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FURL CYCLES CODE, "FUELMOVE III"

by

 J.A. Sovka and M. Benedict

ABSTRACT

Further modifications to the fuel cycle code
FUSLMOVE are described which were made in an attempt to
obtain results for reflected reactors operated under
bateh, outin, and bildirectional fuellng schemes, Numer-
1cal methods used to obtain solutions to the condensed
two-group diffusion equation are presented. Results
indicated that the method for obtaining solutions for the
thermal flux distribution in reflected reactors using
this condensed two-group formulation appears to be in-
adequate in certain cases in which the reactor 1s treated
explliclitly as a separate region, A recommendation 1s
made for one additional evaluation of this technique with
a further recommendatién that subsequent studies of the
fuel cycle behavior of reflected reactors be made using
the full two-group diffusion formulation.
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FUEL CYCLES CODE, "FUELMOVE TII"

I. INTRODUCTION

The MIT Fuel Cycles Project has had available and
made use of a Fortran computer code, called FUELMOVE,
develoned mainly by N,B, McLeod, which is described in
detail in NY0-9715 (Ref. 1). The code is a two dimensional,
two-group fuel depletion code capable of studying the
effect of fuel and poison management on nuclear power
plants fueled with U-235, U-238 and their irradiation
products,

FURLMOVE was written as two sepnarate codes, FUEL and
MOVE I, In the FUEL code, the homogenized reactor unit
cell properties are evaluated as a function of flux-time,
The oroperties at specified flux-times are then put on
punched cards and/or magnetic tape for subsequent use by
the MOVE I code. The MOVE I code represents fuel by 1lts
flux-time transfer. It evaluates flux and power density
distributions, control noison requirements, the criticality
factor and average core properties throughout fuel 1ifetime,
and when fuel 1s discharged, it obtains the nuclide con-
centrations, fuel burnup, fuel cycle cost and total energy
cost,

The MOVE T code 1s capable of treating cylindrical

reactors with azimuthal symmetry, whose reflector can be

represented by a reflector savings, and allows for 150



regions, 15 axial by 10 radial, Up to five radial zones
of arbitrary dimensions can be used and up to five
different fuel types can be specified at‘any one time, one
ver radial zone., -

Most power reactors contain a reflector and in certain
fueling schemes, such as one using a soluble poison in the
moderator and reflector for reactivity control, the
reflector savings approximation is not adequate to describe
the effect of the reflector unon criticality an& flux dis-
tribution. Therefore, work was initiated in September,
1962, to modify MOVE I so that the reflector region could
be treated explicitly. Flux distributions could then be
calculated throughout the reacbor, including reflector,
thereby avoiding the need for the reflector savings approx=-
imation, The modified code, called MOVE II, was tested
and compared with results obtained by MOVE I for the bi-
directionally fueled CAWDU reactor, The calculational
changes were described in NY0-9717 (Ref., 2) along with
results for the steady-state bidirectionally fueled and
batech loaded cases, ‘

However, it was found that the form of the condensed
two group diffusion equation used in MéVE I and IT led to
an instability in the solutions for the thermal flux dis-
tributions in certain cases, giving non-physical flux solutions,

Yo satisfactory results could be obtained for a reactor
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following the OUT IN fueling pattern if the reflector was
treated expllicitly as a separate region. The highly dis-
torted flux distributions at high exit fuel burnups, with a
large peak occurring at the core-reflector boundary, intro-
duced a positive feedback effect upon the coefficients of
the difference diffusion equation; the solution to which 1is
obtained by the "extrapolated Liebmamn" iterative method,
Thus errors remaining in the flux distribution from previous
iterations would increase in subsequent iterations due to
this feedback until non-real flux distributions, including
negative fluxes, begah to occur, It was apparent that the
existing method of solving the condensed, two-group diffusion

equation in its differential difference form was inadequate

to treat most cases of interest of reflected reactors,
Therefore, a decision was made to rewrite the sectlons of the
code whose functions are to calculate the flux distribution,
eriticality, power density and control poison requirements
utilizing the integral form of the diffusion eguation in the
difference form,

At the same time, the following improvements to the
MOVE I and MOVE ITI calculational methods were included.

(1) The reactor ecriticality factor of MOVE I and IT is
based on a thermal flux-and volume weighted reactor average
of a local criticality factor calculated at each mesh point.

In two group theory, 1t 1s necessary to weight the diffusion
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coefficients and cross-sections with the fast and thermal
adjoint flumes in order to obtain the correct criticality
relationship. Since the adjoint fluxes are not available,
the thermal flux is used for weighting thus introducing a
possibly incorrect critiecality factor, With the integral
form of the diffusion equation, the correct neutron
balance is obtained directly with the solution for the
flux distribution, and the eriticality factor is correctly
obtained, considtent with the physics model assumed,

(2) The diffusion coefficients calculated as input for

MOVE T and IT are intended for use with a lattice-cell-

averaged flux. However, the fission and absorption cross-
sections, and other reactor physics parameters calculated
and used by FUELMOVE I and II, require the use of a fuel
average flux. Thus, the diffusion coefficients are not
consistent with the model. In the new code, the flux dis-

tributions and neutron balance are calculated using a

cell-averaged flux, since the diffusion equation really holds

only for homogenized regions, in which the actual cell
composition has been taken into account by means of suitable
wiighting with the cell "fine structure" flux. The use of
the cell average flux also allows one to use the correct
boundary conditions of continuity of thermal flux and current

at the interfacés between two dissimilar regions such as the
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core and the reflector, Indeed, the "fuel" flux 1s un-
defined for the reflector regions

(3) MOVE I and IT are unable to meet the boundary
conditions of continuity of thermal neutron current at
interfaces where the diffusion coefficients are different
on the two sildes, This condition is taken into account
directly by the use of the integral formulatlion provided
the flux mesh points are chosen to fall on the boundary.

(It) Axial mesh spacings in MOVE I and II are required
to be constant. In the new code, variable axial as well
as radial mesh spacings will be vossible,

(5) Up to 15 radial by 10 axial mesh points are
alléwed with up to 6 different radial zones.

(6) The use of soluble poison in the moderator and
reflector is again a possible method of reactivity control
as developed for MOVE II.

The following 1s a detailed description of the under-
lying theory and calculational methods used in the modified
code, called FUELMCVE IIX, and includes results obtained
with the code, Because of unsatisfactory behavior of the
code for reTlected reactors, recommendations are made to
incorporate the regular two-group equations into subsequent

fuel cytle codes.



I, THE MOVE ITI CODE

A, General

The objectives and procedures of MOVE III are essentlally
the same ﬁs those of MOVE I as described in the introductory
sectionI, MOVE III evaluates the effect of fuel and polson
management on the fuel burnup, flux and power distributions
and nuclide concentrations in the fuel. It uses reactor
physiecs parameters of the fuel, as characterized by flux-time,
which are calculated by the FUEL Code. The MOVE IIT code
was written for two dimensional (r,z) 2 group analysis of
cylindrical reactérs with azimuthal and axial symmetry; and
allows the specification of fuel properties in a maximum of
150 regions, 15 radial by 10 axial, for one-half of the core.
Up to six radial zones, each with different fuel properties,
or alternately, reflector pfopérties, can be used with an
arbitrary number of radial mesh points per zone and, within
certaln limits, an arbitrary radial mesh spacing. Radial
reflectors can be treated either expliqitly, as a separate
radial zone, or by means of the reflector savings approximation,
while axial reflectors can ohly be treated by the latter tech-
nique,
B. Methods of Reactivity Control

1. Poison Condeal
The method of controlling the reactivity of a specific

reacbbr 1s closely tied in with the type of fuel management,
Por those fueling schemes which requime additional reactivity

gontrol, poisoning of the reactor and/or reflector 1s achleved



either by means of absorbers or soluble poison, with an equil-
valent cell-homogenized absorption cross-section. It 1s assumed
that the control poison does not afféct the neutron spectrum and
thereby the fuel physics properties which have been calculated
by the FUEL code. The following methods of poison control of
reactivity are possible in the MOV®T III code.
1) Uniform poison removal, in which the spatial dis-
tribution of poison has a specified relative shape.
Its magnitude 1s yaried for reactivity control,
This method could be used to approximate the use
of control rods,
2) Uniform soluble poison removal in the core moderator
and reflector, |
3) A constant fixed poison with arbitrary shape used for
power density shaping,

2. Muel Management

It is plaﬁned to include the following possible fuel
management schemes in MOVE IITI:

a) Batch Irradiation. The reactor is charged with a

fresh load of fuel and controlled during irradiation by means of
one of the poison management schemes above. The fuel is dis-
charged when all polson has been removed and the reactor can no
longer remain critical in that operating condition.

b) Steady-State Bidirectional Fueling. Short fuel

alements are charged continuously at one end of a channel,
moved steadily along the channel and discharged at the opposite

end. The fuel in adjacent channels moves in opposite di-

rections, The fueling rate is adjusted so that the reactor
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is just eritical without the use of control poilson.

¢) Discontinuous Outin. The reactor core 1s divided into

a number of radial zones of equal volumse, At the end of a
cycle, fuel 18 discharged from the center zoné; all other
fuel zones are moved one zone inward and fresh fuel is loaded
into the outer zone, This operation can be performed with or
without axial inversion in which fuel is divided in the middle
and each half turned end for end and reﬁurned to the reactor,

¢, The Neutron Diffusion Equation and its Numerical Solution

1. The Condensed Two-Troup Equation

The two-neutron group, reactor physics model as outlined
in NY)-9715 results in the following equations, The fast

flux behaves according to Egqn. (1.1).

...D;_ AiV(j"‘ad ¢‘(()3)) t—Ze d)‘(r,}) = \:;‘g‘(‘r_i;)[‘)zfd)i(‘;z‘) + 7(\~F)D{-A;\l(%fa4\ ¢€(v’,3))j

(1.1)
which upon simplifying becomes (1.2)
-Dg Aw(grao\ bl )) + Z 0} (e 3 = __§_P__Zj ctu C )
\—evz(l-F) i =D "'e-”[("@ =73

(1.2)

while the thermal flux follows Eqn. (1.3)

- Dy, div(grad Cbk(r,é)) + (ZgZ‘,) dey) = p Ze_cb;(f.s). (1.3)



where
4k(ﬁ;) = fast neutron flux at (r,z)
d%(qg) - thermal neutron flux
D, Dy = fast, thermal diffusion coefficlents

™M
A

fast removal cross-section from the

fast group to the thermal group

& = fast fission fachor
Q = number of neutrons emitted per
fission
<
Z = thermal fission mactoseople cross-section
“70-F5 = resonance fisslon contribution

M
n

thermal absorption macroscopic eross-

section

™M
3
i

the polson control contribution to the
thermal absorption cross-section

14 = resonance escape probability

Solving for @e(r,z) 1in (1.3) we obtain

it

q>£ ( v 5) Z!‘ [ — D, dw (‘I"ad d>t.("r'5)) + («ZL'Z\.:) d>|- (":5)
2

v (1.h)

Now, let

[t}

X(rg = [ ~Drawlgat dyiez) » (2> Z.)aeles ]

(1.5)
Substituting expressions (1.4) and (1.5) into (1.2) gives
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p Dy

Zz(_\ -—é‘IZ(.b-——p}] C’i\/(c‘ﬂ)&i %}(é)) - D‘t 0‘\‘\} (ﬁ\’dd Cbt(f.a,\) + (Z{;'fzol\) ét((é)

.q.
= pevl’ &, (5,3)

(1.6)
If the resonance escape ’probability, p, does not vary greatly
with position, wne can cancel the p's in the first term of (1.6)
with small error. D‘/Zz can be replaced by the Ferml age,
T , and Eqn. (1.6) can be simplified to

'“lto& dw (c&rad X(f.g)) *D{Aiv(cv-ae\ ¢t(r.§)> + Zch,‘u.;) = (3 b (v3)

(1.7)

where A = ‘__5!2(‘_@ (1.8)
<

B - rev 2 (1.9)
\'e?(\-(»)

2 . TaTu (1.10)
Bgn. (1.7) 1s then the condensed two-group equation
with which 1t 1s required to solve for the thermal flux,
gy (r,z), having been given (or in the case of Zw , assumed)
values for the core parameters, The reactop may be divided
into a number of regions such that D, T, o | 2T
and (.79 are constant within each region. The following con-
ditions must also be satisfied:
a) The thermal flux, f@i(r,z) is continuous in the
reactor and the neutron current,- D, %_?&-4{(""3)
is continuous across interfaces

between regions.
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b) On the centre-line axis Q%éiz) w O
and on the reactor mid-
3’43(11,0)
. plane 93 = 0

while on the external boundary of the reactor,

the extrapolatlon distance, % or logarithmic
2%

derivative will be specified 9)’\/47 ==X .

With the homogeneous boundary condition (b), the
problem stated then defines an eigenvalue problem and we
seek to find solutions of the thermal flux in (1.7) by
adjusting the control poison cross-section ;E;V or the
other fuel parameters by manipulating the flux-time, For
the complicated reactor designs to be studied, only approx-
imate solutions to this problem can be found by the use of
numerical methods., The following will describe these
methods as used in MOVE III to solve this problem numerically.

2, Derivation of the Difference Diffusion Equation

In order to proceed to the numerical solution, the

mathematical derivations as described by Hageman (Ref. 3) will
be adanted to the diffusion equation (1.7) above, We first
impose a non-uniform mesh of horizontal and vertical lines on
the reaotor such that all internal interfaces and external
boundaries lie exactly on mesh lines, The intersections of
the horixontal and vertical lines define the mesh points at
which the solution for the thermal flux #(r,z), 1s sought (Fig. 1).

Consider an arbitrary interior mesh point (i,j) in the
(r,z) plane as shown 1n‘Figwre 2. Each mesh point will have a

volume associated with it which is shown further subdivided into
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four smaller volumes, W_ in Figure 3. For each of the

mesh volumes, VX , surrounding the point (1,3) the

"condensed" diffusion equation (1.6) may be written

L)y divlqead Xcrp) = Dy divlgod & (=) + Zr & ley = ﬁ blrz)  (2.1)

Integrating (2.1".) over each of the mesh volumes V,Z

- (ﬂ"‘>}.£ A{V(%\fa& X(.l\,é))év - D '( u/(%\’éo\ q)(f,z\)dv
/'y 7 14

Zi{etgav - g [ augpdv
v, Ly, ,
L=1 (2.2)
By the divergence theorem, the first two terms of (2.2)
can be reduced to surface integrals of %—x and Qd‘
w 97\
respe ctively, over the six surfaces enclosing Vi . ? o

n

répresénts the derivative of 4> in the direction of the

outward normal to the surface, Hence

2¢ . + 29

—

20 : e
Since neither <& vor X (which 1s effectively the fast
flux 4> ) are functions of & , then 2X and 2¢ are
£ 2n
both zero over the two vertical plane surfaces which enclose ~-\/:e_ .

Writing ®Eqn. (2.2) for Volume 2

; 3 x =
(T, { L ,—;\40“4 fs“ 2 e 63;“45 +§¢ apaw}
— | 2% 2§ (S8

L, { L dq‘ f I B{AW gcr‘a B cwj

0‘2"

+ZTLL¢OW - @= ‘,“bdv (z.3).
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Equations similar to (2.3) may be written for '\ZL ’ ,R =1,

3 and ll—o
. . _D X _D 2¢
Since the neutron currents £ 3 and EL 55
are assumed to be cbntinuous across interfaces, the surface
Integrals over the common surfaces cancel when the four
expressions of (2.27) are added. Hence, summing (Z.2)

over the four volume elements, we obtain Equation (Z .4)

~ (T, [ « an g Ac:] (Ta), [ ' «:92—1‘4@]
ey |, Feaw v {2 aq] -—<co<>4§gﬁ_1%>; & (2 ac)
K ° 8

_ 24 o, \ 2 _ (24 | 2
% {— §6‘| A o« &Gz An s ] Dl [,fﬁ.‘a 5"‘ AG) i (G' c;_?; < )
L‘.

(&)
In order to obtain the finite-difference equations at

mesh point (i,j) it is necessarj to make numerical approxi-
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mations to the integrals of (2.4 ). Integrals such as

g id) A¢ are approximated by
G o
- 2% A ~ Em._g; -, ) ' A
L o 32 G, (2.5)
Now
S 4 = Zux§ - Z (r +33)Ae (2.46)
G, 2 ! 2
Thus
;‘; _ ¢w1) "d>u 2
K:gdj"dd = [ %z )]‘%’; (‘:*% z)Aé (2 7)
Likewise, '
aXC!QJ —_ ’XLﬂiNXﬁj ] 21 (Y" 3 e
= ) , P Cr > 4 AN
( I 682, [ / ) (2.8)
In a similar way for surface U'Z ’ |
g 2;3 4 _Lb;,; —@M,j-i ] . K'AGJ
& on Z1 G (2 19)

2

A = [’<";" 63‘/:?}_Z ]%—
N %'(r{*%/) (210

So

"2 '(b;,., “(-b;,'—
(" 2¢ 4o - —-‘_ = "1] %ﬁ (rir By) o€ (2.11)
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Analsgous expressions are derived for the remaining surfaces.
The volume integrals, such as SV Blez)dV  , are

Z
approximated by

gv Cb(r;)c\v I C’DC,‘S 2y G2 Cre 32/4> ] A8

4 (2.22)

Using the above approximations, the condensed two-group finite-
difference diffusion equation at a mesh point (i,3) may be

written as

5156(;,3.1) v 9, XGa,)) - 33 X 1) o+ 34X(;+1,35 + S Xy

Y, L) + B, Sliay) + s i) Y dliay) +ELL)

= Vg $(,3) (2.13)

where

g - = (’tol)i Ya (ri- 31/4_) - (@)2 %z (ris 31/4_)
1 Z Z, (2. 2h4)

S, = —(ZgL )[ (v, 2, + (), zz] (2.15)

by = =% 2s (";: :Z"r> ~ () G B) (2. 16)

““’(z‘éz >[(%¢Bz z, + (T, z—z] (2.17)
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O = = (5«5, + &5+ 5,) (2.18)
5, - —Dy 9alre - ;3/;2 - D, galrr o) (2. 19)
Y, = —Cg%l~—>[Dzl+Dz] (2.20)
4, - — D, ga (ri- 3;/;2 — Da 9= (c+ 92)a) (2.21)
Yy = 5-37_*“ -—>E D7, ~ D, z] | (2.22)

R R EE AR E RN VY
*Faglzz("«"‘élﬁ-) + (B4 jzzz("c*?b/q-)]

The coefficlent “{0 is further subdivided into the

(2.23)

following

‘YO = \{03, -+ 7 1N +?Yoc_ - '\/0 ":1> (2 -ZL'-)

where in turn

Tboa = ‘“[“5, MR Al (2.25)



—

| n n
’Yob = _47 de,l %1 21(r{"%1/‘\-> + Q;w,z. 31 z:L(r; t qz/“_)’
v 00, il + WL gnlede | @26

8, = z‘:[ g G O 2.9 2 (e 34
N Z:H 31 22, (r;_'%t/q_) x ‘Z":“ OSZ 22/(}1 —r%a/q_)] (2.2)7)

‘XD(? = Z|‘-— [Z -Frczl’zv (. '3‘/45 v Z;.F?%z Z, (r;. T %1/49
+2;w\%1 2, (v - 31A_> r Z:eucjz =, (v +3;/4_§J (2.28)

The various absorption coefficients used in Equns. (2.26)
to (2.28) are |
<Ig; = the weighting factor for multiplying the
adjustable poison cross-section which can

be used to control reactivity. The factor

ean be warfied between 0 and 1.0 through- (2.28a)

out all possible 150 regions, thereby
approximating the effect of spatially
lumped absorbers such as control rods.

cell
AZTQJ total homogenized macroscopic absorption

inecluding the unpoisoned cell absorption

)

crogs-section of the reactor cell, (2o285>
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cross-section, the xenon homogenized
cross-section, and any fixed absorber
built into the fuel.

If the mesh point (i,3) lies on a segment of thé boundary

where E;ﬁ_ = 0, then the constants I%L; (41ﬂ>£ , F&.

dndthe absorption cross-sections for those regions which are
outside of ‘]L are set equal to zero,

For mesh points (1,j) lying on the external boundaries
of the reactor, the logarithmic boundary condition is applied,

i.e,
(?_‘3_’ = _ %e

on e oe 2.29)

where (t>z_
de

value of flux on the outer boundary

extrapolation distance beyond the

outer boundary at which the flux

is assumed zero.
The eipression for the normal derivative of the flux then is
Inserted into the surface integral terms of equation (2.3).
Since the mesh point falls on the outer boundaries, then
surfacesbounding the reactor are the ones at whi‘ch (%‘%
of Egqn. (2.29) 1is to be applied., Thus, for example, at
the outer radiuspone of the relevant surface integrals would

be g;léﬁk dG° and would be approximated by

99W

T by |
¥ r, — B E A 2.30
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Similarly, at the axial boundary, for example

. 5 : N CD(-*‘.)ﬂ . Ca,
gq,h—;hc\q - —S—H’— %_(r; Vily) 2O

(2.31)
the spatial coefficienfs of (2.80) and (2.31) are then added
to the coefficients '\Yoa for the boundary mesh points,
The quantity X(i,Jj) at each mesh point is obtained by
first integrating Ban. (1.5) over the volume element WVL, s, 1lee.

_ 4, - T
g;LX(r‘é)dV = - gv, Dd\v(%fao\ Cb(\q?)dv + Z [jld(r,;)dv

(2.32)

X(r,4) 1s assumed constant throughout 101' , thus

L _ (‘ : T(" _
X(\’é) \/1 L D ’/kc)\v (q\'ad (b(r.j))dv Z vﬂd)(r,;\d\f]
(2.33)
Here again the volume integral of the first term is trans-

formed to a surface Integral by the divergence theorem and

(2.34)

The integrals are then approximated as given above, so that in

finite difference form

XG5 = T | loi) + W dCa) ) 7, i) V.01
(2.35)
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Note that this derivation assumes that X(r,z) and 5%§§§ﬂ5>

are continuous across region boundaries which effectively
requires the fast flux to obey the same boundary conditions,

In order to stabilize the operation of the code and prevent
oscillaE;ons in flux magnitudes or poison estimates, a damping
factor4{;9322d which enables one to choose a specified fractlon
of the present value of X(i,j) as well as a fraction of’the
previous value in the following way. j)otd

X(53) = FupamP - X(j)Ner - (1-FLommp) - XL
3. The Spatial Flux Distribution Solution

Mumerical values for the fluxes at the mesh points, #(i,]),
are obtailned with the "extrapolated Leibmann" iterative method.

Bquation (2,12) is first rearranged in the following way
U [N U | = S XE) = 91X + 8, X))

+ 53 Wioyn) + o Xloay) 4y &G, y1) Y, (g, i) +
A PR TR SRS PR YAOH Y | (3.1)
The X(i,3j) are previously calculated by the use of Ean. (2.3L)
using fluxes ¢(i,3j) from the preceding converged solution (or,
if it is the first time through the calculations, fluxes
calculated from an assumed flux shape). They are then trans-
formed into quantities Q(1,j) where
o X,
Quesy - b)) (3.2)
where 4)1,(_;,")\ = fluxes at mesh
point (i,3j) from the
preceding converged

solution,
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Ran. (3.1) is then rewritten as

&’Pc?'s)'[ﬁ “SeQug) = Bl |- 5 Qe s
+, mi-l,j)[°62+ng(i.1,j)] i) LYS + SBQUA*E)

b b)) [V 9y @Cius, Y] (3.3)

where \&" = 'Ys - \/° , (3.8)
The flux at a mesh point for the ( V+1 ) iteration is then
calculated by the algorithm (3,5)

D{’; ) = F {@oﬁ)-&_l)[—(f §, Q01 + 4;‘)[3-1,3)[‘1; S, Qu, )

+ d>"( . 3'41)[‘63 + S} Q(_i,'\q_)] r zj;"(;ﬂ_) 3\["(4_ + }1,@(.5,*1' ;ﬂ}

—E-{*ée-és@(‘»,;)} + (L—F)’Cb’)(&,sv 5.5

where F = eXtrapolated Lelbmann varameter with a value
between 1 and 2,
The iteration proceeds until the error criterion, given by

equation (3.6) is satisfied.

X%

o~ -
& — Py s
1 -
(5 | (3.6)

where & is a smallpredetermined number, usually about 0,001,
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. The Neutron Balance

The converged fluxes #(i,j) from the spatial solution
are then used to calculate a new neutron balance so that the
reactivity ofvthe reactor can be determined, Firstly, new
values of X(i,3j) are calculated using Eqn. (2,3l1). Then the
thermal and fast neutron leakages from the volume elements
X/i » assoclated with each mesh point as defined by Eqns. (l.1)
and (l,2) respectively, are calculated, |

C36(1,3j) = Thermal neutron leakage = \(1(33(;,;5-1) +77, dli-13)

DY, bl 4, b0a,5) Yoy $() (1)
FASK (1,3) = Fast neutron leakage = SLX(;‘73‘1) *S;_ X (13
rO  X(im) + B¢ X(ug) + 22X () (I, 2)

The total thermal leakage from the reactor 1s obtalned by

summing the leakage from each individual volume element for

all elements, i.e. e DL
TOTTL = total thermal neutron leakage = Z €36(1,3)
S S
! (. 3)
Similarly, the total fast leakage 1is
TOTFL = FASK(1,]) (lrely)
=1 33
The thermal neutron absorption in the reactor is just
@ 0
TULADO = oL )- - - ! .
TOTABS Z" Jzi $C:,;) Egoc_ +E,, J};J (4.5)

The absorption excluding the contribution due to poison and
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absorbers is

AZL
w2 g Ve o
b‘l ‘n1- . o

Production of thermal neutrons is calculated using the co-

efficlent Fig S Aqn, (2.22) so that .
| ee 7

TOTPR = Total neutron production = Z Z 4)( 3 Yz (:
;'1— iai. ("-1‘07)

The neutron multiplication factér,iC, is then defined as the
total production of neutrons divided by total loss of
neutrons due to thermal and fast leakage and absorption,
Thus : TéTPR

C = (4.8)
TOTTL 4 TOTFL + TOTABS

5. Adiustment of Criticality

If the multiplication factor C, defined in (L1.8) is not
.unity, and thefefore the reactor is elther supercritical or
suberitical, it is necessary to adjust the reactor properties
until C « 1, The means by which this is done depends upon the
fuel management scheme belng studied.

For a steady state bidirectional fueled reactor, the fuel
charge rate is adjusted, the reactor properties re-evaluated, the
flux distribution recalaulated and the neutron balance obtalned
until C &« 1.0 &= € where €& 1s a small number, e.g.
0,0001,

For the batch irradiation or the outin fueling pattern,
adjustments iIn control poison, :Z;v s are mgde to keep the

reactor critical, An initial estimate of ZE;N can be
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obtained from an initial guess for the rélative flux dis-
tribution and by making a neutron balance for the reactor.
Tor example, in uniform poison removal, the relative polson
magnitude O;:; definéd by Eqn. (2.28a) is specified.
it is then neceséai'y to evaluate the normalization constant
ZZV%L. , 8o that the absolute magnitude, Zix¢ s can
be obtained. This is- done: as mentioned above, by making a.

neutron balance for the reactor using the followling equation

53 ;
Z _ Z {tb(i,s)l_js “Boe. “ogr —C36(:,;)—F'A6\:l¢.53}
wi 2 Y, H )
(5.1)
The spatial coefficients used in the spatial flux
distribution iteration are recalculated with the new value

of

z'w = Zwl 'E’:l (;)D | (5.2)

The new poisoned multiplication factor is calculated,

compabved to 1.0 and if still not within & of unity,
another polson estimate 1s made. In order to damp out
oscillations in this outer iteration loop on Zw , & damping
factor, DAMPIN, is employed, using the previous value of

and the latest value with the use of (5.3)

| Neuo old
Z’Wl = DAM?»J-Z.W1 + (\-—Dme.d) Zm (5.3)
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DAMPIN 1is an input number and usually has a value between

0.5 and 1.
Similarly, if soiuble poison 1s used in the core moderator

and reflector to control reactivity, the poison concentration

in parts per million, PPM is calculated by (S5.4)

g
i { L [N, ] - CBLE) - FAsK(;,D}

Z Tppa.‘oa (.;) . ¢(A:,3) * oLLLl]) * FM%D

PPM =

(5.4)
where FACMOD = (0.L025 x10™") Qi Trus / A (5.5)
Pes

and TDFMOD(1) = thermal disadvantage factor for the moderator

= ¢m—¢¢\ VM (5. 6)
2 &\
and where, in turn " A = moderator density, g/ec

(j;w$ = polson thermal mieroscopic

absorption eross section

/xyés = atomic weight of poison

R,

Pred.

\]Lal = volume of moderator 15 unit cell
Z é;, V’U
Len

Here again PPM 1s multiplied by a damping factor DAMPIN, so

average moderator flux

sum of flux times volume of 2ll

components in unit cell

that
PPM = DAMPTN4PPMN®¥ 4 (1_pamprn)ppmOld (5.7)

6. Homogenized‘Cell Cross-Sections

As pointed out in the Introduction, the diffusion co=-



efficients calculated as input to the MOVE code are intended for
use with an average cell flux, whereas the fission and absorption
cross-sections calculated by FUEL as a functlon of flux-time,
require the use of an average fuel flux. In order to make

the diffusion coefficients and the cross-sections consistent,
cross-sections In MOVE 3 are converted so that the neutron
reaction rates when calculated using the average cell flux are
the same as those obtainéd by using the average fuel flux,
Tﬁg_absorption cross-section to be multiplied by the fuel flux,
2, » 1s defined in NYD-9715 as

S

Za N Zn Vo o+ Z:..-A (-V) P 4 (6.1)

where Ziﬁ = unhomogenized fuel cross-section
K]n = volume fraction of fuel in the

unit cell

:Zj;A unhomogenized cross-section of
non-fuel materials
\Pw - Eb'““/(bq = ratio of non-
fuel flux to fuel flux.
However, the cell homogenized absorption cross-section to be

used with the average cell flux is

ZZi / ZZ;.\jﬁ ¢h * ;Eina*(\_xﬂ“) 4>"“A
a Vadg + (Vo) b (6.2)

Dividing the right side of (6.2) by P, gives

]
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‘Z:’ _ ZZCHVQ + 22~m4(1“\b1)\ﬁmd
2 (6.3)
Va v (V) o -
which from (6.1) becomes
I Z-i
Za - Vo (i“\/g)’?m«i (6.4)

Thus, maeroscopic absorption and fission cross-sections

must be divided by the factor \Q, + (/- \{4,) VVMML
in order that the diffusion coefficients be used correctly.

ITTI. RESULTS

The first debugging and initial test runs of MOVE III
were made with a different form of the spatial flux solution
froﬁ that described in S=ction II, p. 26. The fast leakage
terms, instead of entering the five point difference formula
were used directly as the quantity FASK (1,3) as defined by
Eqn. (lte2). The extrapolated Liebmamn iterative method then
was carried out on Egn. (B.1)
"?c,p = 'F{ ¢M(;, 5-13 73_ * CPMC.:A,;) RS *(bi»,yi)ya

+ 43(;-1,33“\(4 + FASK L:,j)} + Y,
v (1-7) &%)

(B‘l)

The fast leakage term, FASK(1,j) was calculated using
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fluxes from the previously converged solution and used the
polson cross-section estimated prior to the flux calculation.
A damping factor, FLDAMP;4was.used to try to eliminate any
oscillations in the fast leakage such that the value of
FASK(1,3) used consisted of a fraction of the newly calculated
value of the leakage and the remaining fraction of the

previously calculated leakage, 1l.e.

.  New ol
FRoK(L3) = Fupme- Faoell)) o+ (-Rpmd) FRRGSY (o)

Figure li shows the thermal flux distribution obtalned
with MOVE ITI for the c,ANﬁU', natural uraﬁium, bidirectionally
fueldd reactor compated with the thermal flux calculated by a
regular two-group solution'by AECI5§{4%he burnup predicted for
steady state by MOVE III is about 3.4% lower than the ARECL
figure, The flux obtained by the code differs from the AECL
Fesults by up to 13% higher in the core, at midway between the
inner ,"zero-radial-buckling" zone and the core-reflector boundary.
On the other hand, the reflector zone thermal flux calculated
by MOVE III is more than 13% lower than the AECL values,

The major discrepancy between the two results 1s the lack of
thermal flux "bump" in the reflector just outside the core in
the MOVE ITI distribution. The reflector therefore appears
less effective in returning thermal neutrons to the core,

This in turn lowers the reactiVitj of the reactor and hence

the steady state discharge fuel burnup predicted by the code is

less than the regular two group value.' This underestimate of
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the reflector effectiveness would probably be even greater
for a mofe highly ehriched core fuel,

Results were also obtained for batech and discontinuous
outin fueling patterns for the reflected CANDU reactor using
soluble poison for reactivity control, 'Burnup predictions
did not disagree greatly with ﬁhose of MOVE I using the
reflector savings model, However, the flux distributions
calculated were unsatisfactory since neither a "bump" nor
inflection occurred in the reflector thermal flux, Figure 5
shows the CANDU thermal flux at the beginning ofvbatch irrad-
l1ation for CRregetor = 100000 after 21 outer iterations., The
error criterion for the criticality factor C was’kept small
(eege € = 10"5) thus many outer iterations were required on
the polson cross-section to converge within this criterion.

| It appeared that since the poison estimate cross-section,
25& , 1s part of the fast leakage term FASK(1,3), and since
both 2, and FASKKi;j) were adjusted after each outer iter-
ation, then the converged flux distribution obtained after
many outer lterations was not entirely based on the physical
properties of t he core and reflector. Instead, the distribution
became a function, in some complicated way, of the many
previously adjusted values of FASK(1,j) and Z, such that
the results appeared similar to one that would be obtained
from a one-group calculation.
It 1s possible that reasonably correct flux distributions

might be obtained by carrying out the so-called imnér iterations
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on not only the thermal flux, #, but also on the fast leakage
term FASK, With this method, using a speciflec poison
estimate and o0dd values of FASK, converged solutions would

be obtained for the thermal flux, {. Then using these values
of @, new values of FASK would be calculated. Rather than
now calculating a new neutron balance and thereby a new polson
estimate as was dome in MOVE III, the calculations would
instead return to the spatial distribution subroutine,
Iterations for the tﬁermal flux wouid then be carried out
using new values‘of FASK but still the same value of poison
2w « These inner iterations would be repeated until both

@ and PASK for that particular 2§w had converged to within a
small quantity of the exact or equilibrium values. Now a
neutron balance would be calculated and the criticality
factor, C, compared to unity. If C was not within &’ of
unity, a compensating adjustment to the polson cross-section
would be made and the imner iterations upon @ and FASK would
be repeated. It appears that in this way, the inability of
MOVE IIT to obtain a thermal flux "bump" for poisoned reactors
might be eliminated.

However, this method was not tried and instead it was
decided to reprogram the spatial flux solution subroutine,
SPACFX, using the theory outlined in Sedtion A.3 above, In
this way the fast flux leakage term was incorporated into the
five point difference forrmulation and became a more direct
part of the immer iterations, However, the results obtailned
with this latter approach were even worse than those calculated

with the previous method, Now, for the CANDU reactor with
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reflector, no satisfactory results for flux distribution or
fuel burnup were obtained, wither for bidirectionaly fueled
or discontinuous OUTIN, - The cause of this inability to
converge to a physlcally reallstic solution is in the form-
ulation of the fast flux factor, Q(i,3j) defined by Egn. (3.2)

used in SPACFX, where

X(1
i) = mf,‘bl

Due to the program logic, it 1s necessary that in the first
outer iteration, the X(1,3) must be calculated by Egn. (2.35)
using ihitial guesses to the flux distribution and the poison
cross-section ;ZV]. Thus, they may be considerably in error
sspeciglly in the reflector, Thus the converged solution to
the flux distribution, which usés the X(i,J) as coefficients,
may also be in error, For mesh points in the reflector near
the outer boundary, the fluxes become very small and sometimes
negative, Since negative fluxes are not physically allowable
they are arbitrarily set equal to zero at the end of the SPACFX
subroutine, Thus the next time control reaches SPACFX, the
?(1,3) become very large for those points which have very mmall
fluxes. The (i, j) for points with zero fluxes become zero,
This in turn, during the course of the inner iteration, in-
creases the thermal flux at these and neighboring points to
unrealisticallj high values and the unstable situation has
begun, Successive outer iterations now make the solution

even warse until the program stops upon reaching a s ituation
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that prevents it from éalculating some of the required para-
meters, |

Varving the damping factor, for , DAMPIN, or that
for X(i,j) the fast flux factor, FLDAMP, does not appreciably
change the results, Non-physical flux distributions appear
first in the reflector and then spread throughout the whole

reactor, It has thus been decided to abandon this approach.

IV, CONCLUSIONS

The method for obtaining the thermal flux distribution
using the condensed two group equation appears to be inadequate,
at least In its form deseribed above, to obtain solutions for
reflected reactors, in which the reflector is treated expliclitly
as a separate region. Attempts to stabilize the behavior.séf
the iterations by the use of various damping factors has not
resulted in any appreciable improvement. However, stable
and correct solutions might be possible if the inner iterations
were carried out on both the thermal fluxes and in the fast

leakage terms,

V. RECOMMENDATIONS

It is recommended that one final attempt be made to try
to utilize the advantages of the condensed two-group formulation
of the diffusion equation by reprogramming MOVE III to carry
out inner itérations oh both the thermal fluxes and the fast
1eakage terms, FASK., The neutron balance and subsequent

adjustments to the poison cross-section, if any, would then be
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made using self-consistent, converged values of 7 and FASK,
However, 1t is suspected that this approach may gilve
reasonably correct solutions only for certalh cases and that
the instability observed previously may reoccur, Therefofe
1t is Purther recommended that for further studies of
reflected reactors, the flux distributions and criticality
be obtained with the use of the full two group formulation
thereby removing the inherent instabllity observed with the
condensed two-group equation, Flux solutions will be
obtained for the fast and thermal flux in the inner 1teration;
while the critical eigenvalue either as control polson or as
Y , the number of neutrons per fission, will be obtained

in the outer 1teration,
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