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1. Introduction

The success of nodal methods in solving accurately and effi-

ciently the few-group diffusion equations combined with recent

advances in the calculation of homogenized nodal cross sections

provide motivation for extending these methods to the performance

of depletion calculations. Furthermore, since in present state-

of-the-art depletion packages, isotopes are generally depleted

from regions of a reactor by the neutron flux averaged over a

large "depletion block", the use of nodal schemes becomes even

more attractive. Although FLARE-type nodal programs have been

used to perform full-core spatial calculations in depletion models,

these codes use a crude neutronics analysis, relying heavily on

empirically adjusted "transport kernels" and boundary albedoes to

match results of higher-order calculations. Although when tuned

in this manner, these codes can give a satisfactory description

of reactor performance over life, confidence in these results is

somewhat limited, and application of the various empirical adjust-

ments outside ranges where they have been verified is not possible.

Presently, an EPRI-sponsored study is underway at MIT to

extend the use of the nodal code QUANDRY2 to performance of the

spatial calculation in a depletion model. QUANDRY has a strong

theoretical foundation and relies on only one basic approximation

in which the transverse leakage from a node is assumed to be

quadratic in shape. The code has been tested using a large variety

of LWR multi-dimensional static and transient benchmark problems,

and its accuracy and speed have been clearly demonstrated.
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As with all nodal models QUANDRY requires cross sections that

are constant within the individual nodes, and thus errors in highly

heterogeneous problems (particularly BWR's) can be encountered

because of the inadequacy of conventional methods of cross section

homogenization3 (e.g. simple flux-weighting of heterogeneous cross

sections by the flux computed in an isolated-assembly calculation

with J.n = 0 boundary conditions). However, Koebke 4 has shown

that it is possible to define equivalent homogenized nodal para-

meters that will reproduce in a nodal calculation all reaction

rates and the global reactor eigenvalue of a reference fine-mesh

solution. Although the calculation of these exact parameters

would require actually performing the heterogeneous full-core

solution (and would thus be self-defeating), methods have been

developed to obtain good approximations of the formally-exact

values. In particular, Smith has generalized and simplified some-

what Koebke's equivalence theory method and incorporated the

revised model into QUANDRY3 . This generalized method is applied

by first performing isolated-assembly calculations for each node

in the system to determine flux-weighted cross sections and discon-

tinuity factors (which can be viewed as additional homogenized

parameters in a node). These assembly discontinuity factors (ADF)

and assembly-homogenized cross sections (AHCS) are then used to

perform a global homogenized (QUANDRY) calculation to obtain a

first estimate of the net surface currents on the boundaries of

the various assemblies. These currents can then be imposed on the
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assemblies in heterogeneous, fixed-source calculations to obtain

improved estimates of the exact HCS and DF which are in turn used

in another global calculation, and the procedure can in principle

be repeated until convergence of the global solution. The con-

verged (or nearly converged) global results have been shown to

match very closely results obtained by solving the reference

global heterogeneous problem.

Cheng5 has developed a system of computer programs in which the

response matrix (RM) method is used to update the homogenized cross

sections (HCS) and discontinuity factors (DF). The "response"

of any heterogeneous assembly (i.e. detailed group fluxes and

interaction rates) to unit net surface currents in each group and

over different segments of the node surface can be precalculated

by performing a series of fine-mesh fixed-source calculations for

the node in question. In present applications, the shape of the

net current over each segment is assumed to be flat. The response

matrices can be used in conjunction with actual net surface cur-

rents (from a nodal full-core calculation) in local calculations

for the various assemblies to update the HCS and DF. The method

relies on the fact that the "responses" to currents of arbitrary

amplitude applied to nodal surfaces can be found by superposition

and thus accounts for the effects of boundary currents on the

node homogenized parameters without the need to repeat relatively

expensive fixed-source diffusion calculations for identical assem-

blies in different core locations.
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The local calculations for the various assemblies are per-

formed using the code RESPONSE5 , in which group net currents from

the global problem can be distributed over the various segments

of the node surface. These RM calculations can be performed for

an individual node or for a five-node cluster in which effects due

to nearest neighbors on the current shape at the boundary of the

center-node are modeled (and thus the two-segment approach becomes

useful).

Benchmark calculations using the RM's to update the HCS and

DF have shown that even for extremely heterogeneous cases, the

use of one-node local calculations and one global/local iteration

reduced the maximum error in nodal power to f\, 2%, a considerable

improvement over ADF results (r, 5% errors) and a drastic improve-

ment over conventional flux-weighting schemes (o 15% errors).

In this report, a method is described for extension of QUANDRY

and the RM technique of assembly homogenization to BWR depletion

studies. Several problems are considered, including the variation

of RM elements with important variables in the depletion calcula-

tions (such as nodal exposure E and coolant void fraction v) and

possible interpolation and data manipulation techniques. Finally,

some anticipated problems with the overall method and potential

solutions are presented. However, before commencing with these

topics, a description of conventional depletion methods is given.
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2. Review of Depletion Methods

The great diversity in methods used to perform depletion calcu-

lations (and the fact that they are frequently company confidential)

makes it difficult to give a detailed account of existing depletion

methods. However, it seems possible to group the various methods

into two distinct approaches depending on whether isolated-assembly

depletion calculations are performed prior to the actual full-core

depletion calculation. In the first of these (Method 1), assembly

depletions are not performed, and zero-dimensional depletion runs

are used to create tables of microscopic, few-group cross sections

as a function of exposure, as well as other important properties

(temperature, moderator density, etc.) for each initially different

type of fuel cell (or some larger portion of an assembly) present

in the core. These cross section tables, which account in an

approximate manner for effects of spectral changes on the few-group

cross sections during lifetime, are then used in tandem with a

spatial-diffusion/depletion computation. Either "point" or

"block" depletions may be performed depending on whether number

densities and macroscopic cross sections are updated for individual

fuel cells or for larger regions (using the neutron flux averaged

over that region).

With the second depletion approach (Method 2), each cell in

an assembly is modeled explicitly in a two-dimensional assembly

depletion calculation in which neutron leakage at the node boundaries

is assumed zero over life. This assumption of no leakage, while

never completely justified, is generally accepted for BWR's and
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is frequently made for PWR's as well. Each assembly is thus

effectively decoupled from its environment, and assembly parameters

such as k. and heterogeneous, macroscopic, few-group cross sections

may be tabulated -- again as functions of exposure and other

assembly properties. Tables of this type greatly ease the "book-

keeping" tasks in fine-mesh depletion calculations, but their

accuracy obviously depends on the mathematical model employed in

the assembly depletion runs. Method 2 is also very useful when

nodal methods are used to perform the global depletion computation,

since the assembly depletion results may be averaged to yield nodal

parameters as a function of burnup.

Clearly, the two methods overlap significantly (for example,

Method 1 may be employed on the assembly level with a point deple-

tion option to perform the assembly depletions required for Method 2),

and thus many of the calculational procedures are applicable to

both. Both of these methods and some of the computer codes used

in their implementation are discussed below. However, for more

detailed discussions of the various codes, the reader is advised

to consult the program manuals and the references cited therein.

Also, no attempt is made to review the enormous topic of basic

cross section data reduction techniques. An excellent (but slightly

dated) discussion of these methods is given in the review article

by Adensam et al. 6

2.1 Method 1

The first step in this approach is the use of multi-group

cross-sectional data to perform spectrum calculations for the
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various depleting regions over life. The neutron slowing down

spectrum is typically computed using a P-1 or B-1 approximation

to the Fourier transformed Boltzmann equation 7, while the thermal

spectrum is most commonly evaluated using the Wigner-Wilkins 8

model. Thus, tables of few-group, region-averaged, microscopic

cross sections can be generated as a function of exposure for each

region. The depletion calculations are performed for a zero-

dimensional system, with leakage approximated by DB2 (B2 = geometricr r
buckling). LEOPARD is perhaps the most well-known of the codes

that perform this task. In LEOPARD, cell heterogeneity is simu-

lated by use of fast advantage factors, thermal disadvantage

factors, and resonance self-shielding factors. A more accurate

representation of this heterogeneity is possible if collision

probability or other transport theory methods are used (as is done

in the EPRI-CELL code 10 , for example). Fission product buildup

is usually treated by lumping all fission products (other than Xe

and Sm) into a single material and adjusting their effective

absorption cross section to match more sophisticated burnup-lifetime

calculations. Although less famous than LEOPARD, other zero-

dimensional burnup codes such as LASER1 1 and CINDER 12 also exist

and perform many of the same calculations with varying degrees of

sophistication and accuracy. Strong absorbers (i.e. control rods,

burnable poison rods) require auxiliary calculations generally

based on blackness theory1 3 and are performed by RODWORTH,14

MICBURN15 , and other codes.
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Spatial calculations at the beginning of each depletion time

step are performed by solving the few-group diffusion equations

using standard finite-difference codes such as PDQ-716 or

17CITATION1 . The computed flux shape (to be used to deplete the

isotopes) must correspond to the full-power operating conditions

of the reactor, with control rods in their proper positions (or

the concentration of burnable poison adjusted for criticality)

and the coolant density and temperature profiles consistent with

the power distribution. Clearly, an iterative procedure is re-

quired, and in view of the enormous expense of performing full-

core, finite-difference diffusion calculations, auxiliary methods

and numerous tricks are used to reduce the frequency and expense

of these calculations7 . Generally, pin-by-pin heterogeneity is

not modeled explicitly, and macroscopic cross sections are assigned

to regions of the reactor that are similar at the beginning of

life (depletion blocks). The computed, power-normalized group

fluxes are then averaged over each depletion block, and the resulting

average fluxes are used to deplete the isotopes in that region

over a chosen depletion time step.

The isotope depletion calculational procedure may be described

by considering specifically the program HARMONY adjunct to PDQ-7.

In this code, the fluxes from the spatial calculation are used to

solve a set of differential equations that describe the time-

variation of the nuclide concentrations during the depletion inter-

val. At the end of this interval, the computed number densities

can be used' together with the pre-tabulated microscopic cross
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sections to recompute the few-group macroscopic cross sections

for the ensuing spatial calculation. In solving these equations,

allowance is made for step-wise time-dependence of microscopic

cross sections within a depletion step by interpolation of the

pre-generated cross section tables. Constant power operation is

simulated by thermal flux renormalization, a procedure that also

reduces the required frequency of spatial calculations.

2.2 Method 2

Although zero-dimensional codes can model whole-assembly

depletions in an approximate and empirically adjusted manner9

increases in computer capabilities have made the use of more

accurate methods based on transport theory and collision probability

techniques more attractive. Methods have been developed to deal

simultaneously with a number of adjacent cells in an assembly and

with entire assemblies. With an assembly, multigroup spectra are

obtained (at B.O.L.) by solution of the space-energy transport

equation (e.g. using collision probability techniques) for the

different pin cells. These spectra are used for cross sectional

energy condensation and spatial homogenization within the individual

cells. Special calculations are required for treatment of reson-

ance cross sections and strongly absorbing regions. Few-group

cross sections smeared over the different cells are then used in

2-D spatial calculations,in which the integral transport equation

is solved with J-n = 0 conditions imposed at the assembly boundaries.

With the resultant scalar flux distribution, assembly homogenized

cross sections may be obtained and the depletion equations can
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be solved for the different fuel-containing cells. The new number

densities are then used to repeat the entire procedure at a new

value of assembly exposure.

Methods of this type have been incorporated into codes such

as Combustion Engineering's DIT programl8 and EPRI's CPM1 9 and

CASMO20 . The output from these codes typically consists of nodal

k., heterogeneous fluxes, and macroscopic cross sections for each

fuel cell (as well as non-fueled regions) in an assembly as a

function of exposure and other assembly properties. These same

results can also be obtained (although less accurately) by per-

forming assembly depletion calculations using a diffusion/depletion

model on the assembly level. Results of the assembly calculations

can then be used in global finite-difference diffusion calculations

or may be collapsed to yield assembly-averaged data for use in

nodal codes.

Because of the enormous expense of full-core, finite-difference

calculations, the use of nodal codes of the FLARE type to perform

three dimensional spatial calculations in depletion models has

become quite standard. These codes are capable of predicting

reactivity, power and void distributions, and critical control

rod positions throughout life by using very coarse mesh spacings.

The great economy of these codes also permits calculation of

assembly flow rates and optimized fuel loading patterns based on

desired power shapes and overall fuel management objectives.

The nodal codes presently used adopt an extremely simple

approach to- core neutronics. Typically, a one-group neutron

balance is performed for each node j and may be written (in a some-

what simplified form) as21
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A- = 1 W . S = E W . S + W.. S. (1)jm m m3 m 33 3

S = k A (2)

where

S. E rate of neutron production by fission in node j
J

A. E rate of neutron loss by absorption in node j
J

Wmj E probability that a neutron born in node m is absorbed

in node j (E W . = 1)

and A E global reactor eigenvalue.

To reduce further the computational effort, it is customary (but

not necessary) to assume only nearest-neighbor coupling in Eq. (1).

Also, the "transport kernels" Wmj are usually synthesized in simple

2 D___D2_
ways using the neutron migration area M ( 1 + and

al+ 21 Ya2)

the node size and then adjusted by a blend of theoretical analysis

and empiricism. For depletion calculations, the nodal parameters

(e.g. k,,0, M2 ) are computed as functions of exposure and other node

properties using polynomial coefficients predetermined by fitting

results of the previously-performed assembly depletions.

Because of the simple neutronic model, the FLARE-tupe codes

often given unsatisfactory results. Errors in nodal powers of

22
2% and upward are not uncommon2 It should be noted, however,

that improved but proprietary versions of FLARE are known to exist.

Also, the basic FLARE model has been expanded into other nodal

codes (e.g. TRILUX 2 3 , PRESTO 2 4 , SIMULATE25) TRILUX, for example,
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is capable of treating larger cores, calculating additional quanti-

ties of interest (e.g. critical heat flux ratios), and utilizing

more complicated fits of k, as a function of exposure and other

nodal properties.
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3. BWR Depletions Using QUANDRY

The basic techniques presently used to perform BWR depletions

using nodal methods are directly applicable to a depletion model

in which .QUANDRY performs the spatial, full-core solution. The

primary differences are the use of a more rigorous neutronic model

and a more accurate assembly homogenization technique. However,

implementation of these procedures requires no change in the

depletion model.

3.1 General Description of the Method

3.1.1 Assembly Depletion Calculations. As in conventional

nodal depletion models, a two-dimensional assembly depletion calcu-

lation with J-n = 0 boundary conditions over the entire lifetime

of the assembly will suffice for each initially different assembly

loaded in the core. Although this neglects the possibly signifi-

cant flux tilts that an assembly experiences during its in-core

residence, it is generally agreed that for the purposes of deter-

mining heterogeneous, macroscopic cross sections throughout life,

this approximation is justified. These cross sections can then

be used in fixed-source calculations to obtain nodal response

matrices as a function of exposure (see Section 3.1.2). In addition,

it is possible to edit out of these calculations the AHCS and ADF

as functions of exposure E using

V Zv (r,E) $ (rE)dV

AHCS g (E) = (3)
$ (E) Vk
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kS 9(rE) dS

ADF Ef g(E) - (4)

S(E) Vk

where (E) = k (rE) dV (5)

and where a denotes the type of interaction, k is an assembly

index, k refers to the k th surface of assembly k, and the remaining

notation is standard.

For BWR's, these assembly depletions must be performed for

several assumed values of coolant void fraction u and for both the

rodded and unrodded configurations of the (two-dimensional) assem-

bly "slice". By keeping u constant during the depletion, the void

history of the node defined by

v = E u(E') dE' (6)
0

is also fixed (and simply equals u). To account for instantaneous

voids which may differ from v, "branch calculations" are performed

at various exposure intervals. In these calculations, number

densities obtained from the main depletion sequence are retained

for all materials except the coolant. These densities and the

adjusted water density are used together with appropriately modified

few-group microscopic cross sections to recompute spatial flux

distributions at the various exposures. Similar branch calcul-
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lations in which the fuel temperature is varied, or the control

blade is inserted (or withdrawn) are useful for determining

effects of these variables on the assembly depletion results.

3.1.2 Response Matrix Considerations. Once the heterogeneous

macroscopic cross sections are known for an assembly throughout

life, the RM's for that node may be generated as a function of

exposure and other nodal properties (including the global eigen-

value). The required matrices for node k are denoted by [R],

{R], and IR] and are defined by

IT Ik = [R]kfJ(

{F]k = IR]kfJ] (8)

fMJk = 'R~kIJI (9)

In these equations, [J] is a column vector of group net surface

currents in the outward normal direction to various segments on the

four faces of a (two-dimensional) node. Thus, for a G-group,

N-segment per face model, {J] may be expressed as

jJ] = Col {J(n-1)G+g}

g =1, ...,G

n=, ..., 4N (10)

The quantity 1T ]k represents a column vector of nodal group fluxes

averaged over various segments of the node surface, i.e,
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[$ k E Col {(n-1)G+g} = Col {n S (r) dS}

n

g = 1 .. ,G

n 1,...,4n

where Sn is the area of the n th portion of the nodal surface.

The matrix [F]k is defined as

IF]k C Col {
Vk g

a = 1, ... , 6

(12)

where the correspondence between a and

a = 1

E = 1/D

2

Itg

3

gg

4

VE fg

and where Vk is the volume of node

the I-element column vector

[M]k Col
G

g=1l ViVk

k.

cg

5

:fg

is given by

6

1

Finally, [M]k is defined by

$ dV

i = 1, ... , I

where i denotes a fueled region within node k (and V its volume),

and I is the total number of fuel cells contained within the node.

(11)

(13)
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With this assignment of matrix elements, it is apparent

that knowledge of the square matrix [R] and the non-square

matrices [R] and [R] together with net surface currents (from a

global QUANDRY run, for example) gives information about the

average of the heterogeneous surface flux (used for DF calcula-

tions), the node-integrated reaction rates (used for HCS calcula-

tion), and the local fission rates within an assembly (used for

prediction of nuclear hot spot factors).

The fixed-source calculations needed to generate the response

matrices can in principle be performed using any one of a number

of mathematical models (e.g. Monte Carlo,, multigroup transport

theory, etc.). However, for consistency, the same model that is

used to define the reference solution (i.e. the solution to be

matched by the nodal (homogenized calculation) must also be used

to generate the response matrices. 5

3.1.3 Depletion Procedure. After the RM's have been generated

for all required nodal conditions, actual depletion calculations

may be performed by the following procedure:

i) Consider an initial core configuration with known nodal

exposures.

ii) Obtain the ADF and AHCS for all nodes at reference

values of nodal properties (including control blade

presence and control history) by interpolation of pre-

tabulated ADF and AHCS as functions of exposure.
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iii) Perform a three-dimensional global QUANDRY calculation

(with unity DF in the Z-direction) to obtain consistent

void v and temperature T distributions, as well as the

global eigenvalue X g

iv) Interpolate the available, precomputed RM's for each

node to the proper T, v, and X at the known nodal ex-

posures. Use these matrices together with the net

surface currents computed by QUANDRY in local, response

matrix calculations to obtain improved estimates of the

HCS and DF. 5

v) Rerun the global CQUANDRY) calculation using the revised

HCS and DF (again with thermal-hydraulic feedback) to

obtain updated currents, thermal hydraulic variables,

and A .

vi) Repeat steps iv and v until satisfactory convergence of

the global solution is achieved.*

vii) If X differs from unity, return to step ii and repeat

the procedure with control blade positions adjusted so

that the critical condition is approached.

viii) Use the converged, critical net current distributions

together with the matrices [R]k (see Eqs. (9) and (13))

to obtain the local fission rates needed to determine

the location and magnitude of the peak local power.

*
Since a criticality search. must still be performed, it may be
undesirable at this stage to converge the global solution fully.
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ix) For a given depletion (calendar) interval, determine the

energy removed from each assembly using the converged,

critical power distribution found in step vi.

x) Return to step.ii with the exposure distribution (found

in step ix) and the nodal properties (found in step vi)

to obtain the ADF and AHCS needed for the first global

solution at the beginning of the second depletion time

step.

xi) Repeat the procedure of steps ii to x until the end of

the operating cycle.

xii) Return to step i for the beginning of the next operating

cycle.

This procedure provides nearly all quantities of interest in a

reactor analysis model. In particular fuel loading patterns, con-

trol strategies, and thermal hydraulic parameters can be evaluated,

and their consistency with overall fuel management objectives can

be assessed.

3.2 Specific Considerations

The methods described in Section 3.1 are quite general, and

thus it is desirable at this point' to consider a few points in

more detail.

3.2.1 Assembly Depletions. The initial assembly depletion

calculations may he performed by use of either an assembly depletion

code (e.g. CASMO) or a general diffusion/depletion model applied

to individual assemblies with J-n = 0 boundary conditions (e.g.

LEOPARD - PDQ/HARMONY). These assembly depletions are typically
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performed for three assumed values of coolant void fraction

(v=0, 0.4, and 0.7) and for both the rodded and unrodded configura-

tion of each assembly. Cross sectional data (both heterogeneous

and flux- weighted), the ADF, and the nodal kco may be obtained from

these calculations at discrete values of exposure (e.g. E=O,

5, 10, 20, and 30 MWD/kg) and can be obtained for intermediate

exposures using low-order polynomial fits. Branch calculations,

which account for fuel temperature, instantaneous void, and con-

trol history effects, are usually performed at these same discrete

nodal exposure values. 2 6

3.2.2 Response Matrix Generation. Response matrices can be

generated by solution of a number of fixed-source problems for each

assembly with different "external" source distributions to simulate

the various group net currents imposed on each segment of the

assembly's surfaces. Since the matrices are computed for the pur-

pose of determining homogenized parameters that would reproduce in

a nodal calculation the reaction rates and the global eigenvalue

of some chosen reference solution (e.g. a finite-difference, few-

group, diffusion theory result), the same energy and spatial

approximations that characterize this reference solution must be

made in generation of the response matrices. Thus, a fine-mesh,

few-group, diffusion theory approximation is used in performing

the fixed-source calculations which are needed to compute the

response matrices. The code CITATION is particularly well suited

for this task because it has the capability of solving the diffu-

sion equation with an "external" source term in a multiplying

medium and because it allows the group fluxes to be negative (as is
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required for neutron balance in a subcritical assembly with an

imposed net current in the outward direction). Sample input data

for CITATION are given in Appendix 1, together with details of

Cheng's procedure for response matrix generation given the

heterogeneous cross sections corresponding to fixed values of

assembly conditions (including X ). For more theoretical details,

the reader should consult Cheng's doctoral thesis.5

3.2.2 Global/Local Iteration. Even though each iteration

between the global (QUANDRY) and local (RESPONSE) calculations is

quite fast 5 , it is clearly desirable to perform a minimum number

of these iterations. Cheng has shown that for B.O.L. conditions

and no thermal-hydraulic feedback, nodal powers and global eigen-

value are accurately predicted if only one iteration is performed

and if single node local calculations are used. Whether this

simple procedure will prove satisfactory over life (and for cases

where thermal hydraulic feedback effects are significant and where

local power information is desired) is a question that remains to

be answered.

Some details of the calculational steps used in actual

implementation of the global/local.iteration are given in Appendix 2.

3.2.3 Summary. A flow diagram illustrating the overall

procedure for the proposed depletion model is given in Fig. 1.

*
This diagram is somewhat simplified because the calculational
steps needed to perform a criticality search or an adjustment
of the fuel loading pattern are not shown explicitly,
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This figure gives the required sequence of calculations, as well

.as some of the computer codes useful in their implementation.

In the "pretabulation" phase of the procedure, the assembly

type may be varied in step 1, the coolant void fraction in step 2,

and the global reactor eigenvalue (which must be assumed in obtaining

the matrices) in step 5. Finally, branch calculations may be per-

formed during step 4 at several exposures to determine variations

in matrix elements with additional variables.

3.3 Numerical Testing

3.3.1 Simplifications of the Proposed Model. For the purposes

of testing the overall QUANDRY depletion model and the response

matrix method of assembly homogenization, it is clearly desirable

to simplify considerably the procedure described in Sections 3.1

and 3.2. For example, since flux distributions in the axial

direction are known to be rather smooth throughout life, attention

can be focused on prediction of radial flux and power distributions

for different x-y planes at fixed axial levels. Thus the depletion

runs needed to test the overall model can be performed for two-

dimensional systems. In addition, while a criticality search

must in principle be performed to obtain the power distribution

used to deplete the various assemblies, this complication need not

be addressed in the present study. The cost associated with this

search would be significant, and the overall method can be tested

without recourse to it (provided that the same procedure is adopted

for a reference solution). Thus the test runs would be performed

with a continuously varying g and no control blade history effects,

Finally, if the fuel temperature variable is neglected, the ADF
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and AHCS will depend only on E, v, and u. (The response matrices

will depend additionally on A .) Consequently, the initial assembly

depletion runs must be performed for different values of u,

branch calculations would account for the effect of an instantaneous

void u' different from u (=v), and response matrices must be tabu-

lated for the different values of E, v, u, and A .

3.3.2 Numerical Standard. A consistent numerical standard

(reference solution) must be designed to test the proposed,

simplified depletion method. Since the purpose of the study is

the development of an improved depletion model and not the perfor-

mance of depletion runs for an actual reactor), it is possible to

use simple, few-assembly problems with imposed outer boundary

currents (e.g. using albedo boundary conditions) to test the various

procedures. For consistency, the reference solution should

(a) employ the same thermal-hydraulic feedback model as

QUANDRY,

and (b) have the capability of depleting isotopes using the same

depletion equations used in performing the initial

assembly depletions.

Presently, it is not clear how to satisfy these constraints without

revising QUANDRY so that it can solve isotope depletion equations

and using QUANDRY fine-mesh solutions to deplete the assemblies

as well as to provide the needed global fine-mesh reference. Thus

it will be necessary either to interface QUANDRY with some existing

depletion program, or to add a subroutine which will solve the

isotope depletion equations and provide new macroscopic cross

sections at the end of each depletion interval.
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4. Response Matrix Behavior in Depletion Calculations

The success of the proposed depletion procedure will depend

largely on the feasibility of determining accurately the response

matrices for all node conditions of interest by interpolation.

Thus, a study was performed to test the sensitivity of matrix ele-

ments to the two key variables in BWR depletion calculations,

coolant void fraction v and exposure E. The cross section data

required to compute the matrices were obtained from CASMO depletion

runs performed by YAEC for the Vermont Yankee BWR bundle shown in

Figure 2. Heterogeneous, macroscopic cross section data were thus

obtained at exposures of 0, 5, 10, 20, and 30 MWD/kg for three

different values of v (0, 0.4, 0.7). Variations of the two-group

cross sections for three different fuel rod types, the gadolinium

rods, and the water gaps with exposure for v = 0.4 are illustrated

by Figs. 1-3 of Appendix 3.

4.1 Test Problem Description

In order to reduce the expense of performing the fixed-source

calculations needed to obtain the response matrices, an assembly

geometry different from that shown in Fig. 2 was used for matrix

calculations. In particular, a 900 rotationally symmetric configura-

tion was chosen (see Fig. 3) and thus only two fixed-source problems

must be solved (for the unrodded case) to obtain the matrix elements5

Despite the assumption of a single width for the water gaps and a

completely symmetric arrangement of compositions, this assembly still

exhibits much of the heterogeneity found in actual BWR's. The
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cross sections for the different regions were obtained directly from

the CASMO runs, although their use for a slightly different geometry

is not strictly correct. However the major effects of coolant

void and exposure on the cross sections are well represented and

permit evaluation of the variation of the response matrices with

those variables.

4.2 Effects of Void and Exposure -- Matrix Singularity.

A

The matrices JR) and [R] (see Section 3.1) were computed for

the following values of exposure and void:

Case (1) E = 0; v = 0, 0.4, 0.7

Case (2) E = 5 MWD/kg; v = 0, 0.4, 0.7

Case C3) v = 0.4; E = 0, 5, 10, 20, 30 MWD/kg

For the results of Case (l), it was seen that the variation of all
A

the elements of JR] and IR] with v at E = 0 was extremely smooth

(in fact, nearly linear) . However, when the nodal exposure was

increased to 5 MWD/kg (Case (2)), the variation of the matrix

elements with void was not smooth and was actually discontinuous

(an explanation is provided below). Finally, for the conditions of

Case (3), the matrix elements again did not exhibit a smooth behavior

over the entire exposure range. As an example of this behavior, the

observed variation of a typical element of [R], R7 1 , with exposure

is shown in Figure 4; all the other elements of JR] and {R] varied

in a verysimilar manner with E.

The matrix JR] was not investigated in this study.
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The discontinuous behavior of the matrix elements in Cases (2)

and (3) is explained by the fact that the matrices [R] and [R] are

based on imposed net surface-currents in the outward direction and

are determined by fixed-source calculations in which a global

reactor eigenvalue A is assumed (A was chosen to be unity in all
g g

calculations). When the k., of the assembly is less than the assumed

X (i.e. the node is subcritical), the -matrix elements (surface

fluxes and interaction rates) are negative, whereas for k. > A , the~

matrix elements are positive. Furthermore, the elements in these

two cases becomes increasingly negative and positive, respectively,

as the assembly approaches the "critical" k, (i.e. k, = A = 1).

Thus the response matrix elements based on imposed net currents

become infinite as the assembly passes through a critical state,

a point that can be demonstrated rigorously for the simple case of

a bare, homogeneous slab.

The results of Cases (1) through (3) may now be explained in

terms of the variations of the assembly k, 's as the voids or exposure

levels are varied. In Case (1), the node is subcritical at E = 0

and v = 0, and increasing v simply causes the node to become more

subcritical. Thus the matrix elements are always negative and vary

smoothly as v is varied. However, for E = 5 MWD/kg, the assembly is

supercritical for v = 0, and increasing the void to 0.4 and 0.7

causes it to become subcritical. Thus at some void 0 < v < 0.4,

the assembly is exactly critical, and the -matrix elements become

infinite and vary discontinuously at this intermediate void.

Finally, for Case (3), in which the void fraction was constant and
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exposure varied, it may be seen from Figure 4 that:

for E < 3 ( *)

for 3 < E 15

for 15 < E

k < 1

k, > 1

kCO < 1 .

The assembly criticality at E = 3 and 15 causes the infinities in

the matrix elements at these exposures.

The units of exposure, MWD/kg, are dropped for simplicity.
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5. Response Matrix Interpolation

It is unfortunate that the change in sign of node "reactivity"
X

(E 1 - ), i.e. matrix singularity, can result from the variation

of a numler of nodal variables. The discontinuous behavior of the

matrices at critical values of the independent variables makes the

interpolation of the matrix elements in depletion runs a non-

trivial problem. Thus one of the primary objectives of this study

was to determine and evaluate numerical methods applicable to

interpolation of the response matrices when their behavior is dis-

continuous.

A possible alternative to the interpolation of the matrices

-1 
^

IR], IR], and IR) is the interpolation of [R]~, [P] = [R][R]~V,

and IQ] JRI]JR]. This latter set of matrices relates net

currents and interaction rates to surface average fluxes via the

relations

IJ) = IR] 1  ]TSj (14)

IF] = IP] Ii 1 (15)

fM] = IQ] ITi 1 (16)

Since the matrices JR]~, fP], and {Q] represent net current and

interaction rate "responses" to imposed surface fluxes, they remain

finite when the node is critical and should vary continuously

through the point ko = A . Another interpolation alternative is
gA

simply to interpolate the original matrices [R] , JR], and fR] in
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a piece-wise manner over regions where their variation is smooth

and continuous (i.e. where the node "reactivity" is of a constant

sign).

Both interpolation alternatives were examined. Attention

was focused on piecewise interpolation of the elements of [R] and

interpolation of the elements of JR]-. Although the matrices

{R], [R], [P], and [Q] were not explicitly considered, interpolation
t an

techniques applicable to [R] would be suitable for [R] and [R].

while those applicable to [R] -1would be suitable for [P] and [Q].

Also, the exposure variable was arbitrarily chosen to test the two

interpolation ideas.

5.1 Interpolation of [R] and JR] 1

To obtain a sufficient number of data points to test the two

interpolation alternatives, fixed-source calculations were performed

at exposure intervals of 1 MWD/kg for 0 < E < 10 and for a coolant

void fraction of 0.4. The two-group heterogeneous cross sections

used in these calculations were obtained by quadratic (for O<E<5)

or bi-quadratic (for 5<E<10) Lagrange interpolation of CASMO cross

section data. Results of the fixed source calculations were used

to compute the response matrices JR] and IR]~ 1 as a function of E.

The variation of a representative element of each of these matrices

with exposure is shown in Figure 5. From part (a) of this figure,

it may be seen that the elements of the matrix IR] become infinite

for E ~ 3.3; at this exposure, the node is exactly critical with

J-n = 0 boundary conditions. Fortunately, it is also seen that the

matrix elements vary continuously and quite smoothly with exposure

away from the troublesome point of singularity. Examination of
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Figure 5(b) reveals that the behavior of a typical element of [R]-I1

is not nearly as smooth, although the element remains finite for

all values of E. Initially, numerical difficulties with the inver-

sion of [R] were thought to be the cause of this irregular behavior.

However, repetition of some of the inversions using (IBM) double-

precision produced changes in the elements that are not discernible

on the scale of Figure 5(b). Furthermore, the inversion of [R]~ 1

to reobtain {R] yielded the original matrix to the last (7th)

decimal place printed. Thus it appears that the elements of [R]~ 1

do not vary smoothly when computed at reasonable exposure intervals,

possibly because the collective behavior of all elements of [R] with

the changing exposure level governs the variation of each element

of {R]~. Since a given element of IR], R , which is smaller than

another element R , ,.at some E may become larger at a different E,

the variation of JR]~ is somewhat complicated and not sufficiently

smooth to permit interpolation by low-order polynomials.

Interpolation of the elements of {R] was tested using the

formula

-1
[(*)3 b2~* a(~*]

R. (E) = C (E-E ) + b(E-E + a(E-E*) (17)

where R. (E) the (ij) element of IR] at exposure E

E* the exposure for which R. . - o
1 ,J

a,b,c constants determined by fitting Eq. (17) to known

values of R at three different values of E.
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With E* = 3.3, and with the constants a, b and c determined using

the calculated values of R7 at E = 0, 1, 2 [see Figure 5(a)],

R7  (E=3) was predicted with an error of only 1.8%. The same

value of E* and a, b, c obtained from data at E = 5, 6, 7 yielded

R7 1 (E=4) with an error of -6.6% and R7 1 (E=8) with an error of

-3.6%. Since all these cases represent extrapolations, and since

the value of E* is not known exactly, these errors are actually

quite small. Errors of this magnitude may be acceptable if the

accuracy of the local (response matrix) calculations in the pro-

posed BWR depletion method is not extremely sensitive to small

errors in the matrix elements in the neighborhood of a discontinuity.
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6. Sensitivity of Local Calculations to Response Matrix Errors

The sensitivity of the results of local response matrix calcu-

lations (i.e. HCS and DF) to errors in extrapolated matrix elements

about the point of matrix singularity is an important consideration.

This sensitivity was tested for the simple 3-node by 3-node problem

shown in Figure 6. The geometric detail of each of these nodes is

that of the unrodded configuration of the BWR assembly shown in

Figure 3, but the various nodes are characterized by different

levels of exposure. The coolant void fraction and the fuel temperature

are the same for all the nodes, and J-n = 0 boundary conditions are

imposed on the outer boundary of the nine-node cluster.

Assembly calculations were first performed for each node type

to obtain its k, as well as assembly discontinuity factors ADF and

assembly homogenized cross sections AHCS. Using the ADF and AHCS,

the global homogeneous problem was solved to obtain net surface

currents to be used in local five-node, two-segment response

matrix calculations. (It should be noted that for E=3 (MWD/kg),

the nodal k. differed from the ADF A by less than 0.5%, and thus

its matrix elements were quite large in magnitude.) The local

calculations were performed twice,'once with the "exact" matrices

(precomputed by fixed-source calculations) used for the E=3 nodes and

once with approximate matrices extrapolated to E=3 (using Eq. (17))

from fixed-source results at E=O, 1, and 2. In both cases, the

"exact" matrices were used for the E=0 and E=10 nodes. Finally,

the global problem solution was repeated using the HCS and DF
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updated in each of these local calculations. Results of the entire

-problem are summarized in Table 1 and indicate that although all

the matrix elements for E=3 were in error by about 2%, the resul-

tant errors in HCS, DF, power, and eigenvalue were all less than

0.15%. Thus it- appears that the error in the response matrix

elements of the nodes that are nearly critical leads to negligible

errors in the results for the local calculations.
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7. An Alternate Interpolation Strategy

It is unfortunate that use of Eq. (17) to interpolate matrix

elements ;requires at least three data points on either side of a

discontinuity, as well as an accurate knowledge of the value of the

independent variable at which the matrices are singular. In view

of the fact that several variables can cause matrix singularity,

the number of response matrices that would have to be generated

and stored becomes enormous. Thus it may be advantageous to

utilize an alternate interpolation scheme in which the HCS and DF

themselves are interpolated instead of the matrix elements. In

this method, a number of different local calculations with response

matrices appropriate to values of some independent variable x

surrounding the value at which the HCS and DF are needed would be

performed. Results of these local calculations can then be inter-

polated to yield the desired HCS and DF at the correct value of x.

The success of this method obviously depends on how smoothly the

nodal HCS and DF vary through a point of assembly criticality.

To test the feasibility of interpolation of the HCS and DF

"across" a point where the matrices are singular, the problem shown

in Fig. 7 was considered. For this problem the global, homogeneous

calculation using the ADF and AHCS yielded ? = 0.9955 which is very

close to the k, of the E = 3 node, 0.9952. The local five-node

response matrix calculation was performed three times with different

response matrices assigned to the center node (E=3). The correct

E=3 matrices were used, as well as matrices for exposures surrounding

E=3, namely E=2 and E=4. The matrix elements are singular at
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E = 3.3 and thus have differing signs and large magnitudes at E=3

and E=4. The DF and HCS computed for the cases in which the E=2

and E=4 matrices were used were averaged and compared with the

correct E=3 results and the ADF results. This comparison is pre-

sented in Table 2, from which it may be seen that the averaged

results match quite closely the correct results, even though the

response matrix elements are infinite and discontinuous at an expos-

ure between E=3 and E=4.

Although the outcome of this problem indicates that it is

indeed possible to interpolate the HCS and DF across the point of

matrix discontinuity, the accuracy that was demonstrated may have

been largely due to the absence of any void or control mismatch

among the various nodes Conly the nodal exposures were different).

This uniformity of void fraction caused the fast to thermal current

ratios J1 /J 2 at the node boundaries to approach an asymptotic

value. Thus a more difficult three-node by three-node problem

was developed in which three of the nodes were characterized by

v = 0, and the remaining ones by v = 40%. This problem is shown

in Fig. 8.

As expected, the global calculation using assembly discontinuity

factors ADF yielded widely differing J1/J2 over the interior sur-

faces of the nine-node cluster. Furthermore, the ADF X of 0.99773

was very close to the. k. of the center node, causing its matrix

elements to be very large in magnitude. Following the ADF calcula-

tion, one-node, one-segment local response matrix calculations

were performed three times -- first with the center-node matrices

at the correct exposure CE = 3) and then with matrices at surrounding
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exposures (E = 2 and E = 4). Since the matrix elements are

-singular at E 3.3, matrices of differing signs and large magnitudes

were assigned to the center node in the three different local calcu-

lations. A comparison of the HCS and DF obtained by using the

correct E=3 matrices to those determined by averaging the E=2 and

E=4 results is presented in Table 3. From this table it is clear

that the simple averaging of local calculation results (i.e. the

HCS and DF) is much less accurate for this problem, in which a

significant void mismatch exists. For example, one of the averaged

DF's was in error by more than 20%.

To determine the effect of the errors in HCS and DF on the

ensuing global calculation, the averaged values were used in another

global QUANDRY run. The resulting eigenvalue and center-node fluxes

and power were coiipared with the correct values (determined using

the correct E=3 matrices for the center node in the local calcula-

tions) and with the ADF values. This comparison is presented in

Table 4 and indicates that even with the large DF errors, the resul-

tant errors in the global solution were very small and still repre-

sented an improvement over the ADF results.

The results of these test problems are very encouraging because

they indicate that although a matrix element cannot be interpolated

using known values on different sides of a singularity, the desired

HCS and DF themselves can be found in this manner.
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8. Summary, Conclusions, and Recommendations

An overall.strategy for performing BWR depletions using the

nodal code QUANDRY and response matrix methods for assembly

homogenization has been outlined. A few ideas useful for testing

the various procedures in a consistent manner were also presented.

The problem of interpolating response matrices based on net currents

was found to be challenging because of the singularity of the matrix

elements when the value of some nodal property causes the node to

be critical.

A number of interpolation techniques were examined. It was

shown that interpolation of the inverted response matrices (i.e.

matrices b.ased on average surface fluxes) is not a practical alter-

native. An interpolation formula suitable for piece-wise interpo-

lation of the response matrices (Eq. (17)) was shown to yield the

various elements with good accuracy even at node conditions very

close to critical. The resultant errors in matrix elements were

shown to be quite unimportant as far as their effects on the HCS

and DF are concerned. Unfortunately, use of a formula of

this type would he impractical when multi-dimensional (or a series

of one-dimensional) interpolations'are needed, since the formula

requires at least three points on either side of every point of

discontinuity. Thus the number of matrix elements that must be

calculated and stored may become unacceptably large.

It was also demonstrated in this study that it is feasible

to interpolate HCS and DF computed by the use of (incorrect)

matrices at conditions surrounding the desired ones (for which
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matrices cannot be interpolated by standard methods due to singular

behavior). However, this method was successful partly because

known (i.e. pre-computed) matrices were available at conditions

very close to critical. Moreover, this interpolation method was

implemented by running the entire code RESPONSE twice (with matrices

corresponding to conditions surrounding the actual conditions of

the critical nodes), and thus local calculations were needlessly

repeated for nodes not close to criticality. Clearly, it would be

more practical to modify the code RESPONSE so that local calcula-

tions would be repeated only for nearly critical nodes.

Most probably, a combination of the two investigated interpola-

tion strategies will be needed to obtain sufficiently accurate

values of the desired nodal DF and HCS for arbitrary nodal conditions.

Obviously, a'great deal remains to be accomplished in both

formulation and solution of the depletion problem. Presently,

the most immediate concerns appear to be:

i) Modification of QUANDRY to permit solution of isotope

depletion equations and calculation of macroscopic

cross sections over life. This may be accomplished by

interfacing QUANDRY with'a simple existing depletion

program.

ii) Design of a simple (e.g. 3-assembly by 3-assembly, two-

dimensional global problem with albedo boundary con-

ditions to obtain a reference depletion run against which

the proposed depletion methods can be tested.
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iii) Determination of a suitable method applicable to the

multi-dimensional interpolation of nodal response

matrices when the variation of any of the nodal proper-

ties may cause criticality (i.e. matrix singularity).

It should be noted, however, that the concern here is

not that a node will be exactly critical during the

course of a depletion calculation (this is extremely

unlikely); the problem is rather that of obtaining

nodal homogenization parameters when data required for

interpolation exist on "different sides" of a

singularity.

iv) Examination of the accuracy with which local power

peaks can be predicted over life with the response

matrix methods that have been developed to date.

The last two of these four items will probably have the biggest

impact on the success of the proposed depletion model. However,

there is little reason to doubt that the various questions can be

resolved satisfactorily, and that the computational advantages of

using QUANDRY and the response matrix technique of assembly

homogenization for static calculations will also be realized in

depletion calculations.

.O
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Appendix 1. Response Matrix Generation

A flow diagram illustrating the various calculational steps

and the computer codes used to compute the response matrices [R]

and [R] is shown in Fig. A1.1. This procedure is also outlined in

Table Al.l, along with some of the details of running the code

CITATION. A sample CITATION input data file is given in Table Al.2.

The different input and output device numbers needed to execute

the various programs are given in Table A1.3. The correspondence

between these device numbers and actual input and output files

are presented in Table Al.4. Finally, Table A1.5 gives the input

data (File 37) required to run the different codes.
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Table Al.1

Procedures (for Preparation of Running 'RESPONSE')

1. Run CISET - prepare input file for fixed source calculation.

2. Run CITATION - solve fixed source problem.

A. If no on-line module, run NEWLOAD VSlJOB - create

on-line module and solve the fixed source problem.

NOTE: the time limit in NEWLOAD is not enough for

8 case of 29x29.

CHANGE; a. NEWLOAD VSlJOB (CITATION LOAD40KC) (1 place)

b. CITATION GOCARDS (FT44FOOl DSN=?) (1 place)
c. CITATION FORTRAN (XTFLUX(??)& KG=1)(7 places)

KG=1,2 for all type and case except for

reflector and source in 2nd group, then

KG=1,l

B. If on-line module exists, run CITATION VSlJOB - solve

fixed source problem.

NOTE: time limit

CHANGE: a. CITATION VSlJOB (FT44F001 DSN=?)

(CITATION LOAD 40KC) (2 places)

3. If it is

4. If it is

file.

reflector, run REFLRE - create CL symmetric file.

CL symmetric, run RESORDER - create diagonal symmetric

5. Run QNRES - generate 2-segment R, ($=RJ)

IR), (IDs] = fR]IJ])

6. Run RESHCS - generate 2-segment R', (IR=R'J)

JR], ([F] = [R]IJ])

7. Run QN1RES - generate 1-segment R and R' ($ = RJ, IR = R'J)

[RE F



1 2 3 6 34 3 5 36 37. 38 39 50*NLSOM 50+NST+NLSCOM 50+2*NST+NLSCOM

x

x x x

RESORDER x

x

x

x x x

x x x

x

x x

*
x x x ,

x x

x

* if ISHA/l

ISHA 1 for a flat current distn

/ 1 for other shapes

(only ISHA = 1 is presently available)

NST = no. of node types in core

NLSCOM = nodal index
(NLSCOM = 1, ... , NST)

Table Al.3 Input and Output Device Numbers Needed to Run the Codes
Used in the Response Matrix Generation Process and to
Perform the Global/Local Iteration

I i

CISET

REFLRE

QNRES

RESHCS

QN1RES

x

x

x x

x

x

ul
-4

1 2 3 6 34 3S 36 37 - 38 39 SO*NLSOM
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-Table A1.5 Input Data Used in Response Matrix
Generation

(FILE 37)

(6X, 11I6)Card 1

1-6

7-12

13-18

19-24

25-30

31-36

37-42

43-48

49-54

55-60

61-66

(12X, 5E12.6)

blank

XYI

XLAM

(12X, 5E12.6)

blank

DHX(1)

DHX(NLX)

sign convention
= 1.00 if Ag>KO
=-1.00 if Ag Koo

(estimated global
eigenvalue)

X-dir. mesh size (L-+R)
use as many cards as
needed

no. of meshes in X-dir.

no. of meshes in Y-dir.

no. of groups

X-dir. segment position
(L-+R)

Y-dir. segment position
(B-+T)

diagonal symmetry (LT- -RB)
1-+SYM
2-4NOT SYM

no. of nodal types in the
core

no. of nodal type of this
subassembly

no. of mesh types

current distributions
1-+flat
1-+'others

no. of segments

blank

NLX

NLY

NG

NSLX

NSLY

I SYM

NST

NLSCOM

NLTCOM

ISHA

67-72

Card 2

1-12

13-24

NSEG

25-36

Card 3

1-12

13-24

61-72
- - f
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Table A1.5 (continued)

(12X, 5E12.6)

blank

DHY(1)

DHY (NLY)

(6X, 1116)

blank

NLCOMP(NLY,NLX)

Y-dir mesh size (B-+T)
use as many cards
as needed

Card 4

1-12

13-24

61-72

Card 5

1-6

7-12

(12X, 5E12.6)

blank

NLS(5*NG, NLTCOM) 1/Dg, ETgEg' g(gZ'g83,
VEfgzfg

first fast group
then thermal group
(not needed if NG=l)
Remember vKfg/v-fg
then different com-
position61-72

mesh map (L-+R)
(T-+B)

X-dir goes first
use as many cards
as needed in each dir.,
initiate a new card
for different Y67-72

Card 6

1-12

13-24
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Appendix 2. The Global/Local Iteration

In the global/local iteration, the global calculation is

performed using QUANDRY, while local calculations for the various

nodes are performed by the code RESPONSE. Input needed to run

QUANDRY is described in Reference 27, while the input data used

by RESPONSE is given in Table A2.1. Table A2.2 gives the corres-

pondence between input and output device numbers and the different

input and output files employed in carrying out the QUANDRY/

RESPONSE iteration.
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Table A2.1 Input Data for RESPONSE

(FILE 50)

Card 0 (612, 2X, 19A4)

1-2 NC = 0 card type

3-4 blank

5-80 Alphanumeric title

Card 1 (12, 4X, 1116)

1-2 NC = 1 card type

3-6 blank

7-12 NX no. of nodes in X-dir.

13-18 NY no. of nodes in Y-dir.

19-24 NG no. of groups

25-30 NLOC no. of nodes in local
problems (1 or 5)

31-36 NSEG no. of segments on the
surfaces of each
node (1 or 2)

37-42 NQND current distribution
between segments,
useful only if
NSEG=2
1-flat (0.5)
fl-others

43-48 NST no. of nodal types in
the core

49-54

Card 2 (12, 4X,-11I6)

1-2 NC = 2 card type

3-6 blank

7-12 ICORE container array size
in D.P. words
(0-code calculates)

13-18 IBPONT BPOINTER print flag
0-NONE
2-ALLOCATIONS

19-24 NAT+ accuracy test
0-NO
6-IMSL TEST
0 & 4-TEST ERROR 1.E-4

+ NAT=O and IAT=0 are suggested
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Table A2.1 (continued)

25-30 IAT+ conditions for stop
0-if NAT test is not
satisfied
34-if singular

31-36 IALP albedo conditions
1-all 2.0
2-diagonal
3-full

37-42 NALP no. of albedo sets (_0)
43-48 NSS no. of state variables

in a node

49-54 NFEDBK feedback index
1-no feedback
1-yes

55-60 NJBC* 1-node 0-true B.C.
10-estimated B.C.

0-globally fixed

5-node source
0-updated fixed

source

Card 3 (I2, 4X, 1116)

1-2 NC = 3 card type

3-6 blank

7-12 IGSYM++ global orientation
1-LB 1/4, Lower 1/2 or
whole like

2-LT 1/4 or top 1/2 like
3-RB 1/4
4-RT 1/4

13-18 ITEST test option
1-test input
2-run

19-24 IDSYM** diagonal symmetry (LB--TR)
1-yes
2-no

25-30 LTEST print option
0-normal
1-node condition
2-file 20

19-Sym. R

+ NAT=0 and IAT=0 are suggested.
*
NJBC=0 is suggested. For five node problem always use NJBC=0
++IGSYM gives orientation of the assembly in the left bottom section

of the core being considered.
**Unless all nodes have rotational symmetry, IDSYM=l can only be
used for IGSYM=1 or 4 Remember diagonal symmetry exchan5e the X--Y
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Table A2.1 (continued)

(12X, 5E12.6)

blank

SREF(NSS) reference state variables

use as many cards as
needed

must have a card 04 (blank)

even if NFEDBK = 1

(6X, 11I6)

blank

NCOMP(NYY, NXX) NYY=NY+2 (L--R)
NXX=NX+2 (T--B)

1st and last columns
and rows are albedo rows
and columns. X-dir. goes
first, use as many cards
as needed in each dir.
initiate a new card for
different Y

(12X, 5E12.6)

blank

DLX(NX)

(12X, SE12.6)

blank

DLY (NY)

X-dir nodal size (L--R)

use as many cards as
needed

Y-dir nodal size (B--T)

use as many cards as
needed

-Card 4

1-12

13-24

25-36

61-72

Card 5

1-6

7-12

67-72

Card 6

1-12

13-24

61-72

Card 7

1-12

13-24

61-72
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Table A2.1 (continued)

Card 8 (12X, 5E12.6)

1-12 blank

13-24 ALP(N2, N2, 2, NALP) albedo matrices

not needed if NALP=O
or if IALP=l

if IALP=2

need only N2 elements
in each dir. in each
type.

first X-dir then Y-dir.
use as many cards as
needed for each dir.

initiate a new card for
different dir.

N2=NSEG*NG

if IALP=3

need a N2*N2 full matrix
for each dir. in each
type

(J,I), I goes first.

use as many cards as
needed for each J.

initiate a new card for
different J

first X-dir, then Y-dir.

- in normal direction
NET



File Definitions Used in Performing the Global/Local Iteration

'RESPONSE' NEEDS

FILE

6

20

21

49

50

51 to
50+NST

50+NST+1
to
50+2*NST

50+2*NST+l
to
50+3*NST

6

10

20

DESCRIPTIONS

PRINTOUT

OUTPUT INTERFACE FILE

INPUT INTERFACE FILE

State variables, s.p.,
needed only if NFEDBK>l

Input data

R(0=RJ) s.p., (J,I)
J goes first

Distributions, s.p.
Needed onl-y if NQND/1
and NSEG=2

R',(IR=R'J),s.p., (J,I)
J goes first

PRINTOUT

Input data

DISK

DISK

DISK

DISK

DISK

DISK

DISK

DISK

DISK

'QUANDRY' NEEDS

DISK

DISK

Input interface file DISK
(not needed for initialization)

21 Output interface file

0
I I

Table A2.2

FILE
MODE

E

D

D

D

A

D

D

D

RECFM

F

VBS

VBS

VBS

VBS

VBS

LRECL

132

4096

4096

4096

4096

4096

132

4096

BLKSZZE

132

4096

4096

4096

4096

C'

4096

132

4096

FE

A

D VBS

DISK D VBS 4096 4096



Table A2.2 (continued)

DESCRIPTIONS

'COMPARE' NEEDS

PRINTOUT

INPUT data

INPUT data

Reference data file

Approximate data file

4 9

FILE DISK.
FILE
MODE

6

7

50

1

2

RECFM LRECL BLKSZZE

DISK

DISK

DISK

DISK

DISK

E

A

A

E

D

F

VBS

VB S

132

4096

4096

132

4096

4096

C'
-~1
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Appendix 3. Variation of Two-Group Cross Sections With Exposure

The variation of the two-group diffusion coefficients, total

cross sections, and fission cross sections with exposure for

several compositions in the Vermont Yankee BWR bundle shown in

Fig. 2 is illustrated in Figs. A3.1 to A3.3. All cross sections

are for a coolant void fraction of 0.4, a fuel temperature of

820 K, and an unrodded state.
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