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FUEL CYCLES CODE, "FUELMOVE III"

by

J.A. Sovka and M. Benedict

ABSTRACT

Further modifications to the fuel cycle code
FUETJLMOVE are described which were made in an attempt to
obtain results for reflected reactors operated under
batch, outin, and bidirectional fueling schemes. Numer-
ical methods used to obtain solutions to the condensed
two-group diffusion equation are presented. Results
indicated that the method for obtaining solutions for the
thermal flux distribution in reflected reactors using
this condensed two-group formulation appears to be in-
adequate in certain cases in which the reactor is treated
explicitly as a separate region. A recommendation is
made for one additional evaluation of this technique with
a further recommendati6n that subsequent studies of the
fuel cycle behavior of reflected reactors be made using
the full two-group diffusion formulation.
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FUEL CYCLES CODE, "FUELMOVE TIII"

I. INTRODUCTION

The MIT Fuel Cycles Project has had available and

made use of a Fortran computer code, called FUELMOVE,

developed mainly by N.B. McLeod, which is described in

detail in NTYO-9715 (Ref. 1). The code is a two dimensional,

two-group fuel depletion code capable of studying the

effect of fuel and poison management on nuclear power

plants fueled with U-235, U-238 and their irradiation

products.

FUELM OVE was written as two serarate codes, FUEL and

MOVE I. In the FUEL code, the homogenized reactor unit

cell properties are evaluated as a function of flux-time,

The properties at specified flux-times are then put on

punched cards and/or magnetic tape for subsequent use by

the MOVE I code. The MOVE I code represents fuel by its

flux-time transfer. It evaluates flux and power density

distributions, control poison requirements, the criticality

factor and average core properties throughout fuel lifetime,

and when fuel is discharged, it obtains the nuclide con-

centrations, fuel burnup, fuel cycle cost and total energy

cost.

The MOVE I code is capable of treating cylindrical

reactors with azimuthal symmetry, whose reflector can be

represented by a reflector savings, and allows for 150
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regions, 15 axial by 10 radial. Up to five radial zones

of arbitrary dimensions can be used and up to five

different fuel types can be specified at any one time, one

per radial zone.

Most power reactors contain a reflector and in certain

fueling schemes, such as one using a soluble poison in the

moderator and reflector for reactivity control, the

reflector savings approximation is not adequate to describe

the effect of the reflector unon criticality and flux dis-

tribution. Therefore, work was initiated in September,

1962, to modify MOVE I so that the reflector region could

be treated explicitly. Flux distributions could then be

calculated throughout the reacbor, including reflector,

thereby avoiding the need for the reflector savings approx-

imation. The modified code, called MOVE II, was tested

and compared with results obtained by MOVE I for the bi-

directionally fueled CNTDU reactor. The calculational

changes were described in NYO-9717 (Ref. 2) along with

results for the steady-state bidirectionally fueled and

batch loaded cases.

However, it was found that the form of the condensed

two group diffusion equation used in MOVE I and II led to

an instability in the solutions for the thermal flux dis-

tributions in certain cases, giving non-physical flux solutions,

No satisfactory results could be obtained for a reactor
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following the OUT IN fueling pattern if the reflector was

treated explicitly as a separate region. The highly dis-

torted flux distributions at high exit fuel burnups, with a

large peak occurring at the core-reflector boundary, intro-

duced a positive feedback effect upon the coefficients of

the difference diffusion equation; the solution to which is

obtained by the "extraoolated Liebmann" iterative method.

Thus errors remaining in the flux distribution from previous

iterations would increase in subsequent iterations due to

this feedback until non-real flux distributions, including

negative fluxes, begaAto occur. It was apparent that the

existing method of solving the condensed, two-group diffusion

equation in its differential difference form was inadequate

to treat most cases of interest of reflected reactors.

Therefore, a decision was made to rewrite the sections of the

code whose functions are to calculate the flux distribution,

criticality, power density and control poison requirements

utilizing the integral form of the diffusion equation in the

difference form.

At the same time, the following improvements to the

MOVE I and MOVE II calculational methods were included.

(1) The reactor criticality factor of MOVE I and II is

based on a thermal flux-and volume weighted reactor average

of a local criticality factor calculated at each mesh point.

In two group theory, it is necessary to weight the diffusion



-[I.-

coefficients and cross-sections with the fast and thermal

adloint fluxes in order to obtain the correct criticality

relationship. Since the adjoint fluxes are not available,

the thermal flux is used for weighting thus introducing a

possibly incorrect criticality factor. With the integral

form of t'he diffusion equation, the correct neutron

balance is obtained directly with the solution for the

flux distribution, and the criticality factor is correctly

obtained, considtent with the physics model assumed.

(2) The diffusion coefficients calculated as input for

MOVE I and II are intended for use with a lattice-cell-

averaged flux. However, the fission and absorption cross-

sections, and other reactor physics parameters calculated

and used by FUELMOVE I and II, require the use of a fuel

average flux. Thus, the diffusion coefficients are not

consistent with the model. In the new code, the flux dis-

tributions and neutron balance are calculated using a

cell-averaged flux, since the diffusion equation really holds

only for ho-mogenized regions, in which the actual cell

comnosition has been taken into account by means of suitable

wbighting with the cell "fine structure" flux. The use of

the cell average flux also allows one to use the correct

boundary conditions of continuity of thermal flux and current

at the interfacbs between two dissimilar regions such as the



core and the reflector. Indeed, the "fuel" flux is un-

defined for the reflector region.

(3) MOVE I and II are unable to meet the boundary

conditions of continuity of thermal neutron current at

interfaces where the diffusion coefficients are different

on the two sides. This condition is taken into account

directly by the use of the integral formulation provided

the flux mesh points are chosen to fall on the boundary.

(4) Axial mesh spacings in MOVE I and II are required

to be constant. In the new code, variable axial as well

as radial mesh spacings will be possible.

(5) Up to 15 radial by 10 axial mesh points are

allowed with up to 6 different radial zones.

(6) The use of soluble poison in the moderator and

reflector is again a possible method of reactivity control

as developed for MOVE II.

The following is a detailed description of the under-

lying theory and calculational methods used in the modified

code, called FUELMOVE III, and includes results obtained

with the code. Because of unsatisfactory behavior of the

code for reflected reactors, reco-nendations are made to

incorporate the regular two-group equations into subsequent

fuel cyble codes.
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I. THE MOVE III CODE

A. General

The objectives and procedures of MOVE III are essentially

the same as those of MOVE I as described in the introductory

sectionI. MOVE III evaluates the effect of fuel and poison

management on the fuel burnup, flux and power distributions

and nuclide concentrations in the fuel. It uses reactor

physics parameters of the fuel, as characterized by flux-time,

which are calculated by the FUEL Code. The MOVE III code

was written for two dimensional (r,z) 2 group analysis of

cylindrical reactbrs with azimuthal and axial symm'etry; and

allows the specification of fuel properties in a maximum of

150 regions, 15 radial by 10 axial, for one-half of the core.

Up to six radial zones, each with different fuel properties,

or alternately, reflector properties, can be used with an

arbitrary number of radial mesh points per zone and, within

certain limits, an arbitrary radial mesh spacing. Radial

reflectors can be treated either explicitly, as a separate

radial zone, or by means of the reflector savings approximation,

while axial reflectors can obly be treated by the latter tech-

nique.

B., Methods of Reactivity Control

The method of controlling the reactivity of a specific

reactbr is closely tied in with the type of fuel management.

For those fueling schemes which requite additional reactivity

rontrol, poisoning of the reactor and/or reflector is achieved
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either by means of absorbers or soluble poison, with an equi-

valent cell-homogenized absorption cross-section. It is assumed

that the control poison does not affect the neutron spectrum and

thereby the fuel physics properties which have been calculated

by the UE1L code. The following methods of poison control of

reactivity are possible in the MOV? III code.

1) Uniform poison removal, in which the spatial dis-

tribution of poison has a specified relative shape.

Its magnitude is taried for reactivity control.

This method could be used to approximate the use

of control rods.

2) Uniform soluble poison removal in the core moderator

and reflector.

3) A constant fixed poison with arbitrary shape used for

power density shaping.

. Fuel Management

It is planned to include the following possible fuel

management schemes in MOVE III:

a) Batch Irradiation. The reactor is charged with a

fresh load of fuel and controlled during irradiation by means of

one of the poison management schemes above. The fuel is dis-

charges when all poison has been removed and the reactor can no

longer remain critical in that operating condition.

b) Steady-State Bidirectional Fueling. Short fuel

elemients are charged continuously at one end of a channel,

moved steadily along the channel and discharged at the opposite

end. The fuel in adjacent channels moves in opposite di-

rections. The fueling rate is adjusted so that the reactor
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is just critical without the use of control poison.

c) Discontinuous Outin. The reactor core is divided into

a number of radial zones of equal volume. At the end of a

cycle, fuel id discharged from the center zone; all other

fuel zones are moved one zone inward and fresh fuel is loaded

into the outer zone. This operation can be performed with or

without axial inversion in which fuel is divided in the middle

and each half turned end for end and returned to the reactor.

C. The Neutron Diffusion Equation and its Numerical Solution

1. The Condensed Two-Troup Equation

The two-neutron group, reactor physics model as outlined

in NYO-9715 results in the following equations. The fast

flux behaves according to Eqn. (1.1).

(1.1)

which upon simplifying becomes (1.2)

(1.2)

while the thermal flux follows Eqn. (1.3)

_D+_ Jill(T-alct k~v-.3) +_ (1.3)=F'T, ) v. 3
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where

Da) 

2:( )DgD

C-

Solving for Of(r, z) in (1.3) we obtain

I df 3 - I) I~

Now, let

(1.5 )
Substituting expressions (1.4) and (1.5) into (1.2) gives

fast neutron flux at (r,z)

thermal neutron flux

fast, thermal diffusion coefficients

fast removal cross-section from the

fast group to the thermal group

fast fission factor

number of neutrons emitted per

fission

thermal fission mac±oseoopf cross-section

- resonance fission contribution

thermal absorption macroscopic cross-

section

the poison control contribution to the

thermal absorption cross-section

resonance escape probability
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pD4  Xu.3 %1 jT4 ( (~'~~

(1.6)

If the resonance escape probability, p, does not vary greatly

with position, une can cancel the p's in the first term of (1.6)

with small error, can be replaced by the Fermi age,

, and Eqn. (1.6) can be simplified to

(1.7)

where (1.8)

_____ z(1.9)

IT Z+_ (1.10)

Eqn. (1.7) is then the condensed two-1group equation

with which it is required to solve for the thermal flux,

$t(r,z), having been given (or in the case of ., , assumed)

values for the core parameters. The reactor may be divided

into a number of regions such that D , 'I', cK,

and ( are constant within each region. The following con-

ditions must also be satisfied:

a) The thermal flux, $t(r,z) is continuous in the

reactor and the neutron current, - Pt D

is continuous across interfaces

between regions.
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b) On the centre-line axis =- - 0

and on the reactor mid-

plane 0

while on the external boundary of the reactor,

the extrapolation distance) or logarithmic

derivative will be specified y = -

With the homogeneous boundary condition (b), the

problem stated then defines an eigenvalue problem and we

seek to find solutions of the thermal flux in (1.7) by

adjusting the control poison cross-section Z or the

other fuel paral-eters by manipulating the flux-time. For

the complicated reactor designs to be studied, only approx-

imate solutions to this problem can be found by the use of

numerical methods. The following will describe these

methods as used in MOVE III to solve this problem numerically.

2. Derivation of the Difference Diffusion Equation

In order to proceed to the numerical solution, the

mathematical derivations as described by Hageman (Ref. 3) will

be adapted to the diffusion equation (1.7) above. We first

imoose a non-uniform mesh of horizontal and vertical lines on

the reactor such that all internal interfaces and external

boundaries lie exactly on mesh lines. The intersectibns of

the horixontal and vertical lines define the mesh points at

which the solution for the thermal flux f(r,z), is sought (Fig. 1).

Consider an arbitrary interior mesh point (i,j) in the

(r,z) plane as shown in Figure 2. Each mesh point will have a

volume associated with it which is shown further subdivided into
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four smaller volumes, V i

mesh volumes, V, , surrounding the point (ij) the

"condensed" diffusion equation (1.6) may be written

Integrating (2..) over each of the mesh volumes X

By the divergence theorem, the first two terms of (Z. Z

can be reduced to surface integrals of 1

I,

and

respe ctively, over the six surfaces enclosing V.
i'bpreabnts the derivative of in the direction of the

outward normal to the surface. Hence

Since neither 4 Yor X (which is effectively the fast

flux ) are functions of 9 ,then and -- are

both zero over the two vertical plane surfaces which enclose

Writing Eqn. (2.2) for Volume 2

;LyA-iIG C.)

'~CIT

0

~~J~jJ

-4- 77f
(2.3).

in Figure 3. For each of the

--)0

fa-1
-- (ZC W) -Z
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Equations similar to (Z.3)3 may be written for , = 1,

3 and 4.
Since the neutron currents - I4 and

are assumed to be cbntinuous across interfaces, the surface

integrals over the common surfaces cancel when the four

expressions of (2.2) are added. Hence, summing (Z.2)

over the four volume elements, we obtain Equation (M.A)

() (

jCC
D,

4
Ad

L Z?6I CA
VA-

4

- o
fr - S

In order to obtain the finite-difference equations at

mesh point (i,j) it is necessary to make numerical approxi-

D3 I 'CAQ3
d5 1;? %\.
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mations to the integrals of (Z.4 ). Integrals such as

are approximated by

L '
~(Z.5)

Now

4 (.

Likewis e,

= \1. ±-4~4J~; C

( 'r

(.-8)

In a similar way for surface a

( 10 9)
whedd

(2..10)

So

( Y-1 (2. 11)
V~

SI

1jv
Thus

(Z ''6)

1- Y,)/-. (2.7)

L

ZI

z

-L ( Civj4~

Ce~4

;3kX

cj'2/4) --n, E)

AA

Q

qj

711



Analogous expressions are derived for the remaining surfaces.

The volume integrals, such as, Cr~gc{V
az

approximated by

, are

~k)
c ( r 4) C~V

7- (2.±1)

Using the above approximations, the condensed two-group finite-

difference diffusion equation at a mesh point (i,j) may be

written as

S, ( Y&,7-) t -~- S3X(:'i 4- S'; _X(.:
4- S

+ K4 (4K1~~~44AIj

(2.13)

where

1~ z -

4- ( ' Z2 -]

-. 3 'i (r - 4/ W4 d c* 4

4- -A + -~

(Z.14)

(7.16)

(Z. 17)54 _= - ( -L%_. .j, _L (
2- 1 z 4- ) L

(z2.1I))
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2 e4 

The coefficient is further

(Z.Z2)

(7z*3)

subdivided into the

following

S-4- (z.,24)

where in turn

['6i &~ ~Nt~4~J

(Z* 18)

(Z. 19)

(. ZO)

(2,;Wza

2 3 2,

D 2 ( /- - 4 )

= - ( t 4 S - 1 S3 * 0 4)

- D,,j-(vr - W2/4) -

5L/4)
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;- %. A-)

c allt 2 - ! 4 ' 4

+ + - ~cl

(2,.Z6)

3(2. Zb7 )

The various absorption coefficients used in Equns. (2.26)

to (Z.28) are

the weighting factor for multiplying the

adjustable poison cross-section which can

be used to control reactivity. The factor

ean be varied between 0 and 1.0 through- (2.28a)

out all possible 150 regions, thereby

approximating the effect of spatially

lumed absorbers such as control rods.

total homogenized macroscopic absorption

cross-section of the reactor cell, (2-2.)

including the unpoisoned cell absorption

(01

Z7i .ek
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cross-section, the xenon homogenized

cross-section, and any fixed absorber

built into the fuel.

If the mesh point (i,j) lies on a segment of the boundary

where 0, then the constants D , (')

dnthe absorption cross-sections for those regions which are

outside of V are set equal to zero.

For mesh points (i,j) lying on the external boundaries

of the reactor, the logarithmic boundary condition is applied,

i.e.

(2.29)
where 4) value of flux on the outer boundary

extrapolation distance beyond the

outer boundary at which the flux

is assumed zero.

The expression for the normal derivative of the flux then is

inserted into the surface integral terms of equation (2.3).

Since the mesh point falls on the outer boundaries, then

surfaces 6ounding the reactb~r are the ones at which

of Eqn. (2.29) is to be applied. Thus, for example, at

the outer radius one of the relevant surface integrals would

be and would be approximated by
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Similarly, at the axial boundary, for example

ckf

%H3) 1

(z.31)
the spatial coefficients of (.$0) and (Z.31) are then added

to the coefficients for the boundary mesh points.

The quantity X(i,j) at each mesh point is obtained by

first integrating lin. (1.5) over the volume element X . , i.e.

- Al V 41tr-) V -IFZ T- 1C4(,)1

(2.32)

X(r,$) is assumed constant throughout V4. , thus

Z-(,V9

Here again the volume integral of the first term is trans-

formed to a surface integral by the divergence theorem and

27:T 4r~j

(2.34)

The integrals are then approximated as given above, so that in

finite difference form

I- i (I"L .- IJL/4) ,A,&

X(%.

-X(lr t5) - -L. L - D !! -+VA

+ +



-20-

Note that this derivation assumes that X(rz) and

are continuous across region boundaries which effectively

requires the fast flux to obey the same boundary conditions.

In order to stabilize the operation of the code and prevent

oscillations in flux magnitudes or poison estimates, a damping

factoris used which enables one to choose a specified fraction

of the present value of X(i,j) as well as a fraction of the

previous value in the following way,
FLDMPAr-Xj) 4- (.-LOPA)-XLJ

3. The Spatial Flux Distribution Solution

Numerical values for the fluxes at the mesh points,1f(ij),

are obtained with the "extrapolated Leibmann" iterative method.

Equation (2.12) is first rearranged in the following way

The X(i,j) are previously calculated by the use of Eqn. (2.31.)

using fluxes 0(i,j) from the preceding converged solution (or,

if it is the first time through the calculations, fluxes

calculated from an assumed flux shape). They are then trans-

formed into quantities Q(i,j) where

(3.2)

where fluxes at mesh

point (i, j) from the

preceding converged

solution.
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qqn. (3.1) is then rewritten as

6 (3.3)

where - 'Y (3.4)

The flux at a mesh point for the ( ) iteration is then

calculated by the algorithm (35)

(3.5)

where F extrapolated Leibmann paramreter with a value

between 1 and 2.

The iteration proceeds until the error criterion, given by

equation (3.6) is satisfied.

(3.6)

is a smallpredetermined numnber, usually about 0.001.where C
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4. The Neutron Balance

The converged fluxes f(i1,j) from the spatial solution

are then used to calculate a new neutron balance so that the

reactivity of the reactor can be determined. Firstly, new

values of X(i,j) are calculated using Eqn. "2.34). Then the

thermal and fast neutron leakages frori the volume elements',

, associated with each aesh point as defined by Eqns. (4.1)

and (4.2) respectively, are calculated.

036(ij) . Thermal neutron leakage . (..)- (I

(4* 1)

FASK (i,j) wFast neutron leakage

The total thermal leakage from the reactor is obtained by

summing the leakage from each individual volume element for

all elements, i.e.

TOTTL = total thermal neutron leakage = 036

(4,.2)

(ij)

(4. 3)

Similarly, the total fast leakage is

TOTFL FASK(i,j) (4.4)

The thermal neutron absorption in the reactor is just

TOTABS - 211 IS4Gz [Lc (4.5)

The absorption excluding the contribution due to poison and
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absorbers is

-AB3NP u;~''j*My>)~p6
Production of thermal neutrons is calculated using the co-

efficient Eqn. (2.22) so that

IeL 47L

TOTPR = Total neutron production - z z 4)

The neutron multiplication fact6r,.C, is then defined as the

total production of neutrons divided by total loss of

neutrons due to thermal and fast leakage and absorption.

Thus TOTPR
c= (4..8)

TOTTL 4 TOTFL + TOTABS

5. Adjustment of Criticalt

If the multiplication factor C, defined in (4.8) is not

unity, and therefore the reactor is either supercritical or

subcritical, it is necessary to adjust the reactor properties

until C - 1. The means by which this is done depends upon the

fuel management scheme being studied.

For a steady state bidirectional fueled reactor, the fuel

charge rate is adjusted, the reactor properties re-evaluated, the

flux distribution recalaulated and the neutron balance obtained

until C . 1.0 &- G where G. is a small number, e.g.

0.0001.

For the batch irradiation or the outin fueling pattern,

adjustments in control poison, , are mgde to keep the

reactor critical. An initial estimate of Z4 can be



obtained from an initial guess for the relative flux dis-

tribution and by making a neutron balance for the reactor.

For example, in uniform poison removal, the relative poison

magnitude G defined by Eqn. (2.28a) is specified.

it is then necessary to evaluate the normalization constant

so that the absolute magnitude, ZW , can

be obtained. This is done, as mentioned above, by making a,

neutron balance for the reactor using the following equation

1I

(5.1)

The spatial coefficients used in the spatial flux

distribution iteration are recalculated with the new value

of

1 (5.2)

The new poisoned multiplication factor is calculated,

compa±'ed to 1.0 and if still not within C of unity,

another poison estimate is made. In order to damp out

oscillations in this outer iteration loop on , a damping

factor, DAMPIN, is employed, using the previous value of

and the latest value with the use of (5.3)

Z (5* 3)



DAMPIN is an input number and usually has a value between

0.5 and 1.

Similarly, if soluble poison is used in the core moderator

and reflector to control reactivity, the poison concentration

in parts per million, PPM is calculated by (5.4)

(5. 4)
where F'ACMOD ( = . b. -9 f(5.5)

and TDFMOD(I) thermal disadvantage factor for the moderator

(5.6)

and where, in turn = moderator density, g/ec

G poison thermal microscopic

absorption eross section

- atomic weight of poison

= average moderator flux

volume of moderator in unit cell

-- sum of flux times volume of all

components in unit cell

Here again PPM is multiplied by a damping factor DAMPIN, so

that

PPM =DAMPTN.PPMw* (1-DAMPIN)-PPMOld(57

6. Homogenized Cell Cross-Sections

As pointed out in the Introduction, the diffusion co-
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efficients calculated as input to the MOVE code are intended for

use with an average cell flux, whereas the fission and absorption

cross-sections calculated by FUEL as a function of flux-time,

require the use of an average fuel flux. In order to make

the diffusion coefficients and the cross-sections consistent,

cross-sections in MOVE 3 are converted so that the neutron

reaction rates when calculated using the average cell flux are

the same as those obtained by using the average fuel flux.

The absorption cross-section to be multiplied by the fuel flux,

Z , is defined in NYD-9715 as

(6.1)

where - unhomogenized fuel cross-section

% volume fraction of fuel in the

unit cell

unhomogenized cross-section of

non-fuel materials

- ratio of non-

fuel flux to fuel flux.

However, the cell homogenized absorption cross-section to be

used with the average cell flux is

Z.0 V* -,--

Dividing the right side of (6.2) by gives
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aII ~~ 0 (6.3)

which from (6.1) becomes

Thus, macroscopic absorption and fission cross-sections

must be divided by the factor 4 (/ - V

in order that the diffusion coefficients be used correctly.

III. RESULTS

The first debugging and initial test runs of MOVE III

were made with a different form of the spatial flux solution

from that described in Section II, p. 20. The fast leakage

terms, instead of entering the five point difference formula

were used directly as the quantity FASK (i,J) as defined by

Eqn. (4.2). The extrapolated Liebmann iterative method then

was carried out on Eqn. (B.1)

+t i.-,9'4 -F)s L1)

+- FAS K U03')j4

4- 1-) )

(B.1)

The fast leakage term, FASK(i,j) was calculated using
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fluxes from the previously converged solution and used the

poison cross-section estimated prior to the flux calculation.

A damping factor, FLDAMP, was used to try to eliminate any

oscillations in the fast leakage such that the value of

FASK(i,j) used consisted of a fraction of the newly calculated

value of the leakage and the remaining fraction of the

previously calculated leakage, i.e.

J (13.2)

Figure 4 shows the thermal flux distribution obtained

with MOVE III for the CANIU, natural uranium, bidirectionally

fueldd reactor compared with the thermal flux calculated by a

(Ref.4)
regular two-group solution by 1ECL.4 The burnup predicted for

steady state by MOVE III is about 3.41o lower than the AECL

figure. The flux obtained by the code differs from the AECL

results by up to 13% higher in the core, at midway between the

inner ,"zero-radial-buckling" zone and the core-reflector boundary.

On the other hand, the reflector zone thermal flux calculated

by MOVE III is more than 131 lower than the AECL values,

The major discrepancy between the two results is the lack of

thermal flux "bump" in the reflector just outside the core in

the MOVE III distribution. The reflector therefore appears

less effective in returning thermal neutrons to the core.

This in turn lowers the reactivity of the reactor and hence

the steady state discharge fuel burnup predicted by the code is

less than the regular two group value. This underestimate of
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the reflector effectiveness would probably be even greater

for a more highly enriched core fuel.

Results were also obtained for batch and discontinuous

outin fueling patterns for the reflected CANDU reactor using

soluble poison for reactivity control. Burnup predictions

did not disagree greatly with those of MOVE I using the

reflector savings model. However, the flux distributions

calculated were unsatisfactory since neither a "bump" nor

inflection occurred in the reflector thermal flux. Figure 5
shows the CANDU thermal flux at the beginning of batch irrad-

iation for CReactor z 1*00000 after 21 outer iterations. The

error criterion for the criticality factor C was kept small

(e.g. 6 10-5) thus many outer iterations were required on

the poison cross-section to converge within this criterion.

It appeared that since the poison estimate cross-section,

, is part of the fast leakage term FASK(,j), and since

both 27 and FASKti, j) were adjusted after each outer iter-

ation, then the converged flux distribution obtained after

manv outer iterations was not entirely based on the physical

properties of t he core and reflector. Instead, the distribution

became a function, in some complicated way, of the many

previously adjusted values of FASK(i, j) and such that

the results appeared similar to one that would be obtained

from a one-group calculation.

It is possible that reasonably correct flux distributions

might be obtained by carrying out the so-called inner iterations
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on not only the thermal flux, %, but also on the fast leakage

term FASK. With this method, using a specific poison

estimate and old values of FASK, converged solutions would

be obtained for the thermal flux, 0. Then using these values

of 0, new values of FASK would be calculated. Rather than

now calculating a new neutron balance and thereby a new poison

estimate as was done in MOVE III, the calculations would

instead return to the spatial distribution subroutine.

Iterations for the thermal flux would then be carried out

using new values of FASK but still the same value of poison

. These inner iterations would be repeated until both

0 and FASK for that particular W had converged to within a

small quantity of the exact or equilibrium values. Now a

neutron balance would be calculated and the criticality

factor, C, compared to unity. If C was not within E" of

unity, a compensating adjustment to the poison cross-section

would be made and the inner iterations upon 0 and FASK would

be repeated. It appears that in this way, the inability of

MOVE III to obtain a thermal flux "bump" for poisoned reactors

might be eliminated.

However, this method was not tried and instead it was

decided to reprogram the spatial flux solution subroutine,

SPACFX, using the theory outlined in Se~dtion A.3 above. In

this way the fast flux leakage term was incorporated into the

five point difference formulation and became a more direct

part of the inner iterations. However, the results obtained

with this latter approach were even worse than those calculated

with the previous method. Now, for the CANIU reactor with
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reflector, no satisfactory results for flux distribution or

fuel burnup were obtained, either for bidirectionaly fueled

or discontinuous OUTIN., The cause of this inability to

converge to a physically realistic solution is in the form-

ulation of the fast flux factor, Q(i,j) defined by Eqn. (3.2)

used in SPACFX, where

Q(i,j)

Due to the program logic, it is necessary that in the first

outer iteration, the X(i,j) must be calculated by Fqn. (2.35)

using initial guesses to the flux distribution and the poison

cross-section 71W. Thus, they may be considerably in error

especi.11y in the reflector. Thus the converged solution to

the flux distribution, which uses the X(i,j) as coefficients,

may also be in error. For mesh points in the reflector near

the outer boundary, the fluxes become very small and sometimes

negative. Since negative fluxes are not physically allowable

they are arbitrarily set equal to zero at the end of the SPACFX

subroutine. Thus the next time control reaches SPACFX, the

Q(i,) become very large for those points which have very nmall

fluxes. The Q(i,j) for points with zero fluxes become zero,

This in turn, during the course of the inner iteration, in-

creases the thermal flux at these and neighboring points to

unrealistically high values and the unstable situation has

begun. Successive outer iterations now make the solution

even worse until the program stops upon reaching a s ituation
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that prevents it from calculating some of the required para-

meters.

Var7ing the damping factor, for , DAMPIN, or that

for X(i,j) the fast flux factor, FLDAMP, does not appreciably

change the results. Non-physical flux distributions appear

first in the reflector and then spread throughout the whole

reactor. It has thus been decided to abandon this approach.

IV. CONCLUSIONS

The method for obtaining the thermal flux distribution

using the condensed two group equation anpears to be inadequate,

at least in its form described above, to obtain solutions for

reflected reactors, in which the reflector is treated explicitly

as a separate region. Attempts to stabilize the behaviorodf

the iterations by the use of various damping factors has not

resulted in any appreciable improvement. However, stable

and correct solutions might be possible if the inner iterations

were carried out on both the thermal fluxes and in the fast

leakage terms.

V. RECOMWENDATIONS

It is recommended that one final attempt be made to try

to utilize the advantages of the condensed two-group formulation

of the diffusion equation by reprograming MOVE III to carry

out inner iterations oh both the thermal fluxes and the fast

leakage terms, FASK. The neutron balance and subsequent

adjustments to the poison cross-section, if any, would then be
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made using self-consistent, converged values of 0 and FASK.

However, it is suspected that this approach may give

reasonably correct solutions only for certai cases and that

the instability observed previously may reoccur. Therefore

it is further recommended that for further studies of

reflected reactors, the flux distributions and criticality

be obtained with the use of the full two group formulation

thereby removing the inherent instability observed with the

condensed two-group equation' Flux solutions will be

obtained for the fast and thermal flux in the inner iteration,

while the critical eigenvalue either as control poison or as

, the number of neutrons per fission, will be obtained

in the outer iteration.
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