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1. Introduction

The success of nodal methods in solving accurately and effi-
ciently the few-group diffusion equations combined with recent
advances in the calculation of homogenized nodal cross sections
provide ﬂotivation for extending these methods to the performance
of depletion calculations. Furthermore, since in present state-
of-the-art depletion packages, isotopes are generally depleted
from regions of a reactor by the neutron flux averaged over a
>1arge ""depletion block'", the use of nodal schemes becomes even
more attractive. Although FLARE-type nodal programs have been
used to perform full-core spatial calculations in depletion models,
these codes use a crude neutronics analysis, relying heavily on
empirically adjusted '"transport kernels" and boundary albedoes to

match results of higher-order calculations.l

Although when tuned

in this manner, these codes can give a satisfactory description

of reactor performance over life, confidence in thesé results is

somewhat limited, and application of the various empirical adjust-

ments outside ranges where they have been verified is not possible,
Presently, an EPRI-sponsored study is underway at MIT to

extend the use of the nodal code QUANDRYZ

to performance of the
spatial calculation in a depletion.model. QUANDRY has a strong
theoretical foundation and relies on only one basic approximation
in which the transverse leakage from a node is assumed to be
quadratic in shape. The code has been tested using a large variety

of LWR multi-dimensional static and transient benchmark problems,

and its accuracy and speed have been clearly demonstrated.
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As with all nodal models QUANDRY requires cross sections that
are constant within the individual nodes, and thus errors in highly
heterogeneous problems (particularly BWR's) can be encountered
because of the inadequacy of conventional methods of cross section
homogeniz“ation3 (e.g. simple flux-weighting of heterogeneous cross
sections by the flux computed in an isolated-assembly calculation
with J-n = 0 boundary conditions). However, Koebke? has shown
that it is possible to define equivalent homogenized nodal para-
meters that will reproduce in a nodalkcalculation all reaction
rates and the global reactor eigenvalue of a reference fine-mesh
solution. Although the calculation of these exact parameters
would require actually performing the heterogeneous full-core
solution (and would thus be self-defeating), methods have been
deveioped to obtain good approximations of the formally«eXéct
values. In particular, Smith has generalized and simplified some-
what Koebke's equivalence theory method and incorporated the
Tevised model into QUANDRYS. This generalized method is applied
by first performing isolated-assembly calculations for each node
in the system to determine flux-weighted cross sections and discon-
tinuity factors (which can be viewed as additional homogenized
parameters in a node). These asseﬁbly discontinuity factors (ADF)
and assembly-homogenized cross sections (AHCS) are then used to
perform a global homogenized (QUANDRY) calculation to obtain a
first estimate of the net surface currents on the boundaries of

the various assemblies. These currents can then be imposed on the
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assemblies in heterogeneous, fixed-source calculations to obtain
improved estimates of the exact HCS and DF which are in turn used
in another global calculation, and the procedure can in principle
be repeated until convergence of the global solution. The con-
verged (6r nearly conﬁerged) global results have been shown to
match very closely results obtained by solving the reference
global heterogeneous problem.

Cheng5 has developed a system of computer programs in which the
response matrix (RM) method is used to update the homogenized cross
sections (HCS) and discontinuity factors (DF). The "response"
of any hetefogeneous assembly (i.e. detailed group fluxes and

interaction rates) to unit net surface currents in each group and

over different segments of the node surface can be precalculated
by performing a series of fine-mesh fixed-source calculations for
the node in question. In present applications, the shape of the
net current over each segment is assumed to be flat. The response
matrices can be used in conjunction with actual net surface cur-
rents (from a nodal full-core calculation) in local calculations
for the various assemblies to update the HCS and DF. The method
relies on the fact that the "responses' to currents of arbitrary
amplitude applied to nodal surfaces can be found by superposition
and thus accounts for the effects of boundary currents on the
node homogenized parameters without the need to repeat relatively
expensive fixed-source diffusion calculations for identical assem-

blies in different core locations.



The local calculations for the various assemblies are per-

formed using the code RESPONSE5

, in which group net currents from
the global problem can be distributed over the various segments

of the nqde surface. These RM calculations can be performed for
an individual node or for a five-node cluster in which effects due
to nearest neighbors on the current shape at the boundary of the
center-node are modeled (and thus the two-segment approach becomes
useful). |

Benchmark calculations using the RM's to update the HCS and
DF have shown that even for extremely heterogeneous cases, the
use of one-node local calculations and one global/local iteration
reduced the maximum error in nodal power to ~ 2%, a considerable
improvement over ADF results (v 5% errors) and a drastic improve-
ment over conventional flux-weighting schemes (v 15% errors).

In this report, a method is described for extension of QUANDRY
and the RM technique of assembly homogenization to BWR depletion
studies. Several problems are considered, including the variation
of RM elements with important variables in the depletion calcula-
tions (such as nodal exposure E and coolant void fraction v) and
possible interpolation and data manipulation techniques, Finally,
some anticipated problems with the overall method and potential

solutions are presented. However, before commencing with these

topics, a description of conventional depletion methods is given.



2. Review of Depletion Methods

The great diversity in methods used to perform depletion calcu-
lations (and the fact that they are frequently company confidential)
makes it difficult to give a detailed account of existing depletion
- methods. However, it seems possible to group the various methods
into two distinct approaches depending on whether isolated-assembly
depletion calculations are performed prior to the actual full-core
depletion calculation. In the first of these (Method 1), assembly
depletions are not performed, and zero-dimensional depletion runs

are used to create tables of microscopic, few-group cross sections

as a function of exposure, as well as other important properties
(temperature, moderator density, etc.) for each initially different
type of fuel cell (or some larger portion of an assembiy) present
in the core. These cross section tables, which account in an
approximate manner for effects of spectral changes on the few-group
crdss sections during lifetime, are then used in tandem with a
spatial-diffusion/depletion computation. Either '"point" or
"block'" depletions may be performed depending on whether number
densities and macroscopic cross sections are updated for individual
fuel cells or for larger regions (using the neutron flux averaged
over that region).

With the second depletion approach (Method 2), each cell in
an assembly is modeled explicitly in a two-dimensional assembly
depletion calculation in which neutron leakage at the node boundaries
is assumed zero over life. This assumption of no leakage, while

never completely justified, is generally accepted for BWR's and



is frequently made for PWR's as well. Each assembly is thus
effectively decoupled from its enﬁironment, and assembly parameters
such as ko and heterogeneous, macroscopic, few-group cross sections
may be tgbulated -- again as functions of exposure and other
assembly properties. Tables of this type greatly ease the "book-
keeping" tasks in fine-mesh depletion calculations, but their
accuracy obviously depends on the mathematical model employed in
the assembly depletion runs. Method 2 is also very useful when
nodal methods are used to perform the global depletion computation,
since the assembly depletion results may be averaged to yield nodal
parameters as a function of burnup.

Clearly, the two methods overlap significantly (for example,
Method 1 may be employed on the assembly level with a point deple-
tion option to pefform the assembly depletions required for Method 2),
and thus many of the calculational procedures are applicable to
both. Both of these methods and some of the computer codes used
in their implementation are discussed below. However, for more
detailed discussions of the various codes, the reader is advised
to consult the program manuals and the references cited therein.
Also, no attempt is made to review the enormous topic of basic
cross section data reduction techniques. An excellent (but slightly
dated) discussion of these methods is given in the review article
by Adensam et al.6
2.1 Method 1

The first step in this approach is the use of multi-group

cross-sectional data to perform spectrum calculations for the



various depleting regions over life. The neutron slowing down
spectrum is typically computed using a P-1 or B-1 approximation

‘to the Fourier transformed Boltzmann equation7

» while the thermal
speétrum_is most commonly evaluated using the Wigner-Wilkin58
model. Thus, tables bf few-group, region-averaged, microscopic
cross sections can be generated as a function of exposure for each
region. The depletion calculations are performed for a zero-
.dimensional system, with leakage approximated by DB% (Bi = geometric
buckling). LEOPARD9 is perhaps the most well-known of the codes
that perform this task. In LEOPARD, cell heterogeneity is simu-
lated by use of fast advantage factors, thermal disadvantage
factors, and resonance self-shielding factors. A more accurate
reprgsentation of this heterogeneity is possible if collision
probability or other transport theory methods are used (as is done

10

in the EPRI-CELL code™", for example). Fission product buildup

is'usually treated by lumping all fission products (other than Xe
and Sm) into a single material and adjusting their effective
absorption cross section to match more sophisticated burnup-lifetime

calculations. Although less famous than LEOPARD, other zero-

11 12

dimensional burnup codes such as LASER and CINDER also exist

and perform many of the same calculations with varying degrees of
sophistication and accuracy. Strong absorbers (i.e. control rods,

burnable poison rods) require auxiliary calculations generally

13 14

based on blackness theory and are performed by RODWORTH™ °,

MICBURNIS, and other codes.



Spatial calculations at the beginning of each depletion time

step are performed by solving the few-group diffusion equations

using standard finite-difference codes such as PDQ-716

CITATION¥7. The computed flux shape (to be used to deplete the

isotopes) must correspond to the full-power operating conditions

or

of the reactor, with control rods in their proper positions (or
the concentration of burnable poison adjusted for criticality)
and the coolant density and temperature profiles consistent with
the power distribution. Clearly, an iterative procedure is re-
quired, and in view of the enormous expense of performing full-
core, finite-difference diffusion calculations, auxiliary methods
and numerous tricks are used to reduce the frequency and expense
of these calculations7. Generally, pin-by-pin heterogeneity is
not modeled expli&itly, and macroscopic cross sections are assigned
to regions of the reactor that are similar at the beginning of
life (depletion blocks). The computed, power-normalized group
fluxes are then averaged over each depletion block, and the resulting
average fluxes are used to deplete the isotopes in that region
over a chosen depletion time step.

The isotope depletion calculational procedure may be described

by considering specifically the program HARMONY16

adjunct to PDQ-7.
In this code, the fluxes from the spatial calculation are used to
solve a set of differential equations that describe the time-
variation of the nuclide concentrations during the depletion inter-

val. At the end of this interval, the computed number densities

can be used together with the pre-tabulated microscopic cross
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sections to recompute the few—gfoup macroscopic cross sections
for the ensuing spatial calculation. In solving these equations,
_allowance is made for step-wise time-dependence of microscopic
cross sections within a depletion step by interpolation of the
pfe-genefated cross section tables. Constant power operation is
simulated by thermal flux renormalization, a procedure that also
reduces the required frequency of spatial calculations.

2.2 Method 2

| Although zero-dimensional codes can model whole-assembly
depletions in an approximate and empirically adjusted mannerg,
increases 1n computer capabilities have made the use of more
accurate methods based on transport theory and collision probability
techniques more attractive. Methods have been developed to deal
simuitaneously with a number of adjacent cells in an assembly and
with entire assemblies. With an assembly, multigroup spectra are
obtained (at B.0.L.) by solution of the space-energy transport
equation (e.g. using collision probability techniques) for the
different pin cells. These spectra are used for cross sectional
energy condensation and spatial homogenization within the individual
cells. Special calculations are required for treatment of reson-
ance cross sections and strongly aBsorbing regions. Few-group

cross sections smeared over the different cells are then used in

2-D spatial calculations, in which the integral transport equation

is solved with J-n = 0 conditions imposed at the assembly boundaries,
With the resultant scalar flux distribution, assembly homogenized

cross sections may be obtained and the depletion equations can
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be solved for the different fuel-containing cells. The new number
densities are then used to repeat the entire procedure at a new
value of assembly exposure.

Methods of this type have been incorporated into codes such

as Combustion Engineering's DIT program18 19

CASMOZO. The output from these codes typically consists of nodal

and EPRI's CPM™~ and

k_, heterogeneous fluxes, and macroscopic cross sections for each
fuel cell (as well as non-fueled regions) in an assembly as a
function of exposure and other assembly properties. These same
results can also be obtained (although less accurately) by per-
forming assembly depletion calculations using a diffusion/depletion
model on the assembly level. Results of the assembly calculations
can then be used in global finite-difference diffusion calculations
or méy be collapsed to yield assembly-averaged data for use in
nodal codes.

Because of the enormous expense of full-core, finite-difference
calculations, the use of nodal codes of the FLARE type to perform
three dimensional spatial calculations in depletion models has
become quite standard. These codes are capable of predicting
reactivity, power and void distributions, and critical control
rod positions throughout life by u;ing very coarse mesh spacings.
The great economy of these codes also permits calculation of
assembly flow rates and optimized fuel loading patterns based on
desired power shapes and overall fuel management objectives.

The nodal codes presently used adopt an extremely simple
approach to core neutronics. Typically, a one-group neutron
balance is performed for each node j and may be written (in a some-

what simplified form) a521
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A, =T W .S = I W.S +W. S, (1)

_ 1
5; 7 X Xa,5 A (2)
- where

Sj = rate of neutron production by fission in node j

Aj = rate of neutron loss by absorption in node j
ij = probability that a neutron born in node m is absorbed

in node j (? ij = 1)
and A = global reactor eigenvalue.

To reduce further the computational effort, it is customary (but

not necessary) to assume only nearest-neighbor coupling in Eq. (1).

Also, the "transport kernels" ij are usually synthesized in simple
D D
ways using the neutron migration area M2 (= 5 +% + ZZ )} and
al ~21 a2
the node size and then adjusted by a blend of theoretical analysis

and empiricism. For depletion calculations, the nodal parameters
(e.g. k_, MZ) are computed as functions of exposure and other node
properties using polynomial coefficients predetermined by fitting
results of the previously-performed assembly depletions.

Because of the simple neutronic model, the FLARE-tupe codes
often given unsatisfactory results. Errors in nodal powers of
2% and upward are not uncommonzz. It should be noted, however,
that improved but proprietary versions of FLARE are known to exist.

Also, the basic FLARE model has been expanded into other nodal

codes (e.g. TRILUX?3, PRESTO?*, SIMULATE®®). TRILUX, for example,
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is capable of treating larger cores, calculating additional quanti-
ties of interest (e.g. critical heat flux ratios), and utilizing

more complicated fits of k_ as a function of exposure and other

nodal properties.
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3. BWR Depletions Using QUANDRY

The basic techniques presently used to perform BWR depletions
using nodal methods are directly applicable to a depletion model
in which QUANDRY performs the spatial, full-core solution. The
primary differences-afe the use of a more rigorous neutronic model
and a more accurate assembly homogenization technique. However,
implementation of these procedures requires no change in the
.depletion model.

3.1 General Description of the Method

3.1.1 Assembly Depletion Calculations. As in conventional

nodal depletion models, a two-dimensional assembly depletion calcu-
lation with J-n = 0 boundary conditions over the entire lifetime
of the assembly will suffice for each initially different assembly
loaded in the coré. Although this neglects the possibly signifi-
cant flux tilts that an assembly experiences during its in-core
reéidence, it is generally agreed that for the purposes of deter-
mining heterogeneous, macroscopic cross sections throughout life,
this approximation is justified., These cross sections can then

be used in fixed-source calculations to obtain nodal response
matrices as a function of exposure.(see Section 3.1.2). In addition,
it is possible to edit out of these calculations the AHCS and ADF

as functions of exposure E using

kazag(;;,m 64 (x,E)aV

_ <k _
AHCS = T  (E) = (3)

—k
F(B) vy
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|, tgm as

_ /k I3
ADF = £~ (E) = (4)
I3 —K
g ¢g(E) Vi
-k 1
where ¢g(E) = v; jvk¢g(£’E) av L (5),

and where o denotes the type of interaction, k is an assembly

index, 2 refers to the zth

surface of assembly k, and the remaining
. notation is standard.

For BWR's, these assembly depletions must be performed for
several assumed values of coolant void fraction u and for both the
rodded and unrodded configurations of the (two-dimensional) assem-

bly "slice". By keeping u constant during the depletion, the void

history of the node defined by

1 (E
v =gz f u(E') dE' (6)
0
is also fixed (and simply equals u). To account for instantaneous
voids which may differ from v, "branch calculations'" are performed
at various exposure intervals. In.these calculations, number
densities obtained from the main depletion sequence are retained
for all materials except the coolant. These densities and the
adjusted water density are used together with appropriately modified
few-group microscopic cross sections to recompute spatial flux

distributions at the various exposures. Similar branch calcul-
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lations in which the fuel temperature is varied, or the control
blade is inserted (or withdrawn) are useful for determining
effects of these variables on the assembly depletion results.

3.1.2 Response Matrix Considerations. Once the heterogeneous

macroscopﬁc cross sections are known for an assembly throughout
life, the RM's for that node may be generated as a function of
exposure and other nodal properties (including the global eigen-
value). The required matrices for node k are denoted by [R],

[ﬁ], and [ﬁ] and are defined by

[5°] = IR1}IJ] )
[Fly = [R131J] , (8)
M}, = IRI,[J] (9)

In these equations, [J] is a column vector of group net surface
currents in the outward normal direction to various segments on the
four faces of a (two-dimensional) node. Thus, for a G-group,

N-segment per face model, [J] may be expressed as

_[J_] = Col {J(n-l)G"'g}

n=1, ..., 4N (10)

The quantity {Es]k represents a column vector of nodal group fluxes

averaged over various segments of the node surface, i.e,
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=S +S _ 1
(81 = Col (By.1)ug? = Col {5 fs 0,(x) S}

n
g=1, ..., G
n=1, ..., 4n (11)

th

where Sn is the area of the n portion of the nodal surface.

The matrix [F]k is defined as

[F1, = Col { f Zug ¢g AV 2

Vi

g=1, ..., G (12)

where the correspondence between o and Z, is given by

g

e = 1 2 3 4 5 6

1/D z L vng Z

hX
ag g tg gg fg

and where Vk is the volume of node k. Finally, [M]k is defined by

the I-element column vector

14

_ (1)
[M], = Col . f £g2’o, dv

g VieVg £ '8

i=1, ..., 1I (13)

where i denotes a fueled region within node k (and Vi its volume),

and I is the total number of fuel cells contained within the node.
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With this assignment of matrix elements, it is apparent
that knowledge of the square matrix [R] and the non-square
;matrices [ﬁ] and [ﬁ] together with net surface currents (from a
global QUANDRY run, for example) gives information about the
average éf the heterogeneous surface flux (used for DF calcula-
tions), the node-integrated reaction rates (used for HCS calcula-
tion), and the local fission rates within an assembly (used for
prediction of nuclear hot spot factors).

The fixed-source calculations needed to generate the response
matrices can in principle be performed using any one of a number
of mathematical models (e.g. Monte Carlo, multigroup transport
theory, etc.). However, for consistency, the same model that is
used to define the reference solution (i.e, the solution to be
matched by the nodal (homogenized caiculation) must also be used
to generate the response matrices,5

3.1.3 Depletion Procedure. After the RM's have been generated

for all required nodal conditions, actual depletion calculations

may be performed by the following procedure:

i) Consider an initial core configuration with known nodal
exposures.
1i) Obtain the ADF and AHCS for all nodes at reference

values of nodal properties (including control blade
presence and control history) by interpolation of pre-

tabulated ADF and AHCS as functions of exposure,
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iii) Perfofm a three-dimenéionél global QUANDRY calculation
(with unity DF in the Z-direction) to obtain consistent
void v and temperature T distributions, as well as the
global eigenvaluelkg.

iv) ~ Interpolate the available, precomputed RM's for each
node to the proper T, v, and Ag at the known nodal ex-
posures. Use these matrices together with the net
surface currents computed by QUANDRY in local, response
matrix calculations to obtain improved estimates of the

HCS and DEF.°

V) Rerun the global (QUANDRY) calculation using the revised

HCS and DF (again with thermal-hydraulic feedback) to
obtain updated currents, thermal hydraulic variables,
and Agf

- vi) Repeat steps iv and v until satisfactory convergence of
the global solution is achieved.®

vii) If Ag differs from unity, return to step ii and repeat

the procedure with control blade positions adjusted so
that the critical condition is approached.

viii) Use the converged, critical net current distributions
together with the matricés [R]k (see Eqs. (9) and (13))
to obtain the local fission rates needed to determine
the location and magnitude of the peak local power.

- = - - e e e e o= =

Since a criticality search must still be performed, it may be
undesirable at this stage to converge the global solution fully.
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ix) For a given depletion.(calendar) interval, determine the
energy removed from each assembly using the converged,
critical power distribution found in step vi.

x) Return to step ii with the exposure distribution (found
in step ix) and the nodal properties (found in step vi)
to obtain the ADF and AHCS needed for the first global
solution at the beginning of the second depletion time
step.

X1) Repeat the procedure of steps ii to x until the end of
the operating cycle.

xii) Return to step i for the beginning of the next operating
cycle.

This prqcedure provides nearly all quantities of interest in a
reacfor analysis model. 1In particular fuel loading patterns, con-
trol strategies, and thermal hydraulic parameters can be evaluated,
and their consistency with overall fuel management objectives can

be assessed.

3.2 Specific Considerations

The methods described in Section 3.1 are quite general, and
thus it is desirable at this point to consider a few points in
more detail.

3.2.1 Assembly Depletions. The initial assembly depletion

calculations may be performed by use of either an assembly depletion
code (e.g. CASMO) or a general diffusion/depletion model applied
to individual assemblies with J'n = 0 boundary conditions (e.g.

LEOPARD - PDQ/HARMONY). These assembly depletions are typically
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performed for three assumed values of coolant void fraction

(v=0, 0.4, and 0.7) and for both the rodded and unrodded configura-
tion of each assembly. Cross sectional data (both heterogeneous
and flux-weighted), the ADF, and the nodal k_ may be obtained from
these calculations at discrete values of eXposure (e.g. E=0,

5, 10, 20, and 30 MWD/kg) and can be obtained for intermediate
exposures using low-order polynomial fits. Branch calculations,
which account for fuel temperature, instantaneous void, and con-
trol history effects, are usually performed at these same discrete
26

nodal exposure values.

3.2.2 Response Matrix Generation. Response matrices can be

generated by solution of a number of fixed-source problems for each
assembly with different "external' source distributions to simulate
the various group-net currents imposed on each segment of the
assembly's surfaces. Since the matrices are computed for the pur-
pose of determining homogenized parameters that would reproduce in
a nodal calculation the reaction rates and the global eigenvalue

of some chosen reference solution (e.g. a finite-difference, few-
group, diffusion theory result), the same energy and spatial
approximations that characterize this reference solution must be
made in generation of the response matrices. Thus, a fine-mesh,
few-group, diffusion theory approximation is used in performing

the fixed-source calculations which are needed to compute the
response matrices. The code CITATION is particularly well suited
for this task because it has the capability of solving the diffu-
sion equation with an "external" source term in a multiplying

medium and because it allows the group fluxes to be negative (as is
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required for neutron balance in a subcritical assembly with an
‘imposed net current in the outward direction). Sample input data
for CITATION are given in Appendix 1, together with details of
Cheng's procedure fo: response matrix generation given the
heterogeneous cross sections corresponding to fixed values of
assembly conditions (including Ag). For more theoretical details,
5

the reader should consult Cheng's doctoral thesis.

3.2.2 Global/Local Iteration. Even though each iteration

between the global (QUANDRY) and local (RESPONSE) calculations is

quite fast5

» it is clearly desirable to perform a minimum number
of these iterations. Cheng has shown that for B.O.L. conditions
and no thermal-hydraulic feedback, nodal powers and global eigen-
value are accurately predicted if only one iteration is performed
and if single node local calculations are used. Whether this
simple procedure will prove satisfactory over life (and for cases
whére thermal hydraulic feedback effects are significant and where
local power information is desired) is a question that remains to
be answered.

Some details of the calculational steps used in actual
implementation of the global/local iteration are given in Appendix 2.

3.2.3 Summary. A flow diagram illustrating the overall

*
procedure for the proposed depletion model is given in Fig. 1.

This diagram is somewhat simplified because the calculational
steps needed to perform a criticality search or an adjustment
of the fuel loading pattern are not shown explicitly,
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This figure givés the required éequence of calculations, as well
.as some of the computer codes useful in their implementation.

In the '"pretabulation'" phase of the procedure, the assembly
type may'be varied in step 1, the coolant void fraction in step 2,
and the élobal reactor eigenvalue (which must be assumed in obtaining
the matrices) in step 5. Finally, branch calculations may be per-
formed during step 4 at several exposures to determine variations

in matrix elements with additional variables.

3.3 Numerical Testing

3.3.1 Simplifications of the Proposed Model. For the purposes

of testing the overall QUANDRY depletion model and the response
matrix method of assembly homogenization, it is clearly desirable
to simplify considerably the procedure described in Sections 3.1
and 3.2. For exaﬁple, since flux distributions in the axial
direction are known to be rather smooth throughout life, attention
can be focused on prediction of radial flux and power distributions
for different x-y planes at fixed axial levels. Thus the depletion
runs needed to test the overall model can be performed for two-
dimensional systems. In addition, while a criticality search

must in principle bé performed to obtain the power distribution
used to deplete the various assemblies, this complication need not
be addressed in the present study. The cost associated with this
search would be significant, and the overall method can be tested
without recourse to it (provided that the same procedure is adopted
for a reference solution). Thus the test runs would be performed
with a continuously varying Ag and no control blade history effects,

Finally, if the fuel temperature variable is neglected, the ADF
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and AHCS will depend only on E, v, and u. (The response matrices
will depend additionally on Ag.) Consequently, the initial assembly
depletion runs must be performed for different values of u, |

branch calculations would account for the effect of an instantaneous
void u' different from u (=v), and response matrices must be tabu-
lated for the different values of E, v, u, and A _.

g
3.3.2 Numerical Standard. A consistent numerical standard

(reference solution) must be designed to test the proposed,
simplified depletion method. Since the purpose of the study 1is
the development of an improved depletion model and not the perfor-
mance of depletion runs for an actual reactor), it is possible to
use simple, few-assembly problems with imposed outer boundary
currents (e.g. using albedo boundary conditions) to test the various
procedures. For éonsistency, the reference solution should
(a) employ the same thermal-hydraulic feedback model as
QUANDRY,
and (b) have the capability of depleting isotopes using the same
depletion equations used in performing the initial
assembly depletions.
Presently, it is not clear how to satisfy these constraints without
revising QUANDRY so that it can solve isotope depletion equations
and using QUANDRY fine-mesh solutions to deplete the assemblies
as well as to provide the needed global fine-mesh reference. Thus
it will be necessary either to interface QUANDRY with some existing
depletion program, or to add a subroutine which will solve the
isotope depletion equations and provide new macroscopic cross

sections at the end of each depletion interval.
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4. Response Matrix Behavior in Depletion Calculations

The success of the proposed depletion procedure will depend

'1arge1y on the feasibility of determining accurately the response

matrices for all node conditions of interest by interpolation.
Thus, a étudy was performed to test the sensitivity of matrix ele-
ments to the two key variables in BWR depletion calculations,
coolant void fraction v and exposure E. The cross section data

required to compute the matrices were obtained from CASMO depletion

runs performed by YAEC for the Vermont Yankee BWR bundle shown in

Figure 2. Heterogeneous, macroscopic cross section data were thus
obtained at exposures of 0, 5, 10, 20, and 30 MWD/kg for three

different values of v (0, 0.4, 0.7). Variations of the two-group
cross sections for three different fuel rod types, the gadolinium
rods; and the water gaps with exposure for v = 0.4 are illustrated

by Figs. 1-3 of Appendix 3.

4.1 Test Problem Description

In order to reduce the expense of performing the fixed-source
calculations needed to obtain the response matrices, an assembly
geometry different from that shown in Fig. 2 was used for matrix
calculations. In particular, a 90° rotationally symmetric configura-
tion was chosen (see Fig. 3) and thus only two fixed-source problems
must be solved (for the unrodded case) to obtain the matrix elementss.
Despite the assumption of a single width for the water gaps and a
completely symmetric arrangement of compositions, this assembly still

exhibits much of the heterogeneity found in actual BWR's. The
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cross sections for the different regions were obtained directly from
the CASMO runs, although their use for a slightly different geometry
is not strictly correct. However the major effects of coolant

void and exposure on the cross sections are well represented and
permit evaluation of the variation of the response matrices with

those variables.

4,2 Effects of Void and Exposure -- MatTik'SiﬂgUlarity.

The matrices [R] and [ﬁj (see Section 3.1) were computed for
the following values of exposure and void:

Case (1) E = 0; v =0, 0.4, 0.7

Case (2) E 5 MWD/kg; v

L}
()
-
o
o
K=
-
o
~

0.4; E

Case (3) v 0, 5, 10, 20, 30 MWD/kg

For the results of Case (1), it was seen that the variation of all
tﬁe elements of JR] and Iﬁ] with v at E = 0 was extremely smooth

(in fact, nearly 1inear)(?). However, when thé nodal exposure was
increased to 5 MWD/kg (Case (2)), the variation of the matrix
elements with void was not smooth and was actually discontinuous

(an explanation is provided below). Finally, for the conditions of
Case (3), the matrix elements again did not exhibit a smooth behavior
over the entire exposure range. As an example of this behavior, the
observed variation of a typical element of {R], R7;1, with exposure

is shown in Figure 4; all the other elements of [R] and [ﬁ] varied

i A T T iy

*
(*) The matrix JR] was not investigated in this study.



-30-

\
]o
M
jwn
N\
—_
1R
=
o
2
=
-
Wiy —— —— — — —
18
10
+ + ¢ "0\m\‘m {
2 8 e 3 B £ 8 § 2 o 2 § § % § 3
' i

Response wotrin ddement a5 o funtkion of ewposure .

Fg- -



-31-

The discontinuous behavior of the matrix elements in Cases (2)
and (3) is explained by the fact that the matrices [R] and [ﬁ] are
based on imposed net surface-currents in the outward direction and
are determined by fixed-source calculations in which a global
reactor éigenvalue Ag is assumed (xg was chosen to be unity in all
calculations). When the k_ of the assembly is less than the assumed
Ag (i.e. the node is subcritical), the matrix elements (surface
fluxes and interaction rates) arevnegative, whereas for k_ > Ag, the
matrix elements are positive. Furthermore, the elements in these
two cases becomes increasingly negative and positive, respectively,
as the assembly approaches the '"critical" k_ (i.e. k_ = Ag = 1),
Thus the response matrix elements based on imposed net currents
become infinite as the assembly passes through a critical state,

a point that can be demonstrated rigorously for the simple case of
a bare, homogeneous slab.

The results of Cases (1) through (3) may now be explained in
terms of the variations of the assembly k_'s as the voids or exposure
levels are varied. 1In Case (1), the node is subcritical at E = 0
and v = 0, and increasing v simply causes the node to become more
subcritical. Thus the matrix elements are always negative and vary
smoothly as v is varied. However, for E = 5 MWD/kg, the assembly is
supercritical for v = 0, and increasing the void to 0.4 and 0.7
causes 1t to becqme subcritical. Thus at some void 0 < v < 0.4,
the assembly is exactly critical, and the matrix elements become

infinite and vary discontinuously at this intermediate void.

Finally, for Case (3), in which the void fraction was constant and
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~exposure varied, it may be seen from Figure 4 that:

for g <3 (), k_ <1
for 3 < E = 15 R k, > 1
- for 15 < E - , k, <1.

The assembly criticality at E = 3 and 15 causes the infinities in

the matrix elements at these exposures.

T T T T N N

*
(*) The units of exposure, MWD/kg, are dropped for simplicity,



-33-

5. Response Matrix Interpolation

It is unfortunate that the change in sign of node "reactivity"
A

1 - Kg)’ i.e. matrix singularity, can result from the variation
a

(

of a number of nodal variables. The discontinuous behavior of the
matrices at critical values of the'independent variables makes the
interpolation of the matrix elements in depletion runs a non-
trivial problem. Thus one of the primary objectives of this study
was to determine and evaluate numerical methods applicable to
interpolation of the response matrices when their behavior is dis-
continuous.

A possible alternative to the interpolation of the matrices
[R], [R], and [R] is the interpolation of [R] Y, [P] = [R][R]!,
and [Q]

currents and interaction rates to surface average fluxes via the

[ﬁ][R]';. This latter set of matrices relates net

relations

-1 =S

191 = IR17Y 155 (14)
[F] = [P] 3] (15)
M = Q] [3°] (16)

Since the matrices [R]'l, [P], and [Q] represent net current and
interaction rate '"responses' to imposed surface fluxes, they remain
finite when the node is critical and should vary continuously
through the point k_ = A_. Another interpolation alternative is

g
simply to interpolate the original matrices [R], [ﬁ], and [ﬁ] in
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a piece-wise manner over regions where their variation is smooth
;and continuous (i.e. where the node "reactivity" is of a constant
.sign).

Both interpolation alternatives were examined. Attention
was focused on piecewise interpolation of the elements of [R] and
interpolation of the elements of [R]'l. Although the matrices
[ﬁ], [EJ, [P], and [Q] were not explicitly considered, interpolation
_techniques applicable to [R] would be suitable for [ﬁ] and [ﬁ],

while those applicable to [R]'1

would be suitable for [P] and [Q].
Also, the exposure variable was arbitrarily chosen to test the two

interpolation ideas.

5.1 Interpolation of [R] and [R]-1

To obtain a sufficient number of data points to test the two
interpolation alternatives, fixed-source calculations were performed
at.exposure intervals of 1 MWD/kg for 0 < E < 10 and for a coolant
void fraction of 0.4. The two-group heterogeneous cross sections
used in these calculations were obtained by quadratic (for 0<E<5)
or bi-quadratic (for 5<E<10) Lagrange interpolation of CASMO cross
section data. Results of the fixed source calculations were used

to compute the response matrices JR] and IR]°1

as a function of E.
The variation of a representative element of each of these matrices
with exposure is shown in Figure 5. From part (a) of this figure,
it may be seen that the elements of the matrix [R] become infinite
for E =~ 3.3; at this exposure, the node is exactly critical with
Jen = 0 boundary conditions. Fortunately, it is also seen that the

matrix elements vary continuously and quite smoothly with exposure

away from the troublesome point of singularity. Examination of
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Figure 5(b) reveals that the behavior of a typical element of [R]'1
is not nearly as smooth, although the element remains finite for
.all values of E. Initially, numerical difficulties with the inver-
sion of LR] were thought to be the cause of this irregular behavior.
However, repetition of some of the inversions using (IBM) double-
precision produced changes in the elements that are not discernible
on the scale of Figure 5(b). Furthermore, the inversion of [R]'1
‘to reobtain [R] yielded the original matrix to the last (7th)
decimal place printed. Thus it appears that the elements of [R]“1
do not vary smoothly when computed at reasonable exposure intervals,
possibly because the collective behavior of all elements of [R] with
the changing exposure level governs the variation of each element

of [R]'l. Since a given element of [R], R.., which is smaller than

1]

another element Ri,j,.at some E may become larger at a different E,

the variation of [R]'1 is somewhat complicated and not sufficiently
smooth to permit interpolation by low-order polynomials,
Interpolation of the elements of [R] was tested using the

formula
-1
*3 *2 *
Ri j(E) = C [(E-E ) + b(E-E°) + a(E-E i] (17)

where R. .(E)

i3 the (i,j) element of [R] at exposure E
b

to
I

the exposure for which Ri 3 -+
b

a,b,c constants determined by fitting Eq. (17) to known

values of Ri j at three different values of E.
bl
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With E* 3.3, and with the constants a, b and c determined using
the calculated values of R7,1 at E = 0, 1, 2 [see Figure 5(a)],
R7’1(E=3) was predicted with an error of only 1.8%. The same
value of’E* and a, b, ¢ obtained from data at E = 5, 6, 7 yielded
R7’1(E=4) with an error of -6.6% and R7’1(E=8) with an érror of
-3.6%. Since all these cases represent eXtrapolations, and since
the value of E* is not known exactly, these errors are - actually
quite small. Errors of this magnitude may be acceptable if the
accuracy of the local (response matrix) calculations in the pro-

posed BWR depletion method is not eXtremely sensitive to small

errors in the matrix elements in the neighborhood of a discontinuity.
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6. Sensitivity of Local Calculations to Response Matrix Errors

The sensitivity of the results of local response matrix calcu-
'1a£ions (i.e. HCS and DF) to errors in extrapolated matrix elements
about the point of matrix singularity is an important consideration.
This sensitivity was tested for the simple 3-node by 3-node problem
shown in Figure 6. The geometric detail of each of these nodes 1is
that of the unrodded configuration of the BWR assembly shown in
‘Figure 3, but the various nodes are characterized by different
levels of exposure. The coolant void fraction and the fuel temperature
are the same for all the nodes, and J'n = 0 boundary conditions are
imposed on the outer boundary of the nine-node cluster.

Assembly calculations were first performed for each node type
to obtain its k  as well as assembly discontinuity factors ADF and
assembly homogenized cross sections AHCS. Using the ADF and AHCS,
the global homogeneous problem was solved to obtain net surface
currents to be used in local five-node, two-segment response
matrix calculations. (It should be noted that for E=3 (MWD/kg),
the nodal k, differed from the ADF ) by less than 0.5%, and thus
its matrix elements were quite large in magnitude,) The local
calculations were performed twice, once with the "exact" matrices
(precomputed by fixed-source calculations) used for the E=3 nodes and
once with approximate matrices extrapolated to E=3 (using Eq. (17))
from fixed-source results at E=0, 1, and 2. In both cases, the
"exact"'" matrices were used for the E=0 and E=10 nodes. Finally,

the global problem solution was repeated using the HCS and DF
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updated in each of these local calculations. Results of the entire
problem are summarized in Table 1 and indicate that although all
‘the matrix elements for E=3 were in error by about 2%, the resul-
tant errors in HCS, DF, power, and eigenvalue were all less than
0.15%. Thus it-appeais that the error in the response matrix
elements of the nodes that are nearly critical leads to negligible

errors in the results for the local calculations.
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7. An Alternate Interpolation Strategy

It is unfortunate that use of Eq. (17) to interpolate matrix
‘elements ;requires at least three data points on either side of a
- discontinuity, as well as an accurate knowledge of the value of the
independent variable at which the matrices are singular. In view
of the fact that several variables can cause matrix singularity,
the number of response matrices that would have to be generated
‘and stored becomes enormous. Thus it may be advantageous to
utilize an alternate interpolation scheme in which the HCS and DF
themselves are interpolated instead of the matrix elements. In
this method, a number of different local calculations with response
matrices appropriate to values of some independent variable x
surrounding the value at which the HCS and DF are needed would be
performed. Results of these local calculations can then be inter-
polated to yield the desired HCS and DF at the correct value of x.
The success of this method obviously depends on how smoothly the
nodal HCS and DF vary through a point of assembly criticality.

To test the feasibility of interpolation of the HCS and DF
"across'" a point where the matrices are singular, the problem shown
in Fig. 7 was considered. For this problem the global, homogeneous
calculation using the ADF and AHCS yielded X = 0.9955 which is very
close to the k,_ of the E = 3 node, 0.9952. The local five-node
response matrix calculation was performed three times with different
response matrices assigned to the center node (E=3). The correct
E=3 matrices were used, as well as matrices for exposures surrounding

E=3, namely E=2 and E=4. The matrix elements are singular at
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E = 3.3 and thus have differing signs and large magnitudes at E=3
and E=4. The DF and HCS computed for the cases in which the E=2
and E=4 matricés were used were averaged and compared with the
correct E=3 results and the ADF results. This comparison is pre-
sented in-Table 2, from which it may be seen that the averaged
results match quite closely the correct results, even though the
response matrix elements are infinite and discontinuous at an expos-
ure between E=3 and E=4.

Although the outcome of this problem indicates that it is
indeed possible to interpolate the HCS and DF across the point of
matrix discontinuity, the accuracy that was demonstrated may have
been largely due to the absence of any void or control mismatch
among the various nodes (only the nodal ekposures were different).
This uniformity of void fraction caused the fast to thermal current
ratios Jl/J2 at the node boundaries to approach an asymptotic
value. Thus a more difficult three-node by three-node problem
was developed in which three of the nodes were characterized by
v = 0, and the remaining ones by v = 40%. This problem is shown
in Fig. 8.

As expected, the global calcu}ation using assembly discontinuity
factors ADF yielded widely differing Jl/J2 over the interior sur-
faces of the nine-node cluster. Furthermore, the ADF A of 0.99773
was very close to the k_ of the center node, causing its matrix
elements to be very large in magnitude. Following the ADF calcula-
tion, one-node, one-segment local response matrix calculations
were performed three times -- first with the center-node matrices

at the correct exposure (E = 3) and then with matrices at surrounding
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exposures (E = 2 and E = 4). Since the matrix elements are

singular at E = 3.3, matrices of differing signs and large magnitudes
’were assigned to the center node in the three different local calcu-
lations. A comparison of the HCS and DF obtained by using the
correct E=3 matrices fo those determined by averaging the E=2 and
E=4 results is presented in Table 3. From this table it is clear
that the simple averaging of local calculation results (i.e. the

HCS and DF) is much less accurate for this problem, in which a
significant void mismatch exists. For ekample, one of the averaged
DF's was in error by more than 20%.

To determine the effect of the errors in HCS and DF on the
ensuing global calculation, the averaged values were used in another
global QUANDRY run. The resulting eigenvalue and center-node fluxes
and power were compared with the correct values (determined using
the correct E=3 matrices for the center node in the local calcula-
tidns) and with the ADF values. This comparison is presented in
Table 4 and indicates that even with the large DF errors, the resul-
tant errors in the global solution were very small and still repre-
sented an improvement over the ADF results.

The results of these test proplems are very encouraging because

they indicate that although a matrix element cannot be interpolated

using known values on different sides of a singularity, the desired

HCS and DF themselves can be found in this manner.
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8. Summary, Conclusions, and Recommendations

An overall strategy for performing BWR depletions using the
nodal code QUANDRY and response matrix methods for assembly
homogenization has been outlined. A few ideas useful for testing
the various procedures in a consistent manner were also presented.
The problem of interpolating response matrices based on net currents
was found to be challenging because of the singularity of the matrix
elements when the value of some nodal property causes the node to
be critical.

A number of interpolation techniques were examined. It was
shown that interpolation of the inverted response matrices (i.e.
matrices based on average surface fluxes) is not a practical alter-
native. An interpolation formula suitable for piece-wise interpo-
lation of the response matrices (Eq. (17)) was shown to yield the
various elements with good accuracy even at node conditions very
close to critical. The resultant errors in matrix elements were
shown to be quite unimportant as far as their effects on the HCS
and DF are concerned. Unfortunately, use of a formula of
this type would be impractical when multi-dimensional (or a series
of one-dimensional) interpolations’ are needed, since the formula
requires at least three points on either side of every point of
discontinuity. Thus the number of matrix elements that must be
calculated and stored may become unacceptably large.

It was also demonstrated in this study that it is feasible
to interpolate HCS and DF computed by the use of (incorrect)

matrices at conditions surrounding the desired ones (for which
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matrices cannot be interpolated by standard methods due to singular
behavior). However, this method was successful partly because
known (i.e. pre-computed) matrices were available at conditions
very close to critical. Moreover, this interpolation method was
implemented by running the entire code RESPONSE twice (with matrices
corresponding to conditions surrounding the actual conditions of
the critical nodes), and thus local calculations were needlessly
repeated for nodes not close to criticality. Clearly, it would be
more practical to modify the code RESPONSE so that local calcula-
tions would be repeated only for nearly critical nodes.

Most probably, a combination of the two investigated interpola-
tion strategies will be needed to obtain sufficiently accurate
values of the desired nodal DF and HCS for arbitrary nodal conditions.

Obviously, a great deal remains to be accomplished in both
formulation and solution of the depletion problem. Presently,

the most immediate concerns appear to be:

i) Modification of QUANDRY to permit solution of isotope

depletion eqﬁations and calculation of macroscopic
cross sections over life. This may be accomplished by
interfacing QUANDRY with'a simple existing depletion
program.

ii) Design of a simple (e.g. 3-assembly by 3-assembly, two-
dimensional global problem with albedo boundary con-
ditions to obtain a reference depletion run against which

the proposed depletion methods can be tested.
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iii)r Determination of a suitable method applicable to the
multi-dimensional interpolation of nodal response
matrices when the variation of any of the nodal proper-
ties may cause criticality (i.e. matrix singularity).
It should be noted, however; that the concern here is
not that a node will be eiactly critical during the
course of a depletion calculation (this 1is eXtremely
unlikely); the problem is rather that of obtaining
nodal homogenization parameters when data required for
interpolation exist on "different sides'" of a
singularity.

iv) Examination of the accuracy with which local power
peaks can be predicted over life with the response

matrix methods that have been developed to date.

Tﬁe last two of these four items will probably have the biggest
impact on the success of the proposed depletion model. However,
there is little reason to doubt that the various questions can be
resolved satisfactorily, and that the computational advantages of
using QUANDRY and the response matrix technique of assembly
homogenization for static calculations will also be realized in

depletion calculations.
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Appendix 1. Response Matrix Generation

A flow diagram illustrating the various calculational steps

‘and the computer codes used to compute the response matrices [R]

and [ﬁ] i:s shown in Fig. Al.1. This procedure is also outlined in
Table Al.1, along with some of the details of running the code
CITATION. A sample CITATION input data file is given in Table Al.2.

The different input and output device numbers needed to execute

.the various programs are given in Table Al.3. The correspondence

between these device numbers and actual input and output files
are presented in Table Al.4. Finally, Table Al.5 gives the input

data (File 37) required to run the different codes.
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Table Al.1

Procedures (for Preparation of Running 'RESPONSE')

Run CISET - prepare input file for fixed source calculation.
Run CITATION - solve fixed source problem.

A. If no on-line module, run NEWLOAD VS1JOB - create
on-line module and solve the fixed source problem.
NOTE: the time 1limit in NEWLOAD is not enough for

8 case’ of 29x29.
CHANGE: a. NEWLOAD VS1JOB (CITATION LOAD40KC) (1 place)

b. CITATION GOCARDS (FT44F001 DSN=?) (1 place)
c. CITATION FORTRAN (XTFLUX(??)§ KG=1)(7 places)

KG=1,2 for all type and case except for
reflector and source in 2nd group, then
KG=2,1

B. If on-line module eXists, run CITATION VS1J0B - solve
fixed source problem.
NOTE: time limit
CHANGE: a. CITATION VS1J0B (FT44F001 DSN=?)

(CITATION LOAD 40KC) (2 places)

If it is reflector, run REFLRE - create CL symmetric file.

(
If it is CL symmetric, run RESORDER - create diagonaljsymmetric

file.

Run QNRES - generate 2-segment R, (¢=RJ) = [3°]
IR], (Is°1 = IRIIJ]) = [0

R= IR
Run RESHCS - generate 2-segment R', (IR=R'J) IR ﬂéa

A
IR1, ([F] = [R]IJ]) R= L[R2
Run QN1RES - generate l-segment R and R' (¢ = RJ, IR = R'J)



1 2 3 6 34 35 36 37 . 38 39 S50*NLSOM 50+NST+NLSCOM 50+2*NST+NLSCOM

CISET X x x*  x X

REFLRE X X X X :

RESORDER X X X

QNRES X X X x*, X

RESHCS X X X X

QN1RES X X X X X X X
* if ISHA#1

_LS-

ISHA = 1 for a flat current disth
# 1 for other shapes

(only ISHA = 1 is presently available)

NST = no. of node types in core

NLSCOM = nodal index
(NLSCOM = 1, ..., NST)

Table Al.3 Input and Output Device Numbers Needed to Run the Codes
Used in the Response Matrix Generation Process and to
Perform the Global/Local Iteration
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DISK
DISK
Xl PSN ]
x1 DsN
X1 Dsy
PIsK
pIsK
PISA
X1 NV
PISK
PISK

LIsSIA
PlsK
pIsK

DIsSK

|FILE

MoDe

" %Y M

)

A~ I N N N

RtCFM
V8BS

VEs
vE&s

VBs

VES

VEs

VES

4098

4086

. -1 2’
#2096
4056

dapb

Fo2&

LRECL

4096

409 ¢

f
BLKSIZE
40 96

se
2096
#o56.
voLe
#2285

#0054




-59-

61-72 . DHX (NLX)

‘Table Al.5 Input Data Used in Response Matrix
Generation
(FILE 37)
Card 1 (6X, 1116)
1-6 . blank
7-12 NLX no. of meshes in X-dir.
13-18 NLY no. of meshes in Y-dir.
19-24 NG no. of groups
25-30 NSLX X-dir. segment position
(L-sR) :
31-36 NSLY Y-dir. segment position
(B=>T)
37-42 ISYM diagonal symmetry (LT-3RB)
1-SYM
2-»NOT SYM :
43-48 , NST no. of nodal types in the
core
49-54 NLSCOM no. of nodal type of this
. ) subassembly
55-60 NLTCOM no. of mesh types
61-66 ISHA current distributions
l=>flat
‘ #l=>others
67-72 NSEG no. of segments
Card 2 (12X, 5E12.6)
1-12 blank
13-24 XYI sign convention
= 1.00 1if Ay > Fee
25-36 XLAM (estimated global
eigenvalue)
Card 3 (12X, 5E12.6)
1-12 blank
13-24 DH%(l) X-dir. mesh size (L=*R)

use as many cards as
needed



Table Al.5 (continued)

Card 4
1-12
13-24

61-72

Card 5
1-6
7-12

- e - -

67-72
Card 6
1-12
13-24

61-72

- -
- — o -
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(12X, 5E12.6)
blank
DHY (1)

DHY (NLY)

(6X, 1116)
blank
NLCOMP (NLY,NLX)

(12X, 5E12.6)
blank

NLS(5*NG, NLTCOM)

Y-dir mesh size (B-3T)
use as many cards
as needed

mesh map (L-+R)
(T->B)

X-dir goes first
use as many cards
as needed in each dir.,
initiate a new card
for different Y

l/Dg, ZTg,Eg'g(g'#g) ’
\)ng,ng
first fast group
then thermal group
(not needed if NG=1)
Remember VIfg#V-Tfg
then different com-
position
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Appendix 2. The Global/Local Iteration

In the global/local iteration, the global calculation is
performed using QUANDRY, while local calculations for the various
nodes are performed by the code RESPONSE. Input needed to run
QUANDRY is described in Reference 27, while the input data used
by RESPONSE is given in Table A2.1. Table A2.2 gives the corres-
pondence between input and output_de#ice numbers and the different

input and output files employed in carrying out the QUANDRY/
RESPONSE iteration.



Card O

1-2
3-4
5-80

Card 1

1-2

3-6

7-12
13-18
19-24
25-30

31-36

37-42

43-48

49-54

Card 2

1-2
3-6
7-12

13-18

19-24

<+

Table A2.1
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Input Data for RESPONSE
(FILE 50)

(612, 2X, 19A4)

NC =0 card type
blank
Alphanumeric title

(I2, 4X, 111I6)

NC =1 card type
blank
NX no. of nodes in X-dir.
NY no. of nodes in Y-dir.
NG no. of groups
NLOC no. of nodes in local

ﬁroblems (1 or 5)

NSEG no. of segments on the
surfaces of each
node (1 or 2)

NQND current distribution
between segments,
useful only if

NSEG=2
1-flat (0.5)
#1-others
NST no. of nodal types in
the core
(I2, 4X,-1116)
NC = 2 card type
blank
ICORE container array size
in D.P. words
(0-code calculates)
IBPONT BPOINTER print flag
0-NONE
2-ALLOCATIONS
NAT* accuracy test
0-NO
6-IMSL TEST

0 § 4-TEST ERROR

NAT=0 and IAT=0 are suggested

1.

E-4
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Table A2.1 (continued)

25-30 IATY conditions for stop
0-if NAT test 1is not
satisfied

_ 34-if singular

31-36 IALP albedo conditions

1-all 2.0

2-diagonal

3-full A

37-42 NALP no. of albedo sets (_0)

43-48 NSS no. of state variables
in a node

49-54 NFEDBK feedback index
1-no feedback
l-yes

*
55-60 NJBC 0-true B.C.
1-nOde'740--es1:imated B.C.

" 0-globally fixed
source

#0-updated fixed
source

S5-node

Card 3 . (I2, 4X, 1116)
1-2 NC =3 card type
3-6 blank

7-12 _ IGSYM*+ global orientation
1-LB 1/4, Lower 1/2 or
whole like
2-LT 1/4 or top 1/2 1like
3-RB 1/4
4-RT 1/4

13-18 ITEST test option
l1-test input
2-rTun

19-24 1DSYM™* diagonal symmetry (LB--TR)
1-yes
2-no

25-30 LTEST print option
0-normal

l1-node condition
2-file 20

19-Sym. R

*NAT=0 and IAT=0 are suggested.

*

NJBC=0 is suggested. For five node problem always use NJBC=0

++IGSYM gives orientation of the assembly in the left bottom section
of the core being considered. '

**Unless all nodes have rotational symmetry, IDSYM=1 can only be
used for IGSYM=1 or 4. Remembev diaqonal symmetry exchange the X--Y



Table A2.1 (continued)

‘Card 4
C1-12
13-24

25-36
'
{

61-72

Card 5
1-6
7-12

67-72

Card 6
1-12
13-24

61-72
Card 7
1-12
13;24

'
61-72
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(12X, S5E12.6)
blank
SREF(NSS)

reference state variables

use as many cards as
needed

must have a card 04 (blank)
even if NFEDBK = 1

(6X, 1116€)
blank

NCOMP (NYY, NXX)

(12X, 5E12.6)
blank
DLX(NX)

(12X, 5E12.6)
blank
DLY (NY)

NYY=NY+2 (L--R)
NXX=NX+2 (T--B)

lst and last columns

and rows are albedo rows
and columns. X-dir. goes
first, use as many cards
as needed in each dir.
initiate a new card for
different Y

X-dir nodal size (L--R)

use as many cards as
needed

Y-dir nodal size (B--T)
use as many cards as

needed



Table A2.1

Card 8

1-12
13-24

(continued)
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(12X, 5E12.6)
blank

ALP(N2, N2,

2, NALP)

albedo matrices

not needed if NALP=0
or 1f IALP=1

if IALP=2

need only N2 elements

in each dir. in each

type.

first X-dir then Y-dir.

use as many cards as
needed for each dir.

initiate a new card for
different dir.

N2=NSEG*NG
if IALP=3

need a N2x*N2 full matrix
for each dir. in each

type
(J,I), I goes first.
use as many cards as
needed for each J.

initiate a new card for
different J

first X-dir, then Y-dir.
0= o Jin normal direction




FILE
MODE

NEEDS

Table A2.2
'RESPONSE!' NEEDS
FILE DESCRIPTIONS DISK
6 PRINTOUT DISK
20 OUTPUT INTERFACE FILE DISK
21 INPUT INTERFACE FILE DISK
49 State variables, s.p., DISK
needed only if NFEDBK>1
50 Input data DISK
51 to R(®#=RJ) s.p., (J,I) DISK
50+NST J goes first
50+NST+1 Distributions, s.p. DISK
to Needed only if NQND#1
50+2*NST and NSEG=2
50+2*%NST+1 R',(IR=R'J),s.p., (J,I) DISK
to J goes first
50+3*NST
'QUANDRY"
6 PRINTOUT DISK
10 Input data DISK
20 Input interface file DISK
(not needed for initialization)
21 Output interface file DISK

E

D

D

i

RECFM

F
VBS

VBS

VBS

VBS

VBS

VBS

LRECL
132

4096
4096

4096

4096

132

4096

4096

File Definitions Used in Performing the Global/Local Iteration'

BLKSZZE

132
4096

4096

4096

4096

132

4096

4096

-99_



rj,

-

Table A2.2 (continued)

FILE DESCRIPTIONS
6 PRINTOUT
7 INPUT data
50 INPUT data
1 Reference data file
2 Approximate data file

_ FILE
DISK MODE

'COMPARE' NEEDS
DISK
DISK
DIéK

DISK

DISK

m » > m

RECFM

VBS

VBS

LRECL

132

4096

4096

BLKSZZE

132

4096

4096

-Lg_
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Appendix 3. Variation of Two-Group Cross Sections With Exposure

The variation of the two-group diffusion coefficients, total
cross sections, and fission cross sections with exposure for

several compositions in the Vermont Yankee BWR bundle shown in

- Fig. 2 is illustrated in Figs. A3.1 to A3.3. All cross sections

are for a coolant void fraction of 0.4, a fuel temperature of

820 K, and an unrodded state.
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