
cut-set KJ which necessarily contains event i. Then in
terms of ei (1) the Vesely-Fussell importance of component

i is given by

PO L (Y)=1)

V.. _ by ®) (2.38)
1 TP(e(L=1) hEy)

II.5.2 The Birnbaum and Criticality Measures of Importance
fo: Modules

Since for a modularized fault tree each of i1ts modules
may be considered as a super-componeht independent of the
rest of the tree, the above definltions may also correctly
apply for modular importances. Thus, if G(XM) is the
coherent structure function associated with module M for
a fault tree characterized by coherent structure function

a(y™), 1.e.

91
o(yM) = atog™, 1) (2.39)
and

Be(R) = by (ng(2), B9 (2.40)

then Birnbaum's importance measure for module M will be

5 ananedh, 2

a,M (2.41)
th(EM)

and since the set M of inputs is disjoint from the rest of
the tree, we can use a partial derivative chain rule to
obtain the Birnbaum importance of input 1 contained in

module M [5]

: M MC M
B _ 3hglhg(E™), 27) dhg(B™)
Tg,g = 2 7% * % . - (2.42)
M .
e () 3P,
(1eM)
. B _ .B B '
=> Ig,1 = i, Lo, (2.43)

In words, the above chain-rule states that the Birnbaum
importance 6f event 1 is given by the product of its Birn-
‘baum importance with respect to the module to which it
belongs and the Birnbaum importance of the module with
respect to the top tree event.

The criticality importance measure for module M is

given by

92

10 . 3y (hy 3™, 2" @™
| 3y (™) B, (hy @', 2

so a reliability change in module M proportional to 1ts

(2.44)

MC)

expectation value
bhg'= Cyty @™ (2.45)

causes a system reliability fractional change given by

Ql = ép..g'. = CM II\C/Ir' (2.46)

2"

IT.5.3 The Vesely-Fussell Importance Measure for Modules
The Vesely-Fussell importance measure for module M

will.be given by

V.F. _ Prob (a% (G(KM), ZMC) =1)

IM (2.47)
Prob (a(c(lM), XMC) = 1)
M M MC
with'aK (0(¥7), I7) defined to be the Boolean operator
function for the union of all cut-sets of a(c(XM), XMC)
containing super-component event U(XM), i.e.
No
MO, M, JMC K
ag (@), ¢) =1l (er v) (2.48)
T= 2
j=1 QEKJ
S
with
o
YleXMC , o= G(XM), Nk = number of cut-sets

93

containing super-component ¢ and KJ a cut-set contalning
necessérily the super-component state o.

Chatterjee [6] has shown that a chain-rule, analogous
to the one given for fthe Birnbaum importance of component 1
in module M (equation 2.43), holds for the Vesely-Fussell

importance measure, namely

F.
. (2.49)

witﬁ
o(y) = a(d(XM), XMC) and Y, € XM.

This relation has been proven by Chatterjeé as follows:
The family of minimal cut-sets of @(Y) containing events

| i(aKe(i)) may be generated by taking the family of minimal
cut-sets of'a(c(XM), g@c) which include module M (=Ka (M))

and then substituting superevent M by the family of minimal
'cut-sets of G(XM) which contain event i (= Kc(i)), therefore
Kg(1) = K_(1) x {K (D) = (1)} | (2.50)

By defining the following events

A= at least one of the minimal cut-sets of module M
which contalns 1 fails, 1.e., Ko(i) fails.

B = at least one of the minimal cut-sets of module M
fails, 1.e. Kd fails (notice A< B).

C = at least one of the elements of Ka(M)-(M) fails
(notice event C 1s disjoint with any event within
the module).

It follows that CQB is the event = module causes system

failure. And AQBQC is the event = module causes system

94
failure with event i failing.
Also, one has

P(AQRBQC) = P(B)+ P(AQB|B)+ P(C) (2.51)
since event C is independent of A and B, and P(AQB|B) is

the conditional probability that event AQB occurs, given
that event B has occurred.
Furthermore, since A€B then AQB = A and since C and B

are independent events P(C)P(B) = P(CQB), hence
P(AQBQC) = P(A|B) - P(CQB)‘ (2.52)

It is now only necessary to realize that the following

relations hold

7V-F.- P(1 has failed with at least one of 1ts minimal
@,1 _ cut-sets) '

P(the system has failed)

- Ig-i- = P(A|B) - P(CQB) :)
3) R 2-
by () >3

also

V’F. - .

Id,i = P(A|B) o (2.54)

V.F. e

I’ = P(CQRB)

a,M EETET* . (2.55)
Hence

V.F. V.F. .LV.F.

Ie,i g-Ia,M Ic,i ‘ (2.36)

95

- II.5.4 Evaluation of the Vesely-Fussell Importance Measures
for a Modularized Fault Tree
In what follows 1t will be shown how the Vesely-
Fussell importance for modules and basic events can be
easily computed from a knowledge of the modular structure
of a fault tree by a successive use of the recursive

modular equatlions
Ty = 6(01,02,...,cn) (2.57)

and by usling the Vesely-Fussell modular importance chain-

rule

V.F. _
0.1 =1

V.F. V.F.
I a Io i

F

»M s (2.58)
Indeed, for the case of the super-module aM composed

of modules (cl,cz,..},cn),‘the Vesely-Fussell importance of

- each of these modules is given by

V.F. V.F. V.F.
IG,G ='Ia,M IB,G (2.59)
| 3 i
(=1, 2,...n)
with
o(¥) = alo(f™M, 10 (2.60)

Equation (2.59) giving the V.F. importance of modules
(cl,...,cn) cbntained in Oy With respect to the TOP tree
event, acquires a very simple form for the case of "simple"
AND and OR gates. Thus, for an AND gate (Figure 2.5) super-

module the following equation results

96

J

o 0

O = ©
M AND 1 J

[N |

(2.61)

Therefore, a failure of the super-module implies
necessarily that all of 1ts modules have failed, i.e., the
probability that module GJ (J=1, 2,...n) contributes to

failure of oM given that oM has failed equals one .

I o= 1. : (2.62)

VO
Q,

) F.
95 = Iym (2.63)

82 -

In other words, a module cJ which is an input to én
AND gate super-module oM will have the same V.F. importance
with respect to éhe TOP tree event as the super-module Oy

qu the case.of an OR gate super-module (Figure 2.6),

the structure function will.be given by
n
O-M = GOR = Jlsll O'J (2.6}4)

Here, module cj contributes to the failure of oM only
through the single event cut-set (MJ). Therefore the
probability that it contributes to the failure of Oy

given that oM has failed is

h M
IX;E; = &9 (2.65)
Bo, M)
=> V.F vV.F. B¢
V-F. . LV.F. |
9,94 oM 5= (2.66)

97

Cut-sets
V.F. _ V.F
K = (Ml,Mz’oo' IMi - IM
i=1,2, B!
FIGURE 2.5'AND GATE SUPER-MODULE
Cut-sets
Ky = (M)
: IV.F = IV.F
Mi M hM
K, = (M_)

FIGURE 2.6 OR GATE SUPER-MODULE

98
It should be noticed here that hqJ and ho are the
modular reliabilities which were needed to be evaluated in
advance to fine the TOP Eree event occurrence probability
P(TOP).
Finally, the evaluation of the Vesely-Fussell impor=-
tance of modules cJ which are inputs to a higher order prime

module Oy (Figure 2.7) have to be considered:

t: 2.

Oy ='B(Ul""’cn) iegz ay (2.67)

1=
(1 =1, 2,...,n)

The probability that modulecr will contribute to the
fallure of its parent moduleOM,given that the parent module
has failed is given by

v.7. PGB (0p,...0) = 1)

V-F. o (2.68)
8,04 P(8(0),...,0,) = 1)

now

P(ﬁ(cl,...,cn) = hqw : (2.69)

and equation (2.67) implies that B% is given by

NJ

Bl = Li m) (2.70)

K g2 ek C .
JeKy

Thus, the V.F. importance for module j with respect to
the TOP event will be

99

Cut-sets

M v.r. _ _v.p._ E(Kg(Mg))

Mo vy LY,) Tyt =Ty e —E
1 n i M

K, = (0, 0,...1..0..

FIGURE 2.7 HIGHER ORDER PRIME GATE SUPER-MODULE

J
Ny
P(C || T o) = 1)
[V.F. _ [V.F. 8= 1 2eKe
e,cj a,M. JekKe
ho

(2.71)

101

CHAPTER THREE

PL-MOD: A FAULT TREE MODULARIZATION COMPUTER
PROGRAM WRITTEN IN PL-1

ITIT.1 Introduction

As pointed out in Chapter II, it is possible to, find for
any fault tree dlagram an equivalent tree representation such
‘that all of its 1nfermediate gates correspond to a modular
super-event independent from the rest of the tree. Further-
more, these modular gates are assoclated with Boolean logilc
functions which are either "prime', i.e., they are represented
by an irreducible set of minimal cut-sets, or are "simple" of
maximal size, 1.e., they are AND or OR gates having no lnputs
from other gates of.the same type. |

A nﬁmbér of computational advantages result by using
this modular representation to'analyZe fault trees:

(a) Probabilities of occurrence for the TOP and inter-
medlate gate events may be efficlently computed, by evaluating
these modular events in the same order that they are generated;

(b) Modular and component importance measures are.easily
computed by starting at the TOP tree event and successively
using a modular importance chain-rule;

- (¢) -For complex fault trees necessitating the use of
minimal cut-set upper bound for thelr quantification,
sharper‘bounds will result by using the minimal cut-set upper

bound at the level of modular gates.

102

In tbis chapter, an algorithm will be given for arriving
at the modular decomposition of faﬁlt treés. The implementa-
tion of the algorithm by the computer code PL-MOD will be dis-
cussed and 1ts operation shall be illustrated by means of the
famiiiar Pressure Tank Rupture fault tree example [l]. Finally,
it will be shown how PL-MOD proceeds to use the modular infor-
mation for the evaluation of modular event occurrence proba-
bilities and of modular and componént Vesely-Fussell importance

measures.

IIT.2. Algorithm for the Modﬁlar Decomposition of Fault
Trees

In Figure 3.1 a flow-chart is given for the algorithm
used by PL-MOD to modularly decompose fault trees.

The tree-modularization is achieved by performing a
series of manipulations on its nodés as outlined by the
following steps:

(a) Each NODE in the fault tree is defined as a gate
operator (AND , OR, K-out-of-N) together with a set of
attached input gates and baslc event components (Figure 3.2).

(b) A NODE's output will be an input to another NODE
‘defined to be its NODE ROOT (Figure 3.3).

(¢) NODES having common replicated inputs are inter-
éonnected (Figure 3.4). These interconnections then identify
sets of nodes which are not immediately modularizable in the
original form of the fault tree.

(d) The tree modular decomposition is simultaneously

103

started at all bottom branch gate nodes (Figure 3.5) defined to
bé thos; ﬁaving no gate inputs (GATELESS NODES).

(e) Simple (AND,OR) gateless nodes having as NODE ROOT another
gate of the same type (Figuré 3.6), are coalesced with their NODE
ROOT by transferring all their inputs to the NODE ROOT and thus
reducing the nﬁmber of gate inputs to the NODE RQOOT.

(f), Simple gateless nodes having a gate of a different type
as NODE ROOT are'modularized (Figure 3.7). Those gateless nodes
having replicated components or "nested sub-modules as ilnputs are
temporarily transformed iﬁto "nested" modules (Figure 3.8), unless
it is found that the set of replicated events within the gate is
complete (Figure 3.9) in which case a modular minimal cut-set rep-
resentation for its composition will be performed. The minimal
cut-sets willl theh be constituted by replicated events and proper
modules afising from each of the nested modules (Figure 3.10).

(g) Symmetric (K-out of-n) gate NODES are immediately
modularized and gilven thelr Boolean representation (Figure 3.11).

(h) Nodes which have been transformed into proper modules
or temporary nested sub-modules are attached to their NODE ROOT
gate as additional component-like inputs thereby reducing the
number of gate lnputs to thelr NODE ROOT gate (Figure 3.12).

(1) As steps (e), (£), (g) and (h) reduce the number of
gate inputs to each of the NODE ROOQOT gates attached to a gate-

less node, a new set of gateless nodes will necessarily be

104

FIGURE 3.1
FAULT TREE MODULARIZATION ALGORITHM

INPUT TREE

Y

CONNECT INTER-
DEPENDENT NCDES

! B

| FIND ALL GATES
HAVING NO GATE
_INPUTS

CHECK IF "GATELESS" NODE
IS INPUT TO A NODE OF
THE SAME TYPE (+ OR °)

NO

Y YES

'COALESCE GATELEZSS NODE
WITH ITS ROOT-NQDE &
REDUCE # OF GATZ INPUTS
TO ROOT-NODE EY ONE

Y

LOOK FUR NEW GATELESS

NODES

A

ATTACH SUBIODULE OR
‘| SUPERCOMPONENT TO
ROOT-NODE & REDUCE #
OF GATE INPUTS TO
ROOT-NODE BY ONE

CHECK IF MODULE
CONTAINS DEPEN-
DENT SUBMODULES

_|CREATE CREATE
MODULE DEPENDENT
» I SUB-
CHECK IF | MODULE
MODULE IS | NO
PROPER
YES
h 4

NO

Y YES

GENERATE MODULE .

MINIMAL CUT-SET
REPRESENTATION

CREATE

UPER-
COMPUNENT

1

CHECK IF SUPER~
COMPONENT CON-
TAINS ALL THE

- {TREE COMPONENTS

Yy YES

END

NO

NODE (1) @
Cl 2

A

Gl
G2

G2

FIGURE 3.2

FAULT TREE NODES

G3

GOT

NODE(2):

NODE(1)

FIGURE 3.3

FAULT TREE NODE.ROOTS

NODE(2) .ROOT = NODE(1)
NODE(3) .ROOT = NODE(3)

90T

G2

. FIGURE 3.4 FAULT TREE NODE INTERCONNECTIONS

G2 -+ |63

Cl c2 G4 C5

Bottom Nodes = {G2,G4}

FIGURE 3.6

COALESCED GATELESS NODES

got

FIGURE 3.7

G1

g2 g3
g2 = {01,02,03;9}
g3 = {C5,C6;0}

MODULARIZED GATELESS NODES

60T

Gl

g5

OTT

cC5 C6 r g g3

G3 g3 = {Cc1,C2,r;U}

gh = {C3,(l4),c5;U}

{c5,C6,r;U}

gb

FIGURE 3.8

INTERDEPENDENT NODES IN TEMPORARY NESTED MODULES g3, gb

COMPLETE

gh = {C3,ch,C5;U)
{c1,c2;U}

(]

FIGURE 3.9

SET OF NESTED SUB-MODULES

TIT

GU

C3 Ch ¢5

G2

/B
C5 C6 r
Sy
Sy
+ I3
clL C2 r

FIGURE 3.10

MODULAR MINIMAL CUT-SET REPRESENTATION

]

(YP’YgZ’Yg3’Yg5

(1, 1, 0, 0)

(0, 1, 1, 1)

)

It

113

3= (o, ¥eps Ygp0¥g3)
$; = (1, 1, 1, 0)
s, = (1, 0, 1, 1)
s3= (1, 1, 0, 1)
s, = (0, 1, 1, 1)

FIGURE 3.11
SYMMETRIC MODULARIZED GATE

cé

g2 g3 ch
G2

g2 = {Cl’CZ’C U}

33
g3 = {CU’CS; U}l

Cl Cz C3

FIGURE 3.12

MODULARIZED GATES AS PSEUDO-COMPONENTS

114

obtained. Therefore steps (e) through (h) will be successively
applied to newly obtalned sets of gateless nodes until_the TCP
tree event 1s reached, thus leading to a modularization of the
whole tree. W

Careful examination ofbthe kinds of fault tree structural
modifications needed to modﬁlarly decompose a faﬁlt tree, will
lead to the conclusion that a quite involved logical procedure
must be followed to accomplish this task. Therefore, in order
to implément the modularization of fault trees by the compﬁter
program PL-MOD, it has been necessary to turn to a programming
language capable of dynamically following the step-by-step
structural changes effected by the modﬁlarization algorithm.
In the following sections of the chapter, programming language
PL-1l, shall be shown to be particularly sulted for this objec-
tive. Consequently the logilcal manipﬁlations required to mod-
ularize fault trees will be illustrated throﬁghout by the PL-1

statements contained in the PL-MOD code.

ITI.3. PL-1l Language Features Used for the Representation
and Modularization of Fault Trees

ITTI.3.1. Introduction

In Chapter I, it was discussed how the computer code
PATREC [1d utilized a number of PL-1l language [11] tools for
the analysis of non-replicatéd event fault trees by means of
a pattern recognition technique; It was pointed out that its

procedure relies on the recognition of sub-tree patterns with-

115
in the fault tree which conform to known tree patterns stored
in the the computer code library. Each recognized sub-tree
portion is then replaced by a super-component with an occur-
rence probability which has been computed by PATREC. New
sub-tree patterns are then recognized which lnclude these super-
components untlil ultimately the tree reduces to a single super-
component with an occurrence probability eqﬁal to ;he overall
system reliability.

- The approach taken by PL-MOD is qﬁite different in that
its purpose i1s to obtain the full structural information for
the fault tree. Thils information is needed to allow for a
much more extensive analysis of the faﬁlt tree; rather than

the sole evaluatlion of the overall systém reliabllity.

III.3.2. Structure Varisbles

A structure in PL-1 is a hierarchical collection of
related data items of different types.

In the computer code PL-MOD, a node is represented by a
structure containing relevant information such as its NAME
(chosen to be a number), its VALUE.(a number which equals 1
for AND gates and 2 for OR 3ates), thé number of gate inputs
i1t contains = GIN, the number of non-replicated inputs it
contains (called free leaves) = LIL, the number of replicated
inputs it contains (called replicated leaves) = DIR, etc.
Thus, the NODE structure has a declaration statement of the

form

116

DECLARE 1 NODE

2 NAME FIXED,
2 VALUE FIXED,
2 GIN FIXED

2 LIL FIXED,

2 DIR FIXED,
2 etec.

IIT.3.3. Pointers, Based and Controlled Variables

PL/1 provides several facilities normally found only in
assembler or in list-processing langﬁages. The essence of
list processing i1s the ability to dynamically allocate blocks
of core storage, to link those blocks together into a structure,
and to store and to retrileve data from the blocks. List pro-
cessing for complicated data'structures; such as those required
by PL-MOD, are very difficult or impossible to achieve through
manipulations of simple arrays. |

Each individual block of list-processing storage 1is
called a BASED VARIABLE and 1s usually defined as a data struc-
ture. Since several based variables with identical structures
will in general exist at a time, a POINTER VARIABLE is required
to point at a specific one.

Thus, in order to handle sets of similar NODE structﬁres,

it is necessary that they be declared as BASED variables

117

DECLARE 1 NODE BASED (NT),
NAME FIXED,
VALUE FIXED,

 GIN FIXED
LIL FIXED,
DIR FIXED,

N P DD

etec.

Each time a NODE structure needs to be created, an
ALLOCATE statement is used (ALLOCATE NODE) with pointer
variable NT automatically acquiring a different value for
each NODE strﬁcture. This set of different NT pointer values
may be then kept in an array of pointers SPINE (I) (I = 1,2,
...;GUM = total number of gates) for ldentification of each
of the nodes in the tree. ‘

The foliowing statements allocate and identify a NODE

assoclated with Gate I

ALLOCATE NODE;
SPINE (I) = NT;
After the node has been allocated, it will be possible to
specifically refer to 1t through the qualified expression
SPINE (I)-NODE
- Finally, whenever the NODE associated with Gate I 1is no longer
needed, 1ts storage space may be released by the statements
NT = SPINE (I);
FREE NODE;

Another type of variable used throughout PL-MOD is the

118

- [
- CONTROLLED variable. These variables are similar to BASED var-

iables in that they can bé'd&namically allocated and released

at any time by means of the ALLOCATE and FREE statements. Never-
theless, two or more CONTROLLED variables having the same hame
cannot coexlst, since they are only idéntified by thelr name

and no pointer exists which locates them in the computer memory.

III.3.4. The REFER Option for BaééduVafiaﬁieé

In Chapter I, 1t was mentioned that’the computer code
PATREC requirés that fault trees be réprésénted in blnary
gate form (Figure 3.13). As a result each NODE structure in
PATREC requires the same amount of storagé; In the approach
taken by PL-MOD no restriction exists on the number of gates
and component inputs that a NODE may have, and thus 1t is
necessary that the NOﬁE structures in PL-MOD be made of input
arrays having a variable number of dimensions.

‘The REFER option for based structure variable can fulfill
such a tésk as 1llustrated by the NODE example of Figure 3.14:
AND Gate 7 consists of two gate inputs (8,9), three leaf inputs
(3,5,7) and one replicated leaf input (r-leaf) (20001). There-

fore, NODE.NAME = 7, NODE.VALUE = 1, NODE.GIN = 2, NODE.LIL =
3 and NODE.DIR = 1. Gate 7 1s connected to 1ts input gates

by means of an array varilable NODE.SPIT which stores the
poiniers corresponding to NODES 8 and 9 (i.e., SPINE (8) and
SPINE (9)). NODE.SPIT is then a variably dimensioned'array of
pointers. Its dimension will be given by a varlable (GINO) out-

side the NODE structure and its,valﬁe shall be assigned to a

119

Original Tree Tree in Binary
Form

Gl

G2

G3

G6

GT7

\]
OQ

FIGURE 3.13 FAULT TREE IN BINARY GATE FORM

120

FIGURE 3.14
SAMPLE GATE NODE

121

NODE structure variable (NODE.GIN) as required by the PL/1 REFER

option:
DECLARE 1 NODE BASED (NT),
NAME FIXED,

GIN FIXED BINARY,

cPN)see e)

SPIT (GINO REFER(NODE.GIN))POINTER,

sefN)ose e

&te.
(GINO = NODE.GIN)

In a similar way, the set of numerical values ldentifying
the free leaf and r-leaf inputs of the NODE will be assigned
to NODE.TIL(LILO REFER(NODE.LIL)) and NODE.TIR(LILO REFER
(NODE.LIR))'respectively.

In addition, the pointer value locating the NODE for gate

5 will be assigned to structure variable NODE.ROOT.
The followlng statements allocate the required space and

assign the desired set of inputs and output connection for
NODE 7:
DECLARE 1 NODE BASED (NT),
| 2 NAME FIXED,
VALUE FIXED,
GIN FIXED BINARY,
LIL FIXED BINARY,
DIR FIXED BINARY,

NN NN

SPIT (GINO REFER (NODE.GIN))POINTER,

122

2 TIR (LIRO REFER (NODE.DIR))FIXED,

2 TIL (LILO REFER (NODE.LIL))FIXED:

GINO = 2;

LIRO = 1;
LILO = 3;

ALLOCATE NODE;
SPINE (7) = NT;

NT = SPINE (7);
NODE.TIL (1) = 3;
NODE.TIL (2) = 5;

NODE.TIL (3) = T;

NODE.TIR (1) = 20001;
NODE.SPIT (1) = SPINE (8);
NODE.SPIT (2) = SPINE (9);

NODE.ROOT = SPINE (5);
ITT.3.5. Bit String Variables

In Chapter II, it was shown how prime modular gates may
be represented by a set of Boolean state wvectors each repre-
senting a cut-set member of the family of minimal cut-sets
characterizing the module structure function.

Boolean vectors can be convenlently depilcted in PL/1 by
means of a string of BIT variables. A bit-string is simply
a group of binary digits (b or 1) enclosed in single quotes
and followed by a B character (e.g., '01011'B).

123

A number of bullt-in functions and operations are provided
in PL/1 for the effective handling and manipulation of bit-
strings, as required by PL-MOD to generate a Boolean vector
represenation for higher order modular gates. Thus, consider

for example the followling set of controlled bit variables

DECLARE TOD BIT(LARG) CONTROLLED;
DECLARE DOTT BIT (WEST) CONTROLLED;
DECLARE KOF BIT (JUST) CONTROLLED;
DECLARE KOD BIT (JUST) CONTROLLED;
DECLARE TOG BIT (JUST) CONTROLLED;

After these variables have been allocated with dimensions
WEST = 3, LARG = 6 and JUST'a LARG + WEST = 9, the following
operations and funtions existing ih PL/1 may be applied to

them
Repeat function:

KOD = REPEAT ('0O'B, JUST) KOD = '000000000'B
Substring pseudo-function
SUBSTR (KOD,LARG + 1,1) = '1'B = KOD '000000100'B

SUBSTR (KOF, NUB + 2,1) = '1l'B

KOF = '000010000'B
Substring function:

DOTT = SUBSTR (KOD,LARG + 1, WEST) = DOTT = '100'B
INTERSECTION (&), Union (/) and complément (=) oper-

ations:
TOG = KOF & XOD = TOG = '000000000'B
TOG = KOF XKOD = TOG = '000010100'B
TOG = ™ KOF = TOG = '111101111'B

124

III.4. Definition and Organization of the Procedures Used in
PL-MOD for the Modularization of Fault Trees

PL-MOD accomplishes the modularization of a fault tree by
- calling a number of procedures in the following order

CALL INITTAL;

CALL TREE-IN;

FLAG = 1;

DO WHILE (FLAG™T= 0);

CALL COALESCE;

CALL MODULA;

END;

Internal procedures TRAVEL and TRAPEL are called by pro-~
cedures COALESCE and MODULA, while internal procedure BOOLEAN
1s only called by MODULA.

The task performed by each of these procedures 1s defined
below.

INITIAL: This procedure allocates the necessary storage
space for each of the nodes in the fault tree (including NODE
space for replicated module sub-trees).

TREE-IN: Attaches to each NODE its corresponding set of
gate and component inputs, interconnects interdependent gates
having common replicated inputs and assigns to each NODE its
output gate defined to bg its NODE.ROOT.

COALESCE: Cbllapses»simple gateless NODES with thelr
NODE.ROOT gates 1f they are of the same type.

MODULA: (a) Transforms simple gateless NODES having no

125

replicated inputs into modular super-components and attaches
them as inputs to their NODE.ROOT gate.

(b) Transforms simple gateless NODES having replicated in-
puts into temporary NESTED modules, unless the gate 1is the top
event for a complete set of replicated events (i.e., a parent
gate) in which case by calling BOOLEAN it modularizes the full
set of NESTED modules into a higher order module whose inputs
are the set of replicated events and a new set of proper
modules in place of the temporary NESTED module set.

(¢) Modularizes symmetric K-out of-n gates explicitly
included in the fault tree.

Procedures COALESCE and MODULA are sequentially called
one after the other until the TOP tree event is reached, at
which time the complete fault tree will have been modularized.

TRAVEL and TRAPEL: As mentioned before, interdependent
gate NODES are interconnected to insure that only proper
modules are generated (Figure 3.15). Each intéfdependent gate
will in general have two interconnections leading to other
interdependent gates (e.g., NAILGu and WHIPGu due to repli-
cated component rl) for each replicated input it contains
(these interconnections are given the names NODE.WHIP and NODE.
NAIL). '

Particular care must be taken that these interconnectlons
be kept each time the fault tree structure undergoes a trans-
formation enacted by the COALESCE and MODULA procedures.
Thus, whenever COALESCE collapses a simple gate contalning
replicated inputs with its NODE.ROOT gate, 1ts WHIP and NAIL

126
SUB-TREE EXAMPLE

r2 . cld e3
Connections
WHIP G G
rl G2
NAIL ’ .
WHIP
r
. WHIP 3 ol
3 NATL

FIGURE 3.15
INTERDEPENDENT GATE INTERCONNECTIONS

127
SUB-TREE EXAMPLE

rl gb . rl r3

: . g6 = {r2,c3,cl;u}
Nested modules

g7 = {r2,c2,c5;U}

G2

WHIP
r2 G3

NAIL

FIGURE 3.16
TRANSFER OF GATE INTERCONNECTIONS

128

SUB-TREE EXAMPLE

nested modules

g2 = {r1, gb;ql

g3 = {r3,g7;:Q}

gh = {r2,r3;Q}

g5 = {rl,cl;Q}
FIGURE 3.17

INTERNAL GATE INTERCONNECTIONS

129

SUB-TREE EXAMPLE

rl r2 r3 Mg Mg

M5 ={C1} , Mg = {03,Cu;U} R M7 = {C,,

(Yr1s¥n2s¥r30 Yigs Tyg o Yy
(1, 1, 0, 0, 0, 0)
(1, 0, 0, 0, 1, 0)
(1, 0, 1, 0, 0, 0)
(1, 0, 0, 1, 0, 0)
(0, 1, 1, 0, 0, 0)
(0, 0, 1, 0, 0, 1)
FIGURE 3.18

BOOLEAN VECTOR REPRESENTATION

130
interconnections must be transferred to the NODE.ROOT gate.

Similarly when a gate with replicated inputs is temporarily

transformed into a nested module input attached to its NODE.
ROOT gate, its WHIP and NAIL connections must also be trans-
ferred (Figure 3.16).

Procedures TRAVEL and TRAPEL help perform this task.
TRAVEL 1nsures that NODES attached by means of a NAIL inter-
connection to another NODE which is to be absorbed by its
NODE.ROOT gate in a COALESCE or MODULA step, are interconnected
by a NAIL interconnection to the NODEiROOT gate. Similarly,
TRAPEL provides for the transfer of WHIP interconnections
of NODES attached to a NODE which 1s collapsed or modularized
by a COALESCE or MODULA step.

Notlce phat a set of nested modules will be complete, and
thus representable by a higher order module, when a gate has
been reached such that all its NAIL and WHIP interconnectlons
are Iinternal to the gate (Figure 3.17).

BOOLEAN: Yields a minimal cut-set represenﬁation in
Boolean vector form for higher order modules.

Each state component in the Boolean vector corresponds
to elther a replicated event in the domain of the set of nested
modules or a proper module derived out of one of the nested

modules (Figure 3.18).

IIT.5. The Pressure Tank Rupture Fault Tree Example

The operatlion of each of the procedures in PL-MOD will be

discussed in detall in the following sections of this chapter.

131

In order to clarify the discussion, at each step reference is
made to a slightly modified version of the familiar pressure
tank example due to Haasl [1]. The diagram of the system
is given in Figufe 3.19.

A hazard associated with the operation of the pressure
tank system is the occurrence of a rupture of the pressure
tank. Figure 3.20 is a fault tree showing the series of
events leading to a pressure tank rupture.

The system 1s designed such that gas will start to be
pumped into the pressure tank 1f the push-button switch S1 is
actuated. This causes é flow of current in the control cir-
cult of the system and thus activates relay coil K2. Relay
contacts K2 will then close causing the pump motor to start.
After gbouﬁ 20 seconds, the pressurelswitch contacts will
open given an excess pressure has been detected by a 2-out of- |
3 pressure switch.device. Contacts K2 will thenvopen, shutting
off the motor as soon as the K2 c¢oils have been de-energized
due to a lack of'current in the control circuit. For addi-
tional safety, in case of a pressure switch malfunction, a
timer relay is set to open the circuilt after 60 seconds thus
shutting off the pump motor.

In the fault tree shown, a common cause failure event
among the control circult devices has been assumed to be the
main contribution to the secondary failure of each of the con-
trol circult components, i.e., K1, K2 and T. Table 3.1 is a
list of all the basic fault event inputs and of their occur-

rence probability{

SWITCH S,

OUTLET VALVE

—PRESSURE

ACTUATED SWITCH

L

INFINITE '
RESERVOR & [(PUMP
PUSH S; TO START FILLING TANK

FIGURE 3.19 PRESSURE TANK EXAMPLE

s

PRESSURE
TANK

ceT

133

TOP EVENT

G5

6 G7

G8

€) (9 (30001,

FIGURE 3.20 PRESSURE TANK RUPTURE FAULT TREE

134

TABLE 3.1
PRESSURE TANK RUPTURE FAULT TREE FAILURE PROBABILITY DATA

Basic Event 1 Event Description Fallure Rate
: (Per Loading Cycle)
1 Pressure Tank Faulure 10-8
2 Secondary fallure of Pressﬁre Tank
Due to Improper Selection 10-5
3 Secondary fallure of Pressure Tank
Due to out-of-tolerance conditions 10=5
4 K2 relay contacts fall to open 10-5
5 S1 switch secdndary<failﬁre 10-5
6 S1 switch contacts fail to open 10-5
T External reset actuation force remains
on switeh S1 ’ 10-5
8 K1 relay contacts fail to open 10=-5
9 : Timer does not "time-off" dﬁe to
improper setting 10-5
10 ~ Timer relay contacts fall to open 10-5
11 Pressure swiltch not actuated by sensor
1 10-5
12 Pressure switch not actuated by sensor
2 10-5
13 Pressure switch not actuated by sensor
3 10-5
Replicated Event 1 Bvent Description Fallure Rate
(Per Loading Cycle)
(3000)1 Common Cause failure among 10-5

K, and timer T

relays Kl’ 5

135

IITI.6. INITIAL and TREE-IN

INITIAL: The INITIAL procedﬁre allocates the necessary
storage for each of the NODES making up the fault tree. The
value of GUM = tdtal number of gates in the fault tree, is
read in and arrays

SPINE(GUM) POINTER CONTROLLED;
AGIN(GUM) FIXED CONTROLLED;
ALIL(GUM) FIXED CONTROLLED;
ALIR(GUM) FIXED CONTROLLED;
BOST(GUM) POINTER CONTROLLED;

are allocated.

Array SPINE is used to store the pointer values (NT)
locating each NODE based structure. This allows that each of
the different NODE structurés allocated‘be"assigned the set

of input data correspbnding to the gate they represent.
Arrays AGIN, ALIL and ALIR are used to store the number

of gate, free leaf and replicated leaf inputs each node con-
tains. Thus for the pressure tank example (Figure 3.20).

AGIN(1) = 1, ALIL(1) = 2, ALIR (1)

0,
AGIN(2) = 1, ALIL (2) = 1, ALIR(2) = 0,
AGIN(3) = 1, ALIL(3) = 1, ALIL(3) = 1,
‘ ete.
Finally, array BOST(GUM) will store the pointers locating
each of the proper modules to be created by PL-MOD (clearly
the number of modules to be found in a fault tree will be

less than the number of gates (GUM) in the treel

136

A DO loop group follows
DO I =1 to GUM;
GET LIST (I, AGIN(I), ALIL (I), ALIR (I));

ZEN: ALLOCATE NODE;

SPINE (I) = NT,
END;
which allocates the space needed by each node
given the number of gate, leaf and r-leaf inputs it contains.
In addition each array varilable is initiallzed to be zero or
NULL depending on whether the variable is a2 number (FIXED) or

a pointer and the pointer NT, associated with the NODE repre-

i
senting gate I (I = 1,2,...GUM),-is aésigned to SPINE (I) for
later reference.

The value of NOR = the number of dependent components 1is
' read in and arrays

SPRING (NOR) POINTER CONTROLLED;

F (NOR) FIXED CONTROLLED;
are allocated. SPRING(K)

(K = 1,2,...,NOR) will later be used in TREE-IN to attach
the NODE.WHIP and NODE.NAIL interconnections among interdepen-
dent gates having common replicated component K as input. The
numerical variable F(K) is initialized to be zero and is later
increased by one 1n TREE-IN, each time replicated component K
is read in as an input to some gate in the fault tree.

TREE-IN: Once each NODE has been allocated by INITIAL,

137
TREE-IN proceeds to assign initial values to each NODE varible

as inferred from the node input data NODE'IN which 1s read in.
In addition, TREE-IN finds the initial set of "gateless" nodes
which are to be processed by the set of procedures COALESCE
and MODULA.
The full NODE structure 1s composed of the following var-
lables
NODE BASED (NT),
TIPO FIXED
NAME FIXED,
VALUE FIXED,
GINT FIXED,
LILT FIXED,
LIRT FIXED,
LIMD FIXED,
LIMT FIXED,
NEST FIXED,
WHIZ FIXED,
ROOT POINTER,
LIP POINTER,
LID POINTER,
GIN FIXED BINARY,
LIL FIXED BINARY,
DIR FIXED BINARY,
NAIL(LIRO REFER (NODE.DIR)) POINTER
WHIP (LIRO REFER (NODE.DIR)) POINTER

LA A T A S ot I A T O O A A T A S 0 A A I \C A I \C N VR D

TIR (LIRO REFER (NODE.DIR)) FIXED,

138
2 SPIT (GINO REFER (NODE.GIN)) POINTER

2 TIL (LILO REFER (NODE.LIL)) FIXED:

In Section III.3.4., variables NAME, VALUE, ROOT, GIN, LIL,
DIR,TIR,SPIT and TIL have already been defined. As exblained
in section III.4., variables NAIL and WHIP are the arrays of
pointers used for interconnecting NODES having common repli-
cated events. |

The methodology employed by PL-MOD to modularize a com-
plete fault tree consists of plecewise collapsing and modu-
larizing portions of the tree. As a consequence, at the inter-
mediate stages of the modularization procedure some nodes are
taken awéy from the tree while others undergo changes in the
type and number of inputs they have. For this purpose,'a num-
ber of variables need to be added to the NODE structure. Thus
NODE.LIP is a pointer variable used to add on to the node a
set of free leaf and r-leaf inputs which have been collapsed
into the node. These additions to the NODE are done by means
of based structure variables STIP.

NODE.LID is a pointer wvariable used to add on to the node
free and nested module structures. . These additions are done
through based structure variables'STID.

NODE.GINT equals the total number of gate inputs to the
node. Initially NODE.GINT = NODE.GIN, however, as each of the
gate inputs is either collapsed or modularized to the node,
NODE.GINT is reduced by one until it eventually equals zero

(1.e., the node has become gateless).

139

NODE.LILT equals the total number of free leaf inputs to
the node (initially NODE.LILT = NODE.LIL).

NODE.LIRT equals the total number of replicated inputs
to the node (initially NODE.LIRT = NODE.LIR).

NODE.LIMD measures the number ofrnested modules directly
attached as modular inputs to the node.

NODE.NEST measures the total number of nested modules in
the domain of the node gate, these nested modules are there-
fore directly or indirectly connected to fhe node.

NODE.LIMT measures the total number of free modules
'attached as inputs to the node.

NODE.WHIZ is an index used by TREE-IN to keep track of the
WHIP interconnections that are being attached to the node as
the NODE IN data for each of the gates in the trée 1is read in.

NODE.TIPO equals 1 for every node in the tree. Its pur-
pose 1is to distinguish NODE sfructures from other structures

which are involved in the TRAVEL and TRAPEL procedures (thus
STIP.TIPO - 2, STID.TIPE = 3, MOD.TIPO =4, AP,TIPO = 0).

The set of statements making up TREE-IN are

/* TRFE_TIN s/
TREE_IN: PROC:
ALLOCATE ELM (GUM) ¢
J=1:
DO I=1 TO GhN;
GINO=AGIN (L) ;
LIRO=ALIR (I);

168
169
170
171
172
173
1748
175
176

LILO=ALIL(I)
ALLOCATE NODEIN:
GET LIST (NODEIN) ;

NNNNMNMNNNON S
-t bt A ODOOD

177

178

179 .

180
181
182
83
184
185
186
1R7
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223

NNNNNNNNNNNNNNNNNNNN’NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNMUNNNNNNNNNNNNNNNd-h_‘—-—a.a....a—o—o—._a-.a_a

140

PUT EDIT ('NODE=',NODEIN.NAME) (SKIP(2),A(S),?(S))
(*VALUE=*,NODEIN.VALUE) (X{2),A(6),7(5))
(*GATE INPUTS=') (X (2),A({12)):
PUT LIST(NODEIN.PIT):
POT EDIT('PRFE LEAF INPUTS="') (X (2),A{17));
POT LIST (NODEIN.QTIL): *
PUT EDIT ('OEP LFAP INPHTS=') (X (2),A({16)):
PUT LIST(NODEIN.QTIR):
NT=SPINE (NODETIM.NAME) ;
HODR . NAME=ROCPIN.NANME;
NODE. YALUR=NODEIN.VALUF;
NODE.TIL=NOREIN.QTIL:
NONE.LILT=NODBIN.LILTL:
NODE. TIP=NODEIN.OTIR:
NODE.LIRT=NODEIN.LIRTI:
IP (NODE.LIRT=0) THEN GO TO LOCA;
DO LA=1 TO LIRO;
HA=NODE. TIR (LA) ;
DA==-CEIL (-MA/10000) ;
JA==CEIL (=MA/1000) ;
JAK=JA-10%DA;
NA=MA=- (1000) 2JA;
P(NA)=P (NA) +1;
IP (F(MA)=~=1) THEN GO TO LOCSZ:
PLSE NODE.NAIL(LA)=NT:
SPRING (NA) =NT;
GO TO LOCO:
LOCE: NODE.NAIL (LA)=SPRING (NA):
ARI=NT:
IP{P (NA)-~=DA) THFN GN TN AMD:
If(JAK~=9) THP¥ GO TO LUXFE;
DO IX=1 TO RMODP;
IF(TRIM(IX) =MA) THFN GO TO LNCT;
IND;
LUCPR: ALLOCATE AP
PRIN(IX) =APT;
AP.SPIT=PRIN(IX);
PRI (IX)=>MODE.ROQT=APT:
GO TO LUCI:

LUXE: ALLOCAT® AP:
AP.SPIT=NULL;
LucCT: ZA=NODE.WHIZ+ 1;

NODE.WHIP (ZA) =APT;
NODE.WHIZ=ZA;

IF (JAK=1}JAK=2) THEN AD.PED=-DA;
ELSE AP.REP=CA;.

AP.TIPO=C;

AP.VALNE=0;:

AP. NAP=NA

141

t 3
Pi/I GPTIMIZING COMPILER /* HQDULE PROGRANM /

STHT LEV NT

PUT EDIT('DEP CONP=*, AP.NAP, 'APOFARANCES=*, AP,RPP)
22 : '2 (SKIP (2).§(2),A(9).t(5),X(2),AUZ).F(':)):
225 2 2 AMP: NTsSPRING(NA);
226 2 2 ZA=NODE.WHIZ+1;
227 2 2 NODE.WUTIP(ZA)=ARI;
228 2 2 NODE.WHIZ=TA:
229 2 2 SPRING (NA) =ARY;
230 2 2 BT=ARI:
2 2 LOCO: END;
gg; 2 1 LOCA: NODE.GINT=NQDEIN.GID;]
233 2 1 IP(NODE.GINT=0) THEN GO TO BOTTON;
238 2 1 PO L=1 TO GINO: '
235 2 2 NODE.SPIT(L)=SPINE (NODBIN.PIT(L)):
236 2 2 AT=NODE. SPIT (L) :
237 2 2 AT=>NODE.ROOT=NT; .
8 2 2 END;
%gs 2 1 GO TO BOTE;
260 2 1 BOTTON: BLM(J)=NT;
2812 1 Jad+1; ,
242 2 1 BOTE: FREE NODEIN:
243 2 1 EUD:
208 2 0 BUN=J=13
288 2 0 ALLOCATF OLN (BON):
266 2 0 00 K=1 TO BUN;:
87 2 1 OLM (K) =ELH (X) 3
248 2 1 END
289 2 0 FR®E ELN;
250 2 0 PRFE AGIN;
2%t 2 0 PREE ALIL:
252 2 0 FREE ALTR;
283 2. 0 FREE SPINE;
%4 2 0 PRFE SPRING:
255 2 0 RETURN;
ELV I END TRER IN:

In anticipation of the set of initial gateless nodes to

be found by TREE-IN, controlled pointer array variable ELM(GUM)

i1s allocated (clearly the number of initial gateless nodes in
the tree BUM is less than GUM) to store the locations of each
gateless node. |

The set of values assodiated with each .node are read in

by means of the controlled structure variable NODEIN.

142

NODEIN CONTROLLED,
NAME FIXED,

VALUE FIXED,

GID FIXED,

PIT (GINO)FIXED
LILI FIXED,

QTIL (LILO) FIXED,
LIRI FIXED,

I R VI I I N N

QTIR (LIRO) FIXED;
Thus, for our pressure tank example, the first NODEIN wvalues

read from the input are

NODEIN,

GID = 1 (GID = NODE.GIN)
PIT(1) = 2

LILI = 2 (LILI = NODE.LIL
QTIL(1) = 1, QTIL(2) = 2,

LIRT = 1 (LIRI = NODE.LIR)

N DD DD DD

QTIR(LIRO) = 0;

and they are passed on to the node whose pointer NT satisfiles

NT = SPINE (NODEIN NAME). Thus a correspondence exists between

143

NTl = SPINE(1l) and NODEIN.NAME = 1
NT, = SPINE(2) and NODEIN.NAME = 2
ete.

Those nodes having replicated events (i.e., NODE.LIRT # 0)
are processed by an internal loop (DO LA = 1 to LIRO;) which
sets up the interconnectibns among lnterdependent nodes.

Replicated components are identified by means of a five
digit number (Table 3.2). The three lower digits are reserved
for numbering (this convention allows for a total of 999 repli-
cated events. The next digit will be zero unless the event
represents a replicated module (in which case it equals nine)
or if the replicated component is operated by a NOT gate some-
where in the tree (ON and OFF states are then distinguished by
a l or 2 value for the fourth digit.*

| Finally, the last digit denotes'the total number .of times

the replicated component appears in the tree.

NOMENCLATURE
SIMPLE REPLICATED COMPONENT AOBCD
REPLICATED MODULE A9BCD
DUAL REPLICATED COMPONENT ON AlBCD
OFF A2BCD

(A = Total number of appearances)

Table 3.2 Replicated Event Nomenciature

* Replicated modules and dual state replicated components
are dlscussed in Sections III.l1ll and III.1l2.

144

Each time a replicated component is found in a new NODEa
it 1s connected to the previous NODE , containing the same
replicated component by a NAIL pointer (i.e., NODEa - NAIL=NTb),
while the previous NODEb is connected to the new NODEa with
a WHIP pointer (i.e., NODEb.WHIP = NTa). At the same time,
variable F(K) is increased by one each time replicated component
K is found in a NOPE (K = 1,2,...,NOR). When F(K) equals the
total number of appearances for r - leaf K, a structure variable

AP 1s allocated

AP BASED (APT),
TIPO FIXED,

NAP FIXED,
VALUE FIXED,
REP FIXED,

[\C I \V BN AV I R VL

SPIT POINTER

and is IiInterconnected by
méans of a WHIP pointer to the last node including replicated
event K.

The variables making up the AP structure have the follow-
ing definitions: AP.TIPO = 0 and AP.VALUE = 0 for every AP stru-
structure, AP.NAP = replicated input name, AP.REP = qumber of
appearances in the fault tree for the replicated input, AP.SPIT
= NULL for all AP structures except those assoclated wlth a
replicated module input (See Section III.1ll).

For the pressure tank example the following NAIL and WHIP

interconnections exist (Figure 3.20).

vee N N Nesee i n n =

A\l

145
NODE BASED (NT = SPINE(3)),

TIPO = 1,
NAME = 3,
VALUE = 2,

DIR = 1,
NAIL(1) = SPINE(3),
WHIP(1) = SPINE(T),

cese e N n N)eesee D N n [

NODE BASED (NT = SPINE(T7))
TIPO = 1 |

NAME = 7,

VALUE = 2,

DIR = 1,
NAIL(1l) = SPINE(3)
WHIP(1) = SPINE(8)

o N N Neeee] N N [aad

s 0

NODE BASED (NT = SPINE(8)),
TIPO = 1,

NAME = 8

VALUE = 2,

DIR = 1,
NAIL(1) = SPINE(7),

146
AP BASED (APT,)

TIPO = 0

NAP = 30001,
VALUE = 0
REP = 3,

[AC T \V S \V B \S B VN

SPIT = NULL;

Notice that the node with the first r-leaf appearance is "self-

nalled" and that the node with the last r-leaf appearance has

a whip interconnection to the AP structure corresponding to the

particular replicated leaf. This last interconnection is

needed later by BOOLEAN in order to set up a Boolean vector

representation which includes the required r-leaf inputs.
Followlng the loop for the node interconnections, TREE=-

IN proceeds to attach gate inputs and root cpnnections to each

node with the statements

IF (NODE.GINT = 0) THEN GO TO BOTTOM;
DO L = 1 TO GINO;

NODE.SPIT(L) = SPINE(NODEIN.PIT(L)O;
AT = NODE.SPIT(L);

AT-NODE.ROOT = NT,;

END;

(AT 1s a pointer variable)

Thus, for the pressure tank example, the followlng con-

nections would be established:

o DD P eeee) nN [amd

LIRS IR I

147

NODE BASED (NT = SPINE
TIPO = 1,

NAME = 1,

ROOT = NULL,

GIN = 1,

SPIT(1) = SPINE(2),

(1)),

N)esee) n N (18] e o

NODE BASED (NT = JPINE

TIPO = 1,
NAME = 2,
ROOT = SPINE (1),
GIN = 1,

SPIT(1) = SPINE(3),

(2)),

NN SR VR

sefdoee e s NI eer e D

NODE BASED (NT = SPINE
TIPO = 1,

NAME = 3,

ROOT = SPINE(2),

GIN = 1,

SPIT(1) = SPINE(4),

(3)),

|

NODE BASED (NT = SPINE
TIPO = 1,
NAME = 4

(4)),

148

VALUE = 1,

ROOT = SPINE(3)

e e D s v)

2 GIN = 2,

é SPIT(1) = SPINE(5), SPIT(2) = SPINE(9),

At the same

(1.e., NODE.GINT

ete.

time the pointers locating all gateless nodes

0) are singled out for storage in array ELM
BOTTOM: ELM(J) = NT;
J =J + 1;
BOTE: FREE NODEIN;
END;

And at the end of TREE-IN's main external loop (DO I =1

TO GUM), all these pointers are transferred to pointer array

OLM(BUM) .

For the pressure tank example 3 gateless nodes are initially

found, 1i.e.,

BUM = 3;

OLM(1) = SPINE(6);
OLM(2) = SPINE(8);
OLM(3) = SPINE(9);

Finally those controlled variables no longer needed for

the rest of the program are released

149

FREE ELM;
FREE AGIN;
FREE ALIZ;
FREE ALIR;
FREE SPINE;
FREE SPRING:
This storage saving capabllity of PL/1 is used throughout
the procedures of PL-MOD. |

III.7 COALESCE
Inspection of the pressure tank faﬁlt tree example indicates
that gates (G6, G7, G8) can bé collapsed together with gate GS.
The COALESCE procedure; given by the following statements,
will be shown to perform this task by successively allocating
STIP structures and connecting them to the node corresponding

to gate G5.

150

/% COALESCE Y
330 1 0 COALESCE:PROC:
331 2 o0 BUD=RUM:
332 2 0 ALLOCATE OLD(BUD) :
333 2 0 DO K=1 TO 8UD;
38 2 1 OLD (K) =0LM (K) 3
335 2 1 END:
336 2 0 PREE OLH:
337 2 0 g=1;
338 2 0 ALLOCATE GOLH (GU) ;
339 2 a tooe_1: ~ Jo=1;
330 2 0 ALLOCATE ELD (BUD) ;
3u1 2 0 L0OP_2: ‘DO 1I=1 TO BUD;
w2 2 1 TAT=OLD(D) §
83 2 1 DOG=CAT=>HODE. ROOT;
W 2 7 IP (DOG=NULL) THEN GO TN SKIP;
s 2 1 IP (DOG->NODEF.VALUE~=CAT->HODE.VALIP) THRN GO TO SKIP;:
6 2 1 . SEARCH=DOG->NODE. LIP;
3 T 2 1 IF (SEARCH=NULL) THEN AJAX=1j
¢ My 2 1 ELSE AJAX=03 _
3 389 2 1 D0 WHILF (SEARCU=~sNULL):
3 350 2 2 SEAL=SEARCH:
: 31 2 2 SEARCH=SEAPCH->STIP. L1P;
352 2 2 END:
%3 2 1 NT=CAT:
56 2 1 LENO=HODF.LILTS
355 2 1 RENO=NODE. LIRT;
8 %6 2 1 DLLO=RODE.LIL:
357 2 1 DIRO=NQODF.DIR;
358 2 1 MENO=NODE.LINT:
159 2 1 MEDO=NODF, LTHD;
360 2 1 MRZO=NODE. NEST:
361 2 1 ALLOCATE STIP:
%2 2 1 STID. TIPO=2; .
363 2 1 QUEEN=ST; .
36 2 1 IP(AJAX=1) THEN DOG->NODE.LIP=ST:
365 2 1 TLSE SPAL=->STIP.LIP=ST: ,
366 2 1 STIP.TIL=NODE.TTL:

LR LA ST S © L SR

R T 6 T AT L N IR DR P R S UL I AP S MR T AT R R ARG R X

PL/L NPTIMIZING COMPILER Vdd ®RODULE PROGRAN

STMT LEV NT

3687
368
369
370
371
372
373
374
378
376
377
378
379
33¢
381
g2
a8l
384
335
386
87
388
339
390
321
392
393
394
399
196
397
398
399
400
401
40?2
403
804
40s
4n6
407
408
409
410
411
412
413
41y
415

NNKNNNNRNNNNNRNNNNONNONNNNNNONONNNRONNNONNNONRBONRDNNONNNNONNNNND

Th b d b s et d el D A NN st B S NNN S D NNNNN S A S NNNNRONN e

151

~

STIP.TIR=NODE.TIR:
IP (NODE.TIR({1)=0) THEN GO TO STACK:
DO NAL=1 TO DIRO;
LAD=CAT~D>NODE.VHIP (NAL) 3
I? (LAD=CAT) THEN GO TO HAWR:
. CALL TRAVEL{LAD, QUEEN, CAT):
HAWK: LAD=CAT<>NONE.NAIL (NAL):
IFP (LAD=CAT) THEN GO TO SNACK:
CALL TRAPEL (LAD, QUEEN, CAT);
SNACK: END:
ST=QUEEN:
NT=CAT:
STACK: 00 K=1 TO DIRO:
IP(NODE.WHIP (K)=CAT) THEN STIP.WHIP (X)=ST;
ELS® STIP.WHID(X)=HODE.WUIP(K);

-y

I7(NODE.NAIL(K)=CAT) THEN STIP.NAIL (K)=ST:

ELS? STIP.HAIL(X)=NODE.NAIL(K):
ENDg :
SPARCH=DOG->NODE.LID:

I? (SEARCH=NULL) THEN AJAX=1;
FLSE AJAX=0:

DO WHILE(SEARCH~=NULL):
SEALsSBARCH;
SEARCH=SEARCH->STID. LID;

END:

IF AJAX=1 THEN DOG~>NODE,LID=CAT~>NODE.LID:
BLSE SFAL=->STIN.LID=»CAT~>NODE.LID:
STIP.LTP=CAT->NODE.LIP:
A=DOG~>NODEB.GIN:

B=CAT;

NT=CAT;

FRFRE NODE:

NT=D0OG;

0O J=1 TO A .

IF (XODE.SPIT(J)=0) TUEX GO TO REND:
END:

REDD: NODE.SPIT(J)=NULL:
NODE.LILT=NODE.LILT+LEND]
NODE.LIRT=NQDFP.LIRT#RI\MNO;
NODE.LINT=NODB.LINT»NZXOs .
NNDE.LIMD=NUODE.LIMC+MEDO;
NODE.NEST=NODE.NEST+MEZO;
NODE.GINT2NODR.GINT-1:
IP(NODE.GINT-=0) THEN GO TO LEAD:
ELD{J0) =D0G;

JO=JO+ 1
GO TO LEAP:

SRIP:GOLM (M) =CAT:

M=M+1g

152 : .

PL/T OPTIMIZING COMEILER /* sopuLe PROGRAN ~y

STMT LEY NT

416 2 1 LEAP: PND:

417 2 0 FRE® OLD:

418 2 0 BIN=J0~1;

619 2 0 IP(DUC=C) THEN GO TO AL®;
420 2 0 ALLOCATE OLD (BUD) ;

421 2 0 DO K=1 TO BUD:

422 2 1 OLD (K) *ELD (X) ;

823 2 1 END;:

26 2 0 PRE® BLD:

n2s 2 0 ' GO TO LOOP_1:

526 2 0 ALE: BOGaN=1;

827 2 0 ALLOCATE GOLD (BUG) ;

828 2 0 DO N=1 TO BUG:

429 2 1 GOLD (4) =GOLH (M) ;

430 2 1 END;

@31 2 0 FREE GOLM:

432 2 9 RETORN

433 2 0

END COALESCF:

The array of initial gétgless node pointers OLM(K)
(K =1,2,...,BUD) is freed after 1ts values have been passed
on to array OLD. And in anticipation of the set of NODES to
be modularized array GOLM‘is allocated.

For the pressure tank exémﬁle it may be seen that_once
G8 has been collapsed with G7, G7 can immediately be collapsed
with G5. Two nested loops (LOOP-l and LQOOP-2) are needed by
COALESCE to be able to deal with this type of situations. Thus,
in LOOP-2 every time a coalescing of a NODE pointed at by OLD(I)
(for some I) unfold, a new gateless node, array ELD(JO) (JO =
1,2,...BUD) will store the pointer location -for the new gateless
node ﬁointers OLD(I) (I = 1,2,...,new BUD value). And this new
set is in turn processed by LOOP-2, and so-on until no gate can

be found which may be coalesced (i.e., until BUD = 0). At this

153
point a set of NODES located by GOLb has to be modularized by
MODULA before any further collapsing of gates is possible.
. For the pressure tank example, inltially array OLD con-
sists of |
OLD(1) = SPINE(6);
OLD(2) = SPINE(8);
OLD(3) = SPINE(9);
The first set of iterations for LOOP-2 will find which

nodes are to be coalesced and which must be collapsed. Thus

for
I =1: CAT = SPINE(6), DOG = SPINE(S)
=> - CAT - NODE.VALUE = DOG - NODE.VALUE = 2
I = 2: CAT = SPINE(8), DOG = SPINE(7)
=> CAT~ NODE.VALUE = DOG-NODE.VALUE = 2
I = 3: CAT = SPINE(9), DOG = SPINE(4)
=> CAT - NODE.VALUE = 203 # DOG -+ NODE.VALUE

Therefore SPINE(9)+ NODE must be modularized, while
SPINE(6) *NODE and SPINE(8) +NODE should be freed and their
inputs transferred‘to SPINE(5) + NODE and SPINE(7) + NODE respec-
‘tively, by means of two STIP structures. STIP structures have

the following cdmposition

154

STIP BASED(ST)

TIPO FIXED,

LIP POINTER,

DIL FIXED BINARY,

DIR FIXED BINARY,

NATL(DIRO REFER(STIP.DIR)) POINTER,
WHIP(DIRO REFER(STIP.DIR)) POINTER,

N D DD DD

TIR(DIRO REFER(STIP.DIR)FIXED,

2 TIL(DILO REFER(STIP.DIL)) FIXED;
Vafiables DIL and TIL are needed for the storage of free leaf
inputs, while DIR, TIR, NAIL and WHIP handle the information
associated with r-leaf inpﬁts including theilr interconnections
with other structures in the treé.

Procedures TRAVEL and TRAPEL aré called by COALESCE in
order to reassign to the new STIP structure the NAIL and WHIP
interconnections other structures originally had with the node
which 1s replaced by ﬁhe STIP structure. |

For the pressure tank example the first two STIP structures
created are
STIP BASED(STl)

TIPO = 2,

LIP = NULL,
DIL = 3,

DIR = 1,
NAIL(1) = NULL,

1S IV R AV S T D) I o

WHIP(1) = NULL,

155

n

0

TIR(1)

TIL(1) 5, TIL(2) = 6, TIL(3)

75

STIP BASED(ST,)
TIPO = 2,

LIP = NULL

DIL = 2,

DIR = 1,

NAIL(1) = SPINE(T)

[AC TR \V B \V I \C B N VI e)

WHIP(1l) = APT,

N

TIR(1) = 30001,

2 TIL(1) = 9, TILL(2) = 10;
At the same time TRAPEL transfers the WHIP interconnection of
SPINE(7) -~ NODE

NODE BASED (NT = SPINE(7)),
TIPO = 1, '
NAME = 7,

[)V n N (and

VALUE = 2,

DIR = 1,

NAIL(1) SPINE(3)

WHIP(1l) = STZ’

es e N) N N eee

The two structures STi* STIP and ST,» STIP, are attached to

2
SPINE(5) +~NODE and SPINE(7) +NODE respectively by the state-

ments

156

SEARCH = DOG NODE.LIP;
IF(SEARCH = NULL, THEN AJAX = 1);

IF (AJAX = 1) THEN DOG > NODE.LIP = ST;

(Recall NODE.LIP was initialized to be NULL in INITTAL.
Similarly NODE.LID, STIP.LIP and STID.LID are also initialized
to be NULL).

Hence SPINE(S)~ NODE.LIP = ST, and SPINE(7)» NODE.LIP = ST,.

The STIP.LIP pointer i1s necessary since more;than one node
may coalesce with the same NODE.ROOT. In fact, after a second
iteration through LOOP-1 gates (GSQ G6, G7; G8) will be col-

lapsed together for the pressure tank rﬁpture fault tree. The

set of gates will then be represented by

NODE BASED (NT = SPINE(5)),
TIPO = 1,
NAME = 5,
VALUE = 2,
GINT = 0,
LILT =

]

LIRT =

-

LIMD =
LIMT =
NEST =
WHIZ =

-

3

o o o o n (o)
-

3

ROOT = SPINE(4),

[AC N AV I AC R S Y AN I A" R A I 16 B \V R AC N AV N A D

LIP = STl

n

BN [\C T \V) n [\V] n n N

LID = NULL,

GIN = 2,

LIL = 1,

DIR = 1,

NAIL(1l) = NULL,

WHIP(1) = NULL,

TIR(1) = 0,

SPIT(1) = NULL, SPIT(2) = NULL,

TIL(1) = 0;

n N n [\8} [\S TR S N N [and

STIP BASED(ST,)
TIPO = 2,

LIP = ST,
DIL = 3,

DIR = 1,
NAIL(1) = NULL,
WHIP(1) = NULL,
TIR(1) = 0,

TIL(1) = 5, TIL(2) = 6, TIL(3) = T;

I I \C AV B o N I

STIP BASED (ST,)
TIPO = 2,

LIP = ST,
DIL = 1,
DIR = 1,

NAIL(1)

SPINE(3),
WHIP(1)

ST2,

158

2 TIR(1) = 30001,

n
|
H
N
™
e
e
“.
oo
.

STIP BASED (ST,)
TIPO = 2,

LIP = NULL,
DIL = 2,

DIR = 1,

NAIL(1) = ST,
WHIP(1) = APT,,
TIR(1) = 30001,

) T S R S A I Ot

TIL(1) = 9, TTIL(2) = 10;

At this point gétes G5 and G9 are ready to be processed by
MODULA and no more gateless nodes can be found which‘may be
coalesced, 1i.e.,

BUD = 0;

BUG = 2;

GOLD(1) = SPINE(5);

GOLD(2) = SPINE(9);

IIT.8. MODULA
The objective of procedure MODULA, is to modularize all
those gateless nodes which cannot be further cocalesced with

thelr root-node.
Recall that a gateless node willl have WHIP and NAIL inter-

connections with other parts of the tree if the set of replica-

159 ,
ted events within its domain is not complete. To allow for

this possibility, MODULA temporarily allocates a MOD structure
to represent a modularized node. A MOD structure, say MODa,
will then be transformed into a proper module (represented by
a PROP structure) only if it shows no.intérconnections with
oﬁher nodes in the tree. Otherwise procedures COALESCE and
MODULA will need to further transform the tree

DO WHILE (FLAG™Y = 0),

CALL COALESCE;

CALL MODULA;

END;

until a MOD structure is found con-

nected to a set of MOD structures (nested modules) including
MODa and containing in its domain a complete set of replicated
inputs.

This set of nested modules will then be given a higher
order modular representation by proceduré BOOLEAN. In general
a tree will contain several complete sets of nested modules,
and each time such a set is found BOOLEAN will be called by
MODULA.

Structures MOD and PROP have the followling composition

1 MOD BASED(MT)
2 TIPO FIXED,
2 NAME FIXED,

2 VALUE FIXED,
2 NEST FIXED,

160
LIM FIXED BINARY,
RIM FIXED BINARY,
RIMO FIXED BINARY,
MIM FIXED BINARY,
MID FIXED BINARY,
NAIL (LIRO REFER(RIMO)) POINTER
WHIP (LIRO REFER(RIMO)) POINTER,
TIR (LIRE REFER(RIM)) POINTER,
TID (LIDE REFER(MID)) POINTER
PIM (LIME REFER(MOD.MIM)) POINTER,

SR 1V T O T -0 TR A6 S 1V N 6 S\ TN O T\ Y |V B AV)

PROP BASED (PT),

TIPO FIXED,

ROOT POINTER,

REZ FIXED BINARY,

NAME FIXED,

VALUE FIXED,

LIM FIXED BINARY,

MIM-FIXEﬁ BINARY,

HOST POINTER,

REL (DEL REFER (PROP.REZ)) FLOAT,
TIL (LILE REFER (PROP.LIM)) FIXED,

S TN 'S T |G N |G T)6 T |G T & N \V NN \V R\ B AV B A

PIM (LIME REFER(PROP.MIM)) POINTER;

Before proceeding on to define each of the variables contained

in structures PROP and MOD, 1t 1s necessary to explain how STID

161

structures are used to represent MOD and PROP structures while
their root node has not been modularized.

Structure STID has the following composition

1 STID BASED (SD), .

2 TIPO FIXED,

2 LID POINTER,

2 STIM FIXED,

2 LTIM POINTER,

2 DIR FIXED BINARY,

2 NAIL (DIROC REFER (STID.DIR)) POINTER,
2 WHIP (DIRO REFER(STID.DIR)) POINTER;

(STID.TIPO = 3 for all STIDs)
For every newly created PROP or MOD structure a STID structure
is allocated and attached in 1ts place as an input to the root
node which corresponds to the MOD or PROP structure. Varilables
LTIM and STIM identify the structure represented by STID il.e.,
MT for MOD structures

STID.LTIM =
PT for PROP structures

, MT MOD .NAME
STID.STIM =
PT PROP.NAME
If STID represents a nested module (i.e., a MOD structure) then
necessarily a set of WHIP and NAIL interconnections exists
between the nested module and other gates in the tree, these

interconnections are therefore passed on from MOD to its STID

representation, 1l.e.,

STID.NAIL =’{

STID.WHIP 8-{;

162

MOD.NAIL for nested modules
NULL for PROP modules
MOD.WHIP for nested modules
NULL for PROP modules

Finally, STID.LID is necessary in case more than one MOD

or PROP structures are attached as inputs to a node. 1In

general a set of LID connections will exist of the form

1

o N N eesee D)

NODE BASED (NT)
TIPO = 1,

LIP,

LID = SDl,

STID BASED (SDI)
TIPO = 3,
LID = SD,

e00escss e

Y SR NS

STID BASED (SDn),
TIPO = 3,
LID = NULL,

163

A description of the variables contained in structure MOD

follows:

MOD.TIPO = 4 for every MOD structure. It is needed to distin-

guish MOD from the other type of structures (STIP, STID, NODE,
AP) handles together by TRAVEL and TRAPEL.

" MOD.NAME 1s a number identifying the gate assoclated with the
MOD structure (MOD.NAME = NODE.NAME).

MOD.VALUE identifles the'type-of‘gate'opérator assoclated with
the MOD structure (MOD.VALUE = NODE.VALUE).

MOD.NEST measures the total number of nested modules (MOD
structures) within the domain of the gate associate with the
MOD structure (MOD.NEST = NODE.NEST).

MOD.LIM dimensions the array of free leaf inputs attached to
MOD . |

MOD .RIM dimensions the array of replicated leaf inputs attached
to MOD.

MOD.RIMO dimensions the arraj of WHIP and NAIL interconnections
attached to MOD (notice MOD.RIM # MOD.RIMO).

MOD.MIM dimensions the array of independent module (PROP
structures) inputs attached to MOD.

MOD .MID dimensions the array of nested modules (MOD structures)
inputs directly attached to MOD (Notice MOD.MID # MOD.NEST).
MOD.NAIL and MOD.WHIP are the arrays of pointers intercon-
necting MOD with other parts of the tree which have replicated
inputs 1n common to the full domain of MOD.

MOD.TIR is the array of replicated leaf inputs attached to

MOD.

6L |
Thus MOD.PID(I) will be the p%§nter for the Ith nested module
input to MOD (MOD.PID(1l) = MTI) and MOD.TID will be the name

of the Ith nested module input (MOD.TID(I) = MTlMOD.NAME)

Arrays MOD.PIM and MOD.TIM identify the free module inputs
attached to MOD. Thus MOD.PIM(J) is the pointer for the Jth
free module input to MOD(MOD.PIM(J) = PTJ) and MOD.TIM is

the name of Jth free module input (MOD.TIM(J) = PT PROP.

J
NAME). MOD.TIL 1s the array of free leaf inputs attached to
MOD.

The procedure modula starts out by determining the storage
space needed to allocate a MOD structure for gateless node M

(M=1,2,...,BUG) and assigns the values to variables MOD.VALUE,
MOD.NAME, MOD.NEST and MOD.TIPO with the followlng statements:

/* HODULA */

#3681 0 MODULA: PROC:
43s 2 0 ALLOCATE NMQDUL:
436 2 0 ITaIT+1;
437 2 0 BUR(IT) =BUT;

o838 2 0 ALLOCAT® PELD (NUG):
439 2 0 MO=1:
440 2 0 DU 4=1 TO BUG:
gs1 2 1 CAT=GOLD (%) ;
g2 2 1 NT=CAT:
483 2 1 LILE=NODE.LILT:
sne 2 1 LIRE=NODE.LIRT;
445 2 1 LINE=NODE.LINT;
4uh 2 1 LIRO=NODE.LIRT:
us7 2 1 LINF=NODE.LIND:
4 2 1 SEARCH=NODE.LID:
s09 2 1 N0 WHLLF (SEARCI-~=NILL):
450 2 2 SEALSSEARCH;
451 2 2 DIRT=SEAL=->STID.DIR:
452 2 2 IP (DIRT=1 & SEAL->STID.NALL (1)=NULL) THEN DIRT=0:
453 2 2 LIRO=LIRO+DIRT; ‘
85 2 2 SEARCH=SEAL~>ST1D.LID:
455 2 2 Ban;
456 2 1 IF(LILE=0) THPH LILE=1;
0§72 IF LIME=O TIHFN LIME=1;
458 2 1 IF LIDF=0 THEN LIDE=1:
459 2 1 I? LINE=0 THEN LIRE=1:
460 2 1 IF LTRO=Q THEN ORO=1;
461 2 1 ELSE ORGC20;
462 2 1 I? ORO=1 THEN LIRO=1;
463 2 1 ALLOCATF MOD:

165

ne4 2 1 QUEEN=MT:

46s 2 1 8M0D.TIL=0;

466 2 1 MOD.TIR=0;

467 2 1 MOD.NATIL=NULL:

368 2 1 MOD.WHIDPSNULL:

469 2 1 BOD. PIM=NULL:

470 2 1 “0D.TIN=Q;

471 2 1 MOD.PID=NULL:

872 2 1 H0D.TID=0;

473 2 1 ®ODML. DULL (M) =T
474 2 1 MOD. VALUE=NQDE. VALUF:
47% 2 1 MON.HAME=NODF.NANF;
u76 2 1 MOD. NEST=NODE. NFST;
u77 2 1 MOD.TIPO=4;

Notice that structure MOD has a number of interconnections
(WHIP (I) and NAIL(I), I = 1,2,...,LIRO) which is in general
different from the number of replicated inputs (TIR(I) I = 1,2,
...,LIRE) it contains, 1.e., LIRO # LIRE. This reflects the
fact that structure MOD absorbs only those inputs contained
in the structure NODE and all its connected STIP structures.
At the same time, however, MOD receives all interconnections
attached to the NODE structure as well as 1ts STIP and STID
connected structures. This feature particular to MOD struc-
tures makes 1t possible to identify higher order modules con-
tained in the tree. Indeed, a MOD structure will correspond
to a higher order module only if all its interconnections are

self-contained, 1i.e.,

MOD.NAIL(I) = MT

and

| MT
MOD.WHIP(I) ={

APTJ

for all I (I= 1,2,...,LIRO; J = 1,2,...,NUM; with NUM = total
number of replicated components in the domain of the higher

order module).

e e e e o = o o= =

166

The next variables to be assigned values by MODULA. are

MOD.TIL and MOD,TIR which get values from the NODE structure

and the set of STIP structures connected to the NODE:

u78
579
480
441
482
4813
ugn
&85
14
437
388
489
49Q
491
492
493
a9
45
ug
497
398
499
510
521
502
503
504
5095
5006

MRNRONNSNVNNNNNNNNNNBUNNNNODNUONNRNORNNN

NNN—=NNNNNNNWWNNNNWWNNNNN 2 -

BACH:

MACH:

SEARS=NODF. LIPS
BIL=0;
BIR=N;
DO WHILE (SBARS-=HULL) :
ST=SEARS; :
DIAL=STIP.DIL;
IP (DIAL=1 & STIP,TIL(1)=7) THEN DIAL=0;
IP DIAL=0 THEN GO TO BACH:
DO I=1 TO DIAL;
MOD.TIL(BLL+I)=»STIP. TIL (1)
ENDy
DIAR=STIP.DIRS
IF (DIAR=1 & STIP.TIN({1)=0) THEN DIAR=0:
IP DIAR=0 THEN GO TO MACH:
D0 I=1 TO DIAR;
MOD.TIR (BIR+I)=STIP. TIN(I):
END:

BIL*BIL+DIAL:
BIR=BIR+DIARS:
SEARS=SEARS~>STIP.LID:

END;:

DO I=0NIl+t TO LILP;
JsI-BIL;
¥0N. TIL(I) =NODL.TIL (J) ;

END:

DO IsBIR+1 TO LIRE;
J=I-01IN;

MOD.TIR (I)=NODE.TIR(J):
FNDs

At this point once all WHIP and NAIL interconnections in struc-

ture NODE and the set of STIPS connected to the

‘ ferred to MOD, then all these structures may be

507
508
509
510
511
512

NNNNNN

BN s b s s

NIR=NODP.DIR;

1P (NIR=1 & NODR.TIR(1)=0) THFN NIR=0;
IP (NIR=0) THEM GO TO BITF:

DO NAL=1 TO NIR:
LAD=CAT->NODE. WITP (NAL) ;

IF (LAD=CAT) TURM GO TO CITY:

NODE are trans-

freed.

167

3 511 2 2 CALL TRAVEL (LAD, QUTEN, CAT);
% 514 2 2 CITE: LAD=CAT~>NOCE.NAYL(NAL):
gé 51% 2 2 IF LAD=CAT THEN GO TO RIT":
3 516 2 2 CALL TRAPEL (LAD, QUETN, CAT):
| 517 2 2 RITF: END:
¢ 0 K= s
% 2;3 § ;' I? (NODE.WHIP (K)=CAT) THEN MOD.WHIP (K)=NT;
Ji s2t 2 2 ELSE NOD.WHID (K)=NQDE.WHIP (K);
) 522 2 2 IP (NODE, NAIL (K) =CAT) THEN MOD.NALL(K)=MT:
& 523 2 2 PLS® MOD.NAIL (K) =NOD®.RALL (X):
é’ 526 2 2 EXD;
3 525 2 1 BITE: SFARCH=NODE.LIP:
a 526 2 1 SEARS=NOOE.LID;
i 527 2 1 SEAN®=NODE.ROOT:
1 528 2 1 PRE® NODE;
3 529 2 1 DO WHILE (SEARCH~=MILL) ;
g 30 2 2 ST=SEARCHS
2 531 2 2 DAT=ST;
& 532 2 2 SIR=STIP.DIN;
53 5313 2 2 IF (SIA=1 £ STIP.TIR(1)=0) TNZN STR=0:
| 38 2 2 I? SIR=0 THEN GO TO BITS:
3 535 2 2 DO NAL=1 T0O SIR:
' 536 2 3 LADSBAT=>STIP.WHIP (NAL) ;
i 517 2 3 I? (LAD=DATy THEN GO TO CITS:
: 838 2 3 CALL TRAVEL (LAD, QUEPK, BAT):
: 539 2 3 CITS: LAD=BAT=>STIP.NAIL(NAL);
3 540 2 3 IP (LAD=8AT) TIHFN GO TO RITS;
i S41 2 3 CALL TRAPRL (LAD, OUP®N, BAT):
g S42 2 3 RITS: ENOD: -
E 543 2 2 ST=NAT: .
2 ¢ D0 K=1 TO SIR:
i gig % § LF(STIP.WALP (K) =ST) THRN MOD.YHIP (NIT+¥) =NT;
K suf, 2 13 ELS® NOD.WHIP (NIR+K) =STIP.HULP (K) ;
i 587 2 3 IP (STIP.NAIL(K)®ST) THFN MOD.KAIL(NIR+F)=NT:
: sag 2 3 ELS® NOD.NAIL (NIR+K) =STID.YALL (K); .
549 2 3 END; -
550 2 2 BITS: NIR=NIR+SIR;
551 2 2 SEARCH=SEARCH->STIP.LIP;
¥ 552 2 2 PREE STIP;
3 553 2 2 END: -

It should be noted that before freeilng structure NODE, its

pointer variable NODE.LID was assigned to variable SEARS.
Keeping this pointer will make 1t possible to transmit to MOD

all the values it receives from the set of STID structures
previously connected to the NODE.
A loop similar to the one used for transmitting to MOD

values from the STIP structures (DO WHILE (SEARCH™7= NULL;)
follows for the set of STID structures

R

bREIR T T Al

S at. T

2 BT S i e

168

554 2 1 LAU=Q:

2‘“ 2.1 PAI=0;

56 2 1 DO WHILE(SRARS~sNULL) :

Ss7 2 2 sn-szans§ STeROLLY s

ss8 2 2 BAT=SD:
559 2 2 SIN=STID.DIR;

560 2 2 IP (STR=1 € STID.HAIL(1)=NULL) THEN STR=0:
s61 2 2 IF SIR=0 THEN GO TO BITA:

562 2 2 DO NAL=1 TO SIR:

563 2 3 LAN=BAT=>STID.¥IIP (NAL) :

s64 2 3 IP (LAD=BAT] THEN GO TO CTTA:

565 2 3 CALL TRAVEL (LAD, QUEEN, DAT):

s66 2 3 CITA: LAD®BAT->STID.NATL(NAL):

567 2 3 IF (LAD=BAT) THPN GO TO RITA:

568 2 3 CALL TRAPEL (LAD, QUEEN, BAT):

S69 2 3 RITA: END;

570 2 2 SD=BAT:

571 2 2 DO K=1 TO SIR:

572 2 3 IP(STID.WHIP (K)=SD) THEN NOD.WTIP (NIR*K)=AT:
$71 2 3 ELSE MOD.WHIP (NIR+K) =STTD. WIIIP (K) ;
578 2 3 LF (STID.NAIL (K) =SD) THEM MOD.NAIL (KIR+K)=NT;
575 2 3 ELSE HOD.NATL (Y¥IR+K) sSTIN. NATL(K) ;
576 2 3 END;

577 2 2 NIRsNIR*SIR;

578 2 2 LAT=LAGH1;

s79 2 2 MOD.TID (LAU) =STID. STIN:

S50 2 2 MOD.PTD (LAT) =STID.LTIN:

S81 2 2 GO TO PITA:

532 2 2 BITA: PAN=PAN+1:

w331 2 2 MOD.TI N (PAM) =STID. STTH;

588 2 2 MOD. PIM (PAU) =STID.LTIN:

545 2 2 PITA: SEARSaSEARS~>STID.LID:

SHe 2 2 PREE STID:

587 2 2 END:

A STID structure will either transmit values to MOD.TIM
and MOD.PIM if it represents a PROP structure (proper module)
in which case STID includes no WHIP and NAIL interconnectlons,
or it will transmit values to MOD.TID and MOD.PID as well as
values to pointérs MOD .WHIP and MOD.NAIL if it represents a
MOD structure (nested module).
Each STID pertaining to the set 1s processed by the loop
(SEARS = SEARS 4STID;LID;==SEARS points each time at a new
STID in the set after which its storage is released (FREE STID;).
At this point all variables contained in the new MOD struc-

ture have been assigned thelr values, so MODULA can proceed now

169
to check whether the MOD structure created represents a

proper or a nested mecdule.

Before allocating a MOD structure, variable ORO was used
to distinguish those gateless nodes having no replicated events
in their domain (IF(LIRO = 0) THEN ORO = 1; ELSE ORO = 0;).

The MOD structure for a gateless node having no replicated in-
puts may be immediately transformed into either a "simple"
PROP structure (Figure 3.21) or into a set of PROP structures
organized by a set of Boolean vectors characteristic of a sym-
metric (k-out of-n) gate (Figure 3;22).

Symmetric gates are allowed to appear explicitly in the
fault tree, as long as each of their inputs is independent from
the rest of the tree (i.e., each input to the gate is either a
component or a super-component). Symmetric gate operators are
represented by a three diglt number (KON). The highest digit
represents the minimum number of simultaneous failures necessary
to cause a gate fallure, the middle digit 1s always equal to
zero, and the lowest digit represented the total number of in-
puts to the gate (Thus, a node having a 2-out of- 4 gate oper-
ator has a NODE.VALUE = 204).

In the next statements MODULA considers the two possibili-
ties available for a non-replicatedAevent MOD structure,

IF (ORO = 1 & MOD.VALUE > 2) THEN GO TO RED;

IF (ORO = 1 & MOD.VALUE <= 2) THEN GO TO HANA;
For the pressure tank example MODULA will allocate two

MCD structures. The first one (GOLD(1)) associated with gate

G5 does contain replicated events in its domain and will there-

(Mal and Mb are simple prop structures)

FIGURE 3.21 SIMPLE OR AND AND GATE PROP STRUCTURES

0LT

]

(]

1]

Moo My M

(Yyp» Ygos Yyeg) B = epo¥

(0, 1, 1) s, = (0, 1,

(1, 0, 1) s, = (1, 0,

(1, 1, 0) 55 = (1, 1,
sy = (1, 1,

FIGURE 3.22 SYMMETRIC HIGHER ORDER MODULES

c2> Yuy> Yus)

1, 1)
1, 1)
0, 1)

1, 0)

1.1

172
fore be later checked on whether it represents a nested module
or the top event for a higher order module (l.e., the parent
gate for a set of nested modules).

The second MOD structure assoclated with gate G9 (GOLD(2))
represents a symmetric gate modﬁle'and will therefore be given
its corresponding Boolean representation by procedure SYMM.

In the next section of this Chapter, the methods by which
procedures BOOLEAN and SYMM derive a Boolean representation for
higher order modules and for symmetric gate modules explicitly
included in a fault tree, are discussed.

'~ For the pressuré tank example, the following MOD structures

represent gates G5 and G9.

MOD BASED (MT,),
TIPO = 4,

NAME = 5,

VALUE = 2,

NEST = 0,

LIM = 6,

RIM = 2,

RIMO = 2,

MIM = 1,

MID = 1,

NAIL(1) = SPINE(3), NAIL(2) = MT,,

WHIP(1l) = MT,, WHIP(2) = APT

1’ 1’
TIR(1) = 30001, TIR(2) = 30001,
Fb

RID(1) = NULL,

[T | N N A e A I O I A A A I S I AV B L* I iV N \C I

TID(1) = 0,

173

2 PIM(1) = NULL,
2 TIM(1) = O,
2 TIL(1) = 5, TIL(2) = 6, TIL(5) = 7, TIL(4)=8,

TIL(5) =9, TIL(6) = 10;
It may be seen that this MOD structure, associated with gate
G5 represents a nested module since the requirement MOD.NAIL

(I) = MT, 1s not satisfied for I = 1.

1

1 MOD BASED (MT2)

2 TIPO = 4,

2 NAME = 9,

2 VALUE = 203,

2 NEST = 0,

2 LIM = 3,

2 RIM = 1,

2 RIMO = 1,

2 MID = 1,

2 NAIL(1l) = NULL,
2 WHIP(1l) = NULL,
2 TIR(1) =0,

2 PID(1) = NULL,
2 TID(1) =0,

2 PIM(1) = NULL,
2 TIM(1) =0

2 TIL(1) = 11, TIL(2) = 12, TIL(3) = 13;

174

procedure SYMM will automatically generate the Boolean repre-

sentation for this MOD structure associated with gate G9

= Werrs¥e1299c13)
L= (1,0, 1)

, = (0, 1, 1)
(1, 1, 0)

\n »u Om
] L L)

and these vectors will be attacheq to}the PROP structure
representing gate G9 (see section III.9.2).

The set of statements outlined below form the final part
of the MODULA procedure. The tasks they perform include

(a) Testing if a MOD structure containing replicated com-
ponents represents a nested or a higher order module.

(b) Calling procedures BOOLEAN and SYMM to generate mini-
mal cut-set representations for higher order and explicitly
symmetric modules.

(c) Allocating PROP structures for those MOD structures
which include no replicated events.

(d) Allocating STID structures to represent PROP and MOD
structures and attaching them to NODE structures in the fault

tree.

bLE:]
589
590
591
592
593
594
5965

596

597

598

599
600
601
612
603
608

60.9
606
607
608
609
610

611

612
613
A14
615
616
617
618

619
620
621
622
623
624
625

ERERE]
1112

1113
1114

1115

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

MNNNNRNNRNNRNNNNN NN NN

NNRNNNNNNNNNNONNNNUNNNNEMNNOQONNONNNN DNNNNNNN

WWHWWWWUW@WONNNNNN A ot s e

P S W WY WY VYW

b b ok d ol d d h d b b oD b s A wd d b ed D (O Nt md b

175

IP (ORO=1 & POD,VALUPRS2) THEN GO TO RED:
IF (ORO=1 =& MOD. VALURL=2) THEN GQ TO MAANA:;
Sn=0;

IR=1;
ALLOCATE GUT:
NOX=0;
DO CAP=1 TO LIRO:
VIC=MON.NALIL (CAP) :
IP(VIC~=NT) THEN GO TO DAHA:
VIT=MO0. NULID (CAP);
IP (VIT~=aT & VIT=>NODE.TIPN-=0) THEN GO TO DANA
I? (VIT~>NOOE.TIPO~=Q) THEN GO TO SANA:
REV=2VIT->QR2P:

I7 (RPY<O) THFN DO
NOX=13
SUMaSUM-REY;

HTA=VIT=>NAP:

DA==~CEIL (-NA/10000) : -
JA=~CELL (-NA/1000) ;
NA=MA- (1000) *JA;
GUT(IR)=10000*DA+1000+N A

GIUT (IR* 1) =GUT (IR) +10N0:
IR=IR+2:

END:

ELS® DO:
SUN=SUN+RV;

GUT (IR)=VIT->NAP;
IR=IR+1;

END:

SANA: END:

POT EDIT("TOTAL SUM REP=',SUM)

{SXIP(2) ,X(2) ,A(18) ,F(5)):

NUM=TR=1:
ALLOCATE POT;
00 I=1 TO NUM;
PUT (1) =GUT(I) :
:4: B

FREE GOT:

CALL BOOLFAN;

T TCANATY NIRO=1;

ALLOCATE STID;

SFARS=SD;

STID.NAIL=NOLL;

STID.WHIP=NULL;

STLD.LID=NULL:
STID.STIN=STORK=->PROP. NAUE;
STID.LTIM=STORK;

MT=MOCUL. DULL () ;

FREE MOD;

IF (SFAN=NULL) THEN GO TO REAL:
IP SEAN->NODE.TIPO=1 TH®H GO TO CANX;
APT=SEANS

AP.SPIT=STORK:

STORK=>PROP. RONT=SEAR;

GO TO REAP:

CAXX: NT=SPAN:

NOOE.LINT=NODE. LINTH 1

SIFRRA=NODE.LID:

IF (SLERRA=NULL) THEN NODFE.LID=SEARS:

PLS* GO TO 2%AL;

176

PL/L OPTIMIZING COMPILER /" YODULE PROGRAN */

STNT LEV NT

1132 2 1 GO TO VEAL;

1133 2 1 RED: NUB=M1OD.LINM:

1138 2 1 IP(NUB=1 & MOD.TIL(1)=0) THUEN NUMN=0;

1135 2 1 ELSE NUM=NUD:

11386 2 1 WEST=MOD.NMIX: ,

1137 2 1 IP(WEST=1 & MOD.PIM(1)=NULL) THPN KEZT=0:

1138 2 1 ELSE NEZT=WEST: .

1139 2 1 "ALLOCATE PPR:

1Mo 2 1 PPN, TAR=MOD.TIL:

1187 2 1 PER.KIN=NOD.PIU;

12 2 1 PPR.JIY=NOD. TINS

11143 2 1 LOST=PP;

11as 2 1 LILE=1;

115 2 1 LINB=1;

1186 2 1 ALLOCAT® PROP:

1147 2 1 PROP.TIPO=5;

1148 2 1 IB=ID+1;

1149 2 1 STORK=PT;

150 2 1 BOST (LR) *STORK:

1151 2 1 D0 L=1 TO WEST;

1162 2 2 AT=PFR.KIM (L) ;

1153 2 2 IF (AT-=NNLL) THEN AT-D>PROP.ROOT=STORK:

1150 2 2 END3)

1155 2 1 PROP.NAMF=MOD.NAME;

1156 2 1 PROP.VALUF=MOD.VALUE:

1157 2 1 PROP.TIL=0:

1158 2 1 PROP.TIM=0;

1189 2 1 PRNP.DIA=NULL:

1160 2 PUT EDIT ('SYMM MODULE NAH®=',PROC.NAME,'VALDR=®,
PROP.VALUE) (SKIP(2),A(17),P{5),X(=!,A(6),F(S)):

1161 2 1 PROP.HNST=LOST:

1162 2 1 LARG=NUM+NEZT:

1163 2 1 KAY= (PROP.VALUE=-LARG) /1003

1168 2 1 CALL STYMM;

1165 2 1 LOST=>HRCTOR=QUPEN:

1166 2 1 POT EDIT ('DEP COMPS=') (SXIP(1),A(10)):

1167 2 1 PHT LIST(PER.TAR):

1168 2 1 PUT EDIT({'DEP NODS=') (SKIP(1),A(D)):

1169 2 1 PUT LIST (PER.JIIN):

1170 2 1 PUT EDYT ('MINIMAL CHWT SETS'} (SKIP(2),X{12),A{16)):

1171 2 1 VIT=PER.HECTOR;

1172 2 1 0Q WHILT (VIC-~=NULL) 3

1173 2 2 YIC=VIT;

1176 2 2 PUT EDIT (VIC->COMP) (SKIP(1),P):

1175 2 2 YIT=VIC~D>FLOOR;

1178 2 2 END:

1177 2 1 GO TO CANA:

Saitdnaka satike ks

od

Seale. dhgidia Ao ik “«.-.

A At g

Fy

N e o T S rrv

N7

]

et

[P,

RZE A Oh &

e

jry

U d B e

~

AL

N PO sl "“;‘."f.“i,' oy
.

12418
1249
1250
1251
1252
1253
1254
1295
1256
1257
1258
1259
1260
1261
1262
1263
1264

1265
1266
1267
1268
1269
1270
1271
1272

1273
1278
1275
1276
1277
1278
1279
1280
128 1
1282
1283
1244
1285
1296
1287
1248
1289
1290
1291
1292
1293
1294
1295
_1296
1297
1298
1299
1300

RNNNNNNNNNNDNONNONN

NNOoNNNMDDN

NNMNNNNNNNNNONNRNONNRODNNODNNNS NN

-t NAI DD o 8 b b d et ot s d et b b b

—h ah e b b b b b

e dn e B I N S g S Y

0

PUT EDIT ('PRFE
PROP.VALUE,

177

HANA LILE=MOD.LINM:

LIMNF=N0D. M1N;

ALLOCATE PROP:
PROP.TIPO=S:
STORK=PT;

PROP. HOST=NOLL;
PROP.NANF=NOD. NANES
PROP.YALUEZ=MOD. VALUE;
PROP.TIL=NON.TIL;
PROP.TIM=HOD.TIN;
PROP,PIN=HOD.PIN;
ARI=PT;

DO L=1 TO LINE:
AT=PROP. PIN (L) ;

IF (AT-=NULL) THEN AT->PROP,ROOT=ARI:

END:

IB=IN+1;
BOST (1B) =PT:
PRRE 3OD;
DIRO=1;

ALLOCATE STID:
SPARS=SD:
STID.NALI=NULL:
STID.WULP=NULL;
STID.LID=NULL:

‘NN LEAF INPs=',
(SKIP(2) ,A (19),F(S).X(2) ,A(6),F(3),X(2),A(13),P(5),X(2),A(12),

JODONLE NANT™=', PROP.NANE,'VALUR=',

PROP. LIN, °'NUY. MOD INP=', PRQP.NIN)
P(S)) s

PUT EDIT ("LEAP INS=') (SKIP(1), A(7)):
PUT LIST(PROP.TIL):
PUT EDIT('MOD INSs')
PUT LIST(PROP.TIN):

(SxIpP(1) ,A(8));

STID.STIN=BOST (IP) =>PROP,.NAMT;

STID.LTIN=8QST(ID) :

IF (SEAN=NULL) THUEN GO TO R2AL:
IP (SPAN=-DNODE.TIPO=1) THEN GN TO MANA:

APT=SEAN;
AP.SPIT=STORK;

STORK~>PROP.ROOT=SEAN;

GO TO REAP:

HT=SEAN;
NODE.LINT=RODR.LINT+1;
SIPRRA=SNCDE.LID;

IF(SLERRA=NULL) TIEN NOOP.LID=SEANS;

ELSE GO TO ZEAL:
GO TO VEAL;
0IRO*MOD.RINOS
ALLOCATE STID:
STID.TIPO=]:
SEARS=SD;
STID.STIN=MOD.UANE;
VIC=MODUL.DULL (M)
NT=YIC:
STID.LTTH=VIC:

PUT EDIT ('NWESTID=!,STTIN.STIM)
(SKIP(1) ,X(2) A (7 ,P(5)):

AR TP G

N S N T D R T B

L

PO e SR L L T o

¢t

LI SR W AL TR PR oW o £

1301
1302
1303
1304
1295
1306
1307
1308
1309
1310
1311
1312
1313
1314
13158
1316
1317
13118
1319
1320

1321
1322
1323
1324
13125
1326
1327
1328
1329
1330
1331
1332
1333
1338
1335
1316
1337
1338
13139
1in0
13n1
1382
1303
1344
13n5
1346
1347
1348
1349
1350
1391

NNNNNNNNNONNMNNRNNNON

NNNOMNRNNNNNNNNNNRNONENNVNNNNNRONNNNN

—-— e e NN 2 S NNNNNNN D -

D OO 2 O SO et b mtooomd g mboad AN D) 2t =t NN s

178

STLVLAVSNL LLS

IF (STAN=NULL) THEN GU TO REAL;
0O NAL=1 TO DINO3
LANVIC->NOD.AUIP (NAL) ¢

I? (LAD=VIC) TUFN GO TO CUTO:
CALL TRAVEL (LAD,SFARS,VIC)

CITO: LAD*VIC=->MOD.NAIL (NAT) <

IP (LAD=VIC) THEN GO TN RITO:
CALL TRAPFL (LAD,SEARS,VIC):
ENDs

SD=SEARS:
DO X=1 TO DIRO:
IP (MODJWHIP (K)=VIC) THEM STIN.YHIP (K)=SD3
BLST STID.WUIN (K) =RON WHIP (K) 3

IF MOD.NAIL{X)=VIC TUEN STID.NATL(K)=SD:
ELSE STID.NAIL(K)=MON.NATL(®):

END:

NTsSEANS

NODPE.LTMD=NODR LIND+ 1

NODP. NESTaNOCR.NESTHMOD . HEST 1

SIERRA=NODE.LID;
I? (SIERRA=NULL) THEN NOD®, an-srnns-
ELSE GO TD ZEAL:
GO TO VRAL;

ZZAL: DO WHILE (SIERRA«=MILL)

TIERRA=SIERRA;
STIFRRA=SIERRA=->STID. LID:
ENDs
TIPRRA=>STID.LID=SFARS:
GO TQ VF®AL:

YEAL: AzNQDPR.GIN;

DO J=1 TO A;

IP(NODE.SPIT(J)=CAT) THEN GO TO FRED;
END:

PRED: NOQDE.SPIT(J) =NULL;

HODE.GINT=NODE.GINT~1:

IP (NODE.GINT=~=0) THEW GO TO REAP;
PELD (MO) =SEAN;

NO=MO+1:

GO TO REAP:

REAL: STORK=->PROP.ROOT=NULL:

FLAG=0

REAP: TNDs

BM=MO-1;

ALLOCATE OLM (RUY);:

DO I=1 TO RUMs

OLM (I) =FELD(I):

END:

PRERT PELD;

RETUAN;

END MODULAgG .] .

179

The set of statements following label HANA create PROP struc-
tures which represent simple{gatéimodules. Variables PROP.
NAME, PROP.VALUE, PROP.LIM, PROP.MIM, PROP.TIL, PROP.TIM and
PROP.PIM have the same meaning and are therefore assigned the
same values formerly assoclated with the MOD structure for the
gate 1.e.,

PROP.NAME = MOD.NAME

PROP.PIM(J) = MOD.PIM(J)(J = 1,2,...,MIM)

etc.

(PROP.TIPO = 5 for all PROP structures)

In the}numerical evaluation to be performed later by PL-MOD,
modular occurrence probabilities and Vesely-Fussell importances
wlll be computed. These values shall be stored for each PROP
structure in PROP.REL(L) and PROP;REL(2) (thus parameter DEL
must be set equal to 2).

Pointer variable PROP.HOST is only needed to attach to a
parent gate the Boolean vector representation for its higher
order symmetrilic or asymmetric structure. Therefore, PROP.HOST=
NULL for the case of simple gate modules.

Inspection of the DO loop (DO CAP = 1 TO LIRO;) used to
test if a MOD structure represents a higher order module or a
nested module, reveals that nested modules are handled by the
set of statements following label DANA.MOD structures repre=
senting nested modules may not be immediately freed. There-
fore for this case‘the STID structure created locates a MOD
structure and it contains the WHIP and NAIL interconnections

which were passed on by MOD to the STID structure.

180

Both higher order modules and explicitly symmetric modules
are handled by the statements following‘label CANA. However
this is done only after they were previously processed by
BdOLEAN or SYMM respectively.

In all cases, whether the STID represents a PROP structure
(simple gate module, or higher order parent module) or a MOD
structure (nested module); it is attached as a péeudo-component
to its node root (SEAN = CAT*NODE.ROOT). This therefore re-
sults 1n a decrease in the number of gates which are input to
the nodes which are roots to the modularized gates (FRED: NODE.
SPIT(J) = NULL; NODE.GINT = NODE.GINT-1l;). Hence a number of
new gateless nodes (OLM(BUM)) will be found to which procedures
COALESCE and MODULA may be then applied.

181

IIT.9 BOOLEAN and SYMM

IIT.9.1. Description of Higher Order Modules by Means of
PROP, gﬁﬁ and VEC%OR‘Structures.

'In its final form the modular structure for a fault tree

will be given by a set of PROP structures each of them con-

taining a set of basic events (free leaf and replicate leaf

components) and proper modules (PROP structures) as inputs.
For the case of simplé modular gates (Figure 3.23) each

input holds the same structural relation to its gate oper-

ator. Therefore a lilsting of the inputs to the PROP struc-

ture together with the gate operator (AND,OR) coupling the

inputs, will completely define the module. Thus, the PROP

structure

PROP BASED (PT,,),

TIPO = 5,

REZ = 2,

ROQT = PTlS’

NAME = 14,

VALUE = 2,

LIM = 2,

MIM = 3,

HOST = NULL,

REL(2) FLOAT,

TIM(1) = 10, TIL(2) = 11,

TIM(1) = 13, TIM(2) = 12, TIM(3) = 11,

S TN AV SRR G R\ B A 2)V I AV I G R \C R AV B AV L

PIM(1) = PT13, PIM(2) = PT12, PIM(3) = PTll;

uniquely defines module Mlb = {CIO’Cll’Mll’ M12, Ml3; U}, with

182

cll

FIGURE 3.23 SIMPLE GATE MODULE

FIGURE 3.24 HIGHER ORDER MODULE

183

'module Mlu included as an input to module MlS'

However, for the case of a higher order modular gate,
all its inputs donot hold the same relation with the parent gate
operator. Thus, consider the hlgher order modulae shown
in Figure 3.24 (the pressure tank fault tree example shall
later be shown to have a structure similar to that of Figure
3.24). Because of the appearance of replicated input ry in
gates Gl and G5, gates G l; G4 and GS do not correspond to
simple gate modules representable by a PROP strﬁcture. Instead,
each of these gates can be seen to be composed of a proper and

an lmproper part

Proper Part ' Improper Part
Parent Gate Gl ' Ma ris Gu
Nested Gate Gi4 Mb G5
Nested Gate G5 Mc ry

The higher order module representing this fault tree may
now be constructed by taking the proper part for each gate in
the structure, as well as the replicated events which provide

for the interdependencyamong the gates, i.e.,

8G, = c(rl, My, My, MS)
where Mi denotes the proper part for each of the gates in the
higher order module. Hence‘M1 = Ma’ Mu = Mb’ M5 = Mc'
The Boolean vector describing the minimal cut-set compo-
sition for the higher order module will then be
XB = (yrl, yMl’ YMH, yMS) and as a result the

minimal cut-sets will be represented by

184

= (0, 1, 0, 0)
= (1, 0, 0, 0)
= (0, 0, 1, 1)

From this it follows that a higher order module may be
described by a set of PROP structures associated with the
proper part of the parent and nested module gates, together
with a set of replicated events and a series of Boolean vectors
denoting each of the minimal cut-sets for the module.

The approach taken by the procedures BOOLEAN and SYMM
is to attach this minimal cut-set information to the PROP
structure assoclated with the parent gate(Pointer variable
PROP.HOST is used for this purpose) . Thus, for the example
given in Figure 3.24, the parent gaté Gl is represented by a
PROPl structure containing information on its proper part Ml’
In addition a structure PER will be attached to PROPl contain-
ing the information on the structural composition of the higher
order module whose parent gate 1$ Gl, that is, PROPl.HOST = PRl,
with PR locating a based structure PER.

Structure PER has the following composition

1 PER BASED (PR),

2 REZ FIXED BINARY,

2 HECTOR POINTER,

2 DEXTER POINTER,

2 RAM FIXED BINARY,

2 REL(DEL REFER (PER.REZ)) FLOAT,
2 TAR (NUM REFER(PER.RAM)) FIXED,

185

2 KIM (WEST REFER (PER.LEAL)) POINTER,

2 JIM (WEST REFER(PER.LEAL)) %IXED;
The variables contained on PER are defined as follows:
PER.REZ dimensions array PER.REL which is used to store the
reliability and importance information for the higher order
module (normally DEL = 2 = PER.REZ = 2).
PER.HECTOR 1s the pointer locating thé list of VECTOR struc-

tures each defining a minimal cut-set for the higher order
module.
VECTOR structures are defined by
| 1 VECTOR BASED (VT),
2 LORO FIXED BINARY,
2 FLOOR POINTER,
2 COMP BIT (LARG REFER (VECTOR.LORO));
The set of minimal cut-sets are then attached by PER.HECTOR =
12 VTI* VECTOR.FLOCR = VTZ"
With VECTOR.COMP holding the Boolean bit-string representation

VT "’VTn +~ VECTOR.FLOOR = NULL.

for a minimal cut-set.

PER.DEXTER 1s a pointer locating a structure QER derived by

procedure IMPORTANCE (see sections 3.15 and 3.16).

PER.RAM dimensions array PER.TAR which stores the number of
variables i1dentifying each of the replicated event inputs to
the higher order module.

PER.LEAL dimensions arrays PER.KIM and PER.JIM, PER.LEAL equals
the total number of nested modules in the domain of the parent
gate.

PER.KIM contains the pointer locating the PROP structures

186

assoclated with each nested module, while PER.JIM
contains the number variable identifying the structure (i.e.,
PER.KIM(I)* PROP.NAME = PER.JIM(I), I = k,2,...,PER.LEAL). |

Thus, the PER and VECTOR structures describing the higher
order modular structure of Figure 3.24 are

1 PER BASED (PR = PT,),

REZ = 2,
HECTOR = VT,,
DEXTER POINTER,
RAM = 1,
LEAL = 2,
REL(2) FLOAT,

TAR(1)
KIM(4)
JIM(1) = 4, JIM(2) = &5;

20001,

PT,, KIM(2) = PT,,
VECTOR BASED (VT,)

LORO = U,
FLOOR = VT,
COMP = '0100'B:
VECTOR BASED (VT,),
LORO = b,
PLOOR = VT,
COMP = '1000'B;
VECTOR BASED (UT,),
LORO = 4,

FLOOR = NULL,

[\CTR \C I \C T S\ T \° R \C R R AV S 1O S O S S A A 2R \V TR A R | B AV I S T\ Y S T V)

COMP = '0011'B;

III.9.2.

187

(With PTl,,PTu and PT5 locating the PROP structures

corresponding to gates Gl, G4 and G5.)

Procedure SYMM

When a fault tree dlagram explicitly includes a sym-

metric higher order module, procedﬁre SYMM will be used to

generate 1ts Boolean vector representation.

A restriction

imposed by PL-MOD 1s that the inpﬁts to the symmetric gate

bé elther non-replicated basic events or modules

Before procedure SYMM 1is called, the PROP

structure associated with the symmetric gate are

set of statements following label RED.

1133
1138
1135
1138
1137
1133
1139
1180
11a1
1182
1143
1130
1145
1186
1167
11ag
1189
50
51
1152
93
11 5
1155
156
1157

158 -

1159
1169

1161
1152
1153
1180

NN NNNNNNNNNRNNNNNNONNNNNNNNNNONN

il e B 8 N N e S T T JL YR QUi QAP SR S Py

Ll JE P

RED:

NIB=A0D.LIN:
IP(¥UB=1 & MOD.TIL(1)=0) THEN NUM=0;
ELSE NUN=NUD:
WEST=MOD.NIN: '
IP (WEST=1 & MOD.PIM(1)=NMLL) THFH XEZT=Q;
ELSZ NEZTsWEST;

"ALLOCATE PRR;

P!R.TAR*HOD.TIL:
PER.KIN=NOD.PIl;
PPR.JI = MOD, TIN:
LOST=PR;
LILE=1;

LINE=1
ALLOCAT® pPRrROP:
PROP.TIPOsS:

IB=IO+1;

STORK=PT:
BOST (I8) =STORK:

DO L=1 T0 YPST:
AT=PFR.XIN(L) ;
i:ﬂ(ar-annnn) TRFN AT->PROP. ROOT=STORK:
PROP . NANF=NMOB.XANE;
PROP. vnnur-aov.vanuz'
PROP.TIL=0;
PROP.TTN=0;
panv;pzxanonx.

(Figure
and PER

created

PUT EZDIT (*SYNN MODULE HANE=?,PROD. NANE, ' TALDR=®,
PROP.VALUE) (SKIP(2),A(17) P(S),X(;,,a(ﬁ),?(S)).

PROP.HNST=LOST:
LARG=NOM+HEZT;
KAY‘(PROP.YAL"F*LARG)/100'
CALL srun:

3.29).

by a

188

1

MOD.TIL(1l) +C

MOD:TIL(r) »ér

MOD.TIM(I)-*Ml

MOD:TIM(s) - M
(r + s = n)

FIGURE 3.25
EXPLICITLY SYMMETRIC MODULAR GATE

189

1165 2 1 LOST->HECTOR=QUEEN:
1166 2 1 PUT EDIT ('DEP COMPS=') (SRIP(1),4(10)):
::?; ; ; BT LIST(PER.TAR): '

; PUT EDIT('CEP 10DS=') (SKIP(T),A :
:;gg % : BUT LIST (PER.JIN): 1 AR

) POT EDTT (*HMININAL CNT SETS® .

1171 2 1 v:r-pan.nécrox: I SR ran . a060
1172 2 1 D0 WATILE (VICA=NTLL) s '
1173 2 2 VIC=VIT:
1174 2 2 PUT EDIT (VIC=->CONP) (SKIP(1),P):
1175 2 2 VIT=VIC->FLAOR:
1176 2 2 EnD:
1177 2 1 GO TO CAMA;

It should be noticed here that for a symmetric gate,
the role played by its free leaf lnputs corresponds to that
of the replicated inputs for a higher order module since
PER.TAR(1) = MOD.TIL(1) I = 1,...,MOD.LIM
At the same time its modular inputs (MOD.TIM(J)) will play
the role which corresponds to the nested gate PROP structures
for a higher order module since

PER.KIM(J) = MOD.PIM(J) J = 1,...,MOD.MIM
PER.PIM(J) = MOD.TIM(J)

As a result the PROP structure associated with a sym-
metric gate will have no direct inputs (PROP.TIL = 0, PROP.
TIM = 0).

For the pressure tank fault tree example gate G9 is a
2-out of-3 symmetric gate. Its MOD structure was given in
section III.8 as

1 MOD BASED (MT2)
2 TIPO = 4,

2 NAME = 9

2 VALUE = 203,

190

PIM(1l) = NULL,
TIM(1) =0

2 NEST = 0,

2 LIM = 3,

2 RIM = 1,

2 RIMO = 0,

2 MID = 1,

2 NAIL(1) = NULL, .
2 WHIP(1) = NULL,
2 TIR(1) = 0,

2 PID(1) = NULL,

2 TID(1) = O,

2

2

2

TIL(1) = 11, TIL(12), TIL(1l3) = 13;

.So for this particular example the Boolean state vector include
no modular inputs (since MOD.TIM = 0) but only basic component
events (MOD.TIL(l), I = 1,2,3).

The PROP and PER structure associlated with gate G9 are

PROP BASED (PT,),
TIPO = 5,

REZ = 2,

ROOT POINTER,
NAME = 9,

VALUE = 203,

LIM = 1,

MIM = 1,

'S SR S SRS S \C S | Y 'O T (G TR S S

HOST =_PR1

2
2
2
2

(PROP.ROOT will later be assigned the pointer

PROP structure for

[T | R A T S e A S e\ I A I

191

REL(2) FLOAT,
TIL(1) = 0,
TIM(l) =0,
PIM(1l) = NULL;

locating the
gate G4.)

PER BASED (FR,)

REZ = 2,

HECTOR POINTER,

DEXTER POINTER,

RAM = 3,

LEAL = 1,

REL(2) FLOAT,

TAR(1) = 11, TAR(2) = 12, TAR(3) = 13,

- KIM(1) = NULL,

JIM(1) = 0;

Procedure SYMM, outlined by the statements given below,

will generate the set of VECTOR structures for a symmetric gate

given the values of LARG = NUM +NEZT and KAY = (PROP.VALUE -

LARG)/100.
/* SYMMETRIC GATPRS */
1178 2 1 STNM: PROC:
1179 I 1 - ALLOCATE soPF:
1180 3 1 ALLOCATE TODS
1181 3 1 ALLOCATE VECTOR;:
1182 3 QUEEN=VT;
1183 3 1 SOP*REPEAT('0°'B,LARG);
11848 3 1 SUBSTR (SOP,LARG, 1) =711
1185 31 VECTOR.COMP=SOF;
1186 3 1 LADY=VT:
1137 3.1 B I=1 TO LARG-3
1188 3 2 ALLOCATE VECTOR:
1139 3 2 LADY=>FLOOR=YT;
1190 3 2 LADY=VT:

192

1191 3 2 SOF=REPEAT('0*8,LARC);
1192 3 2. SUDSTR(SOP, LARG-I,1)='1'D;
1193 J 2 VECTOR.COMP=SOFP:

1194 3 2 END:

1195 301 ALLOCATF VRCTOR;

1196 3 1 LANY=>PLOOR=VT;

1197 3 1 VECTOR.PLOORSHULL:

1194 R | SOF=REPEAT(*0'N,LARG)
1199 3 1 SUNSTR(SOP,2,1)="1'n;

1200 3 VECTOR.CCMDP=SOF;

Up to here, SYMM has created a set of LARG-1 vectors

which contain a single 'l' bit component.

Consider for example

a 3-out of-5 symmetric gate, then PROP.VALUE = 305, LARG = 5 =>

KAY = 3 and the vectors created are

VECTOR BASED (VTl),
LORO = 5,

FLOCR = VT2,
COMP = '00001'B;

[V T \V B |V SR

(QUEEN = VT.)
VECTOR BASED (VT,),
LORO = 5,
FLOOR = VT,
COMP = '00010'B;
VECTOR BASED (VT,),

LORO = 5,

1

2

2

2

1

2

2 FLOOR = VTM

2 COMP = '00100'B;
1 VECTOR BASED (VTU)
2 LORO = 5,

2 FLOOR = NULL,
2

COMP = '01000" B;

3

The minimal cut-sets for the 3- out of -5 gate are then found

193
by adding 'l' bits in any position to the left of the place
where the first 'l' bit is found, and by successively repeating
this operation KAY-1l times requiring that each final vector in-

clude a total of KAY (=3) bits

Initial Vectors 100001

'QoQ10’
100100

o o w w

'01000"

Vectors After lst
Iteration '00011' B

'00101"' B
'01001' B
'(110001' B) Cancelled out
'00110' B
'01010"' B
('10010' B) Cancelled out
'01100' B
('10100' B) Cancelled out
('11000' B) Cancelled out

Minimal cut-set vectors
found after 2nd iteration

'00111"

'0l011"
'10011"
'0l101"

O v w w w

'10101"

194

11001’
'01110"
'10110°

U w w w

'11010"
'11100' B

The following DO loop performs this operation (function

INDEX (VECTOR.COMP,

'1'B) yields the number location for the

first element of the string matching substring '1'B, e.g.,

INDEX ('01101"' B,

1201
1202
1203
1204
1205
1204
1207
12048
1209
1210
12m
1212
1213
1214
1215
1216
1217
1218
1219
1220
221
1222
1223
12248
1225
1225
1227
1228
1229
1230
1231
1232
1233
1214
1235
1216
1237
1238
1239

WhWWwWwWwuwwwuuwiwuwwewwuwuwwwwwuwwuwwuwlluwwwuwuwuwuwwwww

VUM EVMUVMUUVUMEVMUVUUVUVUINMUVUVMUV EZTWLWEUVOAVEVLVVMVIVFEFWWWNN o

'1'B) = 2).

ST1:

DN I=*2 TO KAY:

LADY=QNPEN;

DO WHILPR (LADY-~=NULL):

YT2LADY;

J=INDEX (VECTQR.COMP,'171) ;

IF J=1 THEN DO

IP LADY=QUEEN TIHEN DO .

QUEBEN=LADY-DFLOON:

FREE VECTOR;

LADY=QUFEN;

END:

ELSE DnO;

MOAN=D>FLOOR=LADNY=>FL00 M

FPRPE VFCTOR;

LADY=NOAN=DFLOOR:

END:

END;

ELS? 003
TON=YFCTOR.CCMP:

B0 L=1 TO J=-1;

ALLOCATE VYECTO®:

IF L=1 THEN KING=VT:

ELSE PAYN=->PLODOR=VTI:

SOP=NEDPPAT(* 00, LARG) ;

SUASTR (SOF, L,)= 1'D

VECTOR.COMP=SQOF| TOD;

PAWN=VT:
PANN=DPLOOR=NULL;

END:

IP LADY=QUFPYN TNEN DO

QURER =XING; .
PANN=D>PLOOR=LADY~>FLOOR;:
MOAN®DPAUN
LADY=PANN=DPLOORS

END;

ELSE DO:

MOAN-DFLOGR=KING;
PAWN=>PLOOR=LADY~>PLOOR;
MOAN=PAWN:

195

1240 3 5 LADY=PAYN=->FLOORN;
1241 3 5 END;

1202 J 4 END;

1243 3 3 END;

12484 3 2 END;

m2ns .3 1 FRPE SOF;

1246 3 1 PRFEE TOD;

1247 3 1 END sYuM:

. : ’/* E¥D or SYMMETRIC ¢/

For the pressure tank fault tree, procedure SYMM will thus

yield the following vectors assoclated with gate G9.

VECTOR (VT,),
LORO = 3,
FLOOR = VT,,
COMP = '011' B;
VECTOR (VT2),
LORO = 3,

FLOOR = VT,,
COMP = '101'B;
VECTOR (VT3),
LORO = 3,

FLOOR = NULL,

n n N L d n [\C T V] | n n n [

COMP = '110' B;

with PR1'+PER.HECTOR = VTl'

IIT1.9.3. Procedure BOOLEAN

The generation of a Boolean vector representation for a
" higher order module, composed of a set of replicated events and
hested modules, 1is a qﬁite complicated task as compared with

that of finding a Booléan representation for an explicitly sym-

196

metric gate. PL-MOD's capability of handling higher order
symmetric gates (Figure 3.26) 1n an explicit fashion 1s there-
fore a very desirable feature, since considerable savings will
result by using this option for the analysis of systems con-
taining a large number of symmétric redundencies.

In general, however, fault trees will be composed of
higher order modules whose structural composition needs to be
found. For thesé cases 1t will be hecessary to call upon
BOOLEAN to generate a minimal cut-set representation for the
higher order module.

Consider the pressure tank fault tree example. Up to
this point 1t has been shown how PL-MOD internally represents
gate G9 as a PROP structure (PTl +~ PROP) and gate G5 as a
nested MOD structure (MTI*MOD). The following set of internal
transformations still need to be performed by PL-MOD before
the modularization for the full tree has been completed:

(a) G5 and G9 become nested module (MOD) and proper module
(PROP) entries to a MOD structure asscciated with Gl
MOD BASED (MT,),

TIPO = 4,
NAME = 4,
VALUE = 1,
NEST = 1,
LIM = 1,
RIM = 1,
RIMO = 2,

NP DD DD DD

MIM = 1,

197
EXPLICIT FORM

IMPLICIT FORM

FIGURE 3.26

SYMMETRIC HIGHER ORDER MODULES

198

2 MID = 1,
2 NAIL(1) = SPINE(3),NAIL(2) = MT,
2 WHIP(1) = MT,, WHIP(2) = APT,,

2 TIR(1) = O,

2 PID(1) = MT,,
2 TID(1) = 5,
2 PIN(1) = PT,,
2 TIM(1) = 9,
2 TIL(1) = 0;

Since MOD.NAIL(I) = MT; is not satisfied for I = 1, then gate
G4 does not correspond to a higher order module? so structures
MTl*MOD (given in section III.8) and MTj*MOD must be kept in
the same form until the parent gate for the higher order module
to which they belong 1s found (Figure 3.27).

(b) G3 will become a gateless node once G4 is attached to
it as a STID structure. Furthermore, since gates Gl, G2 and
G3 are all of the same type, procedure COALESCE will collapse
them together (Figure 3.28). The NODE structure representing

Gl will then be given by

NODE BASED (VT = SPINE(1)),
TIPO = 1,

NAME = 1,

VALVE = 2,

GINT = O,

LILT = 4,

[AC TN \V I RV N S VI

LIRT = 1,

199

TOP EVENT

Improper
Part

g5

30001

FIGURE 3.27

PRESSURE TANK FAULT TREE WITH GATES G4,G5,G9 MODULARIZED

200

TOP EVENT

FIGURE 3.28

PRESSURE TANK FAULT TREE WITH GATES G4, G5 AND
G9 MODULARIZED AND GATES Gl, G2, G3 COALESCED

" And the set of STIP and STID strﬁctures

are

(1S T G WY G TR O T |V T AV T G T AV S \C E A 2 A I AN I AV B AV

2

[TR 6 S)0 N \V RV R 'V B \V N L

201

LIMD

s

LIMT

1
0,

NEST = 2,

WHIZ = 1,

ROOT = NULL,

LIP = ST,

LID = SD,

GIN = 1,

LIL = 2,

DIR = 1,

NAIL(1) = NULL,

WHIP(1) = NULL,

TIR(1) = 0,

SPIT(1) = NULL,

TIL(1) = 1, TIL(2) = 2;

STIP BASED (ST,),
TIPO = 2,

LIP = ST,

DIL = 1,

DIR = 1,

NAIL(1) = NULL,
WHIP(1) = NULL,
TIR(1) = 0,
TIL(1) = 3;

attached to the NODE

(Represents gate G2)

202

STIP BASED (STS)’ (Represents Gate G3)
TIPO = 2,
LIP = NULL,
DIL = 1,

DIR = 1,
NAIL(1l) = STS’
WHIP(1) =_SD2,.
TIR(1) = 30001,

N DD DD

TIL(1) = U;

STID BASED(SDZ),_ (Represents Gate GU)

TIPO = 3,
LID = NULL,
STIM = &,
LTIM = NI,
DIR = 2,

NAIL(l) = ST., NAIL(2) = SD

5’ 2’
WHIP(1l) = SD2, WHIP(2) = APT

)V TN \C Y O BV S N VIt

1’

(¢) Brocedure MODULA will then create a MOD structure
to represent SPINE(1l) NODE including its attached STID and '

STIP structures

1 MOD BASED (MT,),
2 TIPO = U,

2 NAME = 1,

2 VALUE = 2,

2 NEST = 2,

203
LIM = 4,

RIM = 1,
RIMO = 3,

MIM = 1,

MID = 1, |

NAIL(1) = MT,, NAIL(2) = MT,, NAIL(3) = MT,,
WHIP(1) = MT,, WHIP(2) = MT,, WHIP(3) = APT,
TIR(1) = 30001, .

PID(1)
TID(1) = 4,

NULL,

TIM(1) = 0,

1; TIL(2) = 2, TIL(3) = 3, TIL(4) =4,

MT3’

PIM(1)

NN n n n n N n n n N N N

TIL(1)

Inspection of the MOD structure shows that the criterion

MOD.NAIL(I) = MTM
(T =1,2,3)
MOD .WHIP(I) = MTu or APTl

1s met. There-
fore BOOLEAN must derive a representation for the higher order
module assoclated with MTu+MOD.
Procedure BOOLEAN starts off by creating the PROP struc-
tures associated with the parent gate and each nested gate, as
well as the PER structure containing the structural information

for the higher order module

(38 TG LT ¥

pore

B A P STAL TR

CaE

PFT U RITED AL A NN

R R P YL R 0 N SR R i i Y Do LAt

627
628
629
630
631
632
633
634
63S
G36
637
638
639
64Q
&4 1
642
643
LG

645

646
647
(%]
fi9
650

651

652
653
654
€55
656
657
658
659
6RQ
661
6h2
6h3
664
665
666
667
€68
€69
670
671
672
673
6748
&75
676
677

e Y R W VR WY WY WY WY WY SR WY WY W R TR S WG

LWWLWLWLLWVWLWLLWWLLWLWLWLLNUWWLWL W

....4,4_..‘.‘_.—‘—.—._....—..4_‘_;—‘-.-0-'-‘—-.-—!

N WW W GWINDN = ot ot b bt ah ot ca PIDIN) b b b b b s =

204

/* ROOLEAN SUBROUTIND*/

(CHBCK(WBST,LEG,EST,LQG,HEG,LARG,n?,FOX,BJ,C1.C2.
FOG,Xx0D,C1C,X06,C12,C24,C27,K0F ,XKOD,TON, DOTT,

MICS,5PU4)) :
BOOLCAN: PROC;

PUT SKIP LIST('BOOLEAN [{AS DNREN CALLPED');

MT=MOO0UL.DULL (M) ;
WEST=M0D., NEST:
JEST=REST+1:

NODw NUNM:

ALLOCATP PER:

PEDR. TAR=PUT:

PREE PUT;

LOST=*PR:

ALLOCATY PEN;
PROST=PN

LIL¥=NOD.LIN:
LINFanOD.MIN;

ALLOCATE DROP:
PROP.TIPO=S
IB=1P+1;
STORK=PT;
BOST (IR) =STORK:
PROP . NANP=HOD. NANE;
PROP.VALUZ=NOD, VALUR
PROP.TIL*MOD.TIL:
PROP.TIN=X0D.TIN;
PROP.PIM=X0D.PIN:

PUT EDIT ("PARENT MODULE NAHE=', PROP.NANFE, *VALUZ=?
PROP.VYALUE, 'NUM LEAP INP=', PRODP,LIM, °'NUM MOD INP=', PROP, HIN)

(SXIP(2) ,A(19),F(S),X(2) ,A(6),F(5),Xx(2),
PUT ®DIT ('LEAF INS=') (sKID(T),

PUT LIST(PROP.TIL):

A(9):

PUT EDIT('M0D INS=') (SKIP(1),A(8)}:

PUT LIST{PROP.TIN):
PROP.HOST=LOST;
?0G=N0OD. NID;

D0 I=1 TO FOG:
PER.KIN(I)=NOD.PID(I):
PENLJIN(I)=HOB.TIN(I):
END:
LEG=F0G:
ALLOCATE DRUG;
FROG=MOD.PID;
ZEG=FOG;
GREG=DR;
GROG=1;
EST=0¢
GREY=0R:
00 YHILE (GROG~=Q);
LOG=0;
DO R=1 TO NEG:

IF (PROG (K) =>PID(1)=NULL) THER CO®r=0;

ELSE PPG=1g
LOG=LOG+*PPG
PNDs

L7 (LOG=Q) THEN GROG=0:
YRR=Z2EG; R

A(13)},2(S),.X(2),a(12),
9(5)):

678
679
680
£81
682
683
6 Y
6R5
6386
:R7
688
89
690
691
£22
693
694
795
696
697
69A8
6399
700

701

702
73
704
705
706
707
709
709
710
711
712
713
AL
715
716
717
718
719
720
721
22

WuwHWLwuwUuLWLwuLWLU Wi WWLLUWWLW WL

WLLWLWLWWWLWLWLWULLWLTWLWLWLWWLW

SLWwWibdwwuwwww

-

MBUWNNNNNWL E

EF FfWLWUWUYVWWYW LW WLWWWLLWLDWWWNN

205

DR=GREY :

DO Q=1 TO MEG;
MT=FROG (Q)
LILE=NMYD.LINM;
LIME=MOD.MINM;
ALLOCATE PPOP;
PROP.TIPO=5;

ARI=PT:
IB=IB+1;
BOST (IR) =PT;
EST=EST+1;
PER. KIM(EST) =PT;
PER.JIM(EST) =MOD. NANE;
PROP.HAME=MOD. NANE:
PROP.VALUE=MOD. VALUT ;
PROP.TIL=MODL.TIL
PROP. TIN=MOD.TIM:
PROP.PLN=MOD.DIN;
PROP.ROOT=STORK:
0O L=1 TO LIME:
AT=DPOP. PIN (L)
IF (AT-=NULL) THEN AT=->PROP,.RINT=ART;
END:

PUT FDIT ('NESTSD MCDULE NAME=', PROP.MAMF,VALUR=',
PRUP‘VlLéE. 'NUM LIAF IND=', PROP.LINM, 'HUM 40D INP=', PROP.JIN)

'(5KIP(2)£A(19)13(5)OX(2)'A(G)‘?(S)’X(z"h(13)'?(5)'x(2)'k(1§%§j).

© PUT EDIT ('LEAF IN&='} (SKIP(1), A(9)):

PUT LIST({ PROP.TIL):
PUT EDIT('#OD INS=Y) (SKIP(1),A(8)):
PUT LIST(PROP.TIN):

PROP, HOST=NULIS

FOG=MO0D,MID;

IP(FOG=1 & MOl PID(1)=NULL) TNEN GO TO UNOS
po I=1 TO FOG;
PPH.KIN(ZFEG+I)}=400.PID(T) ¢

. PENJ.JLN(ZFG+I)MOD.TID(T};
END;
IRG=2ZEGH+FOG
NQ: END:

PREE DRUG:

LFGaZEG=-WER;

ALLOCATE DRUG;

GRFY=2DRS

00 IC=1 TO LEG;

DRNG.PROG (ID) sFENXIN(WPR*ID) ;

END:

END:

PROP structures are allocated starting at the top with

the parent gate and then proceeding to successively deeper

mlgygls of nested gate modules in the higher order structure.

Figurer3.29 shows an example of a higher order module consist-

ing of 3 levels of nested gates. In the diagram only the nest-

ed gates of the structure are portrayed and all other input

details to the higher order module have not been included

206

Parent Gate

Nested Gates

lst Level

2nd Level (U4)

3rd Level (8) (9} @

Allocation order is given by (i), 1=1,2,...,9

FIGURE 3.29
ORDERING OF PROP STRUCTURE ALLOCATIONS FOR A HIGHER ORDER MODULE

207
(i.e., replicated inputs and proper modular inputs to each

gate).

BOOLEAN succeeds to allocate the PROP structures in the
desired order with the help of a sét of DRUG stfuctures which
contain the pointer locations for éach of the MOD structures

at a given nested gate level. Structure DRUG is defined by

1 DRUG BASED (DR)
2. MEG FIXED BINARY,
2 FROG (LEF REFER(MEG)) POINTER;

Thus, for the example given in Figure (3.29), three DRUG
structures would be needed by BOOLEAN
1 DRUG BASED (DRl),

2 MEG = 3,
2 FROG(1) = MT,, FROG(2) = MT,. FROG(3) = MT;
1 DRUG BASED (DR,),
2 MEG = U4,
2 FROG(1) = MT,, FROG(2) = MTg,
FROG(3) = MTg, FROG(4) = MT.;

1 DRUG BASED (DR3)

2 MEG = 2,

2 FROG(1) = MT8’ FROG(2) = MT9;
Where this notation means that MTi locates the MOD structure
associated with the (i-th) nested gate.

While the name and polnter locatlon for each nestéd

gate PROP structure are stored in PER.JIM(I) and PER.KIM(I)

208

(I = 1,2,...,WEST), the name and pointer location for the MOD
structure assoclated with each nested gate are stored in the

structure PEN defined by

1 PEN BASED (PN)
2 LEAL FIXED BINARY,
2 KIM (WEST REFER(PEN.LEAL)) POINTER,
2 JIN (WEST REFER (PEN.LEAL)) FIXED;
The higher order modular structure composition for the
pressure tank fault tree example is qulte simple, since
only two nested gate levels exist each consisting of a single
gate (Figure 3.30). Its PROP, PER and PEN structures are
given by
PROP BASED (PT2),
TIPO = 5,
REZ = 2,
ROOT = NULL,
NAME = 1,
VALUE = 2,
LIM = 4,
MIM = 1,
HOST = PR,,
REL(2) FLOAT,
TIL(1) = 1, TIL(2) = 2, TIL(3)=3,TIL(4)=4,
TIM(1l) = 0,

1A SR AV R AV R A 1 \° T A R A I O T iV R O Y i TR N T =

PIM(1) = NULL;

209

Proper Part Improper Part

M1 = {Cl, C2,C3,C4;U} GlY

T30001’

A
G4 ° M4 = {Mg} G5
G5 M5 = {CS’CG’C7’C8’09’CIO;U} 30001

(M9 = {Cll’CIZ’CIB; 2-out of-3 operator})

FIGURE 3.30
HIGHER ORDER MODULAR COMPOSITION FOR THE PRESSURE TANK
FAULT TREE

n N n n N n n [\¥] N n n N

{1 T 16 T & TR & Y & T 1O BN O S \V B \C B \C T o

210
PROP BASED (PT3),

TIPO = 5,

REZ = 2,
ROOT = PT,,
NAME = 4,
VALUE = 1,

LIM = 1,

MIM = 1,
HOST = NULL,
REL(2) FLOAT,
TIL(1) = O,

TIM(1l) =9,

PIM(1) = PT;

PROP BASEDA(PTM),

TIP0 = 5,
REZ = 2,
ROOT = PT,
NAME = 5,

VALUE = 2,

LIM = 6,

MIM = 1,

HOST = NULL,

REL(2) FLOAT,
TIL(1)=5,TIL(2)=6,TIL(3)=7,TIL(4)
TIL(5)=9, TIL(6)=10, |
TIM(1) = 0,

N DN DD DD

[\S IR (S B S

Once BOOLEAN has mapped

higher order module, it

211

"PIM(1) = NULL;

PER BASED (PR2)
REZ = 2,

HECTOR POINTER,
DEXTER POINTER,
RAM = l;_

LEAL = 2,

REL(2) FLOAT,
TAR(1) = 30001, .

KIM(1) = PT3, KIM(2) = PT),
JIM(1) = 4, JIM(2) = 5;

PEN BASED (PN,)
LEGAL = 2,

KIN(1) = MT,, KIN(2) = MT

'3, ' 1?
JIN(L) = 4, JIN(2) = 5;

out the structural composition for the

is then ready to p%oceed to generate

the set of VECTOR structures representing the modular minimal

cut-sets for the higher

order structure.

The process by which each minimal cut-set VECTOR 1s found,

is a recursive one. By

starting with a Boolean representation

for the parent gate given in terms of 1ts improper modular in-

puts (MOD structurés), each of the nested gates are explicitly

incorporated by making a set of substitutions consistent with

212
the structural relationship each nested gate holds with the

parent gate. Ultimately each minimal cut-set is given by a
VECTOR structure of dimension LARG = NUB + 1 + WEST, where
NUB = total number of replicated évent inputs to the higher
order module and WEST = total number of nested gates contained

by the higher order module. That is

B ,

Y7 = (¥y5 ¥ps.--5¥y) (2= LARG)
the order in which each of the inputs to the higher order module
is entered 1is giveq by

m

B
Y™ = (V. s Tp seeesTp 5 Tooos T seves¥)
Ty r, f r, my my -

with ry; = replicated input i, n = NUB, m parent gate PROP

0o

L}

input, m, = ith nested gate PROP input, w = WEST, n + 1 + w = &.
However, as discussed earlier BOOLEAN derives this set of
VECTORS by a series of substitutions of improper modules (MOD
structures) by their replicated input (r-leaf) and proper in-
put (PROP) parts. Therefore in order to make this feasible
BOOLEAN needs to perform a set of manipulations with a set of
SECTOR based structures defined by
1 SECTOR BASED (SR),
2 LORO FIXED BINARY,
2 DOOR POINTER,
2 COD BIT (JUST REFER(SECTOR.LORO));
with JUST = LARG + WEST.
Every replicated input, PROP and MOD structure in the

higher order module will be répresented by a Boolean variable

213

within each SECTOR structure in the following order

B |
A =.(yrl,-.-,yr 2 Ty > Yy oo sVn Vg ,~.-,ydw)

n (o] 1 1

2B = (yB, %P
- > -

with XB containing the same inpﬁts as a VECTOR bit-string and

XB

the higher order module, i.e., di = 1th nested gate MOD

= (yd ,...,yd-) representing the nested MOD structures in
1 w

structure.

The minimal cut-set géneration procedﬁre is begun by
finding the set of VECTOR and SECTOR structures which initially
represent the parent gate. Figures 3.31 and 3.32 illustrate
the two possible instances of higher order modules with an OR-
operator or an AND-operator parent gate. For the OR-parent
gate, example I, the full modular structure consists of five
nested gatés and two replicated events; Its VECTOR and SECTOR

bit-strings will therefore have the form

B

¥ T)

= (Y_,Y Y Y Y Y Y
ra’ mc’ ml’ mg’ m3’ m, m5

i1

= (I°,¥ ,¥y LY, LYy ¥y .7,) = (£5,xB)
1 2 3 3 4] > >

and the parent gate shall be initially represented by

M°=>Y 1 VECTOR BASED(VTl),

mo = 1
2 LORO = 8
2 FLOOR = NULL,
2 COMP = '00100000'B;
Gl =>Ydl=l 1 SECTOR BASED (SRl),

2 LORO = 13,

@3

@ ®» © @

FIGURE 3.31 OR-PARENT GATE HIGHER ORDER MODULE EXAMPLE I

(2

hTe

FIGURE 3.32

AND - PARENT GATE HIGHER ORDER EXAMPLE II

¢1e

216

2 DOCR = SR2
' ' T
2 COMP = '0000000010000'B"’
LARG
GZAS?YdZ =] 1 SECTOR BASED (SRZ)
2 LORO = 13,
2 DOOR = NULL,
2 COMP = '0000000001000' B;

L St

For the AND-parent gate, example II, a single SECTOR shall
initially represent 1t. Since the full modular structure for
example II consists of one replicated event and four nested

gates then

Yo = (le’Ymc’lev’sz,Yma”Ymu)
B B - B B

Yy 5Y

’*d

1 2

so the initial representation for the parent gate shall be

1 SECTOR BASED (SRl),

2 LORO = 10,
2 DOOR = NULL,
2 COMP = '0100001110" B
LARG
(Y =Y, =Y, =Y =1)
mO dl d2 d3

The following statements outline the method used by BOOLEAN to
derive the initlal parent gate Boolean representation for a

higher order module. For the OR-parent gate case (MOD.VALUE=

W

Shaa T U Te LN S 4 S

O R T SR A

217

OP=2) the statements following label B2 appiy, while for AND-

parent

723
724
725
726
727
728

729
7310

71

732
733
Tin

738
736
737
730
730
0
741
742
733
ug
s
746

7487
748
749
750
751
752
783
754
755
756
757
758
759
760
761
762
763
764
765
766
67
768
769
770
771
772
173
T4
778
776
777

gates the statement following labél Bl apply.

MT=NODUL.DULL {#) 3
LARGaNUYNIUEST+ 1
JUST=LARG4W ST,

ALLOCATYF XOF:

ALLOCATE KOD3

ALLOCATY X0OD:

ALLOCATE 1TOD;

ALLOCATE D0OOTT: -

ALLOCATE TOG:
ALLOCATE X0G:

Or=n00. YALUES
LADY=AULL:

LORD=NNLL:

Ir(or=1) THUEN GO TO 01:
IF (OP=2) THPN GO TO B2

B1: ALLOCATE SECTOR;

KING=SN; -
SFCTOR. DOURSNNLLS
SECTOR.COD*AFPEAT('0'R,JUST) ;
TOG=REPEAT ('OUR,JUST) ¢
SURSTR(TNG, NUAKI, 1)= 1D
SFCTOR.COD=TOG ;!

FOX=NOC.RIN; |
IFP (FOX*1 & NON.TIN(1)=0) THEN GO TO DIA;

DO Q=1 TO POX:
TEST=MOD.TIR(O) ;
DO R=1 TO HUB:
IF (TEST=PER.TAR(R)) THFN G0 TO DIR: M
END;
B+B: TOG=RIPFPAT(°0*B,JUST):
SUBSTR (TOG,R, 1) =* 1D
SPCTOR.COD=SECTOR.COD| TOG:
END: !
B1A: POGRNOD.NID;
DO Q=1 TO FOG:
TOG=REPEAT('0*8,JNST);
SURSTR (TOG, LARG+0, 1) =*1'D:
SPCTOR.COD=SECTOR.CON| TOG:
END
BESTO=POG:
GO TO D13
B82: ALLOCATE VECTOR:
QUEEN=VT;
TOD=REPTAT('0O'R, LARG) ;
SURSIR(TOD,LARG-WEST,1)=*1'D;
VECTOR.CQMP=TOL;
VECTOR.FPLOOR=NULL
LADYaQUBEN:
FOX=NON.RIN:
IFP (FOX=1 & MOD.TIR(1) =0} THEN GO TO B2A:
DO Q=1 TO PrOX:
TEST=NOD. TIR(Q) 3
DO R=1 TO NUB;:
IPF (TEST=pPER.TAR(R)) TIHEN Gn Tn R2N:
END:

WA NLWUWWWLWULULWUWWWWWLWUWWWWUWWLWWUWUWLWWWWW WuWLLWLWLLWVLRLWUWLWWR T WVLD WW
GIN N s b ot o et b d et 2 2 ca = NN S NNNNWWNN @ ot et ot od ot =d ot b ot b b ed b cd ot b =D e =2 s e

RTINS

218

778 3 2 B2B: ALLOCATE VRCTON:

779 3 2 IF(Q=FOX) THEN VFCTOR.FLOOR=NOLLS
789 3 2 LADY=>FLOON=VT;

781 3 2 LADY=VT;

782 3 2 TOD=REPEAT('0'B, LARG)

793 3 2 SUBSTR({TCO,R, 1) ='1'8B;

784 3 2 YECTOR.COMP=TOD

735 3 2 END;

786 301 B2A: FOG=MOD.MID:

787 3 1 ESTO=POG;

738 3 1 DO Q=1 TO FOG;

789 3 2 ALLOCATF SRCTOR:

790 3 2 IF (Q=FOG) THFN SPCTNR.DNOR=MILLS
791 3 2 IF (LORR==NULL) TIFN GN T0 B2C;
792 3 2 KING=SR:

793 3 2 LORD=SR;

794 3 2 GO TO R20C:

795 3 2 B2C: LORD=>DO0OR=5N;

796 3 2 LOAN=5R;

797 3 2 820 SECTOR.CONTREPFAT(*N'D,JUST) ¢
798 3 2 TOG=REDPFAT('0*'R, JUST) ’

799 3 2 SUBSTR (TOG, LARG+Q,1)="1'D;

800 3 2 SECTOR.COD=TOQG;

801 3 2 END:

It should be noticed here that the SECTOR.COD bit strings
assoclated with the parent gate imply a dependence on all

nested gates contained within the higher order module. This

deﬁendence shows up through the non-zero entries 1n the XB

B the SECTOR.COD bit string (XB = SUBSTR(SECTOR.

portion of Z
COD,'LARG + 1, WEST). The objective of BOOLEAN will now be
to sﬁbstitute.for each improper modular entry in SECTOR.COD
an e&uivalent set of replicated leaf; proper module and

improper modular entries.
Thus, for the two examples gilven above their dependence

on nested gate Gl may be eliminated (i.e., Yd may be set to

1
zero) as follows:

Example I: G, = {MlG

1 Ga;ﬂ}=

3

= (g) (T = 1) Aty = DRYy o o,

1 1 3

219

Hence SRl*SECTOR.COD = 10000000010000'B 1is replaced
l*SECTOR.COD = 'OOOlOOOOSOllO'B

e nned

by SR

Example II: GlsiMl,Gu;U}

> (1g = 1w (T, = DU, =)

Hence Sﬁl* SECTOR 1s réplaced by the two new sectors
with

pe———

SR+ SECTOR.COD = '0110000110'B

(oem——

-SRZ* SECTOR.COD = '0100000111'B

By continuing this process all nested gate improper
dependencies that a SECTOR might have will eventually be
eliminated. That is, ultimately all SECTORS generated will
contain a null substring KB = 0, and therefore will have been
transformed into Boolean Indicated cut-set VECTORS (BICS)[16].

An outline of the statements in Boolean which provide for

the deduction of Boolean indicated cut-set VECTORS follows

802 3 1 83: DO IL=1 TO WEST:

803 3 2 MT=PPN.KIN(IL) ¢

8Ny 3 2 OP=NON.VALUE:

805 3 2 PAVN=KING:

806 3 2 XOD=RRPEAT (0D, JUST)

807 3 2 XOC=REPEAT(*0*D,JUST)

808 3 2 SUBSTR (X0D, LARG*IL,1)="1'N2

809 3 2 SUBSTR (YOG, NUBsILs1, 1)=*1"0;

810 3 2 KOF=RFPEAT('0°8,JUST)

811 3 2 KOD=REPRAT(*0'B,JUST) :

812 3 2 IP(OoP=1) THEN GO TO C13

811 3 2 IF (NP=2) THEN GO TO C2:

814 3 2 Cte POX MO0 RIN;

81s 3 2 I¥ (POX=1 & MOD.TIR(1)=0) THEN GO TO C1A;
816 3 2 00 Q=1 TO FOX:

817 3 3 TEST=HOD.TIR(Q) ¢

818 3 3 no ’=1 TO NUB;

819 3 4 IT (TEST=PER.TAR{R)) THEN GO TO ciR: __.

220

820 3 u END;
821 3 3 c1B: TOG=REPFEAT('0'B,JUST) 3
822 3 3 SUBSTR (TOG,R, 1)=*11'8;
823 3 3 KOP=KOF | TOG ;
824 3 3 END:
828 3 2 CiA: FOG=MOD.MNID}
826 3 2 IP (POG=1 & MOD.TID (1)=0) THEF GO TO C1IC;
827 3 2 DO Q=1 TO F0G;
428 3 3 TOG=REPEAT('0'B,JUST);
829 3 3 SUBSTR (TOG, LARG+Q+ESTO, 1)=? 1By
830 3 3 KOD=KOD|TOG;
831 3 3 END;
832 3 2 ESTO=FSTO+FOG;
8313 3 2 cic: DO HUILF (PANN-~=NULL);
834 3 3 SR=PAWN;
835 3 3 TOG=SECTOR.CODEXOD; n
836 3 3 IP (TOG) THEN GO TO C1X:
837 3 3 ELS® GO TO C1Y;
818 3 3 C1K: SPCTOR,COD=SECTOR. CODE (~XODN) ;
839 3 13 SRCTOR.COD=SFCTOR.CODIKND;
840 3 3 SPCT{%.COD=SECTOR.COD|XNG;
gyt 3 3 SECTOR ..COD=SECTOR.CODIKOF;
842 3 3 DOTT=REPEAT ('O P, WEST) ¢
su3 3 3 DOTT=SOBSTR (SECTOR.COD,LARG+1,WFST) 3
84s 3 3 IF (COTT~='0'R) THEN GO TO CiY:
as 3 3 ALLOCATE VECTOR:
g4 3 3 IF (LADY=NULL) THEN QUESN=VT;
se7 3 3 ELSE LADY->PLOOR=VT;
g8 3 3 LADY=VT; .
gu49 3 3 YECTOR. FLOOR=NULL;
850 3 3 YPCTOR.COMP=SUBSTR (SECTNR.COD, 1, LARG) ;
851 3 3 17 (SR=KIKG} THEN KING=SFCTOR.DOOR;
852 3 3 ELSE GO TO D1;
853 3 3 PANNSKING:
854 3 3 FREE SZCTOR:
855 3 3 . IF (PAWN=NULL) THEN GO TO MICS:
856 3 3 GO TQ C1Z;
857 3 3 D1 PAWN=SECTOR. COOR;
.8%8 3 3 FREE SECTOR;
859 3 3 MOAN=>DOOR=PARN;
860 3 3 GO TO C1Z;
861 3 3 c1t: MOAN=PAWN S
S RE2 3 3 PAWN=SFCTOR.DQOR:
-863 3 3 C12Z: END:
a6e 3 2 GO TO C2Z:
865 3 2 c2: ALLOCATE SECTOR:
466 3 2 SECTOR.DOOR=NULL;
867 3 2 KONG=SR:
568 3 2 LERD=SR;
R69 32 SECTOR.COD=X0G;
870 3 2 POX=MOD.RIM;
871 3 2 IF (POX=1 & MOD.TIR({1)=0) THEN GO TO C2A:
872 3 2 DN Q=1 TO FOX:
873 3 3 TEST~MON.TIR(Q)
874 3 3 DO R=1 TO NUB;: \
875 3 4 . IP{TEST=PFR.TAR(R)) TUFN GO TO C23:
876 . 31 & END:
877 3 3 C2B: ALLOCATE SPCTOR:
AT8 3 3 SRCTOR.DOOR=NULL:
879 3 3 c2C: LERD~>DOOR=SR:
ang 3 3 LERD=SR:
A1 3 3 c2D: TOG=REPEAT('0tB,JUST) ;
892 3 3 SUDSTR (TOG, R, 1)=*1¢D:
833 3 3

SECTOR.COD=TQG:

221

PO

8gu 3 3 END:
889 3 2 C2A: FOG=NOD.NID:
11:53 3 2 IP(FOG=! & MOD.TIN(1) =0) TOEN GO TO C2R:
aa87 3 2 DO QO=%1 TO POG: .
888] 2 ALLOCATY SzECTOR:
889 3 3 STCTON. DOORsNULL:
890 3 3 c2r: . LZRD=->DOONR=SA;
a9 1 3 3 LERD=SR;
892 3 13 C26G: SPCTUR.COOWREPEAT (0 R, JN3T) ¢
891 3 3 TOG=REPEAT (0B, JUST) :
894 3 3 SUDSTR (TOG, LARGYO+ESTO, 1) 2t 17
899s 3 3 SECTOR.COD=TQG;
896 3 3 END:
897 3 2 C2E: ESTO=ESTO+POG;
898 3 2 c2U: MOAN=NULL:
899 3 2 PO WAILR(PAWNw-aNNLL) :
900 3 3 SN=PAUN;
90 1 3 3 KOP=REPEAT(*N*'B,JUST) :
902 3 3 TOO=REPEAT('0'H,LARG) ;
903 3 3 TOO=SUBSTIR (SECTOR.COD, 1, LARG) ¢
904 3 3 SUBSTR (K0P, 1,LARG) =TOD;
909 3 3 KOD=REPEAT('Q'A,JUST) ;
InaG 3 3 DOTT=REPEAT (*0'R,VWEST) ¢
907 3 3 DOTT#SUBSIR (SECICR.COD,LARG*1,7WPST)
908 3 3 SUNSTR (XOD, LARG+ 1, HEST) 2DOTT:
909 3 3 TOG=KODEXOD:
910 3 3 IP (TOG) THEN GO TO C2K:
911 3 3 ELSE G0 TO C2L;
912 3 3 C2K: PEON=KONG s
913 23 LUTE=NILL:
914 . KOD=KQDS (~X0D) 3
91% I I } DO WHILE (PEON~=NILL):
918 J & ALLOCATE SECTOR:
917 3 4 SECTOR.DOOR=NULL:
9218 3 4 SECTOR.COD=PEON~>SECTOR.COD|KOP:
919 3 4 SECTOR.COD=SECTOR.COD{KOD:
920 3 4 COTT=REPEAT (0B, WEST) :
921 3 4 DOTT=SUBSTR (SECTOR.COD,LARG*1,7EST) ¢
922 3 8 IF (DOTT-=?0"1) THEN GO ™ C2X;:
923 3 4 ALLOCATE VECTOR:
324 3 4 IP (TADYSNULL) THEN QUEEN=VT:
925 J 4 ELSE LADY->FLOOR=VT:
926 3 4 LADY=VT:
927 3. 4 VECTOR.FLOOR=NOLL:
928 3 4 VECTOR.CONP=SURSTR (SECTOR.COD, 1,LARG)
229 J 4 PREZ SECTOR:
930 3 4 GO TO C2T;
931 3 4 c2x: I? (LOTE=NOLL) THEX EUNG=SR:
232 3 4 ELSE LUTE~->DCOR=SR:
933 3 4 LUTE=SR:
936 J 4 c2r: MOON=PEON:
935 3 4 PEON=MOON->SECTOR. LOOP;
936 3 4 END; -
9317 3 3 SE=PAUN:
938 3 3 IF (LOTEaNULL & NMOAN=NILL) THEN GO TO C2Q:
939 3 3 ELSP GO TO C2R;
wy. 3 3
3 3

€C2Q: TP (SFCTOR.DOOR-aNULL) THEN GO TO C2W;
FREE SFCTOR; .

PL/T OPTIMIZING COMPILER

STMT LEV NT

942
943
Y
945
946 .
947
a8
949
950
951
952
953
954
955
956
957
958
459
gn0
261
962
963
anh
o6 s
RSN Y
Ya 7
BRI
9469
970

The step~by-step process by which BOOLEAN derives the

VECTOR BICS for the pressure tank fault tree example, is as

follows

[WRW R WY R WIFWRWRI R W WY WEWE W WRWRWRWR W W WEWER SRR SR Sl S

Replicated inputs:

NWLwwwivwwbhwuwwwwinwWwwwwuwiwswuwuwuwuw

c2%:

C2R:

C3A:

clo:

c3c:

C3D:

c2L:

C2i:

C2zZ:

222

Vad MODULE PROGRANM */
GO TO MICS:
PARN=SFCTOR.DOOR:
KING=PARN;

FRFEE SECTOR;:
GO TO C2n:

IF (MCAN-=NHOLL & LUT®-~=NULL) THEN GO TO C2A:
ELSE GO TO C3B;

ROAN=>DOOR=KUNG
LOTE->000R2SECTOR, DOOR:
FRFE SECTOR:

MOAN=LUTE;
PAWN=LOTTF=->DOOR;
GO TO C2M;:

IP (LUTE=NULL) THEN GO TO C3C:

ELSE GO TO C3n; .
PARN=SECTOR.DOOR;

FREE SFCTOR: '

MOAN=>DOOR={PAUN

GO TO C2M;

KING=KUNG:
LUTE=>00CR=2SECTOR, DOQR;
FREE SFCTON;

MOAN=LUTE;
PAWN=LIITF=->N00R
GO TO C2r;

MOAN=PANM;
PARN=SECTOR.DOOR;

END:

END;

P3goor ~>NUB =1

Parent gate Gl, nested gates (Gu,Gs) =>

WEST

XB
ZB

= 2’
(¥,,Y

LARG = NUM + 1 + WEST = 4 JUST = 6

ml’Ymu’YmS)

(2,550, 8° = (g, 740)

223

Step 1) Parent gate Boolean representation

(le = l)U(Yr = l)U(Ydu=l)

1 VECTOR BASED (VT,),
2 LORO = 4,

2 FLOOR = VT,,

2 COMP = '0100'B;

1 VECTOR BASED (VT,),
2 LORO = 4,

2 FLOOR = NULL,

2 COMP = '1000'B;

1 SECTOR BASED (SR,),
2 LORO = 6,

2 DOOR = NULL,

2 COD = '000010'B;

Step 2) Eliminate second nested gate (G4) by the
substitution Y4, = 1 (mel)Q (Ydssl)

=> 1 SECTOR BASED(SR,),
2 LORO = 6,
2 DOOR = NULL,
2 COD = 'Q01001' Bj

Step 3) Eliminate sécon& nested gate (G5) by the

substitution Yy ~ (Y JU(Y =1)

m5=1

> 1 SECTOR BASED (SRl),

224

LORO = 6,
DOOR = SR,
COD = '001100.'B;
SECTOR BASED(SR,),
LORO = 6,

DOOR = NULL,

[0 TN \C N \C R S A N AV B \V

COD = '101000'B;

Since XB = Q for both SR, + SECTOR.COD and SR2+-SECTOR.COD, they

1
may be replaced by two new vectors -
1 VECTOR BASED (YT3),
2 LORO = 4,
2 FLOOR = VTu,
2 COMP = '0011'B;
(with VT2
1 VECTOR BASED (VTA),,

*VECTOR.FLOOR ?'VT3)

2 LORO = 4,
" 2 FLOOR + NULL,
2 COMP = '1010"Bj;

Hence, the set of BICS for the.pressﬁre tank fault tree is
¥2 = (0,1,0,0)
Y3 = (1,0,0,0)
..Yg = (0,0,1,1)
Y% = (1,0,1,0)

To obtain now the set of minimal cut-sets (MICS), 1t is only
necessary to eliminate those BICS vectors containing a sub-set

of non-zero elements which also form a BICS vector. For the

225

pressure tank fault tree gg is‘contained in Xf, therefore the

set of MICS for the pressure tank fault tree consists only of
%5, Y, and I3

The following BOOLEAN statements derive the set of MICS
by eliminating the non-minimal cut-set vector included in the

set of BICS.

/*® MICS L4
971 3 1 MICS: LADY=QIIEEN: R
972 3 1 PUT SKIP LIST('BICS?'):
973 3 1 DO WHILE(LADY~=NOULL):
974 3 2 VYTsLADY:
975 3 2 PUT LIST('COMP=', VECTOR.CONP)
976 3 2 LADY=LARY=>PLOONR;
977 3 2 BND:
973 3 1 LADY=QUFEN;
979 3 1 ALLOCATR SOPF:
980 3 1 DO WULLE (LADY-=NULL):;
981 3 2 TOD=LADY=>CONP?
98 2 3 2 MOON=QUEEN:
933 3 2 DO WHILF (MOON-~=aNULL) :
934 3 1 IP (MOON=LADY) THEN GO TO N37:
935 }J 3 YT=HMOONS
9388 3 3 IF (TOD=VECTOR.COMP) THEN GO TO MSA;
G87 1 13 SOF= (TODEVECTOR.CONP) ¢
988 3 3 1P (SOP=TOD) THEN GO TO MSA:
9R9 I 3 I? (SOP=VECTOR.COMDP) THEN GO TO 4SB;

990 3 3 G0 TO MSZ:

991 3 3 NSA: IP (MOON=QUPEN) THSN QUEPN=NO0ON->PLOOR:
992 3 3 ELSE GO TO MS0:

993 3 3 FRE® VECTORS:

994 B I | NOON=QUEFRHN:

9995 3 3 -GN TN NSY: :

996 3 3 NSQ: NOOR=>FLOORSMOON=>PLOOR;

997 3 3 PREE VECTOR:

998 3 3 GO TO MSY;

999 3 3 MSB: VYT=LADY; .
1000 3 13 IP (LADY=QUEEN) THEN ONTeN=LADY->PLOOR:
1001 3 3 BLSE GO TO MSR: .
1002 3 3 FREE vrCTOR:

1003 3 3 MOAN=®QUFEN;

1004 3 3 GO TO MSX:

100 3 3 NSR: NOAN=>PLOOR=LADY->FLOOR;
1096 3 3] PREE VECTOR:

1007 3 3 GO TO MsX:

1008 3 3 NST: NOCN=NOON;

1009 3 3 MSY: MOON=NOON->FLOOR;
1010 3 3 END:

1011 3 2 MOAN=LADY;

1012 3 2 MSX: LADY=MOAN-D>FLOON:
1013 3 2 END,

226

III.10 TRAVEL and TRAPEL

Gates having replicated event inputs in common are inter-
connected by means of WHIP and NAIL pointer variables. However,
since PL-MOD arrives at the final modular decomposition through
a series of different intermediate structural representatilons
for the fault tree, at each step interdependent gate interconnec-
tions are attached to a different set of NCDE,STIP, STID and MOD
structures. ‘

Procedures TRAVEL and TRAPEL are called by COALESCE apd
MODULAR to transfer NAIL and WHIP interconneétions whenever a
structural transformation is effected which involves intercon-
nected structures.

Thus, glven a set of structures Ai(i =1,2,...,n) attached

by NAIL pointers to a structure B (i.e., A,.NAIL Ji = pointer

i
locating B for some j,) which is to be replaced by a new struc-
) i

ture C. Then TRAVEL will replace the old NAIL pointers connect-
Ing the set of structures Ai to B by a new set connecting them

to C (i.e., A, .NAIL Ji = pointer locating C for i = 1,2,...,n).

i
Similarly TRAPEL will replace all WHIP connections to structure

B by a new set of connections to structure C (i.e., if originally
Di' WHIP Ji = pointer locating B, then TRAPEL will change this

to Di.WHIP Ji = pointer locating ¢ i = 1,...,m).

For example, in Section III.9 the NODE, STIP and STID struc-
tures representing the top gate for the pressure éénk fault tree
were givén. In particular, structures ST5 +3STIP and SD2+STID
were interconnected by

227

PRIM(1) = SPINE(4)

The values of TRIM (IX) and TRIN(IX) (IX = 1,2,...,RMOD)
are read in and the values corresponding to PRIM(IX) are
assigned in proceduré.INITIAL with the following statements

DO IX = 1 to RMOD;

GET LIST (TRIM)(IX),TRIN(IX));

ICH = TRIN (IX); |

PRIM (IX) = SPINE(ICH);

END; |

In Section III.6 it was pointed out that for every replicated
input a structure AP is allocated by procedure TREE-IN. Struc-
ture AP 1s connected to the tree by a WHIP pointer corresponding
to a structure contalning the particular replicated event. AP

has the following composition

1 AP BASED (APT),
2 TIPO = 0,
2 NAP = replicated event name,
2 REP = total number of appearances
of the event in the fault tree,
. 2 SPIT POINTER,
(With A.WHIPJ = APT for some structure A)

Pointer AP;SPIT is in general NULL except when the replicated
event represents a module. In that case TREE-IN will use
AP.SPIT to store the polnter locating the top gate for the
modular sub-tree (i.e. AP.SPIT = PRIM(IX) for some IX).

228

STS-*STIP . NAIL (1)

5

ST5

ST 5

+ STIP . WHIP(1l) SD

!

SDZ-*STID . NATL(1) = ST

SDzj*STID . WHIP(1) = SD,

SDZ-»STID . NAIL(2) = SD

SDZ‘*STID . WHIP(2)

2

APTl

However, in the next stage of the tree modularization pro-
cedure, gate Bl was represented by the single structure MTu MCD.
Hence TRAVEL and TRAPEL were needed to transfer all NAIL and
WHIP interconnection to MTH' Thus,

MT, = MOD.NAIL(1l) = MOD.NAIL(2) = MOD.NAIL(3)
and

MT, = MOD.WHIP(1) = MOD.WHIP(2)

The statements corresponding to the TRAVEL AND TRAPEL procedures

are given below.

297 1 0 TRAVEL: PROC (GRIS,KLNG,MOON) :

258 2 0 DECLARE (GRIS, KING, MOON) POINTER:

259 2 0 GAL=GRIS->NODE.TIPO;

260 2 0 IF (GAL=0) TUEN GO TO CIN7:

261 2 0 ELSE IP (GAL=1) THRN GO TO CINF:

262 .2 0 ELSE IF (GAL=2) THEN GU TO CIPP;

263 2 0 TLSF IP (GAL=3) THEN GO TO CID?:

268 2 0 ELSEZ IP (GAL=4) THFN GO TO CIXFE:

265 2 0 CINE: NT=GRIS;

266 2 0 FAL=RODF.DIR:

267 2 0 DO #AL=1 TO PAL;

268 2 1 IT (NODE.NAIL(MAL)=400N) THBY GO TN LANF:
269 2 1 END: .
270 2 0 LANE: NODE.NATL (MAL) =KING;

271
272
273
274
27%
276
277
278
279
280
281
282
283
284
285
246
287
288
289
290
291
292
293

294
295
2948
297
298
239
ion
301
302
303
joy
ns
3006
3907
303
309
310
i
312
31
314
315
316
317
318

319
320
321
322
323
324
325
326
327
328
329

PRDNNRONNNBONNNNNRODNONNNDNDNYNNNNNDN

NNNRDNNDNNNDNDNORN NNNNNNNNNNNNNNNNNNNNNNNNa

OO0Q 420004 =000 A 2O O

OO 4 =2 QQO0QO i R e R R s e e R N N R N N R e T =)

229

* RFTURN;
CIPF: ST=GN1IS;
FAL=STIP.DIR:
CO MAL=1 TD PAL:;
IF (STIP.NAIL(MAL)=4OON) THEN GO TO
END:
LAPE: STIP.HAIL {MAL)=KING;
RETURN:
CIDE: SN=GRLS;
FAL=STID.DIR;
LO MAL=1 TO FAL:
IP (STID.NAIL(MAL)=NMOON)} THEN GO TO
END;
LADE: STTD.NALL (MAL) *KING;
RETTRYN
CIXB: MT=GRIS;
PAL=HOD.RINO;
DO MAL=1 TO PAL:
IP (MOD.NAIL(MAL)=100N) THEN GO TO LAXE:
ENDS
LAXE: MOD.NATL (MAL} =KING:
CINE: RETHRAN:
END TRAVEL;
/* TRAPEL »y
TRAPEL: PROC (GRIS, KING, MONN):
DECLARE (GRIS, KING, MOON) POTNTER:
GAL=*GRIS~>NODE.TIPO;
IP GAL=1 THEN GO TO CORN:
IP (GAL=2) THRN GO TO CNRP;
IP (GAL=l) THEN GO TO CORD:
IP GAL=4 THEN GO TO CORX:
CORN: NTaGRIS:
PAL=NODE.DIR;
DO MAL=1 TO PAL:
IF (NODE.WHIP(MAL)=MOON) THEN GO T9
END;
LINE: NODR.RUIP (MAL)2KING;
RETURN:
CORP: ST=GRIS:
PAL=STIP.DIR:
DO MAL=1 TO FAL:
IF (STIP.WHLP (MAL)=MOOX) THEN a0 TO
END: .
LIPE: STIP.WIITP(MAL)=KING:
RETURN;
CORD: SD=aGRIS;
PAL=STID.DIR:
DO MAL=1 TO FAL:
IF (STID.WHIP (MAL)}=%00N) TARN GO TO
END:
LYDE: STID.WHIP (MAL) =KING:
RETURNS
CORX: MT=GRLS;
FAL=NOD.RINND:
CO MAL=1 TO FAL;
IP (MOD.RNIP (MAL) =MOON)} THENK GO TO LIXP:

LIXE: MOD.WHID (MAL) =KING;
RETURN;
END TRAPEL:

LAPE;

LADE:

LINES

LIPE:

LYDF:

230

ITI.11. Replicated Modules

An option exists in PL-MOD which provides for the analysis
of fault trees contalning smaller independent replicated sub-
trees (i.e., replicated modules).

PL-MOD handles replicated modules Ey analyzing their sub-
tree representation separately and by assoclating to each
replicated module a réplicated leaf inpﬁt (Figure 3.33).

The total number of replicated modules RMOD 1in the tree
is read in by procedure INITIAL which allocated the following
four arrays ‘

GET LIST (RMOD);
IF (RMOD = 0) THEN GO TO XEN;
ALLOCATE TRIM (RMOD);
ALLOCATE TRIN (RMOD);
ALLOCATE PRIM (RMOD);
ALLQCATE PRIN (RMOD)

XEN:

Variables TRIM and TRIN are number arrays storing the repli-
cated leaf and gate names assoclated with the top event of

each replicated module. Thus, for the example given in

Figure 3.33
RMOD = 1
TRIM(1) = 29001
TRIN(1) = 4

Variable PRIM 1s a pointer array which stores the locations
of the node structures associated with the replicated module

TOP gates. Thus, for the above example PRIM(1) = SPINE(4) = NT

=

€2

SUB-TREE TOP

FIGURE 3.33
REPLICATED LEAF ASSOCIATED WITH A MODULE

232

Moreover the top modular gate NODE.ROOT will point to AP
(PRIM(IX)+ NODE.ROQT = APT) and the set of pointers APT
assoclated with replicated modules will be stored by array

PRIN(IX).

IIT.12. Dual State Replicated Components

In Chapter I the NOT gate operator was shown to be a useful
" tool for handling common mode faillure event dependenéies and
mutually exclusive events normally found in systems undergoing
tests and maintenance [1§. PL-MOD contains an option that
allows the handling of dual component states which arise by
the application of the NOT gate opérator (Figure 3.34). Apply-
ing the NOT operator to basic event b results 1n an event
b = NOT(b). Since events b and b are mutually exclﬁsive, the
gates to which these dual states are attached become interdepen-
dent. Heﬁce dual state components necessarily belong to the
same higher order module (Figure 3.35).

As explained in Section III.6 dual states are identified
by the nomenclature A1BCD, A2BCD (1 = ON state, 2 = OFF state).
Notice that since the three lower digits are the same for both '
the ON and OFF states of a dual component, procedure TREE-IN
will attach WHIP and NAIL interconnections among mutually ex-
clusive gates as desired. Therefore, i1f a higher order modular
structure contains an ON dual state, then it will also contailn
its corresponding OFF state..

In the following statements included in BOOLEAN, the can-

cellation ofiall modular minimal cut-sets which require the

233

FIGURE 3.34

DUAL COMPONENT STATES

FIGURE 3.35

INTERDEPENDENT GATES DUE TO MUTUALLY EXCLUSIVE DUAL COMPONENT STATES

nee

XY

PLLALP

235
simultaneous occurrence of mutually exclusive events will be

1€
acheived.
/% (AE~A) STATE CANCELLATION #/
146 3 1 IP (NOX=1) THEN DO;
1047 3 2 PR=LOST: :
1088 3 2 NUM*PER, RANM:
1689 3 2 ALLOCATE 20T0;
1050 3 2 ALLOCATE 70CO;
1051 3 2 ZOTO=REPLAT ('O O, NON) ¢
1052 3 2 DO KIX=1 TO MiM:
1083 3 3 MATPTR,TAR(KIX) 3
1054 3 3 DA==CEIL (~MA/10000) 3
1055 3 3 JA==CPLIL (~HA/1000) 3
156 3 3 IF((JA=10*DA)=1) THEN 0O
1057 3 & SURSTR (20T0,XKLX,2) =t 11'n;
1058) KIX=KIX+ 13
1059 l 8 END:
160 - 3 3 END;
106t 3 2 VIT=QUF™¥;
162 3 2 PO WHILP(VIT~aNULL) :
1063 3 3 VTeVIT:
1066 3 3 Z0C0=STBSTR (VECTORLCOMP, 1, NUN) ¢
1065 3 3 %20CN=Z0C0E20TO;
1066 3 3 IF (INDEX (Z0OCO,*11'8) ~=0) THUTH DO;
1067 3 8 I” VIT=QUEEN THEN QUEEN=VSCTOR.FLOOR:
1068 3 & ELS® GO TO SKU1;
1069 3 4 PRER VRCTOR;
1970 I 4 TIT*QUPFRS
1077 3 4 GO TO SNUZ;
1072 3 4 SHU1: LAD=>PLOORSYIT->FLCOR;
1073 3 & FREE VRCTOR;
1074 3 4 END:
1075 3 3 ELSE LAD=VIT;
1076 3 3 YIT=LAD=>FLOORS
1077 3 3 swNu2: END:
1078 3 2 " PREE ZUTO:
1079 3 2 FPREE 20CO%
1080 3 2 END:
-1081 - 3 LOST=>IFCTOR=QUEEN;

IIT. 13. NUMERO

III.13.1. PL-MOD's Quantitative Analysis of Modularized Fault
Trees

Up to now this Chapter has dealt with the methodology used
by PL-MOD to obtain the modular decomposition for a fault tree.
Once the modularization task has been accomplished, PL-MOD
proceeds to evaluate modular event occurrence probabilities as
well as Vesely-<Fussell importance values for modular and basic
component events. The set of procedures used by PL-MOD for
this purpose are all contained within procedure NUMERO. There-

fore PL-MOD commands a quantitative analysis for a fault tree

236

by the statement
CALL NUMERO;

It should be stressed here that the modular structure
information derived by PL-MOD 1s internally érranged in a manner
which allows for an efficient numerical evaluation of the fault
tree. Thus, storage‘spaée has been provided in structures PROP
and PER for assigning rellability parameters to the simple and

higher order modﬁles represented by the structures

(Simple Module) PROP BASED (PT)

1
2 TIPO FIXED,
2 RQOT POINTER,
2

REZ FIXED BINARY,

2 REL(DEL REFER (PROP. REZ)) FLOAT,

(Higher Order
Module) 1 PER BASED (PR)

2 REZ FIXED BINARY,

00 00

2 REL (DEL REFER (PR. REZ)) FLOAT,

In the present PL-MOD version REZ = 2 since only a set of
occurrence probabilitles and Vesely-Fussell importance point
values are evaluéted. It should be noticed here that the pointer
location for each module 1s stored both as an input to another

module (PROP.TIM(I) or PER.TAR(J) and as the root to other

_ 237
modules (PROP.ROOT).

. Procedure NUMERO internally calls the following procedures

CALL STAT-IN;
CALL EXPECT ;
CALL IMPORTANCE;

Procedure STAT-IN 1is used for reading in a list of input
values for the basic event occurrence prcbabilities; such és
those given in Table 3.1 for the pressure tank rupture fault
tree. Having this information procedures EXPECT and IMPORTANCE
then perform the evaluation of modular event occurrence probabil-
ities and modular and basic component Vesely-Fussell importance

measures respectilvely.

238

ITI.13.2 STAT-IN

Procedure STAT-IN 1s given by the following statements

26 1 0 STAT_IN: PROC:

27 2 0 P=DEL; ,

8 2 0 GET LIST (FUN): ‘
39 2 0 PUT EDIT('HAN FRER BYRNT INDUTS=',PUN) (SKIP (2),A(22),2(5)):

n 2 0 GFT LIST (DUN): :

31 2 0 PUT EDIT ('NUM REPLICATED EVENT INPUTS=',DUN) (SKIP (2),A{28),7(5)):
32 20 ALLOCATE STATE;
33 2 0 ALLOCATE STATD;
34 2 0 PUT FDIT('FREFR INDUT?','RELTABILITY')

(SKIP(2),X(2),A(10),X{1),A(11)):
35 2 0 DO I=1 TO FuN:
36 2 1 GRT LIST(I,STATFE(1,I)): :
37 2 1 ouT EDIT(I,STATP(1,I)) (SKIP(?),F{12),E(18,6)):
s 2 1 END;
39 2 ¢ BUT EDIT('DEP INPUT','RELIABILITY')
(SKIP(2) ,X () ,A(N,X(1) ,A(11})2

60 2 0 DO I=1 TO DUN;
41 P GET LIST(I,STATD(1,I)).:
82 2 1 pPUT EDIT (I,STATD(1,I)) (SKIP(2),P (12),E(18,6));:
43 2 1 END:
ug 2 0 END STAT INg

The number of free event (FUN) and replicated event (DON) in-
puts is read in. And arrays STATE (P.FUN) and STATD(P.DON)
are allocated with P = 2. The free and replicated basic event
probability values are read in and stored in STATE (1,I) and
STATD (L,I). Later on the Vesely-Fussell importance corres-
ponding to each free and replicated basic event will be stored

in STATE (2,I) and STATD (2,J) respectively.

III.14 DOT, PLUS and MINUP

Proceudres DOT, PLUS and MINUP are internally called by
EXPECT to evaluate the occurrence probability for a simple
AND, siﬁple OR and higher order prime module, given the set
of occurrence probability wvalues for all the inputs to the
module. Moreover procedure MINUP is also called by IMPORT-

ANCE to evaluate the Vesely-Fussell importance value for

239

events which are inputs to a higher order module.
Given the occurrénce‘probabilities for the set of inputs
to a simple gate PROP structure (Figure 3.36), the probability

of occurrence for the modular gate event will be given by

OR gate: P(M) s;PLUS(Cl,CZ,...,C Ml""M)
AND gate: PCM = DOT(Cy,Cpy.v-5CpsMy,.n.,Mp)

In its present form proceduré PLUS uses the rare-event approx-

imation to evaluate OR gate modular event probabilities. Thus

n P
PLUS (Cl’CZ""’Cn’Ml""’MP) = 3 Pi + % PM
1=1 121 T
while
n P
DOT (C.,Chy... C sMesMy,... M, = (T P)(C T P,)
12722 ’ 1°7°2° P 1=1 i 1=1 Mi

Procedureé PLUS and DOT are given by the following statements.

71 PLUS: PROC (BAT,EXA):

72 DECLARE BAT POTNTER;

73 DECLARE EXA LABEL;

74 PT=RAT;

75 REX=0;

7¢ IF (PROP.LIM®1 & PROP.TIL(1)=0) THEN GO TO PLUA:
77 DO J=1 TO PROP.LIN:

78 R¥X=REX+STATZ(1,PROP.TIL (J)) ;

79 END:

20 PLUA: IP (PROP.SINw! £ PROP.PIN(1)aNMLL) THPY GO TO PLUB;
a1 DO =1 TO PROP.NIN;

IF (PROP.PIN(J)~>PROP.NOST-~=NULL) THEN DO3
PP=PROP, PTN (J) =>PROP.HOST:
REX=REX+PER.AEL(1);

945 END;

a6 ELSE RPX=RFX+DPROP. PIH(J)*)PROP.B!L(1),
87 END;

a8 PLUB: PROP.REL(1)2REX:

8y GO TO FEXAj

90 END PLUS;

DOT: PROC(BAT,EXA):
DECLAR® DAT POINTER;:
DECLARE PXA LABEL;
PT=RAT;

=

—
RDNNAGNNNNNUNRNNNNNNNNNDNONN -
QOCOVOQU - RNNN-2COC Q2200 COAD

240

B(M) = PLUS(c , ... e ,M,,. cH M)

/’1\\ P(M) = DOT(cl,... cn,Ml,...,Mp)

FIGURE 3.36

SIMPLE GATE MODULAR OCCURRENCE PROBABILITIES

241

95 2 0 REX=1;
96 2 o0 IF (PROP.LIM=1 & PROP.TIL(1)=0) THEN GO T
. 0 DOTA:
gg 2 0 DO J=1 TO PROP.LIN: H
2 REX=REX*STATE (1, PROP.TIL (J
29 2 1 END: (W
100 2 o0 DOTA: LP (PROP.NIN=1 § PEOP.PIN (1)=NNLL) TOP .
101 2 0 00 J=1 TO PROP.MIN: o) TN 6o To poT83
S 102 2 1 IP (PROP.PLN(J) =>PROC.IOST~=NOLL) THEN DO:
103 2 2 PR=DROP. FIN (J) ~>PROP.NIOST:
108 2 2 REX=PEX*PER. REL (1) ;
108 2 2 END;
196 2 1 PLSE RPX=REXOROP.PLN (J) =>P v
107 2 1 END; () =>rRoP.REL (1) 2
108 2 0 pOTB: PROP.REL (1) *REX:
- . .
199 2 0 GO TO PXA:
110 2 0 END DOT: ' o e

Since higher order modular structures (Figure 3.37) are charac-
terized by a set of modular minimal cut-sets, their occurrence
probabllity may be evaluated using the minimal cut upper bound
in its rare-event approximation form (Equation 2.15) i.e.,'
Ny
P(M)<zt P, = MINUP(ry,...,0 ,M ,M....,M)
==l 1sK i 1’ “n’ o1 W
with Nk = total number of cut-sets assoclated with the prime
gate. Given the occurrence probabilities for each input to

the prime gate, procedure EXPECT will store these values in

a structure QER defined by

1 QER BASED (AT),

2 QEL FIXED BINARY,

2 QU (LARG REFER (QER.QEL)) FLOAT;
with PER.DEXTER = AT for the PER structure associated with
a particular prime moduel, Procedure MINUP will then use the
QER.QU(1) (I = 1,2,..,.,LARG) values coupled with the set of

MICS VECTORS for the prime medule to evaluate 1its occurrence

probabllity as follows:

242

L)
seet_ ,Y. ,Y
rn Mo Ml
-~ ’l’ ,O,
\
Yn .1, .0,
(t = Nk)
P(M) = MINUP(rl,rg,...,MO,Ml,...,Mw)

FIGURE 3.37
PRIME GATE MODULAR OCCURRENCE PROBABILITY

243

/% RELIABILITY CALCULATION */
/* MINUP *y :
MINUP: PROC (%X);
DECLARE EX FIYED;
PR=TIERRA:

IP (REN=0 & NOW=0) THEN R[FEM=1;
REX=REX* (REM**NOW)

10

2 0

2 0
48 2 9 VIT=PER.HECTOR:
59 2 0 LARG=VIT~>VRCTOR.LORO:
50 2 0 REY=0;
51 2 0 DO RHILF (YIT~=NULL):
s2 2 1 nEX=1;
53 2 1 YT=YTT;
s6 2 1 DO EL=1 TO LARG: .
55 2 2 pOW=SUBSTR (VECTOP.CONP,BL, 1) ;
56 2 2 1P EL=EX THEN DO:
97 2 3 IF POW=10'E TUEN. REX=03
58 2 3 ELSE GO TO NUB;
59 2 3 GO TO WUP:

END;

01 g g NUB: LP (POW='1'0) THEN NOW=1:
f2 2 2 ELSE MOW=0;
63 2 2 REM=QER. QU (EL) ;

2 2

S END

2 NDs
3 2 3 NuP: REY=REY+REX: A
68 2 1 YIT=YIT->PLOOR; n
1 END:

gg g' 0 END BINUPe

As shown in Sections III.15 and III.16, each time procedure
MINUP is called by EXPECT, variable EX equals zero. However
whenever MINUP 1is called by the IMPORTANCE procedure, to evaluate
nested gate and replicated event Vesely-Fussell importances, the
value of EX 1s always different from zero.

ProcedurekMINUP eéssentlally consists of a DO loop in which
pointer VT succéssively locate a different MICS VECTOR for the
prime gate module. The contribution of each vector to the mini-
mal cut upper bound 1is found by multiplying the occurrence prébab-
1lities (QER.QU(EL)) corresponding to non-zero bits in the vector
(1.e. POW=SUBSTR(VECTOR.COMP,EL,1) # '0'B). Finally all the
vector contributions are added together (REY=REY + REX) to obtain
the rare-event approximation to the minimal cut-set upper bound.
Notice however that that when EX is different from zero, only

those contributions coming from a véctor which has a '1l' bit in

244 .
the EX-th location are added together (IF POW = 'Q'B THEN REX

= 03).

III.15. EXPECT

Modular occurrence probabilities are easily cdmputed by
procedure EXPECT following the same order in which the modules
were originally created by proéedure MODULAR; Each time a
PROP structure was crested in MODULA, its pointer location
was stored in array BOST(IB) and variable IB was increased by
one. Hence the set of modular occurrence probabllities are

computed in the desired order by means of the DO LOOP

DO I =1 to IB;
CAT = BOST(I);
PT = CAT;

.

t
.
-

ESTA
END;

For the case of simple AND and OR gate modules, their
occurrence probabilities are easily evaluated using the
statements |

CALL DOT(CAT,ESTA);

and
CALL PLUS(CAT,ESTA);

where the values for the modular input occurrence probabilities

245

are guaranteed to have:béen previously evaluated by EXPECT
because of 1ts recursive computational ofdering (DO I =1 to
IB;).

Particular care nmust howéver be taken for the ease of
higher order modular structures CFigure,3.37l; For this case
BOOLEAN first allocated the PROP structure assoclated with
the parent gate CMO) and later on allocate: the set of PROP
structures assoclated with éach’of the nestéd gatés (MI,MZ,.,.,
Mn) included in the higher order module;

As explained in Sectiagn III.lU; EXPECT calls procedure
MINUP(EX) (EX = Q) to compute the higher order gate occurrence
probabllity (PER.RELCI)); However to make this evaluation
~ possible, it is necessary that EXPECT previously (a) compute
the set of occurrénce probabilities‘corréSponding to each
nested simple gate PROP structure (WEST = total number of
nested gates) by calling procedﬁres DOT and PLUs; and that
(b) QER.QU(J) (J = 1,2,...,LARG; LARG = NUM + WEST + 1) be
assigned the set of values assoclated with each replicated
event and nested gate module containéd in the prime gate
module.

This set of tasks are performed by EXPECT through the

following statements:

L

TRUNT U R TR S T T R R R TR

11
112
113
118
115
116
117
118
119
120
121
122
123
128
125
126
127
128
129
130
131
132

133
134
135
136
137
138
119
140
141
h2
143
144
145
146
147
148
149
150
151
152
153
154
155
156

NNNNNNRDNNNNNONNoNNDMDNDNDNDNN N NNNNNONNNNNNNNNNMONNNNNNN

— e wh wd wd D ad wd od b o b D adh D et D ek s OO

WWEFEFRFRWWEFWNWWNWWNNNNENN -

246

EXPECT: PROC;
0O T=1 TO IB:
CAT=BOST (I)
PT=CAT:)
IF (PROP.HOST-=NNLL) THEN GO TO CUTS;
IP PROP.VALUE=1 THEW CALL O0T(CAT,ESTA):
IP PROP.VALUR=2 THEN CALL PLOS(CAT,ESTA):
CUTS: IF (PROP.VALUEC=2) THFN EYE=1;
ELSE EYE=Q;
PR=PROP.HOST;
TIERRA=PR;
NUB=PER. RAM;
TP (NUD=1 & PER.TAR(1)=0) THRN NUM=0%
ELSE® NUM=NUB;
WEST=PER.LEAL;)
IF (YEST=1 & PER.JIM(1)*0) THPY NRZT=0;
ELSF NEZT=WEST;
I¥ EYE=Q TUEN LARG=NUNNEZT;
ELST LARG=NUM#NEZT+1;
ALLOCATE QFR;)
PER.DEXTER=QT;
IP BYE=0 THEN GO TO CUTA;
Vad ASYMMERTIC CASE */
DO J=1 TO NUN;
MA=PER.TAR(J); '
DA==CEIL (~#A/10000) ;
JA==CEIL (~MA/1000)
JAK=JA-10%DA;
NA=MA~ (1000) *JA;
IP(JAK=0 |JAK=1) THEN DO
QER.QU (J)=STATD (1,MA) 3
END; ,
IF (JAK=2) THEN DO: .
QER. OO (J)=1=STATD (1,¥A) ¢
END;
IF (JAK=9) TUEN DO:
DO IX=1 TO RMOD;
IP(TRIM(IX)=MA) THEN GO TO XUTA:
ENDY -)
XUTA: APT=PRIN (IX);
IF (AP.SPIT=->PROP.HOST~=NULL) THEN DO:
ER=AP.SPIT=>PROP.HOST:
STATD(1,NA) =PER.REL (1)
PR*TTERRA:
END3
ELSE STATD(1,HA) =AP.SPIT=->PROP.REL(1) :
QER. O (J)=STATN (1, NA} ;

A}

247

PL/1 O2TINIZING COMPILER NUMERO: PROCEDURFE;

STHT LEV NT

157

158
159
160
161
162
163

164
165
166
167
168
169
170
171
172

173
174
179%

176

177
178
179
180
181

182

183
184
185
186
187
188
139
190
191
192
193
194
198
196
197
198
199
200

~ NNNNNNNONN ONNONNNNNNN [SN VSRS SHN ~N

MRNNNNNNNNMNNNOONNNNPDDN

- e = et N w

B Y Y Y S X Y NNNNNEN @ -

-

ok oh b b wd DININ N b b NI N b d b

PUT EDIT('REP MODULEe?! ,MA,'REL=2' ,STATD(1,NA))
(SXIP(1) oA (1) ,P(53) X (2) A (B),B(1R,6)):
END:
END:
1?7 PnNOP, VALNE=1 THEN CALL DOOT{(CAT,PLSA):
IF PROP.VALINE=2 TIEN CALL PLUS(CAT,ELSA):
ELSA: PNT SXIP LIST('PATRIARCH SUBMODULET') :
PUT EDIT (*NMODIILE NAME=',DPROP,.NAME, 'NMfL=' ,PROP.REL (1)}
(SKIP(1),A(12),P(5),X{(2),A(4),B(18, 5)).
QFR. QU (NTIM+ 1} sPROP.REL (1) 3
BAT=PT;
DO IN2T+1 TO IPNFIT:
LAD=BOST(IN) ;
PT=LADS
IP PROP.VALUE=1 THUEN CALL DOT({LAD,ZLNA}:
IF PNOP.VALUE=2 THEN CALL PLUS (LAD,ELMA}:
ELNA: PUT SKIP LIST('NESTPD MODULE') :
POT EDIT("NODMULE HANES',PROP,NANE,'REL=",PROP.REL (1))
(SKIP(T) ,A(12),P(5),X(2),A(8),E2(18,6)):
QER. QU {NUMS+ T +IN~ I)-PROP RPL(1).
END:
EX»0; .
CALL MINUP(EX):
PER.REL (1) =REY;
PUT SKIP LIST(*PATRIARCH MODULE'):
I=TeNEZT:
PT=BAT:
PUT BDIT('HODULP NANE=n? DROP,.HANR,'REL=', PER.REL (1))
(sKxp(t), A(?Z)«?('):X(Z).A(°)' (18 £)) s

GO TO PZTA;
/* SYNNRTRIC CASE */
CUTA: PPOP.REL (1) =0;
BAT=PT;

IF NuUN=0 THEN GO TO CUTH:
00 J=1 TO NUN;
QFR.QU (J)=STATE (1, PER.TAR(J}) ¢
ENDg
CUTB: IP NEZT=0 THEN GO TD CNTC:
DO IX=NUN+1 TO NOMeNEZT:
PT=PER.KIN(IX-NUM) ;
IF (PROP.HOST=NULL) TURN QFR.QU{(TX)=PROP.REL{1):
ELSE QER.QU(IX)=PRAP.HOST=>PER.RYL (1) ;
END:
CUTC: EX=9;
CALL MIXUP(®X):
PEP. REL (1)=REY:
PT=NAT;
PROP,REL (1) =REY:
PUT SKIP LIST('SYMM SUPTRMADALP')

248

PL/L OPTIMIZING COMPILER NUMRRO: PROCFDURE;
STNMT LEV NT
201 2 1 PUT PRDIT('MODULE MAME=', PR
R 8 OP.NANE,'REL=' ,PER.NEL (1))
(SKIP (1) ,A(12),F y .’ :
202 ;4 & TO(F',')Z"H:(Y,F(S),X(2) ,A(4),E(18,6))
ggi 2 1 ESTA: PUT SKIP LIST('FREE NODILEY)
(2 1 PUT EDIT('HOD':LE KM‘IE".PHOP.UAHB"RE’L*',PROP;HBL(“))
.205 2 4 — Buéixxp(VoA (12),F(5) X (2),A(8),E(18,6));
226 2 0 + BEND EXPECT:

For the pressure tank fault tree example procédure EXPECT

computes the modular and top event occurrence'probabiliﬁies

in the following steps

STEP 1 Symmetric higher order module M9

B
= (Y05, 7p3)
K, = (0,1,1)

K, = (1,0,1)

Ky = (1,1,0)

=p, =P, = 107
P, = Py = Py = 10

=P, = 3x 10”10

9
STEP 2 = (a) Parent gate sub-module M;

M, = {1,2,3,4; U}

= -8 = = = _5
Py 1Q , Py o= P3 = Py 10
=>PM = 3.001 x 10‘5

1

249

(b) Nested gate module M,
; =10

EP'PMI.; = 3 x 10
(c) Nested gate module MS
Mg = {5,6,7,8,9,10; U}

= = = = = = -5
P5 Pe P7 Pg P9 P10 10
Py - 6 x 1072

STEP 3 Top tree event higher order module M

= (Y., Yy , Ty 5Ty)

K, = (0, 1, 0, 0)

1
KZ = (1, 0, 0, 0)
K3 = (0’ 0’ 1, l)

(r = 30001) B_ = 107

= P(TOP) = 4.001 x 10™°

III.16 IMPORTANCE
Procedure IMPORTANCE evaluates the Vesely-Fussell import-
ance (IV'F‘) for every modular event and every basic component

in the fault tree. IMPORTANCE performs this evaluation by

starting at the top tree gate event (I¥6g’=,l) and proceeding

down to the bottom branch modules of the trée by means of the

250
modular importance chain-rule (See Section II.S.4.)

For the case of simple AND and OR gate modules, the

modular importance chain rule takes the forms

AND gate: IXIF =1 = 1,2,..,,n)
I\P;’!F - I&.F.(i - 1.2,....0)
L !
V.F v.F. 1 '
OR gate: I’ = Iy (F_) 1 =1,2,...,n)
1 | M
Py
V.F. V.F. . L
Iyt = Iy T (101 = 1,3,
1 M

For an AND gate module, all its inputs have the same import-
ance as the module since the proﬁability that any input has
failed given that the AND gate module has failled equals one.
However for an CR gate; the probability that a given input
is in a failed state gilven that the OR gate has failed is
equal to

P(input has failed)
Pu

Notice that the required modular occurrence probabilities

(PM and PMi) were previously computed by EXPECT. For the case
of higher order modular gates (Figure 3.37) the modular
importance chain rule in the rare~event approximation takes

the form

251

. 5 P(KJ)
V.F. _ [V.F. J,reR, ¢
Iri Iyt (22 iP(‘gfl))L = 1,.¢.,n)
z

e e P(K,)

- J,MeK, J°
Iy " = oyt (==) (4 =0,1,...,u)

1 P(M)

t

with P(M) = I P(KJ)
PN

It should be recalled that the occurrence probability for a
higher order module P(M) was computed in EXPECT by calling
procedure MINUP(EX) with EX = 0. Nevertheless the expression

appearing in the numerator

z P(Kjl .
J,xs:KJ (x-ri or Mil
is yet to be evaluated by IMPORTANCE; To this end procedure
MINUP(EX) will be called with variable EX locaﬁing the posi-
tion in the VECTOR.COMP bit-string which corresponds to input
x (See Section IIT.14).

Procedure IMPORTANCE starts out by assigning importance
values to all modular and component inputs to the top gate
event (First generation), and at the same time stores in
array OLM(BUM) all the pointer locations for the modular
gate inputs to the top gate module. This task is performed
for simple and prime gate top event modules by the following

statements

252

/* IMPORTANCE (VESELY- PUSSELL) v
207 1 0@ INPORTANCE: PROC:
298 2 0 BUG=1;
200 2 0 PT=STORK;
210 2 0 IP PROP.HOST~=NULL THEN GO TO IMA;
211 2 0 BUN2PROP.HINS
212 2 o0 ALLOCAT® OLXN (BUF);
213 2 0 OLM=PROP.PIN;
216 2 0 PROP.REL(2) =13
215 2 0 PMT EDIT('MOOULE=*,PROP.NANE,' INP=¢ DROP.REL (2))
E (SXIP(1) ,A(T7),P(5) ,A(4),B(18,6)):
: 216 2 0 IP PROP.VALUE=1 THEN DO
4 217 2 1 IP (PiiP.LIN=1 & PROP.TIL(1)=0) THEN GO TO INME;
a 218 2 1 00 I=1 TO PROP.LIN; -
E 219 2 2 STATE(2,PROP.TIL(I)) =1;
;é 220 2 2 END;
3 221 2 1 END:
3 222 2 0 IF PROP.VALUF=2 TNRN Dn;:
3 223 2 1 I? (PROP.LIN=1 § PROP.TTL(1)=0) TIEN GO TO THF;
3 2 2 1 DO 1=1 TO PROP.LIN:
4 25 2 2 STATE(2, PROP.TIL(I))=STATE (1,PROP.TLL (1)) /PROPLREL (1) :
i3 226 2 2 END;
- 227 2 1 END;
: 228 2 0 GO TO INE;
/* CUT SET cCasr® */
229 2 0 INA: PR=PROP.IIQST:
230 2 0 IF (PROP.MIM=1 & PROP,DPIM(1)=NULL] THEN DO;
231 2 1 BNMM=0;
2312 2 1 BUN=0;
233 2 1 END;
238 2 0 ELSE Nno:
235 2 1 BUM=PROP.MINM; .
2316 2 1 BUN=1;
237 2 1 ENDs
238 2 0 BUN=OUN+PRR.LEALS
239 2 0 BNZ=08UM;
249 2 0 CO IK=1 TO PFR.RAY; .
281 2 1 MA=PER, TAR (1K) ; -
w2 2 1 DA=~CELIL (~#A/10000) ;
201 2 JA==CETL (-#A/1000) ;
248 2 1 JAK2JA=10%DA;

253

R L SIS e
‘

PL/L OPTIMIZING COMPILERN) NUNERO: PROCEDIRE;

<

STMT LEY 7T

285 2 1 IP JAK=9 THEN DO
286 2 2 BUM=BON+1; :
17 2 2 END;
7 48 2 1 END:
] 249 2 0 BUZ=AUN-BNZ;
£ 20 2 0 ALLOCATE OL} (DUM) 3
i %1 2 0 1P BUN=0 THEN DO;
3 252 2 1 I=0;
. 283 2 1 GO TO TMAQ;
3 254 2 1 END;
4 255 2 0 CO I=1 TO PROP,.MINM:
b 2% 2 1 * OLM(I)=PROP.PIN(I):
- %7 2 1 END:
4 - 2% 2 0 IMAO: DO ILaI+1 TO BUN-BUZ;
3 259 2 1 OLM (IL) =PER.KIN (IL-I);
2 260 2 1 END3
;% 261 2 0 IF (BUZ%-~=0) THEN DO:
il 2 2 1 DO IX=1 TO PER.BAN:
: 263 2 2 MA=PER, TAR (LX) ;
264 2 2 DA=~CPIL (=#A/10000) :
265 2 2 JA==CEIL (=A/1000) 3
266 2 2 JAK=JA~10%DA;
267 2 2 IF (JAK=9) THFN DO;
268 2 3 DN IX=1 TG RNMOD;
200 2 4 If (TRIN(IX)=NA) THEN GO TO TMA4;
270 2 a- END:
277 2 3 IMAG: OLM(IL)=DPRIN(IX)=~DAP.SPIT:
272 2 3 PUT EDIT('INDEX=',IL,'PROP=?!,0LN(IL)=>PROP.NANE)
{SKIP (1) ,A(6) ,P(5) ,A(5).P(5)):
273 2 3 TLaIL+1; _
2718 2 3 END;
275 2 2 END:
276 2 1 END:
277 2 0 PER,RRL (2) =1;
278 2 0 PUT EDIT("PATR=',PRNOD.NANT,'INPa' P=R, RPL(2))
(SXIP (1) ,A(S) 4F(5) ,A(8),R(18,KA));
279 2 o IF PROP,VALUZ>2 THEN GO TO TMA2s
200 2 0 IF PROP.VALUEa1 THEN DO
281 2 1 IP (PROP.LIN=1 & PRNOP.TIL(1)=0) THEN DO 3
282 2 2 PROP.REL (2) =03
283 2 2 GO 7O LMA1;
288 2 2 2uD;
285 2 1 PROD.RPAL (2) =1;
296 2 1 DO 1=1 TO DROP.LIN:
287 2 2 STATE{2,PROP. TLL (I)) =13
298 2 2 END;
289 2 1 © END:
290 2 0 IP PROP.VALUS22 THRN Dn:
291t 2 1 IF (PROP.LIM=1 £ PRODP.TTIL(1)=0) THEN NO:

254

PL/l OPTIMIZING COMPILER NUMZHO: PROCTMIAR:

STMT LEV NT

292 2 2 PROP. RFL (2) =0;
293 2 2 GO TO IMA1:
298 2 2 END;
295 2 1 PROP,.RFL (2) =PAOP. RRL (1) /PRR.REL (1} ;
296 2 1 ‘00 I=1 TC PROP.LIN:
297 2 2 STATE(?2,PROP.TIL (I)) =STATE{1,0R0P, TIL(I)} /PRR.REL (1) ;
298 2 2 END:
299 2 1 END;
300 2 0 INAY: DO I=1 TO PER.RAN;)
301 2 1 EX=1;
302 2 TIERRA=PR;
-4 303 2 1 QT=DPFR.DPPXTPR:
s 3o 2 1 CALL MTNUP(FYX):
s 30 2 1 PUT EDIT('I=*,[,'PER.TAR=', PER.TAR(I), 'R7Y=*,NPY)
i (SKIP(2) ,A(2), P(S).A(G),P(S).A(Q),?:18.6)):
e 306 2 1 MA=PER.TAR(I)
3 3007 2 1 DA=-CEIL {=MA,/10000):
g 308 2 1 JAZ=CEIL (~MA/1000) :
i 309 2 1 JAK=JA=~T10%DA;
& 310 2 1 NA=MA=~ (1000) *JA;
k. 311 2 1 IF (JAK-~=22) THEN STATD(2,NA)=REY/PER.RPL {1):
¥ 312 2 1 IF (JAK=2) THEN DO:
i 313 2 2 SNOT=RFY/PER.REL (1) ;
“ 3t 2 2 PUT EDIT ('NOTSTATF=!,NA; 'THP=', SNOT)
5 {SKIP(2) ,A (%), F(S) X(2) A (83),E(18,6));
A 315 2 2 END;
3 316 2 1 ENT;
‘A 317 2 0 GO TO INME;
B /% STMAETRIC CASE *y
3. 318 2 0 IMA2: PROP,REL(2)=0;
S 319 2 0 IF (PER.RAM=1 & PEF.TAR(1)=0) THEY GO TO IM®
3 320 2 0 ELSE DO I=1 TO PER.RAN:
5 321 2 1 TX=I;
%_ 322 2 1 TIPROA=DR;
; 323 2 1 QT=P FR. DEXTER;
8 32 2 1 CALL MINUP(RX);
; 325 2 1 PUT EDIT('I=*,I,'PFR.TAR=',PER.TAR(I),'RRY=' ,RFY)
a (SKIP(2) ,A(2),P(S),A(B),P(5),A(4),E(18,6));
: 326 2 1 - STATE(2,PER.TAR(I))=REY:
4 327 2 1) END;:
] 328 2 0 GO TO IME:

SRR T2 L3 RN

255

At this point IMPORTANCE is ready to assign importance
values to the second generation of fault tree inputs, and
at the same tlme storing'thé pointers locating the second
generation module;}: This process will then be contilnued
on until a generation (last generation) 1s .found which con-
tains no modular inputs (1.e., no-gates), IMPORTANCE per-
forms this task byimeans of a DO LOOP which stops when the
last generation is foﬁnd (=>BUG = Q).

Each generation of modules GOLD(BUG) 13 created by pass-
ing on the o0ld values of array OLM(BUM] fodnd'in the pre-

vious sweep. Moreover, a new generation of module pointers

is created and assigned to OLM(BUM) with the following

statements
: Vad LOOP STARTS HERR #/
329 2 o0 INE: DO WHILE(BUG==0):
330 2 1 BUG=BUN: -
331 2 1 PNT LIST{'RUG=',RUG) : »
332 2 1 IF {0UG20) THEN GO TO IME;
333 2 1 ALLOCATE GOLD (BUG) ;
33 2 1 D0 I=1 TO RNUG;
335 2 2 GOLD (I) sOLM (1) 3 .
336 2 2 pUT EDIT('GOLD=’,I,'PROC=',GULD (T) =>PROP. NANE)
(SKIP(1),A(5) ,F(5) ,A(5),F(D)):
337 2 2 END:
338 2 1 FRFP OLM:
339 2 1 BUM=0;
0 2 1 PO I=1 TO BUG:
w1 2 2 PT=GOLD (I) ;
382 2 2 IP PROP.UOST=NULL THFN DO;
343 2 3 IP (PROP.NIN=1 & PROP.PLM(1)=NNULL) THER GO TO INEJ:
Jus 2 3 ELSE BiIM=OIM+DPROP, MIM:
s 2 3 GO 10 INPR3:
Jue 2 3 ENDS.
387 2 2 ELS? PR=PROP.HOST:
g 2 2 IF (PROP.MTN=1 & PROD.PIN(1)=NULL) THYPN GO TO INE2;
349 2 2 ELSE BUM=RUM+CROP.MTN; '
350 2 2 INE2: IF (PER,LEAL=21 & PEP.KIM{1)aNULL) THEN GO IO INE1;
351 2 2 ELSE BIN=RUM¢PER.LEAL;
%2 2 2 INE1: DO IX=1 TO PER.RAN:
3% 2 3 MA=PER. TAR(IX) ;.
3% 2 3 DA=~CEIL {=#A/10000);
355 2 3 "JAT=CELIL (-¥A/1000) ;
156 2 3 JAK=JA= 10404
357 2 3 1P JAK=9 THFN DO;

256

158 2 8 BUN=BUM+ 1
35y 2 4 END;
360 2 3 END;
361 2 2 IME]: BND:
362 2 1 IF BiM=Q THEN GO TO IMIl:
363 2 ALLOCATE OLM(BUM) 3
364 2 1 IL=0;
365 2 1 DO I=1 TO BUG: !
366 2 2 PT=GOLD(I);
367 2 2 IF PROP.HOST=NULL THEN DO:
3168 2 3 IF (PROP.MIN=1 & PROP.PIM(1)=NULL) THEN GO TO INIU:
369 2 3 DO IT=1 TO PROP.MIM:
370 2 4 TL=Ile 1
371 2 4 OLY (T1L)=PROP.PINM(IT):
372 2 4 END:
373 2 3 GO TO INIG:
374 2 3 END;
375 2 2 ELSE PA=PROD.UOST;
376 2 2 PUT EDIT('NOST', ' PROP=',PRONP,. HAMT)
’ (SKIP(1) ,A(8),A(5),F(5));
377 2 2 IF (PROP.MIM=1 £ PROP., pnnct)sunnn) THEN GO TO IMI2:
378 2 2 DO IT=1 TO PROP.MIN;
379 2 3 IL=IL+1; '
380 2 3 OLM (IL) =PROP.PIN(IT) :
381 2 3 ENDs
182 2 2 INIZ: TP (PER.LEAL=1 & P7R, xrn(1) nurn) THED GO TO INIM;
3383 2 2 DO IT=1 TO PEB.LEAL: ~
384 2 3 IL=IL+1;
385 2 3 OLM (IL) =PFR.KIM(IT);
5 1) 2 3 END:
3R7 2 2 INI1: N0 IK=1 TO PER.RANM;
398 2 3 MA=PFR.TAR (TK):
349 2 3 DA=-CETL (~MA/10000) ;
390 2 3 JA==CEIL (-MA/1000);
AR 2 3 JAK=JA~10*DA;
392 2 3 IF JAK=9 THEN DO;
3193 2 4 DO IX=1 TO RMOD;:
394 2 5 I?7 (TRIM(IX)=MA) THEN GO TO IMK1;
395 2 S END;
396 2 4 INK1: OLM(TL#+1) =DRLM (IXT~DAP.SPLT:
397 2 4 IL=IL+1;
398 2 4 END:
399 2 3 BEND:
00 2 2 IMNIG: END:

In addition, the set of basic component and modular gate

inputs to the older generation of modules pointed at by

GOLD(I) are assigned importance values with the following
statements

/* ASSIGN INPORTANCES OP OLDER GENRRATION */

801 2 1 INI3: DO I=1 TO BWG:
82 2 2 PT2GOLD (1) ;
803 2 2 CAT=PROP. ROOT;
sos 2 2 IF (CAT->PROP.TIPO=0) THEN DO:
405 2 3 APT=CATS !
506 2 3 SA=AD. NAPS
4n? 2 3 JA==CFIL (=8A/1000) ;
408 2 3 NA=MA- (1000) *JA;
509 2 3 IF (PPOP.HOST~=NOLL) THEW DO :
510 2 & PR=PROP. HOST;)
411 2 4 TIERRA=PR;
315 ; ; QT=PER. DFXTER;
X PER.REL (2) =STA :
sl 2 g Go To réxg: TP 2NN
419 2 4 END:
816 2 3

ELS® PROP.REL (2) =STATD(2,NA) ;

817
418
419
420
421
422
42
42n
425
426
427
u28
429
430

831
432
433

43y
435
436
437
438
439
440
481
4u 2
43
434
BuS
4n6
4u7
ung
nno9
45Q
451
452
453
n54
4S5
456
457
458
459
460

46 1
462
63
u6u
465
466
ue7
468
uh9
470
471
n12
473
474
375
476
477

NNNNNNNNNNNRNNNRNN RNNNRONRNNRRBONNRONNNURNORNNRNRONNIN SO NROONONONNNNNN

- WE W) MWl EEGEWWNNNNN LW

WWWNWWwSFEFWLWwNWWE

ELHWEFEFWNWLWESFWWEEFRWNNRNNNNWWS

257

GO TO INK2:
RHD:
IF CAT=>PROP.NOST~=NULL THEN GO TO ENA2:
IP PROP.HOST~=NOLL THEN GO TO EMAY:
InKs: IP CAT~>PROP.VALUE=] THEN PROP.REL (2) *CAT-D>PROP.REL(2);
PLSE PROP,REL (2) =PPOP. REL (1) *CAT->PHOP, RBL(Z)/CAT-)PROP REL (1)
INK2: IP PROP.VALU¥=1 'TIEN. 0N
IF (Pa0P.LIN=Y & PRODP,.TIL(1)=0) TUEM GO TO AHE:
00 IT=1 TO PROP.LIN;
STATE(2,PROP.TIL (IT))=PRAP.REL(2) L
END:
GO TN AME;
ENDS .
ZLSE DO

I® (PPOP.LIM=1 & PROP.TIL(1)=N) THEN GO TO AAP:
DO IT=1 TO PROP.LIN:
STATE(2,PROP. TIL(IT))=STATP(1,PROP.TIL (IT))*PROP.REL(2)/
PROP.REL () :
END:
GO TO ANE; °
ENDs
EMAT: PR=PROP.HOST:
TIERNA=PR;
QT#PER.DEXTER:
IP CAT->PROP.VALUP=1 THYN PPER.BRL(2)=CAT-D>PROP.REL(2);
ELSE PRER.REL(2) sPER.REL (1) *CAT=->PROP, RPL(Z)/CAT->PROP.R8L(1).
INK3: IF PROP.VALOE=1 THEM 00
IF (PROP.LIN=1 & PROP,TIL (1) =0) TH™N DO;
PROP.REL (2) =0;
GO TO ERZ1:
END:
PLSE PROP.REL(2)=PER.RRL (2} :
PO IT=1 TC PROP.LINM;
STATE(Z,P?OP.YIL(IT))sPROP.Rznlz):
ENC:
GO TO BNR1;
END;
IP PROP.VALIE=2 TIIEN DO
IF (PROP.LIN=T & PROP,.TIL(1)=0) THEN DO;
PROP.REL (2) 20;
GO TO ENTY;
END:
ELSE PROP.REL (2)=PER.REL (2)*PROP, R¥L (1) /PER.RPL (1)
DO IT=1 TO PROP.LIN:
STATE (2, PRNOP. TIL(IT)):STATB(1 PROP.TIL(IT))*PROP.REL (2)/
PROC.RBL (1) :
END:
GO TO EMEt:
END:
IF PROP.VALUED2 THEN DO
PROP.R"N (2)=0;
IF (PEN.RANMs1 € DPRF,.TAR(1) =0} THPN GO TO AME:
DO IT=1 TO PER.RAM;
EX=IT:
CALL MINOP(2X):
STATR (2, PRR. TAR(1T)) =REY*PER, REL {(2) /PSR, RBL {1} :

RN
GO TO AMT;
END:
EBE1: NO IT=1 TO PZR,RANS
EX=IT:

CALL MINUP(FX)
MA=PER.TAR(IT) :

258

478 2 3 DA==CEIL (=MA/10000) 5

479 2 3 JA==CEIL (=MA/1000) ;
nRo 2 3 JAK=JA=10%DA;
ug1 2 3 NA=MA=-1000*JA;
482 2 3 I? (JAK~*2) THFEN STATD(2,NA)=REY*PER.REL (2) /PER.NEL (1)
ug3 2 3 IP JAK=2 THEN DO:
usy 2 4 SNOT=RFY*PFR.RFL (2) /PER.RRL (1) 3
485 2 4 PUT EDIT(*NOTSTATE=',MA,'INP=',SHOT)

{SKIP(2) ,A(9),F(S),X(2),A(Y4),E(18,6));
486 2 4 END:
487 2 3 END;
ngg 2 2 GO TO ANE;

/* NESTED CASE =*/

48y 2 2 EdA2: PR=CAT=>PROP.OST;
490 2 2 TIERRA=DR;
491 2 2 QT=PFR.DFXTER;
412 2 2 DO IT=1 TN PER.LEAL;
493 2 3 IP PER.KIM({IT)=GOLD(I) THEN GO TO RMA3;
494 2 3 END; ,
495 2 2 GO TO IMK&4:
496 2 2 EMAl: IP CAT->PROP.VALUFC=? THEN RX=[T+1+PRR,.RANS
497 2 2 ELSE IP (PER.RAM=1 & PRR.TAR(1)=0} THEM PX=IT;
48 2 2 ELSE EX=IT+PER.RAM;
499 2 2 CALL MINUP({EX);
seo 2 2 I* (PROP.HOST==NULL) THFY DN3
501 2 3 PROP.HOST=>PER, RAL (2) =RETAPPR. wzn(Z)/prw REL (1)s
sn2 2 3 PR=PROP, {OST;
s03 2 3 TIERRA=PR;
soe 2 3 QT=PFR,CEXTFP;
sns 2 3 GO TO TMK3;
506 2 3 28n;
507 2 2 ELSE PROP.REL(2) =REY*PER.RFL (2) /PRR.PEL(T) ;.
sn8 2 2 IP PROP.VALUEa=] THEYX DO;
s09 2 3 IF (PROP.LIN=1 €& PROP,.TIT.(1)=0) THEN GD TO ANME}
sto 2 3 ELSE DO IT=1 TO PROP.LIY;
511 2 4 STATE(2, PROP.TIL (IT)) =PRNP.RPL (2) :
512 2 4 END;
513 2 3 ENDS
516 2 2 IP PROP.VALUE=2 THEN DO;
515 2 3 IF (PROP.LIN=1 & PROP.TIL(1)=0) THEN GO TO AMF:
516 2 3 RLS? DO IT=1 TO PROP.LTY:
S17 2 4 STATR({2,PROP.TIL (IT))=STAT2(1,PROP.TIL(IT)) *PROP.RRL (2) /

PROP,RFL (1) ;
S18 2 4 END:
S19 2 3 END;
520 2 2 ANE: ENDs
521 2 1 FREE GOLD;
522 2 1 END:
$23 2 0 PUT SKIP(2) LIST('VESFLY-FNUSSPLL IMPOPTANCES')
524 2 0 PAT SXIP(2) LIST('FREE EVENTS');
52% 2 0 DO I=1 TO FUN: ’
526 2 PUT SKIP DATA(L,STATE(2,1)):
527 2 1 END;
528 2 0 . PIT SKIP(2) LIST('REPLICATFD vvsurs'),
529 2 0 DO I=1 TO DUN;
536 2 1 PUT SKIP DATA(I,STATD(2,1));
531 2 1 END;
32 2 0 PUT SKIP(2) Lrﬁr('uonunvq').
533 2 0 : DO 'I=1 TO 1D;
5346 2 1 PT=B0ST(I);
535 2 1 PUT EDTT('MODULE NAME=',PROD,NAME,'THP=',PROP. RPL (2))
. (SXIP (1) ,A(12) ,P(5),X(2), A(R),P[TB 6))
536 2 1 IP (PROP.IIOST==NNULL) THFEY DO:
537 2 2 PUT EDIT('I4P=',PROPIOST->PER, REL (2))

X(6) ,A(4),E(19,n

538 2 2 — (X(6) A (%) ,E(1 N
839 2 1 END;
sS40 2 0 END IMPORTANCE:
S4 1 1 0 END NUMERO:

259

For the pressure tank fault tree example, procedure
IMPORTANCE assigns the modular and basic event Vesely-Fussell

importance values in the following steps

V.F.,

STEP 1 Iyon'= 1
V.F. . Tp -1
1P e I = 2.49937 x 10
P (TOP)
Py
oy P =t = 7.500625 x 107"
1 P(TOP)
B, P,
| Py Py
rreFw gl Fea 3« 4,49887 x 107
4 5 P(TOP)
V.F v, _T1 =24 ot
v - F o Pl LH9937 x 1
1 My M,
. | 1 a=5 |
IV.F. - IV.FQ = IV-F- = IV-F' 10 = 2.}49937 x 10-1
2 3 4 M, B,
1 g
STEP 2
1v-Feow v Fe = 4ng887 x 10710
9 4
V.F. _ (V.F. _ V.F._ V.F._ V.F._ _V.F.°_
Is Ig Ir Ig I I1o
= 1/-F- 107 | 7.49812 x 10”11
M .
5 EM5
STEP 3
‘ y 252 L e T
Vo - V- . PR Y)) -
AFLEIE S JFEEE SELA IXSF - ZXS;O L - 2.99924 x 10710

9

260

CHAPTER FOUR

NUCLEAR REACTOR SAFETY SYSTEM FAULT TREE EXAMPLES

IV.1l. Introduction

The PL-MOD code was used to analyze a number of nuclear
reactor safety system fault trees, and its performance and
results were compared to those obtained using the minimal
cut-set generation codes PREP and MOCUS. ’

The safety systems analyzed included:

(a) a Triga Scram Circuit (4] fault tree
composed of 22 simple AND and OR éates,
a 3-out of - 4 symmetric gate; 20 non-
replicated basic events and 2=réplicated
events. |

(b) A Standby Protective Circutt [18 fault
tree composed of 19 gates; 24 non-repli-
cated basic events and 5 replicated basic
events.

PL-MOD executed the modularization
of the SPC fault tree in a time comparable
to that taken by MOCUS (.034 min.) to
list the set of 100 minima} cut-sets
associated with the fault tree. However,
the execution time taken by PREP's deter-
ministic routine COMBO was about 6 times

longer (2 min.).

261

(¢) A PWR High Pressure Coolent Injection
. System [20] reduced fault tree composed
of 59 non-replicated gates; 4 replica- |
ted modular gates; 142 ncn-réplicated
basic components and 9 replicated
basic components.
The execution time taken by PL-MOD

Ito modularize this larger tree was
about 25 times smaller (.081 min;)
than that taken by MOCUS (2.015 min.)
to generate the set of 2724 single;
double, and triple fault cut-sets

assoclated with the faﬁlt tree.

IV.2. Triga Scram Cifcuit

A simplified diagram of the TRIGA Scram Circuit [14] is shown
in Figure 4.1, while Figure 4.2 shows the faﬁlt tree describing
the possible comhination of events causing a failure of the
reactor to scram as required when the steady state reactor
power exceeds a one megawatt level.

The triga circult is turned on when an operator pushes
the "power-on" switch. An operator key switch 1is placed in the
reset position to momentarily energize relays R19 and R20, which
in turn energize relays R7 to Rl12. The lower "B" contacts of
éach of the relays receilve voltage from one of the corresponding
instrument channels, thus maintaining the coils energized. The

upper "A" contacts will maintain relay XK1 energizéd and thus

POWER ON
SWITCH

Ve

125 VT. 3 Rie
POWER
SUPPLY

POWER
+ SUPPLY

RESET
ON
OFF

¢

TRANSIEN
ROD

SAFETY ﬁ

SHIM
ROD

Fa

EGULATING|

LINEAR

R9 RiO
o
=g >
x5 = : —
w - x -
a
O] 0

MANUAL CH.

EXTER

CHN.

R2

FIGURE 4.1

TRIGA Scram Circuit

(o]

cge

263

FAILURE OF ANY THREE-
OUT-0OF-FOUR CONTROL RODS

TO SCRAM THE REACTOR

|

FAILURE OF
PROCTIVE
SYSTEM

()

: .
® ©® ®

|

TRANSIENT

ROD FAILURE

SAFETY ROD
FAILURE

SHIM ROD
FAILURE

REGULATING
ROO
FAILURE

AN

FIGURE 4.2 TRIGA Scram Fault Tree

N

PE-I

J2N

264

PE-2

@i
=)

R
v
@

FIGURE 4.2 Continued

Al

.
() Ges

& ()

N

A

@) ()

& ()

266

provide power to the magnets and solenoid valve. However, when
any instrumentation channel interrupts 1ts voltage supply to
the corresponding rélay, a scram control rod drop should occur
due to a de-energized scram magnet or solenocid valve.

For a successful TRIGA reactor shut-down, at least 2 out
of the U4 control rods must be inserted in the reactor. Hence
G2 1s a 3-out of-4 symmetric gate, since it is necessary that
3 out of the 4 control rod drop mechanisms fall to cause a
TRIGA scram system failure. Notice that since relay K1 is
common to each of the four rod-drop mechanisms, gate G8 may
be taken as a direct input to.gate Gl.

In Table 4.1 the nomenclature identifying each basic
event as well as its description and failure rate are given.
The failure datawéfé”éxpreééed in failureS‘pér éycle (thére

are 300 cycles per year assumedf.

The modular structure determined by PL-MOD for the Triga

scram fault tree is as follows:

G2: Symmetric 3-out of-4 module

<
[}

(Yg35¥g5s Yag» Ip)
(1, 1, 0, 1)

N R
H [}

2 (1, 0,

1, 1)
K, = (0, 1, 1
1

1)
» 0)
Gy = {1, 15;U} Gz = {2} , Gg = {3}, G, = {4}

-

K, = (1, 1,

267

TABLE 4.1
TRIGA SCRAM CIRCUIT BASIC EVENT DATA

PL-MOD Alphanumeric " Event Failure Rate
Identifier Identifier " Description (Per Cycle)
1 PE-1 Solenoid Valve Fails 104

to open
2 PE-2 Electromagnet Safety 1073
. rod shorts to ground
3 PE-3 Electromagnet of Shim 1072
rod shorts to ground
4 . PE-4 Electromagnet of Reguknz-lo-s
ing rod shorts to
ground
5 PE-5 K1 Contacts fail to open 1072
6 PE~6 K7A Contacts fall to open 1072
7 PE-T K8A contacts fail to open 1079
8 PE-8 K9A Contacts fall toopen 10”7
9 PE-9 K19A Contacts fail to open 1073
10 PE~10 KI9B Contacts fail toopen 107>
11 PE~11l K19C Contacts fail toopen 10”2
12 VE-1 Mechanical jamming of -6
control rods 10
13 VE-2 Gross movement of core 10“6
14 VE=-3 Control rods are of insuf-
ficient worth 10-6
15 ' VE-4 Air Tube to Plston Cham- .
ber clogged 10 »
16 VE-5 Linear Channel remains -4

energized when P>lMw 10

17 VE-6 % Power Channel remains -l
energized when P>1Mw 10

PL-MOD
Identifier

Alphanumeric
Identifier

18

19
20
30001

30002

VE-T7

HE-1
HE=-2
VE-8

VE-9

268

Event Failure Rate
Description (Per Cycle)
Period Channel fails to 10'“
de-energlize when T<3

sec.
T<3 sec when B>1 Mw 0.5
T 3 sec when P 1 Mw ’ 0.5

Reset Switch sticks in 10°°
reset position

External Force preventing -5
switch from opening 10

269

G9 = Higher Order Module
(r; = 30001, r, = 30002)

- T Tr, fmgy> o100 o130 Y170 Ye18: Yaig)
K, = (0, 0,1, 1,1, 1, 0, 0)
K, = (1, 0, 1, 0, 0, 1, 0, 0)
Ky = (0, 1, 1, 0, 0, 1, 0, 0)
K, = (0, 0, 1, 1, 1, 0, 1, 1)
ks = (1, 0, 1, 0, 0, 0, 1, 0)
kg = (0, 1, 1, 0, 0, 0, 1, 0)

Gl: TOP gate event
Gl =5, 12, 13, 14, G2, G9; U
Hence basic events 5, 12, 13 and 14 correspond to single event
minimal cut-sets.
A 1ist of all modular and single event minimal cut-set
event occurrence probabilities (P) and Vesely-Fussell importance
measures (IV'F‘) computed by PL-MOD for the fault tree after one

cycle period is given in Table 4.2.

IvV.3. Standby Protective Circuit

Figures 1.1 and 1.2 given in the thesis' Introduction
1llustrate a standby Protective Circuilt System's diagram and
fault tree [18. This system is similar to reactor protective
circults and 1is normally found in a standby mode. The purpose
of the system is to recognize an abnormal pressure or level

condition and then close a relay which lnitiates other action.

270

TABLE 4.2

OCCURRENCE PROBABILITIES AND VESELY~-FUSSELL

IMPORTANCE VALUES FOR THE TRIGA SCRAM FAULT TREE

Module b V.F.

61 3.3007x1072 1
G9 2.0072x10-5 6.0614x10~1
G1l0 1.2x10- 2.1816x10~4
G13 1.2x10-4 2.1816x10-%
G17 0.5 3.0318x10-1

G18 0.5 3.0296x10-1

G19 1.2x10~4 2.6176x10-8

G2 3.4x10-14 1.0301x10-9

G3 1.1x10-"% 10~

G5 10~ 6.97x10-10

G6 10-5 6.97x10~10

G7 10-5 6.97x10~10

Single Event Cut-Set P IV‘F'

5 1072 3.0296x107T
12 10-6 3.0296%x10-2
13 10-6 3.0296%10=2
14 10-6 3.0296x10-2

271

The fault tree's top event corresponds to a failure of
relay R3 contact #1 to close. Normally relays R1l, R2 and R3
are deenergized. Relay Rl receives power 1f one of the branches
of contacts in line with it permit current to flow (such as con=-
tacts LSA #1 and LSB #1). To be energized relay R2 requires
that either contact Rl #1 or both manual switch MS1 and MS2 be
closed. Relay R3 becomes energized 1f one pressure switch
(PSA, PSB, or PSC)kand the contact assoclated with relay R2
are closed (test switchés TS1 and TS2 are not included in the
fault tree). The nomenclature and unavallability data for each
basic event are given in Table 4.3.

The minimal cut-set description for the SPC fault tree
was given in Table 1.1 in the Introduction, while its modular
structure determined by PL-MOD is as follows:

Gy, = (4,750} Gg ={5,85U} 6py = (6,957}

Gg = ‘{G12,613,G14;Q} Triple cut-sets)
G8 = {17,18,19,20,21,22; U}
G16 = Higher Order Module

v - Trpr ey Tegey Trg Tmpe Yo Yo Tagg)
K, = (,0,0,0,0,1,0,0,1)
K, = (1, 0, 1, 0, 0, 1, 0, 0, 0)
Ky = (1, 0, 0, 1, 0, 1, 0, 0, 0)
K, = (1, 0, 0, 0, 1, 1, 0, 0, 0)
Kz = (0, 0, 1, 0, 0, 1, 0, 1, 0)
Ke = (0, 1, 1, 0, 0, 1, 0, 0, 0)

272

TABLE 4.3
STANDBY PROTECTIVE CIRCUIT BASIC EVENT DATA

PL-MOD Alphanumeric Event Unavaillibility
Identifier Identifier " Description Per Demand
1 N.O.R1l Normally open con- -l
2 N.O.R2 tacts fail 1.1x10
3 N.O.R3 open
4 APS Pressure sensor -4
5 BPS . fails 10
6 CPS
7 N.O.AP Normally Open Pres- i
8 N.O.BP sure sensor contacts 4.3x10
9 N.O.CP fail open
10 Fl Fuse Falls Open -4
11 . P2 3x10
12 BAT Battery Fails 1.1x10°3
13 WSC Wires short in cir- -U
oult l.lxlo-
1 R1 Relay Fails on _
15 R2 Demand 10
16 ‘ R3
17 ' MS1 Manual switch fails _5
18 MS2 to function on 10
demand
19 N.O.MS1 Manual Switch fails 3 6x10°5
20 N.O.MS2 to close)
21 OP.MS1l Operator does not -3
22 OP.MS2 initiate manual switch 10
23 NO. LSA#2 Normally Open Level -4
24 NQJ. LSB#2 Sensor Contact fails 4.3x10
20003 NO. LSA#1 Open
20004 NO. LSB#1
20001 ALS Level sensor fails _4
20002 BLS . 10

20005 CLS

273

, 0, 0, 0)
, 0, 1)
, 0, 0)
1, 0, 0, 0)
= (0, 0,0,1,0,1, 0, 1, 0)

wilth r, = 20001, r, = 20003; r 20002; ry = 20004,

2
= 20005. and

3
5

Mg = {empty set}

Gy oy ={empty set}

G,q = {23}

{24}

18

Gi9 =

G9 ={1, 4, G16; U}
G7 ={G8, Gg;ﬂ} (Double and Triple cut-sets)

TOP EVENT: = {2, 3, 10, 11, 12, 13, 15, 16, G6, GT;U}

Gl -
Hence (2, 3, 10, 11, 12, 13, 15, 16) are single event

cut-sets.

In Table 4.4 a list is provided of all modular and single

event minimal cut-set unavailabilities (U) and Vesely-Fussell

V.F.

importances values (I) computed by PL-MOD for the SPC fault

tree.

274

TABLE 4.4

UNAVAILABILITIES AND VESELY-FUSSELL IMPORTANCE MEASURES
FOR THE STANDBY PROTECTIVE CIRCUIT FAULT TREE

Module oy rV-F.
Gl 3.2204x1073 1

G6 | 1.489x10-10 4.623x10~8
G7 4.4115%10~7 1.37x10-4

a8 2.092x10"3 1.37x10-4

a9 2.1087x10~4 1.37x10-4
Gl2 5.3x10-4 4.623x10-8
G13 5.3x10-4 4.623x10~8
GL4 5.3x10-4 4.623x10-8

G16 8.748x10-7 5.6827x107
¢18 1.1x10-4 3.858x10~8
G19 1.1x10-4 3.858x10-8
Single Event Cut-Set 9) IV‘F'

2 1.1x107% 3.416x10-2
3 1.1x10-4 3.416x10-2
10 3x10-4 9.315x10-2
11 3x10~4 9.315%x10~2
12 1.1x10-3 3.416x10-1
15 10-4 3.105x10~2
16 10-4 3.105x10~2

275

IV.4. High Pressure Injection System for a Pressurized Water
Reactor

The PWR High Pressure Injection Systém (HPIS) 1is a part of
the emergency coolant injection system (ECIS) which provides a
high pressure source of emergency coolling water to the reactor
coolant system (RCS) [2d. »TheMHPIS is mainly used fér small
loss of coolant accident (LOCAi”g;NQecondary‘(steam) ruptures
such that the RCS pressuré is not low enough for ﬁse of the low
pressure injectlon system (LPIS) or accumﬁlator injection.

Figure 4.3 shows a simplifiéd system dlagram for the HPIS.
The high pressure charging pumps are used to draw water from
the refueling water storage tank (RWST) and injects the water
at normal RCS pressure into the cold legs. Anothérvfunction
of the HPIS is to push the 12 weight pércenc boric acid solution
in the 900 gallon boron injection tank (BIT) into the RCS to pro-

vide for a reactivity suppresion when a steam rupture occurs.
The required flow for successful injection is 150 gpm, which

corresponds to at least one charging pump fdnction.

During normal operation, one operating charging pump draws
water from the volume control tank (VCT)Aand discharges to the
- RCS throﬁgh the open valves 1289A and 1289B. However, when the
safety injection control system (SICS) is activated the follow-
ing changes take place in the HPIS system configuration:

(1) The supply valves 1115B and 1115D are opened to

allow the RWST to provide water for the HPIS pump
suction.

(2) The standby charging pumps are started.

St
Ccvi0Q 235
(K —D—KD< g,
Ccv120 E %
.._K}__..From LPIS 88
ropcs ¢ cv200 S1 236 gg;
o £
o 2 B
Cold Legs “‘-‘}Q cvzzobl }Q—DQF; | } 4
—From LPIS CUNR
CV300 Si 237 225 %
~ 3 “‘K}———D“——’K)———N—‘ %

v TV
1884A 180848

HPIS Line S1-57

To Boric Acid
Tanks

From Boric Acid
Transfer Pumps

._l<}..__. From LPIS S S

Discharge Header CH-80

Suction|

cv
320 Normal F-{
Charging
Line
[>(1 Normally 1289A
N Open
k Normally To RCS
M Closed Pump Seals
1370
/§~ Operated By :
SICS Signal
8" Vent S
RWST

To LPIS
Suction

FIGURE 4.3

Simplificd

System Diagram '_

9.2

FAILURE OF
HPIS

A, r . I : .
FAILURE OF FALURE OF FAILURE OF FAILURE OF FAILURE OF
HPIS HPIS HPI 9 HPIS FLOW
Q 62 ‘ !05 G4 A‘” A""
FAILURE OF iP5
FAILURE OF WIIEN FAIL CHP SER-
1CE WATER_FOP V03]

FAILURE TO DELIVER

WATER THRU HP3
OISCH. LINE TO LEG3

2 (0

[
FALURE 10 DELIVER]-

CHP SEALS

FTFI943P

FAILURE OF CHP'S
DU? TO INSUF .
INTMD SEAL HX

) |
INSUFF. CHP

QOO

WATER THRU HPIS
DISCH LlNE To LEG2
FPPCHBOR FCVA2250
FPPC3I39R
1
INSUFF, CHP
CoOLING SERVICE WAT ER
FMCEG! sx rn(sxozn FTK FXVC330X Gs FTFIO0BP FXVSWIBC FRPASTAR o FXVWI29C FCVWI3OC FXVWIR9X
azoo chszuo ruva afx €46 FrpC3soR FXVC380C
1 f 1
oot msur COOLING) [INSUF.CHP SERVI INSUF. CHP SERVICE
BORON PP T IN] JBOON P | O o LT | | o usTANOBY | [WATEA rRom ciP WATER FROM CHP
COLD sPOTS THEATER | [HEAT TRACING N PUMP E_PUMP STANDBY PUMP
(1 [)om 615 ‘ 'ens
BORON 11T WIEN
HEAT TRAC. FAL
FCNC rou:czae rcnmm FOCWOAB FPMWIOAF

FOOBATSX

FCNCC280D
FCBCC280

FRC‘934F FRCIOSAX FTPIOIMF FXVI934X

FXVSITIX FXVC“T?X
vae4cx

REDUCED FAULT TREE OF THE HPIS

FIGURE 9

00 00 Q O O 6,,@@

(i FXVWS42X
“CGCCZAO xvwsaz

FPNmzAF I f f | f f
FPMWOBF

FXVWISIX FCNWIODK
FCBWIOB0 FOLWI08D

Llz

FAILURE OF RiLOW
FROM CHP TO HPIS

oi9

FCnGBJ2C

s A\

OOOO

FXVPASWY FCVC2680 FCN2B6AC

() Q

FWRACPIAN FCNIHOSC

000

FCNQAITK FSTSIAAF FRE2TH2Q

00 000 .® ® ® O

FBT280AD FCN26DAC FITCPIBA FSTCPIB

FFLYSIBP
FSTCPIAA FSTCPIAF FCNSI4AF FXVPASWX i i O i
t O ’ FXWB 3WX FTFiIoap FXVPBCWX FYFuenp
FTYFIOIAP FFLTBIAP FXVPACWX FTFiloap

Figure 9 continued

L X —1
CHP A FLOW FAILS CHP 8 FLOW RILS NO FLOW CHP C
NO FLOW CHP BAC NO FLOW CHP ABC CHP AQC FLOW FAILS
Q20 621 G22 | ' @23
(1
88 C CHP SYSTEMS CHP SYSTEN CHP 8YSTEM CHP ABC CHP A&B FLONS CHP SYSTEM
FAIL A FAILS B FAILS SYSTEMS FAIL FAIL INDEP. FAWLT C FAILS
ozs 629 830 a28
FPMCRIBY
CHP BAC FLOWS CHP A rLow n.ovt LOSS OF FLow FLOW FLow FLOW
FAIL INDEP. FALLT |Fan. - inoep. £ | LO3S JBOO FLOW FAILS 4800 faiLs | Jeans au k%
A 831 32 A
FPMCHIAY Gél Gto 661 Goz FPNCHICY
FLOW FAILS FLow FAILS FCN@G9AC FLOW FAILS |FcNB69AC FLOW FAILS FLOW FAILS FCNBG9AC
cHP 8 cHp cmﬂ 8 cmﬂ A CHP C
{ 5 62 ". 660, 6t2
FLOW FAILS
CHP A
FXVPBSWY rcnsuar FSTSIABF
FCVC26TD rcnzoon

gle

CHARGING PUMP
FAILS TO
SYARTY

Jtcvinscae
1 HNOT CLOSED

G O00000

O

FCNCPCBK FFUCPCOB

LEVIISC LCV I I5E
NOT CLOSED m: c;_osgo
G4 Mz

5

FLSISBOK FLSISO0K FSTHSBO

QLD

i5C B
FCNUISCK FONNSEX

JOOIHIZH
Mo, MoV
ulu

OO0 @

Fl JO0IHI2
FMONSEF iizH

FOLIISE®

Jeoo

JOOoIZH

<D©©©OOOO

FMVNOVIY FMOMOWIA
FCNMOVM

FOSWIOB
FN MWID

FCNILEBC FCNIISDC

Fio\
HPIS
FAILS
Gy
J 1
Ha BINDING WHEN HPVS
2 cvilis caE HP S
FAIL YO CLOSE FAILS FAILS
634 G35 330
LCVlllS CQE Levinss Leviiiso
c‘NNOT CLOS NOT OPEN NOT OPEN
Ga9 340 FXVSR‘X FCV31250 BXYCS25C BXV(S23X BPPIBSIP
Fxvsizac 8PABSIR

FsTuiob BTKOOOIR BTKOOOIL 8VTO000IP BOQCSOBIF

eJoYoNoNoNe

FPPIOSIP

i i |
AELAY 86 oIl PUNP TRIP COL
ENERGIZED FAILS CHEROIZ EO
J001IZH FPPCPLOP FPPCCFSP ‘ mocmor Fcncpnoo
FCScPCBe FCNCP24C FCNCPTTC
FCNBBIC FCNBATOC FXVCPLOX
FCNBAING A5G FCNB60IC
FCNBOING FCNBITOC FXVCPLAX FTPCPLOY
N
~
\O

Figure 9 continued

BIT DISC
VALVE

R
L v |
N '}’0 op Ec N

G486

i
MOV 1867 C
FAILS TO OPEN

Yo

=

FCN3402K FCNO67CQ]| FMYBGTCP FCN3BO2K FCNBE7DQ JFMVOGTOP

FST867CO

ool

FSTSIAAF FCNSI3AF

BIT INLET
VALVES FAIL TO

OPEN
e
i

INSUFF. FLOW
THRU BIT NOT
DETECTED

32

fALURE OF MY
FOR HTR & YEMP

OOO0OO00

FHTSISTB

FHISISTS

FYTSISTF
FTUISISTK

FTSSISTY
FCB3ISTO

1 1)
NOVIB67D MOVI867A MoViesT78 }‘:gl‘%’g‘&&
FAILS YO OPEN FAILS TO OPEN FAILS TO OPEN FAIL
" \aso { }05, [) 652 FANIOCOF FANO2IOF 656
TIC 19344 TIC 19348
FAILS FAILS
FCN3AOIK FONSATA FNVEGTAP FCN3BOIK FCNEGTBU) FMVBE7 BP 663 C} G57
1
TIC 19344
4 A
FST86700 FSTOETAD FST86TBO FAULTS
A FRC934AX FRE9348Q | FTT9348F
659
FSTSIABF FCNSI3BF FSTSIAAF FCNSI3AF FSTSIABF FCHSI3BF OO O
. FCNB348K FYS9348K
HEAT TRACING FRC934BF
l FAILS
643
1
i 1
HEAT TRACING 1.0SS OF HEAT
CIRCUITS FAIL TRACING FAILS
844 (} G 45

FHTSTBUX FCNHTI2K

FCNHTIID

OO0 O

FIIBS7AF FAROGBYF
FTYSITAV
Figure 9 continued

FANOGOOX

(

JOOVBI3N

FRC9348X

BIT HEATER
FAILS DETECTION
G5S

O

FREBIHAQ | FLODIHAO

.

FCNUIHAK | FHGBIMAQ

TIC FAULTS
FAIL

FYTO934AF | FRCIIGAF

JOOVBIIN

08¢

(3)

(%)

(5)

(6)

(7

281
Isolation vaives 1115C and 1115E are closed to pre-
vent draining of the VCT.
The normal charging 1line isolation valves 1289A
and 1289B are closed.
The isolation valves 1867A and 1967B at the BIT
tank inlet are opened as well as the isolation
valves 1967C and 1967D at the BIT outlet.
The horic acid recirculation line trip valves
are closed terminating recirculation between
the Boric Acid Tanks (BAT) and the Boron Injec-
tion Tank (BIT).
Charging System mini-flow valves are closed so
that all operable charging pumps will pump water
from the RWST to discharge header CH-80 through
HPTS line S1-57, through the BIT, and to the RCS

cold legs.

In the Reactor Safety Study, the HPIS unavailability esti-

mates obtalned were

U med = 8.6 x 1073
U lower = 4.4 x 10-3“_
U upper = 2.7 x 1072

with the lower and upper bound evaluated by a Monte-Carlo

simulation. The point estimates obtained were

U total = 3.8 x 1073
U singles = 1.1 x-10°3

U doubles = 2.5 x 1073

U chargingpump = 7.0 x 1076

282

U test and maintenance = €=0
The reduced fault tree given in the Reactor Safety Study
for the HPIS system 1s shown in Figure 4.4. Each basic input
event in the fault tree 1is labeled by an eight character code
name []. The coding scheme specifies the'systém, component
type, ldentifler and failure mode for each basic event as

follows:

CODE -

(2]

"=

L I SRR ~ A ¢ |

fae]

=

283

TABLE 4.5

PWR SYSTEM IDENTIFICATION CODE

SYSTRM NAYE
Accumulator (ACC)
Containment Leakage (CL)
Consequence Limiting Control System (CLCs)
Containment Heat Removal System (CHRS)
Containmenﬁ épray Injection System (CSIS)
Containment Spray Recirculation System (CSRS)

Electrical Power (EPS)

High Pressure Injection System (HPCIS)
High Pressure Recirculation System (HPCRS)
Low Pressure Injection System (LPIS)

Low Pressure Recirculation System (LPRS)

Sodium Hydroxide Addition System (SHAS)

Reactor Protection System (RPS)

Safety Injection Control System (sICs)

Auxiliary Feedwater (AF)

Accunulator
Blower

Control Red Drive
Unit :

Cover Plate

]

[w)

amper

Dissal

(v

Expaasion Joint
Filter or Strainer
Cas Bottle

Gasket

Heat Exchanger

Pressura Vessel
Pump
Reactor Control Rod

Refrigeration Unit

284

TABLE U4

.6

COMPONENT CODE

Mechanical Components

AC

BL

CD.

FA

GB

GK

HE

NZ

OR

PP

cep

PV

M

RF

Sluice

Sump

Gate

Subtree

Tank»

Tubing

Turbine

Valve,
Val&e,
Valve,
Valve,
Valve,
Vélve,
Valve,
Valve,
Valve,
Valve,
Valve,
Vent

Well

Check

Explosive Operated
Hydréulic Operatad
Manual

Motor Operated
Pneumatic Operated
Relief

Safety

Solenoid Operated
Stop Check

Vacuum Relief

SL

SP

ST

TG

TB

‘cV

g

2!

AV

RV

sV

DV

VT

Amplifier
Annunciator
Battery
Battaery Cherger
Bus

Cable

Circuit Breaker
Clutch

Control Switch
Coil

Detector

DC Power Supply
Flow Switch
Heating Element
Input Module
Inverter (solid state)
Level Switch
Light

Limit Swtich

Manual Switch
Motor

Motor Starter
Neutron Detector
Potentiometer
Recorder

Lightning Arrester

285

TABLE 4.6 (Continued)

Electrical Components

AM
AN
BY
BC
BS

LhhEaoIREEA88E8aaaR

Ground Switch

Relay

Relay or Switch Contact
Reset Switch

Resistor, Temp. Divice
Signal Comparator
Switch, Pressure
Switch, Torque

Switch, Temperature

Terminal Board

Diode or Rectifier

Fuse
Generator

Heat Tracing

‘Test Pushbutton

Thermal Overload
Timer
Transformer, Current

Transformer, Potential
(or control)

Transformer, Power
Transmitter, Flow
Transmitter, Level
Transmitter, Pressure
Transmitter, Temperature

Wire

Event (where no component

involved)

B3B8 2RY

PS

Qs

TS
™

#3838

OL
TI
CcT
oT

B EH S

TT
WR

286

TABLE 4.7
FAILURE MODE CODE

Failure Mode
Closed o]
Disengaged G
Does Not Close K.
Does Mot Open D .-
‘Does Not Start . A
. Engaged E
Exceeds Limit M
Leakage L
Loss of Function F

Maintenance Fault Y

No Imput N
Open 0
Open Circuit B
Operational Fault X
Overload H
Pluggad P
Rupture R
Short Circuit Q
Short to Ground S

Fault Transfer T

287

Thus, for example, basic event FMV866FX refers to a High Pres-
sure Injection System Motor Operated Valve talloring due to an
Operators error.

A large number of basic events shown in the reduced
fault tree do not contribute to the system's faillure since
their unavaillabilities weré found to be negligible (e~+0) by the
Reactor Safety Study. Table 4.8 1is a 1list of those basic events
which were included in the analysis performed by PL-MOD and MOCUS.
The number identifyling éach évént input along with 1ts unavaill-
ability and alphanumeric identifier are givén in the Table.
A total of 142 non-replicated basic events; 9 réplicated events
adn 4 replicatéd modular gates wére included in the reduced

fault tree. PL-MOD computed a point ﬁnavailability

U= 4.71 x 1073
for the HPIS reduced fault tree. The reduced fault tree was
found to be representable by a 50 component Boolean vector
higher order structure; i.e.

B

Yo = (Y, ,...,Y

, ¥ , X ey Y)
rl ?

137 T M
Table 4.9 is the PL-MOD output gilving the order in which each
replicated event and nested module 1is listedflﬂ:the Boolean
vector, as well as the modular minimal cut-set matrix K repre-
senting the higher order gate.

Thus 1t may be seen by inspecting Table (4,9) that

= 20006, r, = 20005,....... ;T

Ty 2

288

My = C1 sub-module, Mj = GB, M, = G9,...,My5 = G56, Myo = G63.
and
| _
K
K=
Ky
| %g3

Notice that each modular cut-set may include single, double

and triple basic event cut-sets. Thus for example Kl conslsts

of a single modular event Kl = (MO) corresponding to the proper

port attached to top gate Gl! And as seen in Table (4.10)

, =48, 49, 50, 51, 52, 53, 54, 55, 1, 2, 3, 12, 13,,
G2, G38, Gll; U}

M

with G2 = {G5, G6;Q}

G5 ={4, 5, 6, T; U} G6 ={8, 9, 10, 11; U}

G38 = {56, 57; Q}

Gll = {G17, G18;Q}
Gl7 = {30, 31, 32, 33, 34; U} G18 ={36, 37, 38, 39; U}
Hence, Kl includes single as well as double basic event minimal
cut-sets.

The modular gate event occurrence probabilities (unavail-

abilities) computed by PL-MOD for the reduced fault tree are

given in Table 4.11. Thus for example gates Gl, G5 and TOP

289

have the unavailabilities

P(al) = 1.126x1073, P(G5) = 2.7 x 1073,

P(TOP) = 4.7118 x 1073
It should be mentioned that "empty" nested AND gates appearing
in a higher order structure aré given a unit probability of
occurrence (Figure 4.5). Thus, the fault tree shown in Figure
4.5 has the following cut-set description
(M, = empty AND gate) |
= (0, 1, 0, 0, 0)
, = (1, 0, 0, 0, 0)
Ky = 0, 0, 1, 1, 1)

However, since P(M;) = 1, then P(K3) = Py Py as required. =

378 o
The modular Vesely-Fussell importance values are listed

in Table (4.12). Thus; for examplé

V- v.E.
Top = 12 Tm

The evaluation of the Vesely-Fussell importances may

1 _V.F. _ -1
» Tgdg 2.08 x 10

= 2.39 x 10°
be seen to be particularly useful for cutting off unimportant
portions of the fault tree before proceeding on to make a
Monte-Carlo simulation to find upper and lower bounds on the
uncertainty in the overall system unavailability. Thus, if
for the HPIS reduced fault tree one were to cut off modules

2, then 1ts Boolean

having an importance smaller than 2 x 10~
state vector representation would be considerably simplified

to

... ST Y .eaLY
Ty ry3 Mg My TTMy 5

with

M1 = G35
M2 = GU7
M3 = G48
M4 = GU43
M5 = G53
M6 = G39 .
M7 = GUO

. M8 = Gl9
M9 = G50
M10 = GS51
M1l = G52
M12 = GU5
M13 = G56

290

291

FIGURE 4.5

"EMPTY" NESTED AND GATE

292
TABLE 4.8

HPIS REDUCED FAULT TREE BASIC EVENT DATA

NUS PFREE EVENT INBUTIS= 142

NOM REPLICATEL EVENT INPUTS= 13

FREF® INPUT RELIABILITY ALPHAN OMER I ¢
1 3.599999E-07 FPPCHEOR
2 9.999999E-05 FCYIT -0 1
3 "34599999£-07 FTFE S| - g
4 3.€00000R-04 FMVR6CEX
5 1.3C000CF=03 FCVG s ot o
6 9.599999E-05 FCYVOLLOD.
7 9.599999E-04 FC YV §236)
8 9.5999992-0u FC ¥ © 500D;
9 3.6000062-04 FNV GEFRY

10 9.999999E-04 Fd vs? HD‘
11 1.3000002-03 FCVO 3200;
12 0.CC000CE+0C FTWS IO

1 of 6

13
14
15
16

17

18
19
20

rag
22.

23
24
25
26
27

28

29
30
31
12
33
38
35
36
37
38
39
40

41

42

293

TABLE 4.8 (CONTINUED)

9.599999E-05
4.299999E-05
7.199999-04
1.400000E=03
2.20000C£-02
5.5C000CE=08
7.199999E-04
9.999999E~04
3.5599992-04
7.19$999E-04
4.299999E~05
1. 400000E~03
2.2000068~02
3.5999992-04
5.500000E~04
7.199999E-04
9.5999995-04
3.5999988-04
1.5000008-03
4.$99998E-00
3.0C0000E-04
9.$59999F~05
9.9999992-05
2.699999E-05
2.5000062~03
2.50000CF~03
2.700000E-06
9.999998E~03
9.9599998-05
1.7999598=05

2 of 6

FOQRIIMEX
FenCC2LBD
Famece2r0
FoLdc2eg
FPMmLo2Rf
FC NCEC2AK
FOLCCL2AR
FPMLC2AF
FL RCL2A0
FA BWLIDAD
e Wwioak
RO LWioag
FPMWLGAPR
FC 3 W LCHG
Ce NwW LoBK
oL wiloul
Py JonF
FXYE1tLX
FXVCUIiIX
EXVen i
FAV R TN
BAYV B el
FAVA LOED
FrRC Lo 34X
FrRelasq e
TP LA
FXV1a 61X
rrx v FALWY
FaV c23Dh
FON 2EeAl

43
a4
a5
46
47
48
49
so
s1
52
53
56
55
56
57
58
59
60

61 .

62
63
€4
€5
66
67

68

69
70
n
72

294

TABLE 4.8 (CONTINUED)

9.999999E-04
1.799999E-05
9.G99999E~04
2.50N000E-03
2.5000008-03
3.C000002~-0u4
9.999999E-05
9.699999E~05
$.599999E-05
3.GC00CCE~-NY
0.C00000E+QQ
4.400000E-07

4.40C00CE-07

3.060000E-0u
3.000000E-04
2.20C0CCE~GCY
1.9CC000F-02
2.200000E~04
1.9C000CE~0Q2
7.799998E-03
9.9599995E-04
8- 799999YE-05
8.799999E-05
7.799994E-03
8.799999E-05
8.79999YE-05
9.999999E-04
3.0000008-04
2.9C000CE-03
3.999998E-04

3 of 6

PWRCFLAW
FENZe1AL
X U PASWX
FQT26{AD
FST28¢AD
FXVSIz4X
¥FXwvstzAac
FCVSILSD
FXves2s5¢
FXVUCSLEX
FPFi&SiE
FVTOOO1P
FPP1oSIP
FLSAS9U0W
FLeaASDOw
FaN 115 BC
FSTL15wY
FEN 1 LS DC
FST LL5DD
FoAN L115¢K
FMo115¢F
FAN LL13C O
FoLLL5L Y
FCN1ILBEN
FCNL1LI5EQ
FOLL1GED
FMO LISER
Frgalsty
FHYSTLTD
FTSSLsIN

73
74
© 75
76

77

18
79
80
81
82

83

84
as
86
87
88
as
30
91
92
93
94
9S
936
$7
98
99
100

101

102

295

TABLE 4.8 (CONTINUED)

8.80000C2-03
2. 9G0C00E~03
1.3000008~03
4.3999998-08
1.1000002-01
9.999999E-0S
0.C0000CE+QQ
3.00000C2-02
1.3C000CE~03
2.2000002-04
0.C0QQQCE+00
1.9C00CCE~02
1.30000C2~03
2.200000E-04
0.00000CE+00Q
1.9C0000E~02
1.300000£~03
2.200000E-04
0.00000CE+00
1.9CC00CE-0Q2
1.30000CE-03
2.2000008~04
0.C0000GE+0C
1.9C000CE~02
1.1CCO0CE~0uY
9.999999¢~04
3.600000r-0S
1.100000¥F-02
1 1000008-02
1.100000E-04

BITSIS Y F
FLRsST310
FANRTLILD
FANRTL2K
FITSS31AF
FT39S+AX
FANOG®NF
FanNO&PS Y
FAN 2AQ2K
Fen2aei{eq
FMYT 6P
FETaelad
FONZBO2K
FCN©6EIOQ
FMV RS (D
PAaTRG4 Ju
ECN2AQLK
fatleadAn
FMY 3¢ (AT
FIT @61 A D
FANTEO LW
FON 6 { 3Q
TRV 8§ UY
FITR6LBD

YA LDdCcOW

FIREA 48K
FREDLN BX
ETTA%\BF
FRCBTA T
FANOIA X

4 of 6

118

120
121
122
123
124
125
126
127
128
129
130
131

132

296

TABLE 4.8 (CONTINUED)

9.999999E-05
7.20000CE-05
7.199999¢-04
2.20000CF-04
7.199999E-04
7.200000€-05
9.599999E-04
2.2C000CF-02
2.20000CE-02
5.799992E-03
1.3300008-03
5.1900002-03
9.999998F-03
9.999999£-05
1.799999€-05
9.99999SE-04
1.799999£-05
9.999999E-04
2.500000E-03
2.500000E-03
5.799998E-03
1.330000E-03
5.1900002-03
9.99599282-03
9.599999E-05
1.799999€-05
9.999999E-04
1.799995E-05
9.9959998-04

«S500000E-03

5 of 6

FTezstiew
FREBILAQ
FOL W TN
FOND T HAQ
FHOBIHAR
FesSa T4AK
FTTa31AN
ETTALZANF
FRAAGHGAF
FQTéiAmF
FITCERIAAL
ESTCYIAR
Fxvpaswy
FCVCERD
FCn2eeel
Fwiorisy
FeN26&TAZ
FAVP 3SWwX
CEST26HAN
CATR26RAD.
FaTsSiAnE

FSrcpL A
Farer v
FXV PCiwy
RCNVEC2 OD
FCLNIBECC

FWRCPLC
FONZIOAC

CNAVE RIS

FRTT L UMY

133
134
135
136
137
138
139
1430
141
w2
DEP INROUT
1

2
3
4
5
6
7
8
9
0

1
11
n
13

TABLE 4.8 (CONTINUED)

2.50000C2-03
5.799998R8-03
1.330000E-03
5.19000CE~-03
1.9¢00008-02
1.900000E-02
1.9C0000E~-02
9.999999E~05
4.059959¢~0%
1.€999992~06

FELIABILITY

4,0999992-0S
4.099995E~05
Q.CS;;99E'OS
1.099999E-06
#.C59999E~05S

" 4.C99999E-0S

5+799993E~03
5.7994998e-03
1.799Y99E~05
0.000000E+0Q
0.C00000E+0QC
0.C000003+00

0.00000C2+0¢

FgT2®eccd
FarSiac e
FSTOENE N
feretiiey
TEMCHIAY
FEMCH by
FPMCHILY
FeNGRTI2C
JACOQ

TTCGW

Jeo o
ITO0 O

I300

IO

Je o @
TH OO

N L
LTS 2
Funge ad
F9 59
fCEA

e O Sl

ot e

6 of 6

298

.TABLE U.9

HPIS Reduced Falut Tree Minimal Cut-set Boolean Matrix

LT T LI TR I

PARENT MODULE= 1 HUM LEP COMPOCNEN1S= 13 HUH BED MODWLES=
DLY COMES= 20C00 20005 '
g2 20003 wooo2
4000n 29C10
CEPr MODS= f 9
23 20 21
53 13 1
[3V] UR] 42
29 30 nYy
() 55 iy
61

HINTHAL CUY BSETS
00000V0VUOOCH 100000€C200VOL000C0000000CCOCCCOV00000
001100060CCO0000001CCON00CCCOCO0OCO0CO0NGCOCO000000
CCCuNnNucaeeNouCIoocecCccnucCiocnnnfoooccecccononnnon
COUUOLOICCO0U1U0V0CCO0LUC TVOCN00C00CO0V0CCO0N0000
0CccuUuV0Cco10000100CHTCO000CCINNDCO0N00CEVE0CO000000
0COoV0VN101000010003CCO0L00CO0COCCCOV00000C0CO00000
000000000CCON00T1000CLOUROCCOTICCOCHONCLCCTCOCHCONCT
009€00N001000001000C0V00N0N0010000000V0000000000000
0COUGOY 1C0000V0 100VC0C0000CCNT0CO00DUCCLCCCCOCO0ND
00000001010000010000000000000€6GEC0000000C00000000
occocuoccccooccoicccccccoceroct10c00cCccecccononoo
0100006000000V 000100000000000001€C0C0OV00VV0CCLCO00000

1CCC0G0CLCNOVC00103CCO0000100NCO100000CCOCCO00C0000"

110000000000000010¢CC0000CC0O0CAHNCCO00000000C000000
0000060000C00000010CHONOCOCNORCCIICCOCCCCCCEOC00ND
010000VNVOCHNTNO12CONN0O0D000CN0T00000000L90000000
10C60H0LCLO0UVUON0 T1ULCOCO0B0LNECOCTOV0CLLLCCCCGC00000
1166000000 C000000100000000000C00C00000000C0NNG0000
0010010CCCCOVOVDVOCOILCOONCCACCOCCCTONCCOVLCCO00000
0V 11G1IG0LC00VU0VO0 1V0000C000000060000000CCC000000
0010110CC0000U0VV0N 100VANCCHOLN09C0000C0ACA00C0000
0000€00C0CC00000003CT000GCOVCCCO0C0T1100CCLOC00C000
VOV01UHCCCCOONNNONOCICHOCECONCO0OCCOTICCCCLLCO0000
00160¢0C0030000000061000000006000000 10C20C000CONN0
000C0VICDO0DOOVVYIVOILO0VCCUOCOOUCO0TILVELCCCOCO0CN
000000006CC100N0000C100000CN0CO0000010000C0V000000
06001C1CCOCON000COOCCICCCCOOOCCLLCONOCCLELLN0C0000
000010000¢¢10500009€01060308006900€0000000(CC0C0000
CCUCCTI1CONC00IDUVIICCTINN00CNOCCOOLONNO0000LACHEN000
000001000CC10000000CC100CAC00C00000000000C0N0CO000
60€0000C0O0C00000009C0UT100GCEN0CACACO00CCTICCL000000
00CG00V001600000000C001000000000000000010C00000000
0000000000100000002CCCICOCONNLLVO0000LCILLOOOCO0VO
060000030C00NEO0000CO01000000€000C0000001600000000

49011 4901) 30009
20007 99001 20008
3% : 37 22
07 40 43
15 16 19
27 ’ 25 N 24
50 51 52
20 I 56

000000010 1000000000000100€000C000€000CC00COCO00V00
000000010C1000000000001000€00CC0060000000000000000
€0000€0010€00000000CCC1000000C0000000CC01CC0000000
0000000011¢00000000000100C0N00000G00000000C00CON0Y
¢000000€1C100£00000C00100000000000000000000C000000
0000000000€00000000C000106000COCCCO000000110000000
0000000C0 10000000000000100000C000C0000CAC1CCCCCOO0
00000006001000000000000100000€0006G0000000106000000
0000000100€00000000€00010€C00C000CCO0COCCLT1CO00C00
0000000101C00000000000010C000C00060000000€00000000
0000000 10010000000CCCGCI0CCONCCCOCCOOCECCCCOONONON
00000000100000000006000100000000000000000C100CCONO
0000000€¢11C0000000000001000000000C0000000CCOGC0000
00000000610100000000€000100000C00GCCHO0000C000C0000
0000000000000000000C00001€000C0O0DC000CCOCCATICHCONN
0000000000010000000€000010000000000000000000000009)
000000000€C000000000€000001000000000000CLCOCCI110000
0€00000000010000000CC00001000€000C000C000CCOICO0N0
€000000€00001000000€000001000000000000000000010000
00C00C000C011000000CCCG001CC0C000C000CCACLCCOCU000
0001010C00000000000010000600000000010G000C00A01000
0001110000C00000000010000€600CC00CCOCGOCACHG001000
0011010000000000000C10600000000000000C000000001000
0001011C0CL000000000100000000000000000000C00001000
0001010000010000000C 1000000000000€000C000000001000
0011410000€000000000601000¢0006000C00CCCOCCCNOO0TNO
001101060000000000000100000000000000000000000€0100
00000COCOCCND000000CC00D0100V0000CO00VCCLTACIVONIY
€000000000C010000000000001000000000000C0CCL0000010

299

FREE BOCHULE NAME=
LEAF 1INS5=
8OC INS=

FREE HOCULE NANE=

LEAF INS-

BOL INS=
NESTID= 13
NESTIC= 1
NESTIL= 15
RESTIC= 16

FREFE HOCHLE NANE=

LEAF INS=
35
mob INS=

FREE MODULE NAME=

LEAF INS=

HOR INS=
NESTIL= 25
NESTIC= 27
NESTLILC= 28"
WESTIC= 29

© NESTIE= 31

FREE NODULE NAME=
LEAF INS=

HOU INS=

NES11E= 39
NESTIL= "o
NFSTIC= 41
NESTIL= 42

FREE NODULE HARE=

LEAT INS=

nOD INS=
NESTIL= 45
NESTIL= 99
NESTIC= 50
NESTIC= 51
RESTID= 52

2N

17

18

38

VALUF=

VALOE=
1]

VALUE=
36

VALYE=
56

YALUE=

7%

NUK LEAF

NN LEAF

NUN LEAF

NUB LENF

NUN LEAF

NIt LEAF

TABLE 4.10

HPIS Reduced Fault Tree Modular Components

INP=

Inp=

ING=

INP=

Inp=

INP=

«1

LA

37

71

w3

RiM

L]

N

LI

LLiE,]

NN

nop INP= 1

6
NOD WPz 1

10
HOD INP= 1

12
HOD INP= 1

I
nOD IHP= 1
noD-1NP= 1

72

1 of 5

7
"
» 34
39
7 T4

“

LS S T "R S S

.

FRER MOCULRE NANE= 57 VALUR=

LEAP INSa 99
MOD INS= , 0
FREE NODULE NANB= 59 VALUE=
LEAF LINS= 110
nob INS= ‘o
FREE HODULE NANEs 60 VALUE=
LEAF 1N§= 4o

45 46
noC INS= 0
FREE MODULF NAME= 61 VALUE=
LEAF INSG= 11

120 121

141 2
MOC INS= Q
FHEE NODULE WAMEs 62 VALUE=
LEAP 1NS§= : 126

M 132
NOL Juss 0

NESTID= 63
NESTIL= 22
NESTID= S5

FHEE HOCULE NAfgE= 2 VALUE=

LEAF INS= [

HOL IN3= 5
NFsSTiL= 0

NESILE= 9

FRLE HOLULE NANR= 11 VALUE=
LEAF 1INS= 0
MOL INS= 17

NESTID= 23

NESTILC= 24

NES11E= 30

NESTLE= 35 ..

NESTIC= N

NES11C= 43

NESTLIE= 47

NESTLL= 48

NESTIC= 56

NESTID= 20

NES1IC= 21

NPS1IL= S4

NESTIL= 51

TUTAL sUN REP= 38
BCCLEAN HAS HEEN CALLED

PARENT NODULE NANE= 1 VALuE=
LEAF INS= 48
5 54
12 1)
nOoD INS= 2

NLSYEL HODULE HanE= 8 VALUE=

2

RUR LEAP INDP=

NUM LEAF INP=

RUM LEAF INP=

NUX LEAP 1NPa

100

m

AR
41
4

1
16

© 122

NUB LEAP INP=

NUB LEAF INPa

§un LEAF 1INPs

NUM LEAF INP=

NUNM LEAF INP=

n
127
133

6

10

13
&)
59

38
1

NUR MOD INP=
NUM BOD INDPa

NUMN HODR INP=

NN MOD INP=

NiN NOD INP=

NUNH HOD INP=

NUH HOD INP=

NUK ROD INDP=

NUN BOD INp=

2 of 5

3

1

101

42
112

17
123

128
134

1"

102

43
1]

1A
124

129
135

101

4y
144

119
125

130
136

00¢

¢C ¢ ¢ ¢ ¢ O 4

(S

LEAF TUS=
nOL 1¥S=

MESIEC noruLe
LEAF 1INS=

- HOt IMs=

.

MESTEE aOLULE
LEAF 1INS=
HOLC INS=

NESTEL NODULE
LEAFP LNS=
ROE INS=

NESTEC HCCULR
LEAF INS=
HOC INS=

NESLED mODULE
LEAF 1INS=
NOLC LNS=

NESTEC NODULE
LEAP INS=
BOC IN3=

NESTEL aoDULE
LEAF INS=
not INss

MESTEL hODULEK
LEAF 1uS=
#ob 1hS=

NESTED noDULE
LEAF JNS=
NOC 185+

NESTEL HOCULE
LEAF TNS=
nob INSs

NESTEL NOCULE
LEAYF QU=
HGE LNS=

WESTEL WODULE
LEAF 1NS=:
NOL INS=

MESTEL ACCULE
LEAP LR5=
MOC INS=

NESTEL NOLOLE

-LEAF 1NS=

nocC INs=

NLSTEC NODULE

SARE=

nAnY=

NABE=

NANE=

NANESs

MARE=

NANEs

HANE=

nAge=

nAnE=

NANE=

NARE=

nang=

s

”

22

2)

20

F3]

4?2

L1

(2]

s3

13

1.

16

VALVE=
[
a

¥ALUES=
0
[]

YALUE=
A 21
Q

VALUE=
]
[}

VALUE=
0
0

VALUE=
[}
0

VALUP=
0

0
VALUE=
0

0
SALUE=
Q

(1}
VALuER=
0

0
YALUE=
14

(]
YALUE=
1]

0
VALUES

22
L]

VALUE=

LUL}
i
non
noa
nun
LLL]
nun
L1
nun
nun
i
nnq
aun
nun

nun

LRAP

LEAP

LEAP

LEAP

LEA?

LEAP

LEAF

LEAT

LEAP

LEAP

LEAF

LEAP

LEAT

LEA?

LEAP

ne=
4P
mp=
Inpa
Ieps
mes
1 0
jnra
1Mpa
np=
mes
Tup=
!nfa

ne=

ups.

15

9

23

RO®

nod
006
nop
sob
noov

#op

nob

nosn

nab

ane

noo

Inps
18ps
T4p=
INps
INps
THP=
nps
es
Tips=
lle
18P
18ps
nps
16ps

Ines

3 of5

16

20

24

11

21

25

TOE

¢ L ¢ ¢ ¢

|

. ¢ <

LEAF INS=
AUD INS=

NESTEL MODULE
LEAF InS=
HOp 1KS=

NESTEC MOLULE
LEAF luS=
HOD 1H5=

NESTED ROCULE
LEAF INS=
Bob INS=

NESTEL RODULE
LEAF INS=
MOL INS=

NESTEC BODULE
LEAF INS=
NOL INS=

NESTLL hOCULE
LEAP INS=
aul IdsS=

WESTEL ROLULE
LEAY JNS=
HOL LNS=

NLSTED MUDDLE
LEAF INS=
Bor 1us=

KESTEL HMOCULE
LEAP 1MS=
HUL INS=

NESTEL HOCULE
LEAF INS=
noL Ins=

NESTED HODOULE
LEAF INS=
HoC 1NS=

NESTEC NOLULE
LEAF INS=
HUD [NS=

NESTEL HODULE
LEAF [HN5=
UL INS=

NESTED NUDULE
LEAF INS=

8o
ROV INs=

NAHES

NANE=

NAne=

HANE=

NANR=

NANE=

NAUE=

NANE=

NANE=

HAHE=

HANR=

¥ANES

NANE=

39

40

41

42

- 27

25

24

29

k1]

49

50

51

45

26

YALUB=

VALUE=
66
0

VALUE=
119
0

VALUE=
137
0

VALUE=
1o
1}

VALUE=
Q
0

VALUE=
0
[

VALUE=
81
0

VALUE=
a5
Q

VALUE=

9
0
VALUE=

91
[]

VALUE=
7%

[}

LLE]

L1'L]

[11]]

you

NUN

L{1]

NUN

NUK

LU,

nun

Nun

nun

non

LEAF

LEAP

LEAF

LEAP

LEAF

LEAF

LEAF

LEAP

LEAF

LEAFP

LEAP

LEAF

LEAF

LEAF

INps

1Npa

INE=

INp=

INP=

Inp=

Iup=

INP=

InNp=

14P=

INps

1NP=

INpP=

INp=

21
59
(3]
[]

67

082
86
%
4

16

NN

L11L]

LUE]

L1

N

NUN

Nun

NUA

Hun

nop
noq
nop
"oo
non
#0D
Ron
nob
HoD
non

nop

nap*

non

non

1Ny

INPs

INpP=

INp=

INP=

Inp=

up=

INP=

INP=

INP=

1=

INp=

INg=

INp=

§ of 5

28

64

68

)

a7

M

n

29

65

69

(1]

92

96

78

79

-

20g&

¢ L L

-

| SR R T

“« ¢ .

.

TABLE 4.10 (CONTINUED)

NESTEE MOCULE
LEAY 1NS=

107
MOD INS=

MESTED MUDULE
LEAFP INS=
HOD INS=

NESTEC MOCULE
LEAF INS=
HOC INS=

NESTEL MUDULE
LEAF 1INS=
HOop INS=

NESTEP MULULE
LEAF 1Ni=
BOD 1INS=

NESTED HOTOLE
LEAY LINS=
HOL INS=

NANE=

HANE=

NAHE=

NAUK=

NANE=

NANE=

59

S4

n

56

61

VALUE=
108

0

VALUEB=
97
0

VALUE=

VALUE=
0
97

VALYE=
98
0

(1L]

LUE]

NUNM

Nun

NHY

LEAEF

LEAF

LFEAF

LEAF

LEAF

LEAF

1up=

1Np=
INp=
INp=
INP=

mp=

109

NU® MOD INpP=

NN BOD INP=

NUn BOD INP=

RUN HOD INP=

NUH MOD INP=

NUA HOD JHP=

5 0f §

104

105

L o -

106

4e}3

3u4
TABLE 4.11

HPIS REDUCED FAULT TREE MODULAR UNAVAILABILITIES
FREE MOCOLE

BUDULE NANME= 5 BEL= 2.7C0G00E-Q3
PREEZ RBOCULE
BODULE NANE= 6 BEL= 3.56CC00CE-Q3
PREE nOCOLE
MOCULE NARNE= 17 FEL= 2.8999998~03
PREE MOCULE
HGCULE NANE> 18 BREL= 5.029697E-03
FREE MOLOULE
HBOCULE MANE= 38 PEL= 8.999996¢E-0¢8
PREE NMOLULE
BOCULE JAAE= U4 REL= 1.529999¥-02

PREE BOCULE

BOCULE NANE= 57 G&EL= 2. 2245998-02
FREEZ nOCULE

NODULE NANE= 59 SEL= 4.3000008-02
TREE MOLULE

BODULE NANE= 60 REL= 2.93455948-02
FREE H8OCULE

HOCULE MNARE= 61 GEL= 2.9498071-02
FREE NOCULE

BOCYLE NANE= 62 8El= 2.9355982~02
FREE noBULE

BCLULE ®ants 2 WREL= $.7199972-06
PREE nOLCULP?

BOCULEZ dANEs 11 FEL= 1. 458612805
REP HMODULE=U9011 REL= 2.94%598¢€~12
REP MCOULE=49Q1]1 REls 2.945598¢E-02
REP NODULE=39012 REL= 2.9477807€~C2
R:P MUDULE=2Y010 REL= 4.4CO0CCUE~Q2
PHTRIARCH SUEBMOCULE

BODULE WAME= 1 REL= 1e 1259942-03
WESTEC NCLULE

MOLULE NARS= 8 FEL= 1.CCCOCQF+00

NESTEL dODULE -
ACCULE KAnE= 9 SEL= '

WESTEL motuL:

1. 0GCO00E+00

HODNLE KANE= 35 PREL= 1. 00000 E+00
MESTECL MOCULE

NODULE NAZE= 37 FEL= 1. 5000008400
NESTED auture

BOCULE NANE= 22 FELs= 1.170C0008#-02 ‘
NE5TEC RQCULZ

NUCULE NAME= 23 GBiL= 1. CCOO0OE+0D
¥ES1EC NOCULE

HODULE NABE= 20 PEL= 1. CC0000E+00
MESTEL AOCULE

HOQCULE NARE= 21 REL= : 1. 00000QE+GC
NESTEL MCCULE

BOCULE NAMEs 47 FEL= 1.CC00002+0G
NESTEL ANODULE

MCCULE HAME= 48 GREL= 1. CCO000E+00
BESTEC NOCULE

BOCULE NAPE= 23 FEL= 1.5299998-02
NESTEL BOCULE

MODULE NAEEx 53 PBEL= 1. CO000CE+00
NESTEC AGCULE

WOCULEZ NAEE= 13 FEL= 2.8163008-02
MESTELC BMODULE

MOCULE NARE= 14 FEL= 2.6300002-03
NESTEL MOCULE

MODULE NABE= 15 @8EL= . 2.416300E-02
NESTEL BOLULE

BODULE NAME= 16 FEL= 2. 630000803
BESTET MOCULE)

NOCULE NAME= - 39 FEL= 1.9219998~02
MESTEC 4OQCOLE

NBCCULE NABE= 40 GBEL= 1.921999E-02
NESTEL #OCLULE

MODULE NARE= 41 FEL= 8,975934E-03
NESTZIL HGCOLE

BODULE NANE= 42 FEL= 8. 975994E-023

WESTEC HOCTULE .

305

TABLE 4.11 (CONTINUED)

MODULE NANE= 27 BEL= 1. 900000202

NESTEL MGDULE
MODULE NABE= 25 FEL= 1.9CCC00E~02
BESTELD MODULE
MCZULE NANE= 2¢ HEL= 9. 999999¢-05
NESTEL dOTULE
SODULE NANAE= 29 FEL= €. CO0000E+Q0
NERSTEL HODULZ
HODULE NANE= 30 G&EL= €. 00QQ0CE+00Q
¥ESTELD H4OCOLE
NOCULE BANE= 49 FREL= 2.C51599E-02
MESTEL MODULE
BCCULZ NANE= 50 BprL= 2.C51999E-02.
NESTEL MOCULE
MODULE NANE= S1 REL= 2.051999k-02
MESTEL MOLULE
JODULE NANE= 52 REL= 2.0519998-02
MESTEL NOLDULZE
NOCULE NANE= 45 FEL= 3.254399E8-02
MESTEC mabOULE
MCLULE XANMEx 55 ©5XL= 2.803999€-93
NESTEC NOLOLE

- HODULE sAUE= S4 BEL= 1. 100000 E~-04
NESIEIL nCDOLE
8ODOLE NAME= 28 EEL= 1. Q0C000E+0Q0
BESTEL 8QOULZ
MOCULE NaNE= 31 FEL= 1.CC00002+00
NESTEC MODULR
BQCULZ NANE= 56 PFEL= 2.2245998~02
NESTEL MOLCULE
BOOULE NANE= 63 BEL= 9.999999¢8~04
PJTRIARCH MODULE
MODULE NANE= 1 GfLs __ 4.711870E-03

INCEX= anme~n

306

TABLE 4.12
 HPIS REDUCED FAULT TREE VESELY-FUSSELL MODULAR
IMPORTANCES
nooULES
BODULP NAME= S 1up= 2.862873E-03
MUCULE MAOR= 6 1he=x | 2.0628735-91
MOCULE MANE= 17 1aBs 3.C956106-03
MOCULL NANE= 18 IdP= 3.09%510&-93
MOOULE NANE= 38 IdE= 1.9160678-09
MOOULE SABME= 34 INE= 1.056777E-C1
HOCULE NANE= 57 Ive= 2.077689¢-1
NOCULE NADE= 39 ([MP= 2.087731e-21
MOLULE NA2Ss 60 [MF= 2.392970€~02
RBOCNLE KAZE= 61 IMD= 4.358083e-C2
AQCULE NANE= 62 THE= 2.331232%-02
MOCLLE NARE=s 2 1x0= 2.€62871£-23
BOCULE NANE= 11 (8= - 31,6956108-03 .
NODULF NAME= 1 IME= 2,389697E~01 INP= 1.0000002+00
MOCULE NAMSs 3 IHFs 1.372042E-02
NOCULE KApEs 3 (mo= 1.372042E~92
HOCULE KAER= 35 ue= 7.873422€~02
BOCULEF NANE= 37 1ng= 1.725561€-932
MOLULE M¥ARE= 22 InP= 3.4987028-03
MOCULE NAwE= 23 IMB= 4.938856F-03
MODULE NARE= 20 1In2s 9.9762728-0)
BOOULE BANE= 21 Ine= 5. 69887%E-¢]
HOGULE NAPRR= 47 tye= 1.473788E-01
NOCHLF KARE= ug INp= tuT878nE~01
KOCHLEF NANE= 43 Ime= 1.0567772-01
RODULE HANE: 53 1InP= 2.088525E-91
MOCOLE SANE= 13 IxE= 1.369718¢8-02
MODULE NANME= 18 IrPs= 1,35C98 18=02
MOCULE NANE= 15 INF= 1.369713F=02
BOCUOLE MNAME= 16 INFs 1.3350981F-02
MODULE ¥ANE= 39 IME= 7.8566678-02
MODULE NAME= 40 TME= 7.85666TE-02
MODULE KAME= 41 IMEs 1.717714E-02
BODULF NANE= 42 [nP= 1.7177148-02
RODOULE KAnE= 27 1iup= 3.503702£8-03
RODULF NApE= 25 1ap= 3.706935¢-n1
BOCULE BARE= 24 ue= 1.029656E€-13 .
" MUCULE SAME= 29 1MPs 0.0C000GL Y00
AQUULE EAJE= 30 INE= 0.C00000E+nq
MODULE NANE= 49 Iug= 1. 14R009E-91
HOCULE NABE= 50 IME= 1. 14800%€=01
NOCULE NAME= S1 fup= 1. 14300%E~-01
MOCULE MAME= 52 INMP= 1. 148009E-01
HOONLE NARE= 4S IHP=e 1.05678 18-
MOCILE KANE= 55 LhE= 7.935319E-05
BODULE NAMET= 54 1nP= 1.092653E-03
MODULE FANT= 28 3= 8.946620E-03
JODHLE NANE= 31 1up= €.335154¢8=03
HODULE XAME= 56 I[d4E= 2.077488F~-01
HODULE NANE= 63 IME= 1. 32288 1E=05

THE END

307

CHAPTER FIVE
CONCLUSIONS AND RECOMMENDATIONS

V.l. Summary and Conclusions

The methodology to analyze a fault tree in terms of its
modular structure has been developed in this thesls. An algorithm
to derive a fault tree's modular composition directly from its
diagram was given. The procedure consists of piécewise collaps=-
ing and modularizing portions of the tree; until eventually the
full tree structure 1s described as a sét of modular equations
recursively relating the top tree event to its basic component
inputs.

The structural representation of fault trees containing
replicated events was shown to necessitate the use of higher
order gate modules. A Boolean vector repréSentation was chosen
to express the family of minimal cut-sets corresponding to a
higher order gate.

Once the modular structure for a fault tree has been
obtained, 1t was demonstrated how a quantitative evaluation of
reliability and importance parameters may be efficiently per-
formed. Thus, by followlng the same order in which the fault
tree modules were originally found (i.e., starting with the
bottom gate branches), each modular occurrence probability can
can be easily computed as a function of the occurrence probabili-
ties of its basic event and modular inputs. In contrast, basic
event and modular Vesely-Fussell importance measures are best

evaluated by starting at the top tree event and successively

308

applying the modular importance chain rule.
- The modular approach to fault tree'analysis outlined

above was implemented into the computer program PL-MOD. The code

was written in PL/1 in order to take advantage of the list pro=-
cessing capabilities available in this computer language. In
particular, extensive usé was made of based structures, pointer
variables and dynamical storagevallocation, 'Moreever, thé manipu-
lation of Boolean state wvectors, reqﬁired to handle higher order
modular structures, was convéniently performed using bit-string
variables.

PL-MOD was used to analyze a number of nuclear reactor
safety system fault trees, and 1ts performance was tested agalnst
that of the minimal cut-set generation codes PREP and MOCUS. It
was demonstrated that the code's execution time to modularilze
a larger sized fault tree will be significantly sﬁaller than
that taken to generate ﬁhe thousands of minimal cut-sets required
to characterize the fault tree. Thus, thé execution time to
modularize thé Higb Pressure Injection System réduced fault tree,
composed of 63 gates and 151 companents, was 25 times faster
than that taken by MOCUS to generate the 13 single event, 294
double event, and 2477 triple event minimal cut-sets associated
with the fault tree. Furthermore, because of the structural
organization of the modular information describing a fault tree,
the.evaluation of its reliablllty parameters is easler to perform
using this information than from a mere listing of its minimal

cut-sets.

309

V.2. Recommendations for Future Work

In its presént form PL-MOD generates a complete Boolean
vector representation for the modular minimal cut—sets of a
fault tree. In practice, however, it is sufficient to generate
those minimal cut-sets which significantly contribute to the
occurrence of the top tree event. Thﬁs; thé incorporation in
PL-MOD of a capabllity to generate only those modular minimal
cut-sets which réquiré the occﬁrrence of less than N simultaneous
modular events (with N = 2,3,4 etc.) would be highly desirable.

In the Reactor Safety Study reduced fault trees were
derived by eliminating those basic evénts which contribute to
the TOP tree event only thfough minimal cut-sets of high order,
say quadruple or quintuple event cut-Séts. This reduction pro-
cedure has however never been automatéd. PL-MOD would be particu-
larly sulted as a tool for deriving redﬁced fault trees, since’
the following two criteria for cutting off portions of a tree
are avallable in the code:

(a) Modular events, rather than baslc events, contri-
buting to the fop tree event only through minimal cut-sets of
an order larger than N may be deleted as explained above.

(b) Once an upper limit N has been chosen, the Vesely-
Fussell modular importances calculated by PL-MOD can be used to
further reduce the tree by cutting off modules whose importances
are smaller than a preselected cut-off value.

In order to handle more effectively fault trees which
extensively include common mode failureAevents, it 1is récommended
that the following two capabilities be incorporated into the PL-
MOD code:

310

(a) In its present version, PL-MOD can only handle
replicated modular gates, i.e., only repllicated gates fepresenting
a supercomponent event independent from all other gates in the
tree may be treated. In general, replicated gates may exist
which do not represent a supercomponent évent. Eliminating this
restrietion would significantly enhance the capabllities of the
code.

(b) Similarly, PL-MOD allows the appearance of explicilt
symmetric (k-out of -n) gatés, only if the lnputs to these gates
are non-replicated components or super-component events., It is
proposed that symmetric gates be allowed to operate on input
events which are replicated elsewhere 1n the féult tree.

" Thus far; PL-MOD has been restricted to a deterministic
evaluation of steady-state occurrence probabilities for a fault
tree. Given the efficient recursive compﬁtational procedure
used by the code, the inclﬁsidn of a time-dependent (kinetic)
tree analysis capability as well as of a Monte-Carlo packagé
enabling the code to perform a probabilistic distributional
analysis would be justified.

10.

11.

12.

13.

311

REFERENCES

R.E. Barlow and F. Proschan; Statistical Theory of Reliabi-
?1lit§ and Life Testing; Holt, Reinhart and Winston
1975).

R.E. Barlow and F. Proschan; Importance of System Components
and Fault Tree Analysis; ORC-T4~3 (1974).

R.E. Barlow and H.E. Lambert; Introcduction to Fault Tree
Analysis, Reliability and Fault Tree Analysis;
SIAM (1975).

A. Blin et al; PATREC-DE Code: Evaluation of Common Mode
Failures Impact on Reliability; Transactions on
European Nuclear Society Conference (April, 1975).

Z.W. Birnbaum; On the Importance of Different Components in
a Multicomponent System, Multivariate Analysis II,
~edited by P. Krisnalah; Academic Press (1969).

P. Chatterjee; Fault Tree Analysis: Reliabilitv Theory and .
Systems Safety Analysls; ORC T4=34(1974).

P. Chatterjee; Modularization of Fault Trees: A Method to
Reduce the Cost of Analysis, Relliability and Fault
Tree Analysis; SIAM (1975).

J.D. Esary and F. Proschan; Coherent Structures with Non-
Identical Components; Technometrics 5 p. 191 (1963)

J.B. Fussell et al; MOCUS - A Computer Program to Obtaln
Minimal Sets from Fault Trees; Aerojet Nuclear Co.
ANCR~1156 (August, 1974).

J.B. Fussell; Special Techniques for Fault Tree Analysis;
Aerojet Nuclear No. (April, 1974).

I.B.M. Systems Reference Library; PL/1 Language Reference
Manual and Programmer's Guide; C28-8201-2 and C28
-6594. o

B.V. Koen and A. Carnino; Reliability Calculations with a
List Processing Technique; IEEE Transactions on
Reliability Vol. B=23 No. 1l(April, 1974).

H.E. Lambert; Measures of Importance of Events and Cut-sets
in Fault Trees, Reliability and Fault Tree Analysis;
SIAM (1975).

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

312

H.E. Lambert; Fault Trees for Decision Making in Systems
Analysis, UCRL~51829 (Oct., 1975).

J. Murchland; Fundamental Probability Relations for Repairable
Items; NATO Advanced Study Institute on Generic Tech-
niques in System Reliability Assessment, the Univer-
sity of Liverpool (July, 1973).

P.K. Pande et al; Computerized Fault Tree Analysis: TREEL
and MICSUP; ORC 75-3 (1975).

W. Quine; The Problem of Simplifying Truth Functions, Am.
Math. Monthly, 59(1952).

E.T. Rumble et al; Generallized Fault Tree Analysis for
Reactor Safety; EPRI 217-2-2(1975).

Reactor Safety Study; Appendix II (Volume 1) Fault Tree Meth-
odology; WASH-1400 Draft (August, 1974). ‘

Reactor Safety Study; Appendix II (Volume 2) PWR Fault Trees;
WASH-1400 Draft (August, 1974).

R.B. Worrell; Using the Set Equation Transformation System
in Fault Tree Analysis, Reliability and Fault Tree
Analysis; STAM (1975). .

R.B. Worrell and G.R. Burdick; Qualitative Analysis in
Relilability and Safety Studies; IEEE Transactions
on Reliability, Volume R-25, Number 3 (August, 1976).

W.E. Vesely and R.E. Narum; PREP and KITT: Computer Codes
for the Automatic Evaluation of Fault Trees; Idaho
Nueclear Co. (1970).

313

APPENDIX
PL-MOD'S INPUT AND OUTPUT DESCRIPTION

Data Input.

No FORMAT restrictions exist as far as the listing of
data items 1s concerned. Each data item 18 only required to
be delimited by one or more blank spaces or a comma.

lst Item: 'TITLE' = a set of CHARACTERS enclosed by a
pair of single quote marks.

2nd Item: DEL = number of relliabllity parameters to
be computed (FIXED DECIMAL). (In the present PL-MOD version
DEL = 1 or 2)

3rd Iteﬁ: GUM = total number of fault tree sétes (FIXED
DECIMAL).

4th Item: BRMOD = total number of replicated modules
(FIXED DECIMAL).

5th Item: (I,AGIN(I), ALIL(I),ALIR(I))(FIXED DECIMAL)
I = gate number, AGIN(I) = number of gate lnputs,

ALIL(I) = number of free leaf inputs,
ALIR(I) = number of replicated leaf inputs.
(L = 1,2,...,GUM)

6th Item: (TRIM(IX), TRIN(IX))(FIXED DECIMAL)

TRIM(IX) = replicated leaf name assoclated with a module

TRIN(IX) = replicated gate number

(IX = 1,2,.,.,RMOD)

7Tth Item: NOR = total number of replicated leaf inputs
(FIXED DECIMAL).

8th Item:

314

NODEIN(J): (NAME,VALUE,GIN,PIT(GIN),LIL,TIL(LIL),LIR,
TIR(LIR)) (FIXED DECIMAL)
(J = 1,2,...,GUM)

NAME = gate number

. 1 AND gate
VALUE \ 2 OR gate

KON K-out of-n gate
GIN = number of gaté'inpﬁts
PIT(I) = Ith gate input (I-1,2,...,GIN)

(If GIN 0 then PIT = 0)

LIL = number of free léaf inputs

TIL(I) = Ith free leaf input (I = 1,2,...,LIL)
(If LIL = 0 then TIL = Q)

. LIR = number of repllicated leaf inputs

TIR(I) = Ith replicated leaf input (I=1,2,...,LIR)
(If LIR = 0 then TIR = 0)

(5th and 7th Items must be listed in the same
order)

9th Item: FOX = 0 if no numerical evaluation is
desired, FOX = 1 otherwise

If FOX = 0 then delete i1tems 10,11 and 12
10th Item: (FUN,DUN) (FIXED DECIMAL)

FUN = Total number of free leaf inputs

DUN = Total number of replicated leaf inputs

11th Item: (I,STATE(1,I)) (FIXED DECIMAL,FLOAT)
STATE(1,1) = probability associated with Ith free input

occurrence

(I =1,2,...,FUN)

315

12th Item: (I, STATD (1,I)) (FIXED DECIMAL, FLOAT)
STATD (1,I) = probability associated with Ith replicated
input (If Ith input is associated with a module then STAT D

(1,I) =0) (I =1, ..., DUN)

An example of input data i1s given for the fault tree SAMPLE
PROBLEM shown in Figure A-1. Table A-1 shows the input

deck, whereas Table A-2 represents the output as given by

316

SAMPLE FAULT TREE

L

317

"SAMPL?Eb PROB}LEM' TABLE A-1 SAMPLE PROBLEM INPUT
1 2 1 n
2 1 b] 1
3] 2 0
4% 1 1 1
S 1 2 0
s 2 0 0
7 1 1 n
Aa 1 0 1
. Q 0 2 1
10 Q 2 0 -
] Z 2 n
12 1 0 1
13 0 1 B |
14 2 0 0
15 1 n 1
14 0 3 n
17 1 0 1
13 2. 0 0
19 3 0 1
20. 1 1 1
21 q 2 n
22 1 1 1
23 e n n
26 v 1 1
25 1 n 1
26 ¢ 2 1
29602 1
7
1« 1o 2 2 40 1 1us G 0o
2e 241 3, 0 0. 1 22006,
Ve 26 0 Ne 2 16 17« 0 0y
e 20 1 S« 1 15 1 21004,
B¢ 263« 1 Be 2 12 19, 0 0o
He 29 2 1 440 0e Q0 0o
Te 19 1 9¢ 1 224 0 0o
29y 1o 1 10¢ n 04 1 20007,
Se 29 0 0e 2 20 21, 1 20007,
10+ 2+ 0 0 2 23 244 0 0.
11e 1y 2 12 14y, 2 1 24 0 0
12+« 2+ 1 13, 0 0. 1 21901,
1% 1y 0 n, 1 8¢ 1 29902
14¢ 240 2 15 174 0 0Ny 0 O,
154 15 1 15 7 0, 1 22901,
16¢ 24 0 Ns' 3 3 4 Sy 0 0,
17¢ 1 ¢« 1 15¢ 0 04 1 23902,
13¢ 1¢ 2 12 22+ 0 0. 0 0,
19¢ 24 1 Pea 0 06 1 21004
29 ° lo 1 ?l‘ 1 9! l 20003'
21e 25 5 0¢ 2.8 11e¢ 0 0o
22, 2y 1 23,1 74 1 20005,
234 1e 2 20 2SS, 0 0y 0 0,
2460 24 0 0y 1 10, 1 200013,
?S5e¢ 24 1 26, 0 9. 1 22004,
?6¢ 15 0 06+ 2 12 13+ 1 20005,
24 /
1 1.0E-01
2 1.0?:-5)1 M
3 ls0F=02
& la0e-02

——— 0 N

—
O~

AV VI
) —

N PPAPR W)~

IQOE-OZ
leGE=G]
le0UE-G3
le(E=03
1-05*03
1.0F=03
1.0F=063
l1.0F=03
100E’03
le0E~-03
1.02=-03
l1.GE=01
f]

1e0E=01]

1s05=02
1005‘01
o

1.0F=C1

318

TABLE A-1 (CONTINUED)

10
12
1a
16
18
20
22
24

.5E=03
055'03
«3E=03
.2t=03
05E-03
«3E=-03
«3£=03
«2E=03
-5&‘03

THE TINF IS

THE DATFE IS

SANPLE

OPTION=

PROBLENM

NUM GATFS=

NUM REPLICATED Hnbi=

NODE

1

)

10
"
12
13

4

16
17

18

GATE JNS

2

1

0

0

2158558205

170620

FRYE LEAVFS

1

0

TABLE A-2 SAMPLE PROBLEM OUTPUT

TREE ANALYSGLS

DEP LFAVE:

BY NODULES

6TE

" 1 0
20 1 1
21 9 2
22 1 1
23 2 @
21 [1
25 1 0
26 0 2

RGATE= 1 LEAFa29002

NUMNER 0F DEPENRENT CONTORFNTS: 7
HODE= 1 vaLues 1 GATE 1NPUTS=
EP LEAP [NPHTS= 0
NODES 2 VALUE: 2 GATE INPUTS=
22006
NODE= 3 YALUE- 2 GAIE LNPUTS=
EP LFAF INPUTS= 0
NODE= 9 VALUE= 2 GATE INPUTS:
21006
DLEP CONP=21006 APPEARANCESS -2
NODE* 5 VALUEs 203 GATE LHCUTSs
EP LEAP IWPUTS= 0
NODE= 6 VALWR= 2 GALE INPUTSa
EF LEAP INPUTS= 0
NOPE= 7 VALUR= 1 GME INPDTSs
o v
NODE= 3 VALLE= 1 GATE INPUTS=
20007
NODF= 9 YALUZ: 2 GATE IHPUTH=
EP LFAF INPUTS= 20007
DEP €ONP=20007 APPEARANCESS 2
NODE= 10 VALUYs 2 GATE INPUTSE
EP LEAF INPHTS= 0
HODE= 11 VALWP= 1 GATE 1NPUTS=

2 DEP 1EAP INIUTS=

NODE = 12 VALUE= 2 JGATE INPUTS=
210014

FREE LEAF INPUTSs

PREE LEAP INPUTS=

PREE LEAF I1NPUTS=

"
) :onv LEAP INPUTS=
16 1
15 DEP LEA? INPUTS»
8 . 19
0
22 DEP LEAP 1NPUTS=
0 DEP LEAP INPUTS=
20 . 21
23 24
1

0 DEP LEAP INPUTS=

(= “ « O

-

-

oce

-4
L L C L v & L o

L . S e

.

<

BODK = 13 VALuUR= 1 GATE INPUTS:
299002

RODE= 18 VALUP= 2 GATE INPUTSe

EP LEAF INPUTS= L]

NODE= 1S VALUR= 1 GATE 1NPUTS=
22001

DEP CunP=22001 APPEARANCRS= -2

NODE= 16 VALUE= 2 GATE INPUTH=
5 DEP LEAF INPUTSs

NODE = 17 VALURs 1 GACE INPHTS=
29002
DEP CONP=20002 APPEARANCES: 2
noDe= 18 vaLuy= 1 GATE JNPUTS=
PP LEAP INPUTS= o '
NODL= 192 VALUFR= 2 GAT® INPUTSS
21004
NODO - 20 VALUSs 1 GATE INPUTNT
20003
NODE > 21 VALUE= 2 GATE LurHTS:
Bl LTAF INPUTS= 0
Nonk= 22 YALUEs ' 2 GATR INPUTS=
20005
NODE= 2V VALUR= 1 GATE INPUTSS
RP LEAP INPUTS= 0
NODFE = 24 vALBE= 2 GATE INPHTS=
20003

pPEP CunP=20005 APPEARANCES= 2

NODE= 25 VALUE= 2 CGATE LAPUTS=
22004
PFO’ CoNPa22004 APPRARANCES= -2
NODE: 26 VALWE= 1 GATE INPHTS=

P 1 PAF INPUTS= 20005

NEP COMP=20005 APPEARANCES= 2

NESTID= 9

FREE HODULS NANE= 10 VALUR= 2
LPAF IN5= 23
non 1N+ []

KUSTID= 13

FRER HODULF NANE= 16 VALUR= 2
LEAF INS»]

NUM LEAF LHuP=

nun LEAP INP=

"

29

21

21

24

26

LEAP

PREE LRAP

PREE LEAP

PRER LEAP

LEA?

! OLEAP

LYAP

LUAP

LEA®

LEAP

PHIE

PREE LEAP

IRPUIS:

INpPNTS=

INpUTS=

INPUTSs

18043

INPNLSe

JUPUTS=

INPUTSs

INPUTST

LMPUT3=

INeHTS=

woA ROD 1¥Ps 1

NuA KOD JNPs 1

17

22

25

FREE LEAP INPUTS=

PREE LEAF INHPUTS=

PREE LEAP INPUTSs

A1

12

DRP

bep

veep

DEP

oEP

oep

DEP

pep

LEAP

LEAY

LEAP

LEAT

LEAP

LEAP

LEAP

LEAP

10PUTS=

INPUTSs

INPUTS=

INPUTS=

INPYESe

INPUTS=

INPUTS=

1aPNTS=

o 0
’

¢ 0
LR B
o 0
1 0

Tet
L L S " S S S

“« « O o

-

[

«

nOD INS= 0
PREE ANDULE NAN%: 21 YVALUR= 2 NUB LEAP [up=
LEAF INS= 9
HoD INS: D]

NESTID= 24
NESTID=: 26
NESTID= 2
HESTID= 7

NESTID= 8
NIESTID: 12
NESTID= 15
NFSTID= 20
NFSTID= 25

TOTAL SUN UEP= 2
BOOLEAN HAS NEEN CALLED

PARENT MODULP MNAYE= 6 VALUB= 2 NUR LEAP INDP=

2 NUM BNOD INP= 1
1"

1 NN HOD INP=]

LEAP INS= 0
BOD IN5= 0
NESTED MODULE NANE= 7 vALMEZ= 1 NUN LEAP INP= 1 NIM 30D IHPs 1
LEAF THS= 22
noD INS= 0
NESTED MODULE NAME= 8 VALUE: I HUH LPAP 1P+ 1 RUA HUD Lups |
LEAF 1NS= 9
100 IHG: g R T
NEGTFD MODOLE NANE= 9 VALUE= 2 NUN LEAFT 1¥P- 2 NUM HOD 1Hps 1
LEAF TuS5= 29 21
nop ING= 0
p1CS Ccones 101000 conp=
LIGEEN Conps 1010000
PARENT HODHLE= 6 NURM DEP CONPONENTS= 1 NBH DIP MODULRS= L}
DEP CudPS= 20007
DEP HODS= ! »
AININAL CUT SETS

10010 ,
0010
10100

NESTID= 19

AT 21
SYNH HODULE NANE= S vALuE= 20)
DFP Conpya L] 1L}
DEP MODS* 6

NINLAAL CUT SBTS

1
ot
119 .

NESTIN= 22
NESTID= 4
WESTIDs 11

100108

| cunps

22t

“ O “ « O “ & OO

L S T

“ o

L ¢ e 4

|

TOTAL SUN REP=

BOOL®ZAN IIAS BEERN CALLED

HUN AOD LNP= 1

"ot 80D LNPs 1

NUN BOD LNPs 1

conp=

NIt ROD 1NPa= 1

Nun BOD 18P= 1

NUN HOD INp= 1

NUN HOD INP= 1

N 10D LNPs 1

MUK nOD LNp= 1

NN HOD RNP= 1

PARENT HODHLE NADR= t vAtuE= 1 HBH LUAP INP= 1
LEAF INS< 14
nonp INSG= 0
NESTED MODULE NANES 2 VALUR= 2 NUN LFAP LNPs 2
LEAF 1iss 16 1
MOD INS= 0
NESTED RODULE NAXE= 4 yALuES 2 HUH LEAF INP=)
LEAP INS= 15
HOD INS= 3
BICS conrs IPUIRR AN
01101 n cunp= (RRFITITY
PARTNT 10DULY= 1 NUM DEP COMPORENTS: 2 RUN DEP RODULESe 2
DEP COMPS= 21006 22004
DEP MODS= 2 n
SININAL CHT 5STS
001114
10ty
01101
NESTUD= "
TOTAL SUN REP=

RONLEAN HAS REEN CALLED
PARENT HODULE MANE= 11 VALUR= 1 NuUs LEAP 18P= 2
LEAF INSs 1 2
nop Ins= 0
NESTFRD 4ODULE HARES 12 vALuR= 2 NUS LEAF INP: 1
LEAP INS4= 0
LOTO GRS 92
NESTED M0DBLE NAME= 18 VALUE= 2 MY LEAP JNP= 1
LEAF INS= 0
HOD fNS= 0
NESTRO BODULE NAXE= 13 VALYE: 1 RUY LEAP Jup:= 1
LEAF fuS- ’ 6
non 1RS= 0
NESTED HODMLE NAY®= 15 VALUE= 1 NUN LEAP JWP=
LEAF JINSs 0
Hop ING= 16
NESTED RODULE NA%E= 17 VYALUE= 1 NUN LEAP 1aP= 1
LEAF INS= 0
non IN5= 0

~ NESTED MODULE NANE= 19 VALME= 2 NUN LEAP 1NPs 1
LEAF INS= 0
HOD INS= [
NESTED RODULE NAHP= 22 9WALHE= 2 NUN LFPAP [NP= 1

Ul dobh 10ps= 1

*10110°8

conps

%4

.« © O O

-

-

[" L I

-

L SR S WO G SO U G S

nes

“ & O

- - - [

[

LLAF ING= 1
MOD INS: ! 0
NESTED MODULE NAAE= 20 VALWER= NN LEAFR 1MP= 1 NUN HOD INP= 1
LEAP Iu5= 9
rOD ING: 21 .
i
KESTED MODUL® NAMR= 21 VALUR= HUY LEAF 1Nb= 1 NUM BOD INDP= 1
LEAF 1INS= 0 ' :
non IHS= 0
NESTED YODHLE NANE= 24 VALUE= NON LEAF NPz 1 NiY Aaob JNP= 1
LEAF INS= "0
noD IN5= 0
MESTED MODULE NAME= 29 VALUZ= NUM LEAP 18Ps 1 SUA BOD THP=]
LEAF INS= 0
non INsG= o
NESTFED NODULE NANT= 26 VALUR= NUM LRAF INP= 2 KRUM MOD INP= 1
1RAF INS= 12 1)
Bon INS=® aQ
pIes CONP= *ONDNUONT 110000000000 D CunPs *10000001C 100000000008 CoNps
01310000101 1000000000'D CONP= 109050 11001000000008 Coltp= *11000001000100000000°8 CohP=
01100010 I00DNN000 R CINbs SO I00ONCTIN0UINI00000 D CunP: *00100¢011100011000000%8 CuUNPr
SONTN 1NN 100010109000 N CONP= N0I101011100010000000%8 Conpl= *10100001000011100000°0 Conp=
Ctg1aan1a0a i taaea0d ' n cours *10101001000010100000' B Con= *10101011000010000000°8 CuNPs
0010000100193 1 100800 8 CONP= SAN100011001011000000*8 CONMP= 100101001001010100000°B Conp=
100 101011001010000003°8 Conps RIIN0CLINN0101100U00 ' s Conls *001310013100010010000°D COnpP=
*10110001099910110000°B CONP= C10110011000010010C00 B CoBl= *0N110001001010110000°8 Conp=
1C0110211001010010000° D COip= 100100G01100011COTTI0 B ConP= *00100101100011001V100°H CONp=
100119901103011001010° 0 conp= 1001101011000 1001000%D Cune= *001010011000 10003108 COAP=
LO0101191100010001109 B ConPs N0I1100110001000101€B Counk= *0C1111011000100013000°B CONP=
100110001100010011110¢ 1 CORP= 1001101011000 100111008 Conp= *30110001100010011010¢8 Cconp=
TNAT1ID171100010011000% R CMPs 101000010000 8100111C 1 Coars= C10100Y01000011001100°R CulP=
1011097100170 11001010 A CONP= 1101101010000310010008 Conp= 101010010000 10001110'R CONPs
£10101101009010008100'8 Conis 101110010000 3000IVI0*B Cunpb= *10111101000010001000'R Cunb=
101100010900 100 111108 TOnP= 101101010000 10011100°8 CONP= *10110001000010011010'B CunP=>
OIINI0I0NN0 100 11680) 'R CONP= A0100001001011001110° B Conl= *PUIoN101001011001100°D COBP=
N0TINI0WNNINTINNIN 1IN B COMP= THCITOIVHONIN 110D IVNO' R COND= '00101001001010901110°8 Conb=
P00101101001010093100° 8 Conv= 00111001001010001010% 1 CoHPs $00111101001010001000D CoNnps
00N110001001010911110¢ 0 COML= 1ROT10101001010011100%A Conl= 'QU1100010010197011010°8 Cunpa
HNTINTII0NINI00 1 100N CONe= 01000 11100011001101* B Conpa | *00110011100011001001°'8 COHPs
f001010 1110701000 1101° D Cuap= LUTORR IR R G IRR LR TR LN L MY R *ONDINN0 1110001001110 1°8 CNYP=
A0 10T 11000100 1IN0 1R CONp3 010001100001 1001101B Cones= ¢10110011000011001001'B Ccunp=
A I0101 1000010025101 CORP= CI0TTINITO000 10001091 R Chnp= f10110011000010011101°8 Cunp=
1O 1100110000100 311001 B Conp= 100100311001011001101¢ 8 COMP= *O0110011001011001001'B Conp=
O INI0T1100 1010071101 D CUHl= *H0III0110010100010010 CONP= *00110011001010011101°B coup=
*00110011001010011001°8
PARENT MODULE= 11 NUN DFP COHPOMENTSS 7 Nua DEP HODULES= 12
DEP CORPS= 21001 220018 29002 20003 L 21004
22004 2000%
DEP HODSG= 12 14 . 13 15 1 ¥
1 22 20 2) 24 25
2h .

MINTMAL CUT SGNTH
0110000 1001100000000
10 101001000010 100000

| Y

C L L L O O O O

10101011000010000000
0010 1001901014 100000
00101011301010000000
10110001000010110000
101100 110000100 11900
0011000 1001030910000
00110011001010010000
101101010000 100 11000
0011010120101001 1000

NUM PREFE EVENT INPUTS= 24

NUN REPLICATED FVENT INPHTS=

FREE I[NPUT RELIADILITY

2

10
n
12
13

14

16
17
13
19
20
21

22

9. 999994 E-02
9.999996E-02
9.999998R-03
9.999994E-03
9. 997991£-0)
9.999996F-02
9.999999¢-04
4, 999290E-04
a9, 999999 £-04
4. 999994F- 08
9.9999)98- 04

4. TIVIIHE- D4

9. 999999 E- 04

4.99999)F-08
9.999999F-04
4, 999994F-04
9,.999999e-04
4.999990rR-04
9.999999E-04
§.999998F-04
9, MM99499¢-04

4,999994r-04

143

L. [L

« O . L ¢ v o -

[.

-

23
20

9, 999999804

4.999990E-04

DEP IRPOT RELIADILLITY

1
2

[
?
FRET MIDUYLE

0, 99999, £-02

0. 000000F+00

€, 799996F-02

9.999994¢-n1
Y9976 E-07
9. 000009E-01Y

Y.999990r-02

HODHLE NAME= 10 RFL= 1.5000001-03
FUEF HODULE

RODULE NAME: 16 REL= 2.999999F-(2
FREF NODULE

HODPULE NANE= 21 R%)= 1.500000%-03
PATRIARCH SMBNODULF

MODULE HAME= 6 REL= 0. 0000001400
RESTED HODULE

BODULE NAME= 7 REL= 4.999998 E- 04
RESTED MODULE

HODULE hANE: A REL= 1.500000E~93
NPR3TFD MODMLE

NONULE HANE= Y REL= 1. 5000002-03
PATRTARCH WODULE

NODULFE NARE= 6 REL= 2.007499K-04
SYMH SHUPERMODULE

NODULE NANE= % REL= 8.011244E~-07
PATRIARCH SUPNODIULE

HODOLE NAME= 1 RRL= 4, 999948 F-04
ESTED HODULE

RODULE NAME = 2 R%L= . 1.500000E-03
NESTED HODULE

HODUL® HAMF= " REL= 1.000001E~0)
PATRIARCH NODULFR

RODULE NAMFP= 3 REBEL> 1.257900F-07
REP MODULE=29002 REL= T.257900¢-07
PATHIARCHK SHRRODULE

NOPULE UAHE= 11 REbLs= 9,9999%08-03
NESTED MODULE

BONYLE HAMF= 12 REL= 0.000000E+00

NESTED NODUL® .

BODULP NANZ= in REL= 0. 0000008100
RESTED MODULE

HORILE NAMR= 1} %= 1. 999995 E-02
NPSTED N00ULE

ronuLyY HAAF: 19 ®FL= 2.7979%9E-02
NESTED HODULE

HODULE NANE= 17 REL= 1.000000L+00
NESTYED NODULR

HODULE NANE-= 19 HEL= 0.0000208400

C « © O O

T4
C L L C L C L L L

[

o

WESTED WODULE

HODULE NAAR= 22 REL® 9, 797999 £-04
NESTRD MODULE .

NODULE WAME= 20 REL= 1,5000008-06

NESTED MDDULE

NODULE NABF- 2} RELs 1. 00000NE DY

HESTED NODULE

RODULE NANE= 24 REL= 4,9999499E-08

NESTED NMUDULY

NODULE NANE= 25 REL= 0. 000000£+00

NESTED AOOULE)

HODULF NAHNF= 26 REL= 4.999994§-07

PATHIARCH HODULE

HODPLE NAME= 11 RSL= 2. 10625)IF- 1)

INDFY- 13PROPS]

PATR= 111uP= 1. 0000002+ 00

1= YPER.TAR=2I00 VREY= 7.3)1G4%E-1)
I FCER. TARS 2200 1AL Y= 1.959628E-11
NOTSTATE=22001 t4P= 9,303861F-01

1= IPER, TAR=290020EY = 2,1062538-11
1= GPER. TAR=2000)RPY= 2.37155928- 16
1= SPRH.TAR=21008RRY= 1.8660918-12

1= HPER.TAR=220NNREY>

NOTSTAPE=22004 INP=
I= IPER. TAR=20I15REYs
GOLD= teprops= 12
GOLDh= 2P301= 1]
GOLD= irrop= 1]
GULP= UPROP= 15
GOLD= SPaNps 17
GoLp= oPROPs. 19
GOLD= 1PR0Pa 22
GOLD= UPROP= 20
GOLD= IPROP= 21
GOLD= 10PRIP= 24
GOLP= 11PROP= 25
GULD= 12rR0P= 26
coLh= 1Ipnops= 1
HOSTRUONPS]
NOTSTATE=22006 IAT=
GOLD= 1PROP= 16
GOLD= 20R0pP= 21
GOLh= erop= 2
GOLDh= HPROP= L]
GoLD= 1PROP= 5
HOSTPROP= 5

coLn= 1PRUP = 6
HOSTPROP= 6

GOLD= 1PROP= 7
GOLD= 2PRUP> [}

2, 155N~ 16

1.023028E-0%

1.45195978-12

6.83945591-02

lee

4,000007+00

-« ¢ . L

-

J

GNLD= rrop=
GoLh= 1PROP=

ki

10

BlG*
BuG=

YESELY-PHNSSRLL IAPORTANCES

FREPR RVFNTS

I= 1
1= 2
I= 3l
I= []
1= 5
1= 6
1= 7
1= a8
t= 9
1= 10
1= "
I= 12
1= 13
1= 1
1= 15
1= 16
I= 17
1= n
1= 19
1= 20
I= ral
I= 22
I= 23
I= 24
REPLICATED RYENTS
1= 1
I= 2
1= 3
1= “
1= 5
1= 6
I= 7
HODULES

RODULE NAAT=
HODULE BAAE=
BODULE NA4E=
HODBLE NARE=
BODOLY HANF=
HODNLE NARE=
HOMILE NAKR=
RODULE NAME=
HODILE NAMNE=
HODULE NANF=
HODULE NANE=
RODULE NAN®x
HODULE NANF=
RORULP NAHF =
AODULE NAH#F=
RODILE NA#T=
HODULE NABE=
BODULE WHANE=
RODULE NABE=

-F e w5 e e N Sy N

- wh b b wa
-~

N as
N -

STATZ(2, 1)+ 1. 000008003
SEATE(2,2) = 1.00000E+00;
STATR(2,3) = 1. int120E-01;
STATE(2,8) = 1, 10124E-013
STATE (2,5) = 3. 10129E-01;
STATE(2,6) = 9.6519)E-01;
SIAPE(2,7)= 6.83164E-04;
STATE(2,B)= 3.75940E-06;
SEATE(2,9)= 1.12701E-05;

STATE(2,10)=
STATE(2,11) =
STATE(2,12) =

L STATE(2,13) =

ine=
Immp=
Iap=
NPz
mp=
mpe=
np=
nes=
INf=
mp=
1=
me=
1np=
me=
1A=
INF=
14p=
18p=
InNp=

STALE (2, 14) =
STALE(2,15) =
SCEATE(2,16) =
SEATE(2,11) =
STACE(2,18) =
STATE (2, 19)=
STATE(2,20) =
STATZ{2,21) =
STATR(2,22)=

0. N000E00;
7.5 IK0BE~0063
0.90000E+90;
0.20000F 400
1. 0000030005
6.91217E-02;
3. 10151E-01;
L, 20702E-01%;
W 19800 E-05;
4. 89970E-05;
2.6221 -0
5. 204826E-00;
5. 3229 1E-06;

STATE(2,23) = 1. OUBUSE-05;
STATE(?,24) = 5. 204 26F=-06

STATU(2,1)= J.H0039E~02;

STATD(2,2)= 1.0000UEO0;

SEATD(2,3) = 1.127491E-05;
STATD(?,4) = 6.960668-02;
STAID (2,5) = 6. 891D4E-02;
STATD(2,6) = 9.300208-01;
STATD(2,7) = 2.09770E-05;

1.5732802-05
9. I0IHGIR-01
1. 1278 1IE-09

0. 00200090 nps

e 322932F-06
1. 57 3200E-05
T.8660028-00

0, 000000000 fnpe
1. 363000E00 npe=

9.31054045-01
G NITYVIIE-02

1. 00UN00E 0D Iun

0. 30)000R 00
0, 000000300
9. 6519 WE-01
9,086 1E-01
6.961708E-102
0. 00%900K¢90
6. 39185QE-0n

.

1.000Q0F+ 00
0.000002400

2. 105575F~-05

5. 601764L-05
1. 000000E+00

1.0090N0E+00

gee

L O T S e e &

- L S [“ O

-

C ¢ ¢

C

aopuLe
HODULE
nooureg
LUT R A
RODULE

THE END

‘NANEa

MANR=
NANRS
HANP
HAHEs

20
21
28
25
26

mers
mes=
IAP=
p=
mnes=

1. 127833¢-05
1.0214264%-05

‘0. 000000400

0, HUN000K 00
0. 00000NE DY

62t

[

‘~ L L ¢ L L L L ¢ O u

.

.

L L L ¢ LU L O o

NUCLEAR enrINEERING

READING rwuld - MAT.

