The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Lalley, Steven P., Gregory F. Lawler, and Hariharan Narayanan. “Geometric Interpretation of Half-Plane Capacity.” Electronic Communications in Probability 14, no. 0 (January 1, 2009).</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1214/ECP.v14-1517</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Mathematical Statistics</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/89524</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/2.5/</td>
</tr>
</tbody>
</table>
GEOMETRIC INTERPRETATION OF HALF-PLANE CAPACITY

STEVEN LALLEY
Department of Statistics
University of Chicago
e-mail: lalley@galton.uchicago.edu

GREGORY LAWLER
Department of Mathematics
University of Chicago
e-mail: lawler@math.uchicago.edu

HARIHARAN NARAYANAN
Laboratory for Information and Decision Systems
MIT
e-mail: har@mit.edu

Submitted August 30, 2009, accepted in final form October 8, 2009

AMS 2000 Subject classification: 60J67, 97I80
Keywords: Brownian motion, Conformal Invariance, Schramm-Loewner Evolution

Abstract
Schramm-Loewner Evolution describes the scaling limits of interfaces in certain statistical mechanical systems. These interfaces are geometric objects that are not equipped with a canonical parametrization. The standard parametrization of SLE is via half-plane capacity, which is a conformal measure of the size of a set in the reference upper half-plane. This has useful harmonic and complex analytic properties and makes SLE a time-homogeneous Markov process on conformal maps. In this note, we show that the half-plane capacity of a hull A is comparable up to multiplicative constants to more geometric quantities, namely the area of the union of all balls centered in A tangent to \mathbb{R}, and the (Euclidean) area of a 1-neighborhood of A with respect to the hyperbolic metric.

1 Introduction

Suppose A is a bounded, relatively closed subset of the upper half plane \mathbb{H}. We call A a compact \mathbb{H}-hull if A is bounded and $\mathbb{H} \setminus A$ is simply connected. The half-plane capacity of A, $\text{hcap}(A)$, is defined in a number of equivalent ways (see [1], especially Chapter 3). If g_A denotes the unique conformal

1 RESEARCH SUPPORTED BY NATIONAL SCIENCE FOUNDATION GRANT DMS-0805755.
2 RESEARCH SUPPORTED BY NATIONAL SCIENCE FOUNDATION GRANT DMS-0734151.
transformation of $\mathbb{H} \setminus A$ onto \mathbb{H} with $g_A(z) = z + o(1)$ as $z \to \infty$, then g_A has the expansion
$$g_A(z) = z + \frac{\text{hcap}(A)}{z} + O(|z|^{-2}), \quad z \to \infty.$$ Equivalently, if B_t is a standard complex Brownian motion and $\tau_A = \inf\{t \geq 0 : B_t \notin \mathbb{H} \setminus A\}$,
$$\text{hcap}(A) = \lim_{y \to \infty} y \mathbb{E}^{i y} \left[\text{Im}(B_{\tau_A}) \right].$$ Let $\text{Im}[A] = \sup\{\text{Im}(z) : z \in A\}$. Then if $y \geq \text{Im}[A]$, we can also write
$$\text{hcap}(A) = \frac{1}{\pi} \int_{-\infty}^{\infty} \mathbb{E}^{x+iy} \left[\text{Im}(B_{\tau_A}) \right] dx.$$ These last two definitions do not require $\mathbb{H} \setminus A$ to be simply connected, and the latter definition does not require A to be bounded but only that $\text{Im}[A] < \infty$.

For \mathbb{H}-hulls (that is, for relatively closed A for which $\mathbb{H} \setminus A$ is simply connected), the half-plane capacity is comparable to a more geometric quantity that we define. This is not new (the second author learned it from Oded Schramm in oral communication), but we do not know of a proof in the literature. In this note, we prove the fact giving (nonoptimal) bounds on the constant. We start with the definition of the geometric quantity.

Definition 1. For an \mathbb{H}-hull A, let $\text{hsiz}(A)$ be the 2-dimensional Lebesgue measure of the union of all balls centered at points in A that are tangent to the real line. In other words
$$\text{hsiz}(A) = \text{area} \left(\bigcup_{x+i y \in A} B(x+i y, y) \right),$$ where $B(z, \epsilon)$ denotes the disk of radius ϵ about z.

In this paper, we prove the following.

Theorem 1. For every \mathbb{H}-hull A,
$$\frac{1}{66} \text{hsiz}(A) < \text{hcap}(A) < \frac{7}{2\pi} \text{hsiz}(A).$$

2 Proof of Theorem 1

It suffices to prove this for weakly bounded \mathbb{H}-hulls, by which we mean \mathbb{H}-hulls A with $\text{Im}(A) < \infty$ and such that for each $\epsilon > 0$, the set $\{x + iy : y > \epsilon\}$ is bounded. Indeed, for \mathbb{H}-hulls that are not weakly bounded, it is easy to verify that $\text{hsiz}(A) = \text{hcap}(A) = \infty$.

We start with a simple inequality that is implied but not explicitly stated in [1]. Equality is achieved when A is a vertical line segment.

Lemma 1. If A is an \mathbb{H}-hull, then
$$\text{hcap}(A) \geq \frac{\text{Im}[A]^2}{2}. \tag{1}$$

\[3\text{After submitting this article, we learned that a similar result was recently proved by Carto Wong as part of his Ph.D. research.} \]
Proof: Due to the continuity of \(\text{hcap} \) with respect to the Hausdorff metric on \(\mathbb{H} \)-hulls, it suffices to prove the result for \(\mathbb{H} \)-hulls that are path-connected. For two \(\mathbb{H} \)-hulls \(A_1 \subseteq A_2 \), it can be seen using the Optional stopping theorem that \(\text{hcap}(A_1) \leq \text{hcap}(A_2) \). Therefore without loss of generality, \(A \) can be assumed to be of the form \(\eta(0, T] \) where \(\eta \) is a simple curve with \(\eta(0+) \in \mathbb{R} \), parameterized so that \(\text{hcap} \{ \eta(0, t] \} = 2t \). In particular, \(T = \text{hcap}(A)/2 \). If \(g_t = g_{\eta(0,t]} \), then \(g_t \) satisfies the Loewner equation

\[
\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \quad g_0(z) = z,
\]

where \(U : [0, T] \to \mathbb{R} \) is continuous. Suppose \(\text{Im}(z)^2 > 2 \text{hcap}(A) \) and let \(Y_t = \text{Im}[g_t(z)] \). Then (2) gives

\[
-\partial_t Y_t^2 \leq \frac{4Y_t}{|g_t(z) - U_t|^2} \leq 4,
\]

which implies

\[
Y_t^2 \geq Y_0^2 - 4T > 0.
\]

This implies that \(z \not\in A \), and hence \(\text{Im}[A]^2 \leq 2 \text{hcap}(A) \).

The next lemma is a variant of the Vitali covering lemma. If \(c > 0 \) and \(z = x + iy \in \mathbb{H} \), let

\[
\mathcal{I}(z, c) = (x - cy, x + cy),
\]

\[
\mathcal{R}(z, c) = \mathcal{I}(z, c) \times (0, y] = \{ x' + iy' : |x' - x| < cy, 0 < y' \leq y \}.
\]

Lemma 2. Suppose \(A \) is a weakly bounded \(\mathbb{H} \)-hull and \(c > 0 \). Then there exists a finite or countably infinite sequence of points \(\{z_1 = x_1 + iy_1, z_2 = x_2 + iy_2, \ldots \} \subseteq A \) such that:

- \(y_1 \geq y_2 \geq y_3 \geq \cdots \);
- the intervals \(\mathcal{I}(x_1, c), \mathcal{I}(x_2, c), \ldots \) are disjoint;
- \(A \subseteq \bigcup_{j=1}^{\infty} \mathcal{R}(z_j, 2c) \).

Proof: We define the points recursively. Let \(A_0 = A \) and given \(\{z_1, \ldots, z_j\} \), let

\[
A_j = A \setminus \left[\bigcup_{k=1}^{j} \mathcal{R}(z_j, 2c) \right].
\]

If \(A_j = \emptyset \) we stop, and if \(A_j \neq \emptyset \), we choose \(z_{j+1} = x_{j+1} + iy_{j+1} \in A \) with \(y_{j+1} = \text{Im}[A_j] \). Note that if \(k \leq j \), then \(|x_{j+1} - x_k| \geq 2c y_k \geq c(y_k + y_{j+1}) \) and hence \(\mathcal{I}(z_{j+1}, c) \cap \mathcal{I}(z_k, c) = \emptyset \). Using the weak boundedness of \(A \), we can see that \(y_j \to 0 \) and hence (3) holds.

Lemma 3. For every \(c > 0 \), let

\[
\rho_c := \frac{2\sqrt{2}}{\pi} \arctan\left(e^{-\theta} \right), \quad \theta = \theta_c = \frac{\pi}{4c}.
\]

Then, for any \(c > 0 \), if \(A \) is a weakly bounded \(\mathbb{H} \)-hull and \(x_0 + iy_0 \in A \) with \(y_0 = \text{Im}(A) \), then

\[
\text{hcap}(A) \geq \rho_c^2 y_0^2 + \text{hcap} [A \setminus \mathcal{R}(z, 2c)].
\]
Proof. By scaling and invariance under real translation, we may assume that \(\text{Im}[A] = y_0 = 1 \) and \(x_0 = 0 \). Let \(S = S_c \) be defined to be the set of all points \(z \) of the form \(x + iy \) where \(x + i y \in A \setminus \mathcal{R}(i, 2c) \) and \(0 < u \leq 1 \).

Clearly, \(S \cap A = A \setminus \mathcal{R}(i, 2c) \).

Using the capacity inequality \[(3.10) \]

\[
\text{hcap}(A \cup A_2) - \text{hcap}(A_2) \leq \text{hcap}(A_1) - \text{hcap}(A_1 \cap A_2),
\]

we see that

\[
\text{hcap}(S \cup A) - \text{hcap}(A) \leq \text{hcap}(A) - \text{hcap}(S \cap A).
\]

Hence, it suffices to show that

\[
\text{hcap}(S \cup A) - \text{hcap}(S) \geq \rho^2.
\]

Let \(f \) be the conformal map of \(\mathbb{H} \setminus S \) onto \(\mathbb{H} \) such that \(x - f(z) = o(1) \) as \(z \to \infty \). Let \(S' := S \cup A \).

By properties of halfplane capacity \[(3.8) \] and \[(3.1) \],

\[
\text{hcap}(S') - \text{hcap}(S) = \text{hcap}[f(S' \setminus S)] \geq \frac{\text{Im}[f(i)]^2}{2}.
\]

Hence, it suffices to prove that

\[
\text{Im}[f(i)] \geq \sqrt{2 \rho} = \frac{4}{\pi} \arctan \left(e^{-\theta} \right).
\]

By construction, \(S \cap \mathcal{R}(z, 2c) = \emptyset \). Let \(V = (-2c, 2c) \times (0, \infty) = \{ x + iy : |x| < 2c, y > 0 \} \) and let \(\tau_V \) be the first time that a Brownian motion leaves the domain. Then \[(3.5) \],

\[
\text{Im}[f(i)] = 1 - \mathbb{E} \left[\text{Im}(B_{\tau_V}) \right] \geq \mathbb{P} \left\{ B_{\tau_V} \in [-2c, 2c] \right\} \geq \mathbb{P} \left\{ B_{\tau_V} \in [-2c, 2c] \right\}.
\]

The map \(\Phi(z) = \sin(\theta z) \) maps \(V \) onto \(\mathbb{H} \) sending \([-2c, 2c] \) to \([-1, 1] \) and \(\Phi(i) = i \sin \theta \). Using conformal invariance of Brownian motion and the Poisson kernel in \(\mathbb{H} \), we see that

\[
\mathbb{P} \left\{ B_{\tau_V} \in [-2c, 2c] \right\} = \frac{2}{\pi} \arctan \left(\frac{1}{\sin \theta} \right) = \frac{4}{\pi} \arctan \left(e^{-\theta} \right).
\]

The second equality uses the double angle formula for the tangent. \(\square \)

Lemma 4. Suppose \(c > 0 \) and \(x_1 + iy_1, x_2 + iy_2, \ldots \) are as in Lemma \[(2) \]. Then

\[
\text{hsiz}(A) \leq [\pi + 8c] \sum_{j=1}^{\infty} y_j^2.
\]

If \(c \geq 1 \), then

\[
\pi \sum_{j=1}^{\infty} y_j^2 \leq \text{hsiz}(A).
\]

Proof. A simple geometry exercise shows that

\[
\text{area} \left[\bigcup_{x+iy \in \mathcal{R}(z, 2c)} \mathcal{R}(x+iy, y) \right] = [\pi + 8c] y_j^2.
\]
Since
\[A \subset \bigcup_{j=1}^{\infty} \mathcal{R}(z_j, 2c), \]
the upper bound in (6) follows. Since \(c \geq 1 \), and the intervals \(\mathcal{R}(z_j, c) \) are disjoint, so are the disks \(\mathcal{B}(z_j, y_j) \). Hence,

\[
\text{area} \left[\bigcup_{x + iy \in A} \mathcal{R}(x + iy, y) \right] \geq \text{area} \left[\bigcup_{j=1}^{\infty} \mathcal{B}(z_j, y_j) \right] = \pi \sum_{j=1}^{\infty} y_j^2.
\]

Proof of Theorem Let \(V_j = A \cap \mathcal{R}(z_j, c) \). Lemma 3 tells us that

\[
\mathcal{hcap} \left[\bigcup_{k=j}^{\infty} V_j \right] \geq \rho^2 c y_j^2 + \mathcal{hcap} \left[\bigcup_{k=j+1}^{\infty} V_j \right],
\]

and hence

\[
\mathcal{hcap}(A) \geq \rho^2 c \sum_{j=1}^{\infty} y_j^2. \tag{8}
\]

Combining this with the upper bound in (6) with any \(c > 0 \) gives

\[
\frac{\mathcal{hcap}(A)}{\mathcal{hsiz}(A)} \geq \frac{\rho^2}{\pi + 8c}.
\]

Choosing \(c = \frac{8}{5} \) gives us

\[
\frac{\mathcal{hcap}(A)}{\mathcal{hsiz}(A)} > \frac{1}{66}.
\]

For the upper bound, choose a covering as in Lemma 2. Subadditivity and scaling give

\[
\mathcal{hcap}(A) \leq \sum_{j=1}^{\infty} \mathcal{hcap} \left[\mathcal{R}(z_j, 2cy_j) \right] = \mathcal{hcap}[\mathcal{R}(i, 2c)] \sum_{j=1}^{\infty} y_j^2. \tag{9}
\]

Combining this with the lower bound in (6) with \(c = 1 \) gives

\[
\frac{\mathcal{hcap}(A)}{\mathcal{hsiz}(A)} \leq \frac{\mathcal{hcap}[\mathcal{R}(i, 2)]}{\pi}.
\]

Note that \(\mathcal{R}(i, 2) \) is the union of two real translates of \(\mathcal{R}(i, 1) \), \(\mathcal{hcap}[\mathcal{R}(i, 2)] \leq 2 \mathcal{hcap}[\mathcal{R}(i, 1)] \) whose intersection is the interval \((0, i]\). Using (4), we see that

\[
\mathcal{hcap}(\mathcal{R}(i, 2)) \leq 2 \mathcal{hcap}(\mathcal{R}(i, 1)) - \mathcal{hcap}((0, i]) = 2 \mathcal{hcap}(\mathcal{R}(i, 1)) - \frac{1}{2}.
\]

But \(\mathcal{R}(i, 1) \) is strictly contained in \(A' := \{ z \in \mathbb{H} : |z| \leq \sqrt{2} \} \), and hence

\[
\mathcal{hcap}[\mathcal{R}(i, 1)] < \mathcal{hcap}(A') = 2.
\]
The last equality can be seen by considering \(h(z) = z + 2z^{-1} \) which maps \(\mathbb{H} \setminus A' \) onto \(\mathbb{H} \). Therefore,

\[
\text{hcap}[\mathcal{R}(i, 2)] < \frac{7}{2},
\]

and hence

\[
\frac{\text{hcap}(A)}{\text{hsiz}(A)} < \frac{7}{2\pi}.
\]

\[\square\]

An equivalent form of this result can be stated\(^4\) in terms of the area of the 1-neighborhood of \(A \) (denoted \(\text{hyp}(A) \)) in the hyperbolic metric. The unit hyperbolic ball centered at a point \(x + iy \) is the Euclidean ball with respect to which \(x + iy/e \) and \(x = iy/e \) are diametrically opposite boundary points. For any \(c \), choosing a covering as in Lemma 2,

\[
\text{hyp}(A) < \left(\frac{e}{2} \right)^2 \pi + 4ec \sum_{j=1}^{\infty} y_j^2.
\]

So by (8),

\[
\frac{\text{hcap}(A)}{\text{hyp}(A)} > \rho_c^2 \left(\frac{e}{2} \right)^2 \pi + 4ec \right)^{-1}.
\]

Setting \(c \) to \(\frac{8}{5} \),

\[
\frac{\text{hcap}(A)}{\text{hyp}(A)} > \frac{1}{100}.
\]

For any \(c > \frac{e-e^{-1}}{2} \),

\[
\text{hyp}(A) \geq \pi \left(\frac{e-e^{-1}}{2} \right)^2 \sum_{j=1}^{\infty} y_j^2.
\]

So by (9),

\[
\frac{\text{hcap}(A)}{\text{hyp}(A)} \leq \frac{\text{hcap}[\mathcal{R}(i, 3)]}{\pi \left(\frac{e-e^{-1}}{2} \right)^2}.
\]

\[
\text{hcap}(\mathcal{R}(i, 3)) \leq \text{hcap}(\mathcal{R}(i, 1)) + \text{hcap}(\mathcal{R}(i, 2)) - \text{hcap}((0, i)) \leq 5.
\]

Therefore,

\[
\frac{1}{100} < \frac{\text{hcap}(A)}{\text{hyp}(A)} < \frac{20}{\pi(e-e^{-1})^2}.
\]

References

\(^4\)This formulation was suggested to us by Scott Sheffield and the anonymous referee.