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of Science.

ABSTRACT

Finite element methods are developed for the solution of the neutron
diffusion equation in space, energy and time domains. Constructions of
piecewise polynomial spaces in multiple variables are considered for the
approximation of a general class of piecewise continuous functions such
as neutron fluxes and concentrations of nuclear elements. The approxi-
mate solution in the piecewise polynomial space is determined by apply-
ing the Galerkin scheme to a weak form of the neutron diffusion equation.
A piecewise polynomial method is also developed for the solution of
first-order ordinary differential equations. The numerical methods are
applied to neutron slowing-down problems, static neutron diffusion
problems, point kinetics problems and time-dependent neutron diffusion
problems. The uniqueness, stability and approximation error of the
numerical methods are considered. The finite element methods yield
high-order accuracy, depending on the degree of the polynomials used,
and thereby permit coarse-mesh calculations. The conventional multi-
group method, the Crank-Nicolson and the Pad6 schemes are shown to
be special cases of the finite element methods. Numerical examples
are presented which confirm the truncation error and demonstrate the
utility of the finite element methods in reactor problems.

Thesis Supervisor: Kent F. Hansen
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Chapter I

INTRODUCTION

1. 1 Introduction

This thesis is concerned with the development of numerical

methods for neutron diffusion problems using piecewise polynomials

in the energy, space and time variables.

Numerical methods for the solution of neutron diffusion problems

have been widely used and have been shown to be more powerful than

analytical methods, due to the complexity of reactor geometries and

nuclear cross sections. The most widely used method is the finite

difference method. This method is quite simple but requires relatively

small meshes and hence a large number of unknowns. For this reason,

finite difference methods have been limited to at most two-dimensional

kinetics problems or coarse mesh three-dimensional problems. There-

fore, alternate methods have been developed which require a relatively

small number of unknowns and which can be applied to multidimensional

problems.

In the synthesis method [1] - [3], the solution is expanded in terms

of a small number of functions chosen to represent various transient

states of the problem. A variety of synthesis techniques have evolved

for treating some or all of the spatial variables and the energy variable.

The advantage of this method is that the expansion functions may be

obtained based on the knowledge of a particular system. However, the

selection of proper expansion functions for various systems is difficult
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in general. Poor selection of expansion functions can not only misrepre-

sent the solution but also can cause numerical instabilities. Further-

more, analytic error bounds for the approximations are not known.

Another important class of approximate methods are the so-called

"nodal methods." The basic idea is to treat the reactor as a small

number of disjoint regions and to couple the regions through the neutron

flux or current. In the "coupled reactor theory" [4], certain types of

trial functions are defined on each subregion, which vanish outside the

subregion. The subregions are then coupled through neutron currents.

However, the neutron currents, and thus the coupling relations, depend

strongly on shapes of the trial functions. Thus, as in the synthesis

method, the selection of proper trial functions is a major difficulty in

this method. An alternative is to use a simple constant trial function

over each region, as in the FLARE [5] approach. In this approach, the

proper coupling coefficients are difficult to define.

Instead of using fixed trial functions, several authors have con-

sidered using polynomial functions defined in each subregion. Riese [6]

considered polynomials quadratic in each variable. The polynomials are

then coupled to neighbor polynomials so that the flux continuity condition

is satisfied. In the GRCORK scheme [7], the same type of polynomials

was used with the difference that the subregions are coupled by partial

neutron currents. The resulting solution is thus allowed to have a dis-

continuity along the region interfaces. In these methods, the accuracy

of the solution is not known and the solution fails to satisfy the requisite

continuity conditions. However, these methods are significant, since

their development was based on a concept similar to that of the finite

element method which will be developed in the present thesis.
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In recent years, much attention has been given to approximations of

functions using polynomials which are defined only over subregions of

the problem domain, rather than over the entire domain. These poly-

nomials are called "piecewise polynomials" for evident reasons. The

piecewise polynomials yield high accuracy for approximations of

functions and their derivatives. Furthermore, for practical computation,

the piecewise polynomials provide some convenient features which ordi-

nary polynomials lack:

(i) The piecewise polynomials provide local approximations and are

thus well suited for approximating physical behaviors in which

variations occur locally. In this case, a fewer number of poly-

nomials is required using piecewise polynomials compared to the

use of polynomials defined over the entire region.

(ii) Piecewise polynomials permit flexibility in imposing certain types

of continuity or jump conditions at the joints of the subregions. In

addition, boundary conditions are easily imposed.

(iii) Convenient piecewise polynomial basis functions can be found

such that expansion coefficients are directly related to the values

of functions and their derivatives at mesh points.

(iv) Used with the Ritz-Galerkin method, the system of linear equa-

tions can be made very simple and amenable to computer solution

by well-developed methods.

The Ritz-Galerkin method, using piecewise polynomials as expan-

sion functions, is called the "finite element method" by Fix and Strang

[8], [9] and others [10], [11]. Many authors have suggested the use of
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piecewise polynomial spaces with the Ritz-Galerkin method (e.g., see

[8] - [21]). Representative spaces are spline space and the Hermite

space. The spline space consists of piecewise polynomials whose

derivatives satisfy the maximal continuity conditions. Therefore, the

spline space has the smallest dimensions of all the piecewise poly-

nomial spaces. The Hermite space consists of piecewise polynomials

which are less continuous than the corresponding polynomials in the

spline space. For example, polynomials of degree 2m-1 have continu-

ous derivatives of order up to 2m-2 in the spline space, and up to m-1

in the Hermite space. Thus, if there are N-1 intervals in a one-

dimensional space within which the piecewise polynomials are defined,

the number of dimensions is N for the spline space and mN for the

Hermite space. In an n-dimensional space, the number of dimensions

is Nn and (mN)n for the spline and Hermite spaces, respectively. Since

the dimension of the Hermite space increases sharply in multi-

dimensional geometries, the Hermite space is less desirable for multi-

dimensional calculations of smooth functions. In both spaces, conveni-

ent basis functions in one variable are easily found. Furthermore, the

basis functions in the multivariate space can be obtained by taking

tensor products [18], [21] of the basis functions of one variable.

Problems in nuclear reactor analysis consist of many regions of

different materials. Thus, physical quantities in reactors are charac-

terized by piecewise continuous functions. For example, the scalar

neutron flux is continuous everywhere but has piecewise continuous first

derivatives, while the concentrations of nuclear elements are continuous

only within each region.
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Previous studies of piecewise polynomial spaces have been

developed mainly for approximations of smooth functions which are suf-

ficiently differentiable on the entire region. Applications of piecewise

polynomials to nonsmooth or piecewise continuous functions have previ-

ously been limited only to one-dimensional problems. In [16], modifi-

cations of basis functions in the Hermite space to allow jump continuity

conditions are discussed. Wakoff [21] used modified cubic spline

functions for the solution of one-dimensional multigroup diffusion prob-

lems. However, the extension of these modified piecewise polynomial

spaces to multidimensional spaces by taking local tensor products leads

to basis functions which are incompatible with the requisite continuity

conditions.

The central object of this thesis is to construct appropriate and

general piecewise polynomial spaces for approximations of piecewise

continuous functions of multiple variables. Coarse mesh methods are

devised for the solution of diffusion problems in space, time and energy,

with a minimum of computational effort. We limit our consideration to

linear neutron diffusion problems. However, the methods apply to any

orthogonal coordinate system (e.g., Cartesian, cylindrical, polar

spherical), whose partition is generated by coordinate surfaces (e.g..,

r 1 =const., r 2 =const., r 3 =const.).

In the rest of this chapter, we discuss the energy-dependent neutron

diffusion equation and the finite element method. Chapter II is concerned

with the construction of piecewise polynomial spaces and corresponding

basis functions in multiple variables for approximation of general

classes of piecewise continuous functions. The uniqueness properties
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and error bounds for the Hermite interpolation in these spaces are

established.

In the succeeding chapters, we consider the application of the finite

element method to neutron slowing-down problems (Chap. III), static

neutron diffusion problems (Chap. IV), point reactor kinetics problems

(Chap. V) and time-dependent neutron diffusion problems (Chap. VI).

The uniqueness, stability and approximation error of the numerical

method are considered. Finally, Chapter VII contains the conclusions

and recommendations for further developments.

1.2 The Energy-Dependent Neutron Diffusion Equation

In this section, we introduce the energy-dependent neutron diffusion

equation and discuss proper boundary conditions. The derivation of this

equation can be found in Davison [22] and elsewhere [23],[24].

Let Rn be an n-dimensional space and r =(r r r,. , rn) represent

n
a point in Rn. Consider a reactor configuration defined by an open

region Q and its boundary 3Q. Furthermore, assume that Q consists of

disjoint open subregions Q , = 1, 2, . . . , L, each of which is bounded by

a. Let E . < E < E and 0 t < T where E and t represent the
T mmn max

energy and time variables, respectively, and define S = [E min' max

Then, within any region Q , the time-dependent neutron diffusion

equation with delayed precursors can be written as
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S 4(r, E, t) = V . D(r, E, t) V 0(r, E, t)

- ET(r, E, t) 4(r, E, t)

+ dE' s(r, E'-E, t) 4(r, E', t) (1.1a)

+ X(E)(1- ) Jj dE' vf(r, E', t) 4(r, E', t)

J

+ Xdj ( j) X.C.(r, t) + Q(r, E, t)
j=1

tC(rt) = - C (t) + #3. dE' v~f(r, E't) 0(r, E', t) , (1.b)

j = 1, 2, .,J,

where

2
0(r, E, t) = neutron flux (n/cm2. sec),

IY(E) = neutron speed (cm/sec) ,

D(r, E, t) = neutron diffusion coefficient (cm),

7T(r, E, t) = total macroscopic removal cross section (cm ),

E

E T(r, E, t) = za(r, E, t) + fE max Z s(r, E- E', t) dE'
min

7a(r, E, t) = macroscopic absorption cross section (cm~ 1

E s(r, E'--E, t) = macroscopic scattering cross section from

E' to E (cm~ )

Sf(r, E, t) = macroscopic fission cross section (cm~ ,

v = average number of neutrons produced per fission,

X(E) = fission spectrum for prompt neutrons ,

Xdj(E) = spectrum of delayed neutrons for the j-th group,

X . = decay constant of the j-th delayed neutron precursors (sec )
J J

fraction of delayed neutrons for the j-th group: # =

j=1
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C .(r, t) = concentration of delayed neutron precursor of the j-th group,

J = number of delayed neutron groups,

Q(r, t) = neutron source/cm 2. sec.

The nuclear constants in Eqs. (1.la, b) are assumed to satisfy the

following conditions:

(i 0 1 , E < oo, 0 < , D < oo,
a s f 7

(ii) D, Za' s and Zf are continuous in each Q I , = 1, 2,.. . , L, and

may be discontinuous on MI,

(iii) Ea(E), 7 s(E' -E), X(E)v f(E') are positive operators such that

Z(E', E) f(E', E) if f(E', E) > 0
x(E', E) f(E', E) = (1.2)

0 if f(E', E) < 0

The condition (iii) implies that the products are nonnegative. Further-

more, when f(E', E) = f(E'), this condition conforms to the physical fact

that the reaction rate must be nonnegative. Under the condition (iii), it

can be shown easily that the integral operators in Eq. (1.1a) are positive

semidefinite [25], although they are nonsymmetric.

Let the initial conditions be specified by

(r, E, t) t=0 0(r, E) , (1. 3a)

C (r, t)|It=0 = Cj0(r) , 1 '< j '< J. (1. 3b)

Let the boundary conditions on 8Q be homogeneous conditions

4(r, E, t) = 0 or a 4(r, E, t) = 0 , (1.4a)

where represents the outward normal derivative at 3Q.

The diffusion approximation fails in the neighborhood of material

interfaces, where the solution has transients. We assume that the
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solution satisfies certain boundary conditions at the interfaces. Rigor-

ous interface boundary conditions for the diffusion approximation based

on the transport theory are discussed in Davison [22]. However, the

following set of interface boundary conditions is more commonly used:

a
0(r, E, t) and D(r, E, t) -5n 0(r, E, t) are continuous on material

interfaces. (1.4b)

These conditions are frequently called flux and current continuity con-

ditions, respectively.

The point which is formed by intersections of two or more material

interfaces is a singular point. In order to generate approximations to

the analytic solution to the diffusion problem, it would be necessary to

include the singular solutions [18] , [26] , [27] . However, this is an im-

practical computing task, at least at present. The approach to be taken

in this thesis will be to ignore the singular part of the solution. The

result is that we are solving a problem slightly different from the origi-

nal diffusion problem, namely we have relaxed certain boundary

conditions. We call this different problem the "modified" problem, or

the "weak" formulation of the problem. We show in Chapter IV that the

solution is unique in the modified problem (see Lemma 4.1). We call

this solution the "weak" solution to the original problem. For the weak

formulation, it is possible to find error bounds and rates of convergence

of approximate solutions to the weak solution.

The important question is, of course, how the weak solution com-

pares to the solution of the original problem. Fix [18] has shown that

for certain eigenvalue problems in an L-shaped membrane, inclusion of

the singular solution makes a considerable improvement in the
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convergence of eigenvalues. However, the effect of the singular solution

on reaction rates and integral properties in reactor problems would be

negligible.

We remark that this "pragmatic" approach is the same as that used

in finite difference approximations to diffusion problems. As one refines

the difference mesh the solution approaches a limit, which again is not

the analytic solution to the continuum problem. The difficulty lies not

with the numerical approximations, but rather with the application of

diffusion theory to a case for which the theory is not physically valid.

1.3 Finite Element Methods

Finite element methods were originally developed by engineers for

structural analysis in solid mechanics. References [28] and [29] contain

extensive compilations of literature in this area. In general, the Ritz-

Galerkin method used with piecewise polynomial functions is called the

"finite element method'" [8] - [11]. Courant [12] was the first to suggest

the use of piecewise linear functions in triangular meshes in the Ritz

method for two-dimensional Dirichlet problems. In recent years, finite

element methods were developed as higher-order methods allowing the

use of high-degree polynomials. Finite element methods have been

applied to boundary and eigenvalue problems in [8] - [21] and to para-

bolic problems in [30] - [32].

To illustrate the finite element method, consider a problem defined

by

T <(r) = Q(r) r in 0 , (1.5)

where T is an integro-differential operator with homogeneous boundary
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conditions specified on the boundary M7. Q(r) represents a source term.

In order to approximate the solution to Eq. (1.5), we consider a

M
finite dimensional trial space SM where {ui(r) 1 form a basis. In par-

ticular, we choose u (r) as polynomials of a certain degree satisfying

the same boundary condition as the analytic solution. We then seek an

approximate solution of the form

M
_(r = a u.(r) (1.6)

i= 1

The Ritz-Galerkin procedure is a well-known method [33], [34] for

solving integro-differential equations. The Galerkin method is more

general than the Ritz method and can be applied to problems with non-

self adjoint operators. In the Galerkin method, the expansion coef-

ficients a. are determined from the condition that the equation obtained

by the substitution of O(r) for 4 in Eq. (1.5) must be orthogonal to the

elements u 1 , u 2 ,.. ., uM. This condition leads to the system of equations

(T 0, u ) = (Q, u.)

for all i= 1, 2, ... , M, where the inner product is defined by

(u, v) = uv dV. This equation can be rewritten in matrix form as

A a =q (1.7)

where

A.. (T u.,u.),
13 J 1

a= col{a, a 2 , .. ., aM

q= col {(Q, u), ... , (Q, uM).

The matrix A is usually called a stiffness matrix.
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The coefficient vector a is determined by inverting the stiffness

matrix A. The numerical inversion of A is governed by the condition

number of the matrix A. The condition number is defined by

Cond (A) = DA a HA- 1

where a f denotes any matrix norm. If the condition number is rela-

tively large, then A is ill-conditioned in numerical inversion. If the

condition number is relatively small, then the matrix A is well-

conditioned.

In finite element methods, the condition number of A depends on

the selection of the polynomial expansion functions. When the operator

is positive definite and the polynomials are sufficiently linearly inde-

pendent, then there will be no difficulties in inverting the stiffness

matrix. For example, if we choose a set of polynomials

{xP M (x 0 .. .1 x ) as expansion functions, then the stiffness
Py=1

matrix becomes the Hilbert matrix [35] . These polynomials are nearly

linearly dependent in the range 0 < x < 1 and thus the Hilbert matrix is

very ill-conditioned and difficult to invert numerically. Therefore, in

finite element methods, instead of using ordinary polynomials, we select

piecewise polynomials which vanish throughout most of the whole region

and finite only in a few subregions. Use of the piecewise polynomials

makes the stiffness matrix sparse and relatively well-conditioned. In

Chapter II, we shall consider the generation of specific piecewise poly-

nomial basis functions for use with the Galerkin method in reactor

problems.
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Chapter II

PIECEWISE POLYNOMIAL SPACES

In this chapter, we will discuss certain types of piecewise poly-

nomial spaces which are of use in the solution of diffusion problems.

In a heterogeneous reactor, physical quantities are characterized by

piecewise continuous functions. Therefore, we will consider the con-

struction of appropriate piecewise polynomial spaces for problems of

one independent variable, i.e., univariate spaces, and multiple inde-

pendent variables, i.e., multivariate spaces. The purpose of this

chapter is to provide the tool for the numerical analysis of reactor

problems in succeeding chapters.

We consider piecewise polynomial spaces in multivariables which

can be directly applied to the Hermite interpolation. The Hermite

interpolation is characterized by the fact that the interpolating poly-

nomial is generated by the use of function values and derivatives. In

particular, the same data must be available at both ends of the interpo-

lation interval. This means, for instance, that if one has the value of

the function and its first order derivatives at one end of the interval,

one must also have the value of the function and its first order deriva-

tives at the other end. Thus, the amount of data is always an even

number of values; hence the interpolating polynomials are always of

odd degree. For neutron diffusion problems, the flux and current con-

tinuity conditions lead naturally to the use of Hermite interpolation.

The piecewise polynomial space, which is constructed based on the
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Hermite interpolation, will be called the Hermite space. The Hermite

space is particularly suited for the interpolation of the piecewise con-

tinuous function as well as the continuous function. The Hermite space

can be regarded as a generalization of the smooth Hermite space [14],

[16] and the spline space [16], [36]

In Sections 2.1 and 2.2 we consider the generation of basis functions

in the univariate and multivariate Hermite spaces, respectively. For

this we introduce the element function. The element function is defined

as a piecewise polynomial function which is defined in a unit mesh ele-

ment and vanishes elsewhere. By using the element functions, the

interpolating polynomial can be conveniently represented in terms of

Hermite data. Furthermore, basis functions in the Hermite spaces can

be generated by coupling the element functions so that they satisfy the

pertinent continuity conditions. This method of construction is very

flexible in generating basis functions in multivariate spaces for various

types of continuity conditions. As special cases, this method gives

local basis functions in the cubic (smooth) Hermite space [14] , [16] , [19]

and the bicubic (smooth) Hermite space [18] , [19].

In Theorems 2.2 and 2.5 we consider the dimension count, or the

number of basis functions, of Hermite spaces. In Theorems 2.1 and 2.4

we establish error estimations for interpolations in Hermite spaces. In

this and succeeding chapters we develop error estimations in the L -

norm only. However, since the L 2-norm is always less than or equal to

the L 0 -norm, the results in this chapter can be applied to error esti-

mations in the L -norm.
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2.1 Univariate Polynomial Space

In this section we consider the construction of univariate Hermite

spaces and corresponding basis functions for the approximation of

general classes of piecewise continuous functions.

Let Q= [a, b] be a closed interval in one-dimensional space and A be

a partition of Q such that

A: a = x1 < x 2 < ' ' N = b . (2.1)

Let A = (x , xi+1 ), i = 1,2, ... ,N-1 be open subintervals of the

partition A.

We define Ct (0) to be the class of all functions which are t times

tdifferentiable in Q. Also we define C (A) to be the class of all piecewise
p

t *
functions f(x) such that f(x) E C (A.) for i= 1, 2, . . ,N-1 and

f (q) (x lim - f(x.±6) is finite for 0 < q < t.
6-0 dxq 1

Let s (x) be a polynomial of degree 2m-1 in the interval [xi, xi+1

where m = , 1,2,.. . Except for the case of m = , the s.(x) are odd

degree polynomials. We include the piecewise constant functions (m=1)

since these functions are commonly used for approximations in the energy

domain in deriving the multigroup equations in reactor physics. Then

s (x) can be expressed as

2m-1

s (x) = a x , x E [x , xi+1], (2.2)

P=0

where the a are 2m unknown parameters to be determined.

f(x) c C t(A ) means that f(x) is an element of the class Ct (A.)
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We consider the interpolation of a sufficiently smooth function f(x) in

[xi, xi+1], using polynomials of degree 2m-1. We are especially inter-

ested in interpolation problems where the derivatives of f(x) are specified

at x and xi+1 so that s (x) satisfies

s. (x.) = f (x) ),x(2.3a)

s (x i+1) , 0 p 4 m- , (2.3b)

where s. (x) dP s (x). s(x) for m= is assumed to satisfy Eq. (2.3a)
1 1 i dx

only. This type of interpolation is called Hermite interpolation and it is

known [37] that the Hermite interpolate s (x) can be uniquely determined.

In order to facilitate Hermite interpolation in numerical calculations,

we consider convenient polynomial functions, which we will call element

functions. The element functions {u?±} for m > 1 are defined by

2m-1

up (x) =a- x , x x '< x ,

( y=0 (2.4a)

0 , otherwise

2m- 1

up+(x) =a x , , x+1 1{ZaP i
p=0 (2.4b)

0 ,otherwise

such that

dq u (x )=6.. 6 0 p
dx 1 ij pqm

± p+ pwhere x x. ± 0. Note that u (x) and upi(x) are nonvanishing over the

same interval [xi, xi+1I]. We say they have the same support, that is, the
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region where the functions are non-zero.

From the definitions of the element functions, the Hermite interpo-

late s (x) of f(x) can then be expressed by

rn-i

sZ(x) f ( (x,) uV(x) ± f ( (X up +(x). (2.5)
p=O

The element functions are convenient numerically because the expansion

coefficients in Eq. (2.5) are directly related to the interpolation data.

We give some explicit examples of the element functions for low

degree polynomials. (See Fig. 2.1.)

(i) m=1/2

0±
u. (x) are piecewise constant functions:

0+
u. =

1 to,

0-
u = 0

i'< X i+1

otherwise

all x .

(ii) m=1

0±
u. (x) are piecewise linear functions:

Xx x.

u (x)= 1 i-1

0

xi+
1 -x

0+ x. - x.
u (x)0= i+1 1,

0 ,

x Xi-1 '< x X i

otherwise

i i+1

otherwise .

(2.6)

(2.7a)

(2.7b)
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(iii) m = 2

u. (x), p = 0, 1, are piecewise cubic functions:
1

2x -x 2 3

2 x2(~ xxx

0,

2
3(1+1 ~ \
3xKi 1 - xi

0,

u (x)

u. (x)

u (x)

x _1 1 x x ,
(2.8a)

otherwise,

3
-2 xi+1 -X

- x 2 i+1- x i i + 1 -1 (2.8b)

otherwise ,

2

±_ 
')__

(Xxx _

3

I (x.-x. ),

0,

x i_ x < x ,

otherwise,

(2.8c)

2
xi+1

\xi+1~ i)

3
i+ 1 .

(Xi+1~ xi)

0,

xi < x < xi+1

otherwise.

(2.8d)

The error in the maximum norm for the Hermite interpolation is

stated by well-known theorems in [16] , [17] . We will use the maximum-

norm which is defined by

L [a,b]
max |f(x)-g(x)|.

axb

x-xx .- x .i -i 1-1_1

u (x)

1

I xi+1 i ' i
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0+
U.

1

0-
U.

1

xi-
1

(a) m = 1/2

u0-Wu. (x)

1

i-1 1i

(b) m= 1

0-
u (x)

i-1 i

1

u (x) slope
1 W

i 1

1+

11

i-1 1i K+

(c) m = 2

Fig. 2.1. Univariate Element Functions: - m < 22 m

i+1

0±
u.(x

1

i+1 i+1

0+
u (x)

1

i+1 xi-i i i+1

i-.i
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Theorem A. Assume that f(x) E Ct [xi, i+1]. Let s (x) be a polynomial of

degree 2m-1 in [x., xi+1 ] and be a Hermite interpolate to f(x) satisfying

Eqs. (2.3a, b). Then s (x) is unique and the interpolation error is bounded

by

d q (f x)- s.(x)) K xi - x. q9 -
dx L (A ) i+1 i

where M = min(2m, t) and K is a positive constant independent of |x.. 1-x.

Theorem A states that the bound in the pointwise error between f(x)

and s(x) for a piecewise continuous function f(x) is of order 2m. Thus, for

m= 2, i.e., the cubic Hermite interpolation, the error is O(Ax 4). The

pointwise error in the derivatives is also bounded with an appropriately

lower exponent.

Now we introduce the Hermite space H m(A) defined as a set of all

piecewise polynomials of degree 2m-1 in each element A.(i=1,2, ... , N-1)

of the partition A. Obviously, the number of free parameters, or the

dimension, of H m(A) is 2m(N-1). Convenient basis functions in Hm (A)

can be chosen from the element functions {uF±} as defined by Eq. (2.4a,b).

We consider the interpolation of a piecewise continuous function f(x)

using the polynomials in the space H m(A). Let the H m(A)-interpolate of

f(x) be defined as any s(x) in the space H m(A) which satisfies

sp(x 4) = (x

s (x.) = f P(x(), 2 < i < N-1 , (2.9)

s (p)(X - f(p)( x-)

for 0 < p < m-1. Then, using the set of functions



u , u P- : 2 < i < N-1, 0 < p < m-1} as a basis of H M(A),1' i Nm

be represented by

N-1
s(x) =1, si(x)

i= 1

N-1 m-1 (P)

f (x )u (x)+
i=1 p=0

where s.(x) represents the Hermite interpolate in the element A.,

defined by Eq. (2.5).

The uniqueness and the accuracy of the H m(A)-interpolate are

stated by the following theorem.

Theorem 2.1. Assume that f(x) C C (A).
p

degree 2m-1 satisfying Eq. (2.9). Then,

Let s(x) be a polynomial of

s(x) is uniquely determined

and satisfies

d (f(x)
dx q

< K Axg~q, 1 < q < m-1 ,-s(x))

L* [a ,b]

where M = min(2m, t), Ax =

pendent of Ax.

max xi+1 i1 isN-1
and K is a constant inde-

Proof. The uniqueness of s(x) results as a direct consequence of the

uniquenesses of individual s.(x) for i= 1, 2,.. ., N-1 from Theorem A.

From the definition of the L -norm,

(f(x)- s(x)) = max
dx4 L[a,b] 1,< i<N -1

- (f(x)
d x q

1< max
1 isN-1

L*(Ai)

K xi+1 i

< K -~q

31

s(x) can

(2.10)f x+1) +1(x}
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where K = max K and Ax = max x+ 1 x.i. This completes the proof.
1 1 x ~ -i

Theorem 2.1 applies to piecewise continuous functions and states

the same order of convergence as Theorem A. It is known that the

functions in one-dimensional reactor problems such as neutron fluxes

and nuclear element concentrations belong to the class C*, so that
p

Hermite interpolation in H m(A) always yields errors of O(Ax 2m

So far, we have considered only piecewise polynomials which are

independent in each mesh element and not related to other polynomials

in neighboring mesh elements. However, in many cases, functions to

be approximated satisfy certain continuity or jump conditions for

derivatives at mesh points. In such cases, it is natural to couple the

piecewise polynomials satisfying the same conditions. Imposing the

coupling conditions is also desirable in numerical computation because

this reduces the number of unknowns, or basis functions, and thus the

computational effort.

We define the set of coupling conditions - at each mesh point. The

set - is defined as a collection of coupling coefficients KP where

(p) -s (x )
K = . (2.11a)

i (p)+s (x )

The limit on the order of the derivatives, say k., is part of the defi-

nition of the coupling conditions 3C. We can denote 1 as

X = {KP, k.: 1 i N, 06psk. -1k.6m-1}. (2.11b)
1 1 1 1

We limit k. to m-1 to conform with the Hermite interpolation. We

assume that p=-1 denotes that the functions are not coupled. If K = 1,i
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then s (x) is continuous at x . In general, s(x) allows discontinuities

in the derivatives at x5 by taking K # 1. The latter case is important

for application to diffusion problems where the diffusion coefficient is

different on different sides of the interpolation point. Furthermore,

coupling conditions at the end points i=1,N allow us to impose periodic

continuity conditions.

Associated with the coupling conditions A, we introduce the space

H (A), a subspace of H (A), whose elements satisfy the coupling con-m m

ditions % specified by Eq. (2.11). It is easy to show that the dimension

of H (A) is equal to the dimension of H (A) less the total number ofm Nm

conditions (ki+1) in A. This leads to the following theorem.
i= 1

Theorem 2.2. Let J9 be defined by Eq. (2.11). Then the dimension of

the space H (A) is given bym

H7 N
Dim H (A) = 2m(N-1) - (k.+1).

m
i=01

The appropriate bases for the space H (A) are obtained by imposingm

the conditions Y(K on {up ±(x)} as defined by Eq. (2.11). We denote the

function obtained by coupling the element functions {u (x)} and {uP(x)}

as {uP(x)} such that

-(x), x x < x

up(x) = (2.12)

1+ u (x), x. < x < xi
1- i+ 1

where 0± satisfy

/3+ i'
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Then, the basis functions in the space H (A) consist of {uP(x), uq±)

11 116<isN, Osps<k , k +1,<qm-1}.-

We illustrate the generation of basis functions for specific coupling

conditions in the examples below:

Example 2.1

In neutron diffusion problems, the coupling condition appropriate to

the flux is specified by

1 D(x.)
-O = K = 1, K. : 2 < i N-1 . (2.13)

D(x )

Then, the basis functions in Hm (A)m

(see Fig. 2.2)

( D( ) P
D(x.)

uP(x, D) = 1
1

( 0

D(x.)

for 1 < m < 2 can be represented by

(2.14)x. ' x '<X

x _ x < x1 ,

p = 0, 1, , m-1

where 0 is a normalization constant and

up± x) W Eq. (2.7)

1 Eq. (2.8)

m = 1

m = 2.

The normalization constant 0 is introduced in order to produce stiffness

matrices (cf., Sec. 1.3, Chap. I) having small condition numbers. We

usually choose 0 such that 0
D(x)

up+ (X
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We note that the conditions X ={KP=1, k.=m-1: Opsk., 2,i.sN-1} lead
1 1

to the local basis functions in the smooth Hermite space [14], [16], [19].

The smooth Hermite space consists of polynomials of degree 2m-1 which

have continuous derivatives of order up to m-1.

u0 (x)

(a) Piecewise Linear Function (m=l)

0u. (x)
1

i-1 i i+1

0
slope= =

D(x. )
1

u. (x)

i-

slope =

D(x.)

(b) Piecewise Cubic Function (m=2)

Fig. 2.2. Univariate Coupled Basis Functions: Example 2.1

Now we consider the interpolation of a piecewise continuous function

f(x) in the space H m(A) where the coupling conditions JC conform withm

the continuity conditions of f(x) at joints such that



36

X ={K?, k :0,p< k , i=2,9 3, .. , N-

-f (P) (x~)
i,

We define the H (A)-interpolate

which satisfies

0 < p < ki .*

of f(x) as any

(2.15a)

s(x) in the space H (A)

s(p)( + f~)( +1
s (x 1 ) = f (xi)

(p) - (p) -
s (xN N

s (x ) = f (x+ ),

s (x-) =f (x ),

0 < p < m-1,

(2.15b)

0 < p m-1,

k. < p 1 -i,

2 i 6 N-1,

2 6 i N-1

To facilitate representation, we assumed that f (x ) is specified in
1

Eq. (2.15b) whenever p is not equal to -1.

Ife s(x) is the H (A)-interpolate of f(x), then s(x) can be represented

by

m-1
s(x) = f (x )

p=O

N-1

=2i

m-1
+ I

p=0

It can easily

N-1ik
u P(x) + ( up (

i=2 p=O

m-1
Ini f (P) ()up -(x) + f ((x+)up+(x))

p=k +1

be shown that the interpolation data in H (A)m

(2.16)

specified

by Eqs. (2.15a, b) are equivalent to the set of data, Eq. (2.9) for H (A).

Therefore, the uniqueness and the accuracy of the H (A)-interpolate can

also be stated by Theorem 2.1.
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2.2 Multivariate Polynomial Space

n
We consider a region Q=F [a , b.] in an n-dimensional space. Q may

j=1 J
include energy as well as space intervals. For the space domain, we

assume an orthogonal coordinate system: a Cartesian, cylindrical or

polar spherical coordinate system. Define 7r to be a partition of Q such

that

7: a = r < r <... < rN b
1 191 1,12 1N 1

(2.17)

an = rn, < rn, 2 <' ' ' n, n b .

Thus the point rj, k is the k-th mesh point on the j-th coordinate axis.

For simplicity, we will use a multiple index i to specify a given point.

Thus, i -(i 1 , i2' n The set of all mesh points generated by 7r will

be denoted Z
7r

The mesh elements generated by the partition 7r will be denoted 7r ,

for e = 1,2, ... , L, with

n
L = | (N .- 1).

j=1 0

Each element 7r has associated with it certain mesh points, which we

denote as Z . For instance, a two-dimensional problem ZP is a set of

4 mesh points, namely the corners of the mesh element 7r . (See Fig.

2.3.) Note that the set of all Z is not Z due to the redundancy of all

interior mesh points.
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iN
2

i 2+1

r

1
1

Fig. 2.3.

1 -1
1

Hermite Interpolation Data in a Rectangular Element

Let s (r) be a multivariate polynomial of degree 2m -1 for the j-th

variable, for j =1, 2,..., n, in a mesh element 7r. Then, s (r) can be

represented as

(2.18)s (r) = I a r_ r"
u<2m-1

r =r 1 , rM2, . , rn,
- 1 2 n

m = (M 1 , m 2 ,. mn '

g < 2m-1 means g. 2m.-1
J J

f(O, 1) f(0, 0) f(0, 1) f(0, 0)

W F(1, 0) (1 1) (1, 0)

f(l, 1) f(0 0) f(0, 1) f(0, 0)

f(1 1) f(1 0) f(1, 1) f(1, 0)

where

for all j .
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The Hermite interpolation of f(r) in 7re is defined as the polynomial

s (r) which satisfies

s -(r = ) for i Z 0 p < m-1, (2.19)

where p =(pp 2 '''''n) and s p)(r) = P 2+ + n s(r).

dr1 dr2 dr

For example, consider a two-dimensional problem where s (r) is

to be a bicubic polynomial. Then

0 (g 1, P2), 0 '< gA, P2 < 3 ,

- 1 2

Thus, we have s (r) of the form

2 3
s (r) = a 0 + ar 2 + a 2 r 2 + a 3 r 2

2 3
+b r +b r 2 +b r 

1 1 2 1 3 1

2+cIr1r2 + c 2 rr 2 + 3
12 1 2

+ d r r 2 +d 2rr 2 +d r2 r 3

3 3 2 3 3
+ e r3r 2 + e 2 r3r 2 + e 3 r3r 2 '

Note that there are 16 coefficients required to specify a unique s (r).

For Hermite interpolation, the interpolation data required to specify

s (r) would be the function values at the 4 mesh points of the element

7r , the first derivative in each direction at the 4 mesh points, and the

82
4 mixed derivatives at each mesh point, i.e., ar2r at each corner.

ar1 ar2
Thus we have 4 values, 4 derivatives in r 1 , 4 derivatives in r 2 and 4

mixed derivatives. The corresponding Hermite data are illustrated in

Fig. 2.3.
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In the previous section, we found that the interpolating polynomial

was conveniently represented using the so-called element functions.

In particular, using element functions permitted the interpolating poly-

nomial to be represented directly in terms of the Hermite data. A

similar representation is possible in the multivariate case using multi-

variate element functions.

In the univariate case, we have a notation which uses subscripts to

identify the mesh point, superscripts to identify particular element

functions, and a + or - superscript to identify the element to the left

or to the right of the mesh point. We need a similar but somewhat more

general notation for the multivariate case. Let {uPa(r)} be a set of

multivariate element functions defined by

n p.,a.
uP'a(r) =[ u. p J(r.), a. = (+) or (-) , (2.20)

1 - . i. j3j=1 i

p. ,a.
where p = (p 1 ,p 2 ' ' ), a= (a 1 , a 2 ,. . an) and u. i J(r.) is a uni-

variate element function as defined by Eq. (2.4a, b). Explicit

expressions for low degree univariate element functions are given by

Eqs. (2.6)-(2.8). If [rj, i r , 1 j < n, are supports of

u J(r.), then the support of the multivariate element function upa(r)
.j n 

is specified by II [r. ., r. . ]
j=1 '

Using multivariate element functions, the Hermite interpolate s (r)

which satisfies Eq. (2.19) can be represented by

m-1

s (r) = f p(r.) uPa(r) (2.21)

i E Z p=0

where a= (a 1 , a2 ,..., an) is properly chosen such that upa(r) have sup-
pr o

port on 7



41

In the study of univariate interpolation we considered certain

classes of functions of one variable. In particular, we defined classes

with certain differentiability properties and continuity properties. We

now consider analogous multivariate classes.

Let Ct (Q), t = (t, t 2 , . . . , tn) be the class of all functions defined on

t
Q which are t. times differentiable for the j-th variable. Let C (7r) be

3 p
the class of all functions f(r) which belong to the class Ct Or for

= 1, 2,. .. , L and have finite one-sided limits on the mesh element

boundaries for derivatives up to order t.

The uniqueness and the approximation error for the Hermite

interpolation are stated in the following theorem.

Theorem 2.3. Assume that f(r) E Ct(r ). Let s(r) be a multivariate

polynomial of degree 2m-1 satisfying Eq. (2.19). Then, s(r) is uniquely

determined and satisfies

a (f(r)-s(r)) 6 K Ar + . . . + K Ar ,

q 1 n n
-j L (7rk)

04 q in-1,

where

q =(qj, q 2' ' ' n)'

= min(2m., t),

Ar .= I r. .± -r.. ,A 3 3r, i.+1 r, i.I
J J

and K. is a constant independent of Ar j= 1, 2, ... , n.

Proof. The theorem is proven in Appendix A.
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Theorem 2.3 gives the pointwise error bounds in terms of exponents

of varying orders depending on the degrees of the polynomials for dif-

ferent variables. In reactor problems, the theorem provides an esti-

mation of the order of convergence when polynomials of different degrees

for space and energy are used. In [16], [17] and [38], the error bounds

were obtained only for polynomials of uniform degrees and theorems

similar to Theorem 2.3 could not be found in previous works.

We now introduce the multivariate Hermite space Hm(7r), which is

defined as a set of multivariate piecewise polynomials of degree 2m -1

for each variable r (j=, 2, .. ., n) on elements r, e =1, . ., L of

partition 7. The dimension of the space is easily shown to be
n a 1
11 2m.(N.-1). In this space, the element functions {u'a (r)}1 defined

j=1 i 1

by Eq. (2.20) can be used as a set of basis functions.

We define the H m(r)-interpolate of a piecewise continuous function

f(r) as any element of Hm (r) which satisfies

s (r (a)) = f (r (a)) , iZ, 0 p ' m-1, (2.21a)

where r (a) = (r (a), r 2 ,. i a 2 ) . . . , rn, i (an)) and a = (±) for 1'< j n.

r (a) denotes r. as a limiting point in a multidimensional space approached

along the coordinate axes from the direction specified by a.'s.

Using the element functions { u"(r)} as the basis functions of Hm(r),

the Hermite interpolate can be represented by

L

s(r) Z s (r)

L m-1

L -1f ( (r (a )) u ,a (r ) (2 .2 1b )

1=l iEZ p=O
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where s (r) represents the Hermite interpolate in the element 7r., as

defined by Eq. (2.21). Thus, the convenient representation in terms of

the Hermite data is possible in the multivariate case.

The uniqueness and the interpolation error bounds are stated in the

following theorem.

tTheorem 2.4. Assume that f(r) C (7). Let s(r) be a multivariate poly-

nomial of degree 2m-1, m = (mi. m2, . . . , m ) satisfying Eq. (2.21). Then

s(r) is uniquely determined and satisfies

(f(r)-s(r)) Ar K MAr1  + ... + Knar n n, 0 q m-1,n r nqn

where

q = (q, q 2 ' q ' n,

= min(2m., t ),

Ar = max Irji+ 1 -rjI
1. J J

and K. is a constant independent of Ar . for j = 1, 2,. .. , n.

Proof. Analogous to the univariate spaces, Theorem 2.3 holds locally

for each element and can be extended to apply for the whole region. The

proof is similar to that of Theorem 2.1 and will be omitted.

This theorem enables us to estimate the order of convergence for

individual variables. For example, in reactor problems, if one uses

step functions (m = 1) for the energy variable and cubic functions (m= 2)
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for the space variable, then Theorem 2.4 states that the error is given

by the order O(AE) +O(Ar 4). This theorem is useful for estimating the

approximation error for the solution of neutron diffusion problems in

the following chapters.

Just as in the univariate space, coupling conditions can be imposed

on the space H (7r). We define the set of coupling conditions X by

X =KP'aQi), k.: 0 pi p. k. < m- 1, 16 j4 n, i E Z (2.22a)
1 1 1 1 1j ,i 22a

t
where for any s(r) C C (7r),

p

KPa(j) l,,nn
1 i

s )( r (a1), ... , r ( ,. rn,i n(an)

s(P)( r i(a). , r (+) ... , rni (an) (2.22b)

a = + or-, 1 k n.

As in the univariate space, we define p.= -1 to mean that s(r) is

uncoupled at in the direction of the axis of r .

The coupling conditions specify the ratio of derivatives approaching

a mesh point in opposite directions on the coordinate axis. The con-

ditions may apply to all derivatives of order up to m-1 and all directions,

or partially to some combinations of particular derivatives and directions.

When KPa' = 1-, s p)(r) is continuous at r.. K?' a(j) #1 means that

s (r(a)) is bent at r. The latter is important in applications to the

diffusion problem.

Associated with the set of coupling conditions X, we introduce the

space H (7), a subspace of H (v), whose elements satisfy the couplingm m
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conditions s specified by Eq. (2.22). Similarly, as in the univariate

space, it can be shown that the interpolation properties as stated by

Theorem 2.4 apply to the subspaces Hm (7. The dimension of H (7)
m m

is easily shown to be the dimension of H m(r) less the total number of

coupling conditions. Therefore, we obtain the following theorem.

Theorem 2.5. Let X be defined by Eq. (2.22). Then the dimension of

the space H (r) is given bym

Dim H (7) = Dim H (7) - km m

where k represents the total number of conditions specified by -OK.

We now consider the generation of basis functions in the space H (7).
m

The multivariate basis functions are obtained by coupling the multivariate

element functions defined by Eq. (2.20) according to the coupling con-

ditions specified by X. Using element functions permits us to generate

multivariate basis functions for various types of continuity conditions.

We take a two-dimensional space to illustrate the procedures. We

pi'p2+
shall denote u. (r) as a basis function which is obtained by coupling

p1,p+pl+,p 2 +
two element functions u 1 2 (r) and u. (r) according to the

_ 11

coupling condition K. such that (see Fig. 2.4)

Ogu (r), II

p1p2 + p +,p 2+
u. (r) = u (r) , I (2.23a)

0 III, IV
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where 0, and 011 satisfy

I P'p1 ,P2 +

=3 Ki

P1,P2 
Note that u. (r) have support in regions I and II.

PlP2~ P1~'P2~
Similarly, we can define u 2 (r) by combining u1 (r) and

pl+,p 2 -
u. (r) such that

1-

p 2, P2~
u. (r)-=

iii

13 1v

0 ,

P 1 -,P 2 ~u. (r),

p 1 +,p 2 ~
u. (r),

1

where 0 11 and IV satisfy

~11 Ki .lP
IV 

1

PlP2~ P1' 2+
ui have support in regions III and IV. (Fig. 2.4.) u. (r) and

u Pl (r) define partially coupled functions in the direction of the r -

P1 '~'2. P-
axis. We can similarly define u ^ (r) and u

Pi-,P2 1 ~'p 2 + p 1 +,p 2 ~ 1,2
u. and u. , and u. and u. 1' 2±

1 11 1'P

We proceed further to define u.

P+,p2+
''u. (r_)r,

Pl-,P2+

u (r u. (r),
u.II(u) =r)

1 P 1 - p 2 ~

Pi+,p2 ~
I u. (r),

2(r) by coupling

respectively.

1 ,2(r) coupling u.
(r) such that

I

II

(2.23c)

III

IV

III

IV (2.23b)

I, II
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where 01, 011, 0111 and OIV satisfy

0II P1,P2 + 0III Kp1-,p2 0III 1 P'P2~
-K. -K. , KSi '#1 1OIV

and

3IV 1l+,p 2=I k .lIP

P1iP

Obviously, uP (r) has support in regions I, II, III and IV. We note that

p pi P1'P2
when all of K. = 1, the coupled basis functions u. (r) have con-

1 1 _

tinuous derivatives of orders p1  p 2 in r andr2, respectively, and this

is identical to the basis functions in the smooth Hermite space as con-

sidered,in [18] and [19]. However, when K. # 1, the generations

of u. (r) as given by Eq. (2.23c) is more involved and in some cases,

the coupling conditions can lead to 13= 0 as the only acceptable constants.

i2+1

r

Fig. 2.4. Elefnent Functions in a Two-Dimensional Partition
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This case is discussed in detail in the following examples, in which some

practical polynomial spaces in the reactor analysis are considered.

Example 2.2

Let Q = [a,b] and E = [Emin' E max] and let r be a partition of

Q XK such that 7r = 7r X 7r where

7T a= x1 <x 2 ' <'x'N= b,

7r : E =E <E2<... < E
max

The diffusion coefficient D is assumed to be piecewise constant in each

element of 7r .

In this example, we are interested in generating basis functions to

approximate the neutron flux in subspaces of the Hermite space H m(7r)

where m = (m x, mE). The neutron flux is assumed to satisfy the

conditions:

tE
(i) kC (E) c

t
C X(r)

p G

t > 2m ,

x x

(iii) 4(x, E) and D a 4(x, E) are continuous at x = xax

(2.24)

Let X be the set of coupling conditions defined by Eq. (2.22) and

conforming to Eq. (2.24). Then, we define basis functions in the space

Hm(7r) for 1 < m < 2 and mE ' 1/2 as follows (see Fig. 2.5)

2 < i < N-1.
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PX p + pE+
(' u. (x) u (E), I

D 1g

u xE /(x, D) =X < E) (2.25)

( ) u) (x) uE^(E) III

( D1  u (x) u (E), IV
D IV i g

where 0 < p < m -1 and 0 pE mE-l. 0 is a normalization constant

and usually is taken to be & ~ 1. u x(x) and u (E) are univariate

element functions and are defined by Eqs. (2.4), (2.6), (2.7) and (2.8).

The constructed basis functions for various degrees of polynomials

in x and E are illustrated in Fig. 2.5. Note that the basis functions

u px9E(x, E) with m = 2 and mE =1 satisfy the conditions specified by
1,g xE

Eq. (2.24). Also note that the basis function, in which mE= 1/2, leads

to the conventional multigroup approximation. In this case, the basis

functions are not continuous in the energy domain.

We further comment on the definition of the basis functions. In

general, the diffusion coefficient is dependent on the energy and space

variables. The proper basis functions, which satisfy the requisite

conditions Eq. (2.24), are then defined by Eq. (2.25) by permitting D to

be a function of both energy and space. However, when 0 is not a

constant, the resulting basis functions do not belong to the space HM ()

and thus Theorem 2.4 cannot be applied.



i i+1

x

m x

m =2

-1 I

If

Fig. 2.5. Energy- and Space-Dependent Basis Functions: Example (2.2)
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Example 2.3

Consider Q = [a, b] X [c, d] in a two-dimensional space and let 7r be

the partition of Q as defined by Eq. (2.17). Let i = (i , ). We designate

the mesh elements surrounding r as shown in Fig. 2.6. And assume

that the diffusion coefficients are constant in each element.

In this example, we are interested in generating practical basis

functions in two space variables for the approximation of neutron fluxes,

which satisfy the conditions:

(i) 4(r) Ct (r), t > 2m,
p

(ii) 4(r), D a O(r) are continuous at element interfaces, (2.26a)

an-

where an denotes the derivative normal to the interface. Hence, wean
define St as the set of coupling conditions, denoted by Eq. (2.22), which

conforms with the continuity conditions, Eq. (2.26a). Thus, we consider

the selection of basis functions in the subspace Hm(7) for mx=m =1 and 2.

First, we consider the space of bilinear functions H (7r). Then,

there is one basis function at each mesh point which is defined by

0+ 0+u. (x) u. (y), I

u0 (x) u0 (y) II

u (0,0) (2.27)
u ~(x) u0 (y) , III

1 1

0+0-
u. (x) u. (y) , IV

1 1

where u. (x), u0 (y) are defined by Eq. (2.7). u (0,0) (x, y) is continuous;
1 1

however, it does not satisfy the continuity of D a 4 in Eq. (2.26a).an



52

Next, we consider the bicubic space, H(, 2 )(7r). The basis functions

in H 2 )(7r) depend on the diffusion coefficients surrounding r .

we consider two cases separately.

Case (1).

Thus,

DID = D ID I

This condition is satisfied for any interior mesh points or interface

points except the singular points. Proper basis functions are given by

(see Fig. 2.6)

u

u

u(0,0) =
u

u

u (1,0) (r, D) =

or -and D m
I II

0+ 0+
(x) u0 (y),

0- W0+(x) u. (y) ,

L.~(x) u.~(y) ,
1 1

0+ 0-
1 u. (y),

0I
D I

I

II

(2.28a)
III

IV

1 + 0+
u (x) u (y)

o 1 - 0+
u (x) u. (y ,

o 1+ 0-
D u ~ (x) u (y),

Iu

I

(2.28b)

III

IV

ay be replaced by and D , respectively.
IV III



u(0,1)(r, D) =
1

kj. 0 and
DII DII

u (r,D)=

o 0± 1+
D Iu + (x) u + Y

D u 0(x) u (y),II

0 u0 (x) u 1(y),
D i 1

0 u (x) u ~(y)
D i

may be replaced by

o 1+ 1+
D- ug (x) ui (y),

Ii
u. (x) u. (y) ,

D 1 1

III

o u9 (x) u ~(y)(,)
DIV

II

III

IVI

0
DI

(2.28c)

and D respectively.

I

II

(2.2 8d)

III

IV

0 denotes a normalization constant and is
g t

generally taken such that 5 1.

u (x), u (y), p = 0, 1, are univariate cubic element functions defined by
1 1

Eq. (2.8). The basis functions satisfy the interface conditions Eq. (2.26a)

for the neutron fluxes.

Case (2). DID II # DIIDIV

In this case., r is a singular point. When DID1 1 1 # D D IV, it is easy

to show that the interface condition (2.26a) permits 4(r) to have only

a(r
._= k 0 .

53
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Therefore, in Eq. (2.28), u(0,1)(r and (1,0)(r) can be suppressed and

the proper basis functions in the space H (7r) consist of two functions,m

u 0,0)(r) ; Eq. (2.28a),

(2.29)

u (r, D) ; Eq. (2.28d)

At singular points, where DID1II * D 1 D IV, the acceptable Hermite

a a
interpolation data must include a 4(r ) = (r) =0, so that the basis

ax-i ay 1i

functions in Eq. (2.29) are adequate for the interpolation problem. The

sets of basis functions defined in cases (1) and (2) are compatible with

the conditions in Eq. (2.26a) and they form complete bases in H (7).m

Furthermore, Theorem 2.4 applies for interpolations of functions using

the basis functions defined by Eqs. (2.28) and (2.29).

In solving neutron diffusion problems, the singular solution requires

special consideration if high-order accuracy is to be obtained. However,

in this thesis, no attempt is made to improve the solution with singulari-

ties for the reasons mentioned in Chapter I. As we shall see in Chapters

IV and VI, we can reformulate the neutron diffusion problem to a weak

form where the current continuity condition appears as a natural inter-

face condition. In the weak form, acceptable solutions are the functions

which satisfy the conditions (cf., Sec. 4.1, Chap. IV):

(i) 0(r) is continuous in Q,
(2.26b)

(ii) V 0(r) is square integrable in Q.

The bilinear function defined by Eq. (2.27), and the bicubic functions

defined by Eqs. (2.28) and (2.29) satisfy the above conditions and thus

are acceptable for calculations with the weak formulation.
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However, since the analytic solution at singular points are not

necessarily required to satisfy 4 0(r ) = a Wr) = 0, the use of the
ax-i -y 1

basis functions defined by Eq. (2.29) can distort the solution and can

lead to poor approximations, especially for coarse mesh calculations.

The condition (2.26b) relaxes the current continuity condition, and thus

it would be desirable to choose basis functions at the singular point

which are continuous but for which the first derivatives are unspecified.

The reason for this particular choice is that we want the approximation

schemes themselves to choose the optimal coupling relation.

By using the procedure described in this section, it is possible to

generate various types of basis functions in subspaces of H( 2 , 2 ) ( ),

which satisfy the condition (2.26b) and partially the current continuity

condition. Below we give an example of such a set of basis functions,

which has a minimum number of functions but whose first derivatives

are not unnecessarily restrained.

u (r) = Eq. (2.28a) , (2.30a)

1- 0+
u(x) u. (y) , II

1 1

(1-,0) 1 - 0-
u (r) = u. (x) u. (y) , III (2.30b)

1 - 1 1

0, I &IV

1+ 0+
u (x) u (y) , I

1 1

U0(r) u (x) u, (y) IV (2.3 c)

0, I&III
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0 1-
u -(x) u. (y) , III

u (r) u 0+() u. (y), IV (2.30d)
1 -1 1

0, I&II

0+ 1+
u. (x)u. (y) , I

1 1

(0,1+) 0- 1+
u. (r) = <u. (x) u. (y) , II (2.30e)

0, III & IV

u. (r) Eq. (2.28d). (2.30 f)
1

These functions are also shown in Fig. 2.6.b. There are six independent

basis functions according to Theorem 2.5. u and u(.9 satisfy both
1 1

the continuity of flux and currents. The remaining functions are partially

coupled basis functions, and so the interface conditions are partially

satisfied by these functions. Note that the coupling between u(1-,0) and

(1+,0) (0,1-) (0,1+)
u. , and u. and u. are unspecified so as to be determined

by a particular numerical scheme, say the Galerkin scheme. Numerical

results (c.f., Sec. 4.4, Chap. IV) indicate that approximations using

these sets give better convergence on flux shape and eigenvalues than

those using basis functions, whose derivatives are erroneously fixed,

such as the functions given by Eq. (2.29) or Set B in Example 4.4 in

Chapter IV.

In this example, we have limited the diffusion coefficients to piece-

wise constant functions. However, they are generally dependent on the

space and energy variables and the proper basis functions, which satisfy



i i +1x x

u(1, 0)I
ui

X

(a) E q. (2. 28)

(0u 0)

LX 1

u(

-22\-(

222

-I
0, 1+)

X

0, 1-)

u(1+, 0)(

X 1

u 1)ci---- I

7~ I

(b) Eq. (2.30)

Bicubic Basis Functions:
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i +1
y

1i

i -1
y

II I

III IV

i -1x

(0, 0)

u i -

(0, 1)

X22\

u(1-, 0)

X

U.

Fig. 2.6. Example 2.3
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the requisite continuity conditions Eq. (2.26a), can be obtained by using

variable diffusion coefficients in Eqs. (2.28) - (2.30). However, the

resulting basis functions do not belong to the Hermite space H mr)

(cf., Example 2.2), and thus Theorem 2.4 cannot be applied in this case.

In summary, for solving the weak form of neutron diffusion prob-

lems, we may use the set of bilinear basis functions defined by Eq. (2.27),

and the set of bicubic basis functions defined by Eq. (2.28) for all mesh

points except singular points and Eq. (2.30) for singular points.

Generation of basis functions on the boundary can be considered as

a special case of the above considerations. These are obtained by

coupling element functions whose supports are nonzero. For example,

we consider a rectangular polygon as shown in Fig. 2.7. The basis

functions at point A coincide with element functions in region I. The

basis functions at point B are obtained by coupling two element functions

in regions I and II (cf., Eqs. (2.23a, b)). Finally, the basis functions at

point C are obtained by coupling three element functions. defined on

regions I, II and III.

We have confined our consideration to two-dimensional spaces.

However, the basic procedure for generating basis functions at regular

and singular points can be carried over directly and applied in three-

dimensional spaces.



59

I

I C

I J

II I

B

Fig. 2.7. Basis Functions on Boundary Points of a Rectangular Polygon

A G
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Chapter III

NEUTRON SLOWING-DOWN PROBLEMS

The principal application of the finite element method, in this thesis,

is to few group diffusion theory problems. The few group equations are

obtained from the continuous energy problem by some form of discreti-

zation of the energy variable. The customary practice in the field is to

associate some spectrum with each region of the reactor and use this

spectrum to generate few group cross sections, based on the conser-

vation of reaction rates.

The spectrum used for the determination of group constants is found

by solving a space-independent neutron slowing-down equation. Obviously,

the truncation error in the energy variable is determined by the numeri-

cal procedure used in solving for the spectrum. To date, most spectrum

codes use many energy intervals and simple step function behavior of the

spectrum over each interval.

In this chapter of the thesis, we shall generalize methods of com-

puting spectra to include the use of piecewise polynomials over energy

intervals. The usual procedure will appear as a special case of the

general method. A particularly important result of the application is

the development of rigorous error bounds for the spectrum.

The application of the finite element method to spectrum problems

will serve as a simple prototype of univariate expansions. The pro-

cedures to be discussed carry over to the spatial and temporal variables.

We remark that we do not obtain specific numerical results in this
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chapter, but rather use this problem as an example, which extends to

the more important treatment of the space and time variables.

3.1 Basic Equation

The basic equation for the neutron slowing-down problem can be

obtained from the energy-dependent diffusion equation, Eq. (1.1),

neglecting the space and time dependencies. Then, the basic equation

can be written as

T4(E) = T(E)4(E) - f dE' s (E'-E)4(E')

X(E) f dE' v , (E )4(E)

=Q(E) . (3.1)

Definitions for Eq. (3.1) are developed in Chapter I. If Q(E) = 0, then

Eq. (3.1) defines an eigenvalue problem where X is an eigenvalue.

Frequently, activation experiments are performed to investigate

the neutron spectrum. In this case, the governing equation can be

written as

f dE' Ek(E')X(E') = Ak> k= 1,2, . . . , K , (3.2)

where Ek(E') is the cross section for a particular reaction and Ak is the

activity measured in the experiment for the k-th element. Equation (3.2)

is considered as a special case of the general equation (3.1). The

methods developed in this chapter could thus also be used with Eq. (3.2).

In order to develop approximations, we need the following defi-

nitions. We define the inner product by
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(u, v) = f uv dE

and the L 2-norm by

I1u

1

L2 = (u, u)

If 4 is the solution to Eq. (3.1), then 4 satisfies

(T, v)= (Q, v)

for all v(E) C L2

(3.3)

On the other hand, in order for Eq. (3.3) to be

satisfied for all v c L2 (), T4=Q must be true. Thus,

Eq. (3.3) are equivalent in the L2 () space.

The operator T is said to be positive definite [41]

Eq. (3.1) and

if there exists a

positive constant 7 such that

(TO, 4) >-7 4 2 2 .(3.4)

Positive definite operators are generally required to be symmetric.

However, under the assumption (1.2) on cross sections, a certain class

of nonsymmetric integral operators in reactor physics can also be shown

to be positive definite.

Now, we show the uniqueness of the solution to Eq. (3.3) as a result

of the assumption (3.4). Assume that both 41 and 42 are solutions. Then

L 2( ) is a space consisting of all functions defined on S which are
measurable and for which Iv(E)1 2 is integrable.
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0.
PT(t v -02),

Putting v=041-042'

( (1 02)'01-02 )S :-: 0.

From the assumption Eq. (3.4),

71101 2 12
L2

= 0

and this requires that 4, = 42. This leads to the following lemma.

Lemma 3.1. If the operator T satisfies the inequality (3.4), then the

solution to Eq. (3.3) is unique.

3.2 Approximation

In this section, we shall develop approximation methods for the

solution of Eq. (3.3). We assume that the solution is sufficiently

*
smooth. We consider an expansion of the neutron flux and cross

sections in terms of piecewise polynomials in energy, and then apply

the Galerkin process to determine the approximate solution. Finally,

we show the uniqueness of the solution and establish a theorem,

Theorem 3.1, on the convergence of the approximate solutions.

*
The neutron flux is shown to be discontinuous in some cases. For

example, the neutron flux exhibits sharp discontinuities when neutrons
from a monochromatic source are slowed down by scattering in media
of mass greater than unity (Chap. VI, [23] ).

10

1< 2 1 2
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Let 7r(E) be a partition of E = [E m, E ] such that

mmmNEmaa
(): E min E 1 <E 2 <.. <ENE = Emax

Let S be a trial space and let {u (E)}G be a basis in S In particular,
G g g=1

we select SG as a subspace of the Hermite space Hm(r()) as considered

in Chapter II. The basis functions in the Hermite space may be reordered

in a linear fashion as {u (E)}G
g g=1

Let the approximate solution O(E) in SG be represented by

G
k(E) = agu (E). (3.5)

g=1

Cross sections are frequently given by experimentally measured numer-

ical data. In such a case, it is desirable to represent the cross sections

by continuous functions using certain interpolation schemes which give

the same order of accuracy as the approximation. We may choose the

Hermite interpolation (cf., Chap. II) in the trial space for q . If I and

T g , are proper interpolation data, then the cross sections can be repre-

sented by

G
Z(E) = E u g(E), (3.6a)

g=1

G G
2(E 'E) = I ,u (E) u ,(E ') (3.6b)

g=1 g'=1

The expansion coefficients for the approximate solution O(E) can be

determined by applying the Galerkin method (cf., Section 1.3, Chapter I)

to Eq. (3.3):

(T , u ) =(Q,u ) for g = 1,2,...,G. (3.7)
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This procedure leads to G linear algebraic equations for the coef-

ficients a .

We remark that if the approximate kernels, as given by Eq. (3.6a,b),

are used in the operator T, then T should be replaced by T, which repre-

sents the approximate operator. Furthermore, because of the physical

fact that we cannot have negative reaction rate, we assume that the con-

dition (1.2) is applied to the approxiniate solution O(E) itself, although

not to the individual components of O(E).

In matrix form, Eq. (3.7) can be written as

1
La - Sa + - Fa = q (3.8)

where

L L
11 12 ' L'' ,'+

L =1 1. ' 1

LG'+1, -

0 - LG,G-G, ..

S . . S.1G

S=

SG1 ' GG

F .1 ..1 F1G

LF G1 . . . . FGG_

LG-
G-G', G

GG
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a col{al, a 2 , . . . , aG I

_q =Col{ (Q, ul) , (Q, u2I) ,S (Q, u G)

L , =Tu , u ) ,

S ,= (f dE' 7(E'+-E)u ,(E'u (E))

F , (X(E) f dE' v (E') u ,(E'), u (E) ).

The values of inner products for the basis functions in Hermite spaces

can be found in Appendix B.

The matrix L is symmetric and positive definite and has a band

structure whose band width (2G' + 1) depends on the degrees of the poly-

nomials used. For the Hermite polynomial space of degree 2m-1

(cf., Chap. II), there are m basis functions at each mesh point. In this

space, the half band width G' is given by 2m-1. The matrices S and F

are in general nonsymmetric and do not have band structures. We

remark that for m= 1/2 or piecewise continuous functions, Eq. (3.8)

leads to the conventional method for spectrum calculations.

If Q = 0, then Eq. (3.1) defines an eigenvalue problem, and the

corresponding discrete equations are given by

-La + S a -F a (3.9)

where k is an eigenvalue. In fact, the eigenvalues are the root of the

characteristic equation

det L + S -F - 0.

The solutions to Eqs. (3.8) and (3.9) can be obtained by direct or iter-

ative methods for linear algebraic systems as discussed in [35], [39]

and [40].
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The uniqueness of the approximate solution to Eq. (3.7) can be shown

similarly as for the analytic solution, provided that the condition (3.4)

holds. We now show that the numerical stability of the approximate

solution to Eq. (3.7) also results from this condition. From Eq. (3.7), it

is easy to show that

(T , O)s= (Q, 1) .

From the Schwarz inequality [25]

I (Q , 0)S < 1Q11 2 L2

Hence,

L 2
L2

and

L 2 y L 2*

This shows that the solution is bounded by an upper limit which includes

the source and thus leads to the following lemma.

Lemma 3.2. If the inequality (3.4) holds, then the approximate solution

to Eq. (3.7) is unique and the numerical process is stable.

The approximation error for the solution is stated in the following

theorem. The proof is given in Appendix A.

Theorem 3.1. Assume that the inequality (3.4) holds. Let O(E) be the

solution to Eq. (3.3) and O(E) E Ct (). fIf O(E) is the solution to Eq. (3.7)

^ 11 12 ^A ̂

L 2-(T 
,
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in the space H m(7r(S)), then O(E) satisfies

<#- ||*()< K ANP

where y = min(2m, t), AE = max IEi+ 1 -E I and K is a constant independ-

ent of AE.

Theorem 3.1 states that the approximate solution converges to the ana-

lytic solution as O(E2m ) as AE - 0 when t > 2m. For example, for

m= 1/2 or piecewise continuous functions, the method yields convergence

of O(AE 1).

We conclude this chapter with a remark on coarse mesh calculations

using the finite element method. In general, nuclear cross sections

contain fine structures due to the presence of resonance reactions. For

high accuracy calculations which require taking into account for effects

of the individual resonance, it is necessary to divide the energy interval

into a number of small mesh intervals which are comparable to resonance

widths. However, the finite element method also allows us to use rela-

tively large mesh intervals as shown in Fig. 3.1. In this case, each mesh

interval may include a number of resonances. In the Galerkin scheme,

which leads to the matrix equation, Eq. (3.8), the resonance effects can

be accurately included in elements of the coefficient matrices by evalu-

ating inner products.
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u g1(E) u 9(E) u g1(E)

. . E E Eg+1  . . EN

Fig. 3.1. Coarse Mesh Method for the
Neutron Spectrum Calculation
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Chapter IV

STATIC NEUTRON DIFFUSION PROBLEMS

In this chapter, we consider the solution of time-independent

diffusion problems, using the finite element method. In Section 4.1,

we shall first review the diffusion equation in the continuum, and

present an alternative equivalent formulation of the problem. The

alternative or "weak" formulation is more amenable to applications of

the finite element method than the integro-differential formulation of

the problem. We then present a few mathematical preliminaries

dealing with the uniqueness of the problem solution.

The principal application of the finite element method is developed

in Section 4.2, where we discuss both energy and spatial variables.

The conventional multigroup method appears as a special case of the

general method developed in this chapter. We present a theorem

which shows the error bounds for the approximation. In Section 4.3, we

discuss some numerical methods for solution of the linear systems of

equations developed in Section 4.2.

In Section 4.4, we present some illustrative numerical results in

one and two space dimensions which indicate the power and utility of

finite element methods in reactor static problems.

4.1 Basic Equation

The time-independent neutron diffusion equation can be written

from Eq. (1.1a) as
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T -V - D V4(r, E) + ET(r, E)0(r, E)

- f dE' s(r, E'-+E)4(r, E) - X(E) f dE' v f(r., E')4(r, E')

= Q(r, E) (4.1a)

with boundary conditions

0(r, E) =0 or D (r, E)| =0 (4.1b)a~an

and

0(r, E) and D$- 0(r, E) continuous on the material interfaces

(4.1c)

where represents an outward normal derivative at the surface.
an

Other notations are developed in Chapter I. If Q(r, E) = 0, then Eq. (3.1a)

becomes an eigenvalue problem where X is an eigenvalue.

The path we shall follow to generate approximate solutions to

Eq. (4.1) is to expand 4 in terms of some suitable basis functions.

However, if we require the basis functions to have the same differenti-

ability properties and continuity properties as 4 itself, then we will

have great difficulties finding the basis functions. In order to avoid

these difficulties, we consider another formulation of the problem which

weakens the continuity conditions and permits the use of a much broader

class of expansion functions.

We will use the inner product and the L 2-norm as introduced in the

last chapter. We have, for the space-energy problem

(u, v) a f dE f dV uv

and
1

ullL2 (u,u).
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We also define a bilinear form a(u, v) as

a(u, v) (DVu, Vv) + (E-Tu, v)

- f dE' I s(E '-E)u(E '), v) - E) f dE ' v Ef (E'?)u(E'F), v).

In order for the terms of a(u, v) to exist, we must require that u and v

be continuous and have first derivatives which are square integrable.

We define W1 (Q) as the set of all functions which satisfy the above con-

ditions. In view of the boundary conditions in Eq. (4.1c), we shall use

a subspace of W (0), say W(1 (Q), whose elements satisfy the boundary

conditions, Eq. (4.1b).

The weak formulation [17] , [42] of the diffusion problem may be

1
stated as a problem of finding 4 in W1 (i) satisfying

0

a(4, v) =1(Q, v) (4.2)

for all v in the space W (Q). Any 4(r, E) which satisfies Eq. (4.2) will
0

be called a weak solution to the diffusion problem.

We observe that any 0(r, E) which is a solution of Eqs. (4. la, b, c) is

also a solution of Eq. (4.2). To demonstrate this, we consider inte-

gration by parts of the term

(DV4,_Vv) = - J dV(VDV, v)

+ f dS (D 4, v)

The space W (0) is called a Sobolev space [41]. The norm in this space is

defined by lull 1 =(f (Vu 2 +u 2 ) dV2 (cf., Eq. (4.13)).
W ( 0) 0 O
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where the last term on the right is the sum of the surface integrals for

each subregion 0iY- of i. Since 4 satisfies Eqs. (4.1b, c), the summation

vanishes. Thus, the equation (T4, v) = (Q, v) leads to

1
a(4, v) = (Q, v) for any v in W (r).

Thus, 4 is a solution to Eq. (4.2).

Conversely, we now show that if the weak solution is in the domain

of the operator T, that is, twice differentiable in each Q., then it also

satisfies E qs. (4.1a, c).

Integrated by parts, the weak form Eq. (4.2) can be written

dV ( [T4-Q], v) + f dS(D a4,v) =0

1 1
for all v E W (). First, we choose v such that v is in W ( ) and

vanishes outside the region QiP- including the boundary 8. Then, we

obtain

To4-Q=0, rE .

Similarly, we can show that this equation holds in all QV for

. = 1, 2, . . , L. Substituting these equations back in the original

equation, we further obtain

D a4 dS = 0 .ILf an-dSO

Thus, we have shown that the continuity conditions for D 4 (current)

in Eqs. (4.1a, c) are Euler equations in the variation of v in the weak

form. Therefore, the weak solution satisfies Eqs. (4.la, c). For this

reason, the current continuity condition is called the "natural interface

condition."
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What we have done is to write the diffusion equation in a form for

which the conditions on 4 are less restrictive than the original con-

ditions. However, If 4 satisfies the original boundary conditions and is

sufficiently differentiable, then 4 satisfies the original statement of the

problem.

In view of the less restrictive conditions on 4 in the weak form of

the problem, we should expect that the class of appropriate basis

functions is much larger. 4 is only required to be an element of the

space W (Q) and may not satisfy the current continuity condition which
0

appears as a natural interface condition. These allow the piecewise

linear function to be an acceptable function in the weak form. In fact,

the weak form is very well suited for the use of piecewise polynomials

as basis functions, as we develop in subsequent sections.

The bilinear form a(4, 4) is said to be positive definite [41] if there

exists a positive constant 7 such that

a(0, 4) > 7 114|112 2 ~(4.3)
L

In reactor physics problems, positive definite bilinear forms are not

necessarily required to be symmetric. The assumption (1.2) for the

integral operator T allows also a certain class of nonsymmetric bilinear

forms to be positive definite.

Analogously to Lemma 3.1, we can show the uniqueness of the weak

solution.

Lemma 4.1. If the bilinear form satisfies the inequality (4.3), then the

solution to Eq. (4.2) is unique.
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4.2 Approximations

In this section, we shall develop approximate methods for the solution

of the weak form of the neutron diffusion equation, Eq. (4.2). We consider

expansions of the flux in terms of piecewise polynomials in both space and

energy. We shall first give an abstract summary of the procedures to be

followed, and then develop the treatment of each variable in great detail.

We denote the region of configuration space as i and the energy

interval as S = [Emin, E m ]. We assume our configuration space to be

one of the orthogonal coordinate systems, for example, a Cartesian,

cylindrical or polar coordinate system. Let S and i be partitioned into

elements such that

7r Emi=E KE K...KE =E
E mm 1 2 G max

7r : a =r 1 1 <r 1 2 K. . <r1N =b 1 ,

a2r2<22< . r2N2 =b 2 '

a =r <r <. . .<r =b .
n n1 n2 nN n

n

In particular, in partitioning Q, we assume that the partitioning lines or

surfaces coincide with the material interfaces such that the material

properties in each element are continuous either because of the nature

of the reactor or through the application of some homogenization pro-

cedure. This allows us to consider each subregion with uniform

materials as elements of 7rQ and thus to use the method developed in this

chapter for coarse mesh calculations.
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We consider a finite dimensional trial space for the approximation

of the solution. In particular, we are interested in approximating in

subspaces of the Hermite space Hm(7rXr ) whose elements satisfy

the continuity conditions compatible with the interface conditions,

Eq. (4.1c). The generation of basis functions in the subspace is dis-

cussed in detail in Chapter II, especially in Examples 2.1 - 2.3. We

then impose boundary conditions on basis functions in r which lie on

the physical boundary. For notational simplicity, we reorder the basis

functions and represent them using linear indices. Let the basis

functions be represented by

v.i (r, E) = u.i(r, D(E)) u 9(E) , 1 < i < N , 1 < g < G.,
1-- g

where N and G are the number of basis functions in space and energy,

respectively. We note that the spatial basis functions u (r, D(E)) are

functions of the diffusion coefficient, and thus functions of r and E.

Since u (r, D(E)) is separable in r and E (cf., Chap. II), we rewrite

v (r, E) as

v.i (r, E) = v.i(r) v 9(E) , 1 < i < N,.19 g < G.
ig -1 - g

The approximate solution, 0(r, E), is then represented as

G N

0(r, E) a igv (r) v 9(E) .(4.4)

g=1 i=1

The expansion coefficients can be determined by applying the Galerkin

scheme to the weak form of the diffusion equation, Eq. (4.2):

a(0, v. ) = (Qv. ), 1 1 g < G . (4.5)1 < i < N ,
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This procedure leads to NxG linear algebraic equations for the coef-

ficients a.
ig

Our principal application of the method is to few group models, so

we shall next consider the energy treatment to generate the few group

equations and then turn to the spatial treatment.

4.2.1 Generalized Multigroup Equations

We consider approximations of Eqs. (4.1a, b, c) in energy. The

method discussed in Chapter III is directly applicable in this section.

We define D (r) as

N

-(r) a v (r) . (4.6a)

Equation (4.4) can then be written as

G

0(r, E) = (r) v (E) .

g=1

We apply the Galerkin scheme to Eqs. (4.1a, b, c), such that k satisfies,

for g= 1, 2, . .,G,

(T 0,v ) (Q, v ) (4.7a)

(< , v ) = 0 , (4.7b)

(,v ) and (DO, v ) continuous on the material interfaces, (4.7c)
ggg

where (u, v) = uv dE. Equations (4.7a, b, c) lead to the generalized

multigroup equations which are given by, for g = 1, 2, ... , G,



G

g'=1

- D , V1 ,(r)+
G X

, , -Esgg,-
g'1=1

with boundary conditions

S(r) = 0,

G

9(r),

g'=1

aD -15i'
g' Dn g

continuous at material interfaces , (4.8c)

D ,(r) = (Dv ,(E),
gg'- g

ITM,(r)= (XTg g,(E)

v (E)) ,
g (E

,v (E)) ,

dE' I (E'-+E)v
s

X

g,(E'), vg (E))

= (X(E), v (E))

Efg,(r) = I dE' I Zf(E') v

Q (r) = (Q(r, E), v (E))
Sg

The conventional multigroup equations [22] - [24] are obtained as a

special case of Eqs. (4.8 a, b, c).

S(E) ,
v (E) =

0g,

In this case, we specify

E < E < Eg+1'

otherwise,

where S(E) represents an infinite medium neutron spectrum.

obtain the conventional multigroup equation, for g = 1, 2, . . . , G,
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= Q (r)

(4.8a)

where

(4.8b)

,1(E') ,

We then

vE f ,}1 , (r)

zsg (r)



-V D _V (r_)+ Z (r)-

with boundary conditions

(r)

G

g'= 1
{I ,(D + x v2 ,fgg} = Q

= 0,

and D - (r)g an g-
continuous at material interfaces , (4.9c)

D = 6 D
g gk' ga'

Tg=6 ,ZYTg = gg', Tgg'

Here 6 gg is the Kronecker delta.

4.2.2 Spatial Approximations

In this section, we consider the approximation of the solution to

the generalized multigroup equations (4.8a, b, c).

From the definition in Eq. (4.6a),

N

g a igv i(r) .
i= 1

We apply the Galerkin scheme to the weak formulation of (4.8a) such that

(D satisfies

G

g

{(D , , Vv ) + Tgk'

= (Q , v.(r) )Q,

- sgg,- ' , ,, v ) }

i = 1, 2,.. . , N , (4.10)

where (u, v) =f uv dV. Rewritten in matrix form, Eq. (4.10) becomes

{L - S -F}a = q41
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(4.9a)

(r)

where

(4.9b)

(4.11)
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where

L 1 L 1 2 . L1,G'+1

L 2 1  L 2 2

L

LG G',G(-T

G,Q-G' GG

S . . . . 1G
s = 1 . -

SG1 ' GG

F 1 . . .

FG1. FGG

a = col{a 1 ,a...

_q = col{gs, q 2 . .' 'GI'

(L g,)li, = (D ., Vv ,(r), _Vvj(r)+ (z ,v.,(r), v (r))99 - 1 -gg 1 - - .

(S ,) , = (E , vj,(r),v(r))

(F gg,)ij, = X (vzf ,vi,(r), v.(r)) ,

a = col{a a ,...,a 
-g gl' g2i JgN '

q = co1{(Q g,vi) . .. , , N 'v
g N
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The matrices L, S and F are block matrices. These matrices have

the same properties as those defined in Eq. (3.8) in Chapter III, exc'ept

that in this case the matrices have submatrices as their elements. The

submatrices L g, S g, and F g, are sparse matrices with band

structures. The band width depends on non-zero couplings between the

spatial basis functions through inner products. For example, in one-

dimensional space, if there are m basis functions at each mesh point,

the half band width is given by 2m-1. In two-dimensional space, if

there are m2 basis functions at each mesh point, then the resulting

submatrices are block tridiagonal matrices, which have band structures

with half band width 2m2_ 1.

As an example, let D and I T be piecewise constant and {vi(r)} be

piecewise linear functions in one space variable. Then the matrix L
gg

can be represented by

(D++ h+T+ D+ h+1T+
h+ + 3 6

D - fD- +D+ h-Z T- h+IT+ f D+ 'T+h+
gg ( h- h+ 3 3 '\h+ 6

0 D- 'T-h h- T~
Lh- + 6 3

where h± = x± - xi. Note that the V- DV and Z T terms are related to

function values at three points. It is interesting to compare with the con-

ventional 3-point difference formula for
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f 2 ~(V - D V4+ T) dx

x - D-D 1 -T

h- i +h-h+ + ITh+ 2 Tth+) i - 4i

where

x =± xi i(hi).

In this equation, the V - D V term has the same representation as in L ,9

but the ZT term is represented by a single point relation. In integrating

T, we have assumed that 4 is constant within [xi__, xi+} ], and this

assumption implies the use of small mesh sizes. However, in the finite

element method, the assumptions for constant 4 or Z Tare unnecessary

and the matrix elements can be determined analytically. For this

reason, the finite element method allows us to use larger mesh elements

than those associated with the finite difference scheme. In a two-

dimensional problem, the finite element method using bilinear functions

yields a 9-point formula, whereas the finite difference scheme gives a

5-point formula. The analogy for the _V - D V terms between the two

methods which we have seen in one-dimensional problems can no longer

be established in two-dimensional problems.

If Q(r, E) = 0, then Eq. (4. 1a) defines an eigenvalue problem.

Equation (4.11) then becomes

{L - S F}a = 0 . (4.12)

X is an eigenvalue which is determined by finding roots of the character-

istic equation

1= 0.
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We now consider the uniqueness of the approximate solution to

Eq. (4.5). If the bilinear form a(0, 4) satisfies the inequality (4.3), then

we can prove the uniqueness of the approximate solution in a manner

similar to the proofs of Lemmas 3.1 and 4.1.

Lemma 4.2. If the bilinear form satisfies the inequality (4.3), then

the solution to Eq. (4.5) is unique.

It is possible to provide analytic estimates of the error in the ap-

proximation to both the source problem and the eigenvalue problem.

In the following theorem, the error bounds for the source problem are

presented.

Theorem 4.1. Assume that the inequality (4.3) holds. Let 4 be the

solution of Eq. (4.2) and 4 c C ( rXW) where t= (t, tE). If 4 is the
p P? , Pr

solution of Eq. (4.5) in the space Hm (7QX 7), where m = (mr, m)

then 4 satisfies

4< -L, 6 29r + K =E 2E
w 0r 1 2

where g r =min(2 m r. ,tr)-' E = min(2 m E J tE ), Ar = max Ar and
VQ-

AE = max AE'
7pt

respectively.

and K 1,K 2 are constants independent of Ar and AE,

Proof. This theorem is proven in Appendix A.
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The eigenvalue problem can be represented, in the weak form of

the equation, as

a(0, 4) = b(4, 4) - (F4, 4) = 0

from Eq. (4.2). Then the eigenvalues are defined by

X-1 _ b(4, 4) =b(_ 4)(F4, 4)

1 b(o , q ) = ,

(F 4, 4)

where we normalize the eigenfunctions such that (FO, 4) = (FO, 0) = 1

Then

-1 ^-1 -1 ^ A -1 ^ ^^^
. -x = -b(4, 4) = X F(4, 4) - b(4, 4)

= A (F(4-4+4), -q+4) - b(b(-4+4, -4+4)

= k~ (F(3-4,46-4) + A- (F*<'-4) +±~(($4,4

+ k~ 1 (F\ , 4) - b(q5-4, qS-4) - b(4,/-4) - b(4-45, 45) - b(, k) .

Since b(4, v) - (F4, v) =0 for all v C W

-1 _ ^ _ (F(0-4), 0-4) + N- (F(0-0), 4)

- b(4-4,4-4) - b(4-4,).

If T is self-adjoint, then

-11
X (F(4-4), 4) - b(O-4, 4) = N~ (FO, 0-4) - b(4, 0-4) = 0

and thus

-1 ^- -1 (^ ^ ^ -
N. -N. =N. (F(4-)44)-b4-, -)

We define the norm in the space W as

~u1 =t f, ((Vu)2+u2)dVdE},
1u W S 0 } V 1j
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then from our assumptions on cross sections in Eq. (1.1),

b(u, v) Kj1u 1 v 1

(Fu, v) K, K2 u 1 V1
W W

Thus,

K'i-4 +K'" |- +K''I 4-|+K'' - non-self-
1 - W W L LO adjoint

K'2 1 + K'I 1 self-adjoint
2 0W 1 2 0L

We consider iterative schemes to determine 4 and X. In these schemes,

the eigenvalue problem is treated as a source problem (cf., Sec. 4.3).

We assume that the iterative scheme is convergent. Then we can apply

Theorem 4.1 to the converged solution. If we assume that Theorem 4.1

applies also to derivatives such that the orders of convergence are

specified similarly as in Theorem 2.4, then we obtain

2m -1 2mE
O(ar )+O(AEmE non-self-adjoint

4m -2 4__4m)( r r + O(AE self-adjoint (4.13)

Numerical results (Example 4.1 in Sec. 4.4) show that the order of con-

vergence for the non-self-adjoint case can be better than the conserva-

tive limit predicted above.

4.3 Numerical Methods

We now consider appropriate numerical procedures for the solution

to Eq. (4.11). The source iterative scheme and the Cholesky method,
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which are discussed in this section, are used in a computer program

HERMITE-2D (Appendix D) for eigenvalue problems.

A direct method such as the Gauss elimination method is inefficient

compared to iterative schemes for large systems of linear equations.

We consider the source iterative scheme [43], [44], which is most com-

monly used in reactor physics calculations. In this method, the equation

for the J-th iterative solution of Eq. (4.11) is set in the following form:

G
L aJ = {-L ,(1-6 ,)+S ,+- F }aJ,+ q , g=1, 2,...,G,

g- g gg ggX gg' -g -g
g= (4.14)

where 6  ,g is the Kronecker delta. a0 is an initial guess. In our case,

L is positive definite and we can use the Cholesky scheme [35], [39],

which always gives a unique factorization of L in the form

L = E ET (4.15a)

where E is a lower triangle matrix. Let L = (..), E = (e..). Then we
gg 13 1

note that

2 2 2
. =e. + e + ... + e..

.. = e.e + e e + . + e..e.., j i.
13 11 j1 i2 j2133

Therefore, e.. can be determined using the algorithm,
13

j-1 1

ej. = - - e k)

k= 1

(4.15b)
j-1

e. = ik- eik) 
k=1
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T
The matrices E and E possess the same band structure as L . By

gg

using the Cholesky scheme, the numerical inversion of L is simpli-

fied and it requires only forward and backward sweeps in inverting E

T
and E , respectively.

In the eigenvalue problem defined by Eq. (4.12), only the largest

eigenvalue is of interest because it corresponds to the neutron multi-

plication constant in the reactor physics. The largest eigenvalue of

Eq. (4.12) can be determined by the power method [43], [44], [45]

which will be briefly described. Suppose a*J+1 is the (J+1)-th iterative

solution to Eq. (4.14) with q = 0. Then, the largest eigenvalue and its

eigenfunction are defined by

f *J+1 J)
a , a )

J\g -gg
*J+ 1

a J . (4.16b)

Variants of the definition of X. can be found in [45] . Steps defined by

Eqs. (4.14) - (4.16) are repeated until the following convergence criteria

are satisfied:

J+1 J
a. -a.

max a a, (4.17a)

XJ

ig a.
a ig

X1Xj E X (4.17b)
XJ
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4.4 Numerical Results

In this section, some of the numerical results for stationary eigen-

value problems are presented in order to check the theoretical results

and also to test practical aspects of the finite element method. Calcu-

lations were performed using the computer programs HERMITE-1D and

HERMITE-2D (Appendix D).

In examples, the order of convergence is determined from the

numerical results. For example, if X is the approximate eigenvalue

using the uniform mesh size Ar., then the order of convergence M for

the eigenvalue is determined from

IA = In In (r (5.18)

where X is a reference eigenvalue, which is usually the most accurate

eigenvalue obtainable. The orders of convergence, which are listed in

the tables of numerical examples, correspond to average values of A's

which are obtained from Eq. (5.18). We note that Eq. (5.18) is also used

in determining the order of convergence in temporal approximations in

Chapters V and VI.

Example 4.1. One-Dimensional Eigenvalue Problems

In this example, we consider one-dimensional eigenvalue problems

previously considered by Wakoff [21] . In [21], the multigroup equations

are written in the following simple forms:

- pd + au. = Ti+u+, i=1 -
-dx t-i dxu-i) 1 +cx .±lui,

d d +cy U XrTU
dx "n dx un) + nn lu ,
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where un represents the eigenfunction in the highest energy group and

= k is the eigenvalue.
eff
We selected two examples from [21], a one-group two-region prob-

lem and a two-group two-region problem. We computed the largest

eigenvalue using the cubic piecewise Hermite polynomials as defined

by Eq. (2.14).

Table 4.1 (a), (b) compares eigenvalues of the two examples with

the results obtained by Wakoff. Eigenvalues computed by the finite

difference scheme are also included for comparison.

We note that both the modified spline space and the Hermite space

give convergence of order O(Ax 6) (cf., Eq. (4.13)), whereas the finite

difference scheme gives O(Ax 2) convergence. We also note that the

non-self-adjoint problem (Table (b)) has the same order of convergence

as the self-adjoint problem (Table (a)).
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Table 4.1. Eigenvalues on One-Dimensional Problems: Example 4.1

(a) Eigenvalues of One-Group Equation:

2 [0, )
1 9 0, T 0

Ax Modified Cubic Spline Cubic Hermite Finite Difference

1/4 4.8100921110 4.8100919803 4.7750060178

1/8 4.8100900323 4.8100900308 4.8011066072

1/16 4.8100899964 4.8100899964 4.8078313856

1/32 4.8100899959 4.8100899959 4.8095245373

Order of 5.92 5.96 2.15
convergence

Data from G. I. Wakoff [21].

(b) Eigenvalues of Two-Group Equations

3 4 [0,3)
P fP2 2 2 3 (A, 1] a1 2 = 0, T T 21 ~2 1 2 ' 14

Modified Cubic Spline

71.5395485397

71.5395176807

71.5395171951

71.5395171875

of 6.01
gence

Cubic Hermite

71.5395459139

71.53951766 58

71.5395171950

71. 5395171875

5.95

Finite Difference

70.057197 816

71.164716 538

71.44 55536 95

71.516009845

2.18

Ax

1/4

1/8

1/16

1/32

Order
conver
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Example 4.2. One-Dimensional Two-Group Two-Region Problem

We consider an eigenvalue problem for a one-dimensional two-group,

two-region diffusion problem. The reactor configuration is depicted in

Fig. 4.1. The multigroup parameters for Eq. (4.9a) can be found in

Table C.2 in Appendix C.

For the numerical approximation using the finite element method,

the linear (m=1) and cubic (m=2) Hermite basis functions as given by

Eq. (2.14) were used. Calculations are also performed using the finite

difference scheme.

In Table 4.2(a), comparisons are made for eigenvalues obtained by

various methods. The eigenvalues converge to 0.9795 with the order

O(Ax 2m-1) as predicted by Eq. (4.13) for the non-self-adjoint operators.

The finite difference scheme gives the same order of convergence as

the linear Hermite method. In Table 4.2(b), the thermal neutron fluxes

at x= 2L/3 are compared. The neutron fluxes are seen to converge to

0.791334 with the order O(Ax 2m) in coincidence with Theorem 4.1. On

the other hand, for the finite difference method, the order of

convergence is found to be somewhat less than the expected value 2.0.

In Fig. 4.2, the thermal flux distributions computed using the cubic

Hermite method and the finite difference scheme are compared. In

this figure, it is seen that the flux shape converges rapidly to a limit

as the mesh sizes are refined. The results obtained by finite element

methods compare favorably with the finite difference result which is

obtained by using smaller mesh size Ax= L/24. We also note in this

figure that the finite element method using coarse meshes can accurately

predict local thermal flux peak in the reflector region.

In Table 4.2(c), the integrated thermal fluxes and related errors

are compared. Finally, in Table 4.2(d), comparisons are made for the
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Table 4.2. One-Dimensional Two-Group, Two-Region
Eigenvalue Problem: Example 4.2

(a) Eigenvalues (1/X)

Ax

L /3

L/6

L/12

L/24

Order of
convergence

L = 60 cm.

Hermite Method

m = 1 m = 2

0.97576214 0.97899829

0.97792715 0.97946629

0.97897935 0.97952296

0.97937656

1.59 3.84

Finite Difference

0.97658226

0.97646699

0.97803760

0.97905549

1.40

(b) Thermal Flux at x = 2L/3

Ax

L/3

L/6

L/12

L/24

Order of
convergence

Hermite Method

m = 1 m = 2

0.65557645 0.81027209

0.82029106 0.79471040

0.79589912 0.79139325

0.79255659

2.30 4.1

Finite Difference

0.80887720

0.81289463

0.80204605

0.79473074

1.31

Normalized to 2 (L)=1.0.

tReference flux 42 = 0.7913344 for m= 2 , Ax=L/60.
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Table 4.2 (Concluded)

(c) Integrated Thermal Flux
.LI. 42(x) dx
0

Hermite Method

Ax m = 1 m = 2 Finite Difference

L/3 (19.5%) (1.32%) (28.4%)
30.978644 37.969594 49.415513

L/6 (3.15%) (0.011%) (17.3%)
37.263231 38.482219 45.121380

L/12 (0.52%) (0.003%) (4.4%)
38.680668 38.479082 36.772008

L/24 (0.14%) (3.8%)
38.533171 39.952596

Relative errors based on the reference data

L 2 dx = .38477937X10 2for m = 2, Ax = L/15.

(d) Computation Time (sec)

Hermite Method

Ax m = 1 m = 2 Finite Difference

L/3 2.89

L/6 2.81 3.74 2.81

L/12 5.72 9.25 5.81

L/24 10.80 11.02

Reflector Nuclear Fuel

L/3 2L/3

d
dx

L=60 cm

Reactor Configuration for Example 4.2

0
I I

Fig. 4. 1.
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computation time required for the eigenfunctions to satisfy a convergence

criterion of c = 1010 (cf., Eq. (4.17a)).

Comparing numerical results in the tables, it is seen that the finite

element method using linear functions is somewhat more accurate than

the finite difference scheme. Also, in this example it is demonstrated

that the finite element method in cubic Hermite space is highly accurate

and, in fact, that this method can be used as coarse mesh method to

reduce computation time as compared with other methods. For example,

the finite element method in the cubic Hermite space for Ax= L/3 yields

about the same accuracy for the eigenvalue and the integrated flux as

the finite difference scheme using Ax= L/24. Furthermore, it is shown

in Table (d) that the finite element method requires less than 1/3 of the

computation time of the finite difference scheme.

Example 4.3. Two-Dimensional, One-Group Model Problem

In this example, we consider an eigenvalue problem for a two-

dimensional neutron diffusion equation. The configuration of interest

consists of uniform nuclear fuel (Fig. 4.3). The one-group nuclear data

are given in Table C.2 of Appendix C.

Table 4.3 lists eigenvalues for different meshes obtained by the

finite element method using piecewise cubic Hermite polynomials and

the finite difference scheme. In the finite element method, the basis

functions defined by Eq. (2.28) were used. In this result, we obtain

6 2
O(Ar ) convergence for the finite element method and O(Ar ) for the

finite difference scheme. Also we note that the finite element method

for Ax = L/2 yields more accurate eigenvalues than the finite difference

scheme which uses Ar= L/6.



Table 4.3. Eigenvalues 1/X of a Two-Dimensional,
One-Group Model Problem: Example 4.3

Cubic Hermite Finite Difference

L/2 0.9230904055 0.92280573

L/4 0.9230903703 0.92301801

L/6 0.9230903697 0.92305812

Order of 5.89 2.65
convergence

L

d =

0

4= 0

Nuclear

Fuel

0 jy4=0

4 = 0

L

-x

L = 40 cm

Reactor Configuration for Example 4.3

96

Fig. 4. 3.



97

Example 4.4. Two -Dimensional, Two-Group Problem

In this example, we consider an eigenvalue problem of two-group

neutron diffusion equations. The system consists of a fuel region

inside and a reflector outside (Fig. 4.4). The nuclear parameters of

the materials are given in Table C.2 in Appendix C.

For this calculation, we use the bicubic basis functions defined by

Eq. (2.28). At the singular point, we consider three different types of

bicubic functions:

Set A: Two basis functions which satisfy 4 and D n continuity at

the corner. These are given by Eq. (2.29).

Set B: Four basis functions which are continuous. These are given

0 1 0) (0,1)by Eq. (2.28) with 0 = 1 for u and u ( .

Set C: Six basis functions which are continuous. These are given

by Eq. (2.30).

Table 4.4 summarizes the eigenvalues obtained by the finite differ-

ence method and the finite element method using linear and cubic poly-

nomials. We note that methods using cubic polynomials for Ax = L/2

yield accuracy comparable to that of the finite difference scheme for

Ax = L/20. Furthermore, we notice that, although set A has low-order

convergence, it gives quite accurate eigenvalues for large Ax. Eigen-

values for sets B and C converge in the order of O(Ax 3). All of the

eigenvalues are seen to converge to the value 1/X = 1.114.

In Fig. 4.5, thermal fluxes for the Sets A, B and C are compared.

Figure 4.5(a) shows that at y = 0, where the singular functions vanish,

the fluxes have similar shapes and all converge to the finite difference

results for Ax = L/20. Figure 4.5(b) shows that at y = 20 cm, flux

shapes for Set A are rather distorted and have slow convergence. On
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the other hand, the flux using sets B and C functions converges rapidly.

By comparison, we notice that set A basis functions approximate

poorly the flux for coarse mesh calculations, and that set C functions

give better approximations than the other sets.

Table 4.4. Eigenvalues 1/X of Two-Dimensional,
Two-Region Problem: Example 4.4

Two-Group,

Hermite Method

Ax m = 2 Finite Difference

m=1 A B C

L/2 1.0802150 1.1157980 1.1081760 1.1082321 1.0783013

L/4 1.0962251 1.1153879 1.1134294 1.1134916 1.0797120

L/6 1.1040456 1.1149521 1.1140668 1.1140943 1.0895577

L/20 - -- - - 1.1105031

Order of convergence
1.4 0.95 3.2 3.2 0.8

L

d =0
dx

L/2

0

4= 0

= 40.0 cm

x = 0

Reactor Configuration for Example 4.4Fig. 4.4.
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Set A

1.6

1.2 -

e 0.8 -

0.4 -

0.0

-0.4
0.0 10.0 20.0 30.0 40.0

Set B

1.6

1.2

-e- 0.8

0.4

0.0

-0.4
0.0 10.0 20.0 30.0 40.0

Set C

1.6

1.2 / -

e- 0.8 .

0.4 -

0.0

-0.4
0.0 10.0 20.0 30.0 40.0

x (cm)

(a) y = 0.0 cm
Fig. 4.5. Thermal Neutron Fluxes: Example 4.4

KEY: Bicubic Hermite, - -- Ax= L/2, - - - Ax=L/3, - Ax=L/6;
0 Finite Difference Ax=L/20.
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Chapter V

POINT KINETICS PROBLEMS

In this chapter, we develop the application of univariate piecewise

approximations to problems in space-independent kinetics, that is,

point kinetics problems. We first develop a general procedure for the

solution of a system of first-order ordinary differential equations using

piecewise polynomials in Section 5.1. We term this procedure the

Hermite method, as it is based upon Hermite interpolation. The Hermite

method results in a single-step algorithm and, for equations with variable

coefficient A(t), yields a truncation error of order 2m for interpolation

polynomials of degree 2m-1. It is shown that certain classic methods,

i.e., the Crank-Nicolson method and the Pad6 (m, m) rational approxi-

mations for exponential functions [40],[46] appear as special cases of

the Hermite method.

We then apply the method to the point kinetics equations in Section

5.2. Especially, we present an alternative form of the kinetics equations

which avoid the numerical operations of matrix inversion necessary to

carry out the forward time step in the direct approach. Finally,

numerical results are presented in Section 5.3 which confirm the accu-

racy of the error analysis.

A number of authors considered the use of piecewise polynomials

for initial value problems (e.g., see [47] - [50]); however, these studies

have been limited either to the use of discontinuous polynomials [47] , [48]

or to problems with constant coefficients [49] , [50] . Nassif [51] extended
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the Hermite method forpolynomials of arbitrary degrees, and his study

asserts the analogy between the Hermite method and the Pad6 (m, m)

approximations for the general m.

5.1 The Hermite Method

In this section we shall develop the application of piecewise poly-

nomials to systems of coupled ordinary differential equations. We

consider a system of the first-order ordinary differential equations

d 0(t) = A (t) 0 (t) , 0 < t < T , (5. 1a)dt

O() = 00, (5.1b)

where O(t) = col{ k1 (t), 42 (t), .. , Nt and A(t) is an N X N matrix.

A(t) may be discontinuous in t. In reactor kinetics problems, the point

kinetics equations and the semidiscrete neutron diffusion equations can

be represented in the form of Eq. (5.1a).

We divide the interval [0, T] into a partition rt such that

7rt 0 = t < t2 .< < t T .t 1 2 N t

If A(t) is discontinuous at some points in [0, T], then we assume that the

partition includes such points as mesh points.

We limit our consideration to a particular subinterval [ti., ti+1 '

Assume that 4(t.) is given as the initial condition or as a result of previ-

ous computation, and q(t i+1) is to be determined. However, when A(t) is

discontinuous at t=t (or ti+1 ), k(t ) (or 4(ti+1)) is to be interpreted as the

one-sided limit, 4(t+) (or 0(t+1
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Let {u ±(t)}m-i (j = i. i+1) be the element functions of degree 2m-1

as defined by Eq. (2.4) in Chapter II. And let the approximation solution

to 0(t) be represented by

m-1

(t) = {
p=0

u P(t) + O U (t)}1 i 1 i
(5.2)

where

< dt

dtP tj
j = i, i+1 .

In order to determine 0(t), we assume that 0(t) satisfies

f ti+1

1.

do(t) = Jti+1
t.

A(t) 0(t) dt.

Integrating explicitly,

t

i i+1

m-1
A(t) I

p= 0

m-1
= L {(P+) -(p)A p

p=0

A fti+1 A(t)
t.
1

i(Pl =- + A(t)
1

{ ; u(t) + u+1(t)} dt

i+l Oi+1

u (t) dt,

uP+1 (t) dt.

Furthermore, we assume that

=A(ti).,

^(p)

(5.3)

where

(5.4a)

(5.4b)

j=i, i+ 1 . (5.5a)
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Then we can define Alp} such that
1

^(p) dP-4 = A(t) 0(t)It

d d A(t) +A2

dt dt t.

A p . (5.5b)

Similarly,

-iA1+ i+1 . (5.5c)

We note that if A is independent of t, then A 1 A , A = A+ In
1 1 i+1 i+1

general, for variable A(t), Eq. (5.4a) can be written as

m - 1 A( ) Al } ^m -1 A( + l }( . aI - A A } +1 ki+ =I + IA } (5.6a)

p=0 p= 0

where I is the unit matrix. Eq. (5.6a) is a single-step equation. If $i+1

A(p)
is determined by solving Eq. (5.6a), then its derivatives 4 can be found

from Eq. (5.5c). These are substituted into Eq. (5.2a) to construct 4(t) in

the interval [t., ti+1] . This method will be called the Hermite method

because the method is based on the Hermite interpolation. (Cf., Chap. II.)

The error bound for the approximation in the Hermite method is stated

in the following theorem.



105

Theorem 5.1

Let 0(t) be the solution to Eq. (5.1) where A(t) is Lipschitz continuous,

i.e., there exists a positive constant a- such that

0 A(t) ( f(t) -g(t) ) 0 0 a- f(t) - g(t) Go.

Let 0(t) be the solution of Eq. (5.6) in the space H (7r ). Assume that
m-1 m t

there exists a constant T such that Q AP 1 A 1 1 if |ti-t I < T

p=0
for 1iNt- 1.

satisfies

If cCCt(Or) and At = max Iti+ 1 -t I< T,$
1<isN t

max 0 (4(t) - G(t)) o
[0, T] dt q

< K At -q

where y = min(2m, t) and K is a constant independent of At.

Proof. The theorem is proven in Appendix A.

As a special case, when A(t) is constant, the Hermite method

leads to the Pad6 approximation for eAAt [39] , [44] .

(i) m = 1 (linear function)

tI - A} i+ = fI

(ii) m = 2 (cubic function)

A + At 2

A+ 12 A2; i+1

+ A} )

= I + A A + At
2

+12

For example,

(5.6b)

A2} i. (5.6c)

Equations (5.6b) and (5.6c) correspond to the (1.1) and (2.2) elements in

the Pad6 table, respectively. Equation (5.6b) is also known as the

Crank-Nicolson formula.

The solution for i+1 in Eqs. (5.6a, b, c) requires inversion of the

coefficient matrices. For matrices of large order, iterative schemes

then 4

{I -
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are often more effective than direct methods. In this case, the initial

value of ki+ needs to be estimated or extrapolated from previous

values. Below, we give some low-order extrapolation formulae [49],

which can be used with the one-step method:

i+1 =2, - 0,i- (5.7a)

i = 2 0i - 0._ - At. 1( - Ok) V. (5.7b)

The advantage of the Hermite method is that the method can accu-

rately account for the variable A(t) within each mesh element. Conse-

quently, the Hermite method allows the use of relatively large mesh

elements compared to the Pad6 approximation and other collocation

schemes. Another important feature of the Hermite method is that the

method permits A(t) to be discontinuous. In reactor kinetics problems,

A(t) can represent the reactor controls such as the control movement

or the coolant flow rate, which change discontinuously in time. Then

the Hermite method can be a powerful method for studying the response

to such discontinuous controls.

5.2 Point Kinetics Equations

In this section, we consider the solution of the point kinetics

equation applying the Hermite method developed in the preceding

section. In particular, we consider two versions of the point kinetics

equations: equations with precursors in the differential forms and the

time-integrated point kinetics equation in which the precursors are

eliminated by integration.
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5.2.1. Point Kinetics Equations with Precursors

The point kinetics equation with precursors can be written as

[52] , [53]

d
d 4(t) = A(t) 0(t),

O(0) = ,

(5.8a)

(5.8b)

where

0(t) = col{n(t), C 1 (t), . . . , C t)}

A(t) =

p(t) -
A

.01

A

XJX1 *

-A1 0
0

-J _

n(t) is the neutron concentration, p(t) is the reactivity and A is the

generation time. Other definitions can be found in Section 1.1.

The approximate solution can be found by applying the Hermite

method described in Section 5.1. For example, we consider the linear

variation of the reactivity of the form

p(t) = p0 + p t.

Let

in-1
-(t) = u (t)+ u+1(t)1 p-i+=i+

P=O

(5.9)
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Then, the Hermite method yields the following one-step equation,

Bi+1 i+1 = B i ,
(5. 1Oa)

(i) m = 1 (linear function)

B.= I + Ai+1 -A2 At
1 2 i+l 3 A'

Bi+1 = I - A- At 2 AA,i+1 2 i 3 (5.1Ob)

(ii) m = 2 (cubic function)

B. =I+ At A 7At 2 A

Bi1 2 A i+1 20 A +

At 7 2
B i+1 =I--2Ai - -- At A

A 2  A -A t 3  A A
1 i+1 - Al

+ 2 A + 20 A Ai+1 , (5.10c)+ At2 At }0
where

A. = A(t.)
1 1

and

0
Comparing with the Pad6 (m, m) approximations, we note that

2 3
Eqs. (5.10b, c) contain some additional terms in At and At3. In fact,

these are the correction terms which account for the linear variation

of the reactivity p(t).
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5.2.2. Time-Integrated Point Kinetics Equation

The time integrated point kinetics equation is obtained by integrating

the precursors and eliminating them from Eq. (5.8a). The result can be

written as

d n(t) = pn(t)+

j=0

- .t /.
C. e 3+ A

t -X.(t-s)
fn(s)e J ds},

(5.11a)

n(0) = n (5.11b)

m-1
n(t)=

p= 0
{- p) pn. u. (t)

1 1
+ n uP (t)}

Then we require that n(t) satisfies

n+1 - .,t i+1t.
A - n(t) dt

J t.
+ fi+1

j- t*

-kit + t

X C 0 e A f0

A X-x.(t-s)

n(s) e 3 dsj

Proceeding as in Section 5.1, we obtain a single-step equation from

Eq. (5.13).

For example, we consider a simple case of approximation using

linear functions (m=l) and a ramp reactivity

p(t) = p0 + P t.

Then Eq. (5.13) becomes

J
Bi+1 ni+1 = B n +

j=1

(- t.
e- X i+1 S (5.14)

Let

(5.12)

dt .

(5.13)



where

pi- 0 Atp 2
Bi+1 A 2 A 3

p. - 3 At.

1 A 2

p po + Pn t, 

aJ i+1
-t A.(t.

21

At. X.At.

X1 2

S j, k+1 caS.ca

S , 1

Sj, k

+ 1)

PAt 
2

-A 1p_ -t6

+

j=1

J
+j

j=1

AAt. j, i+1
1

/3.

Adt. ja
1

t = ti+1- t

± +(e Atie.

At.

+

1)

-e.At.
(e J 1 - 1).

i

n be determined recursively from

= C.
22o0

+1
n k + fk e k+1

j, k + AAtk X2

Atk

( Xk
1

2
J
) e Xitk}

+ /nk+ 1 At k 1 e\j t k+ 1+1 Xt k}
- e t+ + et

ni+1 is a scalar and can be determined from Eq. (5.14) by dividing by

the scalar Bi+1'

5.3 Numerical Results

The computer program, HERMITE-OD, was prepared for calcu-

lations in the numerical examples in this section. HERMITE-OD solves

the point kinetics equations by the Crank-Nicolson scheme (Eq. 5.6b)

110
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and the Hermite method using piecewise linear or cubic polynomials

(Eqs. (5.1Oa, b, c) and (5.14)).

Example 5.1

Consider a point kinetics problem defined by

p(t) = t2

with six delayed neutrons (Table C.1) and the following constants

A= 5 X 10-5 sec

n(0) = 1.0.,

0 < t , 2 sec.

Table 5.1(a) compares n(t) computed by the Hermite method using

polynomials of various degrees and the Crank-Nicolson method. In

the latter, a constant reactivity in each time interval is assumed such

that

pMt) = p(t), t < t < t i+1'

Convergence of order O(At2m ) is observed for Hermite methods

using polynomial of degree 2m-1. This coincides with the statement in

Theorem 5.1. However, the Crank-Nicolson scheme shows only O(At )

convergence. This example demonstrates that the Hermite method

retains high-order convergence for variable coefficients (reactivity),

in contrast to the Crank-Nicolson scheme and other collocation schemes.

We remark at this point that results by the Crank-Nicolson scheme

can be improved by using the average of p(t) in the interval [t , ti+1

instead of values at mesh points. Thus, let

p(t ) + p(ti+1 )
p(t) = p= 2 t < t < ti+1-



Table 5.1. Point Kinetics Problem, A = 5 X 10~4 sec: Example 5.1

(a) n(t)

Hermite Method
t At Crank- 1 2 1Nicolson 

(time-integ.)

1.0 0.5 1.5316543 1.9144400 1.9465955 1.9046032

0.1 1.8513059 1.9482021 1.9499962 .1.9476481

0.05 1.9002958 1.9495497 1.9499987 1.9494094

0.01 1.9400027 1.9499808 1.9499987 1.9499751

0.005 1.9540000 1.9499942 1.9499987 1.9499928
Order of 0.95 1.92 4.48 2.08convergence

2.0 0.5 5.4308838 11.145270 10.943181 10.925652

0.1 9.7275836 11.243498 11.227962 11.219269

0.05 10.450756 11.232274 11.228356 11.226118

0.01 11.068160 11.228529 11.228372 11.228282

0.005 11.147961 11.228411 11.228372 11.228349
Ordergec 0.95 1.97 4.36 2.09convergence 09

(b) n(t) by the Crank-Nicolson scheme using p

At t = 1.0 t = 2.0

0.5 1.8818173 10.013090

0.1 1.9467323 11.189778

0.05 1.9491803 11.218824

0.01 1.9499660 11.227991

0.005 1.9499905 11.228276
Order of 1.93 1.86
convergence

Results of the Crank-Nicolson scheme using p are shown in

Table 5.1(b). The table shows that use of p improves the solution

as well as the order of convergence.

112
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Example 5.2

This example is basically the same as Example 5.1 except that

A = 10 sec. The neutron density in this example increases rapidly

and reaches a magnitude of 105 two seconds after the insertion of

ramp reactivity, p(t) = t. This example is to test Hermite methods

for numerical stability when applied to the fast system.

Table 5.2 compares n(t) obtained by the Hermite methods and the

Crank-Nicolson method. For time step sizes, 5 X 10-3 < At < 5 X 101

in this example, uniform convergence is not observed. Also, this

table compares relative errors of n(t) for At = 0.01 sec. We observe

in this table that, for large At, the Hermite method as applied to the

time-integrated kinetics equation gives more stable and accurate

solution when compared to the kinetics equation with precursors.



Table 5.2. n(t) of a Point Kinetics Problem, A = 10 sec: Example 5.2

Hermite Method
t At Crank-Nicolson m = 1 m = 2 m = 1 (time-integ.)

1.0 0.5 1.7398362 2.1903963 2.1453451 2.1770162

0.1 2.1617929 2.2835253 2.2761511 2.2823753

0.05 2.2242740 2.2870330 2.2873140 2.2867310

-3 - 4
0.01 (0.613%) (2.01 X 10-%) (2.53 X 10~%) (6.90 X 10~%)

* 2.2741454 2.2881595 2.2881994 2.2881894

0.005 2.2806399 2.2881928 2.2882052 2.2881461

Order of 0.947 1.93 3.75 1.90
convergence

2.0 0.5 0.98040854 X 101 0.62508242 X 102 0.13191022 X 105 0.10859238 X 103

0.1 0.15045759 X 10 3 0.11526595 X 104  0.63665597 X 104  0.26780006 X 104

0.05 0.51885734 X 103 0.39038912 X 104  0.67090612 X 104 0.80757093 X 104

0.01 (68.3%) 4 (2.75%) 5 (10.92%) 5 (0.81%) 50.65411931 X 10 0.21227155 X 10 0.18399171 X 10 0.20823698 X 10

0.005 0.11790377 X 105 0.21803225 X 105 0.20657232 X 105 0.20264628 X 105

I.

Relative error in % based on n(1.0) = .22882052 X 10 1, n(2.0) = .20657232 X 105
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Chapter VI

TIME-DEPENDENT NEUTRON DIFFUSION PROBLEMS

In this chapter, we consider the approximate solution of the time-

dependent neutron diffusion equations. The equations are first

developed in the weak formulation, as presented initially in Chapter IV.

We include the dealyed neutrons explicitly in the formulation in order

to avoid the computation of delayed neutron precursors. We show that

time-dependent solutions are unique for the case of no delayed neutrons.

In Section 6.2, we derive the discrete equations in space, energy

and time applying the methods developed in Chapters III, IV and V and

show that the resulting approximate solution converges to the analytic

solution, again for the case of no delayed neutrons. We present a

theorem which shows the error bound for the approximation error. We

conclude this chapter with some numerical examples and results in

Section 6.3.

6.1 Basic Equations

The time-dependent diffusion equation is defined in Eq. (1.1) in

Chapter . In particular, we are interested in the time-dependent

neutron diffusion equation, in which the delayed neutron precursors

are eliminated by integration. For 0 < t < T,
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1 ( E, t)
5r E) at rE.t

= T4(r, E, t) + Q(r, E, t)

= {V-D(r, E, t) V - YT(r, E, t)} (rE, t)

+ 6 dE' { (r, E'--E.,t)+(1-0)X(E)vZ f(r.,E',t)} (r, E', t)

Ji

+ I Xdjj(E)1 C e
j=1(

-XAt
3

t -(.(t-s)
+ Xj/jd(E) f e 3

0 I dE' v f(r,E',s)(r.,E',s) ds}

+ Q(r, E, t) ,

0(r, E, t) t=0 o(r, E).,

4(r, E, t) =0

and

4(r, E, t), D a 4(r., E, t) continuous on the material interfaces.an

(6.1 a)

(6.1b)

(6.1c)

(6.1d)

Definitions are developed in Chapter I.

We define the inner products and L -norm by

(u, v) = f f u, v dV dE

u

L

1

2 = (u, v) 2

and the bilinear form

a(u, v) = (DVu, Vv) + (ZTu, v)

- {( s (E'-+E)u(E') dE', v)} - (1-0) {(X(E) J vf (E')u(E')dE',v)}

In this chapter, we make an assumption that there exists y > 0 such that

a(0, 4) > y 4 2 2.
L

(6.2)
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We consider the problem of finding

lation of Eq. (6.1) such that

zr-Et4, v) + a(0, -/) =(Q dv)

(4(r, E, t), v) It=0 = , v)0 , 

a 4(r, E, t) from the weak formu-

(6.3a)

(6. 3b)

for all v c W (Q)
0

(cf., Sec. 4.1, Chap. IV) ,

where

Xd(E) X jO

+ O Xd(E) f dse 
(t

0
f dE' v f(r, E', s)4(r,

To show the uniqueness of the solution to Eqs. (6. 3a, b) when f = 0

(no delayed neutrons), we proceed as follows. Since (DV4, V4), (ZT4,) >0,

-a4 ) (f s(E'+E) +

S'6 O(E) dE)2

where K' is a positive constant. Applying the Schwarz inequality, we

obtain

-a(4, 4) f K' dE

= K'I 1 12 2
L

Using the simple inequality, ab < a 2 + b 2

(Q, 4) L 2 + L 2 2

=Q +
j=1

e

E's)

X(E) vZ (E ')} 4(E'1) dE'1, O(E))
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Also,

11 d 2
23dt L2 *~max L

Thus, Eq. (6.3a) with v=4 leads to the following differential inequality,

2 1 2 1 2 1< K'' 4 211 2 + 1 10 1122 + I II 2 2
max L L L L

or

d 11 2 2 K 11122 + K2 Q112
L L 2

Solving the differential inequality leads to the following lemma:

Lemma 6.1. Let 0(r, E, t) be the solution of Eq. (6.3) with 3 = 0. Then

4(r, E, t) satisfies

2 K t t K 1 (t-s) 2
0 < 2 K 1 2 + K2 1 2 2 ds . (6.4)

L L 2 0 L

We remark that the inequality (6.4) shows that the time-dependent

solution is bounded by the initial condition and the source term in the

L 2-norm. It further follows that the weak formulation of Eq. (6.1) has

only a trivial solution if 40 = Q = 0. Thus, Lemma 6.1 implies the

uniqueness of the solution to Eq. (6.3).

When 0 * 0, some fission neutrons are emitted not immediately but

with some time delays. In this case, the solution depends on the past

history of the neutron flux as well as the initial condition and the source

term. We will not attempt to prove this but conjecture that the solution

to Eq. (6.3) with f * 0 exists uniquely.
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6.2 Approximations

6.2.1 Semidiscretization

In this section, we derive the discrete equations in energy and

space applying methods developed in Chapters III and IV.

Let r. and be the partitions of the region Q and the energy

interval E such that

7r :a r  <r 1,2<. . .<rl.)=N =b

an =rn,1 n, 2 < ' n.,N =bn'

7r: .=E <E2<. .. <E =E
7, mm 1 2 NE max

Selections of proper polynomial basis functions were discussed in

Chapters II and IV. Let {v. =v (r) v (E): 16 is N, 1, g sG} form a

basis in the space Hm(7rgXwg) where m=(mr, mE) and the approxi-

mate solution be represented by

G N
(r, E, t) = a ( ) v(r) v (E). (6.5)

g=1 i=1

The expansion coefficients of q can be determined by applying the

Galerkin scheme to the weak form of Eq. (6.1) such that q satisfies

( -at , v + a(0, v) = (Qd, v), (6.6)

(, v) =

where v = v (r, E) for all i and g.
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In a manner analogous to the derivation of the inequality (6.4) for

the analytic solution, choosing v=4 and 3= 0 in Eq. (6.6), we obtain

the following lemma:

Lemma 6.2. Let 4(r, E, t) be the solution to Eq. (6.6) with j=0.

(r, E, t) satisfies

K (t-s)
e 11Q112 2 ds.

L

The inequality (6.7) implies that the approximate solution is unique and

the Galerkin scheme is numerically stable.

Following the procedure of Chapter IV, we apply the Galerkin

approximations in steps, for the energy variable first and then for

the space variables.

Let

N

9 (r, t)

i= 1

a (t) v (r);

then from Eq. (6.5),

$(r, E, t) =

G

g
g= 1

(r, t) v (E) .

Apply the Galerkin scheme to Eq. (6.1) for the energy variable such

that, for g = 1,2,...,G,

(1 a ^
?IV -5t ', g J

= (T4, v ) (6.8a)

(6.8b)= (40 (r, E), v )

1K t

0L 2

t

2
L

Then

2 + K 2 f (6.7)

+ (Q, v ) ,

((,E, 0), v )
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(4(r, E, t), v ) = 0,

(4, v )D vg continuous on the material interfaces ,

where

(6.8c)

(6.8d)

(u, v) = uv dE.

Equation (6.8) then leads to the generalized time-dependent multi-

group equations, for g = 1, 2, . . . , G,

G

g
gr= 1

1 a '
31, atpg

gg

G

g'=1

-V-D ,VTgg- ,+Z gg ( 1 - 3 )VZfg g 9

t -. (t-s)
+ xjjdgf0 e 3

G

v ,fg7qg5ds

g'=1

1 9(6.9a)

with conditions

G

g =1

M r,(O)

(r, t) a = 0,

G

(r, t)

1

gg

g
g P=1

(E g

=q (r) ,

D , ,(r, t) continuous at material interface , (6.9d)gka

Vg9)S

Xdjg = fXdj(E) v (E) dE

+

j=1
{ Xdjg' jC

-x .t
Je

(6.9b)

(6.9c)

where
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Mgg9 (v ,,v )

4og -a0o, v )

The remaining parameters are defined in Section 4.2.1. The conventional

time-dependent multigroup equations can be obtained from Eq. (6.9) as a

special case (cf., Sec. 4.2.1).

Now we apply the Galerkin scheme to the weak formulation of

Eq. (6.9a) for the space variable such that, for i = 1, 2, . . . , N,

G

g'=1

1
G

at~ =1v

+ ( PETgg + ,sgg +X (1-)vf ] , f ] F

j -X.t
+ e 3 (C

+=1 v

*( r ) v ) +X dgjo - j ijXdg

+ (q v )

where

t

0

-x .(t-s)
e 3

G

ZI (V ,fg?(g

g'=1

(u, v) =j (u, v) dV .

N
Substituting for

form as
1=1

a. (t) v (r) , Eq. (6.10) can be written in matrix

V a a(t) = {-L+S+(1-0)F}a(t)

-x.t
i +X43.

t -.X (t-s)

fOei3 Fda.(s) ds}

M a(0) = _

v ) I
,v ) ds

(6.10)

=

+ qt), (6.11a)

(6.11b)

f D y ( , ,. _V )
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where

VlG+
V1,G'+1

V G,G-G '

M 1 1 . . .MlG

MG+l

N

MG,G-G,

0

VG-G',G

' GG

0
MG-G', G

GG

F . . . . F1G

F d=

d..

FGl . GG

C. =col{C,. 2 C.,...,C.G},

V 1 1 *.'

0
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-o = col{C0 o * .. .oG}J

(V ,) = 1 (v.,(r), v(r))
511 9gg 1

(Fdgg. , Xdg(v , v,(r), v(r))

(C ) = 6 iiXd (C (r), v. (r))

(M ,)gg M ,(vi,(r), vi(r))
gg -

-og = col g( , v - . . .QogvN

Other matrices are defined in the same way as in Section 4.2.2. The

properties of the matrices are discussed in Section 4.2.2.

The error bound for the approximate solution is stated in the

following theorem.

Theorem 6.1. Assume that the inequality (6.2) holds. Let 0(r, E, t) be

the solution of Eq. (6.3) and 0(r, E, t) C Ct(wgX7 ) where t=(ttE if

0(r, E, t) is the solution to the semidiscrete equation (6.6) in the space

Hm(rX d, then

L (QXS)
K 1r r

where pr = min(2mr, tr ' ME = min( 2 mE, tE)

+ --PE
+ K 2AE

and Ar = max Ar,
'IQ2

AE = max AE and K1 and K 2 are positive constants independent of

Ar and AE, respectively.
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6.2.2. Temporal Approximation

In this section, we consider the application of the method developed

in Chapter V to the semidiscrete equation, Eq. (6.11), for approxi-

mations in time.

The semidiscrete equation, Eq. (6.11), can be rewritten as

V - a(t) {-L(t)+S+(1-O)F} a(t)

+ L= \.C
j1

e
- A.t

J +XA 8.
t - .(t-s)

fe

For simplicity, we assume that only L(t) is a function of t and it is

given by

L(t) = L0 + f(t) L.

Let a(t) be an approximation of a(t) such that for tk 1 t 1 tk+1

m-mt -1(

a = a

p=O

m1
where {u :(t) t0

u +(t) + - k1 u k+1(t) (6.12)

are the univariate element functions of degree 2m -1t

as defined in Section 2.1, Chapter II. By combining Eqs. (6.5) and (6.12),

the approximate solution in r, E and t can be represented by

(r,E, t)
G N

a (t) v (r)

g=1 i=1

v (E)

G N mt-1 ',

a(P) uP (t)

g=1 i=1 p=0
ig(k+1) uk+1(t), v (r) v (E) .

Applying the Hermite method in Chapter IV, we obtain the following

single step equation:

Fda(s) ds

(6.13)



J

Bk+1 k+1 = Bkak+ Z
j=1

(e- j k -X tk+1 /_jk .*

In particular, when m= 1 (linear function), the matrices are defined by

Atk

2 {-Lk+S+(1-13)F} -

j=1

J

{-Lk+S+(1-0)F} + I
j=1

Tkj j0jFd + k+1

akj Xjij F d + Ek ?

03.
ji X j d

j, +1

a(OY F M-c
- X. d -0

j

SiY+ X Fd ".j' a jaP+1j ' A

Lk = L(tk) '

Atk = tk+1 - tk '

kj Atk

ykj At k

1kj At k

kj At k

[tk+1 Atk -

'Ix.
II

1
X2x.

L

1
x.

J

X (t 2 - t2
jk+1k

2

t +1

Atk]

-Xt At
e J k+( k

\ J

1
A2
J

e X k+1

2
x.

t Atk + e A t 
A t

k_ __

-X At

tkAtke 2

)

1
+2

J

e X k

Xtk}

Ek and Ek+1 depend on the functional form of L(t) in Eq. (6.13).

example, we consider two special cases:

126

Bk+1

(6.14)

Bk
Atk

2

1
2.
J
)

For

At k
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(i) L(t) = Lo + L t (linear)

A 2atk
E k 6 ~ LA,

2atk
Lk+1 3 L,

(ii) L(t) = L ± L sin wt (oscillatory)

11
k 2 [Wtk Cos Wtk- sin w tk+1 + sin wtk LA

Ek+ 1 2 [A- k cos Wtk+1 + sin wtk+1 - sin wtkL
(0 ZatkLWk+1klk ,

The solution to Eq. (6.14) can be determined using general iterative

schemes .[35], [39], [40] which are applied to the finite difference

scheme. The source iterative scheme which can be applied to the multi-

group system, and Cholesky factorization scheme for the inversion of

positive definite matrices, can also be applied to solve Eq. (6.14). For

fast convergence of the iterations, accurate prediction is required. The

extrapolation formula given by Eqs. (5.7a, b) can be used for this purpose.

6.3 Numerical Results

We consider the problem of solving the conventional time-dependent

multigroup diffusion equation by the methods described in previous

sections. Computer program HERMITE-2D (cf., Appendix D) basically

solves Eq. (6.14) using the iterative schemes discussed in Section 4.3,

Chapter IV.
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Example 6.1. Uniform Linear Perturbation

Consider a one-group, two-dimensional problem with six groups of

delayed neutron precursors. The configuration is a rectangular region

which consists of a uniform nuclear fuel (Fig. 6.1). The thermal group

nuclear data can be found in Table C.2 in Appendix C. The critical

fission cross section is found to be 0.20493483.

Perturbation is induced by changing the thermal absorption cross

section uniformly in the form

Ea t = (za)crit(1 - 0.01 t}.

For computational purposes, the rectangular region was divided

into coarse meshes as shown in Fig. 6.1. Then, the bicubic basis

functions as given by Eq. (2.28) were placed on the mesh elements.

The total number of basis functions needed in this calculation is 18.

The neutron fluxes were computed using HERMITE-2D. Table 6.1

compares the neutron flux at points A and B (cf., Fig. 6.1) for various

At. The results shown demonstrate that the order of convergence is

O(At 2). This coincides with the prediction of Theorem 5.1 with m= 1.

Example 6.2. Local Sinusoidal Perturbation (1)

We consider a two-group, two-dimensional problem without delayed

neutrons. The system is a rectangular region which consists of a uni-

form fuel (Fig. 6.2). The nuclear data are given in Table C.2 in

Appendix C and the critical thermal fission cross section for the con-

figuration is found to be 0. 25104786..



Uniform Linear Perturbation:

At ---- AMt 4B(t)

t= 0.1 t= 0.5 t = 0.1 t= 0.5

0.1 0.11357615 X 10 0.30271246 X 101 0.56788075 0.15135623 X 101

0.05 0.11484423 X 10 0.30811922 X 101 0.57422114 0.15405961 X 101

0.01 0.11467662 X 10 0.30987733 X 10 1 0.57338308 0.15493866 X 101

0.005 0.11468028 X 101 0.30993405 X 101 0.57340140 0.15496702 X 101
Order of 2.4 1.9 2.4 2.0
convergence

L

0

L/2

y

0

4 =0

0

>x

L/2

4=0 L = 20 cm

L
dy = 0
dy

Reactor Configuration for Example 6.1

B

A

Fig. 6.1.
L()

Example 6.1Table 6. 1.

d
d
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The system is perturbed locally in R 2 (cf., Fig. 6.2) from the criti-

cal state by changing the thermal cross section sinusoidally in the form

Ea2(t) = (a crit{1+0.2 sin t T = 10-3 sec.

To apply the finite element method, the system is divided into

coarse meshes as shown in Fig. 6.2. Bicubic basis functions, as given

by Eq. (2.30) and Eq. (2.28), are then placed at the boundary points and

internal points, respectively. A total of 18 basis functions are used.

Neutron fluxes are approximated using HERMITE-2D. In Table 6.2,

thermal neutron fluxes at points A and B are compared for various time

steps. We note that the solution converges to the order O(At 2) as pre-

dicted by Theorem 5.1. This example demonstrates that large time steps

can be used with the Hermite method. For example, the relative error

for the flux is less than 5% when At = T/4 and less than 2% when At= T/8.

If the finite difference scheme is used, then sine functions need to be

approximated by a series of step functions, and this requires the use of

many small time steps. However, as discussed in Chapter V, the

Hermite method can treat perturbation analytically and for this reason

the Hermite method allows use of large time steps while retaining high

accuracy.

In Fig. 6.3 (a) - (c), the thermal fluxes constructed by the finite ele-

ment method are plotted .in three-dimensional and contour plots. In

order to interpolate the flux distribution within mesh elements, mesh

increments of Ax = Ay = 0.5 cm and 1.0 cm are used for the three-

dimensional and the contour plots, respectively. In these plots, it is
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demonstrated that the finite element method can approximate the local

perturbation of the flux using very coarse meshes. If the finite differ-

ence scheme is used in this calculation, much smaller mesh elements

will be required for an accurate approximation.

Table 6.2. Local Sinusoidal Perturbation: Example 6.2

(a) Thermal Flux at Point A

At t = T/4 t = T/2 t = 3T/4 t = T

T/4 (2.1%) (3.7%) (3.1%) (4.9%)
0.96849 0.87589 0.86531 1.0188

(1.1%) (0.8%) (1.2%) (1.2%)
T/8 0.95864 0.85150 0.88171 1.0585

T/16 0.94971 0.84559 0.89122 1.0678

T/20 0.94805 0.84462 0.89323 1.0714

Order of 1.83 2.5 1.9 1.9
convergence

Relative errors with
At = T/20.

25 cm

15-
d = 0

10

y

respect to thermal fluxes determined for

< =0

25 cm10 15

x = 0d-y

Reactor Configuration for Example 6.2

R

%'r

Fig. 6. 2.
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Table 6.2 (concluded)

(b) Thermal Flux at Point B

At t = T/4 t = T/2 t = 3T/4 t = T

(7.3%) (5.0%) (3.4%) (3.7%)
T/4 .59227 .50374 .64698 .76635

(0.4%) (0.9%) (2.1%) (1.2%)
T/8 .55401 .52536 .66985 .74763

T/16 .55329 .52973 .68189 .73980

T/20 .55176 .53046 .68423 .73843

Order of 2.4 2.6 2.0 2.2
convergence

Relative errors with respect to thermal fluxes determined for
At = T/20.
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25.0

20.0

15.0

y (cm)

10.0

5.0

0
5.0 10.0 15.0 20.0

x (cm)

Fig. 6.3. Thermal Neutron Fluxes: Example 6.2. (a) t = 0.0

0 25.0



5.0 10.0 15.0 20.0
x (cm)

Fig. 6.3(b) t=T/4
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135

77

25.0

20.0

15.0

ys

10.0

5.0

0

0 5.0 10.0 15.0 20.0 25.0
x (cm)

Fig. 6.3(c) t= 3T/4

9
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Example 6.3. Local Sinusoidal Perturbation (2)

A symmetric perturbation was considered in Example 6.2. In this

example, we consider asymmetric perturbations which are induced by

two sinusoidal variations of cross sections in two subregions. The

reactor consists of a uniform fuel (Fig. 6.4), whose two-group cross

sections are given in Appendix C. There are six delayed groups in

this example. The thermal absorption cross section in subregions R 2

and R3 are assumed to vary from the critical values in the form

(Ea . 1 - 0. 1 sin -- t}, r E R2
crit

2:a2(r, t)=

(Xa2) {1+0.1 sin -t}, r ER 3 '

-3
crit

T =10-3 sec.

Two-group calculations were performed using HERMITE-2D. The

reactor geometry was divided into 16 equal mesh elements as shown in

Fig. 6.4. A total of 82 bicubic functions, defined by Eqs. (2.28) and

(2.30), were then placed on the partition. For the time integration, the

time step size At= T/8 was used. The critical thermal fission cross

section was found to be 0.23766006.

Table 6.3 lists the computed thermal neutron fluxes at space points

A, B and C for the first period of the perturbation. It is to be noted that

the neutron flux after each period is not the same as the initial flux

distribution due to the presence of local neutron diffusion. The thermal

neutron fluxes are interpolated in each mesh element using mesh incre-

ments Ax=Ay = 0.5 cm and are also plotted in Fig. 6.5(a), (b), and (c) at

t=0.0, T/4 and 3T/4, respectively. As in the previous example, the
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figures demonstrate that the finite element method not only yields continu-

ous approximations but also allows the use of coarse meshes in approxi-

mating local variations. The finite difference calculation using the same

number of unknowns as the finite element calculation will require

9X 9= 81 mesh points on the space region. However, by using neutron

fluxes at the 81 mesh points, it will be rather difficult to represent the

locally peaked neutron flux distribution by a smooth surface. In fact, the

flux distribution in Fig. 6.5 required the use of 60X 60 interpolation

points. Generally speaking, the finite difference scheme is expected to

require finer mesh elements compared to the finite element method in

representing the overall flux distribution.

30

C

d_ =0 15 - ~ ~ ~~ ~ 0=0
dx

R B

y

A
00

0 10 15 20 30

x dy

Fig. 6.4. Reactor Configuration for Example 6.3
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Table 6.3. Thermal Neutron Fluxes: Example 6.3

t 4AMt 4B(t) 4C(t)

0.0 1.0000 0.43294 0.43294

T/8 1.0000 0.42492 0.44152

T/4 1.0016 0.40329 0.47167

3T/8 1.0061 0.40691 0.47747

T/2 1.0111 0.42380 0.45635

5T/8 1.0133 0.45048 0.42714

3T/4 1.0150 0.47743 0.40981

7T/8 1.0195 0.48352 0.41223

T 1.0245 0.46295 0.37714



Thermal Neutron Fluxes:
(a) t = 0.0

Example 6.3

CD0

Fig. 6.5.
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$
10



Fig. 6.5(c) t = 3T/4
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Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we have developed the finite element method for the

neutron diffusion problems using piecewise polynomials in space,

energy and time variables. The advantages of using piecewise poly-

nomials are discussed in Chapter I. In addition, this method possesses

the following properties:

(i) The finite element method allows direct approximations to the

diffusion problem and requires no assumption on the sepa-

rability of solutions with respect to independent variables.

(ii) This method yields high-order approximations with the order

of accuracy depending upon the degree of the polynomials used.

(iii) This method treats problems in a continuum and it permits

high accuracy for problems with variables coefficients. The

approximate solution is a continuous function and it is possible

to find function values at any point.

(iv) In view of properties (ii) and (iii), the method allows one to

use coarse meshes or large mesh elements in space, energy

and time variables compared to the finite difference scheme.

The finite element method using low degree polynomials are shown

to lead to various types of conventional numerical methods. However,

the method developed in this thesis generalizes the existing methods in

the sense that it retains high accuracy for problems with variable
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coefficients. Furthermore, the method suggests means for numerical

approximations for higher accuracies. Table 7.1 summarizes the

orders of accuracies of the finite element method when applied to the

neutron diffusion problems in energy, space and time variables. Also,

in the table, the finite element methods are compared with the existing

numerical methods. For example, the finite element method using

piecewise constant functions in energy variable reduces the energy-

dependent diffusion equations to the conventional multigroup equations

(cf., Chaps. III, IV, VI). It is also shown that the 3-point finite differ-

ence formula for the differential operator d 2/dx2 can be obtained by

the finite element method using piecewise linear functions in space

variable (cf., Chap.IV). Furthermore, the Hermite method applied to

the first-order ordinary differential equations gives the Pad6 formulae

for eAt when A is constant.(cf., Chap. V).

The orders of convergence of the finite element methods are checked

in numerical examples in Chapters IV, V and VI. For example, these

are numerically checked for multigroup diffusion problems with piece-

wise constant cross sections in one- and two-dimensional spaces and for

kinetics problems with variable coefficients. Thus far, the method has

been limited to applications in linear problems. We have considered

only regular partitions which are generated by orthogonal coordinate

surfaces. Numerical calculations which are not presented in this thesis

and remain for further study are as follows:

(i) Neutron spectrum calculations using piecewise linear or cubic poly-

nomials.
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Table 7.1

The Finite Element Method Applied to Neutron Diffusion Problems

Hm Energy (E) Space (r) Time (t)

m = 1/2 O(AE ) O(Ar ) O(At )

(const.) Multigroup
method

m = 1 O(AE2) O(Ar2 * O(At2-*

(linear) 3-pt. formula Crank-Nicolson
f d2 2 Pad6 (1, 1)

for d /dx

m = 2 O(AE 4 ) O(Ar 4 ) O(At4)

(cubic) Pads (2, 2)

Remarks Chaps. III, Chaps. IV, VI Chaps. V, VI
IV, VI Numerical Order of conv. for

examples Pad6 formulae
available applies only for

constant coefficients.t No singularity
Numerical examples
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(ii) Few group calculations for multidimensional problems using

piecewise polynomial basis functions in space and energy as

discussed in Example 2.2, Chapter II.

(iii) Neutron diffusion problems with variable cross sections. One

can use basis functions defined in Example 2.3, Chapter II.

The calculation using coarse meshes will be very useful in

studying the fuel depletion in multidimensional reactors.

(iv) Calculations for two- or three-dimensional problems in

spherical or cylindrical geometries.

The finite element methods developed in this thesis can further be

extended to the following problems:

(i) Transport equations:

Q - _V4(r, £) +ZT0(r, £)= f X(r, Q', Q)4(r, £') d' + q(r, Q)

Expand the approximate solution as

I J

4(r £2) = Lu~a u(r) u ()

i=1 j=1

where u.(r) and u.(£() are polynomial basis functions defined in
1 J

Chapter II. The expansion coefficients a.. are then determined

by the Galerkin scheme.

(ii) Coarse mesh calculations which account for the geometric and

energetic fine structures.

(iii) Applications to nonlinear problems.
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(i) Finite element methods which use other types of partitions

such as triangular elements or combinations of these elements.

(ii) Development of efficient numerical techniques for the inversion

of large-order matrices which are obtained by the finite ele-

ment method.

(iii) Investigation of the condition number of the stiffness matrices

for the neutron diffusion problems resulting in the application

of finite element methods.

(iv) High-order approximation schemes which incorporate the

singular functions in numerical processes.
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Appendix A

PROOF OF THEOREMS

A.1 Preliminaries

In the previous chapters, we defined the inner products in the

energy domain S and the space domain Q as

(u, v) =1

(u, v)2 = f

uv dE,

uv dV,

(u, v) f uv dV dE ,

and the corresponding L 2-norms

1

u1 2 = (u,v)2
L2

u L2 = (u, v)2

In addition, the L -norm is defined by

u = max u(x) .
L (£) £

We also denote the vector and matrix norms by a 0l. In particular,

the maximum norm for a vector x= col{x 1 , x 2 ' xN} and a matrix

A ={a } are defined by

= max
1<isN

xil

N

DAD. =max
14isN j=1

a ..
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We shall frequently need the following inequalities [25] in our proofs:

Triangle inequality,

llu+v 1 lull + v ,

Schwarz inequality,

l(u, v) I u iv

A.2 Theorem 2.3

Assume that f(r) e Ct(r . Let s(r) be a multivariate polynomial of

degree 2m-1 satisfying Eq. (2.19). Then, s(r) is uniquely determined

and satisfies

a(f (r) - s(r)) K Ar + . .+ + K Ar ,

r L 1 1 n n

where

q = (q1, q 2' ''n)

p. = min(2m.,t ) ,
J J J

r.= r.. - r. .A r 3 j, i 1 3,1i

Proof. The multivariate Hermite interpolate in the element 7r can be

constructed by repeated applications of univariate Hermite interpo-

lations for each independent variable as shall be demonstrated in the

proof of this theorem. Theorem A states the uniqueness of the uni-

variate interpolations and thus the resulting interpolation in multivari-

ables is also unique.
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The proof of the error estimation is by induction.

(i) Suppose n= 1. Let fI(r 1 ) be the Hermite interpolate to f(r 1 ) in the

space Hm( 1)

d q_

dr q

Then, from Theorem A,

,< K Ar 1 (A.2.1)

L00(7rL 1wl

(ii) Suppose n=n' for arbitrary n'. Let f(r') be the Hermite interpo-

late to fr') in Hm,(7r ,) where r' = (r , 2'. rn,) and m 1=(m, m2' '' n

Assume that

(f(r') - f(r')) 1 1 n Arn'

L0(7r)

(A.2.2)

(iii) Suppose n = n' + 1. Let f(r) be the Hermite interpolate to f(r) in

H n(7rn) where r = (r , r 2, . . . , rn) = (r', rn) and m = (mi, M 2 , . . . ,

We also introduce the univariate Hermite interpolate f(r

in Hm (7rn ) such that
n

; r') to

f (r , ; r') = f (r', r ).
ni ni

f (rn, in+1; r') = f ( r, rn, in+1) 0 < q < m-1 .

Theorem A implies that f(r n; r') satisfies

(f(r) -

n

f(r n; r'))

L00 (7r)

K Ar n n
n

Furthermore, from the assumptions (A.2.2) and Eq. (A.2.3),

mn)

f(r)

(A.2. 3)

(A.2.4)

Mri) - f(r

n I n.

dZ q

dr
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da ~
max (f(r) -7f(

fdr 
q

rn, r

1 1

Since , (f(r)-7(rn; r'))

can be represented by

m-1 e

rn; r')) = I
p=o

r . ' q( f(r)- f(r ; r')) r n.
nL'(r) d_ nnin1

nn n'

is a polynomial of degree 2m n-1 in r

a up(r)
n n

m-1 y

I( K 1Ar

p=O

0 (r)

this

+ a i i (rn
n n

}
2m -p1P

n L u
-n (rn)-uU' (rnnnn]

where the factors Ar are introduced as normalization factors ton

up+ (rn)and uPi (r n) in order that the error bounds on the right-hand side
n n

have correct dimensions. Note that

uP (r ) K r
1n n p n

and so

K Ar p
p n

Thus,

(f-f) Lw

m-1

p=o
m-1

=Op=0z:

1A

2m-p+p-q
Arnnn

K Ar11

' -q n'

n n

+...+K ,Arn

+. .. +K Knrn,
2m-qn
n

(A.2.5)

da , 7g-
dE _r

yr ,n-q ,
+.+K nAr n

up (
in



155

Therefore, applying the triangle inequality and using the inequalities

(A.2.4) and (A.2.5), we obtain

+
L '(r) dr q

(f-f)
L* (w)

y. -q
.+ KnAr n n

n n

We have shown that for n=n'+1 the error bound (A.2.6) holds.

a consequence of the steps (i),

for any n. This completes the proof.

A.3 Theorem 3.1

Assume that the inequality (3.4) holds.

(ii) and (iii), we conclude that (A.2.6) holds

Let O(E) be the solution to

Eq. (3.3) and O(E) E Ct(s). If O(E) is the solution to Eq. (3.7) in the

space Hm(7r(S)), then O(E) satisfies

L O()

where g = min(2m, t), AE =

ent of AE.

Proof. 4 and / satisfy

(T, v) = (Q, v)

(TO, v) = v)

max Ei+1 Eil
i±

and K is a constant independ-

for all v=u (E),

given by

1 < g < G. The difference of the two equations is

(T(4-0), v) = 0.

d (f-f)
dr q

(f f) (r)

s K1r 1
(A.2.6)

Thus, as

< K AE P

(A. 3. 1)
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Let 4 be the Hermite interpolate of 4 in the space of H m(7r())

(cf., Sec. 2.1, Chap. II). Then Eq. (A.3.1) can be represented as

(T(4-) v) =v) (A.3.2)

Theorem 2.1 implies that

L
= K AE . (A.3.3)

Then we can show easily that

(T(4 - 0), u ) TKAf) u )

g

where K = (TK, u )

Let e(E) = O(E) - O(E).

1 < g < G ,

Since 4 - 3 is a polynomial of degree 2 mE -1, we

may represent e(E) as

G
e(E) = ' e u (E).

g=1

Then Eq. (A.3.2) becomes

B e < K ER"

where

B = L - S -F.,

K = col{K ,K 2 ,. .. , KG}'

e = col{e1, e 2 ',''eG*

Other matrices are defined in Eq. (3.8) in Chapter III.

e < B~ "

and thus

Then,
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alefnl BflB1 0, 0KOAO E

UKOO is a constant and thus it remains to prove that n3B U1 is

bounded. Descloux [54] considered bounds of the stiffness matrix and

its inverse for a wide class of problems in the finite element methods.

We appeal to the work of Descloux to assert that there is a constant y

such that

flB 1 0 0 .

Hence,

max Ie(E)j < KOeOc,
S

K KKETE. (A.3.4)

Therefore,

and (A.3.4),

110

applying the triangle inequality and the inequalities (A. 3.3)

we obtain

L L L

AE 1 L

This completes the proof.

A.4 Theorem 4.1

Assume that the inequality (4.3a) holds. Let 4(r, E) be the solution

of Eq. (4.2) and C (7r X7r) where t = (tt) and m = (m m). if
p rX7r)weet=(r E r E

O(r, E) is the solution of Eq. (4.5) in the space H m(7r X 7r.), then (r, E)

satisfies

4 0 - K 1 r + K 2 2E

1 0 - ' 1 1 ; 0
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whereM r = min( 2 mr, tr)' ME = min(2mE, tE), = max Ar, AE = max AE

and K1 and K 2 are constants independent of Ar and AE, respectively.

Proof. 4 and q satisfy

a(0, v) = (Q, v) ,

a (0, v) =Q, v),

for all v = u.(r, D) u (E),
o -n g

two equations is given by

a(0-0, v) = 0.

1 < i < N, 1 < g < G. The difference of the

(A.4. 1)

Let be a Hermite-interpolate of 4 in the space Hm (Xr X7r ) (cf., Sec. 2.2,

Chap. II). Then Eq. (A.4.1) can be written as

a(q-4,v) = a(0-0, v) (A.4.2)

Also, Theorem 2.4 implies that

SAr

L

We now establish that

+ME
+±K2AE

a(4- 0, v) < K r + K2 A E (A.4.3)

for all v = u (E) u.(r, D), 1 < g < G, 1 < i < N.

Strang and Fix [38] have shown that the interpolate f(r) of f(r) in the

smooth Hermite space of degree 2mr satisfies

2m

(_V (f (r) - f (r)), _V u K KA r (A.4.4)

where {u.(r)} is a basis of the Hermite space. In the space Hm(7r(o)),

however, the above relation holds locally in each mesh element only
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if f(r) E Ct (7r). We can then show that the inequality (A.4.4) holds in the
p

entire region by a procedure similar to those in the proofs of Theorems

2.1 and 2.4. Furthermore, when 0(r, E) is dependent on both r and E,

it is conjectured from the result of Strang and Fix that

(V(4- ), Vv) < K'A r + K''EE

for all v = u (E) u.(r, D), 1 < g < G, 1 < i < N. We now show that

(4-, v) 6 (K'Ar +K''AE ,v)

K' Ar r +K AE E

( r, E'I-E) [4r, E') - -O(r, E ']dE'1, v)

s K ( dE', v

K4K Ar z-K2 E PE ) dE ', VSK 4K 1Ar +K 235 d'

1 K' r +KF AE1 2

where u.(r), u (E) are normalized such that J u. dV = f u dE = 1.
1 X gi

Combining the above results, we obtain the inequality (A.4.3) which was

to be established. Let e(r, E) = 4(r, E).- 0(r, E). Since 4 - 0 is a polynomial of

degree 2m 1 -and 2mE-1 in r and E, respectively, e(r, E) can be

represented by

G N
e(r, E) = Ie igu (E) u.(r, D).

g=1 i=1

Then, it can be shown easily that Eq. (A.4.3) becomes

- r K A EBe <K Ir K2A
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where

1
B= L -S -- F,

e = col{e

K = col{K , Kj 1 2 ,. . . . Kj 2 1 ,Kj 2 2 , . .. KjGN} ,
j=1, 2.

K. ., 1 - g < G, 1 c i < N are constants. Other matrices are defined

in Section 4.2.2, Chapter IV.

esB- Kzr- - - t + B~ K 2 E

and U-2  1 are 0 K at

U K, 0.0 and 0 K 2000 are constant.

B 0K20 'E

We claim that there exists a constant

y such that

UB i p f i S '.

As in proofs in Sections (A.3) and (A.6), we appeal to the work of

Descloux [54] to assert the above statement. Then,

~- max I e(r,E) < K eU

, K1Zrr + K2 AE .E (A.4.5)

Finally, applying the triangle inequality and using the inequalities

(A.4.3) and (A.4.5), we obtain

L
, Kz 1r9r + K2AE E

This completes the proof.

Then,

so that

11 e, e12' ' ' ' ' ,e21' e22' ' ' ' GNT '
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A.5 Theorem 5.1

Let O(t) be the solution to Eq. (5.1) where A(t) is Lipschitz

continuous, i.e., there exists a positive constant a such that

0 A(t) (f_(t) - g(t)) a o- a f_(t) -g(t) , .0

Let 0(t) be the solution of Eq. (5.6) in the space H (7r ).

there exists a constant T such that

m=1

i+1 A +1 oo0

p=0

Assume that

if I ti+1 -t <r for 1 i ,Nt-1.

then satisfies

If C- C (7rt) and At = max It+ 1-tI < T,
1,i< t 1

max [ (< wt) - ())
[0,T] dt

< K At ~

where y = min(2m, t) and K is a constant independent of At.

Proof. Let 0(t) be the Hermite interpolate of _(t) of degree 2m-1 in

the interval [ti+ 1 , t ] (cf., Sec. 2.1, Chap. II). Then Theorem A implies

that

max
[ti+ 1 , t }

(A.5. 1)

where At = ti+1 -tI and K is a constant independent of At .

Note that O(t) and 0(t) satisfy

i+1 i f+1 A(t) _(t) dt
t.

1

t i+1

!i+1 - Oi = J A(t) (t) dt
t.

[] (f~t) - (t)) fl 0 At0
dt
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The difference of the two equations can be expressed by

t i+1

i+4+1 Oi~- i + f (A.5.2)

Let e (t) = 0(t) - 0(t). Since e(t) is a vector whose elements consist of

polynomials of degree 2m-1, e (t) may be expanded in terms of the

element functions u. (t) such that
1

m-1

ei(t) = e +1u(t)+e +1 u .

By applying the Hermite method developed in Chapter V, Eq. (A.5.2)

becomes

Ci+1 ei+1 =C .+
ti+1

t

A(q -4) dt (A.5.3)

where

e. = e i(t ) ,

i+1 e-i(ti+1 '

F m-1
C i I -

I p i+1 i+1

r m-1
Ci= I+ Ai A 

p=0

Other matrices are defined in Section 5.1, Chapter V. Hence,

Uei+1 0 a Cj 1 Cji ei, + H C+10oo +f 1 []A( -) 0 0 dt
t.

SC +1C 0 0 eg. + a C-+1 0oo KAt". (A. 5.4)

{A(4- ) +A(0-0)} dt .
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Define

m-1

p+)

p=0

m-1
P I A (p-) Alp

i+1 i+1 i+1'
p=o

Alp and AIp are independent of At, and f uP±(t) dt =O(At?+1
i i+1

(cf., Sec. 2.1, Chap. II) and thus

m-1

P. K. Atp+11 1, p 1 '
p=0

m-1

i+ I Ki1 pAtP+1

p=0

where K p and Ki+1, p are constant matrices independent of At .

From the assumption, a Pi+10oo < 1 for ti+1 - t j < -r and thus we

can express

I - P i+1]- 1= [I+Pi+ 1+1+. .. ]=I + O(At),

- 1 +p + 2 ±
I - P i+1]- [ I+P ]l = [ I+Pi+1+p +1 +. .. ][ I+P ]

= I + O(At.).

Hence, the inequality (A.5.4) becomes

O ei10o { 1 {+O(At )} a e + KAt.

Since = e, 0 for 0 p < m-1, it can be shown easily that

0 e,+1000 K At/ , i > 1.
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Furthermore, since eP = Al)e
-1 1 -1'

Oi+10o 4 p at , i > 1.

Then,

E e.(t) 0
dt

m-1

p=o

m-1

p=o

m-1

p=o

0 e
1 dt q

u (t)
1

+ u4 +1 0 00 ud + (t)

dt1

(A.5.5)

K' (At )(Atp-q)p i i

K' Atg+p-q
p 1

where

applying the

u (t) =

triangle

u +1(t) are used. Therefore,

inequality and using the inequalities (A.4. 1) and

(A.5.5), we obtain

max aq (4(t)- 4(t)fl_ < max [
[0,T] dt [0,T] d

max E
[0,T] dt

4 [)o + max 0
[0,T] dtq

~

,< K At" g .

This completes the proof.

A.6 Theorem 6.1

Assume that the inequality (6.2) holds.

max
1<i<N t-1

d q
El e (t)fl,

-

Let 4(r, E, t) be the solution

of Eq. (6.3) and 4(r, E, t) C C (ir Xr ) where t=(trtE).
Phr t= (t

solution to the semidiscrete equation (6.6) in the space H m(wrX 7r ), then

max
[t, ti+1]

N

3,

If 4(r, E, t) is the
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, K1Ar + K2AE

where /r = min(2mr, tr)' ME = min( 2 mE, tE), Ar = max Ar, and AE =
7r Q2

max AE and K and K2 are positive constants independent of Ar and

-E, respectively.

Proof. 4 and 4 satisfy

v) + a(4, v) (Q,v),

r t, V) + a(4,v) = (Q, v),

for all v = u (r, D) u (E), 1 < i < N, 1 g G. The difference of the

two equations is given by

-), V) + a(4 - 4, v) = 0

Let be the Hermite-interpolate of 4 in H ( Xr ).

implie s that

-K1Ar
L

Then, Theorem 2.4

+ K2AEE (A.6.2)

Then, we can write

= ( a W

In the proof of Theorem 4.1, it was established that

a( - 0, v) < K1 2 mr + K2 AE

By a procedure similar to that in the above proof, we also have

(m -) K'ArMr + K''KEE
min

(A.6.1)

- (4- ) v + a(4 - ,' v) - 0), V) + a(4 - -, v).

4( ,E, t) - (rE, t) 1
L (7r QX 7r )



166

Hence,

( 1a - 0), V) + a(2 - , V) < K 1 r + K2 AE (A.6. 3)

Define e(r, E, t) = - q. Since 0(t) - 3(t) is a polynomial of degree 2mr -1

and 2 mE-1 in r and E, respectively, e(t) can be represented by

e(r,E,t) =
G

;- ;=
g= 1

N
e ig(t)

i= 1
vi (r,E) .

Then the inequality (A.6.3) becomes

V a e +A e < K Arat-- -1

where

A = L - S - (1-0) F

e = colJe11, 12 ' ' ' e21' e22 ' '.'

K.= col{K Kj2 ... ,K Kj KjGN'77 jll j12j21l'j22GN

K.. = f fjig 0
K.v. dV dE

J ig
for j = 1, 2.

Other matrices are defined by Eq. (6.11). Solving the differential

inequality, we obtain

t V A ds je

V- 1A dr rV- _ + K 2AE Eds . (A.6.4)

We claim that there exists constants y 12 and 73 such that

and

As in proofs in Sections A.3 and A.4, we appeal to the work by Descloux

[54] to assert the above statement. Consequently,

+ / AE

,eGN '

t
exp -

t
f

5

y, < 0 V- L < Y2

e t) < e xp -
0

0 A 0, < -Y3'



0 e(t)O K 0 e 00, + K r

Since 0e00 = O r+AE E)

Oe(t)O < K'E r + K 5AEE1 2

Hence,

L- Q X = max I e(t)I < K _(t)0,

+ K 2 AE

Finally, applying the triangle inequality and using the inequalities (A.6.2)

and (A.6.5), we obtain

14 - 4O C'2X ) Pr .- EAKAr + K2E

This completes the proof.
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KiAr r1 + K'AE . (A.6.5)
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Appendix B

INNER PRODUCTS FOR ELEMENT FUNCTIONS

Nonvanishing inner products for the univariate element functions

{u±(s); 0 < p < m-1} for m= 1, 2 (cf., Sec. 2.1,

below: Let h = x - x _1 and h+= x i+1 - xi'

(i) m=1

Chap. II) are listed

u , uh_+\uiu i) 6

u?+, u?+) 3

(-u9 , u+)

u d0+ d u0+
dx ui 'dx i )

( 0u .7 u i
h_

3Y

u0+ 0- h+

-1

_ 1

h+

( ud 0- d 0- =

(d 0+ d 0-
dx i ' Ti )

(ii) m= 2

0- 0+\ 9
u( ui_, = h

1 'i-1/ 70-

0- 0- 13h

(0+ 0+ 13 h
i ' i ) 35 -+

u+, u = h+u +, ui+1) = h+

(1- 0+ 13 h2
u ~, u 1 ) 420 h

u ~, u1 h 2(u 3 u. i- -10h

u 0- 1+ 13 2
ui .9u -1 4 20 h_

ui u i\ 0 i )
0+ 1

u. ,

u +,. u i+1

u. , u +)

- h 2
210 -

11 h2
210 +

- h
420 +

1- 1 3
140 h

u , u1) = h

_ 1
h+



(1 ±0+\ 11 h2
i 'i ) 210 +

(u, u0- 1 = h 2

d 0- d u _6 1
dx ui 'dx Ui-1i 5 h_

(d 0+ d 0+ 6 1
(dx ui ,dx ui 5h4

d 0+ d 0- 6 1
dx ui , -jxui+1 5 h

d 1- d 0- 1
dUx ui , axu - - 1

fd 1+ d 0+ 1
\dx ui ,dx u =1T0

u , ui+ =- -1

(dx i a- Ui~) +

1+ _ 1 h3
\ i ui )10 5 h+

( 1+ u% 1/ 1 +

i+1 -40 +

d u0- d1+ 1dx i 'Tx i- 1 10

U u? , x u -0

(d 0+ d 1+ 1
d , x ui 10

d 0+ d 1- 1
u , dx ui+1 10

d 1- d 1- 2

u ,- u 1 - 2 h_

d 1+ d 1+ 2
Iu , dx- ui -5 h+

d 1+ d 1- h
(x ui Udx ui) = 30 +

The inner products for multivariate element functions can be de-

termined using the univariate inner products. Consider an n-

dimensional space and let multivariate element functions be defined by

v.. . (r) = u (r ) u (r 2 ). . .u (rn).
112 n 1 2 n

Then, the multivariate inner products can be represented by
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n
(v., vi,) I

j=1

(_Vv; Vv ,)=

(u., u,),
J J

n

j=1
(v., v.,)

d( dr. "

(u.,
J

d
dr. "il

ut,

J

)

For example, for n= 2, the bivariate inner products are given by

(vi, v ,) = (u ,.1 , ) (u , ui ,

(Vv, Vv ,) = d ,A 1
1 1

+ U ,u

d
dr u,1 1)

i, (dr 2 u. 2 '

170

(u u ,U 212 12 )
d

dr
2
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Appendix C

NUCLEAR DATA

Table C.1. Delayed Neutron Constants

Group Pi Xi

1 0.285 X 10-3 0.127 X 10-1

2 0.15975 X 10 2  0.317 X 10-1

3 0.141 X 10-2 0.115

4 0.30525 X 10- 2  0.311

5 0.96 X 10-3 0.14 X 10T

6 0.195 X 10-3 0.387 X 10

0 = gi. = 0.0075

Table C.2. Multigroup Nuclear Constants

(a) Thermal Group

Fuel Reflector

D2 0.4 0.15

ET 0.2 0.02

VEf (0.218) 0.0

= 2.2A105 cm/sec.

(b) Fast Group

Fuel Reflector

D1  1.5 1.2

IT 0.0623 0.101

E1-2 0.06 0.1

v 0.0 0.0
L

1.OX10 ccm/sec.
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Appendix D

COMPUTER PROGRAMS

The computer program HERMITE-OD for the numerical solution of

the point kinetics equations is described in Section D.1. The two-

dimensional reactor kinetics program HERMITE-2D is described in

Section D.2. These programs are written in FORTRAN IV for the

IBM 360/65 computer system. The source listings of the programs are

presented in Appendix E.

D.1 The Point Kinetics Program HERMITE-0D

In this section, the general features of the program HERMITE-OD

are discussed. Section D.1.1 discusses the preparation of input data

cards and Section D.1.2 presents a list of sample input data cards.

HERMITE-0D is written for the purpose of testing piecewise poly-

nomial methods for the point kinetics equations. The general numerical

methods are developed in Chapter V. The present program permits

approximations using piecewise polynomials of degree up to 3. The

reactivity change is limited to ramp variation in time.

HERMITE-OD provides four methods for the solution of the point

kinetics equations:

(i) Crank-Nicolson scheme,

{I - At A } At } Eq. (5.6b)
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(ii) Hermite method, m=1,

At At 2  At At 2

II- 2 A - 3 AA} i+1 ={I+ -2 Ai+1 3 A }-I,

(iii) Hermite method, m=2,

At 7 - 2A +[A 2 + At 3+20A

Eq. (5.1Ob)

A]Ai+1±i+1

AtA -7-At 2 A+[ At 2 A AtA2 i+1 2 0 A + 2 Ai+ 1 20 -A]Ai} ,

Eq. (5.10c)

(iv) Hermite method applied to the time-integrated point kinetics

equation, m=1,

Bi+1 i+1 = BA + (e
j=1

e 1+1 )S

where Bi+1, B and S are defined in Eq. (5.14).

In the program, the solutions of the methods (i),

Eq. (5.14)

(ii) and (iii) are

determined by using the Jacobi iteration scheme. However, the unknown

in the method (iv) is a scalar and is determined simply by dividing the

right-hand side by the coefficient of the unknown.

D.1.1 Input Preparation for HERMITE-0D

Card 1. FORMAT (20A4)

Alphanumeric title with 1 in column 1 for page control.

Card 2 FORMAT (1615)

This card provides the general information which specifies the

problem. IC1> 1 allows calculations of the same problem with different

time steps.



174

IC1 = Number of different At's (see Card 6).

IC2 = Maximum number of iterations: Methods (i), (ii) and

(iii) only.

IC3 = Number of delayed precursor groups.

IC4 = Number of time zones < 2.

IC5 = Numerical method options:

= 0 Method (i),

= 1 Method (ii), (cf., Sec. D.1)

= 2 Method (iii),

= 3 Method (iv).

Card 3 FORMAT (8D10.5)

p0 = Reactivity p(t) in dollars at t = 0.

e = Convergence criterion.

PA = Linear coefficient of p(t) in dollars in the first time zone.

T 1= Time at the end of the first time zone.

pa,2 = Linear coefficient of p(t) in dollars in the second time zone.

T 2 = Time at the end of the second time zone.

Card 4 FORMAT (8D10.5)

A = Generation time.

(X(I),I=1,J) = Decay constant of group I.

Card 5 FORMAT (8D10.5)

(W(I), I=1, J) = Fraction of delayed neutrons of group I.

Card 6 FORMAT (8D10.5)

AT = Time step size.

Repeat Card 6 as many as IC1 times for different At's.
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For another problem, a set of Cards 1 to 6 may be placed immedi-

ately after Card 6.

D.1.2 Input for Sample Problem

On the next page, a list of input cards is presented for a calculation

using the cubic Hermite method (m=2) and At=0.5 sec in Example 5.1,

Chapter V. For computation using other methods, it is necessary to

change IC5 in Card 2 as directed in the input preparation. As the com-

puter output, the neutron density and the precursor densities will be

printed at every time step.

D.2 The Two-Dimensional Reactor Kinetics Program HERMITE-2D

The general features of the two-dimensional kinetics program

HERMITE-2D are described in Section D.2.1. Section D.2.2 discusses

the preparation of input data cards and Section D.2.3 presents a list of

sample input data cards.

D.2.1 Description of HERMITE-2D

The program HERMITE-2D is written for the purpose of testing the

finite element method for two-dimensional reactor kinetics problems.

The program solves the time-dependent neutron diffusion equation,

Eq. (6.1), using bicubic polynomial basis functions in space and piecewise

linear functions in time. The selection of polynomial basis functions is

discussed in Chapter II and the finite element methods in space and time

domains are developed in Chapters IV, V and VI. The program also per-

mits steady state calculations involving the determination of eigenvalues

and the search for critical fission cross sections.



1 SAMPLE INPUT FOR FXAMPLE 5.1,CHAP.V --HERMITE-OD
1 50 6 1
a.000 1.00- 9

5.OD-4 0.127D-1
0.2850-30.15975D-2

5.00-1

0.500 2.000
0.3170-1 0.1150 0
0.141D-20.30525D-2

0.3110 0
0.96D-3

0.14D 1 0.387D 1
0. 195D-3

INPT0001

INPTOOO?
INPT0003
INPT0004
INPT0005
INPT0006

PAGE 176
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HERMITE-2D is not intended to be general and its applications are

rather limited to specific problems. Limitations to the present program

are:

(i) Rectangular geometry with the quarter core symmetry;

rectangular partition.

(ii) Two-group computations only.

(iii) Regionwise constant cross sections; fissions only at thermal group

with X1 = 1 .0; linear or sinusoidal time variations in thermal

absorption cross sections.

Numerical results for steady state problems presented in Chapter IV

are obtained by using a modified version of HERMITE-2D which is mainly

written for eigenvalue calculations in one- and two-group problems. The

modified program allows the use of a larger number of mesh points com-

pared to HERMITE-2D.

The reactor configurations [0, a] X [0, b] and the time interval [0, T]

are partitioned such that

0 =x = x2 < ' ' N a,
x

0 =yl -y2 ' ' ' YN =b,
y

0 =t t2 . . . t T .t 1  t 2 <* N t.

It is assumed that material properties in each mesh element are

continuous.

Bicubic basis functions are imposed on the spatial partition (c.f.,

Example 2.1 - 2.3, Chap. II). In order to facilitate the representation of

the bicubic basis functions in linear indices, the basis functions are

arranged alphabetically as follows (see figures):

At regular points,



Expansion
Coefficient

do
dx

2
d #

dxdy

do$
dy

a c

b d

d (2.28a)

and at singular points,

Expansion
Coefficient

d40

dx +

2
d 24
dxdy

dy _

dy +

The group dependent normalization factors 0 for the bicubic functions
g

are assumed to be equal to the average of diffusion constant over the

entire material regions. Expansion coefficients of the bicubic basis

functions correspond to function values and their derivatives at mesh

points and these are indicated in the right columns.

Figure D.1 illustrates how the cubic basis functions are linearly

indexed in the program. The region is partitioned into four elements

Type

a

b

c

178

Equation

(2.2 8b)

(2.28d)

(2.28c)

Type

A

B

C

D

E

F

Equation

(2.3 Ob)

(2.30c)

(2.3 Of)

(2.30d)

(2.30e)

(2.30a)
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=0

P 3  P6 P 2
c b c b

15 16 17 18

REFLECTOR

P
7 9

A6 12 13
do - 0 P 7 d B F a P 5  4=0dx C Ec C1 b

5 9 D 11 1410

CORE

1 2 3 4

4 d a d a P
4 

1

>x . o = 0
dy

Fig. D.1. Linear Representation of Bicubic Basis Functions
on a Rectangular Partition

and the point Pg is a singular point. It can be shown easily that the

bicubic basis functions at boundary points, which satisfy the quarter

core symmetry boundary conditions, consist of the regular basis

functions whose regions of definition in the above convention lie

within the reactor geometry. For example, basis functions at

corner points PV, P 2 " 3 and P consist of functions of types a b c

and d, respectively. Basis functions at boundary points P 5 " 6 7

and P 8 consist of sets of functions (a, b), (b, c), (c, d) and (a, d),

respectively. The singular point P 9 possesses functions of types A

to F. If P is a regular point, then it contains functions of types a to d.
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The bicubic functions are numbered in a linear fashion sweeping in the

x-direction and at each mesh point basis functions are ordered alphabeti-

cally: x sweep begins at P 4 and moves up to the increasing y-direction.

The linear indices of basis functions are shown in Fig. D.1. In this

example, the total number of basis functions is 18. If P 9 is a regular

point, then it becomes 16.

N N
Ltvn{uk (t)}k be the linearly indexed basis functions,

bicubic in r and linear in t, respectively. Then the approximate solution

for the g-th group and tk t tk+1 is represented by

N
0(r, t) = { agiku (t) +a g u (t)}v(r) .giuk gi.,k+luk±1

Applying the Galerkin scheme to the time-dependent neutron diffusion

equation, Eq. (6.1), leads to a system of linear equations, Eq. (6.14), for

the expansion coefficients.

In HERMITE-2D, the elements of the stiffness matrices in Eq. (6.14)

are determined by using inner products of bicubic functions as defined in

Appendix B. The resulting matrix equation is then solved by the source

iterative scheme incorporated with the Cholesky procedure which is dis-

cussed in Section 4.3, Chapter IV. The equation for the (K+l)th iterative

solution is set in the following form:
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Vg + Lgk +g,k+1 -,k+1

G At

= , V 96 ,9 + k2 [-6 9 L gk+S 9f+ (1 -O)F ]9= ~1 4 (g gg± 2[ gg'Lgk Sgg'+ (lI gg']
g'r=1

J
+ Z akjxjojFdgg'+gg' gkJ 'k (D.1)

j=1

G K
+ At [ +(10) ,+ . .FaK

+±2 %_ gg Sgg r±(1 3 )Fgg] + I kj XJ3 j Fdgg'j -g', k+1
g j=1

-X t -X t
+ [e e k 3 kg

j=1

where

agk = col{ aglk, ag2k,. .. ,agNk}.

Matrices in the above equation are defined in Eq. (6.14). The coefficient

K+1
matrix of the vector a k+1 is symmetric and positive definite and thus

the Cholesky scheme can be used in inverting the matrix.

The matrices defined in Eq. (D.1) have band structures whose half

width is given by

Half-band width = 4NX + 2NRX + 5

where NX is the number of x mesh points and NRX is the number of

x regions. In the program, only the band part of the coefficient matrices

is stored in order to reduce the computer storage requirements. Further-

more, the variable dimensioning features of FORTRAN IV are used for

coefficient matrices and the matrices are stored in a vector called

A(NDIM) with a length NDIM. The length of the vector A can be estimated

from the formula,
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NDIM = N{4G+J+NWD(1+4G)} + NT

where N = number of basis functions in each group, G = number of groups,

J = number of precursor groups, NT = number of time steps and NWD =

total band width which is equal to 2(half-band width) + 1.

Figure D.2 describes iteration procedures for the steady state cal-

culation in HERMITE-2D. The general numerical methods are discussed

in Section 4.3, Chapter IV. In Box 1, the initial coefficient vector is

read in or generated in the program as simple hill-shaped functions.

The (J+l)th iterate for the coefficient vector is determined by solving

Eq. (4.14) in Box 2. The eigenvalue is computed after every INNMAX

iteration according to equations in Box 3. If IC4 # 2 and the eigenvalue

satisfies the condition in Box 4, the computation of eigenvalue is com-

pleted. However, if IC4 = 2, the eigenvalue is required to be equal to

1.0 with some tolerance as indicated in Box 5. In this case, the fission

cross section is adjusted according to the equation in Box 6 and compu-

tations of the eigenvalue are repeated until the condition in Box 5 is

satisfied. The final cross section corresponds to the critical fission

cross section.

The general procedures for the kinetics calculation in HERMITE-2D

are illustrated in Fig. D.3. In Box 1, the initial flux is either read in or

computed in the steady state part of the program. The new time-

dependent coefficient matrices for the time step k+1 are defined in Box 2.

Then the coefficient vector at the step k+1 is computed from Eq. (D.1) and

extrapolated as shown in Box 3. The convergence of the coefficient vector

is then checked in Boxes 4 and 5. If they are not satisfied, the process

returns to Box 3 and the same routine is repeated. If the solution vector
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is converged satisfying the conditions in Boxes 4 and 5, the computation

in the time step k+1 is completed. The process then returns to Box 2

for the next time step. These stepwise computations are continued until

the maximum time limit is reached. The program also provides for run-

ning multiple jobs by specifying ISTOP # 0.
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START

1

READ OR GENERATE

INITIAL VECTOR a

J+1 - J

IS J A MULTIPLE
INN MAX?

/

OF No

3 4,

(a*J+1 a
-g ~g/

X-1J+1 9

a*J+1 a*J+1
g

4

X-1J+1 _ -1J
is < ey?

1J+1

)

No

VE f

x yf

Logic for Steady State Calculation

2

COMPUTE aJ+ 1 BY EQ. (4.14)
- *+1J+1

aJ+1 a + - a
-g -g 3\ x -g)

\(

(

Fig. D. 2.

STOP
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START

READ OR COMPUTE
INITIAL VECTOR a 1

2

GENERATE COEF. MATRICES
FOR STEP k+1

4

3

COMPUTE a +1  FROM EQ. (D.1)-g, k±1

J+1 J +1
-g,k+1 g,k+1 +8(\ ag,k+1 -agk+

4

No

Fig. D.3. Logic for Time-Dependent Calculation
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D.2.2 Input Preparation for HERMITE-2D

Card 1 FORMAT (20A4)

Alphanumeric title with 1 in column 1 for page control.

Card 2 FORMAT (1615)

NG = Number of energy groups = 2.

NX = Number of x mesh points.

NY = Number of y mesh points.

NRX = Number of x regions.

NRY = Number of y regions.

NZ = Number of time zones < 2.

NPREC = Number of delayed neutron groups.

(LF(1, JR), JR=1, NRX) = Mesh point number on the right

region boundary; mesh point number on the left

boundary of the first region is 1.

(LF(2, KR), KR=1, NRY) = Mesh point number on the top

region boundary; mesh point number on the bottom

boundary of the first region is 1.

Card 3 FORMAT(16I5)

This card contains control variables which specifies the problem.

IC1 = Type of perturbation in thermal absorption cross section:

= 0 ramp,

= 1 sine function.

IC2 = Frequency of flux print-outs: fluxes are printed every

IC2 time steps.

IC3 = Maximum number of outer iterations.
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IC4 = A variable which controls steady state calculation:

=0 no; initial fluxes are read in,

= 1 eigenvalue calculation,

= 2 search for critical thermal fission cross sections or

calculation of initial equilibrium fluxes.

IC5 = A variable which controls the kinetics calculation:

=0 no,

=1 yes.

IC6 = Maximum number of inner iterations.

IC7 = Number of iterations per inner iteration.

IC8 = A variable which controls initial fluxes:

= 0 generate,

# 0 read in.

IC9 = A variable which controls the termination of computations:

= 0 last problem,

# 0 next problem to follow.

IC10 = A variable which controls flux punch in every IC2 time

step including the initial flux:

=0 no,

=1 yes.

Card 4 FORMAT (D10.4)

EPS1 = Convergence criterion for the eigenvalue:

1J+1 -1J
l < EPS1.

-1J+1

EPS2 = Convergence criterion for the eigenvalue:

X - 1.01 < EPS2.
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EPS3 = Extrapolation parameter for the eigenvector:

aJ+1 = a + EPS3 (a -a J

EPS4 = Not used.

EPS5 = Frequency of the sine function (see Card 7).

EPS6 = Convergence criterion for the flux vector in the kinetics

J-1 Ja. .a.

calculation: max 1 - (J + < EPS6.
a aJ

1 1

EPS7 = Convergence criterion for the flux vector in the kinetics
aj

calculation: max 1 - + < EPS7.
i a.

EPS8 = Extrapolation parameter for the flux vector in the

kinetics calculation: ak+ = a k+1 +EPS8* a K+1 -ak+1

Card 5 FORMAT (8D10.4)

(H(1, JR), JR=l, NRX) = mesh size in the JR-th x region.

(H(2, KR), KR=l, NRY) = mesh size in the KR-th y region.

Card 6 FORMAT (1615)

NMAT = Number of different materials.

NDATA = Number of material specification cards (Card 8).

Card 7 FORMAT (5D10.4) .

Card 7 provides two-group cross sections for different

materials. A group of Card 7 is read in the following order:

DO I=1, NG,

DO M=1, NMAT.

D(I, M) = Diffusion coefficient.

ZT(I, M) = Total removal cross section.
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r(I, M) = Cross section for neutron transfer;

= s12=1

= VEf
2

if I = 2.

I, M) = Coefficient of the ramp or sine function in thermal

absorption cross section in time zone 1: I= 2 only.

I, M) = Coefficient of the ramp or sine function in thermal

absorption cross section in time zone 2: I= 2 only.

The time-dependent thermal absorption cross sections have

the form Za2(t) = a2(0)+6zf(t) where f(t) = t or sin(EPS5.t).

Card 8 FORMAT (1615)

This card specifies material types in each material region of a

reactor.

NXL = x region number on the left boundary.

NXR = x region number on the right boundary.

NYB = y region number on the bottom boundary.

NYT = y region number on the top boundary.

NM = Material type < NMAT.

Repeat Card 8 NDATA times.

Card 9 FORMAT (8D10.4)

At = time step size.

(TZ(IZ), IZ=1, NZ) = time at the end of time zone IZ.

Card 10 FORMAT (8D10.4)

(VEL(I),I=1,NG) = Neutron speed of group I.

Card 11 FORMAT (8D10.4)

(A(I),I=1, NPREC) = Decay constant of I-th precursor group.

6Z 1(

6Z 2(



FORMAT (8D10.4)

(jP(I), I=1, NPREC) = Fraction of delayed neutrons of group I.

FORMAT (5D16.8)

If IC8 # 0, the initial flux coefficient vector is read in the following

order:

DO I=1, NG

(U(I, J), J=1, N) = J-th flux expansion coefficient of group I.

If IC9 # 0, a set of Cards 1 to 13 is to be placed immediately after

Card 13.

D.2.3 Input for Sample Problem

In the following page, a list of input cards is presented for a calcu-

lation using At= T/4 in Example 6.2, Chapter VI. The initial flux coef-

ficient vector, which was computed in a steady state calculation in

HERMITE-2D, is also includes as part of the input data. As the com-

puter output, the neutron flux vector will be printed and produced in the

form of punched cards at every time step.

Card 12

Card 13
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I SAMPLE INPU
2 4
1 1
1. 00-7
1.00 1
2 ?

I CD

0.4D0
0 400

1 3
2 2

T FOR EXAMPLE 6.2,CtAP.VI -- HERI[TE-20
4 3 3 1 2 3 4
0 0 l 20 1 0 1
1.00-7
5.000

0.062300
0.0623 DO

0.2?000
0.2000

1 3
2

1. 2.;
0.000

0.000
0.3385q7130 01

-0.212866P4( D )0
0.464266310-02

-0.139061510 00
-0.172159460 00
-0.73471S62D-01
-0.101162000 00
0.116945270 01

-0.17215q46f) 00
0.100000000 01

-0.628672900-01
0.137114660-02

-0.41 0699030-01
-0.50 8449260-01
-0.21698933D-01
-0.29 P768C5D-01
0.34538176D 00

-0.50844926D-01

I. 90C
1.0D 1

O.C60 c
0.C60 0

.25104796

. 25 1047 
1

2 4

1.00-6
1.00 1

0.000
0.C00 c
0. 000

0.04D0

1 . 00-6

0.000
O .C)Dk)
'-~

C * (JO:)

2 2
00-3
20 5

-0.12 5 376-99 CO
-0.125376590 CO
-0.10163900 00

0.637243590-C2?
0.788311621D-C2
0.637243581-C2

-0.10105384 C0
-0.125086370 00

0. 109165 3 1!1-C1

-0.*370282500-Cl
-0.37002825010- 01,

-0.30015?P 7D-Cl
0. 10 A201120-02
0.232ql 934D-C?
0. 198201120-02

-0.298448600-01
-0.369425370-01
0.31945134P-C2

0.?73'90363Pl Cl
0.27390'63: 01

-0.101014040 00
-0.738011430-01
-0.17204700 C
-0.13925%910 00

0.874231230-02
0.108165 310-01

-0.125C86370 U00
0.8 893666) 00
0.A08,936660.) 00

-0.298333 120D-01
- C .2 17 q 61 510- C
-C . 50811 8 600-01
-0.411 ?P497)-01

0.25919216D-02
0.31945 1.340-02

-C. 369425370-01

-0.
-0.

0.

-0.
0.

-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.

172047500 CO
101630900 00
221531050 01
73471962D-01
198998190 l
13906151D 00
101162000 00
21?866840 00
133828250-01
508118600-01
300152870-01
65426147n CO
216989330-01
58771374C 00
41 06P903-01
2'8768C5D-01
628672900-01
39524131D-02

0.198991
0.1010140
C.1392599
0.1609581
C.7380114
0.1609581
0.1010538
0.

5

788316210-02

0.58771374D 00
-0.29833120D-01
-0.41128497D-01

0.475367690 00
-0.217961510-01
0.47536769D 00

-0.298448600-01
0.23281.8340-02

I NPT0024
INPT0025
INPT0026
INPT0027
IN PT00 28
I N PT0929
I NPT0030
INPT0031
INPT0032
INPT0033
INPT0034
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IN PT0001
INPTO 30?
INPT0003

1.800 1NPT0004
INPT0005
I NPT0006
I NPT0007
I NPT0008
INPT0009
INPT0010
INPTOO1I
INPT0012
INPT0013
INPTO014
INPTCO15
INPT0016

qD 01 INPT0017
90 00 INPT0018
1D 00 INPTO01
30 01 INPT0020
3D-01 INPT0021
30 01 INPTOO?2
4D 00 INPT0023

-
-

-

-
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Appendix E

SOURCE LISTINGS OF COMPUTER PROGRAMS

(Only in M. I. T. Library copies)
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