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ABSTRACT

Finite element methods are developed for the solution of the neutron
diffusion equation in space, energy and time domains. Constructions of
piecewise polynomial spaces in multiple variables are considered for the
approximation of a general class of piecewise continuous functions such
as neutron fluxes and concentrations of nuclear elements. The approxi-
mate solution in the piecewise polynomial space is determined by apply-
ing the Galerkin scheme to a weak form of the neutron diffusion equation.
A piecewise polynomial method is also developed for the solution of
first-order ordinary differential equations. The numerical methods are
applied to neutron slowing-down problems, static neutron diffusion
problems, point kinetics problems and time-dependent neutron diffusion
problems. The uniqueness, stability and approximation error of the
numerical methods are considered. The finite element methods yield
high-order accuracy, depending on the degree of the polynomials used,
and thereby permit coarse-mesh calculations. The conventional multi-
group method, the Crank-Nicolson and the Padé schemes are shown to
be special cases of the finite element methods. Numerical examples
are presented which confirm the truncation error and demonstrate the
utility of the finite element methods in reactor problems.

Thesis Supervisor: Kent F. Hansen
Title: Professor of Nuclear Engineering
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Chapter I

INTRODUCTION

1.1 Introduction

This thesis is concerned with the development of numerical
methods for neutron diffusion problems using piecewise polynomials
in the energy, space and time variables.

Numerical methods for the solution of neutron diffusion problems
have been widely used and have been shown to be more powerful than
analytical methods, due to the complexity of reactor geometries and
nuclear cross sections. The most widely used method is the finite
difference method. This method is quite simple but requires relatively
small meshes and hence a large number of unknowns. For this reason,
finite difference methods have been limited to at most two-dimensional
kinetics problems or coarse mesh three-dimensional problems. There-
fore, alternate methods have been developed which require a relatively
small number of unknowns and which can be applied to multidimensional
problems.

In the synthesis method [1] -[3], the solution is expanded in terms
of a small number of functions chosen to represent various transient
states of the problem. A variety of synthesis techniques have evolved
for treating some or all of the spatial variables and the energy variable.
The advantage of this method is that the expansion functions may be
obtained based on the knowledge of a particular system. However, the

selection of proper expansion functions for various systems is difficult
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in general. Poor selection of expansion functions can not only misrepre-
sent the solution but also can cause numerical instabilities. Further-
more, analytic error bounds for the approximations are not known.

Another important class of approximate methods are the so-called
"nodal methods." The basic idea is to treat the reactor as a small
number of disjoint regions and to couple the regions through the neutron
flux or current. In the '"coupled reactor theory' [4], certain types of
trial functions are defined on each subregion, which vanish outside the
subregion. The subregions are then coupled through neutron currents.
However, the neutron currents, and thus the coupling relations, depend
strongly on shapes of the trial functions. Thus, as in the synthesis
method, the selection of proper trial functions is a major difficulty in
this method. An alternative is to use a simple constant trial function
over each region, as in the FLARE [5] approach. In this approach, the
proper coupling coefficients are difficult to define. .

Instead of using fixed frial functions, several authors have con-
sidered using polynomial functions defined in each subregion. Riese [6]
considered polynomials quadratic in each variable. The polynomials are
then coupled to neighbor polynomials so that the flux continuity condition
is satisfied. In the GRCORK scheme [7], the same type of polynomials
was used with the difference that the subregions are coupled by partial
neutron currents. The resulting solution is thus allowed to have a dis-
continuity along the region interfaces. In these methods, the accuracy
of the solution is not known and the solution fails to satisfy the requisite
continuity conditions. However, these methods are significant, since
their development was based on a concept similar to that of the finite

element method which will be developed in the present thesis.
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In recent years, much attention has been given to approximations of
functions using polynomials which are defined only over subregions of
the problem domain, rather than over the entire domain. These poly-
nomials are called ''piecewise polynomials' for evident reasons. The
piecewise polynomials yield high accuracy for approximations of
functions and their derivatives. Furthermore, for practical computation,
the piecewise polynomials provide some convenient features which ordi-

nary polynomials lack:

(i) The piecewise polynomials provide local approximations and ére
thus well suited for approximating physical behaviors in which
variations occur locally. In this case, a fewer number of poly-
nomials is required using piecewise polynomials compared to the

use of polynomials defined over the entire region.

(ii) Piecewise polynomials permit flexibility in imposing certain types
of continuity or jump conditions at the joints of the subregions. In

addition, boundary conditions are easily imposed.

(iii) Convenient piecewise polynomial « basis functions can be found
such that expansion coefficients are directly related to the values

of functions and their derivatives at mesh points.

(iv) Used with the Ritz-Galerkin method, the system of linear equa-
tions can be made very simple and amenable to computer solution

by well-developed methods.

The Ritz-Galerkin method, using piecewise polynomials as expan-
sion functions, is called the 'finite element method" by Fix and Strang

[8], [9] and others [10], [11]. Many authors have suggested the use of
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piecewise polynomial spaces with the Ritz-Galerkin method (e.g., see
[8] -[21]). Representative spaces are spline space and the Hermite
space. The spline space consists of piecewise polynomials whose
derivatives satisfy the maximal continuity conditions. Therefore, the
spline space has the smallest dimensions of all the piecewise poly-
nomial spaces. The Hermite space consists of piecewise polynomials
which are less continuous than the corresponding polynomials in the
spline space. For example, polynomials of degree 2m-1 have continu-
ous derivatives of order up to 2m-2 in the spline space, and up to m-1
in the Hermite space. Thus, if there are N-1 intervals in a one-
dimensional space within which the piecewise polynomials are defined,
the number of dimensions is N for the spiine space and mN for the
Hermite space. In an n-dimensional space, the number of dimensions
is N® and (mN)™ for the spline and Hermite spaces, respectively. Since
the dimension of the Hermite space increases sharply in multi-
dimensional geometries, the Hermite space is less desirable for multi-
dimensional calculations of smooth functions. In both spaces, conveni-
ent basis functions in one variable are easily found. Furthermore, the
basis functions in the multivariate space can be obtained by taking
tensor products [18], [21] of the basis functions of one variable.
Problems in nuclear reactor analysis consist of many regions of
different materials. Thus, physical quantities in reactors are charac-
terized by piecewise continuous functions. For example, the scalar
neutron flux is continuous everywhere but has piecewise continuous first
derivatives, while the concentrations of nuclear elements are continuous

only within each region.
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Previous studies of piecewise polynomial spaces have been
developed mainly for approximations of smooth functions which are suf-
ficiently differentiable on the entire region. Applications of piecewise
polynomials to nonsmooth or piecewise continuous functions have previ-
ously been limited only to one-dimensional problems. In [16], modifi-
cations of basis functions in the Hermite space to allow jump continuity
conditions are discussed. Wakoff [21] used modified cubic spline
functions for the solution of one-dimensional multigroup diffusion prob-
lems. However, the extension of these modified piecewise polynomial
spaces to multidimensional spaces by taking local tensor products leads
to basis functions which are incompatible with the requisite continuity
conditions.

The central object of this thesis is to construct appropriate and
general piecewise polynomial spaces for approximations of piecewise
continuous functions of multiple variables. Coarse mesh methods are
devised for the solution of diffusion problems in space, time and energy,
with a minimum of computational effort. We limit our consideration to
linear neutron diffusion problems. However, the methods apply to any
orthogonal coordinate system (e.g., Cartésian, cylindrical, polar
spherical), whose partition is generated by coordinate surfaces (e.g.,

r,=const., r2=const., r3=const.).

1
In the rest of this chapter, we discuss the energy-dependent neutron

diffusion equation and the finite element method. Chapter II is concerned

with the construction of piecewise polynomial spaces and corresponding

basis functions in multiple variables for approximation of general

classes of piecewise continuous functions. The uniqueness properties
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and error bounds for the Hermite interpolation in these spaces are
established.

In the succeeding chapters, we consider the application of the finite
element method to neutron slowing-down problems (Chap. III), static
neutron diffusion problems (Chap. IV), point reactor kinetics problems
(Chap. V) and time-dependent neutron diffusion problems (Chap. VI).
The uniqueness, stability and approximation error of the numerical
method are considered. Finally, Chapter VII contains the conclusions

and recommendations for further developments.

1.2 The Energy-Dependent Neutron Diffusion Equation

In this section, we introduce the energy-dependent neutron diffusion
equation and discuss proper boundary conditions. The derivation of this
equation can be found in Davison [22] and elsewhere [23],[24].

Let R"™ be an n-dimensional space and _I_‘=(I‘1, Coseres rn) represent
a point in R"™. Consider a reactor configuration defined by an open
region Q and its boundary 92. Furthermore, assume that 2 consists of
disjoint open subregions Qﬁj £=1,2,...,L, each of which is bounded by
892.

energy and time variables, respectively, and define £ = [E

LetE . < E<E and 0 £ t < T where E and t represent the
min max

min’ Emax] '

Then, within any region ©,, the time-dependent neutron diffusion

equation with delayed precursors can be written as
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FTEy o HE. 0 = ¥ D, B, 1) Yol B, 1)

- ZT(E,E,t) o(r, E, 1)
+ f£ dE' T _(r,E'~E, 1) ¢(r,E’, 1) (1.1a)

+ x(E)1-B) [g dE’ vil(r, E', 1) ¢(r, E', 1)

J
+ ), XgiE) MG 0 + QUE, B 1)
=1

0o \

= C. = -\.C. + B. dE' , E'Lt), :

5t Cj(m 1) = MOz 0+ By [ dEY vE(r, EIY) 9(r, BV, 1) (1.1b)
j=1,2,...,7,

where

¢(r, E, t) = neutron flux (n/cmz- sec) ,
7/ (E) = neutron speed (cm/sec) ,
D(r, E, t) = neutron diffusion coefficient (cm) ,

ZT(E, E, t) = total macroscopic removal cross section (cm_l)

)

E
- max
Zpr, E,f) =2 (B, t) + fE

Zs(g, E-E',t) dE'
min

Za(g, E, t) = macroscopic absorption cross section (cm_l)

E

Zs(g, E'—+E,t) = macroscopic scattering cross section from
E' to E (cm—l)’

Z(r,E,t) = macroscopic fission cross section (cm_l) )

v = average number of neutrons produced per fission,
x(E) = fission spectrum for prompt neutrons ,

de(E) = gspectrum of delayed neutrons for the j-th group,

)\j = decay constant of the j-th delayed neutron precursors (secnl) ,
J

Bj = fraction of delayed neutrons for the j-th group: B = Z Bj s
j=1
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Cj(g, t) = concentration of delayed neutron precursor of the j-th group,
J = number of delayed neutron groups,

Q(r, t) = neutron source/cmz. sec.
The nuclear constants in Egs. (1.1a,b) are assumed to satisfy the

following conditions:

. 1
(1) Osza,zs,zf<oo, 0<7—/, D < oo,

(ii) D, Za, ZS and Zf are continuous in each Qg’ £=1,2,...,L, and
may be discontinuous on 9Q2,,
(iii) Za(E), ZS(E'—»E), X(E)vzf(E’) are positive operators such that
(%(E".E) (E",E) if {(E",E) >0,

S(E!,E) {(E",E) =
L0 if f(E",E) < 0.

(1.2)

The condition (iii) implies that the products are nonnegative. Further-
more, when f(E’, E) = f(E’), this condition conforms to the physical fact
that the reaction rate must be nonnegative. Under the condition (iii), it
can be shown easily that the integral operators in Eq. (1.1a) are positive
semidefinite [25], although they are nonsymmetric.

Let the initial conditions be specified by

o(r, E, )|, = ¢o(r. B), (1.3a)

Cj(;‘_, t)It:O = CjO(_r), 1<j<J (1.3b)
Let the boundary conditions on 92 be homogeneous conditions

¢(r,E, t) =0 or a% ¢(r,E, t) =0, (1.4a)

where 8_?1 represents the outward normal derivative at 9{2.

The diffusion approximation fails in the neighborhood of material

interfaces, where the solution has transients. We assume that the
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solution satisfies certain boundary conditions at the interfaces. Rigor-
ous interface boundary conditions for the diffusion approximation based
on the transport theory are discussed in Davison [22]. However, the

following set of interface boundary conditions ig more commonly used:

¢(r,E,t) and D(r, E,t) é% ¢(r, E, t) are continuous on material

interfaces. (1.4b)

These conditions are frequently called flux and current continuity con-
ditions, respectively.

The point which is formed by intersections of two or more material
interfaces is a singular point. In order to generate approximations to
the analytic solution to the diffusion problem, it would be necessary to
include the singular solutions [18], [26], [27]. However, this is an im-
practical computing task, at least at present. The approach to be taken
in this thesis will be to ignore the singular part of the solution. The
result is that we are solving a problem slightly different from the origi-
nal diffusion problem, namely we have relaxed certain boundary
conditions. We call this different problem the '"'modified" problem, or
the ""weak' formulation of the problem. We show in Chapter IV that the
solution is unique in the modified problem (see Lemma 4.1). We call
this solution the '"weak'' solution to the original problem. For the weak
formulation, it is possible to find error bounds and rates of convergence
of approximate solutions to the weak solution.

The important question is, of course, how the weak solution com-
pares to the solution of the original problem. Fix [18] has shown that
for certain eigenvalue problems in an L-shaped membrane, inclusion of

the singular solution makes a considerable improvement in the
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convergence of eigenvalues. However, the effect of the singular solution
on reaction rates and integral properties in reactor problems would be
negligible.

We remark that this "pragmatic'' approach is the same as that used
in finite difference approximations to diffusion problems. As one refines
the difference mesh the solution approaches a limit, which again is not
the analytic solution to the continuum problem. The difficulty lies not
with the numerical approximations, but rather with the application of

diffusion theory to a case for which the theory is not physically valid.

1.3 Finite Element Methods

Finite element methods were originally developed by engineers for
structural analysis in solid mechanics. References [28] and [29] contain
extensive compilations of literature in this area. In general, the Ritz-
Galerkin method used with piecewise polynomial functions is called the
"finite element method'" [8] -[11]. Courant [12] was the first to suggest
the use of piecewise linear functions in triangular meshes in the Ritz
method for two-dimensional Dirichlet problems. In recent years, finite
element methods were developed as higher-order methods allowing the
use of high-degree polynomials. Finite element methods have been
applied to boundary and eigenvalue problems in [8]-[21] and to para-
bolic problems in [30] - [32].

To illustrate the finite element method, consider a problem defined
by

Té(r) = Q(r) r in @, (1.5)

where T is an integro-differential operator with homogeneous boundary
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conditions specified on the boundary 8. Q(r) represents a source term.

In order to approximate the solution to Eq. (1.5), we consider a

finite dimensional trial space SM where {ui(g)}?/zll form a basis. In par
ticular, we choose ui(g) as polynomials of a certain degree satisfying
the same boundary condition as the analytic solution. We then seek an
approximate solution of the form
R M
o(x) = ), aulr). (1.6)
i=1
The Ritz-Galerkin procedure is a well-known method [33], [34] for
solving integro-differential equations. The Galerkin method is more
general than the Ritz method and can be applied to problems with non-
self adjoint operators. In the Galerkin method, the expansion coef-
ficients a; are determined from the condition that the equation obtained
by the substitution of ;{5(2) for ¢ in Eqg. (1.5) must be orthogonal to the

elements u This condition leads to the system of equations

12 Ugs -+ e Upp
(T ¢,u,) = (Q,u,)
for alli=1,2,...,M, where the inner product is defined by

(u,v) = fQ uv dV. This equation can be rewritten in matrix form as
Aa=g (1.7)
where

a= col{al,az,...,aM} s

ﬂ = col {(Qa ul): ) (Q: uM)}°

The matrix A is usually called a stiffness matrix.
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The coefficient vector a is determined by inverting the stiffness
matrix A. The numerical inversion of A is governed by the condition

number of the matrix A. The condition number is defined by
Cond (A) = A [A™1[

where [] [] denotes any matrix norm. If the condition number is rela-
tively large, then A is ill-conditioned in numerical inversion. If the
condition number is relatively small, then the matrix A is well-
conditioned.

In finite element methods, the condition number of A depends on
the selection of the polynomial expansion functions. When the operator
is positive definite and the polynomials are sufficiently linearly inde-
pendent, then there will be no difficulties in inverting the stiffness
matrix. For example, if we choose a set of polynomials

{XuM 0 1

(x ,x,..., XM) as expansion functions, then the stiffness
matrix becomes the Hilbert matrix [35]. These polynomials are nearly

=1
linearly dependent in the range 0 < x < 1 and thus the Hilbert matrix is
very ill-conditioned and difficult to invert numerically. Therefore, in
finite element methods, instead of using ordinary polynomials, we select
piecewise polynomials which vanish throughout most of the whole region
and finite only in a few subregions. Use of the piecewise polynomials
makes the stiffness matrix sparse and relatively well-conditioned. In
Chapter II, we shall consider the generation of specific piecewise poly-
nomial basis functions for use with the Galerkin method in reactor

problems.
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Chapter II

PIECEWISE POLYNOMIAL SPACES

In this chapter, we will discuss certain types of piecewise poly-
nomial spaces which are of use in the solution of diffusion problems.
In a heterogeneous reactor, physical quantities are characterized by
piecewise continuous functions. Therefore, we will consider the con-
struction of appropriate piecewise polynomial spaces for problems of
one independent variable, i.e., univariate spaces, and multiple inde-~
pendent variables, i.e., multivariate spaces. The purpose of this
chapter is to provide the tool for the numerical analysis of reactor
problems in succeeding chapters.

We consider piecewise polynomial spaces in multivariables which
can be directly applied to the Hermite interpolation. The Hermite
interpolation is characterized by the fact that the interpolating poly-
nomial is generated by the use of function values and derivatives. In
particular, the same data must be available at both ends of the interpo-
lation interval. This means, for instance, that if one has the value of
the function and its first order derivatives at one end of the interval,
one must also have the value of the function and its first order deriva-
tives at the other end. Thus, the amount of data is always an even
number of values; hence the interpolating polynomials are always of
odd degree. For neutron diffusion problems, the flux and current con-
tinuity conditions lead naturally to the use of Hermite interpolation.

The piecewise polynomial space, which is constructed based on the
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Hermite interpolation, will be called the Hermite space. The Hermite

space is particularly suited for the interpolation of the piecewise con-
tinuous function as well as the continuous function. The Hermite space
can be regarded as a generalization of the smooth Hermite space [14],
[16] and the spline space [16], [36].

In Sections 2.1 and 2.2 we consider the generation of basis functions
in the univariate and multivariate Hermite spaces, respectively. For

this we introduce the element function. The element function is defined

as a piecewise polynomial function which is defined in a unit mesh ele-
ment and vanishes elsewhere. By using the element functions, the
interpolating polynomial can be conveniently represented in terms of
Hermite data. Furthermore, basis functions in the Hermite spaces can
be generated by coupling the element functions so that they satisfy the
pertinent continuity conditions. This method of construction is very
flexible in generating basis functions in multivariate spaces for var.ious
types of continuity conditions. As special cases, this method gives
local basis functions in the cubic (smooth) Hermite space [14], [16], [19]
and the bicubic (smooth) Hermite space [18], [19].

In Theorems 2.2 and 2.5 we consider the dimension count, or the
number of basis functions, of Hermite spaces. In Theorems 2.1 and 2.4
we establish error estimations for interpolations in Hermite spaces. In
this and succeeding chapters we develop error estimations in the L”-
norm only. However, since the Lz—norm is always less than or equal to
the Loo—norm, the results in this chapter can be applied to error esti-

mations in the L2—n0rm.
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2.1 Univariate Polynomial Space

In this section we consider the construction of univariate Hermite
spaces and corresponding basis functions for the approximation of
general classes of piecewise continuous functions.

Let Q=[a, b] be a closed interval in one-dimensional space and A be

a partition of €2 such that

A:a=x1<x2<.,.<xN=b. (2.1)

Let Ai = (Xi’ Xi+1)5 i=1,2,...,N-1 be open subintervals of the
partition A.

We define Ct(Q) to be the class of all functions which are t times
differentiable in Q. Also we define C;(A) to be the class of all piecewise

functions f(x) such that f(x) € ct(Ai)* for i=1,2.....N-1 and

q
f(q> (xii) = lim d- f(xiié) is finite for 0 < g < t.
60 dx4

Let si(x) be a polynomial of degree 2m-1 in the interval [xij X ]
where m = 4,1,2,... . Except for the case of m=1, the si(x) are odd
degree polynomials. We include the piecewise constant functions (m=13),
since these functions are commonly used for approximations in the energy

domain in deriving the multigroup equations in reactor physics. Then

si(x) can be expressed as
m
s,(x) = Z" aux“ . xe [x,x ], (2.2)

where the au are 2m unknown parameters to be determined.

%
f(x) € Ct(Ai) means that f(x) is an element of the class Ct(Ai).
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We consider the interpolation of a sufficiently smooth function f(x) in

X., X using polynomials of degree 2m-1. We are especially inter-
i g Y y

ir1l

ested in interpolation problems where the derivatives of f(x) are specified

at X, and x. so that si(x) satisfies

i+1
s(ip)(xi) - f(p)(xi), (2.32)
Pl )P« ), 0<p<m-1 (2.3b
i Fivl i+1 SpPsmeLs -3b)

b
where sip)(xi) = d—p Si(X)' s(x) for m=1 is assumed to satisfy Eq.(2.3a)

dx
only. This type of interpolation is called Hermite interpolation and it is

known [37] that the Hermite interpolate si(x) can be uniquely determined.
In order to facilitate Hermite interpolation in numerical calculations,
we consider convenient polynomial functions, which we will call element

functions. The element functions {uli)i} for m = 1 are defined by

2m-1
p - ' -
ug (x) Z au x™ X 4 < x < X s
u=0 (2.4a)
0, otherwise ,
2m-1
Ptigy = v
us (x) Z a x, XS XS X0
u=0 (2.4b)
o, otherwise ,
such that
q
ijl——upi(x#)=<5..<5 s 0<p<m-1,
dxd 1 J 1] pg

where th = xj:l: 0. Note that u§)+(x) and uli)'_;l(x) are nonvanishing over the

same interval [xi We say they have the same support, that is, the

Xl
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region where the functions are non-zero.
From the definitions of the element functions, the Hermite interpo-

late Si(X) of f(x) can then be expressed by
TEL )y P 4 D)
- b Y Pl - b-
s;(x) = ), 8P w0 + 1P, el 0] (2.5)
p=0
The element functions are convenient numerically because the expansion
coefficients in Eq. (2.5) are directly related to the interpolation data.

We give some explicit examples of the element functions for low

degree polynomials. (See Fig. 2.1.)

(i) m=1/2

0; . . .
uii(x) are piecewise constant functions:

1 5 X. £ X < X. 5
+
u? _ i i+1 (2.6)
0, otherwise ,
up_ = 0, all x .
i
(ii) m=1

0+ . . . .
uy (x) are piecewise linear functions:

X - X,
i-1 X X < X

u?i(x) =( * % i-1 ! (2.7a)
0, otherwise |,

X,  -X
i+1
0+ X, X%, ° X 2 X2 X0
u. (x) = i+1” %4 (2.7b)

0 , otherwise .
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(iil) m=2

ulibi(x), p=0,1, are piecewise cubic functions:

2 3
o X%
0- _ 3< —2( — ), X, . SX<X,,
u; (x) = X —Xi—l) X=X, 4 i-1 i (2.8a)
0, otherwise ,
X - X 2 X - X 3
i+1 i+1
0+,  _ 3(;— -2<— ) X, < X< X,, .,
u; (x) = < Xi+1—Xi) Xi+1_Xi) i i+1 (2.8b)
0, otherwise ,
X-X 2 X-X 3
i-1 i-1-
1- _ {-(—1—— +(————— J (x.-x. ), X, < X< X,,
uy (x) = Xi—Xi—l) Xi_xi—1> i “i-1 i-1 i
0, otherwise,
(2.8¢c)
X -x 2 b'e - X 3
1+( ) = {( l+1—x ) - (xl+1—x > } (x._l_l—x.), X. € x £ Xiiqs
4 X417 %/ i+17 % ! ! ! !
0, otherwise.
(2.84d)

The error in the maximum norm for the Hermite interpolation is
stated by well-known theorems in [16], [17]. We will use the maximum-

norm which is defined by

le-gll = max [f(x)-g(x)].
Lolabl o cxs<p
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0+
u

i-1 i X+
() m=1/2
0- 0+
u; (x) uy (x)
C
-1 K1 Y X1 XL Xyl
(b) m =
0+
u. (%) ug (x)
1 1
i Fi+1 S B *ir
u1+(X)

Fig. 2.1. Univariate Element Functions: % <
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Theorem A. Assume that f(x) € Ct[xi, Xi+1] . Let Si(X) be a polynomial of
degree 2m-1 in [xij Xi+1] and be a Hermite interpolate to f(x) satisfying

Eqgs. (2.3a,b). Then Si(X) is unique and the interpolation error is bounded

where 4 = min(2m, t) and K is a positive constant independent of |Xi+1

by

44
dx4

(f(X)—si(X))

-x.|.
1

Theorem A states that the bound in the pointwise error between f(x)
and s(x) for a piecewise continuous function f(x) is of order 2m. Thus, for
m=2, i.e., the cubic Hermite interpolation, the error is O(A_X4). The
pointwise error in the derivatives is also bounded with an appropriately
lower exponent.

Now we introduce the Hermite space Hm(A) defined as a set of all

piecewise polynomials of degree 2m-1 in each element Ai(i=1,2, ..., N=-1)
of the partition A. Obviously, the number of free parameters, or the
dimension, of Hm(A) is 2m(N-1). Convenient basis functions in Hm(A)
can be chosen from the element functions {uli):t} as defined by Eq. (2.4a,b).
We consider the interpolation of a piecewise continuous function f(x)

using the polynomials in the space Hm(A). Let the Hm(A)—interpolate of

f(x) be defined as any s{x) in the space Hm(A) which satisfies
s(p)(x-;) = f(p)(XT),
sPIfy = 1Pty 2<i<N-1 (2.9)
Pl = £Py),

for 0 < p < m-1. Then, using the set of functions
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{uIiH—, uIi)i, u{i{: 2<i<N-1, 0<p<m-1} as a basis of H_(8), s(x) can

be represented by

N-1
s(x) = z si(x)
=1
N-1 m-1 (b)), + pt (
_ 121 Zo{fp(xi)uli:) (0 +£ PV, uP 6o} (2.10)
= p:

where si(x) represents the Hermite interpolate in the element A,
defined by Eq. (2.5).

The uniqueness and the accuracy of the Hm(A)-interpolate are

stated by the following theorem.

Theorem 2.1. Assume that f(x) € C;(A). Let s(x) be a polynomial of
degree 2m-1 satisfying Eq. (2.9). Then, s(x) is uniquely determined

and satisfies

q —y -
a- (f(x)-s(x)) < KAxH™9, 1<qg< m-1,
dx9 o
L7 [a,b]
where u = min(2m, t), Ax = max ¥.,1°%;| and K is a constant inde-

L 1<i<N-1
pendent of Ax.

Proof. The uniqueness of s(x) results as a direct consequence of the

uniquenesses of individual si(x) for i=1,2,...,N-1 from Theorem A.

From the definition of the Loo—norrn,

q
47 (5(x)-s(x))

a4 "
~3 (x)-s(x)) o

dx

= rmax
1< i€N-1

l L°[a,b] ' L(A))

< max K.|xi+1—xi|“—q
1<isN-1 !

< K AxH™4
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where K = max Ki and Ax = max|x
i i

i1 %50 This completes the proof.

Theorem 2.1 applies to piecewise continuous functions and states
the same order of convergence as Theorem A. It is known that the
functions in one-dimensional reactor problems such as neutron fluxes
and nuclear element concentrations belong to fhe class C;o, so that
Hermite interpolation in Hm(A) always yields errors of O(Ax 2m).

So far, we have considered only piecewise polynomials which are
independent in each mesh element and not related to other polynomials
in neighboring mesh elements. However, in many cases, functions to
be approximated satisfy certain continuity or jump conditions for
derivatives at mesh points. In such cases, it is natural to couple the
piecewise polynomials satisfying the same conditions. Imposing the
coupling conditions is also desirable in numerical computation because
this reduces the number of unknowns, or basis functions, and thus the
computational effort.

We define the set of coupling conditions % at each mesh point. The

set % is defined as a collection of coupling coefficients Kll) where

b s(p)(xi-)
K = —%—— . (2.11a)
! S(p)(x-.l_)
i
The limit on the order of the derivatives, say ki’ is part of the defi-

nition of the coupling conditions 9. We can denote # as

x = {Kf.l’, k;: 1isN, 0spsk,, -1sk;<m-1}. (2.11b)

3

We limit ki to m-1 to conform with the Hermite interpolation. We

assume that p=-1 denotes that the functions are not coupled. If hlf =1,
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then s(p)(x) is continuous at X, In general, s(x) allows discontinuities
in the derivatives at X, by taking K]f # 1. The latter case is important
for application to diffusion problems where the diffusion coefficient is
different on different sides of the interpolation point. Furthermore,
coupling conditions at the end points i=1,N allow us to impose periodic
continuity conditions.

Associated with the coupling conditions &, we introduce the space
Hi(A), a subspace of Hm(A), whose elements satisfy the coupling con-
ditions % specified by Eq. (2.11). It is easy to show that the dimension
of Hi{;(A) is equal to the dimension of Hm(A) less the total number of

N
conditions )’ (k,+1) in %. This leads to the following theorem.

i=1

Theorem 2.2. Let % be defined by Eq. (2.11). Then the dimension of

the space Hg(A) is given by

% N
Dim H_/(A) = 2m(N-1) - _21 (k,+1).
1:

The appropriate bases for the space Hgn{;(A) are obtained by imposing
the conditions % on {uliji(x)} as defined by Eq. (2.11). We denote the
function obtained by coupling the element functions {u};-(x)} and {uli)-[_(x)}

p
as {ui(x)} such that

B- uIi)_(x) , X. ,
WPlx) = (2.12)
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Then, the basis functions in the space Hfg(A) consist of {u?(x), u?i(x):
1<i<N, 0<p<k,, ki+1squ~1}.
We illustrate the generation of basis functions for specific coupling

conditions in the examples below:

Example 2.1

In neutron diffusion problems, the coupling condition appropriate to

the flux is specified by

2 < i< N-1) . (2.13)

Then, the basis functions in Hg(A) for 1 < m < 2 can be represented by

(see Fig. 2.2)

6 P P-
ur (x), X, , <x<x,
) (D(Xi—)> i i-1 i
ui(x, D) = < (2.14)
0 p+
ur (x), X, £ X< X, .,
(D(XT)> i i i+1

where 6 is a normalization constant and

Eq. (2.7) m

I
—

uIi)i(X) =

1
[\]

Eq. (2.8) m

The normalization constant 6 is introduced in order to produce stiffness

matrices (cf., Sec. 1.3, Chap. I) having small condition numbers. We

9 ~
usually choose 6 such that D(Xi) ~ 1.
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We note that the conditions & = {Kli)=1, ki=m—1: 0Sp$ki, 2S1SN—1} lead
to the local basis functions in the smooth Hermite space [14], [16], [19].
The smooth Hermite space consists of polynomials of degree 2m-1 which

have continuous derivatives of order up to m-1.

u. (%)

i-1 T i1

(a) Piecewise Linear Function (m=1)

i-1 i i+1

(b) Piecewise Cubic Function (m=2)

Fig. 2.2. Univariate Coupled Basis Functions: Example 2.1

Now we consider the interpolation of a piecewise continuous function
f(x) in the space ngg(A) where the coupling conditions ZC conform with

the continuity conditions of f(x) at joints such that
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KP =1 0<p<k.. (2.152)

We define the Hilc(A)-interpolate of f(x) as any s(x) in the space H‘Z;(A)

which satisﬁes

(2.15b)
s(p)(x;") =f(p)(x;"), 0<p<m-1, 2<1is<N-1,
s(p)(xi_) = f(p)(xi‘) ) k, <p<m-1, 2<i<N-1

To facilitate representation, we assumed that f(p)(x-;) is specified in
Eq. (2.15b) whenever p is not equal to -1.

1§ s(x) is the ngﬁ(A)—interpolate of f(x), then s(x) can be represented

by
molo L N-1 ki()+
s(x) = ), £ 0+ ) Y 1P ) ulx)

p=0 i=2 p=0

N-1 m-1
+ Z Z (f(p)(xg)u§-(x)+f(p)(x-i!_)u]f+(x))

i=2 pfki+1

m-1
+ ) P el (2.16)
p=0

It can easily be shown that the interpolation data in Hgncl’(A) specified
by Eqgs. (2.15a,b) are equivalent to the set of data, Eq. (2.9) for Hm(A).
Therefore, the uniqueness and the accuracy of the Hi}c’(A)-interpolate can

also be stated by Theorem 2.1.
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2.2 Multivariate Polynomial Space

n
We consider a region Q=—|-|— [aj, bj] in an n-dimensional space. 2 may
include energy as well as space intervals. For the space domain, we
assume an orthogonal coordinate system: a Cartesian, cylindrical or

polar spherical coordinate system. Define 7 to be a partition of Q such

that

(2.17)

Thus the point rj’ K is the k-th mesh point on the j-th coordinate axis.
For simplicity, we will use a multiple index i to specify a given point.
Thus, i = (il, 12, cee, in), The set of all mesh points generated by 7 will
be denoted Z7r .

The mesh elements generated by the partition 7 will be denoted LY
for £ =1,2,...,L, with

L=

T :‘:3
-

(Nj—l) .

Each element Ty has associated with it certain mesh points, which we
denote as Zﬁ, For instance, a two-dimensional problem Z£ is a set of

4 mesh points, namely the corners of the mesh element 7 (See Fig.

2
2.3.) Note that the set of all Z£ is not Zﬂ due to the redundancy of all

interior mesh points.
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Ny
in+1 & &
T
0,1 [ £0,00  (0,1)| (0,0

i D oD

2 4 \ 4
2
A

1

1 i 11+1 iN1
> r,

Fig. 2.3. Hermite Interpolation Data in a Rectangular Element

Let sﬂ(g) be a multivariate polynomial of degree 2mj—1 for the j-th
variable, for j=1,2,...,n, in a mesh element e Then, SE(E) can be

represented as

_ 7
splo) = ), a,r (2.18)
us2m-1

where

uo= (ulguzy-nju ),

n
r“:rul,ruz,“,gr“n,
= 1 2 n
m = (ml,m23,,.jmn),

4y € 2m=-1 means uj < ij—l for all j.
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The Hermite interpolation of f(r) in Ty is defined as the polynomial

s,(r) which satisfies

ngp)(ﬁi) = f(p)(zi) for ie Zﬂ, 0<p<m-1, (2.19)
P1*Pp* - FPy
where p = (pl,pz, ...,p.) and s(p)(z) = d s(r) .
n pl p2 pn
drl dr2 . dr

For example, consider a two-dimensional problem where s£(£) is

to be a bicubic polynomial. Then

Bo= o), 0 <uyp, ug <3,
My M

uo_ 1 2

E = I’l I‘2

Thus, we have sﬂ(g) of the form

~ 2 3
sﬁ(g) =aytar, ta,r, +agr,

2
+b1r1 +b2rl + b,r

= W

+ c,r + C

1 r

r.r

2 2

r, +d,r

+ d,r 9

1
2 r
171
3
1

Do

1
2
1
+e.r i

1 + e

r.r

g ™ €9

Note that there are 16 coefficients required to specify a unique sﬂ(g),
For Hermite interpolation, the interpolation data required to specify
Sﬂ(_lf_) would be the function values at the 4 mesh points of the element

s the first derivative in each direction at the 4 mesh points, and the

2
4 mixed derivatives at each mesh point, i.e., —9° at each corner.
8r18r2

"Thus we have 4 values, 4 derivatives in T 4 derivatives in r, and 4

2

mixed derivatives. The corresponding Hermite data are illustrated in

Fig. 2.3.



40

In the previous section, we found that the interpolating polynomial
was conveniently represented using the so-called element functions.

In particular, using element functions permitted the interpolating poly-
nomial to be represented directly in terms of the Hermite data. A
similar representation is possible in the multivariate case using multi-
variate element functions.

In the univariate case, we have a notation which uses subscripts to
identify the mesh point, superscripts to identify particular element
functions, and a + or - superscript to identify the element to the left
or to the right of the mesh point. We need a similar but somewhat more
general notation for the multivariate case. Let {u]io’a(g)} be a set of

multivariate element functions defined by

p.,a.
J ] = —
; (I‘j) ooy = (+) or (-), (2.20)

n
u?¥r) = I u
i = .
=1 ]
P,
where p = (pl,pz, e ,pn), a = (ozl, PV an) and uijJ J(rj) is a uni-

variate element function as defined by Eq. (2.4a,b). Explicit
expressions for low degree univariate element functions are given by

Egs. (2.6)-(2.8). If [rj 1 € j < n, are supports of

,i.+1’rj,ij]’

p.,a.
u; J J(rj), then the support of the multivariate element function uIi)’a(r)
] n
is specified b
15 speciiied by .l'l [, 5410755 1
J= J J

Using multivariate element functions, the Hermite interpolate s ﬂ(ﬁ)

which satisfies Eq. (2.19) can be represented by

)
- ' p p,a
s ,(x) = Z Z, £5%(r;) uy” (x) (2.21)
iGZE p=0
where a= (ozl, Agsenns a/n) is properly chosen such that u?’a(z) have sup-

port on Ty
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In the study of univariate interpolation we considered certain
classes of functions of one variable. In particular, we defined classes
with certain differentiability properties and continuity properties. We
now consider analogous multivariate classes.

Let Ct(Q), t = (tl, tz, ... ,tn) be the class of all functions defined on
2 which are tj times differentiable for the j-th variable. Let C;(ﬂ') be
the class of all functions f(r) which belong to the class Ct(wﬂ) for
£ =1

2,...,L and have finite one-sided limits on the mesh element

3 2

boundaries for derivatives up to order t.
The uniqueness and the approximation error for the Hermite

interpolation are stated in the following theorem.

Theorem 2.3. Assume that f(r) € Ct(7r£). Let s(r) be a multivariate
polynomial of degree 2m-1 satisfying Eq. (2.19). Then, s(r) is uniquely

determined and satisfies

T u_-q
< K.Ar. ! 1+...+KnArnn n

8q
3 (f(r)-s(r)) AS

or

'L )

where
q: (ql:qz"":qn);
.= min(2m., t.),
"5 i
Ar. = lr. . -r. .
,1.+1 ,i.07
J J ] J ]
and Kj is a constant independent of Arj, j=1,2,...,n.

Proof. The theorem is proven in Appendix A.
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Theorem 2.3 gives the pointwise error bounds in terms of exponents
of varying orders depending on the degrees of the polynomials for dif-
ferent variables. In reactor problems, the theorem provides an esti-
mation of the order of convergence when polynomials of different degrees
for space and energy are used. In [16],[17] and [38], the error bounds
were obtained only for polynomials of uniform degrees and theorems
similar to Theorem 2.3 could not be found in previous works.

We now introduce the multivariate Hermite space Hm(ﬂ), which is

defined as a set of multivariate piecewise polynomials of degree 2mj—1

ﬂ}

partition 7. The dimension of the space is easily shown to be

for each variable rj(j =1,2,...,n) onelements r,, £=1,...,L of

n _
| ij((Nj-l)., In this space, the element functions {u?’a(z)}J 1 defined

=1

by Eqg. (2.20) can be used as a set of basis functions.

We define the Hm(ﬂ)-interpolate of a piecewise continuous function

f(r) as any element of Hm(ﬂ) which satisfies

sPr () = Pr (@), icz, 0<p<m-1, (2.21a)

where £i<a) = (rI’ il(al)" ry 12(a2)5 - in(ozn)) and aj =(+) for 1< j<n.
_r;i((a/) denotes r;asa limiting point in a multidimensional space approached
along the coordinate axes from the direction specified by a/j's.

Using the element functions {ulig“”a(z)} as the basis functions of Hm(w),

the Hermite interpolate can be represented by

L
s{x) = ), s ,(r)
£2=1
L m-1
=) f(p)@if(a)) uli"’o‘(g) (2.21Db)
£=1 ic€cZ p=0
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where sﬂ(g) represents the Hermite interpolate in the element Ty @S
defined by Eqg. (2.21). Thus, the convenient representation in terms of
the Hermite data is possible in the multivariate case.

The uniqueness and the interpolation error bounds are stated in the

following theorem.

Theorem 2.4. Assume that f(r) € Cf)(vr). Let s(r) be a multivariate poly-

nomial of degree 2m-1, m=(m1, my, ..., rnn) satisfying Eq. (2.21). Then

s(r) is uniquely determined and satisfies

q __M.-q __M_-q
2 (i) -s(o)| <KAr, e +KART ™ 0<qem-1,
or L(9)
where
q=1(qy,95,.--,a,),
.= min(2m._, t.),
“y ( i J)
Ar. = s -r. .|,
Arj miax lrJ,l.-l-l J’lj
J
and Kj is a constant independent of Ej for j=1,2,...,n.

Proof. Analogous to the univariate spaces, Theorem 2.3 holds locally
for each element and can be extended to apply for the whole region. The

proof is similar to that of Theorem 2.1 and will be omitted.

This theorem enables us to estimate the order of convergence for
individual variables. For example, in reactor problems, if one uses

step functions (m=7}) for the energy variable and cubic functions (m = 2)
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for the space variable, then Theorem 2.4 states that the error is given
by the order O(AE) +O(Ar4). This theorem is useful for estimating the
approximation error for the. solution of neutron diffusion problems in
the following chapters.

Just as in the univariate space, coupling conditions can be imposed

on the space Hm(ﬂ’). We define the set of cbupling conditions % by

: p,a(j) . : _ . . ‘
X {Ki ki 0<p <k <m-1, 1<sj<n, i€ ZW} (2.22a)
where for any s(r) &€ C;(ﬂ),

KP:Q’(j) _ K?lal’ ,pj, TR R
i

1

(p)
s (rl,il(al)’ ’rj,i.(—)’ Ty (an))
i : n

Il

o7 (2.22b)
(p)
s (rl}il(al), ,rj’ij(+), ,rn’in(an))

o, =+ or -, l1<k<n.

k

As in the univariate space, we define pj = -1 to mean that s(r) is
uncoupled at r; in the direction of the axis of r‘j.

The coupling conditions specify the ratio of derivatives approaching
a mesh point in opposite directions on the coordinate axis. The con-
ditions may apply to all derivatives of order up to m~1 and all directions,
or partially to some combinations of particular derivatives and directions.
When K?’a(j) =1, s(p)(g) is continuous at r.. KIi)’ *J) 41 means that
s(p)(g(a/)) is bent at r.. The latter is important in applications to the
diffusion problem.

Associated with the set of coupling conditions %, we introduce the

space Hgn{;(w), a subspace of Hm(w), whose elements satisfy the coupling
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conditions & specified by Eq. (2.22). Similarly, as in the univariate
space, it can be shown that the interpolation properties as stated by
Theorem 2.4 apply to the subspaces Hﬁ(w). The dimension of Hiﬁ(ﬂ)
is easily shown to be the dimension of Hm(w) less the total number of

coupling conditions. Therefore, we obtain the following theorem.

Theorem 2.5. Let & be defined by Eq. (2.22). Then the dimension of

the space ngrf(ﬁ) is given by
Dim H?%(r) = Dim H_(n) - k
m m

where k represents the total number of conditions specified by .

We now consider the generation of basis functions in the space anc(ﬂ).
The multivariate basis functions are obtained by coupling the multivariate
element functions defined by Eq. (2.20) according to the coupling con-
ditions specified by %. Using element functions permits us to generate
multivariate basis functions for various types of continuity conditions.

We take a two-dimensional space to illustrate the procedures. We
PysPot
shall denote ui1 2 (r) as a basis function which is obtained by coupling
p1_2p2+ p +:p2+
two element functions u; (r) and u; (r) according to the

Py.Pot
coupling condition Ki such that (see Fig. 2.4)

pl_’p2+
Py (r), I
Pi.Poyt p{t.pot
u, 12 (r) = ¢ B,u. LR (r) , I (2.23a)
i - I7i -
0 III, IV
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where BI and BII satisfy

B PPyt
I _ 102

By i
Note that u, (r) have support in regions I and II.
' p :p2‘ P17:Po~
Similarly, we can define u, (r) by combining uy (r) and
p,t.Py-
ui1 2 (r) such that
Pl‘:Pz'
Pq:P p,+.p
1’52 _ 1 2
u; (r) <BIV u, (r), IV (2.23b)
0, I, 11
\
where BIII and BIV satisfy
Prr _  P1-P2”
Boo Ki .
v
P1-Py” . . ‘ P1:Po*
uj have support in regions III and IV. (Fig. 2.4.) uy (r) and
PPy~
u, 12 (r) define partially coupled functions in the direction of the r -
p —J +)
axis. We can similarly define ui1 2(2) and u, 1 2(£) by coupling
Pq=sPo"~ p,-:Pot P,t,Po" + +
u. 1 2 and u, 1 2 , and u.! 72 and uI.;)1 P2 , respectively.
i i i i
Py:Py pyE.pot
We proceed further to define u, (r) coupling u, (r) such that
pl‘,P2+
r), 11
p1:p2 BII 1 (—)
u, (r) = (2.23c)
1 - pl_:pz—
Prr % (x), It
p1+1p2

\ i,
Brv v (r), v
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where BI, BII’ BIII and BIV satisfy

Bt PyPgt Byp  PymPy Brp  PpoPo”
B - Ki . B Ki , B " Ki
I I v
and
By i '
P;.Po
Obviously, uy (r) has support in regions I, II, IIT and IV. We note that
piE.pot . . P1-Py
when all of K, =1, the coupled basis functions uy (r) have con-

tinuous derivatives of orders Pq and Py in ry and Ty, respectively, and this

is identical to the basis functions in the smooth Hermite space as con-

sidered-in [18] and [19]. However, when K, # 1, the generations
pb,,P
of u, 1 2(1'_) as given by Eg. (2.23c) is more involved and in some cases,

the coupling conditions can lead to B=0 as the only acceptable constants.

i2+1
b _’p + p +:p +
u. 1 2 (r) u. 1 2 (r)
i = i —
II i
i2 D
IIT IV
r Pi175Pg~ p,t.p
/\2 il ’ () 11 ’ (x)
i-1
2 7. . .
11—1 11 11+1
> 1

Fig. 2.4. Elefnent Functions in a Two-Dimensional Partition
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This case is discussed in detail in the following examples, in which some

practical polynomial spaces in the reactor analysis are considered.

Example 2.2

Let Q= [a,b] and £ = [E ] and let 7 be a partition of

. L, E
min’ T max

Q)(dgr such that 7r =7 X7 where

QT g
er: a=x1<X2<..,<xN=bg
7r£: Emin=E1<E2<°”<ENE:Emax

The diffusion coefficient D is assumed to be piecewise constant in each
element of 7.

In this example, we are interested in generating basis functions to
approximate the neutron flux in subspaces of the Hermite space Hm(ﬂ)

where m = (mXy mE). The neutron flux is assumed to satisfy the

conditions:
Bo
() ¢ CTe), tg>2mg,
t
(ii) ¢e ch(nQ)) t > 2m_, (2.24)

(iii) ¢(x,E) and D -a—a; ¢(x, E) are continuous at x = X, 2 <1< N-1.

Let & be the set of coupling conditions defined by Eq. (2.22) and
conforming to Eq. (2.24). Then, we define basis functions in the space

Hﬁ(w) for 1 < m <2 and my > 1/2 as follows (see Fig. 2.5)
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P + +
6 px E
(D—I> u; (x) ug (E), I
pX
P~ Ppt
(i) L X (x)u T (E) I
D 1 g
P Pg I
vy (D) = 4 b (2.25)
’ (_§_> 5 LB (m) I11
Dinp i g
P, )
p_+ p
(——Q—) u = (x) u E (E) ., Vv
Py L g

where 0 < P < mX—=1 and 0 < pEs mE—l° 6 is a normalization constant

. 9 Pyt Pgt
and usually is taken to be D =~ 1. u; (x) and ug (E) are univariate

element functions and are defined by Eqgs. (2.4), (2.6), (2.7) and (2.8).
The constructed basis functions for various degrees of polynomials

in x and E are illustrated in Fig. 2.5. Note that the basis functions
P, PR
i,g

Eq. (2.24). Also note that the basis function, in which mpg = 1/2, leads

u {(x, E) with m_ = 2 and me = 1 satisfy the conditions specified by
to the conventional multigroup approximation. In this case, the basis
functions are not continuous in the energy domain.

We further comment on the definition of the basis functions. In
general, the diffusion coefficient is dependent on the energy and space
variables. The proper basis functions, which satisfy the requisite
cbnditions Eq. (2.24), are then defined by Eq. (2.25) by permitting D to
be a function of both energy and space. However, when % is- not a

constant, the resulting basis functions do not belong to the space Hm(;'r)

and thus Theorem 2.4 cannot be applied.
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Ng
" g+1
11 I
i g &
I 1v
T F g— 1
E
— [aN]
1 I 1
£a| £a] 1 i-1 i i+1 N
g g

my =1 '/,\\,( _
N
R VAN
N/

Fig. 2.5. Energy- and Space-Dependent Basis Functions: Example (2.2)



51

Example 2.3

Consider © = [a,b] X [c,d] in a two-dimensional space and let 7 be
the partition of @ as defined by Eq. (2.17). Leti = (i, iy). We designate
the mesh elements surrounding r,as shown in Fig. 2.6. And assume
that the diffusion coefficients are constant in each element.

In this example, we are interested in generating practical basis
functions in two space variables for the approximation of neutron fluxes,

which satisfy the conditions:

(i) o(r) € C;(n), t > 2m,
0 (2.26a)
(ii) ¢o(r), D o0 ¢(r) are continuous at element interfaces,

where 8_?1 denotes the derivative normal to the interface. Hence, we
define % as the set of coupling conditions, denoted by Eq. (2.22), which
conforms with the continuity conditions, Eq. (2.26a). Thus, we consider
the selection of basis functions in the subspace an{/(ﬂ) for mX=my=1 and 2.

First, we consider the space of bilinear functions H‘?{l‘ 1)(77). Then,

there is one basis function at each mesh point which is defined by

u?+(x) ug+(y) , I
u?~(x) ug+(y) , II
u(iO,O)(X’ y) = T (2.27)
u(i)-(x) ug-(y) , 11
u?+(x) u?-(y) , v

N
where ugi(x)J u?i(y) are defined by Eq. (2.7). ugo’o)(x, y) is continuous;

however, it does not satisfy the continuity of D % ¢ in Eq. (2.26a).
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Next, we consider the bicubic space, Hzﬂg 2)(7r). The basis functions
in H‘g’ 2)(7r) depend on the diffusion coefficients surrounding r,. Thus,

we consider two cases separately.
Case (1). DIDIII = DIIDIV
This condition is satisfied for any interior mesh points or interface

points except the singular points. Proper basis functions are given by

(see Fig. 2.6)

u* @ u iy . I
upn(x) up+(y) s I
(0.0) i i

u; ) =9 o 0- (2.28a)
uy (x) uy (y) > 11

u(i)+(x) ug_(y) s v

N

6 1+ 0+

Di_ uiln(x) u?+(y): II
(1,0) II
us O r, D) = < (2.28b)

1- 0-
ug (x) u; (y), 111

U‘Q

II

0-

. G I A

1+
LD—I u; (x) u

0 6 0 2 .
or = and —=— may be replaced by =— and =— , respectively.
Dy Pn Drv Do
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DO_ u0+(x) u.1+(y) , I
i
II
w0 ul ) I
b i
(0,1) -
u; (r,D) = < (2.28c)
DL u?—(x) ui‘(y), 111
III
Di— uil+(X) uil_(y) ) 1Y
11T
or 66__ and Di_ may be replaced by Di and D_O__ respectively.
11 II1 I IV
/
iul+(x) u1+( ) I
D; ‘i i WV
o 1= uf(y) . 11
i b i
(1,1) _
uy (r,D) = ﬁ (2.28d)
6 1- 1-
= u; (x)u; (y), I11
D 2 :
_ﬁQ_ ui1+(x) uil—(y) , IV
v

6 denotes a normalization constant and is generally taken such that %N 1.
u?i(x), uli)i(y), p=0,1, are univariate cubic element functions defined by
Eq. (2.8). The basis functions satisfy the interface conditions Eq. (2.26a)

for the neutron fluxes.

Case (2). DIDIII # DIIDIV

In this case, r, is a singular point. When DIDIII * DIIDIV’ it is easy

to show that the interface condition (2.26a) permits ¢(r) to have only

9 _ 0 _
% ¢(r,) = 3y ¢(r)) =0.
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(0,

i 1)(3) and ugl’o)(g) can be suppressed and

Therefore, in Eq. (2.28), u
the proper basis functions in the space Hi(ﬂ) consist of two functions,
ugo’o)(_r:) ;  Eq. (2.28a),

(2.29)
u(il’l)(g, D); Eq.(2.28d) .

At singular points, where DIDIII + DIIDIV’ the acceptable Hermite
interpolation data must include a—{z{ qS(gi) = % ¢(£i) = 0, so that the basis
functions in Eq. (2.29) are adequate for the interpolation problem. The
sets of basis functions defined in cases (1) and (2) are compatible with
the conditions in Eq. (2.26a) and they form complete bases in Hﬁ(n).
Furthermore, Theorem 2.4 applies for interpolations of functions using
the basis functions defined by Egs. (2.28) and (2.29).

In solving neutron diffusion problems, the singular solution requires
special consideration if high-order accuracy is to be obtained. However,
in this thesis, no attempt is made to improve the solution with singulari-
ties for the reasons mentioned in Chapter I. As we shall see in Chapters
IV and VI, we can reformulate the neutron diffusion problem to a weak
form where the current continuity condition appears as a natural inter-
face condition. In the weak form, acceptable solutions are the functions

which satisfy the conditions (cf., Sec. 4.1, Chap. IV):

(i) ¢(r) is continuous in €,
(2.26b)

(ii) V ¢(r) is square integrable in Q.

The bilinear function defined by Eq. (2.27), and the bicubic functions
defined by Eqgs. (2.28) and (2.29) satisfy the above conditions and thus

are acceptable for calculations with the weak formulation.
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However, since the analytic solution at singular points are not
necessarily required to satisfy a—{; (i)(gi) = —(,% ¢(£i) = 0, the use of the
basis functions defined by Eq. (2.29) can distort the solution and can
lead to poor approximations, especially for coarse mesh calculations.
The condition (2.26b) relaxes the current continuity condition, and thus
it would be desirable to choose basis functions at the singular point
which are continuous but for which the first derivatives are unspecified.
The reason for this particular choice is that we want the approximation
schemes themselves to choose the optimal coupling relation.

By using the procedure described in this section, it is possible to
generate various types of basis functions in subspaces of H(2)2)(7r),
which satisfy the condition (2.26b) and partially the current continuity
condition. Below we give an example of sﬁch a set of basis functions,
which has a minimum number of functions but whose first derivatives

are not unnecessarily restrained.

%) = Eq. (2.282) (2.30a)
uil_(x) u?+(y) , I1

w1700 = ¢ ul 7w, mo (2.30b)
0, 1&IV
Wt oy, 1

u(il_k’o)(_r_') = ui1+(x) u?'(y) , v (2.30c)
0, I & III
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u?-(x) uil_(y) , 111
w1y = ¢ uPe ul i), v (2.30d)
0, I&II
u?+(x) uil+(y) s I
u§0’1+)(£) = < ug-(x) uil+(y) s 11 (2.30e)
Lo, I & IV
WY@ = Bq. (2.289). (2.301)

These functions are also shown in Fig. 2.6.b. There are six independent

u(.O’O) (1,1)
i

basis functions according to Theorem 2.5. and u;

satisfy both
the continuity of flux and currents. The remaining functions are partially

coupled basis functions, and so the interface conditions are partially

(1-,0)

satisfied by these functions. Note that the coupling between uy and
u§1+’0), and ugo’l—) and u§0’1+) are unspecified so as to be determined

by a particular numerical scheme, say the Galerkin scheme. Numerical
results (c.f., Sec. 4.4, Chap. IV) indicate that approximations using
these sets give better convergence on flux shape and eigenvalues than
those using basis functions, whose derivatives are erroneously fixed,
such as the functions given by Eq. (2.29) or Set B in Example 4.4 in
Chapter IV.

In this example, we have limited the diffusion coefficients to piece-
wise constant functions. However, they are generally dependent on the

space and energy variables and the proper basis functions, which satisfy



1 +1
y
I I
iy &
I | IV
i-1
y
i -1 i i +1
X
(0 0) (1 0)
(0 1) (1 1)

AW .\/\

(a) Eq. (2.28)

(0 1+)
< :_ u(l’l) _:
*A. I i
| I
| %x |
(0 1-) | I
l |

(b) Eq. (2.30)

Fig. 2.6. Bicubic Basis Functions: Example 2.3
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the requisite continuity conditions Eq. (2.26a), can be obtained by using
variable diffusion coefficients in Eqgs. (2.28) - (2.30). However, the
resulting basis functions do not belong to the Hermite space Hm(n)

(cf., Example 2.2), and thus Theorem 2.4 cannot be applied in this case.
In summary, for solving the weak form of neutron diffusion prob-
lems, we may use the set of bilinear basis functions defined by Eq. (2.27),

and the set of bicubic basis functions defined by Eq. (2.28) for all mesh

points except singular points and Eq. (2.30) for singular points.

Generation of basis functions on the boundary can be considered as
a special case of the above considerations. These are obtained by
coupling element functions whose supports are nonzero. For example,
we consider a rectangular polygon as shown in Fig. 2.7. The basis
functions at point A coincide with element functions in region I. The
basis functions at point B are obtained by coupling two element functions
in regions I and II (cf., Egs. (2.23a,b)). Finally, the basis functions at
point C are obtained by coupling three element functions. defined on
regions I, II and III.

We have confined our consideration to two-dimensional spaces.
However, the basic procedure for generating basis functions at regular
and singular points can be carried over directly and applied in three-

dimensional spaces.
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Fig. 2.7. Basis Functions on Boundary Points of a Rectangular Polygon
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Chapter III

NEUTRON SLOWING-DOWN PROBLEMS

The principal application of the finite element method, in this thesis,
is to few group diffusion theory problems. The few group equations are
obtained from the continuous energy problem by some form of discreti-
zation of the energy variable. The customary practice in the field is to
associate some spectrum with each region of the reactor and use this
spectrum to generate few group cross sections, based on the conser-
vation of reaction rates.

The spectrum used for the determination of group constants is found
by solving a space-independent neutron slowing-down equation. Obviously,
the truncation error in the energy variable is determined by the numeri-
cal procedure used in solving for the spectrum. To date, most spectrum
codes use many energy intervals and simple step function behavior of the
spectrum over each interval.

In this chapter of the thesis, we shall generalize methods of com-
puting spectra to include the use of piecewise polynomials over energy
intervals. The usual procedure will appear as a special case of the
general method. A particularly important result of the application is
the development of rigorous error bounds for the spectrum.

The application of the finite element method to spectrum problems
will serve as a simple prototype of univariate expansions. The pro-
cedures to be discussed carry over to the spatial and temporal variables.

We remark that we do not obtain specific numerical results in this
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chapter, but rather use this problem as an example, which extends to

the more important treatment of the space and time variables.

3.1 Basic Equation

The basic equation for the neutron slowing-down problem can be
obtained from the energy-dependent diffusion equation, Eq. (1.1),
neglecting the space and time dependencies. Then, the basic equation

can be written as

TH(E) = Z(E)$(E) - fﬁdE' = (E'~E)¢(E")
—@ J dE" vEL(ENHEN
£
= Q(E) . (3.1)

Definitions for Eq. (3.1) are developed in Chapter I. If Q(E) = 0, then

Eq. (3.1) defines an eigenvalue problem where M\ is an eigenvalue.
Frequently, activation experiments are performed to investigate

the neutron spectrum. In this case, the governing equation can be

written as

J dE'z (ENNMEN = A k=1,2,...,K, (3.2)
£ ’ -

where Zk(E') is the cross section for a particular reaction and Ak is the

activity measured in the experiment for the k-th element. Equation (3.2)

is considered as a special case of the general equation (3.1). The

methods developed in this chapter could thus also be used with Eq. (3.2).
In order to develop approximations, we need the following defi-

nitions. We define the inner product by
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(u,v)dgr = {guvdE

and the Lz—norm by
lul :
u = (u, u)
1.2 £

If ¢ is the solution to Eq. (3.1), then ¢ satisfies

'(T¢,v)£ = Q. V), (3.3)

for all v(E) € L2(£).>‘< On the other hand, in order for Eq. (3.3) to be
satisfied for all ve& 142(£), T¢=Q must be true. Thus, Eq. (3.1) and
Eq. (3.3) are equivalent in the L2(£) space.

The operator T is said to be positive definite [41] if there exists a

positive constant vy such that

(T¢, ¢) > 7||d>||2 . (3.4)
L2(g)

Positive definite operators are generally required to be symmetric.
However, under the assumption (1.2) on cross sections, a certain class
of nonsymmetric integral operators in reactor physics can also be shown
to be positive definite.

Now, we show the uniqueness of the solution to Eq. (3.3) as a result

of the assumption (3.4). Assume that both d)l and ¢>2 are solutions. Then

L (j: ) is a space consisting of all functions defined on £ which are
measurable and for which |v(E)|? is integrable.
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T(p,-d,),V =0,
(106;76v)
Puttingv=¢>1—¢2,

(T<¢1—¢2>,¢1-¢2)£ = 0.

From the assumption Eq. (3.4),

2
Tlé1-051, < <T(¢1"¢2)’¢1'¢2)£ = 0

and this requires that d)l = q52. This leads to the following lemma.

Lemma 3.1. If the operator T satisfies the inequality (3.4), then the

solution to Eq. (3.3) is unique.

3.2 Approximation

In this section, we shall develop approximation methods for the
solution of Eq. (3.3). We assume that the solution is sufficiently
smooth.,* We consider an expansion of the neutron flux and cross
sections in terms of piecewise polynomials in energy, and then aﬁply
the Galerkin process to determine the approximate solution. Finally,
we show the uniqueness of the solution and establish a theorem,

Theorem 3.1, on the convergence of the approximate solutions.

>kThe neutron flux is shown to be discontinuous in some cases. For
example, the neutron flux exhibits sharp discontinuities when neutrons
from a monochromatic source are slowed down by scattering in media
of mass greater than unity (Chap. VI, [23]).

»



64

Let 7(£) be a partition of £ = [Emin’Emax] such that
e Epyn T By <Ep S SEn, T Fmay
. G D« .
Let S, be a trial space and let {ug(E)} be a basis in S,. In particular,

g=1
we select SG as a subspace of the Hermite space Hm(w(};’)) as considered

in Chapter II. The basis functions in the Hermite space may be reordered
in a linear fashion as {ug(E)}(g}—l .

Let the approximate solution ?b(E) in SG be represented by

G
#E) = ) a_u (E). (3.5)
— 8 8
g=1
Cross sections are frequently given by experimentally measured numer-
ical data. In such a case, it is desirable to represent the cross sections
by continuous functions using certain interpolation schemes which give

the same order of accuracy as the approximation. We may choose the

Hermite interpolation (cf., Chap. II) in the trial space for ?d) If Zg and

Zgg' are proper interpolation data, then the cross sections can be repre-
sented by |
G
2(E) = E 2 U (E) (3.6a)
G G
> = ' .
E'~E) gél g'2:1 Zgg,ug(E) ug,(E ), (3.6b)

The expansion coefficients for the approximate solution a)(E) can be
determined by applying the Galerkin method (cf., Section 1.3, Chapter I)

to Eq. (3.3):

(T?b,ug) = @Q.u) for g=1,2,...,G. (3.7)
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This procedure leads to G linear algebraic equations for the coef-
ficients ag°

We remark that if the approximate kernels, as given by Eg. (3.6a,b),
are used in the operator T, then T should be replaced by ’f‘, which repre-~
sents the approximate operator. Furthermore, because of the physical
fact that we cannot have negative reaction rate, we assume that the con-
dition (1.2) is applied to the approximate solution QS(E) itself, although
not to the individual components of ?()(E).

In matrix form, Eq. (3.7) can be written as

LE-SE+%F§_=3 (3.8)
where
Lir Lige - brgan
. N
. f )
Loy Lo : \_/
L = K
Lo 1 : Ls-¢'.q
| O LG’G—GV ° . . LGé N
Si1- - - - Sia
S = )
| Sg1- - - - Saga
Fi - - - - Fig
| . |
| Fgio - - - Fgg)




66

a= col{alsaz, e gaG},
g=col{(Qup,. @Quy,....(Qug)},
L

ggi = ((zTu-gis ug)£ k]

Sggr = (fdE'ZS(E’—»E)ug,(E')yug(E))(g )

Foor = (x(®) [ B vE(®) ugy(E'),ug(E)>£.
The values of inner products for the basis functions in Hermite spaces
can be found in Appendix B.

The matrix 1_4 is symmetric and positive definite and has a band
structure whose band width (2G’+ 1) depends on the degrees of the poly-
nomials used. For the Hermite polynomial space of degree 2m-1
{cf., Chap. II), there are m basis functions at each mesh point. In this
space, the half band width G' is given by 2m-1. The matrices S and F
are in general nonsymmetric and do not have band structures. We
remark that for m=1/2 or piecewise continuous functions, Eq. (3.8)
leads to the conventional method for spectrum calculations.

If Q = 0, then Eq. (3.1) defines an eigenvalue problem, and the

corresponding discrete equations are given by
1
=~La+Sa—=}:Fa (3.9)

where \ is an eigenvalue. In fact, the eigenvalues are the root of the

characteristic equation

det

“L+ 8 -

> |

120"

The solutions to Eqgs. (3.8) and (3.9) can be obtained by direct or iter-
ative methods for linear algebraic systems as discussed in [35], [39]

and [40].
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The uniqueness of the approximate solution to Eq. (3.7) can be shown
similarly as for the analytic solution, provided that the condition (3.4)
holds. We now show that the numerical stability of the approximate
solution to Eq. (3.7) also results from this condition. From Eq. (3.7), it

is easy to show that

(T4,9),=(Q,9),.
From the Schwarz inequality [25]

Q& <Nl , 13l , -

| £ L2 Lz
Hence,

A 2 A A A~
61175 < (Té. 9, < QI 5 4]l
1,2 £ L2 L2

and

- 1
II¢IIL2 <3 IIQHL2 -

This shows that the solution is bounded by an upper limit which includes

the source and thus leads to the following lemma.

Lemma 3.2. If the inequality (3.4) holds, then the approximate solution

to Eq. (3.7) is unique and the numerical process is stable.

The approximation error for the solution is stated in the following

theorem. The proof is given in Appendix A.

Theorem 3.1. Assume that the inequality (3.4) holds. Let ¢(E) be the

solution to Eq. (3.3) and #(E) € CYg). If $(E) is the solution to Eq. (3.7)
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in the space Hm(n(ﬁ)), then ?¢(E) satisfies

o -3l < KAE®
LOO

where yu = min(2m, t), AE = max ]Ei+1—Eil and K is a constant independ-
i
ent of AE.

Theorem 3.1 states that the approximate solution converges to the ana-
lytic solution as O(Ezm) as AE - 0 whent = 2m. For example, for
m=1/2 or piecewise continuous functions, the method yields convergence
of O(ﬁl).

We conclude this chapter with a remark on coarse mesh calculations
using the finite element method. In general, nuclear cross sections
contain fine structures due to the presence of resonance reactions. For
high accuracy calculations which require taking into account for effects
of the individual resonance, it is necessary to divide the energy interval
into a number of small mesh intervals which are comparable to resonance
widths. However, the finite element method also allows us to use rela-
tively large mesh intervals as shown in Fig. 3.1. In this case, each mesh
interval may include a number of resonances. In the Galerkin scheme,
which leads to the matrix equation, Eq. (3.8), the resonance effects can
be accurately included in elements of the coefficient matrices by evalu-

ating inner products.
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Chapter IV

STATIC NEUTRON DIFFUSION PROBLEMS

In this chapter, we consider the solution of time-independent
diffusion problems, using the finite element method. In Section 4.1,
we shall first review the diffusion equation in the continuum, and |
present an alternative equivalent formulation of the problem. The
alternative or ''weak' formulation is more amenable to applications of
the finite element method than the integro-differential formulation of
the problem. We then present a few mathematical preliminaries
dealing with the uniqueness of the problem solution.

The principal application of the finite element method is developed
in Section 4.2, where we discuss both energy and spatial variables.
The conventional multigroup method appears as a special case of the
general method developed in this chapter. We present a theorem
which showsv the error bounds for the approximation. In Section 4.3, we
discuss some numerical methods for solution of the linear systems of
equations developed in Section 4.2.

In Section 4.4, we present some illustrative numerical results in
one and two space dimensions which indicate the power and utility of

finite element methods in reactor static problems.

4.1 Basic Equation

The time-independent neutron diffusion equation can be written

from Eq. (1.1a) as
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il

T¢ = -V-DV4(r,E) + T (r, E)4(r, E)

- [ 4B 3 (r, EE)o(r, B) - £ X(E) [ dE’ vE(r ENg(z, E')

£ £
= Q(r, E) (4.1a)
with boundary conditions
= —a— =
$(r.E)| =0 or Do o, E)|,, =0 (4.1b)

and
¢(r, E) and D~% ¢(r, E) continuous on the material interfaces

(4.1c)

where -5% represents an outward normal derivative at the surface.
Other notations are developed in Chapter I. If Q(r, E) = 0, then Eq. {3.1a)

becomes an eigenvalue problem where N\ is an eigenvalue.

The path we shall follow to generate approximate solutions to
Eq. (4.1) is to expand ¢ in terms of some suitable basis functions.
However, if we require the basis functions to have the same differenti-
ability properties and continuity properties as ¢ itself, then we will
have great difficulties finding the basis functions. In order to avoid
these difficulties, we consider another formulation of the problem which
weakens the continuity conditions and permits the use of a much broader
class of expansion functions.

We will use the inner product and the L2-norm as introduced in the

last chapter. We have, for the space-energy problem

(u,v)—Ef dE f dV uv
£ Q

and

1
2

|u = (u, u)
||L2
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We also define a bilinear form a(u,v) as

a(u, v) = (DVu, Vv) + (ZTu, V)

~ ({g dE’ zS(E'»E)u(E'),v) - %(X(E) {g dE’ vzf(E')u(E'),v).

In order for the terms of a(u, v) to exist, we must require that u and v
be continuous and have first derivatives which are square integrable.
We define Wl(Q) as the set of all functions which satisfy the above con-
ditions,* In view of the boundary conditions in Eq. (4.1c), we shall use
a subspace of Wl(Q), say Wé(Q), whose elements satisfy the boundary
conditions, Eq. (4.1Db).

The weak formulation [17],[42] of the diffusion problem may be

stated as a problem of finding ¢ in W(ID(Q) satisfying
a(¢,v) =(Q,v) (4.2)
for all v in the space W(l)(sz). Any ¢(r,E) which satisfies Eq. (4.2) will
be called a weak solution to the diffusion problem.
We observe that any ¢(r, E) which is a solution of Egs. (4.1a,b, c) is
also a solution of Eq. (4.2). To demonstrate this, we consider inte-
gration by parts of the term

(DV$, wv) =- ) AV (Y- DY$, V),

JARY))

B
+ ; fa% ds (D 2 ¢,v)£

“The space WI(Q) is called a Sobolev space [41]. The norm in this space is
1
detined by [ull ; =( [ (vuu? dV)? (cf., Eq. (4.13).
W (£2) Q
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where the last term on the right is the sum of the surface integrals for
each subregion Qg of Q. Since ¢ satisfies Egs. (4.1b, c¢), the summation

vanishes. Thus, the equation (T¢,v) =(Q, v) leads to
a(¢p,v) =(Q,v) for any v in Wcl)(z) .

Thus, ¢ is a solution to Eq. (4.2).
Conversely, we now show that if the weak solution is in the domain

of the operator T, that is, twice differentiable in each ©,, then it also

2)
satisfies Eqgs. (4.1a,c).
Integrated by parts, the weak form Eq. (4.2) can be written

)
J e

av ([Té-Q], v) ! as(p2¢,v) =0
[¢Q]V£+;faﬂ (an¢v)£

2 2

for allve Wé(Q). First, we choose v such that v is in Wl(Qﬁ) and

vanishes outside the region 92 including the boundary 89,2' Then, we

obtain

T -Q =0, r & Qg .
Similarly, we can show that this equation holds in all Qﬂ, for
£=1,2,...,L. Substituting these equations back in the original

equation, we further obtain
Y [ bpLgas=o.
on
L 95y,

Thus, we have shown that the continuity conditions for D '5% ¢ (current)
in Egs. (4.1a, ¢) are Euler equations in the variation of v in the weak
form. Therefore, the weak solution satisfies Eqgs. (4.1a,c). For this

reason, the current continuity condition is called the ''natural interface

condition."
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What we have done is to write the diffusion equation in a form for
which the conditions on ¢ are less restrictive than the original con-
ditions. However, If ¢ satisfies the original boundary conditions and is
sufficiently differentiable, then ¢ satisfies the original statement of the
problem.

In view of the less restrictive conditions on ¢ in the weak form of
the problem, we should expect that the class of appropriate basis
functions is much larger. ¢ is only required to be an element of the
space W(l)(SZ) and may not satisfy the current continuity condition which
appears as a natural interface condition. These allow the piecewise
linear function to be an acceptable function in the weak form. In fact,
the weak form is very well suited for the use of piecewise polynomials
as basis functions, as we develop in subsequent sections.

The bilinear form a(¢, ¢) is said to be positive definite [41] if there

exists a positive constant ¥y such that

a(9, ¢) > v||¢>||iz : (4.3)

In reactor physics problems, positive definite bilinear forms are not
necessarily required to be symmetric. The assumption (1.2) for the
integral operator T allows also a certain class of nonsymmetric bilinear
forms to be positive definite.

Analogously to Lemma 3.1, we can show the uniqueness of the weak

solution.

Lemma 4.1. If the bilinear form satisfies the inequality (4.3), then the

solution to Eq. (4.2) is unique.
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4.2 Approximations

In this section, we shall develop approximate methods for the solution
of the weak form of the neutron diffusion equation, Eq. (4.2). We consider
expansions of the flux in terms of piecewise polynomials in both space and
energy. We shall first give an abstract summary of the procedures to be
followed, and then develop the treatment of each variable in great detail.

We denote the region of configuration space as 2 and the energy

interval as £ = [E We assume our configuration space to be

. LB ].
min’  max
one of the orthogonal coordinate systems, for example, a Cartesian,
cylindrical or polar coordinate system. Let £ and Q be partitioned into

elements such that

ﬂJ-:: Emin=E1<E2<"'<EG=Emax’

Tqt 8) STy <Tyg< '<r1N1'b1’
a9 TTgy <Tgy < '<1"2N2=b2’
anzrn1<rn2<"’<rnl\1n_bn

In particular, in partitioning £, we assume that the partitioning lines or
surfaces coincide with the material interfaces such that the material
properties in each element are continuous either because of the nature
of the reactor or through the application of some homogenization pro-
cedure. This allows us to consider each subregion with uniform
materials as elements of o and thus to use the method developed in this

chapter for coarse mesh calculations.
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We consider a finite dimensional trial space for the approximation
of the solution. In particular, we are interested in approximating in
subspaces of the Hermite space Hm(WQX 7r£), whose elements satisfy
the continuity conditions compatible with the interface conditions,

Eq. (4.1c). The generation of basis functions in the subspace is dis-
cussed in detail in Chapter II, especially in Examples 2.1 -2.3. We
then impose boundary conditions on basis functions in r which lie on
the physical boundary. For notational simpiicity, we reorder the basis
functions and represent them using linear indices. Let the basis

functions be represented by

Vig(E:E) = u(r, D(E))ug(E) , 1<i< N, 1< g<G,

where N and G are the number of basis functions in space and energy,
respectively. We note that the spatial basis functions ui(_r;, D(E)) are
functions of the diffusion coefficient, and thus functions of r and E.
Since ui(z, D(E)) is separable in r and E (cf., Chap. II), we rewrite

vig(g, E) as

Vig(r-’ E) = vi(z) vg(E) , 1<i<N, 1< g<G.

The approximate solution, %(3, E), is then represented as

. G N
B, E) = ), ), 2y vi) V(B (4.4)
g=1 i=1

The expansion coefficients can be determined by applying the Galerkin

scheme to the weak form of the diffusion equation, Eq. (4.2):

a(g, Vig) = (Q’Vig)’ 1 S 1$ N, 1<g<aG. (4.5)
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This procedure leads to NxG linear algebraic equations for the coef-
ficients a,
18
Our principal application of the method is to few group models, so
we shall next consider the energy treatment to generate the few group

equations and then turn to the spatial treatment.

4.2.1 Generalized Multigroup Equations

We consider approximations of Egs. (4.1a,b, c¢) in energy. The
method discussed in Chapter III is directly applicable in this section.
We define @g(g) as
N

@g(g) = iz/l aigvi(—ll) . ‘ (4.62)

Equation (4.4) can then be written as

G
¢(r,E) = g;l @g(z) vg(E).

We apply the Galerkin scheme to Egs. (4.1a,b, c¢), such that 3) satisfies,

for g=1,2,...,G,
T $, = (@, , | 4.1
(T ¢ Vg)£ (Q vg)£ (4.72)
(15 vg)£ =0, (4.7b)
(?{),vg) and (DaS,vg) continuous on the material interfaces, (4.7c)

£ £

where (u,v)£ = [E uv dE. Equations (4.7a,b, c¢) lead to the generalized

multigroup equations which are given by, for g=1, 2, ..., G,
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G G X

- . ‘ - -8 =
’Ely Dt V2,(1) + ) (T Tega™ vng,} 2,(r) = Qu(r)
g =

g'=1
(4.8a)
with boundary conditions
3,(r) log =0 (4.8b)
G\ )
q;g(ﬁ), Z Dgg' on @g,(,}f‘) continuous at material interfaces, (4.8c)
g'=1
where

Dgg'_(ﬁ) = (D vg,(E), Vg(E))£ ,

Zngt(E) = (ZTVg,(E), Vg(E))ﬁ,

2 g (@) = ([g dE' 3 (E'~E) v, (E"), Vg(E)>£ )

= E E
(x( ),vg( )

Xg -

Tpgr () = J, dBT BN,V (B,

Qg(g) = (Q(r, E), vg(E))£ .

The conventional multigroup equations [22] -[24] are obtained as a

special case of Egs. (4.8a,b,c). In this case, we specify

S(E), Egs EsEgH,

v (E) =
g 0 otherwise ,

3

where S(E) represents an infinite medium neutron spectrum. We then

obtain the conventional multigroup equation, for g=1,2,...,G,
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X
% Vi 2}t = Qg (4.92)

G
-V.D ¥V + - ) , +
VD, Ya,(r)+ 2,2, ,Zl{zsgg,@g,
g =

with boundary conditions

2,0) o = 0. (4.9D)
@g(;‘) and Dg 8_?1 @g(g) cqntinuous gt material interfaces, (4.9c)
where
D ) o
g gk' gl
Z =

6 ., 'y .
Tg “gg'“Tgg'

Here 6 _ , is the Kronecker delta.

g8

4.2.2 Spatial Approximations
In this section, we consider the approximation of the solution to
the generalized multigroup equations (4.8a,b, c).

From the definition in Eq. (4.6a),
N
<1>g = Z aigvi(f_).
i=1

We apply the Galerkin scheme to the weak formulation of (4.8a) such that

® satisfies

g
G X

\ ; - -Bvz. le.,,v.) }

L AP gy T2y Tt (B pgpimEggnr™ X VEggr1Bgr vilg

=

= (Qg,vi(g))ﬂ, i=1,2,...,N, (4.10)

where (u, v)Q = fQ uv dV. Rewritten in matrix form, Eq. (4.10) becomes

{L-S—%F}g=g, (4.11)



where

Lipn Lag- - Ly g
Loy Lo . Q
L= . : :
Lot |
O ' La-a' g
- “6g-ar 0 tae |
- _
S11 516
s =| . ' ,
| %G1 5GG |
Fii- Fia
F=| . ' )
| Far e

o
!

= CO1{§1’32’ ... ’EG}’

q= COl{ﬂyﬂg’ e ’ﬂ(}},

(L giir = (Dggr IV3,(0), Ty, L+ (B v (0), vy,
(S gyr = (ZggigrVirtD) vy,

(Fgg’\)ii' = xg(vng,vi,(g), vi(r)g

a, col{agl,agz,...,agN},

[,o
[

g col{ (Qg,vl)Q, Cee (Qg’ VN);Z} .
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The matrices L, S and F are block matrices. These matrices have

the same properties as those defined in Eq. (3.8) in Chapter III, except

that in this case the matrices have submatrices as their elements. The |

submatrices L. .,, S and F ., are sparse matrices with band

gg' Tggh gg'

structures. The band width depends on non-zero couplings between the

spatial basis functions through inner products. For example, in one-

dimensional space, if there are m basis functions at each mesh point,

the half band width is given by 2m-1. In two-dimensional space, if

there are m2 basis functions at each mesh point, then the resulting
submatrices are block tridiagonal matrices, which have band structures
with half band width 2m2-1.

As an example, let D and I, be piecewise constant and {vi(g)} be

T

piecewise linear functions in one space variable. Then the matrix L

gg
can be represented by
(B, 22T Dy P
h+ 3 ) h+ 6 ) O
L= ( D- ZT ) (D D+, h-Zp- DR __D_++ZT+H+)
g8 3 3 ) >\ h+ 6
O (-&fﬁi‘“) (D=, 22017

| " h- 6 h- 3 )_

where ht = |x i+1 xil . Note that the V-DV and ZT terms are related to

function values at three points.

ventional 3-point difference formula for

It is interesting to compare with the con-
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X., 1
i+l
S TP (-Y DY+ 9) dx

1=3

o~ D=, (D=,Dt 1. . .1 D+
~ g b H(pm gy tgZph T3 Eptht) é - 5 ¢

where

- 1
Xl:t“l‘ = Xl + z(h:t) .

[

In this equation, the V-DV term has the same representation as in ng, ,
but the ZT¢ term is represented by a single point relation. In integrating
ZT¢, we have assumed that ¢ is constant within [Xi—%’ Xi+% ], and this
assumption implies the use of small mesh sizes. However, in the finite
element method, the assumptions for constant ¢ or ZT are unnecessary
and the matrix elements can be determined analytically. For this
reason, the finite element method allows us to use larger mesh elements
than those associated with the finite difference scheme. In a two-
dimensional problem, the finite element method using bilinear functions
yields a 9-point formula, whereas the finite difference scheme gives a
5-point formula. The analogy for the V:-DV terms between the two
methods which we have seen in one-dimensional problems can no longer
be established in two-dimensional problems.

If Q(r,E)=0, then Eq. (4.1a) defines an eigenvalue problem.

Equation (4.11) then becomes

{L-S{Fla=0. (4.12)

N\ is an eigenvalue which is determined by finding roots of the character-

istic equation

|lL-s- 17| =o0.
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We now consider the uniqueness of the approximate solution to
Eq. (4.5). If the bilinear form a(¢, ¢) satisfies the inequality (4.3), then
we can prove the uniqueness of the approximate solution in a manner

similar to the proofs of Lemmas 3.1 and 4.1.

Lemma 4.2. If the bilinear form satisfies the inequality (4.3), then

the solution to Eqg. (4.5) is unique.

It is possible to provide analytic estimates of the error in the ap-
proximation to both the source problem and the eigenvalue problem.
In the following theorem, the error bounds for the source problem are

presented.

Theorem 4.1. Assume that the inequality (4.3) holds. Let ¢ be the

solution of Eq. (4.2) and ¢ C (W\XWF’) where t= (t Jtg). If d) is the

solution of Eq. (4.5) in the space H (77 ), where m = (mr, mg),

g
then d) satisfies

l9-3ll ., = K& + K ZEHE
L

where M= m1n(2mr, tr), Mg = min(2mE,tE), Ar = rr:rax Ar and
Y]
AE = max AR 2nd K K, are constants independent of Ar and AE,
g
respectively.

Proof. This theorem is proven in Appendix A.



The eigenvalue problem can be represented, in the weak form of

the equation, as

a(6, ) = b6, 9) - 3 (F9, ) = 0

from Eq. (4.2). Then the eigenvalues are defined by

-1 _Dbl¢,9) _
A = (F¢, d)) - b(¢: ¢):

A1 obld.9) g Gy,
(F9, 9

where we normalize the eigenfunctions such that (F¢, ¢) = (Fa), 3)) =1.

Then

1 A~ ~ A

= o b3, 9) = N LFG, ) - b9, )

>
I

>
!

Il

N L (F($-0+9), d-0+0) - b(3-¢+0, p-+9)

X T(F (G4, 6-9) + X H(Fg/3-9) + X 1 (F($-9), ¢)
+ XHEY, 6) - b(3-6,9-6) - b(g., #19) - b(3-9, 9) - BIPNG) .
Since b(¢, v) - % (Fé,v) = 0 for all ve Wé,

oA = NN EG-9), 3-0) + N HFG-9), )

- b($-9, 9-9) - b(¢-9, ¢) -
If T is self-adjoint, then
N LEG-9), 9) - b(9-6, ¢) = X (Fé, -¢) - b, $-¢) = 0
and thus

N oA = X HEG-9), 3-9) - b(B-0, 3-9) .

We define the norm in the space W1 as
1

2

ul { (vl 2>dVdE},
! éjﬂ W< +u

84
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then from our assumptions on cross sections in Eq. (1.1),

[, 0| < & llall vl
11 wl

|(Fu, )| < KzﬂuHLw HvHLC,o :

Killo-9l , +x llo-3ll% | +xyrlle-3l L +xrllg-dll% non-sele-
N N ! who ! wl ! 12 ! L® adjoint

K'2||¢-$H3Vl + K'2'H¢—$Ik]2jo self-adjoint .

We consider iterative schemes to determine ¢ and \. In these schemes,
the eigenvalue problem is treated as a source problem (cf., Sec. 4.3).
We assume that the iterative scheme is convergent. Then we can apply
Theorem 4.1 to the converged solution. If we assume that Theorem 4.1
applies also to derivatives such that the orders of convergence are

specified similarly as in Theorem 2.4, then we obtain

+ O(A E) non-self-adjoint ,

4m_ -2 4m
o(&zr T )+0(KE' E) self-adjoint | (4.13)

Numerical results (Example 4.1 in Sec. 4.4) show that the order of con-
vergence for the non-self-adjoint case can be better than the conserva-

tive limit predicted above.

4.3 Numerical Methods

We now consider appropriate numerical procedures for the solution

to Eq. (4.11). The source iterative scheme and the Cholesky method,
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which are discussed in this section, are used in a computer program
HERMITE-2D (Appendix D) for eigenvalue problems.

A direct method such as the Gauss elimination method is inefficient
compared to iterative schemes for large systems of linear equations.
We consider the source iterative scheme [43],[44], which is most com-
monly used in reactor physics calculations. In this method, the equation

for the J-th iterative solution of Eq. (4.11) is set in the following form:

G

J+1 1 3

L = —L 1-6 ., +S 4+ F : + > =1:2: see ]
gefe  ~ L ATlgg10ge) ¥yt X Fopitat ap. 8 <

g'=1 (4.14)

where 6gg" is the Kronecker delta. go is an initial guess. In our case,
ng is positive definite and we can use the Cholesky scheme [35],[39],
which always gives a unique factorization of ng in the form

L. =EET (4.15a)
gg

where E is a lower triangle matrix. Let ng = (Qij), E = (eij)' Then we

note that

1l

)
famry

4

D
.

+

+

D

L..
J

IN
-

ﬂij = eilejl + ei2ej2 +...+ eijejj s ]

Therefore, eij can be determined using the algorithm,

-1 1
2 )

e.. R

i3 ik /)

]
A
.
Py
1
o7

(4.15b)

j-1
eij = (ﬁij - kgl eikejk) /ejj ]
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The matrices E and ET possess the same band structure as L By

gg’
using the Cholesky scheme, the numerical inversion of ng is simpli-
fied and it requires only forward and backward sweeps in inverting E
and ET, respectively.

In the eigenvalue problem defined by Eq. (4.12), only the largest
eigenvalue is of interest because it corresponds to the neutron multi-
plication constant in the reactor physics. The largest eigenvalue of
Eq. (4.12) can be determined by the power method [43], [44], [45]
which will be briefly described. Suppose a*J+1 is the (J+1)-th iterative

solution to Eqg. (4.14) with qg = 0. Then, the largest eigenvalue and its

eigenfunction are defined by

C(ATHL T
2 (g g
g

~1J+1
A = Z( *J+1 >:<J+1> > (4.16a)
a ,a
—g )
g
*J+1
J+1 _a
a = )\J-i—l . (4.16Db)

Variants of the definition of X can be found in [45]. Steps defined by
Eqgs. (4.14) - (4.16) are repeated until the following convergence criteria

are satisfied:

al
max —1g—J——1g sea, (4.17a)
i, g aig
J+1 .\ J
A Ml<e, . (4.17b)
)\J A
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4.4 Numerical Results

In this section, some of the numerical results for stationary eigen-
value problems are presented in order to check the theoretical results
and also to test practical aspects of the finite element method. Calcu-
lations were performed using the computer programs HERMITE-1D and
HERMITE-2D (Appendix D).

In examples, the order of convergence is determined from the
numerical results. For example, if ;\i is the approximate eigenvalue
using the uniform mesh size Ari, then the order of convergence u for

the eigenvalue is determined from

(5.18)

where \ is a reference eigenvalue, which is usually the most accurate
eigenvalue obtainable. The orders of convergence, which are listed in
the tables of numerical examples, correspond to average values of u's
which are obtained from Eq. (5.18). We note that Eq. (5.18) is also used
in determining the order of convergence in temporal approximations in

Chapters V and VL

Example 4.1. One-Dimensional Eigenvalue Problems

In this example, we consider one-dimensional eigenvalue problems
previously considered by Wakoff [21]. In [21], the multigroup equations

are written in the following simple forms:
d d _ I
"E:‘;(%&%)+Giui"71+-1ui+1’ i=1...,n-1,

d d _
- ﬁ(pna—xun) t oty T NTiug
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where u, represents the eigenfunction in the highest energy group and

\ =

kl is the eigenvalue.

eff

We selected two examples from [21], a one-group two-region prob-
lem and a two-group two-region problem. We computed the largest
eigenvalue using the cubic piecewise Hermite polynomials as defined
by Eq. (2.14).

Table 4.1(a), (b) compares eigenvalues of the two examples with
the results obtained by Wakoff. Eigenvalues computed by the finite
difference scheme are also included for comparison.

We note that both the modified spline space and the Hermite space
give convergence of order O(Ax6) (cf., Eq. (4.13)), whereas the finite
difference scheme gives O(sz) convergence. We also note that the

non-self-adjoint problem (Table (b)) has the same order of convergence

as the self-adjoint problem (Table (a)).



Table 4.1. Eigenvalues on One-Dimensional Problems:

Example 4.1

(a) Eigenvalues of One-Group Equation:

90

Finite Difference

Ax Modified Cubic Sp]ineﬂ< Cubic Hermite
1/4 4.8100921110 4.8100919803 4.7750060178
1/8 4.8100900323 4.8100900308 4.8011066072
1/16 4.8100899964 4.8100899964 4.8078313856
1/32 4.8100899959 4.8100899959 4.8095245373
Order of 5.92 5.96 2.15
convergence
“Data from G.I. Wakoff [21].
(b) Eigenvalues of Two-Group Equations
3 40,3 |
Py = . Py = 3(%’1] 01=02=0, 71=72=1
Ax Modified Cubic Spline Cubic Hermite Finite Difference
1/4 71.5395485397 71.5395459139 70.057197816
1/8 71.5395176807 71.5395176658 71.164716538
1/16 71.5395171951 71.5395171950 71.445553695
1/32 71.5395171875 71.5395171875 71.516009845
Order of

6.01

convergence

5.95

2.18
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Example 4.2. One-Dimensional Two-Group Two-Region Problem

We consider an eiigenvalue problem for a one-dimensional two-group,
two-region diffusion problem. The reactor configuration is depicted in
Fig. 4.1. The multigroup parameters for Eq. (4.9a) can be found in
Table C.2 in Appendix C.

For the numerical approximation using the finite element method,
the linear (m=1) and cubic (m=2) Hermite basis functions as given by
Eq. (2.14) were used. Calculations are also performed using the finite
difference scheme.

In Table 4.2(a), comparisons are made for eigenvalues obtained by
various methods. The eigenvalues converge to 0.9795 with the order
O(szm—l) as predicted by Eq. (4.13) for the non-self-adjoint operators.
The finite difference scheme gives the same order of convergence as
the linear Hermite method. In Table 4.2(b), the thermal neutron fluxes
at x=2L/3 are compared. The neutron fluxes are seen to converge to
0.791334 with the order O(szm) in coincidence with Theorem 4.1. On
the other hand, for the finite difference method, the order of
convergence is found to be somewhat less than the expected value 2.0.

In Fig. 4.2, the thermal flux distributions computed using the cubic
Hermite method and the finite difference scheme are compared. In
this figure, it is seen that the flux shape converges rapidly to a limit
as the mesh sizes are refined. The results obtained by finite element
methods compare favorably with the finite difference result which is
obtained by using smaller mesh size Ax=L/24. We also note in this
figure that the finite element method using coarse meshes can accurately
predict local thermal flux peak in the reflector region.

In Table 4.2(c), the integrated thermal fluxes and related errors

are compared. Finally, in Table 4.2(d), comparisons are made for the
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Table 4.2. One-Dimensional Two-Group, Two-Region
Eigenvalue Problem: Example 4.2
(2) Eigenvalues (1/)\)
Hermite Method
Ax m =1 m = 2 Finite Differeﬂce
L /3 0.97576214 0.97899829 0.97658226
L/6 0.97792715 0.97946629 0.97646699
L/12 0.97897935 0.97952296 0.97803760
L/24 0.97937656 — 0.97905549
Order of 1.59 3.84 1.40
convergence
>kL = 60 cm.
(b) Thermal Flux at x = 2L/3"
Hermite Method
Ax m =1 m =2 Finite Difference
L/3 0.65557645 0.81027209 0.80887720
L/6 0.82029106 0.79471040 0.81289463
L/12 0.79589912 0.79139325 0.80204605
L/24 .0.79255659 — 0.79473074
e voence | 230 4.1t 1.31

*Normalized to ¢>2(L) =1.0.

TReference flux ¢2=0.7913344 for m=2, Ax=L/60.



Table 4.2 (Concluded)

L
(c) Integrated Thermal Flux j ¢2(X) dx
0

Hermite Method

Ax m=1 m= 2 F'inite Difference

L3 (19.5%)" (1.32%) (28.4%)
30.978644 37.969594 49.415513

L/6 (3.15%) (0.011%) (17.3%)
37.263231 38.482219 45.121380

L/12 (0.52%) (0.003%) (4.4%)
38.680668 38.479082 36.772008
(0.14%) (3.8%)

L/24 38.533171 — 39.952596

*Relative errors based on the reference data
J™ ¢, dx = .38477937x10%for m = 2, Ax = L/15.
0

(d) Computation Time (sec)

Hermite Method

Ax m=1 m=2 Finite Difference
L/3 — 2.89 —_—
L/6 2.81 3.74 2.81
L/12 5.72 9.25 5.81
L/24 10.80 — 11,02
I Reflector Nuclear Fuel d
L ] | ax ¢=20
0 2L/3 L=60cm

Fig. 4.1. Reactor Configuration for Example 4.2
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Relative Thermal Flux
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1.0

0.8

0.6

0.4

0.2

0.0a

-0.2
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--- Ax=L/6
"/ — Ax =1L/12 7

- O FINITE DIFFERENCE
B Ax = L /24 7]
| | I | | :
10.0 20.0 30.0 40.0 50.0 60.0
x (cm)
Fig. 4.2. Thermal Neutron Fluxes: Example 4.2
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computation time required for the eigenfunctions to satisfy a convergence
criterion of €_ = 10710 (cf., Eq. (4.172)).

Comparing numerical results in the tables, it is seen that the finite
element method using linear functions is somewhat more accurate than
the finite difference scheme. Also, in this example it is demonstrated
that the finite element method in cubic Hermite space is highly accurate
and, in fact, that this method can be used as coarse mesh method to
reduce computation time as compared with other methods. For example,
the finite element method in the cubic Hermite space for Ax=L/3 yields
about the same accuracy for the eigenvalue and the integrated flux as
the finite difference scheme using Ax=L/24. Furthermore, itis shown

in Table (d) that the finite element method requires less than 1/3 of the

computation time of the finite difference scheme.

Example 4.3. Two~Dimensional, One-Group Model Problem

In this example, we consider an eigenvalue problem for a two-
dimensional neutron diffusion equation. The configuration of interest
consists of uniform nuclear fuel (Fig. 4.3). The one-group nuclear data
are given in Table C.2 of Appendix C.

Table 4.3 lists eigenvalues for different meshes obtained by the
finite element method using piecewise cubic Hermite polynomials and
the finite difference scheme. In the finite element method, the basis
functions defined by Eq. (2.28) were used. In this result, we obtain
O(Ar6) convergence for the finite element method and O(Arz) for the
finite difference scheme. Also we note that the finite element method
for Ax=L/2 yields more accurate eigenvalues than the finite difference

scheme which uses Ar=L/6.



Table 4.3. Eigenvalues 1/\ of a Two-Dimensional,
One-Group Model Problem: Example 4.3

Cubic Hermite Finite Difference
L/2 0.9230904055 0.92280573
L/4 0.9230903703 0.92301801
L/6 0.9230903697 0.92305812
Order of 5.89 2.65
convergence
¢ =0
L
d Nuclear
d= ¢ =0 Fuel ¢ =0
0 d
0 a L
dy $=0
> X
L=40cm

Fig. 4.3. Reactor Configuration for Example 4.3
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Example 4.4. Two-Dimensional, Two-Group Problem

In this example, we consider an eigenvalue problem of two-group
neutron diffusion equations. The system consists of a fuel region
inside and a reflector outside (Fig. 4.4). The nuclear parameters of
the materials are given in Table C.2 in Appendix C.

For this calculation, we use the bicubic basis functions defined by
Eq. (2.28). At the singular point, we consider three different types of
bicubic functioﬁs:

Set A: Two basis functions which satisfy ¢ and D 8_?1 ¢ continuity at

the corner. These are given by Eq. (2.29).

Set B: Four basis functions which are continuous. These are given

6 (1,0) (0,1)
D and u .

Set C: Six basis functions which are continuous. These are given

by Eq. (2.28) with = =1 for u

by Eq. (2.30).

Table 4.4 summarizes the eigenvalues obtained by the finite differ-
ence method and the finite element method using linear and cubic poly-
nomials. We note that methods using cubic polynomials for Ax = L/2
yield accuracy comparable to that of the finite difference scheme for
AX = L/20, Furthermore, we notice that, although set A has low-order
convergence, it gives quite accurate eigenvalues for large Ax. KEigen-
values for sets B and C converge in the order of O(AXS). All of the
eigenvalues are seen to converge to the value 1/\ = 1.114.

In Fig. 4.5, thermal fluxes for the Sets A, B and C are compared.
Figure 4.5(a) shows that at y = 0, where the singular functions vanish,
the fluxes have similar shapes and all converge to the finite difference
results for Ax = L/20. Figure 4.5(b) shows that at y = 20 cm, flux

shapes for Set A are rather distorted and have slow convergence. On
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the other hand, the flux using sets B and C functions converges rapidly.

By comparison, we notice that set A basis functions approximate

poorly the flux for coarse mesh calculations, and that set C functions

give better approximations than the other sets.

Table 4.4. Eigenvalues 1/\ of Two-Dimensional,
Two-Region Problem: Example 4.4

Two-Group,

Hermite Method
AX m = 2 Finite Difference
m=1 A B C
L/2 1.0802150 | 1.1157980 | 1.1081760 | 1.1082321 1.0783013
L/4 1.0962251 | 1.1153879 | 1.1134294 | 1.1134916 1.0797120
L/6 1.1040456 | 1.1149521 | 1.1140668 | 1.1140943 1.0895577
L/20 — e — —_— 1.1105031
Order of convergence
1.4 0.95 3.2 3.2 0.8
¢ =0
L
Reflector
d
_—h = L/2 =0
5 ¢ / ¢
Fuel
y
0
0 L/2 L =40.0 cm
d ., _
X W (i) =0

Fig. 4.4. Reactor Configuration for Example 4.4
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0.0 10.0 20.0 30.0 40.0

0.0 10.0 20.0 30.0 40.0

-0.4 1 ] ]

0.0 10.0 20.0 30.0 40,0
x (cm)

() y=0.0cm
Fig. 4.5. Thermal Neutron Fluxes: Example 4.4

KEY: Bicubic Hermite, —— - Ax=L/2, - - - Ax=L/3, —— Ax=L/6;
O Finite Difference Ax=L/20.
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Fig. 4.5(b)
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Chapter V

POINT KINETICS PROBLEMS

In this chapter, we develop the application of univariate piecewise
approximations to problems in space-independent kinetics, that is,
point kinetics problems. We first develop a ‘general procedure for the
solution of a system of first-order ordinary differential equations using
piecewise polynomials in Section 5.1. We term this procedure the

Hermite method, as it is based upon Hermite interpolation. The Hermite

method results in a single-step algorithm and, for equations with variable
coefficient A(t), yields a truncation error of order 2m for interpolation
polynorﬁials of degree 2m-~1. It is shown that certain classic methods,
i.e., the Crank-Nicolson method and the Padé (m, m) rational approxi-
mations for exponential functions [40], [46] appear as special cases of
the Hermite method.

We then apply the method to the point kinetics equations in Section
5.2. Especially, we present an alternative form of the kinetics equations
which avoid the numerical operations of matrix inversion necessary to
carry out the forward time step in the direct approach. Finally,
numerical results are presented in Section 5.3 which confirm the accu-
racy of the error analysis.

A number of authors considered the use of piecewise polynomials
for initial value problems (e.g., see [47]-[50]); however, these studies
have been limited either to the use of discontinuous polynomials [47], [48]

or to problems with constant coefficients [49],[50]. Nassif [51] extended



102

the Hermite method for’ polynomials of arbitrary degrees, and his study
asserts the analogy between the Hermite method and the Padé (m, m)

approximations for the general m.

5.1 The Hermite Method

In this section we shall develop the application of piecewise poly-
nomials to systems of coupled ordinary differential equations. We

consider a system of the first-order ordinary differential equations
L8 = A é(1), 0<tsT, (5.12)

$(0) = ¢, (5.1b)

where ¢(t) = col{ (1), 5(1), ..., d)N(t)} and A(t) is an N X N matrix.

A(t) may be discontinuous in t. In reactor kinetics problems, the point
kinetics equations and the semidiscrete neutron diffusion equations can
be represented in the form of Eq. (5.1a).

We divide the interval [0, T] into a partition 7, such that

L 0=t1<t2<...<tNt=T.

If A(t) is discontinuous at some points in [0, T], then we assume that the
partition includes such points as mesh points.

We limit our consideration to a particular subinterval [ti’ t 1]
Assume that Q(ti) is given as the initial condition or as a result of previ-
ous computation, and _(é(tH_l) is to be determined. However, when A(t) is

discontinuous at t=ti (or ti+1)’ _‘é(ti) (or fé(ti+1)) is to be interpreted as the

. .. + -
one-sided limit, _‘é(ti) (or Q(ti_!_l)).
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Let {u?i(t)}m_l (j=1, i+1) be the element functions of degree 2m-1
p=0
as defined by Eq. (2.4) in Chapter II. And let the approximation solution
to ¢(t) be represented by

W= {qS(p) WP + 30wl (1)) (5.2)
p=0
where
$-(p)5£$(t)| j=1,i+1.
- atP = Y7 ’

In order to determine ?{)(t), we assume that ?q&(t) satisfies
TS rs) A
S agw = [T A g at. (5.3)
ti ti
Integrating explicitly,

A

S 9= ), g ZO {6 a0 (1) + $2) wbr (0} at
Y p=

m-1
Y PP i)

where

t.
(p+) _ i+1 p+
./Li = f A(t) us (t) dt ,

t.
1
(5.4b)
(p-) _ 1+1
AP = f A() ubl (1) dt.
1
Furthermore, we assume that
RN AY ] (5.5a)
dt _J i —'J 3 J F} . .
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Then we can define Aip} such that

3P =9 T —A® sl

p-2 " A
Praa(c A«»m}

t.
i

_A{p}Esl (5.5b)
Similarly,
~(p)
9iv1 = +1 ¢1+1 : (5.5¢)
We note that if A is independent of t, then A{p} Ap A{p} AP .. In
i i+1 i+1
general, for variable A(t), Eq. (5.4a) can be written as
(o) At T (ph) o)
p- p = p pii 4
DL AL Afrip 8 =1 L AT AL P 4 (5.62)

p=0
where I is the unit matrix. Eq. (5.6a) is a single-step equation. If :b
is determined by solving Eqg. (5.6a), then its derivatives d)(p) can be found
from Eq. (5.5¢). These are substituted into Eq. (5.2a) to construct %(t) in

the interval [ This method will be called the Hermite method

tigl-

because the method is based on the Hermite interpolation. (Cf., Chap. II.)
The error bound for the approximation in the Hermite method is stated

in the following theorem.
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Theorem 5.1

Let ¢(t) be the solution to Eq. (5.1) where A(t) is Lipschitz continuous,

i.e., there exists a positive constant ¢ such that
DA® (E®-gt) ], < o L) - g, -

Let E)(t) be the solution of Eq. (5.6) in thle space Hm(ﬂt). Assume that
@ e

. ' P- AP . _
there exists a constant 7 such that [] ZO J[i+1Ai+1 [Ioos 1 if lti+1 ti| <T
p:
. t - _ -
for 1<is< Nt—l. If Cp(?Tt) and At = max lti+1 tiI< 7, then ¢

ISiSNt
satisfies

q ~ -
max Dd— (o(t) - ¢()) I, <K att™4
[0,T] dtd

where u = min(2m, t) and K is a constant independent of At.

Proof. The theorem is proven in Appendix A.

As a special case, when A(t) is constant, the Hermite method

AAt

leads to the Padé approximation for e [39],[44]. For example,

(i) m=1 (linear function)

{I'%A} a’i+1:{I+‘A'2I‘A‘}§i - (5.6b)

(ii) m=2 (cubic function)

2

2
At At 21 7 _ At At 21 2
{r-4ra v a?) i, - (1o 5452705, (5.6¢)

Equations (5.6b) and (5.6¢) correspond to the (1.1) and (2.2) elements in
the Padé table, respectively. Equation (5.6b) is also known as the
Crank-Nicolson formula.

The solution for §i+1 in Egs. (5.6a,b, ¢) requires inversion of the

coefficient matrices. For matrices of large order, iterative schemes
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are often more effective than direct methods. In this case, the initial
value of Qi+1 needs to be estimated or extrapolated from previous
values. Below, we give some low-order extrapolation formulae [49],

which can be used with the one-step method:

A A A

P17 2957 %51 (5.7a)

A A

= - g - ar_an,
Bipy T 2857 95 - A (95 - 8D (5.7b)

|
\V]
-

The advantage of the Hermite method is that the method can accu-
rately account for the variable A(t) within each mesh element. Conse-
quently, the Hermite method allows the use of relatively large mesh
elements compared to the Padé approximation and other collocation
schemes. Another important feature of the Hermite method is that the
method permits A(t) to be discontinuous. In reactor kinetics problems,
A(t) can represent the reactor controls such as the control movement
or the coolant flow rate, which change discontinuously in time. Then
the Hermite method can be a powerful method for studying the response

t0 such discontinuous controls.

5.2 Point Kinetics Equations

In this section, we consider the solution of the point kinetics
equation applying the Hermite method developed in the preceding
section. In particular, we consider two versions of the point kinetics
equations: equations with precursors in the differential forms and the
time-integrated point kinetics equation in which the precursors are

eliminated by integration.
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5.2.1. Point Kinetics Equations with Precursors

The point kinetics equation with precursors can be written as

[52].,[53]
Lol = A g1), (5.82)
50 =¢_ (5.8b)
where
$(t) = col{n(t), C, (), ..., CJ(t)}
() - ]
O N
Bl
o O
At) = )
s O
'y TN

n(t) is the neutron concentration, p(t) is the reactivity and A is the
generation time. Other definitions can be found in Section 1.1.

The approximate solution can be found by applying the Hermite
method described in Section 5.1. For example, we consider the linear

variation of the reactivity of the form

p(t) = p0+pAt.

=3 - qs(p) P+ WP () (5.9)
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Then, the Hermite method yields the following one-step equation,

Bir1 9541 = Bidy {5.10a)
{i) m=1 (linear function)
At A2
B, =1+ A4~ T3 Ba,
B —I—-A—IA—A—J'PA (5.10b)
i+1 © 5 A3 Bas , :
(ii) m =2 (cubic function)
2 2 3
At 7At At At
By =1+ 3 A - 730 a7 { 13 24417 20 AA} Ay
At 7 .2 At? At
Biyp "T-2 A7 3080 Aa {_ﬁAi t 20 Aaf Ay (5:100)
where
A, = A(t)
and
o, _
A

NINS

Comparing with the Padé (m, m) approximations, we note that
Egs. (5.10b, ¢) contain some additional terms in At2 and At3. In fact,
these are the correction terms which account for the linear variation

of the reactivity p(t).
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5.2.2. Time-Integrated Point Kinetics Equation

The time integrated point kinetics equation is obtained by integrating
the precursors and eliminating them from Eq. (5.8a). The result can be

written as

don) = 28 =B iy 4 i g cjoem)\jtJr%l fot R ,
= (5.11a)
n(0) =n_ . (5.11b)
Let
m-1
n(t) = pZ/O { AP uPH(h) + 2P P l(t)} . (5.12)

Then we require that n(t) satisfies

i+1

A A .t' A
n -n, = j l4-11‘—)5%—_§n(t) dt
Y
-\.(t-5s)

]
dsjdt.

(5.13)

J 1+1 -)\jt Ej t.
+ Z f Cjoe +A fO n(s) e

Proceeding as in Section 5.1, we obtain a single-step equation from
Eq. (5.13).
For example, we consider a simple case of approximation using

linear functions (m=1) and a ramp reactivity
p(t) = Pyt INE
Then Eq. (5.13) becomes

A . My MY
Bii1Mier = By + Z (e i1 )g (5.14)
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where
J
p;-B At p, At B;
B —1__1_____é__+2 J ,
i+1 A 2 A 3 ) AAt, 75, 1i+1
J:
2 g
pi_BAt pAAt . B
B :1+ —— + o. . >
A 2 A 6 AAt, 75,1

At NAL 1 —)\JAt
e () e (e )
J N
J
N.AL,
o =—(_J—+1) —+—) 1).
S K1 Can be determined recursively from
%17 Sjo-
B n e)\jtk+1 (Atk 1 )\jtk
S. =8S. - +—=)e
j, k+1 s k AAtk )\.2 )\j )\2)
J J
y Ptk (Atk i _1_> it 1 Mk
AAtk N 2 2
o M

;11+1 is a scalar and can be determined from Eq. (5.14) by dividing by

the scalar Bi+1 .

5.3 Numerical Results

The computer program, HERMITE-OD, was prepared for calcu-
lations in the numerical examples in this section. HERMITE-OD solves

the point kinetics equations by the Crank-Nicolson scheme (Eqg. 5.6b)
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and the Hermite method using piecewise linear or cubic polynomials

(Egs. (5.10a, b, c) and (5.14)).

Example 5.1

Consider a point kinetics problem defined by
-B
p(t) = 5t

with six delayed neutrons (Table C.1) and the following constants

A=5%10"° sec

n(0) = 1.0

s

0<t< 2 sec.

Table 5.1(a) compares n(t) computed by the Hermite method using
polynomials of various degrees and the Crank-Nicolson method. In
the latter, a constant reactivity in each time interval is assumed such
that

p(t) = p(ty), t,. <t<t,

Convergence of order O(Atzm) is observed for Hermite methods
using polynomial of degree 2m-1. This coincides with the statement in
Theorem 5.1. However, the Crank-Nicolson scheme shows only O(Atl)
convergence. This example demonstrates that the Hermite method
retains high-order convergence for variable coefficients (reactivity),
in contrast to the Crank-Nicolson scheme and other collocation schemes.

We remark at this point that results by the Crank-Nicolson scheme
can be improved by using the average of p(t) in the interval [ti’ tiq ]
instead of values at mesh points. Thus, let

plt) + ot )

plt) = p = 2 . t i1 -

N
[
N
-
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Table 5.1. Point Kinetics Problem, A =5 X 10_4 sec: Example 5.1
(a) n(t)
Hermite Method
t & Qrank— m=1 m = 2 m =1
Nicolson (time-integ.)
1.0 0.5 1.5316543 1.9144400 1.9465955 1.9046032
0.1 1.8513059 1.9482021 1.9499962 1.9476481
0.05 1.9002958 1.9495497 1.9499987 1.9494094
0.01 1.9400027 1.9499808 1.9499987 1.9499751
0.005 1.9540000 1,9499942 1.9499987 1.9499928
ngjgrzime 0.95 1.92 4.48 2.08
2.0 0.5 5.4308838 11.145270 10.943181 10.925652
0.1 9.7275836 . 11.243498 11.227962 11.219269
0.05 10.450756 11.232274 11.228356 11.226118
0.01 11.068160 11.228529 11.228372 11.228282
0.005 11.147961 11.228411 11.228372 11.228349
Sgr?fgrgince 0.95 1.97 4.36 2.09

(b) n(t) by the Crank-Nicolson scheme using p

At t=1.0 t=2.0
0.5 1.8818173 10.013090
0.1 1.9467323 11.189778
0.05 1.9491803 11.218824
0.01 1.9499660 11.227991
0.005 1.9499905 11.228276
?orr?ferrzince 1.93 1.86

Results of the Crank-Nicolson scheme using p are shown in

Table 5.1(b). The table shows that use of p improves the solution

as well as the order of convergence.
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Example 5.2

This example is basically the same as Example 5.1 except that
A= 10_7 sec. The neutron density in this example increases rapidly
and reaches a magnitude of 105 two seconds after the insertion of
ramp reactivity, p(t) = g t. This example is to test Hermite methods

for numerical stability when applied to the fast system.

Table 5.2 compares n(t) obtained by the Hermite methods and the

3 1

Crank-Nicolson method. For time step sizes, 5X 10 ° < At < 5X 10
in this example, uniform convergence is not observed. Also, this
table compares relative errors of n(t) for At = 0.01 sec. We observe
in this table that, for large At, the Hermite method as applied to the

time-integrated kinetics equation gives more stable and accurate

solution when compared to the kinetics equation with precursors.



Table 5.2.

7

n(t) of a Point Kinetics Problem, A = 10" ' sec: Example 5.2

t At

Crank-Nicolson

Hermite Method

m=1 m= 2 m = 1 (time-integ.)
1.0 0.5 1.7398362 2.1903963 2.1453451 2.1770162
0.1 2.1617929 2.2835253 2.2761511 2.2823753
0.05 2.2242740 2.2870330 2.2873140 2.2867310
0.01 (0.613%) ™ (2.01 X 10”39 (2.53 X 10~ 4q,) (6.90 X 10™%%)
: 2.2741454 2.2881595 2.2881994 2.2881894
0.005 2.2806399 2.2881928 2.2882052 2.2881461
Order of 0.947 1.93 3.75 1.90
convergence
2.0 0.5 0.98040854 X 101  0.62508242 X 102  0.13191022 X 10° 0.10859238 X 10°
0.1 0.15045759 X 10 0.11526595 X 10%  0.63665597 X 10% 0.26780006 X 10%
0.05 0.51885734 X 10°  0.39038912 X 10%  0.67090612 X 10% 0.80757093 X 10%
0.01 (68.3%) (2.75%) . (10.92%) (0.81%)
' 0.65411931 X 10 0.21227155 X 10 0.18399171 X 10 0.20823698 X 10
0.005  0.11790377 X 10°  0.21803225 X 10°  0.20657232 X 10° 0.20264628 X 10°

3

" Relative error in % based on n(1.0) =

1

.22882052 X 107, n(2.0) = .20657232 X 10",

VIl
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Chapter VI

TIME-DEPENDENT NEUTRON DIFFUSION PROBLEMS

In this chapter, we consider the approximate solution of the time-
dependent neutron diffusion equations. The equations are first
developed in the weak formulation, as presented initially in Chapter IV.
We include the dealyed neutrons explicitly in the formulation in order
to avoid the computation of delayed neutron precursors. We show that
time-dependent solutions are unique for the case of no delayed neutrons.

In Section 6.2, we derive the discrete equations in space, energy
and time applying the methods developed in Chapters III, IV and V and
show that the resulting approximate solution converges to the analytic
solution, again for the case of no delayed neutrons. We present a
theorem which shows the error bound for the approximation error. We
conclude this chapter with some numerical examples and results in

Section 6.3.

6.1 Basic Equations

The time-dependent diffusion equation is defined in Eq. (1.1) in
Chapter [. In particular, we are interested in the time-dependent
neutron diffusion equation, in which the delayed neutron precursors

are eliminated by integration. For 0 € t < T,
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|

')—‘

ME) ot ¢(£» E,v t) = T(b(z; E, t) + Q(E; Eg t)
={¥'D(r,E,) V-2.(z, E, )} ¢(r, E, 1)
+ [ aB {2 (BB 0H1-BX(E)VE(r,E )} ¢(r, B, 1)
J At
+ Z Xg5(EMNC; e
=1
t -)\j(t-s)
+ M Bixg(E) fo e {gdE'vZf(LE’,s)da(LE',s)ds
+Qlr, E, 1), (6.1a)
Or B 0| o= 6,(r,E), (6.1b)
Sz, B, 1| 50 = 0. (6.1c)
and

¢lr,E, t), D 8_?1 ¢(r, E, t) continuous on the material interfaces. (6.1d)

Definitions are developed in Chapter I.

We define the inner products and L2-norm by

(u.v) = [ [ uvdvdE,
£ o

i
lall 5 = w2,
L2

and the bilinear form
a{u, v) = (DVu, Vv) + (ZTu, v)
- { ff z (E'~E)u(E") dE’, )} - (1-B) {{x(E) {gvzf(EUu(EP)dE’,v)},

In this chapter, we make an assumption that there exists vy > 0 such that

2.0 = vllel?,. (6.2)
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We consider the problem of finding a¢(r, E,t) from the weak formu-

lation of Eq. (6.1) such that
(5 ZF6.v) +a6,9) =@y v (6.32)
7 5t ¢ ’ av’ :

(9(r, B, 1), )], = (9, ), (6.3b)

for all ve W(l)(SZ) (cf., Sec. 4.1, Chap. IV),

where
J -\t
Qu=Q+ ) xd(E))\jCjOe
=1
t -N.(t-s)
X Bxy(E) [ dse 1 [ dE'vE(r, E', s)¢(r, E's)
j7itd 0 e = =

To show the uniqueness of the solution to Egs. (6.3a,b) when =0

(no delayed neutrons), we proceed as follows. Since (DV¢, V¢), (ZTd),qS) >0,
a9, 9) = ([, {Z,(B~B) +x(B)vE(EN} §(E) dE, $(E))
2
< K’([E ¢(E)dE)

where K’ is a positive constant. Applying the Schwarz inequality, we

obtain
-a(9,9) < K" [, ¢° dE
- x| ol%, .
L2

Using the simple inequality, ab < %az + %bz,

Q. 9) < %IlQlliz 5| ¢>Ili2 .
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Also,

1 d 2
2% a'{ “ d’” 2
max L

Thus, Eq. (6.3a) with v=¢ leads to the following differential inequality,

1 d | 42 2 1 2 1 2
g ar 1817y < & sl®, + 5 16l + 5 llal
297 . dt | 1.2 122 122 1.2

or

2
S| ¢>IIL2 < K, H¢Ili2 + KZHQIIi2 :

Solving the differential inequality leads to the following lemma:

Lemma 6.1. Let ¢(r, E, t) be the solution of Eq. (6.3) with 8 = 0. Then
¢(r, E, t) satisfies

Kl(t—s)

2 K,t t
P DX L A Y T (6.4

We remark that the inequality (6.4) shows that the time-dependent
solution is bounded by the initial condition and the source term in the
L2—norm. It further follows that the weak formulation of Eq. (6.1) has
only a trivial solution if ¢>o =Q = 0. Thus, Lemma 6.1 implies the
uniqueness of the solution to Eq. (6.3).

When B8 # 0, some fission neutrons are emitted not immediately but
with some time delays. In this case, the solution depends on the past
history of the neutron flux as well as the initial condition and the source
term. We will not attempt to prove this but conjecture that the solution

to Eq. (6.3) with B # 0 exists uniquely.
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6.2 Approximations

6.2.1 Semidiscretization

In this section, we derive the discrete equations in energy and
space applying methods developed in Chapters III and IV.

Let To and Te be the partitions of the region Q and the energy
interval £ such that

Tt 817711571 2% <r1,1\11 =b;,
anzrn,1<rn,2< '<rn,Nn=bn’
7r£: Emin=E1<E2<"'<ENE:EmaX’

Selections of proper polynomial basis functions were discussed in
Chapters II and IV. Let {Vig=vi(_r_') Vg(E): 1<i<N, 1sg<G} forma
basis in the space Hm(vrQX 7r£) where m = (mr, mE) and the approxi-

mate solution be represented by

. G N
$(r,E,t) = ) ) 2,0 Vi (D) v, (B) . (6.5)
g=1 i=1

The expansion coefficients of 3) can be determined by applying the

Galerkin scheme to the weak form of Eq. (6.1) such that 3) satisfies

(52 8.v) 2w = @ v, (6.6)

(%, V) |t=O = (&:V) 3

where v = vig(_lz, E) for all i and g.
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In a manner analogous to the derivation of the inequality (6.4) for

A

the analytic solution, choosing v=¢ and =0 in Eq. (6.6), we obtain

the following lemma:

Lemma 6.2. Let :ﬁ(g,E, t) be the solution to Eq. (6.6) with =0. Then

A

é(r, E, t) satisfies

K.t t K. (t-s)
A A 2
l|¢||i2s e ! o175 + x5 e ! ||Q||i2 ds . (6.7)

The inequality (6.7) implies that the approximate solution is unique and

the Galerkin scheme is numerically stable.

Following the procedure of Chapter IV, we apply the Galerkin
approximations in steps, for the energy variable first and then for
the space variables.

Let
N

2z, 1) = '21 a; (1) v;(r) ;
l:

then from Eq. (6.5),

G
3(r,E,t) = g;l 2,(r, 1) v (E).

Apply the Galerkin scheme to Eq. (6.1) for the energy variable such

that, for g=1,2,...,G,

(7 & ?qs,vg)g = (Té,vy) +(Q.v (6.8a)

)
£ gg

(¢(r, E, 0),vg)£ = (¢O(3,E),vg)£ , (6.8b)
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(%(g,E,t),vg> =0, (6.8¢)

¢ oo

(?q&,v ) (D 2 2), v ) continuous on the material interfaces, (6.8d)
&g M7 e

where

(u, v) =f uv dE .
£ g

Equation (6.8) then leads to the generalized time-dependent multi-

group equations, for g=1,2,...,G,
G G
Y A2 ,= Y {VD V-5 4% 4y (1-E, , '@
v, .0t g — Tgg'— "Tgg' “sgg' "g fg!'j “g'
g'=1 g8 g'=1 > ,
J { At £ -hy(ts) G )
+ . NC. e +\.8. vy, ,® ,ds
L\ %ajgiCio iPi*ag foe L VPgrPgds |
i= g'=1
+ 6.9a
Qg ( )
with conditions
G
L) Mggr®gr(0) = @ (1), (6.9b)
g'=1
2, D50 = 0, (6.9¢)
G
q;g(g, t), Z Dgg’, 5% @g,(z, t) continuous at material interface , (6.9d)
g'=1
where
yl = (W(IE)V 1>V > s

Xaig = J Xqj(E) vg(E) dE
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M_ .+ = ,
e’ = Vg Ve,

Pog = 0orvg)

The remaining parameters are defined in Section 4.2.1., The conventional
time-dependent multigroup equations can be obtained from Eq. (6.9) as a
special case (cf., Sec. 4.2.1).

Now we apply the Galerkin scheme to the weak formulation of

Eq. (6.92a) for the space variable such that, fori=1,2,...,N,

G G
\ 1 9 R
?‘7(& ‘I’g""i) = ) {(Dgg’y-@g"zvi)ﬂ
gr= gg 2 g':l

+([—2ng,+z seg’ *Xg (1- B)vZf '] ,,v) }

3! At t -\.(t-s) G 1}
+ ), Xaighs € (c A1) v g B, ngf e ! ) (VEp 1@ ds)

g
=1 g'=1
+lag vig (6.10)
where
(u, v)g, = [ (u,v) av.
Q

N
Substituting for cpg = Z aig(t) vi(g), Eq. (6.10) can be written in matrix

i=1
form as

s %g_(t) = {~-L+S+(1-B)F}a (t)
J -xjt t -\ (t s)
' 3‘2 {regor T, Jo® FdE(S)dS}

b

+q( (6.11a)

M a(0) = ¢ (6.11b)



where

C.
-~ =jo

it

11°

G':I-l,l

col {gjl*gjz’ e

1,G'+1

G-G',G

GG
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9, = col{¢ y-- 'QOG} ,

Vegr ;- g,—;; (v (@), vy
(nggg)i_i, = ng(vzfg,vi,(z),vi(z))g ,
(ng)ii' = 6i,ixdjé(cjo(_rg),vi(_1:))9 |
(M, ) . Mgg,(vi,(z),vi(ﬁ))g ’

Qog = col{(¢0g,vl(£))Q s (d)og’ VN(z))Q} .
Other matrices are defined in the same way as in Section 4.2.2. The
properties of the matrices are discussed in Section 4.2.2.

The error bound for the approximate solution is stated in the

following theorem.

Theorem 6.1. Assume that the inequality (6.2) holds. Let ¢(r, E,t) be

. — ~t -
the solution of Eq. (6.3) and ¢(r, E, t) € Cp(7rQ><7r£) wheret (tr,tE). If
¢(r, E, t) is the solution to the semidiscrete equation (6.6) in the space

Hm( 7TQ>< 7T£), then

lo(r, E,0) - 3, E, )| < K, Ar
L (X£)

where p_ = min(2m_,t ), up = min(2mg, tg) and Ar = max Ar,
Q

AE = max AE and Kl and K2 are positive constants independent of
£

Ar and AE, respectively.
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6.2.2. Temporal Approximation

In this section, we consider the application of the method developed
in Chapter V to the semidiscrete equation, Eq. (6.11), for approxi-

mations in time.

The semidiscrete equation, Eq. (6.11), can be rewritten as

v & at) = {-L(t) +S+(1-p)F} a(t)

J ’ nt t -\, (t s) )
5 e e T )6, f e Faals)ds, .

. J :
=1 - J

For simplicity, we assume that only L(t) is a function of t and it is
given by

L(t) = LO + f(t) L.

Let é(t) be an approximation of a(t) such that for t

kSt b
mt-l
5 [ (p) p (p) P- ]
a = ) {aPu (t)+ak+1 kH(t)}» (6.12)
p=0
i ]
where {ui (t)¥—0 are the univariate element functions of degree 2m,-1

as defined in Section 2.1, Chapter II. By combining Eqgs. (6.5) and (6.12),

the approximate solution in r, E and t can be represented by

@(L E, t)

N A
L L a0 vy v (B
g=1 i=1
G N my-1. (6.13)

\ \ (p)  p+ (p)
DY) agki(” alg(kﬂ) k+1(t) vi(n) v (E).

g=1 i=1 p=0

Applying the Hermite method in Chapter IV, we obtain the following

single step equation:
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J -\t
A _ A J k _)\t )
Bli1 241 = Brap * > (e e k1 &/jk‘ (6.14)
=1

In particular, when m=1 (linear function), the matrices are defined by

At J
_ K -
B, =V -5 {-L#SH1-B)F} - ), NN BiFd * Siat -
=1
N J
B, = V+—5 {-L, +S+(1-B)F} + Zl oy BiF g * L
J:

d d Zo
j j
o) g1 =85, 0" B Falug Bt egiBon s
L, = L{t) .
At =ty = Yo
8 AL At
=_J 1 2 2y _ Ik _k_1
% T & 3 et R [ 3 (terty) - 8t |+ (e 1)( X )\2) ;
L j
2 .2 \
B Nt -t) -NAt
__ 3¢ kt1 k' i} ( Ik L
Ykj T Bt | X, [ 3 Aty |- At - (e V=3
J N J
j
w2 P e <ﬂ+_1_) Mk
K~ &t )‘3'2 y )\jz ;

£, and £

K K+l depend on the functional form of L(t) in Eq. (6.13). For

example, we consider two special cases:
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(i) L(t) = L0 +L,t (linear)

A
Atlz(
fx=-7% La-
Ati
Lxr1 =73 Lo

(i) L(t) = L + Ly sinwt (oscillatory)

1

£ =3 [wAt, cos wt) - sinwt,, ; + sin wt, ] Ln »
w At
k
_— 1 1 i
°Ck+1 =— [—wAtkcos wtk+1 + sin wtk+1 - sin wtk] LA .
w Atk

The solution to Eq. (6.14) can be determined using general iterative
schemes [35], [39], [40] which are applied to the finite difference
scheme. The source iterative scheme which can be applied to the multi-
group system, and Cholesky factorization scheme for the inversion of
positive definite matrices, can also be applied to solve Eq. (6.14). For
fast convergence of the iterations, accurate prediction is required. The

extrapolation formula given by Egs. (5.7a,b) can be used for this purpose.

6.3 Numerical Results

We consider the problem of solving the conventional time-dependent
multigroup diffusion equation by the methods described in previous
sections. Computer program HERMITE-2D (cf., Appendix D) basically
solves Eq. (6.14) using the iterative schemes discussed in Section 4.3,

Chapter IV.
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Example 6.1. Uniform Linear Perturbation

Consider a one-group, two-dimensional problem with six groups of
delayed neutron precursors. The configuration is a rectangular region
which consists of a uniform nuclear fuel (Fig. 6.1). The thermal group
nuclear data can be found in Table C.2 in Appendix C. The critical
fission cross section is found to be 0.20493483.

Perturbation is induced by changing the thermal absorption cross

section uniformly in the form

X (1) =(Z 1-0.011t,.
a() (a)crit{ }

For computational purposes, the rectangular region was divided
into coarse meshes as shown in Fig. 6.1. Then, the bicubic basis
functions as given by Eq. (2.28) were placed on the mesh elements.
The total number of basis functions needed in this calculation is 18.
The neutron fluxes were computed using HERMITE-2D. Table 6.1
compares the neutron flux at points A and B (cf., Fig. 6.1) for various
At. The results shown demonstrate that the order of convergence is

O(Atz). This coincides with the prediction of Theorem 5.1 with m=1.

Example 6.2. Local Sinusoidal Perturbation (1)

We consider a two-group, two-dimensional problem without delayed
neutrons. The system is a rectangular region which consists of a uni-
form fuel (Fig. 6.2). The nuclear data are given in Table C.2 in
Appendix C and the critical thermal fission cross section for the con-

figuration is found to be 0.25104786.



Table 6.1. Uniform Linear Perturbation: Example 6.1

¢, (1) o (1)
At A B
t=0.1 t=0.5 t=0.1 t=0.5
0.1 0.11357615 X 101 0.30271246 X 101 0.56788075 0.15135623 X 101
0.05 0.11484423 X 107 0.30811922 X 107 0.57422114 0.15405961 X 107
0.01 0.11467662 X 101 0.30987733 X 101 0.57338308 0.15493866 X 107
0.005 0.11468028 X 107 0.30993405 X 107 0.57340140 0.15496702 X 10%
Order of 2.4 1.9 2.4 2.0
Converg‘ence
-0
L ¢ ,
|
% =
dx 0 '
I's
L/2———_—¢-——-———¢=0 L =20cm
|
y |
06 L/:Z
aé _ o
X dy

Fig. 6.1. Reactor Configuration for Example 6.1

6¢CT
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The system is perturbed locally in R, (cf., Fig. 6.2) from the criti-

cal state by changing the thermal cross section sinusoidally in the form

-3

. 2m
o =(2 )  {1+0.2sin%t}, T =107 sec.

crit

To apply the finite element method, the system is divided into
coarse meshes as shown in Fig. 6.2. Bicubic basis functions, as given
by Eq. (2.30) and Eq. (2.28), are then placed at the boundary points and
internal points, respectively. A total of 18 basis functions are used.

Neutron fluxes are approximated using HERMITE-2D. In Table 6.2,
thermal neutron fluxes at points A and B are compared for various time
steps. We note that the solution converges to the order O(Atz) as pre-
dicted by Theorem 5.1. This example demonstrates that large time steps
can be used with the Hermite method. For example, the relative error
for the flux is less than 5% when At = T/4 and less than 2% when At=T/8.
If the finite difference scheme is used, then sine functions need to be
approximated by a series of step functions, and this requires the use of
many small time steps. However, as discussed in Chapter V, the
Hermite method can treat perturbation analytically and for this reason
the Hermite method allows use of large time steps while retaining high
accuracy.

In Fig. 6.3 (a) - (c), the thermal fluxes constructed by the finite ele-
ment method are plotted in three-dimensional and contour plots. In
order to interpolate the flux distribution within mesh elemenfs, mesh
increments of Ax = Ay = 0.5 cm and 1.0 cm are used for the three-

dimensional and the contour plots, respectively. In these plots, it is
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demonstrated that the finite element method can approximate the local
perturbation of the flux using very coarse meshes. If the finite differ-
ence scheme is used in this calculation, much smaller mesh elements

will be required for an accurate approximation.

Table 6.2. Local Sinusoidal Perturbation: Example 6.2

(a) Thermal Flux at Point A

At t=T/4 t="T/2 t=23T/4 t=T
T/4 (2.1%)" (3.7%) (3.1%) (4.9%)

0.96849 0.87589 0.86531 1.0188
T/8 (1.1%) (0.8%) (1.2%) (1.2%)

0.95864 0.85150 0.88171 1.0585
T/16 0.94971 0.84559 0.89122 1.0678
T/20 0.94805 0.84462 0.89323 1.0714
Order of 1.83 2.5 1.9 1.9
convergence

*Relative errors with respect to thermal fluxes determined for
At = T/20.

$=0
25 cm T T
| |
!
Rl : |
|
. 15 b ——— = - ' L
- 7y 6=0
10— ———0-<L 210 |
B I
| |
y l !
.
| _
A 10 15 55 cm
dy

Fig. 6.2. Reactor Configuration for Example 6.2
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Table 6.2 (concluded)

(b) Thermal Flux at Point B

At t=T/4 t=T/2 t=3T/4 t=T
/4 (7.3%)" (5.0%) (3.4%) (3.7%)

.59227 .50374 .64698 .76635
/8 (0.4%) (0.9%) (2.1%) (1.2%)

.55401 .52536 .66985 74763
T/16 .55329 .52973 .68189 .73980
T/20 .55176 .53046 .68423 .73843
Order of 2.4 2.6 2.0 2.2
convergence

“Relative errors with respect to thermal fluxes determined for
At = T/20.



133

x
L
25.0
»—'ﬂhﬂ-wh
a3
[ £ e ca, RO H\m’
P Al s
[~ ™
20.0 F - : -
] P B
iy .
= ni , ‘\\
— 1 # N
e G
15.0 b= [ N \
& L—w-__,__‘_ L t \ ¥ X
~ g e +
ST RN TR
T e N L j
y (cm) T S B X ¥ A 4
o L h EER i
10.0 P 6 2 : \k
o ot | N ; \ \
o \ bodido g U
4 At L
; e Y v i ¥
b \ ; A
5.0 : T I
* -t
N
\ \ g 1 ! :
3 IR ¥ 1 £
] 4 3 i 1
A i - ; 32
0 e SR o I ¢ i L N R
0 5.0 10.0 15.0 20.0 25.0
x (cm)

Fig. 6.3. Thermal Neutron Fluxes: Example 6.2. (a) t=0.0
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Example 6.3. Local Sinusoidal Perturbation (2)

A symmetric perturbation was considered in Example 6.2. In this
example, we consider asymmetric perturbations which are induced by
two sinusoidal variations of cross sections in two subregions. The
reactor consists of a uniform fuel (Fig. 6.4), whose two-group cross
sections are given in Appendix C. There are six delayed groups in
this example. The thermal absorption cross section in subregions R2

and R.3 are assumed to vary from the critical values in the form

( .27

H(Z_5) {1—0.1 sm—t},geR s

a2 riy T 2
ZaZ(—r-’ t) N < Q1

(2, {1+0.1 sin" T t}, r € Ry,

\ crit

T = 10-3 sec.

Two-group calculations were performed using HERMITE-2D. The
reactor geometry was divided into 16 equal mesh elements as shown in
Fig. 6.4. A total of 82 bicubic functions, defined by Egs. (2.28) and
(2.30), were then placed on the partition. For the time integration, the
time step size At=T/8 was used. The critical thermal fission cross
section was found to be 0.23766006.

Table 6.3 lists the computed thermal neutron fluxes at space points
A, B and C for the first period of the perturbation. It is to be noted that
the neutron flux after each period is not the same as the initial flux
distribution due to the presence of local neutron diffusion. The thermal
neutron fluxes are interpolated in each mesh element using mesh incre-
ments Ax=Ay=0.5 cm and are also plotted in Fig. 6.5(a), (b), and (c) at

t=0.0, T/4 and 3T /4, respectively. As in the previous example, the
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figures demonstrate that the finite element method not only yields continu-
ous approximations but also allows the use of coarse meshes in approxi-
mating local variations. The finite difference calculation using the same
number of unknowns as the finite element calculation will require

9X 9=81 mesh points on the space region. However, by using neutron
fluxes at the 81 mesh points, it will be rather difficult to represent the
locally peaked neutron flux distribution by a smooth surface. In fact, the
flux distribution in Fig. 6.5 required the use of 60X 60 interpolation
points. Generally speaking, the finite difference scheme is expected to
require finer mesh elements compared to the finite element method in

representing the overall flux distribution.

30

C |
20 b— — = QO L —_—
e BB

15 0 —— - A o _
0 l l/ﬁS' ¢ 0

10 b= — e ,jll )z _.mé‘___.__ﬂ
R, | ! B

Q‘Q
"S-
I

0 10 15 20 30

Fig. 6.4. Reactor Configuration for Example 6.3



Table 6.3. Thermal Neutron Fluxes: Example 6.3
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¢ 6 (1) G b (1)

0.0 1.0000 0.43294 0.43294
T/8 1.0000 0.42492 0.44152
T/4 1.0016 0.40329 0.47167
3T/8 1.0061 0.40691 0.47747
T/2 1.0111 0.42380 0.45635
5T/8 1.0133 0.45048 0.42714
3T /4 1.0150 0.47743 0.40981
7T/ 8 1.0195 0.48352 0.41223
T 1.0245 0.46295 0.37714
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Fig. 6.5. Thermal Neutron Fluxes: Example 6.3
(a) t=0.0
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Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we have developed the finite element method for the

neutron diffusion problems using piecewise polynomials in space,

energy and time variables. The advantages of using piecewise poly-

nomials are discussed in Chapter I. In addition, this method possesses

the following properties:

(i)

(ii)

(iii)

(iv)

The finite element method allows direct approximations to the
diffusion problem and requires no assumption on the sepa-

rability of solutions with respect to independent variables.

This method yields high-order approximations with the order

of accuracy depending upon the degree of the polynomials used.

This method treats problems in a continuum and it permits
high accuracy for problems with variables coefficients. The
approximate solution is a continuous function and it is possible

to find function values at any point.

In view of properties (ii) and (iii), the method allows one to
use coarse meshes or large mesh elements in space, energy

and time variables compared to the finite difference scheme.

The finite element method using low degree polynomials are shown

to lead to various types of conventional numerical methods. However,

the method developed in this thesis generalizes the existing methods in

the sense that it retains high accuracy for problems with variable
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coefficients. Furthermore, the method suggests means for numerical
approximations for higher accuracies. Table 7.1 summarizes the
orders of accuracies of the finite element method when applied to the
neutron diffusion problems in energy, space and time variables. Also,
in the table, the finite element methods are compared with the existing
numerical methods. For example, the finite element method using
piecewise constant functions in energy variable reduces the energy-
dependent diffusion equations to the conventional multigroup equations
(cf., Chaps. III, IV, VI). It is also shown that the 3-point finite differ-
ence formula for the differential operator dz/dx2 can be obtained by
the finite element method using piecewise linear functions in space
variable (cf., Chap.IV). Furthermore, the Hermite method applied to
the first-order ordinary differential equations gives the Padé formulae
for eAt when A is constant.(cf., Chap. V).

The orders of convergence of the finite element methods are checked
in numerical examples in Chapters IV, V and VI. For example, these
are numerically checked for multigroup diffusion problems with piece-
wise constant cross sections in one- and two-dimensional spaces and for
kinetics problems with variable coefficients. Thus far, the method has
been limited to applications in linear problems. We have considered
only regular partitions which are generated by orthogonal coordinate
surfaces. Numerical calculations which are not presented in this thesis

and remain for further study are as follows:

(i) Neutron spectrum calculations using piecewise linear or cubic poly-

nomials.
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Table 7.1

The Finite Element Method Applied to Neutron Diffusion Problems

H_ Energy (E) Space (r) T Time (t)
1 1 1
m=1/2 O(AE™) O(ar™) O(At™)
(const.) Multigroup
method
m =1 O(AE?) oarh* oat?h*
(linear) 3-pt. formula Crank-Nicolson
for dz/dxz Padé (1, 1)
m = 2 o(ar?) oarh” o(ath*
(cubic) Padé (2, 2)
Remarks Chaps. III, Chaps. IV, VI Chaps. V, VI
IV, VI "Numerical Order of conv. for
examples Padé formulae
available applies only for
TNO singularity gonstan‘t coefficients.
Numerical examples




(ii)
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Few group calculations for multidimensional problems using
piecewise polynomial basis functions in space and energy as

discussed in Example 2.2, Chapter II.

Neutron diffusion problems with variable cross sections. One
can use basis functions defined in Example 2.3, Chapter II.
The calculation using coarse meshes will be very useful in

studying the fuel depletion in multidimensional reactors.

Calculations for two- or three-dimensional problems in

spherical or cylindrical geometries.

The finite element methods developed in this thesis can further be

extended to the following problems:

(1)

(ii)

(iii)

Transport equations:
Q- Vé(r, D +I6(r, D= [ 2(r, @, Do(r, @) d¥ + qlr, D)

Expand the approximate solution as

I J
o= ) ) e we
i=1 j=1

where ui(r) and uj(Q) are polynomial basis functions defined in

Chapter II. The expansion coefficients aij are then determined

by the Galerkin scheme.

Coarse mesh calculations which account for the geometric and

energetic fine structures.

Applications to nonlinear problems.

The areas which require further investigations are:
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(ii)
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Finite element methods which use other types of partitions

such as triangular elements or combinations of these elements.

Development of efficient numerical techniques for the inversion
of large-order matrices which are obtained by the finite ele-

ment method.

Investigation of the condition number of the stiffness matrices
for the neutron diffusion problems resulting in the application

of finite element methods.

High-order approximation schemes which incorporate the

singular functions in numerical processes.
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Appendix A

PROOF OF THEOREMS

A.1 Preliminaries

In the previous chapters, we defined the inner products in the

energy domain £ and the space domain Q as

(u,v)£ = fgguv dE ,

(u,v), = fQ av dV |

(u,v)=f f uv dV dE ,
£ Q

and the corresponding L2-norms

3

Hu” 2 = (u,v)%
L7g) £

In addition, the L% -norm is defined by

||u|| o =rnax|u(x)l.
L () 2

We also denote the vector and matrix norms by [] []. In particular,

the maximum norm for a vector x= col{xl,

- SV XN} and a matrix
A = {aij} are defined by

D2l = max gl
N
Ial. - 1<i<N Z Iaij"

=1
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We shall frequently need the following inequalities [25] in our proofs:

Triangle inequality,

lasvl < [lull + v

3

Schwarz inequality,

[l < ful vl

A.2 Theorem 2.3

Assume that f(r) € Ct(ﬂﬁ). Let s(r) be a multivariate polynomial of
degree 2m-1 satisfying Eq. (2.19). Then, s(r) is uniquely determined

and satisfies

q Mi-q Mo.—q
2 (f(r)-s(r)) <K.Ar, D la. . +kar ™D
q - - 1 1 n_ n
or . o0
= L(ﬂﬂ)
0sgsm-1,
where

qz(ql:qzy"°)qn);

. =min(2m., t.) ,
Hy i by

Arj = rj’ ijt‘l - rj,ij .

Proof. The multivariate Hermite interpolate in the element T, can be
constructed by repeated applications of univariate Hermite interpo-
lations for each independent variable as shall be demonstrated in the
proof of this theorem. Theorem A states the uniqueness of the uni-
variate interpolations and thus the resulting interpolation in multivari-

ables is also unique.
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The proof of the error estimation is by induction.

(i) Suppose n=1. Let ?(rl) be the Hermite interpolate to f(rl) in the

space H_ (7,). Then, from Theorem A,
m, 1
a'l
——Tl (f(rl) - f(rl))
dr

K179

< KArl (A.2.1)

[e0]
L]

(ii) Suppose n=n' for arbitrary n’. Let ¥(£') be the Hermite interpo-
ry 1= ' —
late to f(r’) in Hm,(nn,) where r (rl, Tosnnes rn,) and m (ml, my, ..., M

Assume that

q’ ~ ui-q B_y=q
47 (txn -F(en) I A
' - - n

dgq

. < KlArl
L (w)

n'

(A.2.2)

(iii) Suppose n=n'+1. Let 7f(z) be the Hermite interpolate to f(r) in
= = 4 =

Hn(ﬂ'n) where r (rl, Toseees rn) (r’, rn) and m (ml, Mg, ..., mn).

We also introduce the univariate Hermite interpolate ~f(]r'n; r') to f(r)

in H (7)) such that
m 'n

?(q)(r . srh) =f(q)(r',r ),
n,i’— =

n, i
! n
(A.2.3)
?(q)(r sr!) = f(q)(r’ T ) 0<gsm-1
n,i +1°= Lofn,i 417 2 VS AS :
n n
Theorem A implies that :f(rngg') satisfies
aq X |
_QTJ (f(xr) —f(r'n; r')) < KArnn n (A.2.4)
dry L7(r)

Furthermore, from the assumptions (A.2.2) and Eq. (A.2.3),
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a =
max { || 9 (H(x) - T(r_; )|, ———a(f(r) ;2"
dr n,i, L°°(7r) dr n 1n+1 L°°(7r)
My-q 23 ale
<K,Ar,0 l4.. .+ AP T
1 1 n'~ 'n

a . ~
Since & - (f(r)-T(r_; r") is a polynomial of degree 2m_-1 in r_, this

drq - n°— n n
can be represented by

dq’ - m 1 / \

~ _~ . ? — p p *

Y (t(x)-f(r_;x") la (r )+at1 +1 i +I(r )J
m-1

K44 M= 2m_-p
1 n! "n n
< Z {KlArl +.. . +K ,Ar }Arn [ n(r )~ uwﬂ(r )i‘

p=0

where the factors Arim—p are introduced as normalization factors to

n

have correct dimensions. Note that

up+(rn) and uiwp_gl(rn) in order that the error bounds on the right-hand side
n

|ulioi(rn)| < K Arf)1

n p
and so
q -
a° pi(r)SKArpq.
drq h p n
Thus,
m-1 , _ b - N D _
a5 R L P e G P
4 o < i LAry .. JAr fAary
d£ L (71-) p:O J
m-1 _ - -
Mi—q M_p=q o) 2m-q
—2 KArl 1+..+K Arn n Ar n
1771 ’ ! n
p=0

(A.2.5)
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Therefore, applying the triangle inequality and using the inequalities
(A.2.4) and (A.2.5), we obtain

a4

q ~ X o~
4 w-pl . <L w-n| o, +|SSED|
ar“ L°(r)  |ldr® L) |ldr? L°(r)
Mi-q Mo-q
1 71 n n
< KlArl + ...+ KnArn . (A.2.6)

We have shown that for n=n'+1 the error bound (A.2.6) holds. Thus, as
a consequence of the steps (i), (ii) and (iii), we conclude that (A.2.6) holds

for any n. This completes the proof.

A.3 Theorem 3.1

Assume that the inequality (3.4) holds. Let ¢(E) be the solution to
Eq. (3.3) and ¢(E) € CYg). If $(E) is the solution to Eq. (3.7) in the

space Hm(ﬂ(ﬁ)), then %(E) satisfies

lé-ol , <KAEM
L(£)

where u = min(2m, t), AE = max|E,

-E.| and K is a constant independ-
i i+1 i

ent of AE.

Proof. ¢ and a satisfy

(T¢,V)£ = (Q,V)£ ,

r:[‘A = >

(T¢,v), Q. v,
for all v=ug(E), 1 < g < G. The difference of the two equations is
given by

(T(¢—$>,v)£ = 0. (A.3.1)
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Let 5 be the Hermite interpolate of ¢ in the space of Hm(ﬂ(,_ﬁ'))

(cf., Sec. 2.1, Chap. II). Then Eq. (A.3.1) can be represented as
6-9 = (T(¢-3 : .3.
(T(¢ ¢>),V)£ (T(¢ 9), V), (A.3.2)
Theorem 2.1 implies that

[ ¢>-$||Lc,o - KAEY . (A.3.3)

Then we can show easily that

-3 < N
(T(¢ ¢),ug)£ < (T(KAE )’ug)£

I\
1101
N
Q

< K AEM 1
g
h K =(TK, .
where g ( ug)£

Let e(E) = ?¢(E) - $(E). Since (Ab - ¢ is a polynomial of degree 2m_,-1, we

E

may represent e(E) as

G\
e(E) = Z_ egug(E).
g=1

Then Eq. (A.3.2) becomes

B e < KAEX
where
B=L-S-1F,
K = COl{Kl’Kz""’KG} ,
e = col{el,ez,...,eG} .

Other matrices are defined in Eq. (3.8) in Chapter III. Then,
e < B lkAEH

and thus



157

Dell, < 0B7'0,, DX0,, 3EX .
K[, is a constant and thus it remains to prove that |:|>‘B_1|:|oo is
bounded. Descloux [54] considered bounds of the stiffness matrix and
its inverse for a wide class of problems in the finite element methods.

We appeal to the work of Descloux to assert that there is a constant vy

such that
-1
DB I]oo s 7.
Hence,

13-3l _ < max |e(®)] < K[ell,
L £

< KAEM . (A.3.4)

Therefore, applying the triangle inequality and the inequalities (A.3.3)

and (A.3.4), we obtain
lo-8ll < le-3l ,+ 13-l
L 1.2 1.2
< KAEM.

This completes the proof.

A.4 Theorem 4.1

Assume that the inequality (4.3a) holds. Let ¢(r, E) be the solution
t _ —
of Eq. (4.2) and ¢ € Cp(7rdfgr X?TQ) where t = (tr,tE) and m = (mr, mE). If
%(3, E) is the solution of Eq. (4.5) in the space Hm(7T£ XWQ), then 3)(3, E)

satisfies

~ __H — Mg
||¢-¢||Loo <K, Ar " +K,AE
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where p = min(Zmr, tr), Hp = min(2mE,tE), Ar = rr%%x Ar, AE = rr}ra£x AE
and K, and K, are constants independent of Ar and AE, respectively.

Proof. ¢ and 3) satisfy

a(g,v) =(@Q,v),
a(d, v) = (@, v) ,

for all v = ui(g, D) ug(E), 1<i<N, 1< g< G. The difference of the

two equations is given by

A

a(g-¢,v) = 0. (A.4.1)

Let § be a Hermite-interpolate of ¢ in the space Hm(ﬂQX Te ) (cf., Sec. 2.2,

Chap. II). Then Eg. (A.4.1) can be written as
a(¢-3,v) = al$-3,v) . (A.4.2)

Also, Theorem 2.4 implies that

~ _ M M
l6-3]  <K,Br °+KAE &
Loo 1 2
We now establish that

M g

a(¢-9,v) < K Ar Ty K,AE . (A.4.3)

for all v = ug(E) ui(_I:,D), 1<g<G,1=<i<N.

Strang and Fix [38] have shown that the interpolate ~f(;_) of f(r) in the

smooth Hermite space of degree 2rnr satisfies

2m

(Y (i) (1), Yu(r), < KAr © (A.4.4)

where {ui(g)} is a basis of the Hermite space. Inthe space H  (7(2)),

however, the above relation holds locally in each mesh element only
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if f(r) e Ctp(ﬁ)., We can then show that the inequality (A.4.4) holds in the
entire region by a procedure similar to those in the proofs of Theorems
2.1 and 2.4. Furthermore, when ¢(r, E) is dependent on both r and E,

it is conjectured from the result of Strang and Fix that

M

~ — M
(V(6-9), Vv) < K'Ar ¥ + K'AE ©

for all v = ug(E)ui(L D), 1< g<@G, 1 <i<N. We now show that

~ S S —
(¢-9,v) < (K'Ar "+K"AE —,v)

M M
< K'Ar T+K'AE &,

([ =tr,B'~E) [¢(r,E')-$(r,E')]dE',v)
< K ({g(qﬁ—a) dE'BV)

o u M
< K(jﬁ(KlAr " +K, AR E)dE',v)

M M
< K| Ar "+K}AE E.

where u.(r), u (E) are normalized such that Cu. dV = u_ dE =1, ,
(), vy jﬂ . f£ ¢

Combining the above results, we obtain the inequality (A.4.3) which was

to be established. Let e(r,E) = ¢(r, E) - ¢(r, E). Since ¢ - ¢ is a polynomial of

degree 2m1—1 and 2mE~1 in r and E, respectively, e(g‘_,E) can be

represented by

Z

G
e(r,E) = Z \ eigug(E) ui(_r_', D).
g=1 i-1

Then, it can be shown easily that Eq. (A.4.3) becomes

_ M _ M
Be < K, Ar ' +K,AE
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where

_ 1
B=L-S )\F,

o
|

= col{ell,e12, €91 €00, - ’eGN} ,

K. - K

] col{Kj

11° j12,...,szl,Kj22,...,KjGN}, i=1,2.

Kjgi’ 1< g<G, 1<1is< N are constants. Other matrices are defined
in Section 4.2.2, Chapter IV. Then,

-1, —Hy -1 Mg

e < B 'K,Ar © +B 'K,AE

so that
-1 —Hyp -1 —"E
|]51[|°o and |:|I_{2|:|oo are constant. We claim that there exists a constant

v such that
I]B—l[l <7.
[c ]

As in proofs in Sections (A.3) and (A.6), we appeal to the work of

Descloux [54] to assert the above statement. Then,

H$—¢HL°° < Srzrl;?e(LE)\ < K[ell,
v M
< K,Ar T L K.AR D

9 (A.4.5)

Finally, applying the triangle inequality and using the inequalities
(A.4.3) and (A.4.5), we obtain

" M __ Mg
| o- ¢HL°° < KAr © + KyAE

This completes the proof.
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A.5 Theorem 5.1

Let ¢(t) be the solution to Eq. (5.1) where A(t) is Lipschitz

continuous, i.e., there exists a positive constant o such that

DA (D - g, < o[t - g,

Let i(t) be the solution of Eqg. (5.6) in the space Hm(ﬂt). Assume that

there exists a constant T such that

DZ ‘A 1+1U <1

. t _
if |t. -, l< T forl<is N -1, If ¢ Cp(vrt) and At = 122}1(\1tlti+1—ti|< T,

then Q satisfies

max [] e (d)(t) - ¢(t))|] < KAt 4
[0,T] " dtd

where u = min(2m, t) and K is a constant independent of Af.

Proof. Let ¢(t) be the Hermite interpolate of ¢(t) of degree 2m-1 in

the interval [t. t.] (cf., Sec. 2.1, Chap. II). Then Theorem A implies

i+1°
that

q ~ -
max ndia(g(w-g(t))ﬂws KAat™d (A.5.1)
t i

where At, = |t

Note that ¢(t) and _?Q(t) satisfy

—til and K is a constant independent of Ati.

ti+1
bipqg ~ 9 = ft A1) §(1) dt ,

i

P e *5 R
001 - 9;= ) 7 A® $(t) dt.
t.
1
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The difference of the two equations can be expressed by
S £ S
Siv1 84y = 95- i+ | {Ale-D+A@-@} at- (A.5.2)
i
Let gi(t) = Ez(t) - ¢(t). Since e(t) is a vector whose elements consist of

polynomials of degree 2m-1, gi(t) may be expanded in terms of the

element functions ugpi)(t) such that

R b (0N o)
&;(t) = pz=0 ‘Lgl'fuip (0 +ef,; uily } :

By applying the Hermite method developed in Chapter V, Eq. (A.5.2)
becomes

C 1 A(g-9) at (A.5.3)

t
418341 = G181 T ft
i

where

e; = ety

) >

e.

i1 = &

it
[ o o))
Civ1 = II - 0 A A
p= J
( m-1 )
c,={1+ ) A§p+)A{ip} ’

{

L p=0 y

Other matrices are defined in Section 5.1, Chapter V. Hence,
<fcilc + et fti“ A(o-D)[ dt
Dgi-l-l[l\n i+1 i[loo [lg]'_l]oo | i+1[|oo ; 0 Q‘Q)Doo
i

-1 -1
< 1€ Cille Nyl + €40, KA. (A.5.4)



163

Define
m-1
P o= ) APDAPY
i i i
p=0
m-1 (p-)
P-) A {p}
P ZOJ‘HI ALl
p:

A{.p} and Afp} are independent of At, and f |u1.0i(t)| dt = O(AtP+1)
i i+1 i i
(cf., Sec. 2.1, Chap. II) and thus

m-d +1
P.< ) K. _atTh
i i,p 1
p=0

-1

m

p+l

) Kivi,p24 -
p=0

where K, and K. are constant matrices independent of At,.
i,p i+1,p i

From the assumption, uPi+1|]oo <1 for lti+1 —til < 7 and thus we

can express

-1 _ 2 _
[1-P, ] " = [I+P,  +P] +...] =L+ O(AL),

2

-1
[I1-P, ] " [I+P.] = [I+P,  +P{  +. .. ][I+ P]

I+ O(At.l) .

Hence, the inequality (A.5.4) becomes
u
€41l S {1+0(AL)} [gll, + KA.

Since []g_ll)[loo =0for 0<p<

~

m-1, it can be shown easily that

e. < Kat# i
—i+1UYeo i

Vv
Pt
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P _ A{p}

Furthermore, since e [Sh

p " .
Dgi+1|]oo$KpAti s i= 1.

Then,
m-1 \
+
max l]——— IOT D) el __qup ) +[ed, 1+1(t) j
[t tiq] atd =0 dt
m-1
P (As M pP-q
< Z Kp(Ati IUN- !
p=0
m-1
= K' AthTP-d (A.5.5)
P 1
p=0
q q _
where —@—up-‘_(t) da° p (t) =O(Atp q) are used. Therefore,
dtd dt4

applying the triangle 1nequality and using the inequalities (A.4.1) and

(A.5.5), we obtain

max [|— (o(t)- d)(t)[l < max [|—— (¢ - ¢)|] + max []—(d) ¢>)|]

[0,7] dt4 [0,T] dt [0,T
< max [|— (¢ - ¢>)[| + max [] __1(’E)l]
[0,7] at? — 1<i<N,-1 dt?

< K aAtH™q

This completes the proof.

A.6 Theorem 6.1

Assume that the inequality (6.2) holds. Let ¢(r, E, t) be the solution
of Eq. (6.3) and ¢(r, E, t) € C;(WSIZXW",C‘) where t= (tr,tE). If %(E,E, t) is the

solution to the semidiscrete equation (6.6) in the space Hm(WQX ﬂﬁ), then
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__u, g
lo(x, B, 1) - d(x, E, 0| < K,Ar '+ K,AR
L? (7r Xﬂ' )

where u_ = min(2m ot ), Hp = min(2mE,t ), Ar = max Ar, and AE =
Q

max AE and K and K2 are positive constants independent of Ar and
£
AE, respectively.

Proof. ¢ and :ﬁ satisfy

@-,%tbﬂ) +a(g,v) =(Q,v),
(715-,— —g-f auv) + a(?é,V) =(Q, V),

for all v = ui(g, D) ug(E), 1<i<N, 1< g< G. The difference of the

two equations is given by
1 A A
(32 6-0),v) +als-4,v) = 0. (A.6.1)

Let ¢ be the Hermite-interpolate of ¢ in Hm(WQXﬂ£). Then, Theorem 2.4
implies that

u

~ - I
g - ¢HL°° < K,Ar T+ KyAE P (A.6.2)

Then, we can write

22 6-9.v)+a6-3.v = (75 9-9).v) +a6-3,v).

In the proof of Theorem 4.1, it was established that

2m 2m

alg-¢,v) < KAr '+ K. AE

E
9 .

By a procedure similar to that in the above proof, we also have

1 9 ~ 1
Z 2 (6-0),v) < = —
(W ot Y nin

~ ; M M
(& (9-9).v) < K'Ar © + K'AE E
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A ~ A ~ _Mr __UE
For (9-9.v)+a@-3,v) < KjAr T+ K,AE . (A.6.3)

Define e(r, E, t) = (A;') - %. Since ;i)(t) - ¢(t) is a polynomial of degree 2mr-1

and 2mE—1 in r and E, respectively, e(t) can be represented by

. . G N
e, E,0=6-8=) ) e, v (rE).
g=1 i=1

Then the inequality (A.6.3) becomes

0 —Hy —H
Vare+Ae<K/Ar® +KyAE

E

where

>
[

L-S-(1-pfF,

|
[

= col{ell, €195+ ++€91s€00, - ’eGN} )

K.=001{K. K ..., K K

j11° 773127 j21’ j22""’KjGN}’

éfQKjvig dV dE for j=1,2.

Other matrices are defined by Eq. (6.11). Solving the differential

inequality, we obtain

t
-1
g(t)SeXp[— f A% Ads}g
0 o

t t _ M M
+ [ exp [- [ vla dT}V 1[§1Ar T+ K AR Est. (A.6.4)
0 s

We cldim that there exists constants Y15 Yo and V3 such that
-1
*yl<[|V |]00<'y2 and [|A[|°O<73.

As in proofs in Sections A.3 and A.4, we appeal to the work by Descloux

[54] to assert the above statement. Consequently,
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M M
— r — E
Oel, < Klel, + Kjar = + K,AE ™.

K M
. _—Fr ME
Since  [le [, = O(Ar +AE >,

Je@®[. < K'Ar T + KJAE E
- 00 1 2

Hence,

A~ _ M u
Is -3l - max_|e(w] < K[le®],, < KyAr ©+ KYAE

E
Lo@Xeg) [0,T] 2

(A.6.5)
Finally, applying the triangle inequality and using the inequalities (A.6.2)

and (A.6.5), we obtain

- M .
lo-3l <K,Ar © E

This completes the proof.



{uli)i(s); 0$p$m—l} for m=1, 2 (cf., Sec. 2.1, Chap. II) are listed

INNER PRODUCTS FOR ELEMENT FUNCTIONS

Nonvanishing inner products for the univariate element functions

Appendix B

below: Let h_= X=X 4 and h_|_= X" %
(i) m=1
(uo— SO _h (uo- 0" _ b
i ti-1 6 i oY% ) 3
0+ 0+ _Ei 0+ O- =Egr_
“1"11)‘3 ui’ui+1> 6
(i 0- - d 0+ __1 d ,0-d 0-y _
dx Yi °dx i—1> h dx % v ax i

(ii)

(_d_ 0+ d 0+
dx Yi v dx %

m=2

(0- 0+\ __ 9
ui’ui-l) 70 -

) "5,
by

=

(u.o_, up_) =13y
i i

(up-l-, up+) =13 h
i i

35 4
<0+ 0- y _ 9,
Yoo W) T70 M
(ul— GOy 13 2
i Yi-1 220 -
11 .2

(ul_ w7y = - AL
R I T

0- 1- 11
(ui oYy )“‘21_h
(uo+ 14y _ 11,2

i oY > 10 2t

0+ 1- 13
(ui’ i+1) = " I30 D
(1- 1+, _ 1
9.y 140
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dx i dx

(Lul*, &
dx i ’ dx

_ 11,2
=310 O+
_ 13,2
=220 2+
O+ _ _6
i-1 5
0-, _6 1
Y )"311__
O+y 6 1
ui> 5 hy
0- _8
i 5
0+, _ 1.
1-1)"1‘6
-y .1
Y )_—_1—0
L0ty L
i) 10
0-,_ 1
ui+1)"1_0

‘(£u1+ d 1-
dx "1 ’dx i*)
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1+ 1+, 1 .3
i +u ) =108 0y
1+ 1- 4y 1 .3
i ’ui+1)“'1 0 o
4 0-d 1+ _ _ 1
dx %i ¢ dx Yi-1 10

d 0- d 1- _
(d_xui ‘=Y ) T T 10

(‘d 0+ _d 1+>=_1

dx % v ax % 10
(i 0+ d 1-_ 1
dx % dx %i+1) T 10

d 1- d 1+ , 1
(azui »qx %i-1) T T30 -
d 1- d 1- 2
(v =y ) =13 h.

(Lol L%y -2y,
dx i s dx Y )~15 +

The inner products for multivariate element functions can be de-

termined using the univariate inner products.

Consider an n-

dimensional space and let multivariate element functions be defined by

i,

.. i (r) =u; (rl) u, (r2) ..

n 1

, . uin(rn) .

Then, the multivariate inner products can be represented by
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n
(Vi: Vl') = —IT (ul’ ul') 5

n
_ Il 3 3 7
J=

For example, for n=2, the bivariate inner products are given by

3

(v.,v.p) =(u, ,u, ) (u ,u.,)
i’ i i,0 7y PN AP

d d
(Vv,, Vv.) =(5—u, , 5=— u., ) (u. , U., )
— 17 —="1 (dr1 dr1 iy i il

Y

d d
+ (u. s . ( u. , u, ) .
i 1'1) dr2 i, dr !




NUCLEAR DATA

Appendix C

Table C.1. Delayed Neutron Constants

Group Bi N
-3 -1
1 0.285 X 10 0.127 X 10
2 0.15975 X 102 0.317 X 107}
3 0.141 X 1072 0.115
4 0.30525 X 102 0.311
5 0.96 X 10™° 0.14 X 10%
6 0.195 X 1073 0.387 X 10%
B =% B, = 0.0075
Table C.2. Multigroup Nuclear Constants
(a) Thermal Group
Fuel Reflector
D2 0.4 0.15
ZTZ 0.2 0.02
vZf (0.218) 0.0
Vo = 2.,2X10° cm/sec.
(b) Fast Group
Fuel Reflector
D1 1.5 1.2
ZTl 0.0623 0.101
29 0.06 0.1
VE,: 0.0 0.0
!
8
77 = 1.0X10" cm/sec.
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Appendix D

COMPUTER PROGRAMS

The computer program HERMITE-0D for the numerical solution of
the point kinetics equations is described in Section D.1. The two-
dimensional reactor kinetics program HERMITE-2D is described in
Section D.2. These programs are written in FORTRAN IV for the
IBM 360/65 computer system. The source listings of the programs are

presented in Appendix E.

D.1 The Point Kinetics Program HERMITE-0D

In this section, the general features of the program HERMITE-0D
are discussed. Section D.1.1 discusses the preparation of input data
cards and Section D.1.2 presents a list of sample input data cards.

HERMITE-0D is written for the purpose of testing piecewise poly-
nomial methods for the point kinetics equations. The general numerical
methods are developed in Chapter V. The present program permits
approximations using piecewise polynomials of degree up to 3. The
reactivity change is limited to ramp variation in time.

HERMITE-0D provides four methods for the solution of the point

kinetics equations:

(i) Crank-Nicolson scheme,

At 44 At 5 1 4
{I-F A} ¢, ={I+F A} ¢, . Eq. (5.6b)
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(ii) Hermite method, m=1,

2 2
At At " _ At At 14
1= A T Apd by =T+ 5 A4y - T3 4408, Ea. (5.100)

(iii) Hermite method, m=2,

2 3
At 7 .2 At At .
{I-F A - g ATAL+ (T3 A+ 55 AaTA L1184
At 7 .2 At2 At3 o
{I+ S AL -5 ATANF [T A4 - S5 AalALe

Eq. (5.10c¢)

(iv) Hermite method applied to the time-integrated point kinetics

equation, m=1,

A

A ( MY 'xjti+1) ,
Bi+1 n, =B + .Zl e -e Sji Eq. (5.14)
J:

where B.

41’ Bi and Sji are defined in Eq. (5.14).

In the program, the solutions of the methods (i), (ii) and (iii) are
determined by using the Jacobi iteration scheme. However, the unknown
in the method (iv) is a scalar and is determined simply by dividing the

right-hand side by the coefficient of the unknown.

D.1.1 Input Preparation for HERMITE-0D
Card 1. FORMAT (20A4)
Alphanumeric title with 1 in column 1 for page control.
Card 2 FORMAT (1615)
This card provides the general information which specifies the
problem. IC1>1 allows calculations of the same problem with different

time steps.
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IC1 = Number of different At's (see Card 6).

It

IC2 = Maximum number of iterations: Methods (i), (ii) and
(iii) only.
IC3 = Number of delayed precursor groups.
IC4 = Number of time zones < 2.
IC5 = Numerical method options:
= 0 Method (i),
=1 Method (ii), (cf., Sec. D.1)
= 2 Method (iii),
= 3 Method (iv).
Card 3 FORMAT (8D10.5)

Py = Reactivity p(t) in dollars at t = 0.

€ = Convergence criterion.

N Linear coefficient of p(t) in dollars in the first time zone.
T1 = Time at the end of the first time zone.

pA,Z = Linear coefficient of p(t) in dollars in the second time zone.

T2 = Time at the end of the second time zone.
Card 4 FORMAT (8D10.5)

A = Generation time.

(M(I),1=1,J) = Decay constant of group I.
Card 5 FORMAT (8D10.5)

(B(I),I=1,J) = Fraction of delayed neutrons of group I.
Card 6 FORMAT (8D10.5)

AT = Time step size.

Repeat Card 6 as many as IC! times for different At's.
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For another problem, a set of Cards 1 to 6 may be placed immedi-

ately after Card 6.

D.1.2 Input for Sample Problem

On the next page, a list of input cards is presented for a calculation
using the cubic Hermite method (m=2) and At=0.5 sec in Example 5.1,
Chapter V. For computation using other methods, it is necessary to
change IC5 in Card 2 as directed in the input preparation. As the com-
puter output, the neutron density and the precursor densities will be

printed at every time step.

D.2 The Two-Dimensional Reactor Kinetics Program HERMITE-2D

The general features of the two-dimensional kinetics program
HERMITE-2D are described in Section D.2.1. Section D.2.2 discusses
the preparation of input data cards and Section D.2.3 presents a list of

sample input data cards.

D.2.1 Description of HERMITE-2D

The program HERMITE-2D is written for the purpose of testing the
finite element method for two-dimensional reactor kinetics problems.
The program solves the time-dependent neutron diffusion equation,
Eq. (6.1), using bicubic polynomial basis functions in space and piecewise
linear functions in time. The selection of polynomial basis functions is
discussed in Chapter II and the finite element methods in space and time
domains are developed in Chapters IV, V and VI. The program also per-
mits steady state calculations involving the determination of eigenvalues

and the search for critical fission cross sections.



1 SAMPLE INPUT FOR FXAMPLE 5,1,CHAP.V --HERMITE-OD INPTQOO1

1 50 6 1 2 : INPT000?2
0.0D0 1.0D- 9 0.5D0 2.000 INPTO0003
5.00-4 0.1270-1 0.317D-1 0.1150 0 0.311D O 0.14D 1 0.387D 1 INPTO004
0.285D-30,15975D0~-2 (.141D-20,30525D-2 0.96D-3 0.,19%5D-3 INPTO005
5.00-1 ’ INPTO006

PAGE 176
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HERMITE-2D is not intended to be general and its applications are
rather limited to specific problems. Limitations to the present program
are:

(i) Rectangular geometry with the quarter core symmetry;
rectangular partition.

(ii) Two-group computations only.

(iii) Regionwise constant cross sections; fissions only at thermal group
with x1=1.0; linear or sinusoidal time variations in thermal
absorption cross sections.

Numerical results for steady state problems presented in Chapter IV

are obtained by using a modified version of HERMITE-2D which is mainly

written for eigenvalue calculations in one- and two-group problems. The

modified program allows the use of a larger number of mesh points com-
pared to HERMITE-2D.

The reactor configurations [0,a] X [0,b] and the time interval [0, T]

are partitioned such that

0=X1=X2<...<XN =a,
X

O—yl—y2<. <IN = b,
Yy

0=t1=t2<. <tNt=T

It is assumed that material properties in each mesh element are
continuous.

Bicubic basis functions are imposed on the spatial partition {(c.f.,
Example 2.1 - 2.3, Chap. II). In order to facilitate the representation of
the bicubic basis functions in linear indices, the basis functions are
arranged alphabetically as follows (see figures):

At regular points,
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Expansion
Type Equation Coefficient
d¢
d%
b (2.28d) Ixdy a c
7
d¢ d
c (2.28c) Iy b
d (2.28a) ¢
and at singular points,
Expansion
Type Equation Coefficient
dé
A (2.30b) Ix i
dé
B (2.30c¢) T

+
Al F
a%¢ B
C (2.30f) e S
i ’[\
d¢

D (2.304) ay|
d

E (2.30e) % N

F (2.30a) ¢

The group dependent normalization factors Og for the bicubic functions
are assumed to be equal to the average of diffusion constant over the
entire material regions. Expansion coefficients of the bicubic basis
functions correspond to function values and their derivatives at mesh
points and these are indicated in the right columns.

Figure D.1 illustrates how the cubic basis functions are linearly

indexed in the program. The region is partitioned into four elements
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¢ =0
P, Pe P,
c b| c b
15 16 17 18
REFLECTOR
P
7 9
6 A 12 13
%¢2=0P7d B aP5 $=0
X C E b
D\ 11
5 9 0 14
CORE
M 1 2 3 4
P4 d al|d a P1
P
8
dé _
X . dy 0

Fig. D.1. Linear Representation of Bicubic Basis Functions
on a Rectangular Partition

and the point P9 is a singular point. It can be shown easily that the
bicubic basis functions at boundary points, which satisfy the quarter
core symmetry boundary conditions, consist of the regular basis
functions whose regions of definition in the above convention lie
within the reactor geometry. For example, basis functions at
corner points Pl’ PZ’ P3 and P4 consist of functions of types a. b. ¢

and d, respectively. Basis functions at boundary points P P6“” p

55

and P8 consist of sets of functions (a,b), (b, c),(c,d) and {(a, d).

7

respectively. The singular point P9 possesses functions of types A

to F. If P9 is a regular point, then it contains functions of types a to d.
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The bicubic functions are numbered in a linear fashion sweeping in the
x~-direction and at each mesh point basis functions are ordered alphabeti-
cally: x sweep begins at P4 and moves up to the increasing y-direction.
The linear indices of basis functions are shown in Fig. D.1. In this
example, the total number of basis functions is 18. If P9 is a regular
point, then it becomes 16.

Let { (r)}N and {uOi(t)}Nt be the linearly indexed basis functi

vr)ri_q K k=1 y asis functions,

bicubic in r and linear in t, respectively. Then the approximate solution

for the g-th group and tks t<t is represented by

k+1

N
#lr, 1) = 121 {agikulz-l_(t) +agi,k+1u12:r1(t)}vi(3) :
Applying the Galerkin scheme to the time-dependent neutron diffusion
equation, Eq. (6.1), leads to a system of linear equations, Egq. (6.14), for
the expansion coefficients.

In HERMITE-2D, the elements of the stiffness matrices in Eq.(6.14)
are determined by using inner products of bicubic functions as defined in
Appendix B. The resulting matrix equation is then solved by the source
iterative scheme incorporated with the Cholesky procedure which is dis-
cussed in Section 4.3, Chapter IV. The equation for the (K+1)th iterative

solution is set in the following form:
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At K+1
{Vg+ 2 Lgk+ £g,k+1} 8o k+1

G { At
= Vo ,+—5[-6_ ,L +S  +(1-f)F
2 [“eggrlgit Sggrt (1-F)

Oggr ge']
g'=1
J } K
+ NB.F . 46 L D1
3'21 UM P age gt ek gk .
¢ At S K
N Z {—Z[Sgg'+(l'B)Fgg']+ Z ’ij)‘ijngg'} Egr,k+1
g'=1 =
J -Nt -\t
k k+1
+ Z [e J -e J ]ik
. kg
=1
where
igk = COl{aglk’ SRR agNk} .

Matrices in the above equation are defined in Eq. (6.14). The coefficient
matrix of the vector -%K-Il_ii-l is symmetric and positive definite and thus
the Cholesky scheme can be used in inverting the matrix.

The matrices defined in Eq. (D.1) have band structures whose half

width is given by
Half-band width = 4NX + 2NRX + 5

where NX is the number of x mesh points and NRX is the number of

x regions. In the program, only the band part of the coefficient matrices
is stored in order to reduce the computer storage requirements. Further-
more, the variable dimensioning features of FORTRAN IV are used for
coefficient matrices and the matrices are stored in a vector called
A(NDIM) with a length NDIM. The length of the vector A can be estimated

from the formula,
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NDIM = N{4G+J +NWD(1+4G)} + NT

where N = number of basis functions in each group, G = number of groups,
= number of precursor groups, NT = number of time steps and NWD =
total band width which is equal to 2(half-band width) + 1.

Figure D.2 describes iteration procedures for the steady state cal-
culation in HERMITE-2D. The general numerical methods are discussed
in Section 4.3, Chapter IV. In Box 1, the initial coefficient vector is
read in or generated in the program as simple hill-shaped functions.

The (J+1)th iterate for the coefficient vector is determined by solving
Eq. (4.14) in Box 2. The eigenvalue is computed after every INNMAX
iteration according to equations in Box 3. If IC4 # 2 and the eigenvalue
satisfies the condition in Box 4, the computation of eigenvalue is com-
pleted. However, if IC4 = 2, the eigenvalue is required to be equal to
1.0 with some tolerance as indicated in Box 5. In this case, the fission
cross section is adjusted according to the equation in Box 6 and compu-
tations of the eigenvalue are repeated until the condition in Box 5 is
satisfied. The final cross section corresponds to the critical fission
cross section.

The general procedures for the kinetics calculation in HERMITE-2D
are illustrated in Fig. D.3. In Box 1, the initial flux is either read in or
computed in the steady state part of the program. The new time-
dependent coefficient matrices for the time step k+1 are defined in Box 2.
Then the coefficient vector at the step k+1 is computed from Eq. (D.1) and
extrapolated as shown in Box 3. The convergence of the coefficient vector
is then checked in Boxes 4 and 5. If they are not satisfied, the process

returns to Box 3 and the same routine is repeated. If the solution vector
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is converged satisfying the conditions in Boxes 4 and 5, the computation
in the time step k+1 is completed. The process then returns to Box 2

for the next time step. These stepwise computations are continued until
the maximum time limit is reached. The program also provides for run-

ning multiple jobs by specifying ISTOP # 0.



Fig. D.2.

START
1 1

READ OR GENERATE

INITIAL VECTOR g_;

184

’

Logic for Steady State Calculation

=
J+1 -7
. 1
J+1
COMPUTE 2! BY EQ. (4.14) A
g *J+1
41 J &, 3
g '-a-g+€3( %)
IS J A MULTIPLE OF | °
INNMAX‘? /
3
( T
)\—1J+1 g
g
4 l/
1T+l -1J \
s |2 -\ <e ? No
-1+ /
—N—O—( IS 1C4 )
5 i 6
N | | " vig
(IS A - 10| <e, j__) S
1
v
STOP
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START

INPUT

1 v

READ OR COMPUTE
INITIAL VECTOR égl
- <
4

k+l - k

2 1)

GENERATE COEF. MATRICES
FOR STEP k+1

J+l1 - J

COMPUTE a’ ™!

& g+ FROM EQ. (D.1)

J+1 _J €I+l J
8o kt+1l ~ g k+1” 68(ag,k+1 - ag,k+1)

4 v

/ FERWE

_ gi,k+1 gi,k+1 o No
IS miax 1 aJ aJ+1 < €g °
\ gi, k+1 gi,k+1

J \\

a .

IS max 1——5_1*_’1gil <€7? No
! 851, k+1

v

(END OF TIME LIMIT?\r No

v

(IS ISTOP = 0 ?)

4

STOP |

Fig. D.3. Logic for Time-Dependent Calculation
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D.2.2 Input Preparation for HERMITE-2D
Card 1 FORMAT (20A4)
Alphanumeric title with 1 in column 1 for page control.
Card 2 FORMAT (16I5)
NG = Number of energy groups = 2.

NX

I

Number of x mesh points.
NY = Number of y mesh points.
NRX = Number of x regions.
NRY = Number of y regions.
NZ = Number of time zones < 2.
NPREC = Number of delayed neutron groups.
(LF(1,JR),JR=1,NRX) = Mesh point number on the right
region boundary; mesh point number on the left
boundary of the first region is 1.
(LF(2,KR),KR=1,NRY) = Mesh point number on the top
region boundary; mesh point number on the bottom
boundary of the first region is 1.
Card 3 FORMAT(1615)
This card contains control variables which specifies the problem.

IC1 = Type of perturbation in thermal absorption cross section:

0 ramp,

1 sine function.

IC2 = Frequency of flux print-outs: fluxes are printed every
IC2 time steps.

IC3 = Maximum number of outer iterations.
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IC4 = A variable which controls steady state calculation:

= 0 no; initial fluxes are read in,

1 eigenvalue calculation,

2 search for critical thermal fission cross sections or
calculation of initial equilibrium fluxes.
IC5 = A variable which controls the kinetics calculation:

=0 no,

1 yes.
IC6 = Maximum number of inner iterations.
IC7 = Number of iterations per inner iteration.
IC8 = A variable which controls initial fluxes:
= 0 generate,
# 0 read in.
IC9 = A variable which controls the termination of computations:
= 0 last problem,
# 0 next problem to follow.
IC10 = A variable which controls flux punch in every IC2 time
step including the initial flux:
=0 no,
=1 yes.

Card 4 FORMAT (D10.4)

EPS1 = Convergence criterion for the eigenvalue:
-1J+1 _  -1J
A “* | < EPSI.
\-1J+1
EPS2 = Convergence criterion for the eigenvalue:

Ix-1.0] < EPS2.
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Card 86

Card 7
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EPS3 = Extrapolation parameter for the eigenvector:

2T - T L Epssta It )

EPS4 = Not used.
EPS5 = Frequency of the sine function (see Card 7).

EPS6 = Convergence criterion for the flux vector in the kinetics

(00 /)

i i

a i
< EPS6.

i
J

calculation: max
A a

1

EPS7 = Convergence criterion for the flux vector in the kinetics

ad
1

+1

calculation: max|1 - < EPST.

1

J
a,
i

EPS8 = Extrapolation parameter for the flux vector in the

kinetics calculation: 311{{_;_{_11 = EIk{+1 +EPS8* (g:;ffl—glé+l> .

FORMAT (8D10.4)
(H(1,JR),JR=1,NRX) = mesh size in the JR-th x region.
(H(2, KR),KR=1,NRY) = mesh size in the KR-th y region.
FORMAT (1615)
NMAT = Number of different materials.
NDATA = Number of material specification cards (Card 8).
FORMAT (5D10.4)
Card 7 provides two-group cross sections for different
materials. A group of Card 7 is read in the following order:

DO I=1,NG,

DO M=1,NMAT.

D(I, M) = Diffusion coefficient.

ZT(I, M) = Total removal cross section.
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7(I, M) = Cross section for neutron transfer;

=X ifI=1,

sl—2

= Vi if I=2.

621(1, M) = Coefficient of the ramp or sine function in thermal
absorption cross section in time zone 1: I=2 only.
622(1, M) = Coefficient of the ramp or sine function in thermal
absorption cross section in time zone 2: I=2 only.

The time-dependent thermal absorption cross sections have

the form Za2(t) = Zaz(O)+6Zf(t) where f(t) =t or sin(EPS5-t).

Card 8 FORMAT (1615)
This card specifies material types in each material region of a

reactor.

NXL = x region number on the left boundary.

NXR

Il

X region number on the right boundary.

NYB

Il

y region number on the bottom boundary.
NYT = y region number on the top boundary.
NM = Material type £ NMAT.
Repeat Card 8 NDATA times.
Card 9 FORMAT (8D10.4)
At = time step size.
(TZ(1Z),1Z=1,NZ) = time at the end of time zone 1Z.
Card 10 FORMAT (8D10.4)
(VEL(I),I=1,NG) = Neutron speed of group I.
Card 11 FORMAT (8D10.4)

(NI),I=1,NPREC) = Decay constant of I-th precursor group.
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Card 12 FORMAT (8D10.4)

(B(I),I=1, NPREC) = Fraction of delayed neutrons of group I.

Card 13 FORMAT (5D16.8)

If IC8 # 0, the initial flux coefficient vector is read in the following
order:
DO I=1,NG

(U(1,J),J=1,N) = J-th flux expansion coefficient of group I.

If IC9 # 0, a set of Cards 1 to 13 i$ to be placed immediately after

Card 13.

D.2.3 Input for Sample Problem

In the following page, a list of input cards is presented for a calcu-
lation using At=T/4 in Example 6.2, Chapter VI. The initial flux coef-
ficient vector, which was computed in a steady state calculation in
HERMITE-2D, is also includes as part of the input data. As the com-
puter output, the neutron flux vector will be printed and produced in the

form of punched cards at every time step.



1 SAMPLE [INPUT FCOR EXAMPLE 642,CHAPWI == HERWM[T&=20 INPTONOL

2 4 4 3 3 1 3 ? 3 4 2 3 4 INPTOND2
1 1 50 0 1 20 5 1 3] 1 INPTOGO3
1.00-7 1.00-7 1.30C DeNDCk223,1853 1.0D-6 l1.0N=-5 1.800 INPTOOC4
1.00 1 5.000 l.0D 1 1.00 1 5.9000 l.0D 1 INPTOQ05
2 2 INPTOD05
1.5D00  0.,0623D0 N.CHD0 € 0.0N0 MDD INPTCOO7
LeBD0  0.0523D0 0.C6N O 0.C00 Cat3D0 INPTOOQ0S
0.400 Ga2D00.2510472¢% D.900 J. 009 INPTOO03
DetaDO 0.2000,281047F¢ Ce04DC Ca G0 INPTOD1D
1 3 1 3 1 INPTOO11
2 2 2 2 2 INPTOO12
250-4 1.00-3 INPTCO13
1. 0D 7 220 5 INPTOO14
0,000 INPTCO15
049200 INPTOO1S

04338567130 01 -0,12537¢%59 €N 0.,273%03630 01 -0.172047500 CO 0.1G6899219D 01 INPTOO17
—0.212866F4D )0 -0.1253765G8D 00 0.273303£30 01 -0.101630900 Q0 -0.10101409D 00 INPTON18
0646426£21ND-02 -0.,1016306900 92 -2.10101409) 00 0,221531CsD Q1 -C.13625G691D0 00 INPTQO13
-041390€151D 00 0.437243520=-C2 =-0,738011430-01 =0.734719620-01 C.16095813D 01 INPTQ020
—0s1721594€D 00 0.788316210-C2 -C0.17204171500 €O  9D.1€89%819n 0Ol -C.73801143D-01 INPTOD21
—C0e73471662D-01 0.6372425R80-C2 =0.13925S517 (OC -0.139061510 0O 0.16095813D 01 INPT0O0?22
-0.10116200N 00 -0,101053R4N €0 0.874221230-02 -0.10116200D <O -0.10105384D 00 INPTO023
06116945270 01 =-0.1250K86370 00 0.,1081652197-01 -0,212866840 00 0.788316210-02 INPTO024
—0.17215%4€D0 00 0.1081€6531D-C1 -0,125C86270 N 0,13382825D-01 INPTDO25
0100000000 01 -C.37029?250D=-C1 0.838G53664) 00 -0,508118600-01 CeB58771374D 00 INPTON?6
=04528672500-01 -0.27028250D0=-C1 0.80893666) 00 -0.300152870-01 -0.268331200-01 INPTQO27
0413711466N-02 -0.30015227D-C1 -0.,29833120D-01 0,65426147D CO -0.41128497D-C1 INPT0028
=0.410669030=01 0.13R%20112N=02 -(C.21756151D-C1 =-0.21698933D=-01 Ca47536769D 00 INPTNI2S
—0e5084492A0-01 042327 8340-02 =0.502118600-01 0N.58771374C 0OC —0421796151D-01 INPTOO030
—0621678923D-01 0.,1R820112N=-C2 =0.4112°9457N=C1 =0.41069903D=-01 0.475367690 00 INPTON31
—0.2GRT68CH5D-01 =0.29844860D-01 0.,2581921560-02 -0.2C6874AR05D-01 -0.29844860D-01 INPTO03?
06345381760 00 —0.3€9425370-01 0.31945134D-02 =0, 62367290D-01 0.23281834D-02 INPT0U33
=0.508449260-01 0.31945134D-C2 -C.36942537N-01 0.39524331D-02 INPTO034

|

PAGE 151



192

Appendix E

SOURCE LISTINGS OF COMPUTER PROGRAMS

(Only in M. 1. T. Library copies)



———, Room 14-0551
o — 77 Massachusetts Avenue

M " L, b . Cambridge, MA 02139
. Ph: 617.253.28
I ranes Email: docs@m?t(.)edu

Document Services http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as

soon as possible.

Thank you.

The Archives copy is missing Appendix E section.
This is the most complete version available.



