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ABSTRACT

The effect of reactor size on the neutronic and economic per-
formance of LMFBR blankets driven by radially-power-flattened cores
has been investigated using both simple models and state-of-the-art
computer methods. Reactor power ratings in the range 250 to 3000
MWe were considered. Correlations for economic breakeven and opti-
mum irradiation times and blanket thicknesses have been developed for
batch-irradiated blankets.

It is shown that at a given distance from the core-blanket interface
the fissile buildup rate per unit volume remains very nearly constant in
the radial blanket as (radially-power-flattened, constant-height) core size
increases. As a consequence, annual revenue per blanket assembly, and
breakeven and optimum irradiation times and optimum blanket dimensions,
are the same for all reactor sizes.

It is also shown that the peripheral core fissile enrichment, hence
neutron leakage spectra, of the (radially-power-flattened, constant-height)
cores remains essentially constant as core size increases. Coupled with
the preceding observations, this insures that radial blanket breeding per-
formance in demonstration-size LMFBR units will be a good measure of
that in much larger commercial LMFBR's.
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Chapter 1

INTRODUCTION

1. 1 FOREWORD

The necessity of generating increasing amounts of electric power

economically and without unduly affecting the environment is one of the

major technological challenges of our times. The Liquid-Metal-

Cooled Fast Breeder Reactor (LMFBR) offers a promising solution,

in large part due to its ability to breed excess nuclear fuel and its

amenability to exploitation of the economy of scale. The former ability

is due, to large extent, to the inclusion of a breeding blanket of fertile

material around the fissile-fueled core; the latter attribute is favored

by the high power density and low design pressure achieved by use of

sodium coolant.

Past experience suggests that the economically optimum unit

size for future central station power plants will increase to keep pace

with the growth in total electrical demand: over the last fifty years or

so, both electric power demand and new unit size have doubled every

decade. Thus, a demand for very large LMFBR's, in unit sizes well

over 1,000 MWe, has been projected.

The purpose of the work presented in this report is to quanti-

tatively characterize the neutronic and economic interaction of these

two key characteristics of the LMFBR: unit rating (core size) and

breeding (blanket) performance. In this introductory chapter, a dis-

cussion will be presented motivating consideration of the subject.



This will be followed by a brief outline of the detailed evaluation pre-

sented in the remainder of the report.

1. 2 SIZE PROJECTIONS FOR LMFBR UNITS

Very large LMFBR's are expected to be in operation within

several decades of the demonstration of commercial practicability.

Figure 1. 1 shows unit size trends as a function of time as projected by

EEI (El), ORNL (B2) and the U.S. AEC (D2, S1), together with the

rating of LMFBR plants now in operation, under construction or planned.

Three demonstration-size LMFBR's are now in operation: the 250-MWe

Phenix in France, the 250-MW PFR in England, and the 150-MW,

dual-purpose BN-350 in the U.S.S.R. Commercial scale LMFBR's

are planned by the same three countries: the 1200-MW Super Phenix,

the 1000-MW CFR, and the 600-MW BN-600, respectively (Al, Bl).

In this country, work has begun on the 380-MW Clinch River Demon-

stration Plant, to be followed by a 1000-MW commercial LMFBR (Ml).

Based upon these realities and projections, we are led to consider

LMFBR performance in the 250-3000 MWe range of unit ratings.

It is well known that as fast reactor size increases, the internal

(core) breeding ratio increases and the external (blanket) breeding ratio

decreases. Consequently, net blanket revenue (i.e., plutonium credit

less fabrication and reprocessing costs) earned per unit of total system

energy delivered, decreases. Since the relative economic importance

of the blanket tends to decrease with reactor size, it is sometimes

argued that for very large reactors it might be preferable to use thinner

blankets or even to substitute a nonbreeding reflector for the breeding
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blanket (B3). However, no sufficiently realistic and systematic analy-

sis of this postulate has yet been reported. Brewer (B3) has presented

a preliminary analysis based on a uniformly enriched spherical core

which tends to confirm the conclusion that an ultralarge LMFBR need

not have a radial blanket. If this is indeed the case, it is questionable

whether the extensive work now under way to develop thick radial

blankets for demonstration plants is justified, since commercial units

would not need them. At the very least, if the optimum radial blanket

thickness were to decrease significantly as core size increases, then

each reactor would present a new design and fuel management opti-

mization problem, again mitigating against overdoing the attention paid

to blankets on early noncommercial LMFBR plants. This consideration

was a major factor leading to initiation of the present study. On a

more immediate level, the work was also motivated by the need for

such information in support of program planning for experimental

investigations of blanket performance carried out within the MIT Blanket

Research Project.

1. 3 OUTLINE OF PRESENT WORK

Throughout this report the work will proceed along two parallel

paths: development and application of simple analytic models to facili-

tate interpretation and correlation of the results; and use of state-of-

the-art computer calculations, involving appropriate cross-section

sets and multigroup programs coupled to a detailed fuel cycle economics

code, to provide realistic sample data.
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In Chapter 2, the predictions made by simple one-group analyti-

cal models will be presented together with a brief discussion of the

methods, programs and input data which will be used in the more

accurate computer analyses. Comparisons between the predictions of

the simple models and the results of the computer calculations for

beginning-of-life (BOL) blanket performance as a function of reactor

core size will be presented in Chapter 3. In Chapter 4, an investi-

gation will be made of the effect of reactor size on the depletion-

economics performance of the blanket. Finally, a summary, conclu-

sions and recommendations for future work will be presented in

Chapter 5.
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Chapter 2

ANALYTIC AND COMPUTER MODELS

2. 1 INTRODUCTION

This chapter contains a description of the two levels of attack

employed to determine the relation between reactor size and blanket

breeding performance : simple analytic modelling and the more

sophisticated state-of-the-art computer modelling. A one-group

model will be developed to display the effect of reactor size on the

neutronic and economic performance of LMFBR blankets. A number

of interesting results for radially power-flattened cores will be pre-

sented and contrasted with similarly derived results for uniformly

loaded cores.

In order to quantify the qualitative predictions of the one-group

model, more accurate methods using computer codes applied to real-

istic cases will be employed. In this chapter, the input data and

general methodology will be reviewed; detailed results will be pre-

sented in later chapters.



27

2.2 PREDICTIONS USING A ONE-GROUP REACTOR

PHYSICS MODEL

2. 2. 1 The Effect of Changing Core Radius at Constant Core Height

on the Beginning-of-Life Breeding Performance

2. 2. 1. 1 Neutronics of Radially Power-Flattened Cores

In order to study the effect of radial power-flattening on LMFBR

core neutronics, a simple one-group model in cylindrical geometry

will be examined, in which fissile concentration is varied to achieve

uniform power density. The governing equation in diffusion theory is

D -V 2 (r) + [vE f(r)-E a (r)] 0(r) = 0 . (2.1)

Let Ef(r)4 (r) = (1+6 2 8 )ff (r)#(r) = constant = p (2.2)

and neglect the small variation of D and the fertile-to-fissile fission

ratio, 628, with enrichment (approximations which are substantiated

by multigroup calculations). Rearranging and solving Eq. 2.1 in

several steps, described in Appendices B and C, one finally obtains

the neutron flux, 0(r):

0(r) = F [1- (Ka)I (Kr)] , (2.3)

where P(Ka) = [IO(Ka)+K6R 1 (Ka)]I (2.4)

a is the core radius ,

6R is the linear extrapolation distance ,

K is a "pseudo" reciprocal-diffusion-length,

F is a power density factor .
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Typical values of these parameters are 6 R = 20 cm, K = 0. 04 cm, and

F = 1. 9 X 1016 fissions/cm 3-sec, all of which are assumed to be

constants independent of core radius, assumptions which will be con-

firmed later.

Figure 2. 1 shows a typical normalized flux distribution for a

radially power-flattened core, which is obtained by dividing Eq. 2. 3

by the constant value of F/K,2 based on the data of Table 2. 1. It is

interesting to note that both the central flux and the peripheral flux have

essentially constant values: around 1. 0 and 0. 5 (normalized), respect-

ively, regardless of core radius; the flux shape in the interval 0<r<a

differs, however (see Appendix C for analytical confirmation). Since

the product of the enrichment and the neutron flux is constant (by our

definition, Eq. 2. 2, of a radially power-flattened core), constant per-

ipheral flux implies constant peripheral enrichment. This suggests that

the radial blanket for the radially power-flattened core will be driven by

the same energy spectrum of leakage neutrons, regardless of core

radius. This is important because the regionwise-collapsed, one-

group cross sections for the blanket will then remain the same as the

core radius is varied.

The ratio of critical mass for radially power-flattened cores to

uniformly loaded cores having the same core volume is approximately

(see Appendix C):

MRPF_
M ~F ,1.09MUL
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Core Radius : a

Inverse Diffusion
Length : k

8(ka) = [I(ka) + kr -1(ka)]~

Linear Extranolation
Distance, 6r

12.5 cm

0. 04 cm

0.0172

20 cm

Table 2.1 One-Group Physics Parameters of
1000 MW Core

30
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Since the critical mass of both cores is approximately equal (i. e., the

core-averaged critical enrichment is also equal), the physics

parameters such as the diffusion coefficient, the fertile-to-fissile

fission ratio and the linear extrapolation length are also equal. Thus

the core-averaged physics parameters for uniformly loaded cores,

which can be predicted using simple models, are in many instances

nearly the same as those for radially power-flattened cores, which

are hard to calculate exactly using simple models.

2. 2. 1. 2 Fissile Buildup Rate in the Radial Blanket

The radial neutron leakage rate, Lr, per unit height, for a core

slice having radius, a, is

Lr = 27raJ(a) , (2. 5)

where J(a) is the net current, calculated from Eq. 2. 3

J(a) =DF (,a)I (Ka) . (2.6)
K 1

Since the Bessel function term can be approximated to be constant

(i. e., 0. 5) regardless of core radius (proven in Appendix B), the

radial neutron leakage rate, Lr, is

L= rDFa (2. 7)r K

or L cc a.

Since the total fissile buildup rate in a given row of assemblies or the

entire blanket, R (gPu/yr), is proportional to the radial neutron

leakage rate, one has
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R m L c a , (2. 8)

which indicates that both the local and total fissile buildup rates are

proportional to core radius. The volume of a row or rows, VB, is

approximated by

VB = 27rTa, (2.9)

where T is the thickness of the row(s). Dividing Eq. 2. 8 by Eq. 2. 9,

one has

R
U VB 27ra constant, (2.10)

which indicates that the fissile buildup rate per unit volume (or per

blanket assembly), U 0 (gPu/liter-yr), is constant regardless of core

radius. Since the mass of heavy metal present, MHM, is proportional

to the volume, one has the similar equation,

R
S E cc constant, (2.11)or MHM

which indicates that the fissile material specific inventory buildup rate,

S (gPu/kgHM-yr), or equivalently the enrichment buildup rate, '&

(%/yr), is also independent of core radius. These results lead to

several interesting consequences, which will be discussed in later

sections. Figure 2. 2 illustrates the above findings in a schematic

manner.

It should be noted that these results are true only for the (constant-

core-height) radially power-flattened core and are not applicable to the

uniformly loaded core, in which the fissile buildup rate, Ror, is



Ro a a
-')

cd

a)
::S N1

-H0

*10

4-34

0 C

bcda)
W_ Q)

Uo

So

1 Core Radius i

log bxr

-1

Core Radius

Fig. 2.2. Schematic Illustration of One-Group Results
for the Effect of Core-Radius on Fissile
Buildup Rate in the Radial Blanket Driven
By Radially-Power-Flattened Cores

33

Core Radius
a

9.o
a)

4-3

-,) hr

t> d
r4H :O

4-.

(D0 4

a) 4o1

"-I a
-r- *'4

log a



34

constant and the specific inventory buildup rate, S or is proportional

to a (see Appendix C).

The radial blanket breeding ratio, bxr, can be expressed in the

approximate form (see Appendix B):

fissile buildup rate per unit height in the radial blanket (R )
b <r or

xr thermal power per unit height in the core (p7ra2 )

Since the buildup rate, Ror is proportional to a, one can obtain:

b c , (2. 12)
xr a

which indicates that the radial blanket breeding ratio is proportional to

a~ for radially power-flattened cores. On the other hand, the radial

blanket breeding ratio is proportional to (a+ 6 R-2 for uniformly loaded

cores (see Appendices B and C).

2. 2. 1. 3 Fissile Buildup Rate in the Axial Blanket

While the radial blanket is driven by the peripheral core neutron

flux, which was predicted to be constant regardless of core size, the

axial blanket is driven by the core-averaged neutron flux, which is

related to the core-average critical enrichment. Since the core-

averaged critical enrichment decreases as the core radius increases,

any analysis of breeding in the axial blanket must take into account the

effect of core critical enrichment. One approximate definition of the

breeding ratio, which takes into account this effect of core critical en-

richment is (see Appendix B):



the axial neutron leakage cross section
bxa the fissile absorption cross section of the core

Since the fissile absorption cross section of the critical core is

proportional to the core critical enrichment, one can obtain:

DB 2
b cc z

xa c

where

(2. 13)

2 = i/i 2)
B = (7r/H+26 ) is the axial geometrical buckling,z a

6a is the axial extrapolation distance.

For constant height cores, DB 2is constant.

breeding ratio is:

b oc exa c

Thus the axial blanket

1

or b - e cc constant.
xa c

(2. 14)

Since Eq. 2. 13 is also valid for the fissile buildup rate per unit

volume of the axial blanket, the fissile specific inventory buildup rate

in the axial blanket is:

S oc C
oa e

or S F-c oc constant.oa c (2. 15)

By multiplying S by the volume per unit height of the axial

blanket, the fissile buildup rate for the entire axial blanket is obtained:

2
R cc a (2. 16)oa e

c
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These results are summarized as follows:

1) The product of the fissile specific inventory buildup rate, S

(gPu/kgHM-yr), (or the enrichment buildup rate, ' (%/yr)

and the core critical enrichment is constant regardless of

core radius.

2) The product of the axial blanket breeding ratio and the core

critical enrichment is also constant for all core radii (sizes).

These conclusions hold true for axial blankets driven by either

uniformly loaded or radially power-flattened cores: the results are

shown in schematic fashion in Fig. 2. 3. It should be noted that since

the core critical enrichment approaches asymptotic values for larger

cores (over 1000 MW ), the above observations can be modified as

follows:

1) For the larger cores, the fissile specific inventory buildup

rate is the same for all core radii.

2) For the larger cores, the axial blanket breeding ratio is also

the same for all core radii.

2. 2. 2 The Effect of Changing Core Radius at Constant Core Height

on Depletion-Economics Performance

2. 2. 2. 1 Fuel Cycle Cost Contribution from the Radial Blanket

The fuel cycle cost contribution, e (mills/kwhr), attributable to

each zone or to the entire blanket can be described by the following

simplified expression ([B3] ; also see section 2. 3. 3. 5, this report):
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e = MHM [FOB], (2. 17)

where MHM is the initial total mass of heavy metal loaded in the

region in question (kgHM),

E is the total electricity generated from the entire reactor

(kwhr), and

[FOB] is an "economic figure-of-merit" function; which

accounts for fuel cycle cost per unit mass of heavy

metal and is a function of enrichment, e(T), at

irradiation time, T (yr).

The only term related to core radius in the FOB function is the enrich-

ment, e(T). Applying the approximation that the fissile enrichment

builds up linearly with time, which has been shown to be a good approx-

imation (see [W2, B3] and subsequent chapters of this report):

e(T) = e T c S 0 T, (2.18)

where 'e0 is the fissile enrichment buildup rate (%/yr),

S is the fissile specific inventory buildup rate

(gPu/kgHM-yr).

Recalling the results obtained in the previous section, namely that 'e
0

and S are constant for all core radii, the conclusion follows that the

economic performance history (FOB) of each row or of the entire radial

blanket, driven by radially power-flattened cores, remains the same as

the core radius (power rating) changes.
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On the other hand, the total mass of heavy metal loaded into each

row or into the entire blanket, MHM, is approximately proportional to

core radius, again described in the previous section. The total elec-

tricity generated from the entire reactor, E, is proportional to the core

volume (i. e., the square of the core radius for constant-height cores).

Thus, one has:

e=MHM [FOB] Ror a
E 0 2 c 2'7ra a

1
or e a -(2. 19)

which indicates that the fuel cycle cost contribution from each row or

from the entire radial blanket, driven by radially power-flattened

cores, is inversely proportional to the core radius.

It must be noted that the preceding discussion applies to entire

blanket rows. If one examines a single radial blanket assembly, one

will find that the total dollar revenue per assembly remains constant

as the core radius is increased. Only because the volume of blanket

fuel relative to the volume of fuel in the core decreases as core

radius increases, do we see the decreasing effect on total fuel cycle

costs predicted by Eq. 2. 19. This is an important distinction which

must be kept in mind throughout the discussions in the remainder of

this report. In summary (see Fig. 2.4) : Dollar revenue per

assembly remains the same, total blanket dollar revenue increases,

and the blanket contribution to the overall fuel cycle cost (i. e.

mills/kwhr) decreases, as the core radius is increased.



E-i C3J

o H

G1) -i
00

co

rCli

0

4o- :R:
C.) HU

$L4 H

-) -i
(DS

0

(-)

4,
op

e a 1/a

Figr. 2.4. Schematic Illustration of the Effect of
Core-Radius on the Economic Performance
of the Radial Blanket Driven by Radially
Power-Flattened Cores

40

0
Core Radius, a

0

Core Radius, a

(+) Core Radius, a



41

However, the fuel cycle cost contribution is proportional to

(a + 6 R)2 for uniformly loaded cores because the fissile buildup rate

from each row or from the entire blanket is constant. In a similar

manner, one is led to the conclusions that dollar revenue per assembly

decreases, total blanket dollar revenue is constant, and the blanket

contribution tothe fuel cycle cost decreases, as the core radius is

increased. Table 2. 2 summarizes the neutronic and economic per-

formance of the radial blanket driven by either radially power-flattened

or uniformly loaded cores as a function of core radius (size). Note

that the revenue per assembly decreases for the uniformly loaded core,

which would lead to a decrease in optimum blanket thickness as core

size increases--in support of the intuitive notion sometimes expressed

on blanket designs for large cores. We have shown here that the more

realistic radially power-flattened cores instead lead to uniform-

thickness radial blankets.

2. 2. 2. 2 Fuel Cycle Cost Contribution from the Axial Blanket

Since the fissile specific inventory buildup rate in the axial

blanket is also constant for all large core radii (sizes), the same

conclusions as were found for the radial blanket follow; namely, that

the economic performance history (FOB) of each axial zone or of the

entire axial blanket, driven by either radially power-flattened or uni-

formly loaded cores, remains the same as the core radius (power

rating) changes.
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Core Radially Power Uniformly
Flattened Core Loaded Core

Items

Whole Blanket
(or Row) Fissile c6R -2
Buildup Rate aa Constant-
R (KqPu/vr)

Specific Inventorv - 16R] -2
Builduo Rate Constant a 6R
S ( gPu/Kg HM yr)

Breeding Ratio a-1 -2 R -2
bx aaa 1

Revenue per 6R -2
Blanket Row ($)

Revenue per Constant -1 R-2
Blanket Assembly ($)

Contribution to -1 -2 6R
Fuel Cycle Cost c a a +)
(mills/Kw Hr)

Optimum Irradiation
Time (full power Constant Increases
Days)

Optimum Thickness Constant Decreases
(CM)

Table 2.2

a = Core Radius

6R = Extrapolation Distance

Summary of the effect of Changing Core Radius
at Constant Core Height on the Neutronic and
Economic Performance of the Radial Blanket
(Predictions of simple one-groun model)
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Since the total mass of heavy metal loaded into each axial zone

or into the entire axial blanket, MHM, is proportional to 7ra2 .as

described in the previous section, one has for the fuel cycle cost

contribution:

MR 2

e = M HM [FOB] Rc a2a2E c 2 c 2'7ra a

or e cc constant., (2. 20)

which indicates that the fuel cycle cost contribution from each axial

zone or from the entire axial blanket, driven by either radially power-

flattened or uniformly loaded cores, is constant for all large core

radii (sizes).

By applying the same logic as in the case of the radial blanket to

axial blanket fuel contained in a single assembly, one can conclude that

the total revenue per assembly remains constant as the core radius is

increased. Since the ratio of the axial blanket volume to the volume of

the core remains the same as the core radius is increased, the fuel

cycle cost contribution behaves in the same manner. The total revenue

2
from the entire axial blanket is proportional to a These results are

summarized in Table 2. 3.

2. 2. 2. 3 Local Breakeven and Optimum Irradiation Time

Figure 2. 5 shows a typical variation of the fuel cycle cost contri-

bution from a given region of blanket. Three interesting irradiation

times are noted in Fig. 2. 5: TBE-1, Topt and TBE-2. Below some

irradiation time, TBE-1, the bred fissile inventory in the subject



44

Core Large
Radially-Power-Flattened

or
Uniformly Loaded

Items Cores

Whole Blanket 2*
Fissile Buildup cca
Rate R0(KgPu/yr)

H Snecific Inventory
o Buildup Rate Constant

S ( gPu/Kg HM yr)

Breeding Ratio
b Constantxa

Revenue per Blanket Zone
($/Blanket Zone) a a2

Revenue per Blanket
0 Assembly Constant

($/Blanket Assembly)
0

Contribution to Fuel
Cycle Cost Constant

(Mills/KWHR)

*See Appendix B and Section 2.2.1.3

a = core radius

Table 2.3 Summary of the Effect of Changing
Core Radius at Constant Core Height
on the Neutronic and Economic
Performance of the Axial Blanket
(Predictions of Simnle One-Group
Model)
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region of the blanket is not sufficient to offset the blanket fabrication,

reprocessing and carrying charges for that region. At TBE-1, the

breakeven point, the revenue from bred fissile material credit is just

equal to the costs incurred.

Beyond TBE-1, the region produces a net profit. As irradiation

time is further increased, carrying charges increase and fissile pro-

duction increases. These opposing effects result in an optimum irradi-

ation time for the region, T opt at which time the maximum net revenue

from the region can be obtained. Beyond T opt the carrying charges

increase more rapidly than revenue from fissile production, and gradu-

ally the net profit from the region decreases, once again becoming

negative, after passing through the second breakeven point, TBE-2

(assuming the physical lifetime of the fuel, Tp, permits).

Both the breakeven and the optimum irradiation time depend on

the economic environment. In other words, higher fabrication and

reprocessing costs or lower fissile credit lead to longer breakeven

and optimum irradiation times. Since both irradiation times are key

parameters affecting blanket design and fuel management, it is desir-

able to correlate them against a parameter or parameters which

characterize the economic environment. As derived in Appendix E

and shown in Fig. 2.6, the breakeven irradiation time, TBE-1, can

be shown to be proportional to the economic parameter, W, originally

derived in a slightly different form by Wood (W2, H2) and modified by

this study. We have:
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TBE-1 cost
revenue buildup rate

0

where

w C1 F 1 (-AT) + C 2 F 2(AT 2)
W = CF 3 3-AT,3

in which

C1 is the fabrication cost ($/kgHM)

C 2 is the reprocessing cost ($/kgHM)

C3 is the fissile credit ($/kgPu)

and the carrying charge factors are:

F 1 (-T)= T[(1+X)AT1 -7)

F 2 (AT2) = (1+X) AT2

F 3 (AT 3 ) = (1+X)AT3

(for fabrication),

(for reprocessing),

(for credit) ,

AT is the length of time from fabrication cash flow

to the beginning of the irradiation,

AT 2 is the length of time from the end of the irradi-

ation to the reprocessing cash flow,

AT3 is the length of time from the end of the irradi-

ation to the material credit cash flow,

7r is the income tax rate,

S is the fissile specific inventory buildup rate (gPu/kgHM-yr).

Since the fissile specific inventory buildup rate in a given region is the

same for all core radii, as derived in the previous section, it follows

that:

48

(2. 21)

(2. 22)

where

(2. 23)

(2. 24)

(2. 25)

and
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1) The breakeven irradiation time for a given row or rows of

radial blankets driven by radially power-flattened cores is

the same for all core radii (i. e., all core power ratings).

2) The breakeven irradiation time for a given axial zone or

for the entire axial blanket, driven either by radially

power-flattened or uniformly loaded cores, is the same.

The optimum irradiation time for a given region in the blanket,

as derived by Wood (W2) (see also Appendix E) is:

T - (2. 26)
opt S 0X '

Thus, one can also conclude that the optimum irradiation time for a

given row of (or the entire) radial blanket driven by radially power-

flattened cores and for a given zone of (or the entire) axial blanket

driven by either radially power-flattened or uniformly loaded cores,

is the same for all core radii, as shown in Fig. 2. 7.

In order to compare Eqs. 2. 21 and 2. 26 with the correlations

which will be discussed in later chapters, it is convenient to re-

arrange these equations in the form:

T = a Wb Xc (2. 27)

where a, b and c are the coefficients appropriate to Eqs. 2. 21 and

2. 26. Table 2. 4 summarizes the coefficients for various individual

rows or combinations of rows. By combining Eq. 2. 21 and Eq. 2. 26,

one can relate the breakeven irradiation time and the optimum irradi-

ation time:

X 2TBE (t) 2 . (2. 28)

Figure 2.8 illustrates this relationship.
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a. b. c.
jJ J

x104

Row 1 2.64

Row 2 6.38

Row 3 10.8
- 1.0 0.0

1 Row Blanket 2.64

2 Row Blanket 38.2

0 3 Row Blanket 53.4

x103

Row 1 3.98

Row 2 6.19
0

.H Row 3 10.0
4J -0.5 -0.5
o 1 Row Blanket 3.98

2 Row Blanket 4.79

0
S3 Row Blanket 5.66

Table 2.4 Summary of the Coefficients Predicted by
the Simnlified Economic Model for the
Correlation of the Breakeven and the Ontimum
Irradiation Times of the Radial Blanket.
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2. 2. 2. 4 Optimum Irradiation Time for a Blanket Row

Based upon both multigroup calculations and experimental

measurements, and as developed in Appendix E, it is a good approxi-

mation to assume that the fissile material buildup rate per unit volume

in the blanket, S 0, decreases exponentially as the distance from the

core/blanket interface increases:

S = S (0) e ,YT (2. 29)

where

S (0) is the fissile buildup rate per unit volume at the

interface between the core and the blanket constant

for all core radii in the present instance,

7 is the inverse diffusion length,

7' is the distance from the core/blanket interface.

Combining Eq. 2. 21 with Eq. 2. 29 and eliminating the fissile

buildup rate per unit volume, one obtains the relation between the

local breakeven irradiation time and the distance from the core/

blanket interface:

TBE S ) eYT, (2. 30)

or

r-= ln T - ln W . (2.31)
Y BE So(0)

This relation is expected to be linear when plotted on semi-log paper

as shown in Fig. 2. 9. The intercept of the "local breakeven" curve and

the zero distance line (i.e., the core/blanket interface) is:



(Logarithm of) Irradiation Time, T, (Full
Power Years)

Fig. 2.9. Schematic Diagram of Local Breakeven
and Local Optimum Positions as a Function
of Irradiation Time
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T W (2. 3 1a)
BE-P S (0)

0

which we have designated as point P.

In a similar manner, the local optimum irradiation time can be

expressed in the form:

T = 2W 2  (2.32)
opt S0 (0)X e

or

T = 2ln Topt - n( ) . (2. 33)

The intercept of the "local optimum" curve and the zero blanket thick-

ness line is:

T 2W
T opt -Q S (OX (2. 33a)

which we have designated as point Q. This is also sketched in Fig. 2. 9.

Note the TBE Topt intercept at T = 2/X years, which defines, in a

grossly overconservative manner, the thickest possible no-loss blanket.

To obtain a better estimate, it is preferable to use the form:

TBE WX), (2. 34)

which can be obtained by solving the cost equation (2. 17) (i. e., e = 0).

At the point where the two roots degenerate (designated point M), one

obtains:

TM (2. 35)

where the zero discriminant also tells us that

S = 2WX. (2. 36)
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The point M defines a time at which the thickest economically

viable blanket has its maximum profit, provided that the whole blanket

is discharged at the same time, i. e., in batch fuel management. As

discussed in later chapters, this intersection point will not occur during

the practical lifetime of radial blanket fuel assemblies (here assumed to

be about 6 years) under usual economic conditions (Fabrication cost C

69 $/kgHM, Reprocessing cost L 50 $/kgHM, Pu price a 10 $/gPu and

Discount rate L 0. 08 yr ).

Since a non-negative discriminant in Eq. 2. 34 corresponds to real

roots, Equation 2. 36 defines the minimum profitable fissile buildup rate

which produces a zero net profit. The two roots of Eq. 2. 34 can be

approximated as:

T (2. 34a)BE -1 -

T ~ 2W (2. 34b)BE-2 X S .(

The smaller root (Eq. 2. 34a) is, of course, the first breakeven irradi-

ation time, and the larger root (Eq. 2. 34b) is the second breakeven

irradiation time discussed in the previous section (see Fig. 2. 5). Thus

the "local breakeven" curve increases semi-log-linearly as the distance

into the blanket increases, then curves down after passing point M and

finally intercepts the zero-distance-into-the-blanket line (i. e., the core/

blanket interface), designated point R in the present work, which corre-

sponds to the point in time where:

T 2 W (2. 34c
BE-R X ~S (0)

where S (0) is again the interfacial fissile specific inventory buildup rate.
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It should be noted that these results hold true for all core radii because

the interfacial fissile buildup rate per unit volume, S0(0), is constant

regardless of core radius, as demonstrated in the previous section.

At a given time, fuel deeper in the blanket than that which has

reached breakeven gives a positive fuel cycle cost contribution (nega-

tive net profit). The total fuel cost contribution summed over all inner

regions of the blanket which have reached or exceeded breakeven yields

the maximum net profit. Thus, the relation between the local break-

even irradiation time and the distance into the blanket also defines the

optimum thickness of the blanket at a given time. This "breakeven

irradiation time-distance into the blanket" (TBE vs. r) curve deter-

mines the optimum thickness of the axial blanket, whose irradiation

time is fixed by core fuel management considerations. On the other

hand, the "optimum irradiation time-distance" (T opt vs. T) curve

determines the most profitable discharge schedule for assemblies in

a given radial blanket row.

2. 2. 2. 5 Fuel Cycle Cost - Blanket Thickness Relation

The fuel cycle cost contribution distribution, e L(T, T) (mills/

kwhr-cm), which is proportional to the revenue per unit mass,

KL(r, T) ($/kgHM), can be expressed in the form (see Appendix E. 4):

e L(T,T) c KL(r,rT) GI(T) - G 2 (T) S0(0) e , (2. 37)

where

G (T)=C1F 1 (-T) + C 2 F 2 (T 2 ) Fabrication and
1 T reprocessing cost

G 2(T)- C3 F 3 (T 3 ) Plutonium credit ( 2. 38b)
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r is the distance into the blanket or the blanket thickness,

T is the irradiation time.

Equation 2. 37 indicates that the cost distribution increases exponen-

tially (hence the revenue per unit mass decreases exponentially as the

distance into the blanket increases for any irradiation time).

The zero cost distribution occurs at:

G B(TB) = G2 (TB )So(0) e4Y, (2. 39)

where the irradiation time is equal to the breakeven irradiation time

for a given distance into the blanket.

The total cost of the entire blanket having thickness, Pr, eT('T,T)

(mills/kwhr), can be obtained by integrating Eq. 2. 37 over the blanket

thickness:

G 2(T) S 0(0)
eT(T,T) G 1 (T) T - ^Y (1-e ), (2.40)

which indicates that the total cost first decreases and then increases

after passing through a minimum value as shown in Fig. 2. 10. The

minimum cost (maximum profit) occurs at the point where the derivative

of Eq. 2. 40, i.e., Eq. 2. 37, is zero:

aeT_
aT eL = 0 (2.41)

which gives Eq. 2. 39. Thus it is again shown that the local-breakeven-

irradiation-time curve gives the total optimum blanket thickness. It

should be noted that these results hold true for all size (radius) cores

because of the constant specific inventory buildup rate, S (0).
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2. 2. 2. 6 Optimum Irradiation Time for an Entire Blanket

In a similar manner as in the local optimum thickness case and

as developed in Appendix E, it is assumed that the entire-blanket-

fissile buildup rate, So decreases exponentially as the thickness

of the blanket increases:

S ~ S0(0) j-yr-/2. (2.42)
o,t o

Since the total blanket breakeven and optimum irradiation times are

related to the entire-blanket fissile buildup rate by Eqs. 2. 21 and 2. 26,

T W (2. 21)
BE

T 2W (2.26)
opt X

o,t

substituting Eq. 2. 42 into Eq. 2. 21 and Eq. 2. 26, respectively, relates

the total blanket breakeven and optimum irradiation times to the thickness

of the blanket:

Breakeven 7 = lnT- SIn 0) (2.43)
lyLBE S0()

Optimum 7 =[ln Topt- - 1  S ()X (2.44)

These relations have the same form as those for the local (row-average)

cases, except that the coefficients weighting the logarithm of the time

for the entire-blanket cases are double those for the row-average cases.

Figure 2. 11 shows the "total breakeven time-blanket thickness" and

''total optimum time-blanket thickness" curves, which indicate that the

entire blanket having thickness, 7, has zero total cost at the intercept
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of the "total breakeven"curve (point A in Fig. 2. 11) and the minimum

total cost (the maximum total profit) at the intercept of the "total

optimum" curve (point B in Fig. 2. 11). The intercept of the "total

breakeven" curve and "total optimum" curve (points N or N' in

Fig. 2. 11) does not appear under reference economic conditions, but

for higher discount rates and lower plutonium prices it appears at the

less conservative estimate, point N', in Fig. 2. 11 following the same

reasoning as before (see Appendix E).

As discussed in the previous section, the "total breakeven" curve

behaves in a similar manner to the "local breakeven" curve. In other

words, the "total breakeven" curve increases semi-log-linearly as the

blanket thickness increases, curves downward after passing point N,

and then intercepts the zero thickness line at point R, which is the same

point as the intercept of the "local breakeven" curve and the zero

"distance-into-the-blanket" line.

2. 2. 2. 7 Global Optimum Thickness and Irradiation Time

By superimposing Fig. 2. 9 and Fig. 2. 11, one can obtain the four

key curves: "local breakeven," "local optimum," "total breakeven,"

and "total optimum," as shown in Fig. 2. 12 and Table 2. 5. The inter-

cept of the "local breakeven (i. e., optimum thickness for a given time)"

and "total optimum (i. e., optimum time for a given thickness)" curves,

designated as point S, gives the global optimum thickness and irradiation

time. At this time the total fuel cycle cost contribution is a minimum

(the profit is a maximum). By solving Eqs. 2. 31 and 2. 44, one can

obtain simple expressions for the global optimum thickness, TS, and
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TB = The Interfacial Break
Eq. 2.31(a)

Even Time,

T = The Interfacial Optimum Time,
Eq. 2.33(a)

y = Reciprocal Diffusion Length of the Blanket

Table 2. 5 Summarv Relations between Local
Blanket Region Position or Total
Blanket Thickness and Irradiation
Time

64

Local Total

Break even T = 1(ZvT - E2 T = (T - P, T
YB YB

Ontimum T = -(ZwT - UT) T= -(24vT - Z)T)
y0 0
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the global optimum time, TS, in the form:

-r_ 2ln2S0()(2.45)
S 37 WXI

T 4= 11/3 W 1/3 X- 2/3 (2. 46)
S S(O)

which indicates that the global optimum thickness and time can be com-

pletely characterized by the economic parameter, W, and the discount

rate, X, provided that the interfacial specific buildup rate, S0(0), and

the reciprocal diffusion length of the blanket, y, are given.

Table 2. 6 summarizes the governing equations and typical values

for the six key intercepts: P, Q, R, M, N and S under the reference

economic environments defined later in this chapter.

2. 2. 3 The Effect of Changing Core Height at Constant Core Radius

on the Beginning-of-Life Breeding Performance

2. 2. 3. 1 Radial Blanket

In a similar manner as discussed in section 2. 2. 1, the breeding

ratio in the radial blanket driven by radially power-flattened cores is:

b oc 1 (2. 12)
xr a

Since Eq. 2. 12 does not depend on core height, one can conclude that

for changing core height at constant core radius, the radial blanket

breeding ratio driven by radially power-flattened cores is constant

regardless of core height.



Table 2.6 Summary of the Six Key Intercepts Predicted by Simplified CFM Analysis

Thickness
or Irradiation Cost

Point Curves Distance Time
(CM) (Full Power Days) (Mills/KWHR)

L-B
P T-B O O W/S 0() 196 0

(Left)

QL-0 0 0 W IS (o)X 1211 0

L-B 
2 WR T-B 0 0 /X- /S (o) 7464 0

(Right)

M L-O n 2 45 3750 N.A.

N T-B ?-In--0) 90 1 3750 N.A.T-0 y 2WX X

L-B2 2 0(o)W
L-SZ 48 (0)L~z 2224 N.A.
T-0 3y WX n oX
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Again, in a similar manner as discussed in section 2. 2. 1, the

breeding ratio in the radial blanket driven by uniformly loaded cores,

is:

b cc DB 2  (2.47)
xr r

where it has been assumed that the effect of core critical enrichment

is negligible by the same reasoning as before. Since the radial geo-

metrical buckling is constant because of constant core radius, one can

obtain:

bxr c constant, (2. 48)

which indicates that the radial blanket breeding ratio is constant for all

core heights (sizes) for uniformly loaded cores, as shown in Fig. 2. 13.

2. 2. 3. 2 Axial Blanket

Again as discussed in section 2. 2. 1, the breeding ratio in the

axial blanket driven by either radially power-flattened or uniformly

loaded cores, is:

DB 2
b cr . (2. 49)

xa e c

Since the axial geometrical buckling is proportional to (H + 26 a -2

the axial blanket breeding ratio is:

1
b x 2 (2. 50)

(H+26 ) '
a c

which indicates that the axial blanket breeding ratio decreases as the

core height increases. Again it should be noted that since the core
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critical enrichment decreases and approaches an asymptotic value

more gradually than the buckling as the core height increases, the

effect of the core critical enrichment is overridden by the buckling

effect as the core height increases, as shown in Fig. 2. 14. The

relation of ec to core height is given by the linear function of buckling

displayed in Eq. B. 12 in Appendix B; the same relation can be used

for both radially power-flattened and uniformly loaded cores since

their critical masses (for equal-volume cores) are very nearly equal,

as discussed in section 2. 2. 1. 1.

Table 2. 7 summarizes the effect of changing core height at

constant core radius on blanket breeding performance.

2.3 COMPUTER METHODS

In the previous sections, the predictions of a simple one-group

model have been presented. While the one-group model can provide

useful insight, state-of-the-art computation methods are needed to

confirm the results. Suitable computer programs for this purpose,

2DB and BRECON, have been made operational and applied at M.I. T.

by Brewer (B3), Brown (B4), Ducat (D2) and Wood (W2).

2. 3. 1 Reference Reactor Configuration

In order to analyze the effect of reactor size on the physics per-

formance of LMFBR blankets, the 1000-MW LMFBR configuration
'e

shown in Fig. 2. 15 and variations on it were employed. The

dimensions and compositions closely resemble other 1000-MW
e

LMFBR studies (B4, W2). The main features of this system are the
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Items

Radially-Power-Flattened
or

Uniformly-Loaded
Core

Radial Breeding

Ratio Constant

b
xr

Axial Breeding

Ratio a 1

b ie 2c

Table 2.7

He = 11 + 26a

H = Core Height

a = Linear Extrapolation Distancea

Summary of the Effect of Changing Core
Heights at Constant Core Radius on the
Breeding Performance of the Radial and
Axial Blankets (Predictions of Simnle
One-Group model)
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two-zone, oxide-fueled core; a three-row, oxide-fueled radial blanket,

with 50 cm of stainless steel serving as a radial reflector and shielding;

and 40-cm-thick axial blankets, with 50 cm of axial steel reflector-

shielding. Table 2. 8 summarizes the physical characteristics and

dimensions, and Table 2. 9 summarizes the compositions of the vari-

ous regions shown in Fig. 2. 15.

2. 3. 2 Variations in Reactor Size

Most of the computer calculations in this study have been made

for the constant-core-height reactor in recognition of the fact that

there are a broad spectrum of engineering constraints and consider-

ations which favor increasing core power by expansion of radial rather

than axial dimensions. In support of this observation the following

examples can be cited. The 250-MW Phenix design in France hase

been scaled up to Phenix-4 at 450 MW using the same core height of

85 cm (Al). In England, the 1000-MW CFR has the same core height,

100 cm, as the 250-MW PFR (B1). Finally, the Clinch River Demon-

stration Plant of 380 MW and the Westinghouse design for a 1000-MWe e

commercial LMFBR plant are based on the 250-MWt FFTF having core

height of 91 cm (W1). With constant core height, the power rating

(unit size) is increased by increasing the core radius under the

assumption of a constant averaged-power density of about 500 kwth/liter.

Although the major emphasis will be on increasing the radius at

constant height, some cases in which height is increased at constant

radius will also be examined in the interests of generality.



Parameter

Core: Height

Diameter

Volume

Axial Blanket Thickness

Radial Blanket Thickness

Core Averaged Power Density

Core Peak Power Density

Core Zone I O.D.

Core Zone I Volume

Core Zone II O.D.

Core Zone II Volume

Rated Thermal Power*

Rated Electrical Power**

n imension

cm

cm

liters

Crn

cm

KWTH/liter

KWTH/liter

cm

liters

cm

liters

MWm

MWe

*Core nlus blankets

**Assumed system efficiencv = 40%

Characteristics of the Standard 1000 MWe Reactor
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Value

100

250

4906

40

45

^500

^.730

90

2540

125

2366

2500

1000

Table 2. 8



Table 2.9 Standard 1000 MWe Reactor Parameters

Rad. Percent by Volume
Ht. Thick, c
(cm) (cm) Fuel Coolant Structuree

Core
Zone 1 100 90 30(85%t.d.) 50 20
Zone 2 100 35 30(85%t.d.) 50 20

Axial
Blanketa 80 125 30(85%t.d.) 50 20

Radial
Blanket

Row 1 180 15 50(95%t.d.) 30 20
Row 2 180 15 50(95%t.d.) 30 20
Row 3 180 15 50(95%t.d.) 30 20

Axial
Reflector

For axial
blanket 50 125 -- 50 50

For radial
blanket 50 45 -- 30 70

Radial
Reflector 140 50 -- 10 90

aAxial blanket and reflector heights refer to thickness
or below core.

above

bAssumes hexagonal assemblies 15 cm across the flats.
cFuel consists of mixed uranium and plutonium dioxide in the
core and uranium dioxide in the blanket. The 100 v/o,
100%t.d. molecular density is taken as 0.02447 atoms/barn-
cm. Plutonium is assumed to be typical light water reactor
discharge Pu at 30,000 MWD/T: 63% Pu-239/27.3% Pu-240/5.9%
Pu-241/3.8% Pu-242 (D4).
dCoolant is sodium at ~900 0 F having a (100v/o)density =

0.0220 atoms/barn-cm.
eStructure is stainless steel with 17.7% chromium/8.3% nic-
kel/74.0% iron having a (100v/o)density = 0.0850 atoms/
barn-cm.

75
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As previously noted, radial power-flattening is employed in

essentially all commercial power reactor designs because of the

resulting large improvement in overall fuel cycle economics. The

ideal power-flattened core is approximated by dividing the core into

zones of approximately equal volume, each having different enrich-

ment. Thus, in the present study the core power rating will be

increased by adding zones with progressively higher enrichment

around the outside of the original core. In the ideal case, the aug-

mented core radius would satisfy the relation:

r. = fr ,(2. 51)
i 1'

where

i is the number of enrichment zones in the core,

r is the radius of the innermost core zone

(= one-zone core radius),

r is the outer radius of the i-zone core.

Actual zone radii differ from the ideal values because of the need to

employ an integer number of assemblies in a zone.

Table 2. 10a shows the power ratings, corresponding core radii

and zone numbers used in this study. The power rating ranges from

250 MW to 3000 MW , with corresponding core radii of 65 cm ande e

215 cm, respectively. It is interesting to note that the core-height-to-

diameter ratio, H/D, decreases from 0. 77 for the 250-MWe unit to

0. 23 for the 3000-MW unit. Decreasing this ratio is favorable from a

safety point of view, since it enhances the negative leakage component

of the sodium void coefficient. Table 2. 10b shows the key character-

istics of reactor sizes examined in the case of constant core radius and



Power Core Core Incremental *1
Pating Radius Volume Core Volume H/D Number of Radial
(M@,e) (cm) (Liters) (Liters) 0 Enrichment Zones

250 65 1328 1212 0.77 1,2,6

500 90 2540 1260 0.56 1,2

750 110 3800 1100 0.45 1,2

1000 125 4q00 2440 0.40 1,2,6

1500 155 7340 2640 0.32 1,3

2000 180 9980 2380 0.28 1,4

2500 200 12360 1956 0.25 1,5

3000 215 14316 0.23 1,2,6

*1 Core Height = 100 cm

Table 2.10(a) Key Characteristics of Reactor Sizes Examined

(constant Core Height)

-z1



-

Core 1  
*2

Average Peak
Core Core Power Power *3
Height Volume Densitv Density H/D Number of Radial
(cm) (Liters) (KWTH/LITER) (KWTH/LITER) Enrichment Zones

100 4900 510.2 1118.0 0.40 1,2

150 7363 327.7 791.0 0.60 1,2

200 9817 254.7 615.1 0.80 1,2

*1 Total Reactor Thermal Power = 2500
Power Rating = 1000
Assumed Thermal Efficiencv = 40%

MWTH
MWe

*2 One Zone Core

*3 Constant Core Diameter = 250 cm

Table 2.10(b)Key Characteristics of Reactor Sizes Examined
(Constant Core Radius)
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constant core power ratings. In this study, however, there is no

attempt made to optimize the core shape or the core-height-to-

diameter ratio with respect to any criteria such as void coefficient

or breeding ratio, or from an overall design/economics point of view.

Power-flattening (at beginning-of-life) was achieved in all

designs examined by trial and error adjustment of zone enrichment to

obtain radially constant peak zone power within the limit:

i <5 % (2.52)
P1

where

P. is the peak power density in the i-th zone of the core,

and

p1 is the peak power density in the central zone of the core.

2. 3. 3 Method for Depletion-Economics Analysis

2. 3. 3. 1 Cross-Section Preparation

In the interests of consistency, all studies were performed using

the two-dimensional diffusion theory code, 2DB, (LI) with 4-group

cross sections prepared by region-collapsing the modified ABBN Type

FTR-200, 26-group cross-section set (A3, N1). The energy group

structure of the collapsed cross sections is specified in Table 2. 11,

together with values used by other investigators. The energy group

structure is similar to the others, except that the last two groups of

the set used by Hoover and Menley (Hi) have been combined into one.
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TABLE 2.11 Comparison of Collapsed Group Structures

Upper Neutron Energy (eV)

Group Wood (W. 2) a^A Hoover and
Number This Study Ducat(D.3) Menley(Hl) Fuller (F2)

1 10.5 x 106 10.5 x 10 6  10.0 x 106  10.0 x 106

2 0.8 x 106 0.8 x 106 0.4979 x 106 1.35335 x 106

3 46.5 x 10 3  46.5 x 103 24.79 x 103 40.8677 x 10 3

4 1.0 x 103 1.0 x 103 3.355 x 103 1.2341 x 103
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Since diffusion theory calculations will be performed, it is desirable to

compare diffusion theory to the more accurate transport calculations.

This has been done by Wood (W2) and by others (R1), who showed that

use of 4-group sets of region-collapsed cross sections is adequate to

describe blanket burnup and breeding performance, and also that the

errors introduced by the use of diffusion theory rather than transport

theory in analyzing the radial and axial blankets are small.

2. 3. 3. 2 Burnup Zones

The 2DB code places a limit of 99 on the sum of the number of

burnup zones and cross-section sets. It also treats each burnup zone

as a homogeneous mixture during irradiation. Thus, after irradi-

ation each burnup zone has uniform material concentrations, which

makes it desirable to have many separate burnup zones in regions of

the reactor where the spatial distribution of bred isotopes is

important. Figure 2. 16 shows the typical arrangement of burnup

zones for 2DB analysis. Table 2. 12 shows the correspondence between

burnup zones and regions in the reactor as shown in Fig. 2. 15.

Fourteen different elements and isotopes appear in the various

reactor regions. Table 2. 13 contains a summary of the cross-

section sets that were individually collapsed for each reactor region.
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Table 2.12

Summary of Burnuo Region Tynes

(See Figure 2.15 and Tables 2.8 and 2.9 for further details)

Burnup Zones Region

1 Core Zone I

2 Core Zone II

3 Radial Blanket Row 1

4 Radial Blanket Row 2

5 Radial Blanket Row 3

6 Axial Blanket

7 Radial Reflector

8 Axial Reflector



TABLE 2.13 Region-Collapsed Cross Sections Used in the Burnup Analysis
(X indicates that region-collapsed cross sections were used.)

Radial Blanket Axial Blanket
Material Core Row 1 Row 2 Row 3 Upper Lower Radial Reflector Axial Reflector

Pu-239 X X X

Pu-240 X X X

Pu-241 X X X

Pu-242 X X X

U-235 X X X

U-238 X X X X X X

C X X X

Fe X X X X X

Cr X X X X X

Ni X X X X X

Na X X X X X

Pu-239 F.P.* X X X

B-10 X

*F.P. indicates fission products from fission of named isotope.
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2. 3. 3. 3 Equilibrium Core

The purpose of this section is to discuss the formation of an

"equilibrium" core and axial blanket that will remain fixed in time

as the irradiation of the radial blanket progresses. The motivation

for adopting this procedure lies in the fact that typical radial blanket

irradiations are long (on the order of six years) with respect to core

refueling intervals (two years in this case). Thus the radial blanket

surrounds a core and axial blanket that will have gone through quite

a few refuelings and the subsequent control poison variations required

to keep the reactor just critical.

Figure 2. 17 shows a schematic of the unpoisoned reactivity

swing of a batch-managed core with a two-year refueling interval.

It should be noted that k', the initial, unpoisoned, effective multi-

plication factor (keff ), is chosen such that at each refueling keff is

just equal to unity. In actual operation, it is necessary to maintain

the system k ef at unity throughout the operating cycle. This is

accomplished through the use of movable control rods which are

progressively withdrawn from the core.

For the purposes of this study, it was necessary to simulate the

actual operating sequence, since the 2DB code does not have the capa-

bility for handling movable control rods. This was done by adding

boron-10 control poison in a concentration such that its reactivity

worth was equal to the linearized time-averaged excess reactivity,

(keff -1)/2, during the refueling interval. Figure 2. 18 shows a sche-

matic of the reactivity swing of a core poisoned in this manner.
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The "equilibrium" core occurs at the point where the poisoned k is
eff'

equal to unity. Since the axial blanket is an integral part of the core,

an equilibrium axial blanket is also determined at the point where the

poisoned keff is equivalent to unity. It should also be noted that the

poison concentration in the axial blanket will be greater than that in

the core (here about 2. 3 times) because of the continuous presence of

control and safety rods in that region. The factor of 2. 3 was

determined by applying the following observations and assumptions

(W2) .

1. The safety system is composed of rods which are always in the

ready position in the upper axial blanket with their lower ends

at the interface between the axial blanket and the core.

2. The safety system has 50 percent more poison material than

the control system.

3. The reference reactor refueling cycle is one refueling every two

years. During that year the control rods are uniformly with-

drawn from the fully inserted position (at the lower core/blanket

interface) to the fully withdrawn position (at the upper core/

blanket interface).

4. The control system has sufficient worth (on a time-average basis)

to make the system k equal to 1. 0 after one year of operation.

5. For the reactor analyzed here (which was assumed symmetric

about the center plane), it is assumed that the poison concen-

tration in the combined (upper and lower) axial blankets is half

the poison concentration expected in the upper axial blanket.
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6. For the burnup analysis it is assumed that the poison is dis-

tributed uniformly throughout the core at the appropriate

concentration, and uniformly throughout the axial blanket at

the higher appropriate concentration.

7. For the burnup analysis, the poison concentration is held

constant at the time-averaged value throughout the life of

the system.

Although considerable care has been placed on definition of a

realistic core composition, it should be noted that other investigators

(135, H3, W2) have looked into the effect of different core management

methods on radial blanket economics., and have concluded that there is

an insignificant effect.

2. 3. 3. 4 Material Included in the Burnup

In the burnup analysis performed by 2DB, materials whose con-

centration changed as a function of irradiation time were specified,

together with the precursor isotope and the reaction which produced

the isotope of interest. The fissioning of the following heavy metals

contributed to the creation of fission products: Pu-239, Pu-240, Pu-241,

Pu-242, U-235, U-238. The buildup of heavy isotopes was assumed to

occur by the following neutron capture reactions:

Pu-239 (n,y) Pu-240

Pu-240 (n, y) Pu-241

Pu-241 (n,y) Pu-242

U-238 (n,-y) Pu-239
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As shown, neutron capture in U-238 is assumed to lead directly to the

production of Pu-239, neglecting the formation of intermediate decay

products,which can be shown to lead to a very slight overprediction in

the formation rate of Pu-239 (B5). Similarly, Pu-241 decay is

neglected, again with justification (B4).

These burnup reactions will be limited to the radial and axial

blanket region for the remainder of the report. In determining the

equilibrium core and axial blanket, these burnup reactions were pre-

viously employed for the core and both blankets. However, as

discussed in section 2. 3. 3. 3, the equilibrium core and axial blanket

remain fixed in time as the irradiation of the radial blanket progresses.

2. 3. 3. 5 Burnup Economics

In this work the burnup-economics analysis was performed

utilizing the cash flow method contained in the computer code BRECON,

developed by Brewer (B3), and modified by Wood (W2) to permit direct

use of 2DB burnup results. Levelized fuel cycle costs (in mills/kwhr)

were calculated according to the following general expression:

1000 0 [Cfiss o FP(T) material purchase
E HM T cost component

C fab9
+C fab (T)fabrication

T cost component

C rep

+ r F re reprocessing
T cost component

C ET)mc
+Tfis s(T) material credit (2. 53)

T cost component
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where

e is the local levelized fuel component of the energy cost

(mills/kwhr),

E is the electrical energy produced by the reactor in one year

(kwhr/yr),

T is the local irradiation time (yr),

Cfiss is the fissile price ($/kgPu),

Cfab is the unit fabrication and reprocessing cost ($/kgHM),

0c is the initial enrichment,

e(T) is the discharge enrichment (kg fissile discharged per

kg of heavy metal loaded),

Fq(T) is the carrying charge factor for cost component q,

M is the mass of heavy metal loaded.
HM

The carrying charge factors, Fq(T), are given by

Fq (T) - 1 for capitalized 2.54)1 -T 1+X)Tq costs or revenues *

1 for noncapitalized costs or revenues (2.55)

( 1 +X)Tq (expensed cost or taxed revenue)

where

X = (1-)rb fb+ rs s is the discount rate, (2. 56)

Tr is the income tax rate,

fb is the debt fraction,

f is the equity fraction,

rb is the debt rate of return,

rs is the equity rate of return,

T is the time between the cash flow transaction q

and the irradiation midpoint.
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All the results quoted here were computed using an accounting

method, suggested by Brewer (B3), in which material purchases and

fabrication charges were capitalized and consequently depreciated for

tax purposes; whereas reprocessing charges and material credit were

treated as an expensed cost and taxable revenue, respectively.

It should be noted that Eq. 2. 53 can be applied to an entire

region (e. g., radial blanket) or subregion (e. g., radial blanket row)

under fixed element (batch) management. This feature of Eq. 2. 53

facilitates the determination of the minimum fuel cycle cost contri-

bution (i. e., the optimum irradiation time) for a blanket row or for the

entire blanket.

Table 2. 14 lists the reference economic parameters used in this

study of blanket burnup economics. These conditions (except for dis-

count rate calculations) are the same as those presented by Brewer

(B3) and Wood (W2) and are within the range projected for the mature

U.S. nuclear fuel cycle economy (D5). These parameters will also be

varied over a considerable range to develop input for burnup-

economics correlations.

2.4 CONCLUSIONS

In this chapter some key blanket performance characteristics

were examined using a one-group model. The fissile material buildup

rate per unit volume for radial blankets driven by radially power-

flattened cores (and for axial blankets with either radially power-

flattened or uniformly loaded cores) was found to be independent of



92

TABLE 2.14 Reference Economic Environment

0Teration

Fabrication

Reprocessing

Isotope

U-238

Pu-239

Pu-240

Pu-241

Pu-242

Financial Parameter

Income tax rate, T

Caoital structure

Bond (debt) fraction, f hStock(equity)fraction, f
S

Rates of return

Bonds, rb
Stocks, rs

Discount rate, X*

Unit Fuel Processing Costs,$/kgHM

Axial Blanket Radial Blanket

80 69

50 50

Isotoe.Market Value,$/kg

0

10,000

0

10,000

0

Value of Parameter

Private Utility'

0.5

0.5
0.5

0.07
0.125

0.8

*X = (1 - T)rb fb + rsfs
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core radius (hence, reactor power rating). Because of this, the

breakeven and optimum irradiation time and the optimum blanket

thickness are also independent of core radius. The relations among

the blanket optimum thickness, the optimum irradiation time and the

minimum fuel cycle cost have been investigated. The peripheral

enrichment (hence, neutron energy spectrum) was shown to be inde-

pendent of core radius, which means that there is no need to region-

wise collapse separate blanket cross-section sets for each core

radius. Thus, in a given economic environment, the radial blankets

of all radially power-flattened LMFBR's will perform identically on

a per-assembly basis. Because there are fewer blanket assemblies

per core assembly as core size is increased, the relative importance

of the radial blanket decreases on a fuel-cycle-cost basis (mills/kwhr)

as the core radius increases.

The second major section of the chapter dealt with the state-of-

the-art computer methods which will be used to develop more precise

results than can be obtained from a one-group model.
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Chapter 3

BEGINNING-OF-LIFE BREEDING ANALYSIS

3. 1 INTRODUCTION

In this chapter beginning-of-life (BOL) blanket physics perform-

ance will be investigated using the methods described in Chapter 2.

The first order of business will be to verify the applicability and accu-

racy of the simple one-group model by comparing it to state-of-the-art

computer methods for simple one-zone cores. Then the one-group

approach will be used to examine the more interesting case of the

radially power-flattened core to develop an idealized model for radial

and axial blanket performance as the core size is increased. These

results will be compared with those obtained using 2DB-BOL snapshot

calculations to analyze more realistic multizone cores. Blanket

physics performance characteristics investigated include BOL fissile

material (enrichment) buildup rates, and the breeding ratio, row-by-

row in the radial blanket and zone-by-zone in the axial blanket.

3.2 EVALUATION OF ONE-GROUP MODEL USING UNIFORMLY

LOADED CORES

Since the one-group analytic model becomes excessively cumber-

some (thereby losing its chief virtue) when applied to multizone cores,

and the more sophisticated computer methods can only deal with uni-

form zones, the common ground of the uniformly loaded, single-zone

core was employed to evaluate the simple model's performance. One-

group cross sections were developed by collapsing multigroup sets over
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representative spectra: the 4-group standard set used in 2DB and its

parent 26-group set (used with the ANISN program) were employed.

Table 3. 1 lists the one-group cross sections. A further simplification

was introduced by defining a composite fissile material "Pu 239 to

represent all fissile isotopes present (U 235, Pu 239, Pu 241) and a

composite fertile material "U 2 3 8 " which combined U238 and Pu240

The composite cross section, a, satisfied the relation:

LT N= (3.1)

where

N 3 is the atom number density for the j-th nuclide

and

9i is the microscopic cross section of the j-th nuclide.

For a one-zone core, the critical materials buckling, B c' is

B f, c a, c , (3.2)
c D

c

where

1
D is the diffusion coefficient = 3 E '

tr, c

Etr., is the transport cross section,

VE c is the macroscopic neutron production

cross section, and

E a, c is the macroscopic absorption cross section.

Equation 3. 2 can be arranged to relate critical enrichment to buckling:



9 6i

C =A+CB ,

where

E - (Ti -1)N aa, c,p 8 2 oa a, 28

(Y14 9 - 1)No-a, 49 - ( 2- 1)N oa, 2 8

D
C

- 49 c 28 -28
(f4 9 -1)Noa (T -1)N a

is constant

is constant

af i
ga.=V

(for i-th nuclide)

N is the atom number density of heavy metal

Ea, c, p is the non-fuel absorption cross section.

On the other hand, the critical core geometric buckling is com-

puted from:

B 2  = ( 
) 2_

B H+26

+ (2

+ (a+6R 
,

H is the actual core height

a is the actual core radius

0
= 2. 4048, fundamental eigenvalue of Jo

6a is the linear extrapolation distance into the axial blanket

6R is the linear extrapolation distance into the radial blanket.

The linear extrapolation distance was obtained from 2DB 4-group calcu-

lations by linear extrapolation of the total flux near the core periphery:

6 R
= 20 cm (3.8)

(3.9)6 25 cma

(3. 3)

and

C =

in which

(3.4)

(3. 5)

(3. 6)

where

(3.7)
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aa
*1

1.964

0.3448

2.670

0.2199

2.159

0.04044

2.468

0.8515

3.081

0.695

2.899

0.3308

0.001074

0.01218

0.008935

0.02243

0.001828

0.5917

8.835

8.683

9.077

8.730

8.523

8.501

3.114

3.783

3.335

5.005

3.792

11.920

- All values of cross sectionlin barns
*1 Obtained from 4-Group 2DB results

*2 Obtained by collapsing over 26-Group ANISN
spectra using the prescription

G

Ctr -

. i i.
1-1

Table 3.1

where i is ith group

One Croup Cross Sections for the Core
used in Present Work

*1

V

* 1

2.9A7

2.953

3.038

2.966

2.487

2.815

Nuclide

Pu 239

Pu 240

Pu 241

Pu 242

U 235

U 238

0

Fe

Cr

Ni

Na

Pu 239 FP
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Figure 3. 1 shows that the effect of core radius (hence core size,

enrichment, neutron spectrum) on the extrapolation distance is negli-

gible. Using the one-group cross-section set of Table 3. 1, one has:

S=0. 0829 + 76.8B 2 . (3. 10)
c r

Figure 3.2 shows this relationship together with the enrichment

obtained from the 2DB calculations. The agreement is satisfactory.

The simple one-group model also requires that several other

parameters characterizing the core remain constant. Figure 3. 3

confirms that this is so within acceptable bounds for D c' the core

diffusion coefficient, 628, the fertile-to-fissile fission ratio, and ,

the reciprocal pseudo-diffusion length defined in Eq. C. 19 of

Appendix C.

3.3 RADIALLY POWER-FLATTENED CORES

3. 3. 1 BOL Core Characteristics

In order to design a radially power-flattened core, an initial esti-

mate of the i-th zone-averaged enrichment, e, may be calculated using

the one-group prescription (see Appendix C),

r.
1 e(r)27rrdr

r -
= r~i,( 3. 11)

27rrdr
r _

where

ro ____0__)_is the enrichment (3 12)1 - (Ka) I0(Kr) at position r ,



Axial Direction

Radial Direction
-- ommm -

fto a

75 100 125 150 175
Core Radius (cm)

The Effect of Core Radius on the Linear Extrapolation Distance

30.0 j-

all

0

0

-H
4-

25.0 1-

20.0

200 225

.0
I

Fig. 3. 1



0
0

- - 1-Group Prediction

0 4-Group 2DB Results or -0

0- 0
00

- - - -0 Small Cores

~~00

00a-

a'-
00

4*0

(9

Large Cores

8 9 10

Geometric Buckling, Bc

Fig. 3.2 Core-Averaged Critical Enrichment as a Function of Buckling For
One-Zone Cores

0
'N
0

i-H

0
U)

18.0

16.0

14.0

12.0

10.0

5 6 7 11 12 13



0 Based on 4 Group - 2DB Calculations

c.b

a28 oo -- zoa.4p1

-.. 11

SReciprocal Pseudo-Diffusion-Length

0. 0

o o)

-1 -. 1 5

1 1.10 C
1 + 6 Total-to-Fissile Fission Ratio

FR)
S1.80

0
0'~- 0

-1.754-
00 C3 H -- 0

1.70 Co4fcin
C+AD Diffusion Cefcnt0c'

75 100 125 150 175 200 225

Core Radius (cm)

Fig. 3.3 The Effect of Core Radius on BOL Physics Parameters

0
H-



102

E. 0) is the central enrichment for a core having

an infinite radius,

r and r i are the outer and the inner radii of the

i-th annular zone.

Figure 3.4 shows the zone-averaged enrichments for a 2-zone,

1 0 0 0 -MWe, radially power-flattened core obtained using both the one-

group model and 2DB calculations. Table 3. 2 shows the zone-averaged

enrichments for various radially power-flattened cores obtained using

2DB calculations. The final values in the latter case were to satisfy

both the criticality relationship and an arbitrary criterion on zone peak

power flatness, as described in Chapter 2:

P. - pg1P 5% (3.13)
p 1

Table 3. 2 shows the zone-averaged enrichment distributions satis-

fying the criticality and power flatness constraints for the multizone

cores examined in this evaluation. As noted in Chapter 2, the zone

radii (hence zone volumes and number of zones) were selected to give

reasonable overall core power-flattening within practical constraints

imposed by finite assembly size.

We are now in a position to test an important prediction of the one-

group model derived in Chapter 2 - namely, that the peripheral enrich-

ment in a radially power-flattened core remains very nearly constant

as core radius increases. Figure 3. 5 confirms that the zone-averaged

peripheral enrichment is essentially independent of core radius, provided

that the number of zones employed increases as core radius increases,
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2 Zone Cores Multi-Zone-Cores
Power Core*
Rating Radius Zone: Zone:
(MWe) (cm) 1 2 1 2 3 4 5 6

250 65 15.2 23.0 NA

500 90 13.3 19.1 NA

750 110 12.7 17.7 NA

1000 125 12.5 17.2 11.5 12.1 13.0 14.1 16.8 20.0

1500 155 NA 11.8 13.0 16.4

2000 180 NA 11.7 12.0 13.2 17.0

2500 200 NA 11.7 11.6 12.2 13.5 17.9

3000 215 12.0 12.0 11.2 12.0 12.6 14.8 20.0

*Constant core height = 100 cm, all cases

Table 3.2 Zone Averaged Enrichments for Radially-Power-Flattened-Critical
BOL Cores of Various Ratings (2DB Calculations)

...........
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as discussed in Chapter 2. The one-group predictions are in good

agreement with the 2DB calculations. This result has important impli-

cations. Since local enrichment determines the local neutron spectrum,

this observation indicates that the blanket is exposed to the same neutron

spectrum regardless of core radius. Furthermore, given similar

driving spectra, geometrically and constituently similar blankets will

have similar internal spectra, hence identical group-averaged cross

sections and relative neutron balances. To confirm this important

point, a test case using the full 26-group, parent cross-section set was

carried out (ANISN one-dimensional S8 transport calculation [E2]).

Figure 3. 6 shows the energy spectrum of the neutron flux at the core/

blanket interface for the 250-MW , 2-zone core and for the 3000-MW ,

6-zone core. The excellent agreement confirms the hypothesis.

In Chapter 2 the ratio of the critical mass of a radially power-

flattened core to that of a uniformly loaded core was predicted to be

approximately equal to unity, and the same regardless of core radius.

Figure 3. 7 shows the one-group prediction and the 2DB results. The

qualitative agreement is good. The core-averaged critical enrichments

also vary similarly with core radius (i. e., the enrichments decrease

and approach asymptotic values) as shown in Fig. 3. 8.

Thus, based on the above results for uniformly loaded cores, it

is reasonable to assume that the one-group, collapsed cross-section

set and the equations derived for the physics parameters of interest

should be applicable to the cases involving radially power-flattened

cores.
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3. 3.2 Effect of Changing Core Radius at Constant Core Height

on Radial Blanket Breeding Performance

It was shown- in Chapter 2 that the fissile specific inventory

buildup rate, So, (gPu/kgHM-yr) in a radial blanket driven by a

radially rower-flattened core is the same for all core radii.

Figure 3. 9 shows that this prediction by the one-group model is also

observed in the 2DB results for the multizone cores. The fissile

enrichment, E, is directly proportional to the fissile inventory per

unit volume, M 4 9 /VB' i.e.

M__ 1 M49
MHM oB OB HM ( B

where

M49 is the total fissile mass in the blanket, kg

MHM is the total heavy metal mass in the blanket, kg

poB is the density of the HM oxide fuel

p OB ~ 10 (kgHM oxide/liter-HM oxide) (3. 15)

0oB is the fractional volume occupied by the

fuel in the blanket ~ 0. 5

'HM is the fractional mass of heavy metal

in the fuel ~ 0. 95

VB is the total volume occupied by the blanket, liters.

Thus the fissile material buildup per unit volume (or per assembly) is

also the same for all core radii. This characteristic holds true not

only at the BOL but also at any irradiation time, a point which will be

confirmed in Chapter 4. Since neither the magnitude nor the energy

distribution of the driving spectrum changes, at a given distance from
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the core/blanket interface the relative row-by-row fissile inventory at

any irradiation time should be independent of core radius (size).

Figure 3. 10 shows confirmatory results from 2DB 100-day-time-

step-burnup calculations. The row-by-row fissile inventory given by a

one-group model in which the flux is assumed to fall off exponentially in

the radial blanket, is:

M. YTi 1  -yTi
M1 e -e ,(3. 16)M 0e -y T '

where

M. is the fissile mass in the i-th row
01

M 0 is the total fissile mass in the entire blanket

T i_1 and T are the inner and the outer radius of the i-th row

T is the total thickness of the blanket = 45 cm

is the reciprocal of the effective blanket diffusion

length, which is calculated using the formula:

^Y= a,B - f,B =0.05 cm-(3.17)
DB

in which

EaB is the macroscopic absorption cross section of the

blanket

VEf,B is the macroscopic neutron production cross section

of the blanket

DB is the diffusion coefficient of the blanket.

The above parameters were calculated using the data of Table 3. 3,

which were obtained from 2DB 4-group calculations.
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All values of cross sectionsin barns
*1 The same as used in the core (see Table 3.1)

*2 From 2DB results

Table 3.3 One Group Cross Sections for the
Blanket used in the Present Work
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Figure 3. 11 confirms the predictions by the one-group model,

as discussed in Chapter 2, that the external breeding ratio in the

radial blanket is proportional to a when driven by a radially power-

flattened core and to (a+6R)-2 when driven by a uniformly loaded core.

3. 3. 3 Effect of Changing Core Radius at Constant Core Height

on Axial Blanket Breeding Performance

Figure 3. 12 shows the fissile specific inventory buildup rate in

an axial blanket driven by either radially power-flattened or uniformly

loaded cores, which confirms the predictions of the one-group model

that the product of the specific rate and the core critical enrichment

is essentially constant for all core radii (sizes), and the specific rate

itself is constant for the larger cores examined.

Figure 3. 13 shows the product of the axial blanket breeding ratio

and the core critical enrichment for both sets of results, which con-

firms the prediction of the one-group model that the product is constant

for all core radii, as discussed in Chapter 2 and Appendices B and C.

Figure 3. 13 also shows the axial blanket breeding ratio, which again

confirms that the breeding ratio is constant for the larger cores

examined.

The combined external (blanket) breeding ratio of the axial and

radial blankets decreases as the core radius increases. Figure 3. 14

shows this together with the internal (core) breeding ratio and the total

(core + blanket) breeding ratio. It is interesting to note that the

internal breeding ratio does not exceed unity even at 3000 MW . Radial

power-flattening does not improve the total breeding performance very

much because the gain in the radial blanket is cancelled out by the loss

in the core due to the slightly higher critical mass.
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3. 3. 4 The Effect of Changing Core Height at Constant Core Radius

on Blanket Breeding Performance

3. 3.4. 1 Radial Blanket

Figure 3. 15 shows the radial blanket breeding ratio, which is

demonstrated to remain essentially constant as core height increases.

Multigroup and one-group trends are in good agreement.

3. 3. 4. 2 Axial Blanket

Figure 3. 16 shows the product of the axial blanket breeding ratio

and the core critical enrichment for either two-zone, radially power-

flattened or uniformly loaded cores, which confirms the H-2 variation
e

predicted by the one-group model. The agreement is good. Figure 3. 16

also shows the rapid decrease of the axial blanket breeding ratio and the

slow decrease of the core critical enrichment as core height increases.

Figure 3. 17 shows that the combined external (blanket) breeding

ratio of the axial and radial blankets decreases as the core height

increases. The internal breeding ratio exceeds unity when core height

is greater than 200 cm for radially power-flattened cores or 150 cm for

uniformly loaded cores, which will require special consideration of the

reactivity control problem. The total breeding ratio is again constant

regardless of core height, which is a result similar to that found for core

radius changes at constant core height. Thus it is concluded that the

total breeding ratio cannot be improved significantly by changing the core

radius or the core height using constant thickness blankets. It is also

interesting that radial power-flattening cannot improve the total breeding
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ratio. In this regard, we should note that while Tzanos (T1) demon-

strated that power-flattened cores have minimum critical mass and

maximum breeding ratio, he applied the constraints of constant total

power and peak power density, while the present comparisons are for

constant volume cores.

We have dealt in this chapter with idealized BOL cases where

cores do not contain control poison or over-enrichment to compensate

for burnup. This is the reason why rather high total breeding ratios

( - 1. 5) have been computed. In the next chapter, we will discuss

more realistic cores with boron control poison and the excess reac-

tivity required to compensate for burnup.

3.4 CONCLUSIONS

In the initial sections of this chapter, the validity of using the

one-group models for LMFBR scoping analyses was established by

comparing one-group results to 2DB 4-group calculations for one-zone

cores. The core diffusion coefficient, Dc, the fertile-to-fission ratio,

628, and the extrapolation distance, into both the radial and the axial

blankets were confirmed to be essentially independent of core radius,

as required by the one-group model. It was also shown in a later

section that the effective diffusion length of the blanket is also constant

for all core radii.

Based upon these verified assumptions and cross sections,

characteristics of radially power-flattened cores were predicted using

the one-group model. The results were shown to be in good agreement

with 2DB calculations for multizone cores in the 250-3000 MW sizee
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range. The following important conclusions were developed:

1) The peripheral enrichment (i. e. , neutron spectrum) of radially

power-flattened cores is the same for all core radii.

2) The magnitude of the peripheral neutron flux is the same for all

core radii.

3) Thus, the fissile inventory and enrichment buildup rates per unit

volume in each row of the radial blanket driven by radially

power-flattened cores are also the same for all core radii.

Consequently, total dollar revenue per blanket assembly is the

same for all cores.

4) However, the fuel cycle cost contribution (mills/kwhr) of the

entire blanket decreases as the core radius increases because

the number of blanket assemblies per core assembly decreases.

Thus, the relative importance of the radial blanket decreases as

the core radius increases.

5) The predictions by the one-group model of the effect of core

height changes (at constant core radius) on breeding per-

formance are in good agreement with the 2DB-BRECON results.

Now that BOL physics has been discussed, depletion and eco-

nomics are of interest: the topics addressed in the next chapter.
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Chapter 4

DEPLETION-ECONOMICS ANALYSIS

4. 1 INTRODUCTION

In this chapter, LMFBR blanket performance will be analyzed with

respect to the optimum irradiation time, the optimum thickness and the

minimum fuel cycle cost (the maximum profit), again comparing the pre-

dictions of simple models to more sophisticated (2DB-BRECON) calcu-

lations to extend the conclusions of the previous chapter regarding the

effect of reactor size on BOL blanket characteristics.

First the general characteristics of the fissile buildup process in

the LMFBR blanket will be discussed and a simple linear buildup

approximation will be examined. Next an "equilibrium" core, which is

fixed in composition during blanket burnup, will be devised. Then

"equilibrium" core results from 2DB-BRECON will be correlated

against parameter groupings developed by analysis using the simple

models. Correlations relating the optimum and breakeven irradiation

times and the optimum thickness to parameters characterizing the

economic environment are displayed.

4.2 DEPLETION ANALYSIS

4. 2. 1 Design of Equilibrium Core

Based upon the approach described in Chapter 2, an equilibrium

core and axial blanket were defined as a prelude to studies of radial

blanket performance. The refueling interval for this equilibrium core

and axial blanket system was assumed to be two years (actually 730 days
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at 82% load factor = 600 full power days). This convention was adopted

to insure that a more severe change in core characteristics could be

accommodated than would generally be encountered in LMFBR's using

the more likely yearly refueling. In this chapter, three reactor sizes

(250 MW e 1000 MW e, and 3000 MW ) each having two zone cores,

will be examined. The calculation, using the 2DB burnup code (L1)

with the 4-group cross sections previously described, proceeded as

follows:

1. The initial fissile loading in the inner and outer core regions

was approximated by extrapolation using the BOL critical loading and

the reactivity loss after 100 full power days operation. The reactivity

loss, Ak/k, was translated into changes in the fissile loading, AM/M,

using the approximate relation (B4, W2):

Ak .5 AM (4.1)
0.5 M'

which was applied independently to each core zone.

2. By trial and error, the appropriate fissile loading, which

gave keff a 1.0 at the end of the two-year period, was determined.

The final loadings for three core sizes are shown in Fig. 4. 1 together

with the variation of k with time; the linearity of keff with time, as

postulated in Chapter 2, is shown to be a rather good assumption.

3. The next step was to determine the time-averaged mean

boron-10 poison concentration, as indicated in Fig. 2. 18. The effect

of boron-10 concentration changes on keff was estimated using the

following approximate formula (B4):



'wo-Zone, Power Flattened, 3lanketed Cores,
Wiole System (Core and. 3lanket) Burned Up. ro

Power Core Fissile (BOL) Poison
Rating Radius Loading Cono. in Core

(NoWe) (cn) (a/o)' (10-5a/h-cm)
C1 C2

Q 250 65 19.09 27.59 17.97

x 1000 125 15.19 20.79 11.06

Unpoisoned 3000 215 14.15 16.79 1.72

0as

4-)

cd 1.10 -

4-,

1.05

Poisoned

1 .0 0 -4
*100 200 300* 0 04-)

Irradtation I ime -
(Full Power Days)

0.05

0.90

T3urnup Reactivity Swing f'or Various Power Ratings71z. 4. 1



129

k '0.000437 AB (4.2)

where AB is the boron concentration increase in units of

10- atoms/barn-cm.

By trial and error, the final boron concentrations in three cores

were determined to be 17. 97, 11. 06 and 8. 72 X10-5 atoms/barn-cm,

respectively, as shown in Fig. 4. 1. A two-year burnup of the boron-

poisoned core is also shown in Fig. 4. 1, where k now equals unity

at about 300 full power days. The ratio of the boron concentration in

the axial blanket to that in the core was set at 2. 3: 1. 0, as discussed

in Chapter 2. The use of a time-invariant poison concentration over

the burnup cycle is justified on the basis that there is no significant

effect of boron control poison on the fissile inventory in the radial

blanket. Figure 4. 2 shows the fissile inventory in row 1 of the radial

blanket for three core sizes (250, 1000 and 3000 MW ) with and without

boron control poison.

The "equilibrium" core and axial blanket system are defined to

consist of the compositions at the keff=1. 0, 300-day point. Tables

F. 13 (a), (b) and (c) in Appendix F list the nuclide concentrations in

the two core zones and the single axial blanket zone (see also Fig. 2. 2)

for the 1000-MW core obtained in this manner. The "equilibrium"e

core and axial blanket system for the other core sizes considered

here, 250 MW and 3000 MW , were determined in the same manner.e e

Figure 4. 3 shows the variation of the radial power flatness with

burnup for the cores described above. As is shown, all of the BOL

"equilibrium" core systems satisfy our arbitrary ±5% criterion on
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power flatness. However, since the larger cores violate this criterion

at EOL, it would be necessary in practice to adjust the control poison

to balance the zone power split. This was not done in the present case.

Thus the sensitivity of blanket performance to power flatness must be

examined. The "equilibrium" core and axial blanket system has been

compared with three other core options: "Beginning of Life (BOL)",

"End of Life (EOL)" and "Power-Flattened End of Life (EOL-PF)".

Figure 4. 4 shows the fissile inventory in the radial blanket driven by

these four different cores. Figure 4. 5 shows the fuel cycle cost contri-

bution of row 1 in the radial blanket driven by these four different cores.

As shown, the radial blanket driven by the "equilibrium" core (option

M-L in the figure) can simulate the behavior of the fissile inventory

and the fuel cycle cost contribution in the radial blanket, row 1, driven

by any burnup-state of the core within ±24 kg for the fissile inventory,

and ±0. 02 mills/kwhr for the fuel cycle cost contribution, for the physi-

cal lifetime of the fuel assembly (here assumed to be 1800 full power

days). For the local optimum point for row 1, the "equilibrium" core

can predict the fissile inventory within ±24 kg, and the optimum irradi-

ation time within 150 days (i. e., within half of a refueling interval) and

the fuel cost within ±0. 02 mills/kwhr, as shown in Table 4. 1.

The "Mid-Life" core with its peak power flattened within 5% has

therefore been adopted as the "Equilibrium" core, which is fixed in

composition during the blanket burnup period (here assumed to be 1800

full power days).
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Frozen Core Type M-L BOL EOL EOL

Items "Equilibrium" Power-Flattened

Optimum
Irradiation Time 1290 1347 1246 1147
(Full Power Days)

(Difference)* (+57) (--44) (-143)

Enrichment at
Ortimum 4.44 4.29 4.50 4.93
Irradiation Time (W)

(Difference) (-915) (+0.06) (+0.49)

Minimum Fuel
Cycle Cost -0.0728 -0.0655 -0.0790 -0.0910
;(mills/KwHr)

(Difference) (- 0.0073) (-0.0062) (-0.0182)

Pissile Inventory
(KG) at Optimum 453.7 441.5 463.2 477.1
Irradiation Time

(Difference) (-12.2) (+9.5) (+23.4)
*. Y ' ,. v : .
(uifference) = ( alue (m Value )

Table 4.1 Comparison of the Optima for Row 1 of the
Radial Blanket for Various Frozen Composition Cores

C,3
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4. 2. 2 Model of Fissile Material Buildup in the Blanket

Fissile material in the blanket, driven by a radially power-

flattened (2-zone) "equilibrium" core, builds up at a nearly uniform

rate at first, and then at a changing rate, depending on the location

(i. e. , at a very slowly decreasing rate for row 1, at an essentially

uniform rate for row 2, and at a very slowly increasing rate for row 3).

Figures 4. 6 and 4. 7 show the 2DB-BRECON results for the fissile

inventory history in each row of the radial blanket, which indicate that:

1) The fissile specific inventories (gPu/kgHM) at 1800 full

power days are 50, 30, 13 for rows 1, 2 and 3. In other

words, the enrichment is 5%, 3%, 1. 3%, respectively.

2) The fissile specific buildup rate, So, (gPu/kgHM-yr) at BOL

are 10, 4. 5 and 1. 7 for rows 1, 2 and 3, which will determine

the capability of producing net profit according to the criterion

that S0 > 2 gPu/kgHM-yr.

3) The fissile specific buildup rate at a given location in the

radial blanket and at a given exposure time is essentially the

same for all core sizes. (The moderate mismatch shown can

be attributed to imperfect power-flattening over lifetime and

the use of finite zoning instead of more nearly continuous fissile

loading variations.) On the whole, the 2DB-BRECON calcu-

lations confirm that the fissile buildup rate in corresponding

rows of the radial blanket is always the same for all radially

power-flattened cores, not only at BOL but also over the whole

lifetime of the blanket.
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Some investigators (B4, W2) have approximated this behavior by

a linear buildup model as shown in Fig. 4. 8 (here applied to row 1 of

the radial blanket driven by a 1 0 0 0 -MW e 2-zone core). The linear

buildup model can predict a qualitatively useful result, as discussed in

the next section, but it fails to determine an accurate optimum irradi-

ation time (i. e. , the observed difference of about 500 full power days

for the optimum irradiation time violates the criterion that key times

be determined within half a refueling interval ~ 150 full power days).

It should be noted that the "fissile" material cited in this report

241
does not include Pu2. This approximation is acceptable because the

inventory of Pu241 in any row is less than 0. 4% of Pu239 at 1800 full

power days, as shown in Fig. 4. 9.

4. 3 ECONOMIC ANALYSIS

4. 3. 1 Local Breakeven and Optimum Irradiation Times

Figure 4. 10 shows the row-by-row (designated as "local") fuel

cycle cost contribution as a function of irradiation for a typical radial

blanket driven by a 1 0 0 0 -MWe, 2-zone, radially power-flattened core.

As shown, each row has its own breakeven irradiation time, which

increases as the row is moved farther away from the core. Also, each

row has its own optimum irradiation time, which also increases as the

row is moved farther from the core. The optimum point for row 3 does

not occur until beyond 3000 full power days burnup. The minimum local

cost is less (the profit is higher) in the row closest to the core. Many

interesting questions are raised: What is the relation of the breakeven
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time and row position, the relation of the optimum time and row

position, and the minimum local and whole blanket (designated as

"total") costs? Each point will be addressed subsequently. We will

consider first the effect of core radius on the breakeven and the

optimum times and improve upon a correlation developed by Wood

(W2) relating these parameters.

The observations in Chapter 3 that the BOL radial blanket fissile

buildup rate density stays the same as core radius increases (for the

idealized case of the radially power-flattened core), and the obser-

vation in the preceding section that the fissile specific buildup rate at

a given location in the radial blanket and at a given exposure time is

essentially the same for all core sizes, lead to the conclusion that the

local breakeven and optimum irradiation time is the same for all core

ratings. Figure 4. 11 shows the effect of core radius on the local

optimum irradiation time, which confirms that the local optimum

irradiation time is independent of core radius within ± half of a re-

fueling interval (here assumed to be 300 full power days). Figure 4.11

also shows the effect of core radius on the local breakeven irradiation

time, which indicates that the local breakeven irradiation time is also

independent of core radius, again within ± half of a refueling interval.

The local optimum irradiation time for rows 2 and 3 and the local

breakeven irradiation time for row 3 were not reached within 1500 full

power days under the economic environment shown in Table 2. 14. The

reason for this will be explained later.

An approximate expression for the optimum irradiation time was

derived in section 2. 2. 2. 2, culminating in Eq. 2. 26. Because of the
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large number of assumptions and omissions used in developing Eq. 2. 26,

the actual equation would not be expected to apply on a quantitative basis..

However, all of the more important economic parameters are included

within Eq. 2. 26. As a result, following the same line of reasoning as

suggested by Wood (W2), one might expect that the optimum irradiation

time would correlate against economic parameters such as:

[C 1 F 1 (-AT 1 )+C 2F 2 T (4 3
W C 3 F 3 (T3) 43

and the discount rate, X. Because of the form of Eq. 2. 26, this cor-

relation might also be expected to be in the form:

b. c.
T =a.W I X 1 (4.4)

opt j'

where aj b and C are constants for the j-th region, to be obtained by

correlating 2DB-BRECON output. The parameter, W, which charac-

terizes the economic environment, differs slightly from Wood's

parameter NE (W2) in that the discount rate has been separated out as

a second independent variable. One has NEX = W. As shown in

Table 4. 2, Wood did not consider a significant variation in discount

rate, X, in his parameter studies. In the present work, checking the

effect of a large change in discount rate on the correlation was con-

sidered worthwhile because of the recent large escalation in interest

rates.

The variation in the discount rate was obtained by changing the

bondholder's rate of return, rb, and stockholder's rate of return, rs'

(with fixed values for their fractional contributions of fb =0. 5 and

fs = 0. 5, and for the income tax, 'r = 0. 5) as shown in Table 4. 3.



PARAMETER (UNITS) THIS STUDY WOOD (W2)

Value of fissile P ($/gP ) 6.0 to 14.0 6.0 to 16.0

Fabrication charges ($/Kg HM) 69 to 140 69 to 140

Preprocessing charges ($/Kg HM) 50 to 100 50 to 100

Discount Rate (Year~) 0.04 to 0.16 0.075 to 0.085

Range of Variation of Economic Parameters

C)

Table 4.2
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4.3(A) Discount Rate

Z rb b rs s X*

1 1%0.04 0.06 0.04

0.07 0.125 0.080.5 015 0.6 .0

0.12 0.18 0.12

0.16 , 0.24 0.16

* Discount Rate: x=(1-T)rb fb + r f

4.3(B) Wood's Economic Parameter; NE

N E [C1F 1 (-AT )+C 2 F 2 (AT 2) 1/c 3 F 3 (AT 3)x

C 1=69 and C2 =50$/kgHM C 1=140 and C2=100

_x__/ 6 10 14 6 10 14

0.04 0.5306 0.3184 0.2274 N.A

0.08 0.2653 0.1592 0.1137 0.5353 0.3211 0.2294

0.12 0.1990 0.1061 0.0788 N.A.

0.16 0.1327 0.0796 0.0569 N.A.

4.3(C) Modified Economic Parameter Used
In Present Work, W = N EX

Table 4.3 Discount Rate, Wood's Economic Parameter and
Modified Economic Parameter
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A series of economic analyses were made using the financial parameters

appropriate for a typical private utility, as summarized in Table 4. 3.

Economic optimum irradiation times for all cases were determined

by fitting a parabola through the three points bracketing the minimum,

differentiating with respect to irradiation time, setting the derivative

equal to zero and solving the resulting linear equation for the irradiation

time at which the fuel cycle cost contribution was a minimum. The opti-

mum irradiation times for row 1 were then least-square fit to Eq. 4. 4

to give:

T opt-1 = (9. 22X103) W0.54 X-0.15 (full power days). (4. 5)

In a similar manner, a correlation for row 2 was obtained:

T opt-2 (7. 75 X10 3 )W0.40 X 0.24 (full power days). (4.6)

The exponents, 0. 54 and 0. 40, are in good agreement with the value 0. 5

predicted by the simplified model of Chapter 2. Figures 4. 12 and 4. 13

compare the optimum irradiation times predicted by Eqs. 4. 5 and 4. 6 to

those generated by 2DB-BRECON. The agreement is excellent.

A similar procedure was followed in the case of the local breakeven

irradiation time except that linear interpolation was used to find the zero

cost point using the two points on either side of zero. In this case, for

rows 1 and 2 of the radial blanket, one obtains:

T BE-1 (8.75 X 104) W 1 14 X0.17 (full power days), (4.7)

TBE-2 (8. 55 X 105) W1. 28 X0.46 (full power days). (4.8)

Figures 4. 12 and 4.13 compare the "exact" BRECON results and

Eqs. 4. 5 and 4. 6 for rows 1 and 2 of the radial blanket driven by the

1 0 0 0 -MWe, 2-zone core. Again agreement is good.
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The relationships between the local breakeven and the local opti-

mum irradiation times obtained from Eq. 4. 5 and Eq. 4. 7 for row 1

and from Eq. 4. 6 and Eq. 4. 8 for row 2 are:

T BE-1 = (3.73 X 10~4) T opt2.11 X0.49

- 7 3.20 1.23
BE-2 =(3.06X10 )T opt X . (4.10)

Again this is in good qualitative agreement with the approximate model

derived in Chapter 2 and Appendix E. An alternate form can be derived

in which the discount rate is eliminated:

TBE1 -T (8. 07 X108 )W 1 .6 8 (full power days) 2  (4.11)BE- 1 opt-i1

9 1.6 2
TBE2 T ot 2  (6.63X10 ) .68 (full power days). (4.12)

4. 3. 2 Local Minimum Fuel Cycle Cost Contribution

The local minimum fuel cycle cost contribution, which occurs at

the optimum irradiation time (by definition) or at the end of the useful

life of the fuel assembly (here taken to be 1800 full power days ~ 6

calendar years) is shown in Fig. 4. 14, which indicates that the local

minimum power cost contribution from an entire blanket row decreases

as the core radius increases. This is in good qualitative agreement

with the predictions of the one-group model in section 2. 2. It should

be noted that the local minimum fuel cycle cost contribution from row 1

is smaller (the profit is larger) than that from row 2 and so on, because

the fissile buildup rate in the blanket rows near the core is larger than

for those farther away from the core. In the example shown, row 3
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never becomes profitable. Also interesting is that the absolute value

of the local minimum fuel cycle cost contribution from each profitable

row of the radial blanket surrounding a core of large radius is smaller

than that for the corresponding row of a similar blanket on a core of

smaller radius.

Figure 4. 15 shows the revenue per unit mass of heavy metal

(i.e. , $/kgHM, hence per assembly) for each row as a function of core

radius. As expected, the revenue per assembly is the same for all

radii.

Figure 4. 16 shows the local cost for an entire row as a function

of distance into the blanket for given irradiation times. As expected,

the local cost increases (the profit decreases) as the distance

increases. This trend holds true as irradiation time increases,

except that the slope gradually changes. The intersection of this curve

and the zero local cost line defines the local breakeven and batch-

irradiated whole-blanket optimum irradiation conditions.

Figure 4. 17 shows the variation of the local breakeven and opti-

mum irradiation times with position, which indicates that the local

irradiation time increases exponentially as the distance into the

blanket increases. For a given irradiation time, this "local breakeven"

curve gives the total optimum thickness in the sense that a batch-

managed blanket having this thickness has the minimum total cost (the

profit is a maximum) at this irradiation time.

The intersection of the "local breakeven" curve and the abscissa

(i. e. , at the core/blanket interface) is the local breakeven irradiation

time of the innermost slice of the blanket, which we have designated as
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point P in Appendix E, where a simple analytical model is employed to

derive the approximate relation:

T (4. 13)
BEP S0(0)'

Using the data for a reference economic environment of Table 2. 14,

one has TBEP=1 9 6 full power days, which compares favorably to

the 2DB-BRECON result of 245 full power days, considering the un-

sophisticated nature of the model.

As shown in Fig. 4. 10, a row is most profitable (the minimum

local cost) at the local optimum irradiation time: both before and

beyond that time, the profit is less. This local optimum time also

increases as distance into the blanket increases. Figure 4. 17 also

shows the local optimum irradiation time as a function of distance into

the blanket, which indicates that the local optimum irradiation time

also increases exponentially as the distance increases. Again this has

been predicted by the analysis outlined in Chapter 2 and Appendix C.

The semi-log gradient of the "local optimum" curve is 1. 2 and that of

the "local breakeven" curve is 0.8, which are comparable with the

predicted values of 2. 0 and 1. 0 from the analysis discussed earlier.

The intersection of the "local optimum" curve and the abscissa,

called point Q in the present work, can be estimated as:

T ~ 2W (4.14)
opt,Q S (0)X '

Using the data for a reference economic environment of Table 2. 14,

one obtains T opt,Q 1211 full power days, which agrees fairly well

with the 2DB-BRECON result of 950 full power days.
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Figure 4. 18 shows the local minimum fuel cycle cost contribution

of each row (solid line) or per unit volume (dotted line). As can be seen,

the local minimum cost for an inner row is less than that for an outer row

(the profit is higher), as expected. While this figure resembles Fig. 4. 16

in some respects, it should be noted that the irradiation time for each row

is different on this figure (i. e., all points correspond to optimum times).

The intercept of this local minimum cost-distance curve and the

zero local cost line, which is designated point M in the present work,

does not occur within the irradiation interval considered (1800 full power

days) under a representative economic environment (discount rate,

X = 0. 08; Pu price, C 3 = 10$/gPu). As described in Appendix E, the

location of point M can be approximated as:

T 1 X (4. 15a)M X'

T M = Iln[2X. (4. 15b)

Using the data for the reference economic condition of Table 2. 14, one

can obtain TM 12. 5 full power years and rM 45. 2 cm.

In order to realize a net profit from a given zone of the blanket,

the fissile specific buildup rate in that zone, So, should be greater than

a certain amount, which is determined for a given set of economic con-

ditions by the following formula, derived in Appendix E:

S > 2WX, (4. 16)

where

S is the fissile specific buildup rate (gPu/kgHM-yr)

W is the economic index defined in Eq. 4. 3

X is the discount rate defined in Eq. 2. 56 .
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Using the data in Table 2. 14, one can obtain S9 > 2 (gPu/kgHM-yr).

As seen from Fig. 4. 19, the fissile specific buildup rates for rows 1

and 2 are greater than this minimum required fissile specific buildup

rate of 2 (gPu/kgHM-yr), but the rate for 3 is not. This helps to

explain why rows 1 and 2 can achieve breakeven within a reasonable

time interval, while row 3 cannot, as was shown in Fig. 4. 10. It

should be noted, however, that row 3 could achieve breakeven at 2800

full power days since the fissile specific buildup rate eventually exceeds

the minimum rate at somewhat over 500 full power days. As can be

seen from Eq. 4. 16, the minimum profitable fissile specific buildup

rate, which occurs at the position of optimum batch-irradiated blanket

thickness, is determined by economic conditions. For example, the

minimum profitable fissile specific buildup rate decreases as W

decreases (Pu price increases or fabrication and reprocessing costs

decrease) or the discount rate increases; one can then afford to deploy

thicker blankets.

4. 3. 3 Breakeven and Optimum Irradiation Times of an Entire Blanket

Figure 4. 20 shows the variation of the whole-blanket (called

"total") fuel cycle cost contribution with irradiation, to be contrasted

with Fig. 4. 10, which applies to local (i.e. , row) costs: otherwise,

both curves are similar in appearance. Blankets having different thick-

nesses have their own total breakeven and total optimum batch irradiation

times. Hence, in the same manner as for the local breakeven and opti-

mum times, one can correlate total blanket breakeven and optimum irradi-

ation times as functions of the economic parameter, W, and the! discount

rate, X.
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For a given thickness, the total blanket optimum irradiation time,

Topt, which is defined as the time when the total fuel cycle cost contri-

bution of the entire blanket is the minimum (the total profit is the maxi-

mum), can be expressed in the form:

Topt-2 = (1. 03X104 )W0.52 X 0.18 for the 2-row blanket, (4. 17)

T opt- 3 = (I. 02)X104)W0.50 X-0.24 for the 3-row blanket. (4.18)

The one-row blanket result is, of course, the same as the "local"

row 1 result, Eq. 4. 5. A similar procedure was followed in the case

of the breakeven irradiation time to obtain:

T BE-2 = (3 .4 6 X105 )W1.30 X0.28 for the 2-row blanket, (4.19)

TBE- 3 = (7. 53X105) W 1.34 X0.40 for the 3-row blanket. (4. 20)

Figures 4. 21 and 4. 22 compare the total optimum and breakeven irradi-

ation times predicted by Eqs. 4. 17 and 4. 19 for the two-row blanket

and by Eqs. 4. 18 and 4. 20 for the three-row blanket, respectively.

The agreement is excellent.

The points outside the dotted lines in Figs. 4. 21 and 4. 22 are

breakeven points for high discount rate (X =0. 12 yr~ ) and low Pu price

(C 3 = 6 $/gPu) and for very high discount rate (X =0. 16 yr~ 1) and

reference Pu price (C 4 = 10 $/gPu) (see Table F.23 in Appendix F).

Table 4. 4 summarizes the coefficients a., b. and c. of the cor-
J JJ

relation in the general formula:

b. c.
T = a.W JX 1. (4. 21)
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Simplif ied Model 2DB-BRECON

a. b. c. a. b. c.

x104  x104

Row 1 2.64 8.75 1.14 0.17

U Row 2 6.38 85.5 1.28 0.46
0

(D Row 3 10.8

1.0 0.0

W 1 Row Blanket 2.64 8.75 1.14 0.17

0 2 Row Blanket 38.2 34.6 1.30 0.28.-P
0
E 3 Row Blanket 53.4 75.3 1.34 0.40

33
x10 ,x10

Row 1 3.98 9.22 0.54 -0.15

(0 Row 2 6.19 7.75 0.40 -0.24
0

Row 3 10.0

0.5 -0.5

1 Row Blanket 3.98 9.22 0.54 -0.150
H

4( 2 Row Blanket 4.79 10.3 0.52 -0.18
0
E3 Row Blanket 5.66 10.2 0.50 -0.24

Table 4.4 Comparison of the Correlations:
b. c.

T = a.W x 

Predicted by the Simplified Model
to those obtained by Curve Fitting
2DB-BRECON Results
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It should be noted that the correlation for row 1 has the same form for

the "local" and "total" cases.

The relations between the total breakeven and the total optimum

irradiation times obtained from Eq. 4. 17 and Eq. 4. 19 for row 2 and

from Eq. 4. 18 and Eq. 4. 20 for row 3 are:

T BE-2 = (3. 21 X 10- 6 )(T opt- 2 )2. 5 0 X 0 . 7 3  (4.22)

TBE-3 (1. 3 6 X10- 5 )(T opt-3)2. 6 8 X 1 . 04 (4. 23)

In a similar manner, an alternative form can be derived in which the

discount rate is eliminated:

TBE-2 T (3. 56 X108) 1.82 (full power days) , (4.24)

TBE- 3 -Topt 3~(7.68X10 9 )W1. 8 4 (full power days) 2 . (4.25)

Table 4. 5 summarizes the coefficients p., q. and r. of the correlation
3 J J

in the general form:

q. r.
T = p.T X (4.26)

BE j opt

As shown, thicker blankets have larger breakeven and optimum

batch irradiation times. Figure 4. 23 shows the relationship between

the total blanket breakeven and optimum irradiation times and the

blanket thickness, demonstrating that both times increase exponen-

tially as the blanket thickness increases.

The semilog slope for the "optimum" curve is 3. 1 and that for the

"breakeven" curve is 2. 3, which compare fairly well with tfie predicted

values of 4.0 and 2.0 from the analysis discussed in Appendix E.
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Table 4.5 Comparison of the Correlations:

q~ r.
TB =p(T) X

predicted by the Simplified Model and

2DB - BRECON

Coefficients T) q. r .

Model Prediction 1.67 x 10-3 2.0 1.0

Row 1 3.73 x 10~4 2.11 0.49
'--7

Row 2 3.06 x 10 3.20 1.23
z 0

0
u Row 3 NA NA NA

1 Row 3.73 x l0~4 2.11 0.49

2 Row 3.21 x 106 2.50 0.73
0

3 Row 1.36 x lo 2.68 1.04
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By definition, the intercept of the "total blanket breakeven" curve

and the abscissa, point P, occurs at the same point as for the local

breakeven curve discussed previously. A similar identity holds true

for point Q, which is the intercept of the "total blanket optimum" curve

and the abscissa. The intersection of the "total blanket breakeven"

curve and the "total optimum" curve is called point N'. Physically,

point N' is replaced by point N as shown in Fig. 2. 11 and discussed in

Chapter 2 and Appendix E. At point N, the total fuel cycle cost contri-

bution for a blanket of thickness TN is zero at irradiation time TN;

thicker blankets cannot produce any profit even if burnup were continued

indefinitely. The location of point N depends on the economic environ-

ment and does not occur under the typical economic conditions of

Table 2. 14.

4. 3. 4 Minimum Fuel Cycle Cost Contribution of an Entire Blanket

Figure 4. 24 shows the total fuel cycle cost contribution for an

entire blanket as a function of thickness for given irradiation times.

As expected, the total cost for a given irradiation time decreases and

then increases through a minimum value as the blanket thickness

increases. This trend is well approximated by a parabolic function of

the blanket thickness, as discussed in Appendix E, and also holds true

as irradiation time increases, except that the bottom of the parabola

(i. e. , the minimum total cost and hence the batch-optimum thickness

for a given irradiation time) moves lower as the thickness increases.

This behavior corresponds to the slope change of the "local cost-

distance" curve in Fig. 4. 16. Thus, the projection of the locus of
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the "parabola-bottom" point on the "irradiation time-thickness" plane

(i. e., the zero total cost line) is the same as that of the intercept of

the "local cost-distance" curve and the zero cost line. This relation

for a given irradiation time (here 1500 full power days) is shown in

Fig. 4. 25, which also indicates that the batch-optimum thickness for

a given irradiation time (here around 30 cm for 1500 full power days)

is the same for all core radii, as discussed in Chapter 2. In other

words,. the two-row blanket is the optimum configuration for the

reference economic conditions of Table 2. 14. The minimum cost of

the entire radial blanket decreases as the core radius increases,

which has been predicted in Chapter 2. The decrease is approximately

inversely proportional to core radius. Figure 4. 26 confirms this

relationship, in which the 1-row blanket is irradiated to the optimum

irradiation time, and the 2-row and 3-row blankets are irradiated for

the physical lifetime of the fuel assembly (here assumed to be 1800

full power days).

These results show that the radial blanket has a smaller relative

effect on the fuel cycle cost in large LMFBR's primarily because there

are fewer blanket assemblies per core assembly. On the other hand,

absolute revenue dollars per blanket assembly in a given row is the

same for all core sizes; hence all cores will have the same number of

blanket rows and the same economic optimum assembly refueling

schedules, whether on a row-by-row or entire blanket basis.

Agair the locus of the "parabola bottom" (i. e. , the minimum total

cost) point is important to determine the "global" optimum point, which

will be discussed next.
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4. 3. 5 Global Optimum Thickness and Irradiation Time and

Global Minimum Cost

Figure 4. 27 shows the minimum fuel cycle cost contribution of

the entire blanket as a function of blanket thickness (i. e. , the loci of

the "parabola bottom" in Fig. 4. 24 as discussed in the previous

section). Notice again that the irradiation time varies along this

locus in the same manner as in Fig. 4. 18. The minimum point of

the "total blanket minimum cost-thickness" curve, designated point Z

or the "global minimum" point in the present work, occurs at that

combination of thickness and irradiation time (here 31 cm and 1744

full power days), where the maximum-maximum profit is achieved.

In other words, under the reference economic conditions of Table 2. 14,

a two-row radial blanket can produce the most profit at about 6 full

power years using batch fuel management. Since Wood (W2) has shown

that other fuel management schemes do not give significantly different

results in terms of the net profit realized, the methods outlined in this

section can also be used to estimate the economic prospects for

blankets managed according to other fuel management schemes. Even

more specifically, local row optimum correlations can be used to

derive a zone-scatter type of refueling program.

Next consider another aspect of point Z. By superimposing

Fig. 4. 17 and Fig. 4. 23, one can see the relationships between the

four key curves: "local breakeven," "local optimum," "total break-

even" and "total optimum," as shown in Fig. 4. 28. The intercept of

the "local breakeven" (i.e. , optimum thickness for a given irradiation

time) and "total optimum" (i. e. , optimum irradiation time for a given

thickness) curves, designated as point S, coincides with point Z.
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Finally, the correlation locating the Z point (i. e., S point) is

expressed in the form:

= (.5X13 0 23 -0 45
T = (1.53X10 )W ' X ' (full power days) (4.27)

S - In [(1. 38 X10- ) W O. 86 X- 0.8 (cm) (4.28)
s _Y

e = (-1. 50 X10 ) W-2. 46 X~0' 94 (mills/kwhr) (4.29)

Table 4. 6 summarizes the coefficients of the above correlations in com-

parison with the model prediction; the agreement is fairly good consider-

ing the simple nature of the model.

Figure 4. 29 shows a comparison of the correlated and original

2DB-BRE CON global optimum thicknesses and irradiation times, which

indicates that the correlations can predict the global optimum thickness

within the half thickness of a row (here 7. 5 cm) and the global optimum

1
irradiation time within half a refueling interval (here 1 X 300 = 150 full

power days).

Figure 4. 30 shows a comparison of global minimum costs: the

correlated results and the original 2DB-BRECON results. In general,

the cost can be correlated to within ± 0. 02 mills/kwhr. The point outside

the dotted line in Fig. 4. 30 is the extreme case which has low discount

rate (X = 0. 04 yr- ) and high Pu price (C 3 = 14 $/gPu) and thus the

lowest cost (the highest profit es t -0. 2mills/kwhr).

Correlations of this type should prove extremely useful in deter-

mining the nature and extent of changes in parameters such as blanket

thickness, irradiation time and fuel cycle cost contribution of the radial

blanket in batch fuel management as the economic environment changes.



Simplified M4odel 2DB-BRECON

a. b. C. a. b. c.
J J J J J J

3 3 3

T (Full power davs) 1.07x103 +0.33 -0.67 1.53x103 +0.23 -0.45
S

Ts (cm) 1.15x10~ -0.67 -0.67 1.38xl0-2 -0.86 -0.82

es (mills/kw hr) NA -1.50x10~7  -2.46 -0.94

Table 4.6 Comparison of Correlation Coefficients for Global
Optima Predicted by the Simplified Model and 2DB-BRECON

I.

Co
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4.4 CONCLUSIONS

Good agreement between the predictions of simplified analyses

and 2DB-BRECON calculations has been obtained for the depletion-

economics performance of LMFBR blankets in the sense that the

simplified analyses have correctly predicted the functional dependence

of all important parameters, permitting the development of highly

accurate correlations for all burnup/economics results.

Useful correlations of blanket-breeding-performance character-

istics, such as breakeven and optimum irradiation times and thick-

nesses, have been formulated using 2DB-BRECON calculations corre-

lated against the parameters singled out in the simplified analysis.

Finally, it is concluded from the observations in this and the

previous chapters that these correlations are applicable to an entire

class of LMFBR core/blanket combinations characterized by constant

core height and radial-core-power-flattening.
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Chapter 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 INTRODUCTION

Commercialization of the LMFBR will require a continuous

escalation in unit size to keep pace with the scale-up of competing

nuclear or fossil alternatives: power ratings as large as 3000 MW

are projected by the year 2000. The purpose of the investigation

reported here has been to examine the effects of the required core

size increases on the neutronic and economic performance of the

breeding blanket region surrounding these cores. The approach used

throughout has been to employ simple reactor physics and economics

models to predict trends and develop correlations, and then to employ

more sophisticated state-of-the-art computer methods to confirm the

results for realistic system designs.

Figure 5. 1 depicts the major material subdivisions in a two-,

dimensional representation of a 1000-MW LMFBR used as a refer-e

ence design for burnup calculations. The main features to note in

this cylindrically symmetric layout are two approximately equal-

volume core enrichment zones (for radial power-flattening), a 40-

cm-thick axial blanket on the top and bottom of the core, and a three-

row, 45-cm-thick radial blanket surrounded by a steel reflector.

Tables 5. 1 and 5. 2 summarize the pertinent data for this reference

configuration, which closely resembles other 1000-MW LMFBR

blanket studies (B3, W2). This basic design was varied to examine
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Table 5.1 Characteristics of the Standard 1000 MWe Reactor

Parameter Dimension Value

Core Height cm 100

Diameter cm 250

Volume liters 4906

Axial Blanket Thickness cm 40

Radial Blanket Thickness cm 45

Core Averaged Power Density kwth/liter ' 500

Core Peak Power Density kwth/liter " 730

Core Zone I O.D. cm 90

Core Zone I Volume liters 2540

Core Zone II O.D. cm 125

Core Zone II Volume liters 2366

Rated Thermal Power MWt 2500

Rated Electrical Power MWe 1000

* Core Plus Blankets

** Assumed System Efficiency = 40%
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Table 5.2 Standard 1000 MWe Reactor Parameters

Ht. Rad. Percent by Volume
(cm) Thick. Fuel c Coolantd Structuree

(cm)

Core

Zone 1 100 90 30(85% t.d.) 50 20

Zone 2 100 35 30(85% t.d.) 50 20

Axial
Blanketa 80 125 30(85% t.d.) 50 20

Radial
Blanket b

Row 1 180 15 50(95% t.d.) 30 20

Row 2 180 15 50(95% t.d.)- 30 20

Row 3 180 15 50(95% t.d.) 30 20



Table 5.2 Standard 1000 MWe Reactor Parameters
(continued)

aAxial blanket and reflector heights refer to thickness above or below core.
bAssumes hexagonal assemblies 15 cm across the flats.
cFuel consists of mixed uranium and plutonium dioxide in the core and uranium
dioxide in the blanket. The 100 V/o, 100% t.d. molecular density is taken as
0.02447 atoms/barn-cm. Plutonium is assumed to be typical light water reactor
discharge Pu at 30,000 MWD/A: 63% Pu-239/27.3% Pu-240/5.9% Pu-241/3.8% Pu-242(D4).
dCoolant is sodium at N9000F having a (100 v/o) density = 0.0220 atoms/barn-cm.
eStructure is stainless steel with 17.7% chromium/8.3% nickei/74.0% iron having
a (100 v/o) density = 0.0850 atoms/barn-cm.
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reactor ratings in the range from 250 MW to 3000 MW . Most of the
e e

variations involved changing the core radius (from 65 cm to 215 cm)

at constant core height (100 cn1) while achieving an acceptable degree

of radial power-flattening by neans of radial enrichment zoning. For

completeness, some studies were also carried out in which height was

varied at constant radius. In all cases the blanket thickness was held

constant. Tables 5. 3 and 5. 4 show the power ratings, the corre-

sponding core radii and the enrichment zone configurations examined.

In all of the above cases, the blanket thickness and the irradi-

ation tirne were optimized according to economic criteria determined

by evaluating the levelized fuel cycle cost contribution of each blanket

region, taking into account the burnup/economic parameters (including

fissile revenue and fabrication, reprocessing and carrying charges).

Batch blanket management was selected for this study due to its

simplicity of implementation (i. e. , blanket elements see only one

position in the reactor, minimizing reactor down-time devoted to

blanket refueling and/or repositioning) and due to the fact that approxi-

mately the same amount of plutonium is bred in an equivalent number

of blanket elements regardless of management scheme (e. g. , out-in

or in-out management) over the same time interval (see B3, W1 or

W2).



Power Core Core Incremental Number of

Rating Radius Volume Core *1 Radial Enrichment

(MWe) (cm) (liters) Volume H/bo Zones

(liters)

250 65 1328 0.77 1, 2, 6
1212

500 90 2540 1260 0.56 1, 2

750 110 3800 o.45 1, 2
1100

1000 125 4900 0.40 1, 2, 6
2440

1500 155 7340 0.32 1, 3
2640

2000 180 9980 0.28 1, 4
2380

2500 200 12360 0.25 1, 5
1956

3000 215 14316 0.23 1, 2, 6

*1 Core Height = 100 cm

Table 5.3 Key Characteristics of Reactor Sizes Examined

(Constant Core Height)



Table 5.4 Key Characteristics of Reactor Sizes Examined

(Constant Core Radius)

Core *1*2
Average Peak *3 Number of

Core Core Power Power H/D0  Radial Enrichment
Height Volume Density Density Zones
(cm) (liters) (kwth/liter) (kwth/liter)

100

150

200

4900

7363

9817

510.2

327.7

254.7

1118.0

791.0

615.1

0.40

0.60

0.80

1, 2

1, 2

1, 2

1 Total Reactor Thermal Power =

Power Rating

Assumed Thermal Efficiency

2500 MWth

1000MWe

40%

One Zone Core

Constant Core Diameter = 250 cm

*

2

3

C0
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5.2 COMPUTER AND ANALYTIC MODELS

5. 2. 1 Method of Burnup

The primary calculational tool used in comparing the neutronic

performance of the cases studied was the two-dimensional diffusion

theory burnup code 2DB (Li). A 4-group, regionwise cross-section

set was employed. This set was prepared by collapsing the 26-group

ABBN Type FTR-200 cross-section set (A3, N1, W2) over spectra

appropriate to the various reactor regions using the one-dimensional

transport theory code ANISN (E2). Regionwise 4-group cross sections

have been shown to give results which compare favorably to multigroup

many-region calculations, especially in the inner regions of the blanket

which contribute most of the blanket plutonium production (H1).

Since long burnups (around six years) were performed in studying

the blanket burnup behavior, an "equilibrium" core and axial blanket

were defined which remained fixed in time. Constant core and axial

blanket material concentrations (including fission product and control

poison concentrations) at the time-averaged values expected in these

regions were used, obviating the need to fuel-manage the core. It

should be noted that although considerable care was taken to define a

realistic core and axial blanket composition around which the radial

blanket was irradiated, other investigators (B5, H1, W2) have looked

into the effect of different core-management methods on radial blanket

economics and have concluded that there is an insignificant effect.

Furthermore, since the same core treatment is used for all cases

studied, any systematic bias (however small) should cancel out so long

as relative comparisons are emphasized.
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5. 2. 2 Depletion-Economics Model

The depletion-economic analysis was performed utilizing the

cash flow method (CFM) contained in the computer code BRECON,

developed by Brewer (B3) and modified by Wood (W2) to permit

direct use of 2DB burnup results as input. This method capitalizes,

and consequently depreciates for tax purposes, the material pur-

chases and fabrication charges; whereas reprocessing charges and

material credit are treated as an expensed cost and taxable revenue,

respectively.

The economic results generated by BRECON are the local

levelized fuel component of the energy cost (mills/kwhr) which can be

applied to an entire region (e.g. , radial blanket) or subregion (e. g. ,

radial blanket row). This facilitates the determination of the minimum

fuel cycle cost contribution (i. e. , optimum irradiation time) for a

blanket row or for the entire blanket.

Table 5. 5 lists the basic economic parameters used in this study

of radial and axial blanket burnup fuel economics. The conditions are

the same as those employed by Brewer (B3) and Wood (W2) and are

within the range projected for the mature U.S. nuclear fuel cycle

economy (W1).

5. 2. 3 One-Group Model

Simplified models were used to examine both the neutronic and

economic performance of fast reactor blankets. Reactor physics

properties were investigated using one-group diffusion theory and a

representative set of fast reactor cross sections; economic
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Table 5.5 Reference Economic Environment

Unit Fuel Processing Costs, $/kg

Operation

Fabrication

Reprocessing

Axial Blanket

80

50

Radial Blanket

69

50

Isotope Market Value, $/kg

0

10,000

0

10,000

0

Financial Parameter

Income tax rate, T

Capital structure

Bond (debt) fraction, fb
Stock (equity) fraction, fs

Rates of return

Bonds, rb
Stocks, rs

Discount rate, X

*

Value of Parameter

Private Utility

0.5

0.5

0.5

0.07
0.125

0.08

X = (1-T)rbfb + rsf5

Isotope

U-238

Pu-239

Pu-240

Pu-241

Pu-242
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performance was approximated using a simplified version of the cash-

flow model employed in the detailed computer studies.

One-group diffusion theory was employed to piedict the effect of

changes in core size on both the radial and axial blankets. In each

case, two types of cores were examined - uniformly enriched and

radially power-flattened by enrichment gradation; and two independent

variations in size were considered - increasing radius at constant core

height, and increasing height at constant core radius.

The analysis of single-enrichment-zone cores is an elementary

exercise dealt with in depth by all reactor physics texts; radially

power-flattened systems are seldom discussed, despite their practical

importance, and therefore the approximations required to permit an

analytic solution are worthy of mention, the most important being that

the core diffusion coefficient, the linear extrapolation distances into

the blankets, and the core-averaged fertile-to-fissile fission ratio are

essentially independent of local enrichment. Two-dimensional multi-

group calculations were carried out to confirm each of these key

assumptions and other common hypotheses, such as the spatial sepa-

rability of the axial and radial flux dependence.

The subject reactor physics model was employed to develop the

following conclusions:

1. For radially power-flattened (RPF) cores, both central and

peripheral enrichments remain essentially the same as the core

radius (hence power rating) increases for constant core height.

2. The magnitude of the peripheral core flux and leakage cur-

rent (n/cm -sec) into the radial blanket remains the same as

9
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core radius increases; because the peripheral enrichment is the

same, one also expects the energy spectrum to be the same.

3. The core-averaged enrichment (hence critical mass) for

single-enrichment and RPF cores having the same height and

radius (hence volume) are very nearly the same, and as expected,

average enrichment decreases gradually with increasing core size.

4. Axial leakage is essentially the same for the RPF and one-

zone cores.

Based on these observations, a number of important conclusions

were drawn in regard to the rate of production of new fissile material

in three blanket volumes of interest: the entire blanket, a single row,

and per blanket assembly. Tables 5. 6 through 5. 8 summarize these

results. The most important single conclusion is that per blanket

assembly the fissile material bred per unit time is independent of core

radius for RPF cores, but decreases rapidly for single-zone cores.

Hence, in the more realistic RPF cores of commercial interest, the

blankets will tend to have similar optimum thicknesses and optimum

irradiation schedules and equal dollar revenue on a per assembly basis.

On the other hand, the effect of an assembly row or an entire blanket on

the total fuel cycle cost in mills/kwhr decreases as core size increases.



Table 5.6 Summary of the Effect of Changing Core Radius at Constant Core Height
on the Neutronic and Economic Performance of the Radial Blanket
(Predictions of Simple One-Group Model)

a = Core Radius

6r = Extrapolation Distance

C.P

Core Radially-Power-Flattened Uniformly-Loaded

Items Core Core

Whole Blanket (or Row) 6 -2
Fissile Buildup Rate, a a Constant-(l + a)

R0 (kgPu/yr)

H
Specific Inventory -2 6 -2

0 Buildup Rate Constant aa (1 +-)
So(kgPu/kgHM yr) a

Breeding Ratio a a aa 2  1 r -2
b xr a a aa



Table 5.6 Summary of the Effect of Changing Core Radius at Constant Core Height
on the Neutronic and Economic Performance of the Radial Blanket
(Predictions of Simple One-Group Model)

(Continued)

Core Radially-Power-Flattened Uniformly-Loaded

Items Core Core

Revenue per Blanket Row a a Constant.( + 2
M a

Revenue per Blanket Cos 6r -2
Assembly Constant a (1+-)

($)a

Contribution to Fuel -1 -2 r-2
o Cycle Cost aa aa (l + -)z a
0 (mills/kwhr)

Optimum Irradiation
Time Constant Increases

(Full Power Days)

Optimum Thickness Constant Decreases
(cm)

a = Core Radius

6r = Extrapolation Distance

C.,,
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Large
Radially-Power-Flattened

or
Uniformly Loaded

Cores

Whole Blanket

Fissile Buildup Rate a a2

Ro(kgPu/yr)

S Special Inventory
0

4 Buildup Rate Constant

2 So(kgP /kgHM yr)

Breeding Ratio

bxa Constant

Revenue per Blanket Zone

($/Blanket Zone) a a2

- Revenue per Blanket Assembl
0
r ($/Blanket Assembly) Constant

Contribution to Fuel Cycle
Cost

(mills/kwhr) Cons.tant

* See Appendix B and section 2.2.1.3

a = Core Radius

Table 5.7 Summary of the Effect of Changing Core Radius

at Constant Core Height on the Neutronic and Economic

Performance of the Axial Blanket (predictions of simple

one-group model)
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He = H + 26a

H = Core Height

6a = Linear Extropolation Distance

Table 5.8 Summary of the Effect of Changing Core Height

at Constant Core Radius on the Breeding

Performance of the Radial and Axial Blankets

(Predictions of Simple One-Group Model)
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5. 2. 4 Simplified Economic Analysis

The cash-flow model for the fuel cycle cost contribution of a given

region of LMFBR blanket is of the form (B3, W2):

e(T) oc C 1 F 1 (-T ) + C 2 F 2(-T 2 3 F 3(T 3 )T) (5.1)
T

where

C1 = fabrication charge, $/kg heavy metal

C 2 = reprocessing charge, $/kg heavy metal

C 3 = fissile value, $/kg fissile

and the present worth factors are:

F 1 (-T) on the fabrication charges

F 2(-T 2 ) on the reprocessing charges

F 3 -T 3) on the material credit

The various times appearing in this relation are shown in Fig. 5. 2,

and a typical e(T) curve is displayed in Fig. 5. 3. Breakeven conditions

occur when e = 0, and optimum performance results when de/dT = 0, as

shown in the figure.

The computer code BRECON (B3, W2) employs Eq. 5. 1 to calculate

regionwise cost contributions given time-dependent heavy metal inventories

from a burnup code. Simple analytic solutions can be obtained, however,

by series expansion (and truncation) of the present worth factors and by

assuming a fissile buildup which increases linearly with time and decreases

exponentially with distance from the core/blanket interface - assumptions

amply confirmed by multigroup calculations. By means of this approximate
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treatment, it is possible to derive analytic expressions for the break-

even and optimum irradiation times for local slices or entire regions

of a blanket. Quite often the results are quantitatively correct, but

their major interest here is as the starting point for the development

of correlation methods to systematize the results obtained from the

BRECON program.

Tables 5. 9 and 5. 10 summarize the analytic expressions

developed in this simplified approach. Figure 5. 4 illustrates the net-

work of linearized relations developed. The most important result is

the simple power-law dependence of optimum and breakeven times

and enrichments on but two parameters, W and X, which completely

characterize the economic environment.

5. 3 BEGINNING-OF-LIFE BREEDING PHYSICS RESULTS

5. 3. 1 Physics-Related Parameters

As has been noted, the approach employed in the present investi-

gation was to develop hypotheses using simplified analytic models, and

then to use the results of more sophisticated state-of-the-art compu-

tations to test assumptions and conclusions. In the paragraphs which

follow, the results of this verification process are summarized for all

of the major points at issue.

Figure 5. 5 compares the critical enrichments predicted by the

one-group model (1GM) and the 4-group 2DB calculations to provide

a general picture of the degree to which the 1GM results can be relied

upon. The figure also shows the close correspondence between single-

and multi-zone, core-averaged critical enrichments.



= The Interfacial Breakeven Time Point P in Table 5.10

= The Interfacial Optimum Time Point Q in Table 5.10

y = Reciprocal Diffusion Length of the Blanket

Table 5.9 Summary of Relations Between Local Blanket Region Positions or Total

Blanket Thickness and Irradiation Time

Local Total

3reakeven T = !(nT - -nTB) T =(InT - InTB

Dptimum T = (knT - XnTO) L= 4(XnT - InTO

EN

TB



Table 5.10 Summary of the Six Key Intercepts Predicted by Simplified CFM Analysis

Thickness Irradiation Cost
Point Curves or Time Cs

Distance

(CM) (Full Power Days) (mills/kwhr)

L-B W
P T-B 0 0 196 0

(Left)

L-0 2W
Q T- 0 0 / WX 1121 0

L-B 2 W
R T-B 0 0 7464 0

(Right) o

L-B 1 1 0
M L-0 y n 2 WX 45 3750 N.A.

T-B 2 [s00
N T-0 y in 2WX 90 1 3750 N.A.

S n rW ] 48 3 2224 N.A.
L-B 0 (0)X2 21

0
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In the analytic 1GM, perfect radial power-flattening was achieved

by continuous enrichment gradation: in the multigroup calculations, a

finite number of enrichment zones were employed. Table 5. 11 summa-

rizes the cases investigated. The various zones were selected to have

roughly equal volumes, and zone enrichment was adjusted to match

peak power densities in all of the zones to within ± 5 percent.

Figure 5. 6 confirms that the central and peripheral enrichments

of multizone cores tend to be the same within fairly narrow bounds.

The conclusion that equal enrichment implies similar neutron spectra

is confirmed by Fig. 5. 7 which compares the peripheral neutron spectra

of the 2-zone, 250-MW and 6-zone, 3000-MW cores.

5. 3. 2 Effect of Changing Core Radius at Constant Core Height

on Blanket Performance

5. 3. 2. 1 Radial Blanket

Figure 5. 8 shows the BOL-specific fissile inventory buildup rate,

0 , (gPu/kgHM-yr) of each row of the radial blanket driven by radially

power-flattened cores, which substantiates the important conclusion

that ~S0 is the same for all core radii (ratings) - hence the absolute eco-

nomic performance of the radial blanket assemblies is the same for all

cores.

It should also be noted that the 9 's for rows 1 and 2 (but not 3)

are larger than the minimum profitable fissile buildup rate, which is

defined as the rate beyond which a non-negative profit can be produced:

here 2 gPu/kgHM-yr. The same results can also be rearranged to show

that the percentage of the total blanket fissile material bred in a given



Power Core* 2 Zone Cores Multi-Zone Cores

Rating Radius

(MWe) (CM) Zone:1 2 Zone 1 2 3 4 5 6

250 65 15.2 23.0 N.A.

500 90 13.3 19.1 N.A.

750 110 12.7 17.7 N.A.

1000 125 12.5 17.2 11.5 12.1 13.0 14.1 16.8 22.0

1500 155 N.A. 11.8 13.0 16.4

2000 180 N.A. 11.7 12.0 13.2 17.0 

2500 200 N.A. 11.7 11.6 12.2 13.5 17.9

000 215 12.0 14.6 12.0 11.8 12.0 12.6 14.8 20.0

* Constant Core HeightlCDCM, All Cases

Table 5.11 Zone-Averaged Enrichments for Critical Beginning-Of-Life Cores of

Various Ratings (2DB Calculations)

cND
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row is the same regardless of core radius: approximately 60% for

row 1, 30% for row 2 and 10% for row 3, which is compatible with the

equivalent- slab- geometry exponential-flux approximation used for the

radial blanket in deriving some of the simple model results.

Figure 5. 9 shows a log-log plot of the radial blanket breeding

ratio as a function of core radius, which indicates that the log-log

slope of the curve is -1. 0, and thus the radial blanket breeding ratio

is inversely proportional to core radius for RPF cores, as predicted

by the simple 1GM. This implies that the relative importance of the

radial blanket in fissile breeding decreases as the core radius

increases, as expected. The more rapid decrease in blanket breeding

ratio for one-zone cores is also illustrated.

5. 3. 2. 2. Axial Blanket

Figure 5. 10 shows the product of the core-averaged critical

enrichment, c' and the BOL-fissile specific inventory buildup rate,

So, of the axial blanket driven by either radially power-flattened or

uniformly loaded cores, which indicates that the product (S 0 c) is

essentially constant, as predicted by the 1GM when one allows for the

decrease in core-averaged enrichment with reactor size. The figure

also shows that 9 increases slightly with the core radius but is very

nearly constant for the larger cores investigated.

Figure 5. 11 shows the product of the core-averaged critical

enrichment and the axial blanket breeding ratio as a function of core

radius, which indicates that the product is constant and the axial
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blanket breeding ratio increases slightly with the core radius but is

again very nearly constant for the larger cores examined.

5. 3. 2. 3 Combined System Breeding Performance

Figure 5. 12 shows the internal (core) breeding ratio, the blanket

breeding ratio (sum of axial and radial blankets) and the total breeding

ratio (core plus blanket) as a function of core radius for either

radially power-flattened or uniformly loaded cores, which illustrates

several interesting points in agreement with the predictions of the 1GM:

1) The internal (core) breeding ratio increases but does not

exceed unity, even in the largest cores; the blanket breeding

ratio decreases as core radius increases; the total breeding

ratio remains very nearly the same. The total breeding

ratio appears to be anomolously high (- 1. 5) because the

results are for a BOL clean core without control poison or

excess enrichment to compensate for burnup.

2) The internal breeding ratio for radially power-flattened

cores is slightly less than for uniformly loaded cores

because of slightly higher critical mass in the former.

3) The blanket breeding ratio for radially power-flattened cores

is higher than that for uniformly loaded cores because of the

higher radial breeding ratio due to radial power-flattening.
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5. 3. 3 Effect of Changing Core Height at Constant Core Radius

on Breeding Performance

Although most reactor designers evidently prefer to scale-up

LMFBR designs by increasing core radius at constant core height,

for completeness, and as a further test of the 1GM predictions, a

series of core height variations at constant radius were studied

starting with the reference design 1 0 0 0 -MWe, 2-zone core.

Figure 5. 13 shows the radial blanket breeding ratio driven by

either radially power-flattened or uniformly loaded cores as a function

of core height, which indicates that the breeding ratio is the same

regardless of core height. The predictions of the one-group model

are in good agreement with the 2DB results.

Figure 5. 14 shows the axial blanket breeding ratio driven by

either radially power-flattened or uniformly loaded cores as a function

of core height. The 2DB results confirm the 1GM prediction of a vari-

ation proportional to (H + 26 )_ C'1a c

Figure 5. 15 shows the internal breeding ratio, the blanket

breeding ratio and the total breeding ratio as a function of core height,

which indicates that:

1) The internal breeding ratio increases as core height

increases., and ultimately exceeds unity; the blanket

breeding ratio decreases as core height increases

and the total breeding ratio remains very nearly constant.

2) The internal breeding ratio for radially power-flattened

cores is less than that for uniformly loaded cores

because of the higher critical mass of the former.
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3), The blanket breeding ratio for radially power-flattened cores

is higher than that for uniformly loaded cores, but the total

breeding ratio is the same regardless of the type of core

loading.

Thus an increase in core height at constant core radius does not lead

to an improvement in overall breeding performance.

5.4 DEPLETION-ECONOMICS RESULTS

Good agreement between the predictions of simplified analyses

and 2DB-BRECON calculations has been obtained for the depletion-

economics performance of LMFBR blankets. Useful correlations of

blanket-breeding-performance characteristics, such as breakeven and

optimum irradiation times and thicknesses, have been formulated

using 2DB-BRECON calculations correlated against the parameters

singled out in the simplified analysis.

Figure 5. 16 shows the breakeven irradiation times for rows 1

and 2 and the optimum irradiation time for row 1 of the radial blanket

as a function of core radius, which indicates that both breakeven and

optimum times are the same for all core radii (power ratings) within

1
half a refueling interval (assumed to be y X 300 = 150 full power days).

The agreement with the predictions of the simple model is therefore

good on this important point.

Figure 5. 17 shows the revenue per unit mass of blanket; the

local (per blanket-row basis) and the total (entire-radial blanket) fuel

cycle cost contribution as a function of the distance into the blanket
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(or the blanket thickness) for a given irradiation time, which indicates

that the optimum thickness is the same for all core radii (power

ratings) within half of a blanket assembly thickness (assumed to be

1
X 15 = 7. 5 cm).

Figure 5. 18 shows the minimum fuel cycle cost contribution for

each row as a function of core radius, which indicates that the mini-

mum cost for a given irradiation time decreases approximately accord-

ing to a 1, i.e., inversely with core radius.

Table 5. 12 summarizes the correlation coefficients for region j:
b. c.

T = a. W I X (5.2)

comparing the predictions of the simplified model and the original

results from the state-of-the-art computations using 2DB-BRECON.

The range of parameters characterizing the economic environment used

in obtaining the correlation is shown in Table 5. 13. The utility of the

simplified model in singling out the important parameters (W and X) for

use in the correlations is evident. Figure 5. 19 shows a typical com-

parison of correlated and original 2DB-BRECON results for the opti-

mum and breakeven irradiation times for row 1 in the radial blanket

driven by a radially power-flattened core ( 1 0 0 0 -MWe, 2-zone). The

correlation can predict the optimum and breakeven irradiation times

1within half of the refueling interval (here - X 300 = 150 full power days).

Figure 5. 20 compares for the four key correlation curves, pre-

dictions of the simplified model and the 2DB-BRECON results. The

semilog linear relation between thickness and time is shown to be an

excellent approximation, except for the "local breakeven" curve,

which curves downward for large thicknesses and long irradiation time.
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Simplified Model 2DB BRECON

a b a b c

Row 1 2.64 x 10 8.75x1071.14 0.17

SRow 2 6.38, 1.0 0.0 85.5 1.28 0.46

Row 3 10.8

1 Row Blkt 2.64 .5 1.14 0.17

2 Row Blkt 38.2
E-1

3 Row Blkt 53.4 75.3 1.34 0.40

Row 1 3.98 x 104 9.22xC10 0.54 -0.15

Row 2 6.19 0.5 -0.5 7.75 0.40 -0.24

Row 3 10.0

1 Row Blkt 3.98 9.22 0.54 -0.15

2 Row Blkt 4.79 10.3 0.52 -0.18
0 R

3 Row Blkt 5.66 10.2 0.50 -0.24

Table 5.12 Comparison of Correlation Coefficients Predicted by
the Simplified Model to Those Obtained by Curve-Fitting
2 DB-BRECON Results



Parameter (Units) This Study Wood (W2)

Value of Fissile Pu ($/u) 6.0 to 14.0 6.0 to 16.0

abrication Charges ($/kgH 69 to 140 69 to 140

Reprocessing Charges ($/kg&M 50 to 100 50 to 100

Discount Rate (Year~1 ) 0.04 to o.16 0.075 to 0.085

Table 5.13 Range of Variation of Economic Parameters
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Table 5. 14 compares the global optimum-point correlation coef-

ficients predicted by the simplified model and those extracted by curve-

fitting the data, indicating that the model can again be used to formulate

useful correlations.

Figure 5. 21 compares correlated and original 2DB-BRECON

results for the global optimum thickness and the optimum irradiation

time for various economic environments. The correlation can predict

the global optimum thickness within a half-thickness (here 7. 5 cm) of a

blanket assembly, and the global optimum irradiation time within half

1
of a refueling interval (here -1 X 300 = 150 full power days).

Figure 5. 22 compares correlated and original 2DB-BRECON

results for the global minimum fuel cycle cost contribution. The

agreement is good except for one point corresponding to an extreme

economic environment (high Pu price and low discount rate).

Finally, it is concluded from the observations in this and the

previous chapters that these correlations are applicable to an entire

class of LMFBR core/blanket combinations characterized by constant

core height and radial-core-power-flattening.



Table 5.14 Comparison of Correlation Coefficients for the Global Optimum:
Simplified Model vs. 2DB-BRECON

Simplified Model 2DB-BRECON

a b c a b c

Ts (Full Power Days) 1.77 x l03 +0.33 -0.67 1.53 x 103 +0.23 -0.45

T s (CM) 1.15 x 10~1 -0.67 --. 67 1.38 x 10-2 -0.86 -0.82

es (mills/kwhr) N.A. -1.50 x 10~7 -2.46 -0.94

C~3
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5.5 CONCLUSIONS

The purpose of this work - to examine the effect on blanket

breeding economics of projected increases in core size in future

commercial fast reactors - has been achieved using both simple

models to elucidate general principles and state-of-the-art

computer methods to provide realistic examples.

A one-group diffusion theory analysis of the radially power-

flattened core behavior was employed to show that:

(a) The breeding ratio of the radial blanket is, to a very good

approximation, inversely proportional to the core radius

for constant-height cores.

(b) The fissile buildup rate per unit volume (hence per unit

fertile mass or per blanket assembly) in the radial

blanket remains constant as core size increases.

(c) The total fissile production rate of the entire radial

blanket increases as core size increases.

(d) The peripheral core enrichment remains very nearly

constant as the core radius increases. Hence the energy

spectrum of neutrons leaking into the blanket will also not

change significantly.

Translating these neutronic findings into their economic conse-

quences, one finds that:

(a) Total dollar revenue per radial blanket assembly in a given

row of the blanket remains constant as core size increases.

(b) Optimum blanket thickness remains constant as core size

increases.
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(c) Optimum blanket assembly irradiation time remains the

same as core size increases.

(d) Total blanket dollar revenue increases as core size

increases.

(e) The fuel cycle cost contribution of the radial blanket, in

mills/kwhr, decreases as core size increases. Hence

the blanket does become a relatively less important eco-

nomic entity.

Correlations for the breakeven and optimum irradiation times

for a given row or for an entire blanket under batch fuel management,

and the optimum blanket thickness have been developed which can

predict time within half of a refueling interval and thickness within

half of an assembly thickness. These correlations involve variables,

and take the form, suggested by application of a simplified economics

model:
b. c.

T = a.W IX 3 (5.3)

7J
7T =1 ln[a W b JxcI (5.4)

where

a b. and c. are the correlation coefficients of
j' J J

the j-th region of the blanket,

y is the inverse diffusion length of the blanket,

W is an economic parameter, and

X is the discount rate.

These conclusion's were all tested against state-of-the-art

burnup-economics calculations carried out on cores in the range
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250 to 3000 MW using the 2DB depletion program and a 4-group cross-

section set, and the BRECON cash-flow-economics program. Realistic

multizone cores were examined: 2 radial enrichment zones up to 1000

MW and progressively more for the larger ratings. The simple model

predictions were all confirmed to within practically significant accuracy:

for example, as the core radius was increased, optimum blanket

assembly irradiation times remained constant to within plus or minus

half of a core refueling interval.

Similar analyses were carried out for axial blanket performance

and for the effect on both the axial and radial blankets of changing core

height at constant radius, and generally similar conclusions were reached.

We also showed that for the single-enrichment-zone cores the optimum

radial blanket thickness would decrease with core size.

These results are significant because they indicate that on a per

assembly basis, radial blanket performance on demonstration-size units

will be an excellent simulation of blanket performance on future

commercial units, even in very large reactors. Likewise, fuel manage-

ment schemes developed now for the smaller units will be directly

applicable to the larger units; designers will not have to continuously re-

optimize blanket design as fast breeder reactors grow in size to take

advantage of the economics of scale.

5.6 RECOMMENDATIONS

In fulfilling the goal of the present work, several areas have been

identified in which further analysis is merited, namely:
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(1) The simple correlations developed here for the radial blanket,

relating breakeven and optimum irradiation times and blanket thick-

nesses to the economic parameters W and X, should be extended to:

(a) Facilitate their extension to different core and blanket designs

(e. g. , carbide fuel, different fuel fractions, axial blankets) with

the minimum of new calculations at the 2DB-BRECON level.

For example, a BOL snapshot calculation of the breeding ratio

may suffice to properly normalize the correlations. It would

also be extremely interesting to determine whether the exponents

(b, c) in the time-thickness-economics correlations involving

aWbXc are universal in the sense that they remain invariant for

different core and blanket types, with the entire difference being

accommodated in the "a" coefficient.

(b) Develop a better correlation for the fuel cycle cost contribution

e, mills/kwhr. This would eliminate the need for a detailed

economics program (e. g., BRECON). This should be feasible

since the purely empirical version examined in this report is

already quite successful.

(c) Deal with core economic performance. If this can be done, then

it should also be possible to generalize the treatment to handle

LWR or HTGR cores as well.

(2) A comparative analysis of different blanket fuel management

options (e. g. , zone-scatter, in-out, out-in) should be carried out using

the methods of this report. The demonstration that blanket assembly

performance will be independent of core size creates considerable
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incentive to devote more attention to the fine points of blanket manage-

ment now, since the results will not become outdated.

(3) The results of the present analysis have important impli-

cations for experimental programs such as those carried out on blanket

mockups at MIT. For example, it does not appear very useful to study

blankets driven by a variety of different (simulated) cores: as we have

seen, the spectrum driving the radial blanket does not change signifi-

cantly with core size, and that driving the axial blanket is bracketed by

the essentially fixed central and peripheral spectra. On the other hand,

this work motivates even more attention to in-depth analysis of a small

number of representative blankets, which can serve as models for essen-

tially all future applications.

(4) The methods of this report should be applied to cores in which

some of the radial power-flattening is achieved by radial control poison

gradation, as this approach is likely to be used in addition to, or even

in lieu of, extensive radial enrichment zoning.

(5) This report has concentrated on the neutronic and economic

aspects of blanket breeding performance. Some further consideration

of other aspects of blanket design should be reviewed in light of its con-

clusions. For example, the finding that the magnitude and energy

spectrum of the neutron flux in the radial blanket remains invariant as

the core radius is increased also implies that assembly bowing due to

stainless steel swelling will remain the same in the blanket (since

swelling is roughly proportional to flux squared) - in contrast to the core
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where the average flux increases as core size increases (due to the

concurrent decrease in average enrichment). In another area,

Brown (B3) has shown that an economic penalty should be assigned to

blanket overcooling, to account for the resulting decrease in the core-

averaged mixed-mean coolant temperature. As core radius increases,

the ratio of the number of blanket to core assemblies decreases;

hence the relative impact of blanket overcooling is also less.

(6) Throughout this analysis, we have employed Brewer's

accounting method "A" in which material purchases and fabrication

charges were capitalized and consequently depreciated for tax purposes;

whereas reprocessing charges and material credit were treated as an

expensed cost and taxable revenue, respectively. More work needs to

be done in this area of dealing with appreciating assets such as the

blanket and, if method A cannot be agreed on as a definitive convention,

Brewer's method "B" should also be applied, and the results correlated

using the methods of this report to determine whether blanket design

and management options such as optimum thickness and irradiation

time are significantly affected when compared to method A.

Finally, while an appreciable menu of future tasks has been

suggested, it should not be considered as detracting from the conclu-

sive nature of the demonstration presented here that large commercial

fast reactors will have blankets which are in all essential respects the

same as those found to be optimum for smaller demonstration reactors.
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Appendix A

NOMENCLATURE

English Symbols

a= the core radius

= a coefficient in the economic correlation for the

j-th region

= the exponent of W in the economic correlation for

the j-th region

= the internal (core) breeding ratio

= the external (blanket) breeding ratio

= the radial blanket breeding ratio

- the axial blanket breeding ratio

-2
= the radial geometrical buckling, cm

-2
- the axial geometrical buckling, cm

-2= the core material buckling, cm -

= the boron concentration increase, 10-5 atoms/barn-cm

= fabrication charge, $/kg heavy metal

= reprocessing charge, $/kg heavy metal

= fissile value, $/kg fissile

a.
J

b

bbxr

b

B
2

r

B
2

z

B 2
c

Cl

C
2

C
3

a



c.

f= fraction of capital from stockholders

fb

fs

DB

D
c

D
0

241

= the exponent of X in the economic correlation for

the j-th region

= the blanket diffusion coefficient, cm

= the core diffusion coefficient, cm

= the core diameter, cm

= the diffusion coefficient in the core, cm

= the fuel cycle cost contribution, mills/kwhr

= the fuel cycle cost contribution distribution at distance

r into the blanket and at time T., mills/kwhr-cm

= the fuel cycle cost contribution for thickness T and

time T.,, mills /kwhr

= the minimum fuel cycle cost contribution, mills/kwhr

= the total electricity generated from the entire reactor,

kwhr

3
= power density factor, fissions/cm3-sec

= the present worth factor on fabrication charges

the present worth factor on reprocessing charges

= the present worth factor on material credit

= fraction of capital from bondholders

D

e

eL (T, T)

eT(T,T)

eMIN

E

F

F1

F
2

F
3
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[FOB] = the "economic figure-of-merit" function, $/kgHM

G 1 (T) = a fabrication cost function at time T

G 2 (T) = a material credit function at time T

H the core height, cm

H = the extrapolation core height, cm

I(Kr) Bessel function

I (Kr) = Bessel function

J = Bessel function

3J(a) = the neutron current density, neutrons/cm -sec

k eff the effective multiplication factor

KL(T,T) = the revenue per unit heavy metal mass at the distance T

into the blanket and at irradiation time T, $/kgHM

Ak/k = the reactivity loss

L = the radial neutron leakage rate, neutrons/cm -sec

2
La = the axial neutron leakage rate, neutrons/cm -sec

M4 9  = the mass of fissile material, kg

M HM(T) = the mass of heavy metal at time T, kgHM

= the mass of heavy metal at BOL, kgHMNIHM



AM/M

NE

N.
I
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= the change in the fissile loading

= Wood's economic parameter

3
= the atom number density for the j-th nuclide, atoms/cm

3
=the atom number density of heavy metal, atoms/cm

= fission rate per unit volume, fissions/cm -sec

= the peak power density in the i-th zone of the core,

kwth/liter

= the peak power density in the central zone of the core,

kwth/liter

= the coefficient of the TBE-Topt correlation for the

j-th region

= the exponent on W in the T BE-Topt correlation for

the j-th region

= the exponent on X in the T BE-Topt correlation for

the j-th region

= bondholders' rate of return

= stockholders' rate of return

= the fissile buildup rate in the radial blanket, gPu/yr

= the fissile buildup rate in the axial blanket, gPu/yr

N
0

p

p.1

p1

p.

qj

r.

rb

rs

Ror

Roa



r.
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S (0)

the outer radius of the i-th core zone, cm

= the radius of the innermost core zone, cm

the fissile specific inventory buildup rate at the

core/blanket interface, gPu/kgHM-yr

= the fissile specific inventory buildup rate in the

radial blanket, gPu/kgHM-yr

the fissile specific inventory buildup rate in the

axial blanket, gPu/kgHM-yr

the fissile specific inventory buildup rate at BOL,

gPu/kgHM-yr

the entire-blanket fissile buildup rate, gPu/kgHM-yr

= the blanket-row fissile buildup rate, gPu/kgHM-yr

the length of the irradiation, years or full power days

the time from fabrication to the midpoint of the

irradiation, years

the time from reprocessing to the midpoint of the

irradiation, years

= the time from material credit to the midpoint of the

irradiation, years

= the time span between fabrication and loading, years

the time span between discharge and reprocessing,

years

Sor

Soa

So BOL

T

AT 1

AT 2
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AT
3

TBE-1, TB

TBE-2

Topt, T0

T
p

U0

v B

V
c

w

x

= the time span between discharge and sale, years

= the first breakeven irradiation time, full power days

= the second breakeven irradiation time, full power days

= the optimum irradiation time, full power days

= the physical lifetime of a fuel assembly, full power

days

= the fissile buildup rate per unit volume, gPa /liter-yr

= the blanket volume per unit height, cm2

the core volume, liters

the modified economic parameter

= the discount rate, years~I

Greek Symbols

= the average capture-to-fission ratioar

#(Ka) = Bessel function term

= the inverse diffusion length in the blanket, cm~'y

628

6
R

= fertile-to-fissile fission ratio

= the linear extrapolation length in the radial direction, cm

= the linear extrapolation length in the axial direction, cm6



e(r)
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e (0)

= the i-th zone averaged enrichment

= the enrichment at position r, /

= the central enrichment for a core,

= the enrichment buildup rate in the blanket, %/yr

= the enrichment in the blanket at irradiation time T, %

the core-averaged critical enrichment, %

= the number of fission neutrons produced per neutron

absorbed in isotope i

= the fractional volume occupied by the fuel in the blanket

- the fractional volume occupied by the fuel in the core

= the "pseudo" reciprocal-diffusion length, cm~

= the hyperbolic function term

= the average number of neutrons produced per fission

= the fundamental eigenvalue of J0

= the density of the heavy metal oxide fuel in the blanket,

kgHM- oxide/ liter HM-oxide

the density of the heavy metal oxide fuel in the core,

kgHM-oxide/liter HM-oxide

0

e(T)

ec

T.
1

0 oB

0c

Kc

X(X)

v

v9

poB

poc



a.

section, cm 1

tr,j

r,j

V Ef,1 B

a., B

~a,B

tr,B

, E c

tr, c

a, c
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4f (r)
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= the microscopic cross section for the j-th nuclide,

barns

= the microscopic fission cross section for the j-th

nuclide, barns

- the microscopic absorption cross section for the j-th

nuclide, barns

= the microscopic transport cross section for the j-th

nuclide, barns

= the average microscopic transport cross section for

the j-th nuclide, barns

= the blanket macroscopic neutron production cross

a

fg

-the blanket macroscopic absorption cross section, cm

= the blanket macroscopic transport cross section, cm

the core macroscopic neutron production cross section,
-1

cm

= the core macroscopic transport cross section, cm

-1
= the core macroscopic absorption cross section, cm

the non-fuel absorption cross section, cm

= macroscopic fission cross section for fissile isotopes,
-1cm



= macroscopic fission cross section, cm

-1
= macroscopic absorption cross section, cm 1

-1
= the pseudo-macroscopic cross section, cm

= the blanket thickness or the distance into the blanket, cm

= income tax rate

= the neutron flux at the radial position y of the core

having radius x, neutrons/cm 2-sec

= neutron flux, neutrons/cm 2-sec

2
- neutron group flux for i-th group, neutrons/cm -sec

248

Ef(r)

a (r)

n

T

^r

4(x, y)

O(r)
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Appendix B

NEUTRONICS OF UNIFORMLY LOADED CORES

In this appendix the various relations needed to perform a neutron

balance in a reactor core having uniform fissile enrichment will be

summarized, with particular emphasis on the breeding ratio. The pre-

sentation will be brief because one-group diffusion theory is dealt with

at great length in all elementary reactor physics texts.

B. 1 CRITICAL CORE ENRICHMENT

An expression relating critical core enrichment, Ec, and critical

2
core buckling, B , is developed below.

c

The diffusion equation, for a homogeneous critical one-region

core, is

Dc 2 _ a,c4 + VE f, c4 0, (B. 1)

where

D c is the diffusion coefficient,

E, c is the macroscopic fission cross section,

E a,c is the macroscopic absorption cross section,

v is the neutron yield per fission,

and the subscript c indicates that core properties are involved.

Equation B. 1 can be rearranged as:

(B. 2)V 2 4 + B24 = 0 .e

where



2 Vfc ~ ac
c D

c

-DB - E
c a, c

+ VE c

(B. 3)

(B. 4)= 0.

Separating the production term into fertile production, V2 8E f c, 28'

fissile production, v4 9 E f, c 4 9 , gives

and

vEf , c = 28 E f c, 28
+ v4 9 E f, c, 49

(B. 5)T 2 8 Ea, c, 2 8 + r 4 9 Ea, c, 4 9 .

Separating the absorption term into fertile absorption, Ea., c 28, fissile

absorption, E ac,49, and non-fuel absorption, E a,c, p

(B. 6)a, c a, c, 28 + E a, c, 49 + E a,c,p.

Substituting Eqs. B. 5 and B. 6 into B. 4, one obtains

8 28 +a,c,2 49 a,
= E +

c ,49 a,c,p
2

D B.
c c

(B. 7)

The macroscopic cross sections of the fissile and fertile material may

be expressed in terms of enrichment, as follows:

a, c,49 =o , o aa,49'

Ea,c,28 No (1-C)a,28,

(B.8)

(B.9)

where

N is the number density of total heavy metal nuclide,

atoms/barn-cm,

ec is the critical core enrichment, defined as

Sc =fissile number density/(fissile number density +
fertile number density)

(B. 10)

250

or
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a, 49 is the fissile microscopic absorption cross

section, barns, and

a, 28 is the fertile microscopic absorption cross

section, barns.

Substituting Eqs. B. 8 and B. 9 into B. 7 and solving for critical core

enrichment,

- 2
E -(n 1)N Ia + D B2

e= a,cp 28 o a,28 c c (B. 11)
c ( 4 -1)Na,49 (r28 -1)Noaa,2 8

Using the one-group data of Table 3. 1 in Chapter 3, Eq. B. 11 becomes

S= 0. 0829 + 76. 8B . (B. 12)
c c

Figure 3. 3 in Chapter 3 shows a comparison of 2DB results and

Eq. B. 12, which agree within ~5 percent.

Table B. 1 shows the neutron balance for a BOL, 1 0 0 0 -MW e

1-zone core., which indicates that:

1) The keff = vE2/(Ea+DB2 1. 0093, which agrees with the

2DB result of 1. 0017 within 1. 4 percent.

2) Thus, the one-group cross-section set of Table 3. 1 in

Chapter 3 has been confirmed to be useful for evaluation

of physics parameters.

In this evaluation it has been approximated that:

1) The geometrical bucklings are:

2 2
Br (v9/a +6) (B. 13)

B2 (r/H+26 ) 2 . (B. 14)



x10-3

Loss

Fission of Fissile f
(U 2 3 5 , Pu 2 3 9 , Pu 2 4 )

Canture in vissile Ec,49

Fission in Fertile E
238 240 242 f,28

(U , Pu , Pu)

Canture in Fertile

Capture in Non-Fuel

Leakage Losses

Radial

Axial

c,28

DB r

DBZ 2

-1
(cm )

1.6423

0.4046

0.3147

1.8279

0.2528

0.4724

0. 7489

Gain

Production in Fissile, 9 49

Production in Tertile, vEf,2 8

Total Loss , a + DB2 5.6636 Total Gain, vEf 5.7163

Table B.l Typical Neutron Balance for 1000 MWe - 1 Zone - BOL Reactor

-

rND
3

-1(cm )

4.3128

0.9035
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2) The linear extrapolation distances as obtained from the 2DB

results are:

6R = 20 cm

6a = 25 cm.

B. 2 CRITICAL CORE MASS

Critical core mass, M
ca

as follows:

, may be computed from enrichment

M = e VM = e V 0 P C,
c,49 c c,HM c c o, c o, c

(B. 15)

where

M 0 is the critical core fissile mass (kg),
C, 49

Po, c is the oxide density ~ 10 (kg HM oxide/liter HM oxide),

C is 0. 83 (kg HM/kg HM oxide),

Mc, HM is the mass of heavy metal in the core (kg),

Goc e is the volume fraction of oxide fuel in the

(0. 30 in the present example),

core

one obtains,

M
c, 49

= 2.64 V e ,c c
(B. 16)

(B. 17)Mc, HM = 2.64 Vc ,

where we have ignored the small difference between atom and weight

fraction in the definition of enrichment, ec'
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B.3 BREEDING RATIO

The fissile production in core and blanket fuel is to be expressed

in terms of internal (core) and external (blanket) breeding ratios,

respectively. Internal breeding ratio, b., is defined as:

b. Fissile production rate in the core B 18)
i Fissile consumption rate in the core *

Thus

N a 1-i; a
b. = c, 28 c, 28 e c, 28 (B. 19)

N c,49 a,49 c aa,49

where

c,28 = Fertile microscopic capture cross section,

a, 49 Fissile microscopic absorption cross section.

Using the cross-section data of Table 3. 1,

1 - e
b. c 0. 1393 c (B.20)

c

Figure B. 1 shows this relation together with 2DB results, which indicate

that the internal breeding ratio does not exceed unity even for the 3000-

MW cores considered (which are somewhat "pancaked,"

height/diameter o 1). The one-group model predicts the internal

breeding ratio within 4 percent of the 2DB results, when the critical

enrichment appropriate to 2DB is used in Eq. B. 20.

The external breeding ratio, b , is defined as follows:

b Fissile production rate in the blanket (B. 21)x Fissile consumption rate in the core *



1.0

0.9 -

0.8

0.7 One-Group Model

0.6 - 0 0 Four-Group 2DB Results
o
40.5

Wo.4 - Normalized Point
bo0.4

0 .2 -- ~g 0.3--~- ------- G"------o

0.1 -

0
75 100 125 150 175 200 225

Core Radius (CM)

Fig. B.1 Comparison of the Breeding Ratio Predicted by tne One-Group Model

and 2DB as a Function of Core Radius (One-Zone Cores)

U,



256

Thus,

b =Core neutron leakage rate
x Fissile consumption rate in the core

j Fertile capture rate in the blanket
ISource neutrons fed to blanket *

Assuming no leakage from the outer face of the blanket,

D B 2

b c cx

No ec a,49)

c,b,28

a, b - "sf b

2
B = buckling appropriate to radial (x=r) or axial (x=a)

x
direction.

Ecb,28 is the fertile macroscopic capture

in the blanket,

cross section

Ea,b is the total macroscopic absorption cross section in

the blanket,

vEf,b is the macroscopic production

blanket,

cross section in the

Using the cross-section data of Tables 3. 1 and 3. 3, one can obtain:

b c 0.04080 (B
xa e

c

B 2

b cc93. 04 .
c

.24)

(B. 25)

Figu t e B. 1 also shows these relations for the axial blanket and the

radial blanket, respectively. It is interesting to note that the axial

X

(B. 22)

where

) (B.23)
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blanket breeding ratio, b xa increases and approaches an asymptotic

value as the core radius increases, but the radial blanket breeding

ratio, bxr, decreases approximately as the inverse of the square of

the core radius in accordance with the following equations (where the

previously described buckling and enrichment have been substituted

into Eq. B.23):

a+6R
b oc 2 a+6 2 (B.26)

A +B (a+ R a R A +B

Using the typical values, a = 125 cm, 6 = 20 cm, 2. 4048,
a + 6 R2

one -finds A = 0. 116; i. e. , A ~ 290 >.B4=70. Thus, onehas

the rough approximation:

1
bxr c 2. (B. 27)

a+ 6

Figure 3. 11 in Chapter 3 shows this prescription together with b for
xr

radially power-flattened cores.
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Appendix C

NEUTRONICS OF RADIALLY POWER-FLATTENED CORE

It is well known that radial power-flattening contributes to

improve the physics and engineering performance of large reactors

(hence minimize the total power cost) and that radial power-flattening

is employed in most, if not all, designs of large LMFBR's (for

example, two zones for the Westinghouse Demonstration Plant and four

zones for the GA-GCFR Demonstration Plant). In this appendix,

starting with the steady-state neutron-balance diffusion equation, the

neutron flux and the enrichment distribution will be obtained, and then

several interesting characteristics of the radially power-flattened core

with respect to breeding performance will be presented, with emphasis

on the effect of core radius or core height. A detailed derivation of the

results used in Chapter 2 will be presented.

C. 1 DERIVATION OF EQUATIONS

One-group diffusion theory gives the following equation in

cylindrical geometry:

D r d4(r) - Ea(r)4(r) + vEf(r)4(r) = 0. (C. 1)

For a radially power-flattened core, one has:

Ef (r)4(r) p = constant. (C.2)

Defining the fertile-to-fissile fission ratio, 628, as:
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one has

and

Ef2(r)
6 = E

28 E f(r)

E(r) = 4 9 (r) + Ef, 2 8(r) = E f 4 9 (r)(1+6 2 8)

p = Ef(r)4(r) E (r)(1+628)r)

(C. 3)

(C. 4)

(C. 5)

where it has been assumed that 1+628 is constant, which is confirmed

in Chapter 3. Similarly, D has been assumed not to vary - a good

assumption since atr does not vary significantly among heavy metal

nuclides.

The absorption term is separated into three components:

E (r) = E (r) + E + DB2 ,a,p a, fuel ap z
(C. 6)

where

Ea,fue1(r) is the fuel macroscopic absorption cross section,

alp

DB 2
z

is the non-fuel macroscopic absorption cross section,

is the macroscopic destruction cross section due to

transverse leakage.

The latter two terms are also assumed to be spatially invariant.

Defining the capture-to-fission ratio,

y, 4 9

a f

of, 49

a,49 f,49

Uf 49

or

a,49 -

CJ f, 49

(C. 7)

(C. 8)
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where a- 49 is the fissile microscopic capture cross section, one then

has:

a, fuel(r = Ea, 2 8(r) + E a, 4 9(r)

= a 28 . a,28 (r)c+ a, 49 f(r)
- - ',28 f,49
af,2 8  ay, 2 8  f,49

_ 2 ,2(r) + ( 1+ a 9) (r) .

a 2 8

Since the atomic number density of total heavy metals,

N = N 4 9(r) + N2 8 (r),

is constant, one has

E 7.128() ,28N28(r) = ay, 28[N9-N g(r)]

Defining E o2 a,, 28N , one has

E 7, 2 8 (r) = Eyo,28

=y0,28 y,28
af 49

(C. 9)

(C. 10)

(C. 11)

(C. 12)

- N4(r)a-y,28 f49

af, 49

E f 4 9 (r) . (C. 13)

Substituting Eqs. C. 9 and C. 13 into C. 6, one obtains

a+ 2
a E o,28

ce28

- l _28

2 8

+E +DB2
aI , z

7,28 -

f,449a~f J49
Ef 4 9 (r) . (C. 14)



261

Thus, the absorption term is separated into two parts: a space-

independent term and a space-dependent term. Defining the former as:

1+;28

n -yo ,28 a,p
- 2 8

+ DB 2
z (C. 15)

and the constant term as:

1+ 28

a2 8

-, 28-(

of, 49

1+ 49)] (C. 16)

one has:

Ea(r) = En + E f 4 9 (r) .

Substituting Eqs. C. 5 and C. 17 into Eq. C. 1, one obtains:

(C. 17)

r) - [En 9f 49(r)]O(r) + vp = 0

1d r d )O(r) D 4(r) + P- v +

Defining the terms,

2 n ~ + 28
K D - 70,28

_ 28

+ E + DB 2
a,p z

F Dv + 1+628

-p

D( 1+ 6 28) +a 4 9 ) +
1+1_ 28 C ,28 ,

a 2 8 9

one obtains:

or

1+6 28
= 0. (C. 18)

and

D (C. 19)

(C. 20)v(1+ 6 28)- (1

D (r-r r 4(



( r r 4(r) - 24 (r) + F = 0, (C.21)

which has the solution

F
2~r - - C1 ( K r).

K

(C. 22)

Applying the boundary condition,

4(a) + 64'(a) = 0

where 6 is the linear extrapolation distance, which is specified to match

2DB results, i.e.,

6 = 20 cm , (C.24)

one has the neutron flux as a function of radial position and outer radius:

where

4(a,r) = [1-(Ka)-Io(Kr)],
K

I3Oca) 0 (K0 Oa)+ K6 '1 1 (Ka)]-

(C. 25)

(C. 26)

From Eq. C. 5 one has

p = E f 4 9 (r)(1+6 2 8 )4O(r) = f 4 9 N 4 9 (r) (1+ 6
2 8)4(r).

Thus, the fissile material profile is

N r= p K -1
N g(r) = - -[1-(Ka)I (Kr)]

Cf 4 9 (1+6 2 8 )

(C. 5)

(C. 27)

Using Eq. C. 20, one obtains

N 4(r)
DK2

a 49[ v( 1+6 28) + ;' [1-(Ka)I 0(r)]
(C. 28)
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The enrichment profile for a core having radius = a is obtained

by dividing Eq. C.21 by Eq. C. 10.

e r) DK2. (C. 29)
c f 4 9 N 0 [v(1+6 2 8 )+()[1-(Ka)I 0 (Kr)]

C. 2 COMPARISON WITH UNIFORMLY LOADED CORE

For a uniformly loaded core, one has from Eq. B. 4,

VEf - E DB (B. 4)

Using the same breakdown of the macroscopic cross section, one has:

v ag N4 (1+628 n f, 49-N(49, u DB . (C. 30)

Solving for the fissile atom number density for the uniformly loaded

core, N49,u one has

D 2 + DB 2

N =- r (C. 31)
c4 f 4 9 [V(1+6 2 8 )+

Therefore, the ratio of local fissile atomic number density in the

radially power-flattened core to the uniformly loaded core is, from

Eqs. C.28 and C.21:

N (r) B2 -
N 4 9  1+ 1 - (Ka) I(Kr)1 . (C. 32)N 4 9 . K2-10

Figure C. 1 shows Eq. C. 32 for 1000-MW size cores using the cross-

section data in Table 3. 1. This figure indicates that the fissile atomic

number density (hence enrichment) in the radially power-flattened core

is lower near the core center but high near the core edge, compared to

the enrichment in the uniformly loaded core of the same size.
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C. 3 CRITICAL MASS RATIO

The preceding equations can also be used to compute the critical

mass ratio between the radially power-flattened and uniformly loaded

cores having the same radius:

MRPF

MUL

27r fa N 4 9 (r) rdr
0

7a 2 N4 9
U

(C. 33)

The integral in the numerator of Eq. C. 33 can be approximated:

rdr
1 - 3(Ka)I (Kr)

0
-2

K 0
(Kr)d(Kr) [l+(Ka) I (Kr)+ 2 (Ka) I (Kr)]

0 0

2f(Ka)I1(Ka)

+ P(Ka

(C. 34)

Thus ,

20(a)I (Ka)
+ 0 + J3a)2[I2 (Ka)

{ 1+ B2 /K 2

Br a +6R)

is the approximate solution of the criticality relation for the uniformly

loaded core:

Br6R J1(Bra) = J (Bra) . (C. 37)

Given a and 6 R, we can solve Eq. C. 37 for Br, and then for a given

a

0

1MRPF 
_

MUL

where

-I (Ka)]
(C. 35)

(C. 36)

2
1+ )2[I2 ()-I2 (Ka)



266

K , evaluate Eq. C. 35. Using the 1000-MW core data in Table 3. 1,

one can obtain:

MRPF 1. 09. (C. 38)
MUL

Thus, in the present case, the critical mass is increased by radial

power-flattening (about 9 percent). The critical mass ratio is essen-

tially constant for all core radii (sizes) studied, as discussed in

Chapter 3.

C. 4 CENTRAL AND PERIPHERAL ENRICHMENT

From Eq. C. 29, and noting that 1(0) = 1, the central enrichment

of a core having outer radius = a is:

e(a, o) = DK2  , (C. 39)
9 f 49 N 0 [ V (1+ 628)+ *] [1- 1(Ka)]

where

O(Ka) = [I 0 (Ka)+ K6 11 (Ka)] (C. 40)

Since

Ka) 1 (C.41)
I(Ka) 2Ka + .

one has

1
O3Ka) (= 1 (Ka)

0 (Ka)[1+Ic6I a)

1
(C. 42)

(Ka[\ Ka)
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Since I ( Ka) - oo as a - o, one has

P(Ka) - 0 . (C. 43)

Thus, the central enrichment approaches an asymptotic value as core

radius increases:

&(a, o) -.
D~2D 2

9f*49 N 0 [v (1+6 28)

= C. (C. 44)

Using the cross-section data in Table 3. 1, one has e(a, o)

as shown in Fig. C.2.

From Eq. C.29, the peripheral enrichment, e(a,a) is

C
(a,a) = 1 - 3Oc(a)I (Ka) ,

where

I (ica)
/(a)I(Ka) = (+ 0 a.

0 11 (Ka)

Using the approximation of Eq. C. 41, one has

1
O(K) 10 (K 1 + K6 11 - 2x

Since 1 - 0 as a - oo, one has
Kca

1(Ka)I (Ka)
1

1 + K6

-- 0. 108,

(C. 45)

(C. 46)

(C. 47)

(C. 48)

Thus, the peripheral enrichment also approaches an asymptotic value

as core radius increases:

C
F(a, a) -

1 + 6

(C. 49)
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Using the cross-section data in Table 3. 1, one has

&(a, a) -+ 0. 241 . (C. 50)

Figure C. 2 shows this relation, which indicates that the per-

ipheral enrichment for infinite core radius (at constant core height),

e(oo, oo), approaches 0.241. Figure C.2 shows Eq. C. 45 as a function

of a, confirming the rapid approach to the asymptotic value of

Eq. C. 50. Also shown are outer-zone enrichments of the multizone

cores. As illustrated in Fig. C. 1, the zone enrichments are con-

siderably less than the analytical value because the analytical value

is an interfacial value.

C. 5 ZONE-AVERAGED ENRICHMENT

A zone-averaged enrichment, e., can be obtained by integrating

Eq. C. 9 over the annulus bounded by radii r i_ and r :

fr. r.

e(ra)2rrdr fri 2rrdr. (C.51)
r i_ r

The numerator, N, can be evaluated as follows:

Sr. ri C 27r(Kr) d(Kr)
Ne(r,a) 2rrdr 1 - o(Ka)I (Kr) 2

(C. 52)

where

C DK 2  (C.53)
af 4 9 N 0 [v(1+628)+f]
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Using the approximation,

1 X + 1X + ,21 x2

one has

2 7rC r I 2 () 12 (r
N = f2r Kr 1+1(a)I 0 (Kr)+ 2 (Kr)

K ri _1

Using the known Bessel function integrals,

f XI9(X) dX = X I1(X)

fX I(X) dX = [I (X) - I (X)]

one can express a set of difference terms as:

A[r 2 ] r r -

A[KrI] [(Kr ) 1 0(Kr )-(Kr _1 )1(Kr._)]

A[(Kr)2 (12 2I 2 (r 2(I (Kr )- (Kr (Kr _ ) 2 Kr. 1 )-I, (Kr

(C. 57c)

Since the denominator of Eq. C. 51 is

27rr dr = 7r(r2 -r.
1 i-i

= frA[r2],

one has

C 1+1+(Ka)
A[KrIj] 2 A[(Kr) 2 y2_-1

2 + 0 2a) 2 1
Kr2] 2 2 2  [ 2 A[r 2

Y 2

where C is again the central enrichment for a perfectly radially power-

flattened core having an infinite core radius.

(C. 54)

} d(Kr) .
(C. 55)

(C. 56a)

(C. 56b)

(C. 57a)

(C. 57b)

r.r
(C. 58)

(C. 59)
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Table C. 1 shows an example of. zone-averaged enrichment for a

2 5 0 -MW e 6-zone, power-flattened core, which indicates that the one-

group approach is useful only for developing a first approximation to

the required zone loadings. An alternative estimation of zone loadings

can be obtained using a formula reported by GA:(g)

(1 - 0. 98X
- 1 (C. 60)

V(1 - 0.98X -0 4

i=1

where

i-1

X= V and X = 0, (C. 61)

i=1

V. ( , (C. 62)
1 a

which is not bad considering that the coefficients of 0. 98 and -0. 4 used

here should really be obtained anew for each reactor design.

Central Zone-Averaged Enrichment

Putting i=1 and then r _=r=0 in Eqs. C. 57a, C. 57b and C. 57c,0

one obtains

A[r2] = r (C. 63a)

AL1rI 1 ) = [(Kr 1 )1 1 (Kr1 )] (C. 63b)

A [(Kr)2(I -2)] =(Kr)2 [I2 (Kr) -I2 (Kr)]. (C. 63c)

The central zone-averaged enrichment can be obtained by using these

results in Eq. C.61.
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One-Group Prediction GA Formula

i-th Outer Zone Peak Power Zone Peak Power
Zone Radius Enrichment Flatness Enrichment Flatness

(cm) (%) (%) (%) (%)

1 27.2 15.2 -- 15.2 --

2 37.8 16.4 -5.0 16.4 -3.2

3 46.9 17.7 -9.2 17.9 -5.9

4 54.4 19.4 -15.3 20.2 -8.1

5 60.5 21.5 -21.9 24.2 -7.9

6 65.0 27.0 -20.7 32.3 -4.5

Table C. 1 Comparison of Zone-Averaged Enrichment for 250-MW , 6-Zone Core
Predicted by One-Group Model and GA Formula.
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Peripheral Zone-Averaged Enrichment

Putting i=I and then r1 =a in Eqs. C. 57a, C. 57b and C. 57c, one

A[r2 2]
2

A[KaI,] [KaIi(Ka)

- 2

- (Kr1 _ 1 11 (Kr_ 1)]

A[(ca) 2(I2_ 2)] = (Ka)2 2(Ka) -1 2 (Ka)]
0(o[ ( 1

-(Kr 1
2 [, 2(Kr 12 (Kr) (C. 64c)

Figure C. 2 also shows these zone-averaged enrichments together with

2DB results, and indicates good agreement.

has

(C. 64a)

(C. 64b)
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Appendix D

BLANKET NEUTRONICS

The purpose of this appendix is to obtain the exponential distri-

bution of neutron flux in the radial blanket by solving the one-group

diffusion equation and by using reasonable approximations.

D. 1 FLUX DISTRIBUTION IN THE BLANKET

The blanket diffusion equation is

DB 2 aB + y EfB4 0, (D. 1)

where

D B is the blanket diffusion coefficient,

Ef,B is the blanket macroscopic fission cross section,

EaB is the blanket macroscopic absorption cross section,

v is the neutron yield per fission.

Equation D. 1 can be rearranged as

( -r - =0, (D. 2)

where 2
2 aB B z fB+DBDfB

7= ' DB ' , (D. 3)DB

with the solution:

0(r) = X0 K(0yr) . (D. 4)

Applying the boundary- condition:
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4(a) = 0(0) = X K (ya) (D. 5)

or

X = K 0() (D. 6)
0

one has

K (yr)
4(r) = 0(0) K(ya). (D. 7)

Note that we have neglected the effect of the reflector on the blanket

flux based on the observation that multigroup calculations show that

in steel-reflected blankets the U238 capture rate profile does not

differ significantly from that in an infinitely extended blanket (B3).

Since

K (Z)~ e-Z for Z = yr (or ya) ~ 10, (D.8)
o 2Z

one has

O(r) = 0(0) I e-(r-a) .(D. 9)

Defining a new coordinate, Tzr-cthe distance from the core/blanket

interface, one has

4() e / . (D. 10)

a

For a large core which has T=45 and a~ 125 cm,

1 > = = 0. 36

one has, very crudely,

4(T) - 4(0)e ' . (D. 11)

Equation D. 11 gives a good approximation to the measured or calcu-

lated U238 capture rate in LMFBR blankets (W2, B4).
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D. 2 FISSILE MATERIAL BUILDUP RATE

The local fissile material buildup rate per unit volume at distance

T into the blanket, U (T) (gPu/liter-yr), is proportional to neutron flux

which, using Eq. D. 11, gives:

U (T) 4(T) xc 0(0) e TT. (D. 12)

Since local fissile enrichment buildup rate at distance T into the blanket,

e0(T) (gPu/kg U-yr) is proportional to U (T), one has

( 0 e~ 7 , (D. 13)

which indicates that the fissile enrichment buildup rate decreases

exponentially as the distance into the blanket increases.

D. 3 ROW-BY-ROW FISSILE MATERIAL BUILDUP RATE

Fissile material buildup rate in a row of the radial blanket, R 0 ,
1

(gPu/yr) is obtained by integrating Eq. D. 12 over the entire row volume,

V B as follows:

(C fi U(T) dT = f i e~ 71 dT =[e~-yi-1 - e~-7i].

(D. 14)

The total fissile material buildup rate, R0 , in the entire radial blanket

having thickness, T, is

R cc U (T) dT [1 - e -]. (D. 15)

Thus, the fractional row-by-row fissile buildup rate is

S_ [e -e ( D. 16)R 0 - TT7
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It should be noted that fractional row-by-row fissile buildup rate

is independent of core radius. Thus fissile material inventory in each

row can be calculated separately. Using the cross-section data of

Table 3. 1 , the row-by-row fissile material buildup rate is 59% for

row 1, 28% for row 2 and 13% for row 3: in good agreement with 2DB

results as shown in Table D. 1. This row-by-row proportionality does

not change very much due to irradiation, as shown by the 2DB calcu-

lations presented in the last column in Table D. 1.



o

Relative
Row-by-Row lGM 2DB 2DB
Fissile Buildup BOL BOL EOL*
Rate (%)

R /R 59.0 60.5 51.8

R /R 27.9 27.9 31.9

R03/R0 13.1 11.6 16.3

*EOL for batch-irradiated blanket at
on Equilibrium core.

1800 days surrounding

Table D.1 Comparison of 2DB and One-Groun Models for Row-by-Row
Fissile Buildun Rate
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Appendix E

DEPLETION-ECONOMICS ANALYSIS

Based on the cost equation derived by Brewer (B3) and the

exponential distribution of fissile material buildup in the blanket

as discussed in Appendix D, several interesting optima such as

local optima (row-by-row basis), total optima (entire blanket

basis) and global optima will be presented; their mutual inter-

relationships will be investigated, and results correlated against

the economic parameter originally developed by Wood (W2) and

modified in the present work.

E. 1 OPTIMUM IRRADIATION TIME

The local fuel cost contribution equation can be expressed in

the form (B 3):

C 1 F 1 (-T ) + C 2 F 2 (-T 2 ) - C 3 F 3 (-T 3) e(T)
e = k (E. 1)

T

where

e is the fuel cycle cost contribution

k is a function which does not depend on the economic

environment or time

C1 is the fabrication cost component ($/kg)

2 is the reprocessing cost component ($/kg)

C 3 is the material credit ($/kg)

F 1 (-T 1 ) is the carrying charge factor for fabrication occurring

at time T 1 measured from the irradiation midpoint
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F 2 (-T 2 ) is the carrying charge factor for reprocessing

occurring at time T2 measured from the irradi-

ation midpoint

F 3 (-T 3) is the carrying charge factor for material credit

occurring at time T 3 measured from the irradi-

ation midpoint

in which X is the discount rate

-r is the tax rate

e(T) is the fissile enrichment at time, T

T is the length of the irradiation period.

Figure E. 1 shows the timing of the cash flow involved. It has been

assumed in this relationship that the material purchase is either negli-

gible or included in the fabrication charges. Because a correlation for

the optimum irradiation time is desired, the next step in the develop-

ment is to set the time derivative of the fuel cycle cost contribution equal

to zero.

de= 0 (E.2)

or

dF (-T 1 ) dF2 (-T 20 = TC 1  dT C 1 F 1 (-T 1 )+TC 2  dT - C2F2 -T2

dF3 (-T 3) de(T)
- TC 3 VET d + F 3  3 dT + 3 3

(E. 3)

Next, time derivatives are taken of the carrying charge factors. In

these operations, series expansions are used where necessary to

obtain simple expressions. First, consider F (-T ).
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F y(-T) = 1 [(1+X)T

Consider only a tax rate 0. 5:

F 1 (-T 1 ) ~ 1 + 2XT 
1

dF (-T)

dT F1(-T1 )

T
~ 1+2X)1

In (1+2X) ( ) F (-T )X.

To proceed with this development, the definitions for T, T and

T 3 must be introduced.

T, AT +T
1 12

T = -AT
2 2 2

T =-AT T
3 3 2

where

T is the time of the irradiation,

(E. 7)

(E.8)

(E.9)

AT 1 is the length of time from the fabrication cash flow to

the beginning of the irradiation,

AT
2

AT 3

is the length of time from the end of the irradiation to

the reprocessing cash flow,

is the length of time from the end of the irradiation to

the material credit cash flow.

Taking derivatives of Eqs. E. 7, E. 8 and E. 9 yields

dT _ 1

dT 2

dT 2  1
dT 2

dT 3  1
dT ~

282

(E. 4)

(E. 5)

(E. 6)

(E. 10)

(E. 11)

(E. 12)

1- T} 1 + T .T



Combining Eqs. E. 5, E. 6 and E. 7 yields

dF 1 (-T1) A1 xT/2
-dT ~ - X( 1+2 X) I(1+2X)T2

Consider next the time derivatives of F 2 (-T 2 ) and F3 (-T 3 )

dF 2 -T 2 )

dT

T 2 dT2
(1+X) ln(1+X) dT

Using Eq. E. 11 and expanding the logarithmic term yields

dF 2 -T 2 )

dT
X

~ 2 2 ).

Combining Eqs. E. 15 and E.8 gives

dF 2 (-T 2 )

dT
~ F2 (AT 2 )(l+X) T/2

expanding the last term produces

dF2 (-T 2 )

dT
- F (AT) (12 2 2

similarly,

dF3 (-T 3 )

dT
X F(AT)(1
2 F3 3)(1

(E. 18)

Equations E. 13, E. 17, and E. 18 can now be substituted into Eq.

and the carrying charge factors in the resulting expression can be

approximated using the following relationships:

F 1 (-T 1 ) ~

F 2 (-T 2 ) ~

F1(-A 1) 1

F 2 (T2 )(1

F 3 (-T 3 ) F3 T3)1

1 + 2

XT)

XT
2 .

EP. 3

(E. 19)

(E. 20)

(E. 21)

283

(E. 13)

(E. 14)

(E. 15)

(E. 16)

(E. 17)

~XF 1(-AT 1)(1+XT).

- ;



284

When the terms are collected in the relationship resulting from the

above manipulations, the following expression is arrived at:

+C 3 -q)0 = T2(C X2F (- )+C2 F 2) F 3(AT 3

- C 1F 1(- MT)-C2 2 2) -T 2 C 3 2F 3 3 ). (E. 22)

If it is now assumed that the fissile enrichment builds up linearly

in the blanket, Eq. E. 22 can be rewritten (neglecting the resulting T 3

terms for simplicity):

T 2 C X2 F r(-MT) + c F 2)

= CIF 1 (-AT

+ C 3 S ( 2 ) F 0 (AT 3

(E.23)1) + C2F2 2)1,

where the fissile enrichment has been approximated by

e(T) = S0T .

Rearranging Eq. E. 23, recalling that the time T is the optimum

irradiation time:

C 1 F 1 (-AT 1 ) + C2 F 2(AT 2)

C F (-AT 1 ) + 1 C 2 F 2 (A 2 ) + C

Because of the low cost of fabrication (C 1

1/2

F 3(AT 3)J

(E. 25)

= 69 $/kg) and reprocessing

(C 2 = 50 $/kg) relative to the fissile material value (C 3 = 10,000 $/kg),

and noting that F 1
(-0. 5) e F 2 (0. 5) L F 3 (0. 5) = 1,

C1 F 1 M(-AT1 ) a 69

C2F (AT2) c--13

(E.24)

(E.26)

(E.27)

T =1
Topt~ X
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C3F3 1 00) 8 1250 . (E.28)

Thus, the first two terms in the denominator can be neglected with

respect to the last term. The expression resulting from this analy-

sis is:

C 1F 1(-AT )+ C2 F2 (T2) 1/2

TOpt 5 C 3F3 3)X(.(E.29)

Because of the large number of assumptions and omissions used

in developing Eq. E. 29, the actual equation would not be expected to

apply. However, all of the important economic parameters are

included within the brackets in Eq. E. 29. As a result, one might

expect that the optimum irradiation time would correlate against the

optimum economic parameter:

C 1 F1 (-AT) + C2 F 2 (AT 2)
W C3F3 3 (E. 30)

together with the discount rate, X. To summarize, the terms in the

optimum economic parameter, W, are:

A~T

F= (A [(1+X) A - T] (E. 31)

F 2 (AT 2 ) (1+X) 2  (E. 32)

F 3 (T 3 ) (1+X)~ 3  (E. 33)

X = (1-')rb b + rs s f

where the terms are defined in Chapter 2.
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E. 2 BREAKEVEN IRRADIATION TIME

Again, one starts with Eq. E. 1 for the fuel cycle cost contribution,

e (mills/kwhr), for the blanket:

e cx
C 1F 1(-T) + C 2 F 2 (-T 2 - 3 F 3 (-T 3) &(T)

T
(E. 34)

Using the approximations of Eqs. E. 19, E. 20, E. 21 and Eq. E. 24, one

has

+ C 2 F 2 (AT 2 )(1
e cc

- )- C3 3 -3 T
T

(E. 35)

To get the breakeven irradiation time, the fuel cycle cost contribution

is set equal to zero. One gets a quadratic equation in T (yr):

C 1 F 1 (-AT 1 ) - C 2 F 2 (AT 2)

C 3F3(AT 3)

C 1 F 1 (-AT 1 ) + C 2 F 2 (AT 2 )

+ C 3F 3(AT 3)

Since the term

C1F 1(-AT ) - C 2 F 2 (AT 2)

C 3 F 3(T 3 o

X = 0. 0065 1,

one has,

T 2  2 T+ 2W= 0.S SX
0

where the economic parameter,

C 1 F 1 (-AT ) + C2 F 2 (AT 2)
C 3 F 3(AT 3)

has again been used.

T2 2
T -X

X1T

2
SX

0

= 0. (E. 36)

(E. 37)

(E. 38)

(E. 30)

C F y(-AT )(1+ T
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If the discriminant is positive, there are two real solutions which are

meaningful.

T 1 1 1 2WX (E. 39)BE X±X S
0

The solution with positive sign is the irradiation time beyond which the

profit by breeding is cancelled out by accumulation of carrying charges.

The solution with negative sign is the case of real interest - the irradi-

ation time beyond which there is a net profit.

Requiring a non-negative dis criminant gives

1- 2WX > 0
S

(E. 40)
..S 0 2WX

which indicates that the fissile specific buildup rate must not be less

than a certain value, which is determined only by the economic

environment. Using reference economic conditions of Table 2. 14,

one has

S 0 2.04 (gPu/kgHM-yr)

which indicates that the fissile specific buildup rate must be larger

than about 2 (gPu/kgHM-yr) under the reference economic environ-

ment before the blanket can achieve at least zero profit. The equal

sign in Eq. E. 40 gives the minimum profitable fissile specific buildup

rate, over which a net profit can be produced, which occurs at:

T 1
MX

Using the reference discount rate X= 0. 08 (year~ ), one obtains

TM = 12.5 year.
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Since 2WX/S = 0. 116, one can expand the square root in Eq. E. 39
0

and obtain:

T Ce i (1 WX . (E.41)
BE X XR\ So 2/X - W/S(E

Thus the first breakeven irradiation time is independent of discount

rate. Using reference economic conditions of Table 2. 14 and the 2DB

result for zone 1-blanket driven by 1000-MW 2-zone core., one

obtains:

T BE-1 1. 12 (full power years) = 336 (full power days).

This is in reasonably good agreement with the 2DB-BRECON results

of 376 full power days; however, use of empirical correlations will be

needed for more accurate predictions.

The second breakeven irradiation time can also be obtained:

TBE-2 = 23. 88 (full power years)

which does not occur within the time span studied.

Figure E.2 shows these relations.

E. 3 RELATION OF OPTIMUM IRRADIATION TIME AND

DISTANCE INTO BLANKET

The local optimum irradiation time of an annular slice of radial

blanket at distance, T, from the core/blanket interface is given in the

form:

t T(r) = 2W (E. 42)
opt XS

0

Using the approximate exponential distribution of bred fissile material
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expressed in the form:

S (T) = S (0)e TT (E.43)

where S (0) is the fissile buildup rate at the core/blanket interface,

one has for the average buildup rate:

f i S (T) dT

0 f T
f.d
i-1

= S(0) (e

Consider a blanket (or blanket row) of thickness AT centered about

position T:

T- T AT (E. 45)

+AT
1 2

AT
Ti-i = 7 ~

One nas

9 = S (0)e -- Y
(e 1 -2 e 2

0 = S0(0)e - (X)

where

X(X) sinh X/X

is the averaging factor,

X = 2 .T

Since the averaging factor can be expanded for every X # 0,

i-1 -7'Ti)
(E.44)

or

(E. 46a)

(E. 46b)

(E.47)

(E.48)

PT
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X(X) = sinh X/X = . . . , (E.49)

one can obtain

X (X) a 1 (E.50)

_A T_ -1
for small X 2 0. 4 in the present work where y = 0. 05 cm and

AT = 15 cm. Thus, one has for the average buildup rate:

S = S (0) e  (E. 51)

which indicates that the average buildup rate is also expressed as an

exponential function of the blanket thickness.

Substituting Eq. E.51 into Eq. E.42, one obtains

2W I_ -Y7T
t t(T) = -5I ) e , (E.52)

opt XS0 (0)'

which indicates that the local optimum irradiation time increases

exponentially as a function of distance from the core/blanket interface,

or

T = ln t (T) -ln( 2W (E.53)
^ opt 2 S (0)X

In a similar manner, the local breakeven irradiation time of the slice of

radial blanket at distance T into the blanket, is

t = W TT (E. 54)
BE S(0)

or

T = n tBE(T) - ln W .(E. 55)
-BE S 0(0)-

The breakeveh irradiation time also increases exponentially with

distance into the blanket. These relations are shown in Fig. E. 3. The

local breakeven irradiation time can be related to the local optimum
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irradiation time by eliminating the distance, T, from Eq. E. 53 and

Eq. E. 55:

X 2
tBE = topt (E. 56)

or

ln t 2 ln t + I nX (E. 57)BE opt T

The intersection of the local breakeven-irradiation-time curve

and the local optimum-irradiation-time curve is the point where, for

a given irradiation time, tM, , the local fuel cycle cost contribution of

the outermost slice of the blanket at distance into the blanket TM? is

just equal to zero and, at the same time, is the minimum cost. Since

any slice of the blanket beyond this distance into the blanket always

incurs a positive local cost (loss of profit), the total fuel cycle cost

contribution of the entire blanket inboard of this distance, TM'' is

the minimum (i. e.., profit is the maximum) at the corresponding

irradiation time, tMl. It should be noted that this irradiation time

and thickness (tM' M,) defines a unique point for a given economic

environment. Solving Eq. E. 53 and Eq. E. 55 for tM = tBE = topt

(M' point in Fig. E. 3), one has

2
tM' X (E. 58)

For the discount rate, X=0. 08 (yr~ ), one has tM, 25 yr, which

approaches the plant design lifetime.

This is a rather longer time than expected. Actually, the semi-

log linearity cannot persist for a long time at large thicknesses, and

the "local breakeven" relation curves downward and intercepts the

"local optimum" curve at point M in Fig. E. 3. The point M can be
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obtained as the point where the cost equation E. 34 has but one real root

(i. e., the usual two breakeven irradiation times for a given thickness

degenerate into a single time) as discussed in an earlier section. As

obtained before, the coordinates of point M are expressed in the form:

T 1 (E. 59)

S (0)

M Y 2WX (E.60)

It should be noted that the "local breakeven" locus curves down-

ward beyond point M (where point M is at the tangent to the T=TM line

parallel to the abscissa) and decreases monotonically toward the ab-

scissa. In other words, the left-hand branch of the "local breakeven"

curve (i. e., the PM branch) corresponds to the first breakeven point,

and the right-hand branch (i. e. , the MR branch) corresponds to the

second breakeven point. This second breakeven point gives the latest

time at which fuel can be discharged without producing a net deficit.

Using the reference economic condition of Table 2. 14 and the 2DB

results, one can obtain:

TM 12. 5 full power years, (E.61)

TM 45 cm. (E.62)

Thus, the point M does not occur under the reference economic environ-

ment. A blanket 45 cm thick is the most profitable configuration if the

entire blanket is to be batch-irradiated for as long as 12. 5 years. This

would greatly exceed the local optimum exposure for the inner blanket

row and probably the physically useful assembly lifetime as well. Thus

this point is of more academic than practical interest. However, for the
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unusual condition of high discount rate and low plutonium price (e.g.,

X = 0. 16 year~ and C 3 = 6 $/gPu), useful information on single-row

blanket management is provided (i. e. , T M =21 cm and TM =6. 3 full

power years).

E.4 FUEL CYCLE COST OF THE RADIAL BLANKET

The local fuel cycle cost contribution distribution, eL( rT),

(mills/kwhr-cm) is:

C F(-T
eL(TT)o

1)+ C 2 F 2 2 ) - C 3 F 3(-T 3) e(TT)

T

where e(T,T) = S (T)T is the enrichment distribution (kgPu/kgHM-cm).

Defining the time-dependent but distance-independent terms as:

2+ C 2 F2(-T 2 )
T

C3 F 3 (-T 3 ) = 2(T),1

Equation E. 63 is expressed in the form:

eL(7,T) x G 1 (T) - G 2 (T)S9(T).

Since S (T) = S (0) e~7 T

eL(T, T) = G1 (T) - G2 (T)S (0) e 7 T .

For the local breakeven irradiation time, T = t BE at which

eL(T,T) = 0:

(E. 64)

(E.65)

(E.66)

(E. 67)

(E. 68)

G (T) = G (T) S (0) e^ E6

(E. 63)

C 1F 1 (T

(E . 6 9)
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since the batch blanket total thickness is optimum when the outermost

fuel reaches its local breakeven irradiation time,

1 G2 (TB)
TB y ln G- BT) S - (O). (E. 70)

The total cost of the entire blanket, eT('T,T), (mills/kwhr) can

be obtained by integrating Eq. E. 68:

G2 (T)S 0 (0)

eT(T,T) = G (T T -- G 0 ( 1-), (E. 71)

which indicates that the total cost decreases and then increases, passing

through a minimum value as shown in Fig. E. 4. The minimum cost (the

profit is a maximum) occurs at the point where the derivative of Eq. E.71

(i. e. , Eq. E. 68 itself) is zero:

=eL = 0 , (E. 72)

which gives exactly Eq. E. 69. Thus it is confirmed that the "local

breakeven" curve gives the optimum batch-irradiated blanket thickness.

It should again be noted that these results hold true for all core radii

because of the constant specific inventory buildup rate, S o(0).

Consider an alternate approximation for the cost-thickness curve.

Expanding Eq. E. 69 in a Taylor series and retaining only the first term:

e ~T e BY -Y T- _B) , (E. 7 3)

so that

eL('T,T) cc G1 (T) - G2 (T)S9(0)e B B)]. (E.74)

Using Eq. E. 69, it follows that:
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eL(T, T) c G1 (T)-TB) (E. 75)

which indicates that the fuel cycle cost distribution (i. e. , unit cost per

unit blanket thickness, mills/kwhr-cm) is proportional to distance into

the blanket in the vicinity of the optimum thickness for a given irradi-

ation time.

The total fuel cycle cost contribution (mills/kwhr) is obtained by

integrating Eq. E. 73 over the entire thickness of the blanket:

eT(TT) f e(T, T) dT = J Gl(T)(T-T B) dT
0 0

or
G

e,(T, T) OC T(T-2TB), (E. 76)

which indicates that the fuel cycle cost (mills/kwhr) is approximated by

a parabolic function of T in the vicinity of the optimum thickness corre-

sponding to a given irradiation time, TB, as shown in Fig. E. 4. This

approximation is useful because the "parabola bottom" (i.e. , the opti-

mum batch-irradiated blanket thickness) is exactly the same as in the

exponential approximation case. It is also interesting that the local

breakeven thickness is approximately half of the total breakeven thick-

ness.

E. 5 RELATION OF OPTIMUM IRRADIATION TIME

AND BLANKET THICKNESS

The total optimum irradiation time of an entire radial blanket

having thickness, T, is given in the same form as before (i.e. , Eq. E. 42

in section E. 3):
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T (T) = 2W
opt X5 oS t

(E. 77)

Using the approximate exponential distribution of bred fissile

material expressed in the form:

S (T) = S (0) e-
o 0

(E. 78)

the entire-blanket-average buildup rate, S 0 , t , is:

f
S t 0

T

S^(7) dT'

J
0

dT

S (0)
= 0

T1
(1- e 7 ). (E. 79)

Rearranging terms gives:

5 0t = S 0 (0)e -2 sinh 7T
2

2

(E.80)

where the hyperbolic function term, designated as the averaging factor,

sinh X

X = -T
x

(E.81)

(E. 82)

in the present work.

Since the averaging factor is approximately equal to unity for the

range of X : 1. 3 (i. e., y0. 05 cm , r E 50 cm) in the present work,

the entire-blanket-averaged specific buildup rate, So, is:

-Y,

o.9t o0(0e 2E 3
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which indicates that the entire-blanket-average buildup rate also

decreases exponentially as the blanket thickness increases - in the

same manner as for the row-average buildup rate, S, except

that the exponent of the entire-blanket-average buildup rate is half

of that of the row-average rate. In other words, the entire-blanket-

average buildup rate decreases less steeply than the row-average rate.

Substituting Eq. E. 83 into Eq. E. 75 and eliminating S0,t, one

can obtain:

2w -T S e (E. 84)opt SQ0(O)X

or

S= ln Topt - ln S X . (E. 85)

Again this equation is the same form as for the "local optimum" curve

of Eq. E. 53, except the semilog slope is 4/-y rather than 2/,y.

Setting Eq. E. 85 equal to zero, the intercept of the total optimum

curve and the abscissa, designated as point Q in the present work, can

be obtained:

T t(0) = . (E. 86)

This point establishes the optimum irradiation time of the zero-

thickness blanket: an unrealistic extreme case. It is also the intercept

of the local optimum curve and the abscissa.

In a similar manner, the total breakeven irradiation time of the

entire blanket is:
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TBE S W eT2 (E. 87)BE S (0)
0

or

= ln TBE - In SW0)}. (E.88)

The following points of similarity are of interest:

1) The intercept of the total breakeven curve and the abscissa

is:

T (0) (E.89)BE S 0(0)

which is designated as point P, and is also the intercept of the local

breakeven curve and the abscissa.

2) The semilog slope of the total breakeven curve (2/,Y) is twice

that of the local breakeven (1/).

3) The intercept of the "total breakeven" curve and "total

optimum" curve, designated as point N' in the present work, can be

obtained by eliminating T from Eqs. E. 85 and E. 88 and setting

TN =T opt TBE

T 2 (E. 90)N x

For the same reasons as discussed in section E. 3, a more real-

istic intercept, designated as point N in the present work, can be

obtained:

T 1 (E. 91)

7nS (0) (E. 92)
TN y 2WX .(.2
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Using the reference economic conditions of Table 2. 14 and 2DB

results, one has:

TN = 12. 5 full power years (E. 93)

-rN = 90 cm. (E. 94)

Again this would not represent a practical operating point. Figure E. 5

illustrates these total cost-time-thickness relations.

Combining Fig. E.4 and Fig. E. 5, one can obtain Fig. E. 6, which

illustrates the relations among three quantities: cost, thickness and

time; and also the relations of four curves: the cost-time curve (at

constant thickness [ graph A in Fig. E. 61), the cost-thickness curve

(at constant time [ graph B in Fig. E. 61 ), and the thickness-time curves

(one is the zero cost curve labelled the "total breakeven" curve, and the

other is a minimum cost curve labelled the "total optimum" curve

[graph C in Fig. E. 6]).

The locus of the parabola bottom (the optimum batch-irradiated

blanket thickness for the corresponding time) in graph B of Fig. E. 6 is

the "local breakeven" curve in graph C of Fig. E. 7, which can be

obtained by combining Fig. E. 3 and Fig. E. 4 in a similar manner.

Again there are three quantities: cost, distance and time; and four

curves: the cost-time curve (at constant distance [graph A in Fig. E.7]),

the cost-distance curve (at constant time [ graph B in Fig. E. 71 ) and the

distance-time curves (one is the zero cost curve labelled the "local

breakeven" curve, and the other is a minimum cost curve labelled the

"'local optimum" curve [ graph C in Fig. E. 7] ).
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E.6 GLOBAL OPTIMA

By superimposing Figs. E. 3 and E. 5, one obtains Fig. E. 8 which

displays several items of interest:

1) Four key loci: "local breakeven (LB)," "local optimum (LO),"

"total breakeven (TB)," and "total optimum (TO)"; as summarized

in Table E. 1.

2) Six key points: P is the intersection of the "local breakeven"

and "total breakeven" curves, abbreviated as P (LB-TB) in the

present work; and then one can also have Q(LO-TO), R(LB-TB),

M(LO-LB), N(TO-TB) and S(LB-TO), as summarized in Table E. 2.

The point S, which is again the intercept of the "local breakeven" (i. e.,

optimum batch-irradiated blanket thickness for a given time) locus and

the "total optimum" (i. e. , optimum irradiation time for a given blanket

thickness) locus, is important because this point can give both the opti-

mum batch-irradiated blanket thickness and the optimum irradiation time

(hence designated as the "global optimum" in the present work) such that

the fuel cycle cost contribution is a minimum (the profit is a maximum).

By solving Eqs. E. 55 and E. 85, one can obtain the global optimum thick-

ness and irradiation time:

'rs (2/3 y) ln 2S0 (0)/WX}, (E. 95)

Ts S0) 1/3 W1/3 X2/3. (E. 96)

Thus the global optima can be estimated by using the economic parame-

ter, W, and the discount rate, X, provided that the interfacial specific
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Table E.1 Summary of Relations between Local Blanket
Region Position or Total Blanket Thickness
and Irradiation Time

TB = The Interfacial Breakeven Time, Eq. E.89

To = The Interfacial Optimum Time, Eq. E.86

y = Reciprocal Diffusion Length of the Blanket



Table E.2 Summary of the Six Key Intercepts Predicted by Simplified CFM Analysis

Thickness Irradiation
Point Curves or Time Cost

Distance

(CM) (Full Power Days) (mills/kwhr)

L-B w
P T-B 0 0 S (0) 196 0

(Left) 0

L-0 2W
Q T-0 0 0 S()X 1211 0

0

L-B 2 W 7464 0
R T-B 0 0 X S (0)

(Right)

M L-0 -n WX 45 3750 N.A.

T-B 2 [S (o)] 1
NT-0 L 2WX ) 90 3750 N.A.

L-B 2 S (0) )X_24NA
T-0 -in [WXj 48 3 S 2 2224 N.A.

S 50 (0)X
_____________________ _____________________________ _________________________________________________________

0
(0
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buildup rate, S (0), and the inverse diffusion length of the blanket, y,

are known. Using the reference economic conditions of Table 2. 14,

Ts = 2224 full power days (7.4 full power years) and Ts =48.5 cm,

which is in fair agreement with 2DB-BRECON results - Ts = 1750 full

power days and Ts = 31. 4 cm - considering the approximate nature of

the preceding analysis. The preceding results were used in the various

chapters of this report, in most cases, as a qualitative guide to identify

the choice of parameters used for correlations of the more precise

2DB-BRECON results.
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Appendix F

TABULATION OF DATA PLOTTED IN FIGURES

In this appendix, the data developed from the output from 2DB

or BRECON and plotted in the various key figures in this report,

are listed. The next page contains a list of corresponding figures

and tables.
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Linear Extrapolation
Distance (cm)

6 Radial

21.1

20.7

20.7

20.7

20.8

20.8

20.8

19.5

6 aAxial
a1

24.0

25.1

25.3

25.5

25.8

25.9

26.0

26.0

Core
Diffusion
Coefficient
D c(cm)
c

1.725

1.720

1.718

1.717

1.717

1.716

1.715

1.715

Total
To

Fissile
Fission Ratio
1+628

1.10

1.12

1.13

1.13

1.14

114

1.14

1.14

Pseudo
Reciprocal
Diffusion
Length

K(M-l
Power
Rating
(MWe)

250

500

750

1000

1500

2000

2500

3000

Table F.l The Effect of Core Radius (Power Rating) on BOL Physics

Parameters

Core
Radius
(cm)

65

90

110

125

155

180

200

215

0.0406

0.0408

0.0409

0.0409

0.0410

0.0410

0.0410

0.0410

I.



CA3

One-Zone Cores

Geometrical
Buckling

(10- 5xCM-2

12.39

9.17

7.81

7.14

6.28

5.83

5.58

5.43

Enrichment(%)

One-Group
Model

17.7

15.3

14.3

13.8

13.1

12.8

12.6

12.5

2DB-BRECON

16.8

14.7

13.7

13.4

13.0

12.7

12.6

12.5

Radially-Power-Flattened Cores

Enrichment (%)

One-Groun
Model

[Perfect Flat]

18.2

16.4

15.4

15.0

14.3

14.0

13.7

13.6

2DB
[Zone No.]

18.8 [2]

16.2 [2]

15.6 [2]

14.7 [2]

13.7 [3]

13.5 [4]

13.4 [5]

13.3 [6]

Table F.2 Core-Averaged Critical Enrichment as a Function

of Buckling for One-Zone Cores

Power
Rating
(MWe)

250

500

750

1000

1500

2000

2500

3000



Central

One-Group
Model

12.9

11.6

11.2

11.0

10.9

10.8

10.8

10.8

2DB-BRECON

15.2

13.3

12.7

12.5

11.8

11.7

11.7

12.0

Peripheral

One-Groun
Model 2DB-BRECON

18.7

17.3

16.6

16.1

16.0

16.4

16 . 9

17.5

23.0

19.1

17.8

17.2

16.4

17.0

17. 9

19.0

Table T . 3 Central and Peripheral Zone-Averaqed

Radially-Power Flattened Cores

Enrichment of the

Power
Ratin q
("We)

250

500

750

1000

1500

2000

2500

3000

Core
Radius

65

90

110

125

155

130

200

215

Zone
No.

2

2

2

2)

3

4

5

6
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Power One-Group 2DBRating Model D
(MWE)

250 1.03 1.12

500 1.07 1.10

750 1.08 1.11

1000 1.09 1.10

1500 1.09 1.05

2000 1.09 1.06

2500 1.09 1.06

3000 1.09 1.06

Table F. 5 Ratio of Critical Mass for Radially
Power-Flattened Cores to Uniformly-
Loaded Cores as a Function of Core
Radius (Power Ratincas)



CA

RP g Radius Zone Row 1 Row 2 Row 3

(MWE) (CM) No.

250 65 2 12.46 5.01 1.86

500 90 2 13.81 5.57 2.09

750 110 2 13.95' 5.64 2.12

1000 125 2 14.22 5.76 2.17

1500 155 3 13.62 5.56 2.11

2000 180 4 13.94 5.75 2.19

2500 200 5 14.63 6.09 2.34

3000 215 6 15.39 6.46 2.48

Table F.6 The Effect of Core-Radius on BOL Fissile Specific
Inventory Buildun Rate in the Radial Blanket;

So (gPu/kg HM - vr)



Table F. 7 Relative Breeding Contribution of Radial Blanket Rows

Power Core Number Relative Breeding Contribution (%)
PRatingr Radius of

(cm) Zone w Row 2 Row 3

250 65 2 59.0 28.7 12.3

500 90 2 60.1 28.0 11.9

750 110 2 60.7 27.7 11.6

1000 125 2 61.1 27.5 11.4

1500 155 3 61.4 27.4 11.2

2000 180 4 61.4 27.4 11.2

2500 200 5 61.3 27.4 11.2

31)00 215 6 61.3 27.5 11.2

CA~



CA~

0

One-Zone Cores Multi-Zone Cores

Power Core

Rating Radius (' ) )'

(MWE) (CM) 0 " 0 0 N 0 tr'V0 0 0:j H V DF- V(D Fi rt, R 0 V M p- X (D P rt' q1 (D' XrIP (tt 0) W IP PID~ X P I IJ
r-'H PJ)' 0)' H : (D liJ (D Pi x~ -r'H H) 0) P

250 65 0.6654 0.2340 0.5840 1.4834 2 0.6371 0.2222 0.6342 1.4935
500 90 0.7911 0.2816 0.3873 1.4600 2 0.7411 0.2678 0.4625 1.4714

750 110 0.8525 0.3060 0.2915 1.4500 2 0.7988 0.2894 0.3714 1.4596

1000 125 0.8864 0.3167 0.2388 1.4419 2 0.8336 0.2979 0.3175 1.4490

1500 155 0.9292 0.3370 0.1709 1.4371 3 0.8988 0.3087 0.2485 1.4660

2000 180 0.9565 0.3415 0.1314 1.4294 4 0.9177 0.3161 0.2200 1.4538

2500 200 0.9695 0.3486 0.1102 1.4283 5 0.9251 0.3229 0.2049 1.4529

3000 215 0.9753 0.3500 0.0987 1.4240 6 0.9284 0.3202 0.1926 1.4412

Table F.8 The Effect of Changing Core Radius at Constant Core Height on the
Breeding Performance of the Blanket



One-Zone Core Multi-Zone Core
Power Core Zone sS
Rating Radius So ec So c No. c 0 c

(MWE) (CM) (u/kgHM.YO (gPu/kgHM.YR)

250 65 14.94 0.1684 2.969 2 14.17 0.1879 2.668

500 90 18.73 0.1471 2.756 2 17.79 0.1619 2.878

750 110 20.40 0.1371 2.831 2 19.28 0.1521 2.933

1000 125 22.55 0.1344 3.031 2 21.20 0.1465 3.106

1500 155 22.55 0.1295 2.922 3 20.60 0.1368 2.818

2000 180 22.65 0.1265 2.867 4 20.84 0.1347 2.807

2500 200 23.34 0.1252 2.922 5 21.52 0.1337 2.877

3000 215 25.10 0.1246 3.127 6 22.61 0.1325 2.996

Table F.9 The Effect
on Fissile

of Changing Core-Radius at
Specific Inventory Buildup

Blanket (2DB Results)

Constant Core Height
Rate in the Axial



One-Core Zone Multi-Zone Core

Power Core No.

Rating Radius of

(MWE) (CM) bxa Cc bxa C Zone bxa Sc bxa

250 65 0.2340 0.1684 0.03941 2 0.2222 0.1879 0.04175

500 90 0.2816 0.1471 0.04142 2 0.2678 0.1619 0.04336

750 110 0.3060 0.1371 0.04195 2 0.2894 0.1521 0.04402

1000 125 0.3167 0.1344 0.04256 2 0.2979 0.1465 0.04364

1500 155 0.3370 0.1295 0.04364 3 0.3087 0.1368 0.04223

2000 180 0.3415 0.1265 0.04320 4 0.3161 0.1347 0.04258

2500 200 0.3486 0.1252 0.04364 5 0.3229 0.1337 0.04317

3000 215 0.3500 0.1246 0.04361 6 0.3202 0.1325 0.04243

Table F.10 The Effect of Changing Core

on Breeding Ratio in the

Radius at Constant Core Height

Axial Blanket (2DB Results)



ore Te 1 Zone Cores 2 Zone Cores

0Height

Items (cm) 100 150 200 100 150 200

Radial Blanket, b x r 0.243 0.248 0.254 0.320 0.324 0.334

Axial Blanket, b x a 0.314 0.187 0.123 0.295 0.175 0.115

Core, bi 0.882 0.999 1.070 0.826 0.939 0.995

Total, btotal 1.439 1.434 1.447 1.441 1.438 1.444

Table F.l 1 The Effect of Changing Core Heights at Constant

Core Radius on the Breeding Performance



Table F.12 The Effect of Changing Core Height at Constant

Core Radius on the Breeding Performance of the

Axial Blanket

1 Zone Cores 2 Zone Radially-
Power Core Power-Flattened Cores
Rating Height
(MWe) (CM)

b xa cc b xa C Ibxa Ec Xa Ec

1000 100 0.314 0.133 0.0418 0.295 0.147 0.0434

1000 150 0.187 0.122 0.0228 0.175 0.133 0.0233

1000 200 0.123 0.166 0.0143 0.115 0.127 0.0146



Table F.13a Fissile and Poison Concentrations of 250 MWE-2 Zone "Equilibrium"
System. (103 Atoms/Barns-CM)

The "Equilibrium" system is the poisoned system
with keff1 at 300 days with any radial blanket.

Poisoned System (B.O.L.) "Equilibrium" System

Nuclide Core Axial Radial Core Axial

Zone 1 Zone 2 Blanket Blanket Zone 1 -- Zone 2 Blanket

Pu-239 1.0408 1.5093 0.0 0.0 0.9070 1.3061 0.06390

Pu-240 0.4511 0.6542 0.0 0.0 0.4552 0.6570 0.00067

Pu-241 0.09748 0.14135 0.0 0.0 0.08504 0.12658 0.000007

Pu-242 0.07630 0.09100 0.0 0.0 0.07360 0.08947 0.0

U-235 0.00869 0.00722 0.01395 0.02326 0.00607 0.00567 0.01274

U-238 4.3339 3.6052 6.9630 11.61 4.1301 3.4890 6.8933

Pu-F.P. 0.0 0.0 0.0 0.0 0.33062 0.31719 0.00589

B-10 0.1797 0.1797 4.4133 0.0 0.1797 0.1797 0.4133

kFF 1.092 1.009*

btotal 1.1273 1.2436*

P.Power Den. 682.0 674.0 -1.2** 639.7 645.4 +5.7**

* With the same radial blanket as poisoned system burned up 300 days. ce

** Flattness (2P) l
46.

(%)



Table F.13b Fissile and Poison Concentrations of 1000 MWE-2 Zone
"Equilibrium" System. (103 Atoms/Barn-CM)

B.O.L. Poisoned System Equilibrium System

Nuclide Axial Radial Core Axial
Zone 1 Zone 2 Blanket Blanket Zone 1 Zone 2 Blanket

Pu-239 0.8336 1.1206 0.0 0.0 0.7543 0.9692 0.1012

Pu-240 0.3453 0.4857 0.0 0.0 0.3595 0.4922 0.00187

Pu-241 0.07461 0.10494 0.0 0.0 0.06438 0.09253 0.00003

Pu-242 0.04805 0.06756 0.0 0.0 0.04677 0.06619 0.0

U-235 0.00948 0.00831 0.01395 0.02326 0.00560 0.00590 0.01200

U-238 4.7288 4.1472 6.963 11.61 4.4101 3.9607 6.8509

Pu-F.P. 0.0 0.0 0.0 0.0 0.37101 0.32751 0.01022

B-10 0.1106 0.1106 0.2544 0.0 0.1106 0.1106 0.2544

k 1.079 1.003

btotal 1.1311 1.2059

**
Peak P.D. 731.7 749.5 +2.4** 709.3 696.4 -2.2

** Flattness (P2~P l(%)

P.D. (KWth/Liter)

CA)



Table F.13c Fissile and Poison Concentrations of 3000 MWE-2 Zone
"Equilibrium" System (103 Atoms/Barn-CM)

B.O.L. Poisoned System Equilibrium System

Nuclide Axial Radial Core Axial

Zone 1 Zone 2 Blanket Blanket Zone 1 Zone 2 Blanket

Pu-239 0.7688 0.9140 0.0 0.0 0.7106 0.8223 0.1213

Pu-240 0.3333 0.3960 0.0 0.0 0.3486 0.4054 0.00281

Pu-241 0.07201 0.08501 0.0 0.0 0.06183 0.07524 0.00007

Pu-242 0.04639 0.05512 0.0 0.0 0.04506 0.05400 0.0

U-235 0.00958 0.00912 0.01395 0.02326 0.00518 0.00614 0.01159

U-238 4.7784 4.5486 6.9630 11.61 4.4060 4.3159 6.8270

Pu-F.P. 0.0 0.0 0.0 0.0 0.39693 0.30904 0.01313

B-10 0.0872 0.0872 0.2006 0.0 0.0872 0.0872 0.2006

K eff 1.064 1.001

btotal 1.1549 1.1891

Peak P.D. 776.7 747.9 -3.7% 733.3 702.7 -4.2%

Is.,



00

* Atoms/barn-cm

Table F.14 Non-Fuel Material Number Densities used in
the Present Work

Axial Radial Axial Radial Axial Reflector
Material Core Blanket Blanket Reflector Reflector oRd theRadial Blanket

Iron 0.01213 0.01213 0.01213 0.03033 0.05459 0.03033

Chromium 0.00312 0.00312 0.0312 0.0078 0.01404 0.0078

Nickel 0.00195 0.00195 0.00195 0.004875 0.008775 0.004875

Sodium 0.01096 0.01096 0.006576 0.01096 0.002192 0.01096



Table F.15 The Effect of Core-Radius (Power-Rating) on Peak Power Density Change
and Peak Power Flatness Change Due to Irradiation

250 MWE (65 CM) 1000 (125) 3000 (215)

PPFE PPFE PPFE

Peak Zone Power P2- 1 2 1 P.2P l
Irr.Time Density (KWT/Liter) P P.Z.P.D. P P.Z.P.D. p
(Days) P P P 1  p 1 p p 1

12 )1 2 (%) 1 2 (%)

0 682.0 674.0 -1.17 731.7 749.5 +2.43 776.7 747.9 -3.71

100 668.3 666.8 -0.22 722.4 733.6 +1.55 757.3 735.2 -2.92

200 654.2 657.1 +0.44 715.7 715.6 -0.01 744.1 719.7 -3.28

300 639.7 645.5 +0.91 709.3 696.4 -1.82 733.3 702.7 -4.17

400 624.7 632.3 +1.18 702.6 676.2 -3.76 723.4 684.7 -5.35

500 609.7 617.9 +1.34 693.9 655.6 -5.52 712.3 666.3 -6.46

600 593.9 602.1 +1.38 683.6 634.5 -7.18 699.2 647.8 -7.35

C~3



Table F.16 The Effect of Core Radius on Fissile

M49+M 41

MHM

Material Specific Inventory,

(gPu/kgHM)

Irradiation
Time 250 MWE 1000 MWE 3000 MWE

(Full Power
Days) Row l Row 2 Row 3 Row l Row 2 Row 3 Row l Row 2 Row 3

100 3.36 1.39 0.52 3.77 1.56 0.59 3.33 1.37 0.52

200 6.70 2.82 1.07 7.56 3.18 1.22 6.71 2.80 1.07

300 9.98 4.25 1.63 11.31 4.85 1.88 10.09 4.27 1.66
400 13.18 5.71 2.21 15.02 6.55 2.58 13.45 5.79 2.28

500 16.35 7.15 2.81 18.65 8.27 3.30 16.76 7.34 2.92

600 19.34 8.62 3.41 22.20 10.02 4.05 20.04 8.91 3.59

700 22.39 10.08 4.03 25.66 11.79 4.82 23.27 10.52 4.29
800 25.15 11.53 4.66 29.02 13.56 5.61 26.44 12.14 5.01
900 27.93 N.A. 5.29 32.29 15.35 6.43 29.54 13.79 5.75

1000 30.61 14.42 5.94 35.47 17.15 7.27 32.59 15.47 6.52

1100 33.21 15.86 6.59 38.55 18.95 8.13 35.57 17.16 7.32

1200 35.75 17.29 7.25 41.54 20.76 9.01 38.48 18.86 8.14

1300 38.17 18.70 7.92 44.41 22.56 9.92 41.32 20.58 8.99

1400 40.52 20.11 8.59 47.21 24.37 10.84 44.09 22.32 9.86

1500 42.81 21.51 9.27 49.93 26.21 11.80 46.80 24.06 10.76

1600 44.99 22.90 10.00 52.56 28.06 12.78 49.43 25.83 11.47

1700 47.13 24.27 10.64 55.07 29.88 13.77 51.99 27.60 12.62

1800 49.17 25.64 11.33 57.52 31.71 14.78 54.47 29.37 13.59

0



Table F.17 Burnuo Dependence of the BOL-Normalized Fissile Buildup
Rate Ratio for Various Power Ratings

250 MWE 1000 MWE 3000 MWE

Row l Row 2 Row 3 Row 1 Row 2 Row 3 Row l Row 2 Row 3

100
200
300
400
500
60,
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

1.000
0.942
0.974
0.953
0.927
0.902
0.876
0.849
0.822
0.797
0.770
0.750
0.717
0.695
0.674
0.643
0.632
0.601

1.000
1.021
1.034
1.042
1.046
1.046
1.046
1.044
1.039
1.035
1.029
1.025
1.016
1.010
1.001
0.995
0.985
0.976

1.000
1.042
1.077
1.107
1.131
1.157
1.176
1.196
1.210
1.229
1.243
1.263
1.267
1.286
1.291
1.306
1.315
1.320

_____________ I ____________________________________________________________________

1.000
1.005
0.997
0.983
0.962
0.940
0.916
0.890
0.865
0.839
0.813
0.787
0.757
0.736
0.715
0.690
0.549
0.638

1.000
1.041
1.069
1.091
1.108
1.122
1.133
1.141
1.147
1.152
1.152
1.163
1.152
1.163
1.174
1.185
1.163
1.174

1.000
1.066
1.123
1.172
1.220
1.263
1.306
1.345
1.383
1.423
1.455
1.493
1.525
1.560
1.624
1.653
1.183
1.709

1.000
1.012
1.013
1.008
0.994
0.981
0.956
0.949
0.929
0.911
0.891
0.866
0.849
0.825
0.805
0.783
0.759
0.735

1.000
1.045
1.078
1.108
1.131
1.154
1.172
1.188
1.203
1.226
1.234
1.242
1.258
1.266
1.274
1.290
1.290
1.290

1.000
1.068
1.127
1.184
1.237
1.285
1.338
1.383
1.434
1.485
1.532
1.579
1.628
1.675
1.726
1.761
1.820
1.859
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Irradiation
Time (Days) RoW 1 Row 2 ROT. 3

100 1.59(-5) 3.71(-6) 7.25(-7)

300 1.44(-4) 3.46(-5) 7.10(-6)

600 5.70(-4) 1.43(-4) 3.14(-5)

900 1.52(-3) 3.26(-4) 7.635(-5)

1200 2.15(-3) 5.84(-4) 1.45(-4)

1500 3.27(-3) 9.10(-4) 2.74(-4)

1800 4.57(-3) 1.33(-3) 3.96(-4)

Table P.18 Burnun Dependence of the Ratio of

Pu-241 Inventory to Pu-239 Inventory
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No. Power Rating (MWE) 250 1000 3000

Thermal Power (MWth) 625 2500 7500
of Core Radius
Row Items (CM) 65 125 215

1 Irr. Time 433 375 421
(Full Power Days)

Enrichment (%) 1.42 1.40 1.42

2 Irr. Time (F.P.D.) 1167 929 1053

Enrichment (%) 1.67 1.58 1.04

1 Irr. Time (F.P.D.) 1373 1290 1460

Enrichment (%) 4.01 4.44 4.61

Fuel Cycle Cost
- (Mills/KWhr) -0.1228 -0.0728 -0.0364

o4 Revenue per Assembly -39.00 -50.05 -45.90
($/kgHM yr)

1 Enrichment (%) 4.92 5.75 5.45

Cost (Mills/KWhr) -0.1178 -0.0690 -0.0355

Revenue ($/kgHM yr) -37.49 -48.09 -44.22>1

2 Enrichment (%) 2.56 3.17 2.94

E-4 Cost (Mills/KWHR) -0.0289 -0.0245 -0.01061
i 0)
1 4 Revenue ($/kgHM yr) -7.61 -15.33 -12.35

r-i
1 d 3 Enrichment (%) 1.13 1.48 1.36
0 o>

Cost (Mills/KWHR) +0.0468 +0.0109 +0.0070

Revenue ($/kgHM yr) + 10.54 + 6.16 + 7.68

Table F.19 The Effect of Changing Core Radius at Constant
Core Height on Breakeven, Optimum and Physical
Lifetime Points of the Radial Blanket



Comparison of Optimum and Breakeven Irradiation Times for the Radial.

Blanket-Row 1 (the-.Qpe-Row Radial Blanket) Predicted by Correlation
and 2DB-BRECON

Ds Pu priceDis- ($/gPu) 6 10 14
count Ful
Rate Power
(yr-1 ) Days 0.02123 0.01274 0.009095

Correlation 1867 1417 1181
Fab.Cost 0.04 2DB-Brecon 1841 1406 1186

69$/kgHM Difference +26 +11 -5

Repro- Correlation 1682 1277 1065
cessing 0.08 2DB-Brecon 1704 1283 1076
Cost Difference -22 -6 -11

Correlation 1583 1202 1001

50 $ kHM 0.12 2DB-Brecon 1591 1201 1005
Difference -8 +1 -4

Correlation 1150 960
0.16 2DB-Brecon N.A. 1136 948

Difference +14 +12

Fab.Cost W 0.04282 0.02569 0.01835

140($/kgHM) Correlation 2457 1864 1555

Rep.Cost 0.08 2DB-Brecon 2571 1894 1567

100($/k.HM) Difference -114 -30 -12

(A) Optimum Irradiation Time (Full Power Days)

(9.22x10
3 ) W0 .54 x-0. 15

6 10 14

0.02123 0.01274 0.009095

627 350 237
597 348 250
+30 +2 -13

688 384 2bu
683 376 266
+5 +8 -6

740 413 280
809 405 281
-69 +8 -l

435 295-

N.A. 453 296
-18 -l

D.04282 0.02869 0.01835

877 1603
N.A. 888 1567

-11 +36

(B) Breakeven Irradiation
Time 144 P7

(8.75x10 4 ) W '

Table F.20

Correlation:



Table F.21 Comparison of Optimum and Breakeven Irradiation Times for the

Radial Blanket - Row 2 Predicted by Correlations and 2DB-BRECON

Pu price
gPu)

Discoun Full
Rate Power
(yr-l) Days W

0.04

Correlation

2DB-Brecon

Difference

6

0.02123

N.A.

10 14

0.01274 0.009095

N.A.

2560

2592

-32

Correlation 2480 2168

0.08 2DB-Brecon N.A. 2499 2171

Difference -19 -3

Correlation 2760 2250 1967

0.12 2DB-Brecon 2718 2206 1910

Difference -42 +44 +57

Correlation 2100 1835

0.16 2DB-Brecon N.A. 1986 1718

Difference +114 +117

(A) Optimum Time 0.40 -0.24
T =(7.75x10 )W X
opt

6 10 14

0.02123

1404

1400

+4

0.01274

730

800

-70

0.009095

475

569

-94

1932 1004 653

1957 934 634

-25 +70 +19

1210 787

N.A. 1158 722

+52 +65

898

N.A. N.A. 858

+40

(B) Breakeven Ti e 1 28 0 46

T =(8.55x10 )W X
BE

C-"



Breakeven *1 Optimum *2
Entire

No. No. Zone Blanket Local Total Local Total
of of Position Thickness Tme Time Time Cost Time Cost
Row Zone (cm) (cm) (Full Power Days) (FPD) (Mills/kwhr) (FPD) (Mills/KwHr)

1 2.5 293 293 1053 -0.0306 1053 -0.0306

1 2 7.5 15 375 332 1293 -0.0243 1163 -0.0546

3 12.5 493 376 1621 -0.0183 1283 -0.0720

4 17.5 678 425 2043 -0.0130 1417 -0.0833~

2 5 22.5 30 952 485 2550 -0.0088 1558 -0.0896

6 27.5 1361 556 NA NA 1707 -0.0917

7 32.5 1980 633 NA NA 1848 -0.0911

3 8 37.5 45 NA 718 NA NA 2054 -0.0874

9 42.5 NA 811 NA NA 2155 -0.0827

* 1
*2

By Linear Interpolation
By Quadratic Fitting

1000 MWe - 2 Zone Core for the Reference Economic Conditions

Table F.22 2DB-Resultsfor Four Key Loci (Irradiation Time - Blanket
Position or Entire-Blanket Thickness Loci) and Two Key
Curves (Cost - Blanket Row Position or Entire-Blanket
Thickness Curves)

CIO



Table F.23 Comparison of Optimum and Breakeven Irradiation Times. For the
Two-Row Radial Blanket Predicted by Correlation and 2DB-BRECON

Pu price
($/gPu) 6 10 14

Discount Ful
Rate Powe

(yr~ ) Days W 0.02123 0.01274 0.009095

Correlation 2455 1858 1560

0.04 2DB-Brecon 2497 1915 1624

Difference -42 -57 -64

Correlation 2189 1678 1409

0.08 2DB-Brecon 2246 1707 1432

Difference -57 -29 -23

Correlation 2015 1560 1310

0.12 2DB-Brecon 2040 1562 1310

Difference -25 -2 0

Correlation 1913 1481 1244

0.16 2DB-Brecon 1879 1452 1222

Difference +34 +29 +22

(A) Optimum Irradiation Time (Full Power
Das)

Correlation: T opt-2=" (1.0 3x10 4) Wo-52X-0 -18

6 10 14

0.02123 0.01274 0.009095

938 483 312

882 497 355

+56 -14 -43

1139 586. 379

1061 556 382

+78 +30 -3

1276 657 424

1574 628 414

-298 +29 +10

712 460

N.A. 737 460

-25 0

(B) Breakeven Irradiation
Time (Full Power Days)

Correlation: TBE-2=(3.46x10 
4 )Wl.30X0 -2 8



u Price
/gPu) 6 10 14

Discount 
W

Rate
(yr-1) (Pull Powe

Days) 0.02123 0.01274 0.009095

Correlation 2492 2106
0.04 2DB-BRECON NA 2477 2100

Difference +15 +6

Correlation 2724 2109 1763
0.08 2DB-BRECON 2820 2155 1808

Difference -96 -46 -25

Correlation 2471 1914 1618
0.12 2DB-BRECON 2489 1933 1629

Difference -18 -19 -11

Correlation 2307 1787 1510
0.16 2DB-BRECON 2234 1771 1500

Difference +73 +16 +10

(A) Optimum Irradiation Time (Full Power Days)
Correlation: Topt -3 = (1.02 x 104 )W0 .50 x-0 2 4

co6 10 14

0.02123 0.01274 0.009095

1490 751 479
1276 702 499
+214 49 -20

1805 910 602
1789 811 546
+16 +99 +56

1079 688
NA 987 611

+92 +99

1187 756
NA 1545 710

-358 +46

(B) Breakeven Irradiation Time
(Full Power Days) Correlation:
TBE -3 = (7.53 x 105) Wl. 34x0. 40

Table F.24 Comparison of Optimum and Breakeven Irradiation Times for
Three-Row Radial Blanket Predicted by Correlation and 2DB-BRECON
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No. Power Rating (MWE) 250 1000 3000

of Thermal Power (MWth) 625 2500 7500

Row Core Radius

R I tems (CM) 65 125 215

1 Irr.Time (FPD) 433 375 421

Enrichment (%) 1.42 1.40 1.42

a 2 Irr.Time (FPD) 669 554 620

Enrichment (%) 1.50 1.46 1.48

3 Irr.Time (FPD) 1054 807 892

Enrichment (%) 1.64 1.54 1.57

1 Irr.Time (FPD) 1373 1290 1460

Enrichment (%) . 4.01 4.44 4.61

Fuel Cycle Cost -0.1228 -0.0728 -0.0364
(Mills/KWhr)

o Revenue per Assembly -39.00 -50.05 -45.90
($/kgHM)

a) 1 Enrichment (%) 4.92 5.75 5.45

Cost (Mills/KWhr) -0.1178 -0.0690 -0.0355
>1

o Revenue ($/kgHM) -37.49 -48.09 -44.22

r 2 Enrichment (%) 3.60 4.39 4.15

a Cost (Mills/KWhr) -0.1467 -0.0935 -0.0461

- Revenue ($/kgHM) -21.15 -30.83 -27.77

3 Enrichment (%) 2.66 3.32 3.16
0 o
-H Cost (Mills/KWhr) -0.0998 -0.0827 -0.0392

, Revenue ($/kgHM) -8.77 -17.25 -15.21

Table F.25 The Effect of Changing Core Radius at
Constant Core Height on Breakeven, Optimum
and Physical Lifetime Points of an Entire-
Blanket Batch-Irradiated Radial Blanket



0

Table F.26 Comparison of Global Optimum Irradiation Time and Thickness for the
Radial Blanket Predicted by Correlations and 2DB-BRECON

Pu price
$/gPu) 6 10 14

Discount Full
Rate Power
(yr-1) Days W 0.02123 0.01274 0.009095

Correlation 2661 2367 2190

0.04 2DB-Brecon 2641 2394 2200

Difference +20 -27 -10

Correlation 1948 1732 1603

0.08 2DB-Brecon 1950 1744 1580

Difference -2 -12 +23

Correlation 1623 1443 1336

0.12 2DB-Brecon 1626 1425 1301

Difference -3 +18 +35

Correlation 1426 1268 1174

0.16 2DB-Brecon 1363 1232 1132

Difference +63 +36 +42

(A) Global Optimum Irradiation
(Full Power Days)

Correlation: T s=(1.53x10
3 ) W 0 .2 3X- 0.45

Time

6 10 14

0.02123 0.01274 0.009095

33.4 42.2 48.0

32.8 42.7 47.9

+0.6 -0.5 +0.1

22.1 30.8 36.6

22.4 31.4 35.9

-0.3 -0.6 +0.7

15.4 24.2 30.0

16.2 24.6 29.6

-0.8 -0.4 +0.4

10.7 19.5 25.2

9.2 19.8 25.1

+1.5 -0.3 +0.1

(B) Global Optimum Thickness
(CM)

Ts =(l.38x10- 2)W -0.86X- 0.82



Pu Price 6 10 14
($/gPu)

Discount W
Rate (Full Power 0.02123 0.01274 0.009095
(vr- 1 ) Days)

Correlation -0.0415 -0.1458 -0.3334
0.04 2DB-BRECON -0.0522 -0.1295 -0.2157

Difference +0.0107 -0.0163 +0.1177

Correlation -0.0216 -0.0760 -0.1738
0.08 2DB-BRECON -0.0293 -0.0936 -0.1645

Difference +0.0077 +0.0176 -0.0093

Correlation -0.0148 -0.0519 -0.1187
0.12 2DB-BRECON -0.0147 -0.0650 -0.1280

Difference -0.0001 +0.0131 +0.0093

Correlation -0.0127 -0.0396 -0.0906
0.16 2DB-BRECON -0.0054 -0.0449 -0.0994

Difference -0.0073 +0.0053 +0.0088

(c) Global Minimum Puel Cycle Cost Contribution

e (1.50 x 10~ ) W-2.46 X~0'94

Table F.27

(Mills/KWhr) Correlation

Comparison of the Global Minimum uel Cycle Core Contribution
of the Radial Blanket Predicted by Correlations and 2DB-BRECON



Internal (Core) Axial Blanket Radial Blanket

Normalize Norm. Norm.

Power Core One One
Rating Radius Group Group 2DB 1GM 1GM 2DB 1GM 1GM 2DB
(MWE) (CM) Model Model

(To 1000
MWE)

250 65 0.688 0.670 0.665 0.243 0.253 0.234 0.443 0.554 0.584

500 90 0.808 0.798 0.791 0.278 0.289 0.282 0.303 0.378 0.387

750 110 0.877 0.866 0.853 0.298 0.310 0.306 0.232 0.291 0.292

1000* 125 0.897 0.886 0.886 0.305 0.317 0.317 0.191 0.239 0.239

1500 155 0.936 0.926 0.929 0.314 0.326 0.337 0.135 0.169 0.171

2000 180 0.962 0.950 0.957 0.431 0.334 0.342 0.106 0.132 0.131

2500 200 0.973 0.962 0.970 0.324 0.337 0.349 0.088 0.110 0.110

3000 215 0 979 0.967 0.975 0.326 0.340 0.350 0.078 0.097 0.099

* Normalized to 1000 MWE

Table F.28 Comparison of the Breeding Ratio Predicted by the One-Group
Model and 2DB as a Function of Core Radius (One-zone cores)



Central Enrichment Peripheral Enrichment

Power Core One-Group Model 2DB One-Group Model 2DB
Rating Radius
(MWe) (cm) Zone 0 Multi Multi c Multi Multi

250 65 2 12.9 15.3 15.2 27.6 18.7 23.0

500 90 2 11.6 13.5 13.3 26.3 17.3 19.0

750 110 2 11.2 12.8 12.7 25.7 16.6 17.7

1000 125 2 11.0 11.8 12.5 24.7 16.1 17.2

1500 155 3 10.9 11.8 11.8 24.4 16.0 16.4

2000 180 4 10.8 11.8 11.7 24.2 16.4 17.0

2500 200 5 10.8 11.8 11.7 24.2 16.9 17.9

3000 215 6 10.8 11.8 12.0 24.1 17.5 19.0

Table P.29 The Effect of Core Radius on Central and Peripheral

Central-Zone and Outermost Zone Enrichment

C~3

or
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