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Abstract

On-line Ramsey theory studies a graph-building game between two players. The
player called Builder builds edges one at a time, and the player called Painter
paints each new edge red or blue after it is built. The graph constructed is called
the background graph. Builder’s goal is to cause the background graph to contain
a monochromatic copy of a given goal graph, and Painter’s goal is to prevent this.
In the Sk-game variant of the typical game, the background graph is constrained
to have maximum degree no greater than k. The on-line degree Ramsey number
R̊∆(G) of a graph G is the minimum k such that Builder wins an Sk-game in which
G is the goal graph. Butterfield et al. previously determined all graphs G satisfying
R̊∆(G) ≤ 3. We provide a complete classification of trees T satisfying R̊∆(T ) = 4.

1 Introduction

The quintessential problem of Ramsey theory involves finding a monochromatic copy of a
graph G within a larger graph whose edges are colored with some s colors. Given G and
s, we say that a graph H arrows G if every s-coloring of H contains a monochromatic G
as a subgraph. Two basic parameters of Ramsey theory are

• The Ramsey number R(G) is the minimum number of vertices among graphs H
that arrow G.

• The size Ramsey number R̂(G) is the minimum number of edges among graphs that
arrow G.

The numbers called on-line Ramsey numbers are based upon the following game,
which we consider in the 2-color case, though an s-color generalization is possible: Two
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players, called Builder and Painter, generate a 2-colored graph H. Builder builds edges
one at a time, using some combination of existing vertices and new vertices. As each edge
is built, Painter paints it either red or blue. Builder’s goal is for the graph H to contain
a monochromatic copy of some given graph G, and Painter’s goal is to prevent this from
happening. We will call the graph G the goal graph and the 2-colored graph H that is
being built the background graph. Note that the background graph gets bigger throughout
the game.

If Builder is allowed to build edges without constraint, eventually he can generate a
“large enough” background graph that it contains a monochromatic copy of G no matter
how Painter has colored the edges. (This intuitively apparent result follows immediately
from Ramsey’s Theorem.) One may, however, consider the minimum number of edges
Builder must draw before he wins. This number is the on-line size Ramsey number and
is denoted r̃(G). An important conjecture in this area is that

lim
n→∞

r̃(Kn)

R̂(Kn)
= 0

where R̂(G) is the (standard) size Ramsey number. Recently, Conlon [2] has made signif-
icant progress towards proving this conjecture, by showing that the given limit is indeed
0 if n is restricted to a certain subsequence of integers.

As an alternative to considering the size Ramsey number, the game can be modified
so that Builder is allowed to build only edges such that the background graph remains
within a specified class of graphs H. We call such a game an H-game.

We will consider the case where H is the class Sk of graphs H such that ∆(H) ≤ k,
where ∆(H) denotes the maximum degree of the graph H. The on-line degree Ramsey
number R̊∆(G) is defined to be the minimum k such that Builder can win an Sk-game
where G is the goal graph.

Butterfield et al. [1] have studied R̊∆(G). Among their results are the following:

• R̊∆(K1,n) = n for stars K1,n.

• The graphs G for which R̊∆(G) ≤ 3 are exactly those graphs for which either (i)
every component is a path, or (ii) every component is a subgraph of the claw K1,3.

• For all G,
R̊∆(G) ≥ ∆(G)− 1 + max

uv∈E(G)
min{d(u), d(v)}

• If G is a tree with d1 ≥ d2 being its greatest two degrees, then

R̊∆(G) ≤ d1 + d2 − 1

with equality if G has adjacent vertices of degrees d1 and d2.

Few graphs with on-line degree Ramsey number greater than 3 have hitherto been
identified. In this paper, we present the following classification of trees T with R̊∆(T ) = 4:

Let M denote the set of trees with maximum degree at most 3 and with no two adjacent
degree-3 vertices. Then, the set of trees T for which R̊∆(T ) = 4 is the set M , with the
addition of the graph K1,4 and with the removal of the claw K1,3 and of all paths Pn.
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2 Definitions

Given a subgraph H0 of a given graph H, we will say that H0 is isolated if it is its own
component.

A Painter is called consistent if, whenever he is given a new edge e to be added to a
background graph H, the color he assigns to e depends only on that component of H∪{e}
containing e. Thus, for instance, a consistent Painter, when presented by Builder with
an isolated edge, will always color it the same way, regardless of the other components of
the background graph.

It is proven in [1] that, for any graph G and integer k, Builder can win a Sk-game if
and only if Builder can win against a consistent Painter. Hence, for the remainder of this
paper, we will assume that all Painters are consistent.

Following [1], we define a weight function on a graph G to be a function f assigning a
positive integer to each vertex. A weighted graph is a graph G with an associated weight
function. Given a weighted graph G we say that a (non-weighted) graph H contains G if
H contains as a subgraph a non-weighted copy G′ of G with the weight of each vertex of
G being no less than the degree in H of the corresponding vertex of G′. In general, when
we speak of “graphs” in this paper, we will mean weighted graphs.

Let a maple be a tree with maximum degree at most 3 and with no two adjacent
degree-3 vertices. Let a fork within a maple be a degree-3 vertex. We say that a vertex v
abuts a given fork y in the same maple if the path joining v and y does not include any
forks (except y and possibly v).

3 Results

Our goal in this section will be to prove the folowing theorem:

Theorem 3.1. The set of trees T having R̊∆(T ) ≤ 4 is the set of maples, with the addition
of the graph K1,4.

It is proven in [1] that, for any graph G,

R̊∆(G) ≥ ∆(G)− 1 + max
uv∈E(G)

min{d(u), d(v)}

An immediate corollary of this result is that if T is a tree with R̊∆(T ) ≤ 4, then T
must be either a maple or the graph K1,4. Since R̊∆(K1,n) = n is proven in [1], to prove
Theorem 3.1 it suffices to prove that Builder can win an S4-game with goal graph some
fixed maple. Consider then an S4-game with goal graph some maple T . Suppose towards
contradiction that Painter never forms a monochromatic T . Without loss of generality,
assume that our consistent Painter colors any isolated edge red. Our strategy in this proof
is to show that Builder can construct a red copy of T .

Suppose that Builder can force some (2-colored) graph H, with v a vertex of H having
weight 1. Then, we claim that the following four results hold:
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Tree Extension Lemma. Builder can force the (weighted, 2-colored) graph shown
in Figure 1(a).

2-2 Branching Lemma. Builder can force the graph shown in Figure 1(b).
3-3 Branching Lemma. Builder can force the graph shown in Figure 1(c).
2-3 Branching Lemma. Builder can force the graph shown in Figure 1(d).

⇒1

v
H

(a)

1
H

v

(b) 1

1

H v

(c) 1

1
vH

(d)

1

H v

1

Figure 1: (a) The Tree Extension Lemma, (b) the 2-2 Branching Lemma, (c) the 3-
3 Branching Lemma, (d) the 2-3 Branching Lemma. The numerals beside some of the
vertices indicate weights, with unnumbered vertices assumed to have the maximum possible
weight of 4.

The majority of our proof will be devoted to proving that these lemmas hold. We begin
with the Tree Extension Lemma, which will be proven as a corollary of the following result.

Claim 3.2. Suppose Builder can force a copy of the (2-colored) graphs J and K, with w
a vertex of J having weight 1 and u a vertex of K having weight 1. Then, she can force
one of the two graphs shown in Figure 2(a).

(a)

OR
J K

w u
22

uw

KJ (b)

wu

w u

u

u

w

K

K

J

J K

K
J

Figure 2: (a) The desired (red) connections between J and K, (b) forcing a blue T if
the desired red connections are avoided. (Blue edges are shown thicker than red for
convenience in gray-scale viewing.)

Proof. Taking advantage of the consistency of our Painter, Builder constructs many copies
each of J and K. She then attempts to construct a blue copy of T as follows (see Figure
2(b)).
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For each vertex of T , Builder picks a copy of either J or K such that if two vertices of
T are adjacent, one vertex is represented by J and the other by K. For each copy of J or
K thus chosen, the vertex w or u respectively is called the apex. Then, she puts all the
edges of T in a sequence: She starts with an edge incident to a leaf of T ; she then adds
edges successively so that any prefix subsequence of edges forms a connected subgraph of
T . Builder then moves through the sequence, reading off edges. As she reads off each edge
e, she connects the respective apexes of the copies of J and K representing the endpoints
of e. If any such connecting edge is red, then one of the graphs depicted in Figure 2(a)
must be formed. Otherwise, all connecting edges are blue, and Builder eventually forces
a blue copy of T .

Corollary 3.3. Suppose Builder can force copies of the (2-colored) graphs J and K, with
w a vertex of J having weight 1 and u a vertex of K having weight 1. Then, she can force
the graph shown in Figure 3(a), with J and K joined by a red edge incident to w and u.

(a)

uw

KJ (b)

OR
J J

w wuw

KJ

Figure 3: (a) The graph desired in Corollary 3.3, (b) the graphs desired in Claim 3.4.

The Tree Extension Lemma follows from the above corollary if we let J be H, w be
v, and K be an isolated red edge.

Before proving the 2-2 Branching Lemma, we must prove several more results.

Claim 3.4. Suppose Builder can force copies of the (2-colored) graphs J and K, with w
a vertex of J having weight 2 and u a vertex of K having weight 1. Then, she can force
one of the two graphs shown in Figure 3(b).

Proof. For each vertex of T , Builder picks a copy of either J or K, with J chosen if the
vertex has degree 1 or 2 and K chosen if the vertex is a fork (i.e., has degree 3). For
each copy of J or K thus chosen, the vertex w or u respectively is called the apex. Then,
for every two adjacent vertices of T , Builder connects the respective apexes of the two
graphs representing the vertices. If any connecting edge is red, the claim is proven, since
the edge must run either between the apex of a J and the apex of a K or else between
the apexes of two copies of J . Otherwise, all the connecting edges are blue, and Builder
has made a blue copy of T .

We call a subtree U of T fitting if T and U share a leaf and every fork in T that is a
vertex of U is either a leaf or a fork of U .

Claim 3.5. Builder can force the weighted red-blue-red path shown in Figure 4(a).
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(a)

11

23 (b) 3333 22

1111 11

Figure 4: (a) The graph desired in Claim 3.5, (b) a comb.

Proof. Builder begins by constructing numerous copies of an isolated red edge ab and
stringing them together by repeatedly connecting the b of the last ab in the chain to the
b of a new copy of ab. If any of the connecting edges is blue, then the claim is proven.
Otherwise, Builder can force an arbitrarily long red chain of the form shown in Figure
4(b). We call such a chain a comb, and let the spine of a comb refer to the path joining
the two degree 2 vertices. Vertices not in the spine shall be referred to as teeth. It suffices
to show that arbitrarily long combs allow Builder to win.

Suppose Builder can force arbitrarily long combs. We show that she can use the combs
to construct a red copy of T . Such a copy of T may be expressed by an injective function f
from V (T ) to the vertex set of the background graph of the game, such that two adjacent
vertices in V (T ) are sent to vertices adjacent by a red edge.

Builder defines such a function progressively over V (T ). Builder starts at some leaf
` of the maple T , making its image under f be some spine vertex of a sufficiently large
comb. If ` is at distance d from the nearest fork a in T , Builder then moves along the
spine of the comb in some direction, making each new spine vertex the image of a vertex
in T as adjacency warrants, until she has moved d edges along the spine and makes the
spine vertex she has reached be the image of the fork a of T . She then proceeds to define
elements of f(V (T )) in succession. At any given point in this process, and for any fork
y whose image f(y) has been defined, we say that a y-successor fork is a fork of T that
abuts y and whose image has not yet been defined.

Assume that Builder has already defined f(V (U)) for some fitting subtree U of T ,
where, for every fork y of T that is a leaf of U , the following conditions hold:

• There is some subgraph L(y) of the background graph isomorphic to a (sufficiently
large) unweighted comb and containing f(y) as a spine vertex.

• The tooth of L(y) adjacent to f(y) has degree 1 and is not in the image f(V (U)).

• Of the two pieces into which f(y) divides the spine of L(y), one piece, together with
all teeth coming off of it, is sufficiently large and is unused - that is, the degrees of
its vertices in the background graph are no higher than they would be in an isolated
(weighted) comb, and none of the vertices are in the image f(V (U)).

Now consider some fork y0 of T that is a leaf of U . Let L0 = L(y0).
If there are no y0-successor forks, then Builder moves along the spine of L0 in the

unused direction. As she passes over each spine vertex, she makes it the image of a
vertex of T as adjacency warrants, and finally reaches the image of a leaf of T . To obtain
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the image of the other leaf abutting y0, Builder uses repeated applications of the Tree
Extension Lemma to append a long red path to the tooth adjacent to y0. She then moves
along the tooth and appended path, assigning images as adjacency warrants until she
reaches the image of the leaf.

L0

L1
332 3 2

1 11

f(y0)
3

1

1

3

1

2

Figure 5: Connecting the combs L0 and L1.

If there is exactly one y0-successor fork y1 at distance d1 from y0, then Builder moves
d1 edges, one by one, along the spine of L0 in the unused direction. As she passes over
each spine vertex, she makes it the image of a vertex of T as adjacency warrants. After
moving d1 edges from f(y0), she lets f(y1) be the vertex she has reached. To obtain
the image of the leaf abutting y0, Builder again uses repeated applications of the Tree
Extension Lemma to append a long red path to the tooth adjacent to y0 and then assigns
images along this path as adjacency warrants until reaching the image of the leaf. She
now continues recursively as above, using y1 in place of y0.

Now suppose that there are two y0-successor forks y1 and y2, at distances d1 and d2,
respectively, from y0. There are two cases to be considered.

Case 3.5.1. d2 ≥ 3.

In this case, Builder forces a new comb L1 and, using Corollary 3.3, connects one of
its teeth via a red edge to the tooth of L0 adjacent to f(y0) (see Figure 5). Builder moves
along teeth from L0 to L1 and then along the spine of L1, assigning images to vertices of T
as adjacency warrants. When she has moved d2 edges away from f(y0), she lets f(y2) be
the vertex she has reached. If d2 > 3, then she will have assigned f(V (U)) for a subtree
U of T as our conditions required, and she continues recursively as above.

If d2 = 3, then f(y2) is the only vertex on the spine of L1 that has yet been assigned
to f(V (T )). Builder now moves along the spine of L1 in each possible direction in turn,
assigning vertices to f(V (T )) until she reaches the image of a fork (or a leaf), at which
point she continues recursively as above (or stops).

Case 3.5.2. d2 = 2.
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Let the background graph obtained up until this point be Q. Now, Builder forces a
new comb L1 and, using Claim 3.2, connects one of its teeth by a red edge to the tooth
of L0 adjacent to f(y0), generating either graph A or B as shown in Figure 6(a), where
the vertices x0 in A and B are as shown.

Sub-case 3.5.2.1. Graph A is obtained.

Builder forces another new comb L2, and, using Claim 3.4, either doubles A at x0 or
else connects A by x0 to one of the teeth of L2. One of the graphs A1 or A2 shown in
Figure 6(b) must be obtained. Let x1, x2, x3, x′0, x′1, L′0, and L′1 be as shown.

Suppose first that A1 is obtained. Then, Builder lets f(y2) be x0. If there are no
y2-successor forks, then Builder continues through x1 into L1 and along the spine, and
through x′0 into L′1 and along the spine, assigning elements of f(V (T )) until assignment
is complete.

If there is exactly one y2-successor fork y3, then Builder continues through x1 into
L1 and along the spine, assigning elements of f(V (T )) until she reaches f(y3). She also
moves from x0 through x′0 into L′1, assigning elements of f(V (T )) until she reaches a leaf.

If there are two y2-successor forks y3 and y4, then Builder continues through x1 into
L1 and along the spine, assigning elements of f(V (T )) until she reaches f(y3) on the spine
of L1. She also moves from x0 through x′0 into L′1 and along the spine, assigning elements
of f(V (T )) until she reaches f(y4). If f(y4) = x′1, she then moves along the spine of L′1 in
each possible direction in turn, assigning vertices to f(V (T )) until she reaches the image
of a fork (or a leaf), at which point she continues recursively as above (or stops).

If A2 is obtained, Builder goes through exactly the same process as for A1, with L2,
x2, and x3 replacing L′1, x′0, and x′1, respectively, throughout.

Sub-case 3.5.2.2. Graph B is obtained.

Builder first forces a copy B′ of B, having x′0 in place of x0. She then forces a copy Q′

of the previously obtained background graph Q, having vertex x2 in place of the vertex
f(y0) and with x3 the leaf adjacent to x2. Using Claim 3.4, Builder either connects B at
x0 by a red edge with its copy B′ at x′0 or else connects the copy B′ at x′0 by a red edge
to Q′ at x3. One of the graphs B1 or B2 shown in Figure 6(c) must be obtained. Let x1,
x′1, L′0, and L′1 be as shown.

Suppose first that B1 is obtained. Then, Builder lets f(y2) be x′0. If there are no
y2-successor forks, then Builder continues into the unused half of L′0 and also through x′1
into L1 and along the spine, assigning elements of f(V (T )) until assignment is complete.

If there is some y2-successor fork y3, then Builder continues through x′1 into L′1 and
along the spine, assigning elements of f(V (T )) until she reaches f(y3). If f(y3) = x′1, she
then moves along the spine of L′1 in each possible direction in turn, assigning vertices to
f(V (T )) until she reaches the image of a fork (or a leaf), at which point she continues
recursively as before (or stops). Following assignment of f(y3), Builder moves from x′0
into the unused half of L′0, assigning elements of f(V (T )) until she reaches the image of
another y2-successor fork (or a leaf), at which point she continues recursively as above (or
stops).
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Suppose now that B2 is obtained. In this case, Builder reassigns from B to Q′ the
elements of f(V (T )) which she has hitherto defined, so that, for instance, f(y0) now equals
x2. Proof continues as when B1 is obtained.

The sub-case and case are finally complete.
To complete the recursive step, Builder assigns the images of y1 and of the vertices on

the path between y0 and y1 to vertices on the unused half of the spine of L0.

(a)
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x0
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A:

2

1

3

1

1

3
f(y0)

2 1 11

232 3 3

L1

L0

L0

L1

332 3 2

1 11
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f(y0)
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1

2
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3

3 2
L1'
11

1 1

x0'

x0'
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1

3

1
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L1'
32 3 2
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3

1

1
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B1:

2

1

3

1

3 L0

L0

L1

332 3 2

1 11

f(y0)
3

1

1

3

1

2

B2:

x0

Figure 6: (a) The graphs A and B, (b) the graphs A1 and A2, (c) the graphs B1 and B2.

We label as x and y two of the vertices of the graph X in Figure 4(a), as shown in
Figure 7(a).

Claim 3.6. Suppose that Builder can force some (2-colored) graph H ′, with v′ a vertex of
H ′ having weight 2. Then Builder can force the graph shown in Figure 7(b).

Proof. Builder forces many copies of the graph H ′, of the graph X, and of isolated (red)
edges ab. The vertices v′ in H ′, x and y in X, and a in edges ab are all called apexes. She
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(a)
23

11

yx (b)
1

H'
v'

Figure 7: (a) Graph X with vertices x and y marked, (b) the graph desired in Claim 3.6.

puts all the vertices of T in a sequence S = w1, w2, . . . as follows: starting at a leaf ` of
T , she successively adds vertices so that any prefix subsequence forms the vertex set of a
connected subtree of T .

Builder now reads off this sequence, picking an apex g(wn) for each entry wn and
connecting each apex to a previously chosen entry so that g(wi), g(wj) are connected if
and only if wi, wj are. The kind of apex she chooses for the various entries of the sequence
are as follows.

Builder picks an apex of the form v′ for the image g(w1) of the first entry of S. Now
consider wn, for some n ≥ 2. We know that wn must be adjacent to some (unique) vertex
wm with m < n. Then, Builder picks g(wn) to be of the form

• v′ if g(wm) is of the form y or a.

• x if g(wm) is of the form v′ and the vertex wn is adjacent to a fork wp with n < p.

• y if g(wm) is of the form x - in this case, g(wm) and g(wn) should be apexes of the
same copy of X and will therefore already be connected by a (blue) edge.

• a if g(wm) is of the form v′ and if the vertex wn is not adjacent to any fork wp such
that n < p.

It is readily verified that none of the edges between apexes can be red without yielding
the graph in Figure 7(b). But if all these edges are blue, a blue T is formed. Hence, the
claim is proven.

Proof of the 2-2 Branching Lemma. Builder now forces many copies of the graph H, of
the graph X, and of isolated (red) edges ab. The vertices v in H, x and y in X, and a
in edges ab are all called apexes. Again, Builder puts all the vertices of T in a sequence
S = w1, w2, . . . as follows: starting at one leaf ` of T , she successively adds vertices so
that any prefix subsequence forms the vertex set of a connected subtree of T .

Builder now reads off this sequence, picking an apex g(wn) for each entry wn and
connecting each apex to a previously chosen entry so that g(wi), g(wj) are connected if
and only if wi, wj are. The kind of apex she chooses for the various entries of the sequence
are as follows.

Builder picks an apex of the form v for the image g(w1) of the first entry of S. Now
consider wn, for some n ≥ 2. We know that wn must be adjacent to some vertex wm with
m < n. Then, Builder picks g(wn) to be of the form

• v if g(wm) is of the form y or a.
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• x if g(wm) is of the form v and the vertex wn is adjacent to a fork wp with n < p.

• y if g(wm) is of the form x - in this case, g(wm) and g(wn) should be apexes of the
same copy of X and will therefore already be connected by a (blue) edge.

• a if g(wm) is of the form v and if the vertex wn is not adjacent to any fork wp such
that n < p.

Builder stops connecting apexes if at any point the edge between two apexes is colored
red by Painter, which must happen at some point if Painter is to prevent the formation
of a blue T . Consider such a stoppage, precipitated by the red edge between g(wα) and
g(wβ), where α < β.

(∗) If g(wβ) is of the form v, then applying Claim 3.6 with g(wβ) as v′ proves the 2-2
Branching Lemma.

If g(wβ) is not of the form v, then g(wα) must be of the form v. In this case, Builder
creates an apex of the same apex type as g(wβ) and connects it to g(wα), reassigning
the label g(wβ) to the new apex. If the edge between g(wα) and the new g(wβ) is red,
then the 2-2 Branching Lemma is proven. Otherwise, any red-edge stoppage is moved to
further along the sequence S.

Since the sequence S is finite and stoppages cannot be pushed infinitely far along it,
the 2-2 Branching Lemma must hold if a blue T is to be prevented.

Before proving the final two branching lemmas, we prove some additional results.
Let graphs L, M , and N be as shown in Figure 8(a).

(a)

131

3 2

11
N:M:L:

1 1

(b)

11

3

2

11

3

2

11

3

3

11

3

3

11

3

3

Figure 8: (a) The graphs L, M , and N , (b) a multiclaw.

Claim 3.7. Builder can force L.

Proof. Builder tries to construct a blue T . Assume that she has constructed some blue
fitting subtree U of T such that all leaves of U are of weight 1. Then, given a leaf v of U ,
Builder draws three edges from it to new vertices. If at least two of the new edges are red,
L is obtained. Otherwise, at least two of the three edges are blue and so U is enlarged.
Hence, if a blue T is to be prevented, Builder must be able to force L.

Claim 3.8. Builder can force either M or N .
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Proof. We assume towards contradiction that Builder can force neither M nor N .
Builder begins by constructing an isolated (red) edge, then connecting one endpoint

of this edge to two new vertices. Since Builder cannot force N , Painter must color both
these new edges red, showing that Builder can force a red claw with weight 3 in the center
and weight 1 on each leaf. We let C denote this (2-colored weighted) claw.

Define a multiclaw to be a graph of the form shown in Figure 8(b), obtained by
stringing together many copies of C. Let the spine of a multiclaw be the long subpath
depicted in Figure 8(b) as extending horizontally along the length of the multiclaw. We
define the length of a multiclaw to be the number of edges in the spine.

Builder can force an arbitrarily long multiclaw as follows: She starts with C (a length-
0 multiclaw). If she has already forced a length-n multiclaw, she can force a length-(n+1)
multiclaw by connecting a terminal spine vertex of the multiclaw she has made to a leaf
of a new copy of C. If the connecting edge is blue, then the graph M is formed, so all
such connecting edges must be red.

Now, we show that Builder can force a red copy of T . Such a copy of T may be
expressed by an injective function h from V (T ) to the vertex set of the background graph
of the game, such that two adjacent vertices in V (T ) are send to vertices adjacent by a
red edge.

Builder defines such a function progressively over V (T ). She starts at some leaf of the
maple T , making its image under h be some spine vertex of a long multiclaw. If the chosen
leaf is at distance d from its nearest fork a in T , Builder then moves along the spine of
the multiclaw in some direction, making each new spine vertex the image of a vertex in
T as adjacency warrants, until she has moved d edges along the spine and reached h(a).
She then proceeds to define elements of h(V (T )) in succession. At any given point in this
process, and for any fork y whose image h(y) has been defined, we say that a y-successor
is a fork or leaf of T that abuts y and whose image has not yet been defined.

Assume that Builder has already defined h(V (U)) for some fitting subtree U of T ,
where for any fork y of T that is a leaf of U , the following conditions hold:

• As, shown in Figure 9(a), h(y) is connected by red edges both to a multiclaw and
to a red P3 having weight 1 at its endpoints and weight 2 at its center.

• Both this multiclaw, which we call Z(y), and this P3, which we call P (y), are disjoint
from h(V (U)).

Now consider some fork y0 of T that is a leaf of U . Let y1 and y2 be the two successors
of y0, at distances d1 and d2 from y0, respectively.

Builder first moves along the spine of Z(y0), assigning images to elements of V (T ) as
adjacency warrants, until she has moved distance d1 from h(y0) and reached h(y1). If y1

is a leaf, then she stops, if a fork, then she can proceed as above, using y1 in place of y0.
To assign h(y2), Builder does as follows: She takes a leaf r of P (y0) and attaches it to

a leaf of a new copy of C, then to a leaf of another new copy of C. Both connecting edges
must be red to prevent the formation of M . Builder then continues to add new copies of
C, one by one, to the copies C she has just attached, so that r becomes connected to two
multiclaws Z1 and Z2 of large length, as shown in Figure 9(b).
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Figure 9: (a) requirement on h(y), (b) r connected to the multiclaws Z1 and Z2.

Case 3.8.1. d2 ≥ 3.

Builder moves from h(y0) through r along the spine of Z1, assigning images to elements
of V (T ) as adjacency warrants, until she has moved distance d2 from h(y0) and reached
h(y2). If y2 is a leaf, she stops, if a fork, then she can proceed as above (using y2 in place
of y0).

Case 3.8.2. d2 = 2.

Builder moves from h(y0) to r, assigning images to elements of V (T ) as adjacency
warrants, so that r = h(y2). If y2 is a leaf, Builder stops. Otherwise, y2 is a fork, with
two successors y3 and y4, at distances d3 and d4 from y2, respectively.

Builder now first moves along the spine of Z1, assigning images to elements of V (T )
as adjacency warrants, until she has moved distance d3 from h(y2) and pauses at h(y3).
If y3 is a leaf, then she stops, if a fork, then she can proceed as above (using y3 in place
of y0).

Builder now moves along the spine of Z2, assigning images to elements of V (T ) as
adjacency warrants, until she has moved distance d4 from h(y2) and pauses at h(y4). If
y4 is a leaf, then she stops, if a fork, then she can proceed as above (using y4 in place of
y0).

We conclude that Builder can eventually assign images to all elements of V (T ) and
hence can create a red copy of T , a contradiction. We conclude that Builder must be able
to force either M or N .

Let the vertices c of L and m, n of M be as shown in Figure 10(a).

Claim 3.9. Suppose that Builder can force M , and that Builder can force some (2-colored)
graph H ′, with v′ a vertex of H ′ having weight 2. Then Builder can force the graph shown
in Figure 10(b).

Proof. The proof mirrors the proof of Claim 3.6, with M replacing X throughout and L
replacing the isolated edge ab. The vertices m, n of M and c of L replace the vertices x, y
of X and a of ab, respectively.
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Figure 10: (a) the graphs L and M with vertices c, m, and n labeled, (b) the graph
desired in Claim 3.9.

Claim 3.10. Suppose that Builder can force M . Then, the 3-3 and 2-3 Branching Lemmas
hold.

Proof. The proof of the 3-3 Branching Lemma mirrors the proof of the 2-2 Branching
Lemma (following the proof of Claim 3.6), with the following modifications: (i) M replaces
X throughout and L replaces the isolated edge ab, with the vertices m, n of M and c of
L replacing the vertices x, y of X and a of ab, respectively; and (ii) invocation of Claim
3.6 is replaced by invocation of Claim 3.9.

The proof of the 2-3 Branching Lemma mirrors the proof of the 2-2 Branching Lemma
without modifications up until (∗). At the point (∗), the proof continues as follows:

(†) If g(wβ) is of the form v, then applying Claim 3.9 with g(wβ) as v′ proves the 2-3
Branching Lemma.

If g(wβ) is not of the form v, then g(wα) must be of the form v. In this case, Builder
creates a new apex, such that if g(wβ) is of the form x or a, then the new apex is of the
form m or c, respectively. Builder then connects the new apex to g(wα) and reassigns the
label g(wβ) to the new apex. If the edge between g(wα) and the new g(wβ) is red, then
the 2-3 Branching Lemma is proven.

Otherwise, any red-edge stoppage is moved to further along the sequence S. Construc-
tion of images under g of elements of S then proceeds as in the proof of the 2-2 Branching
Lemma, except with the following modification: M replaces X throughout and L replaces
the isolated edge ab, with the vertices m, n of M and c of L replacing the vertices x, y of
X and a of ab, respectively.

If a blue T is to be prevented, a red-edge stoppage next occurs between some g(wγ)
and g(wδ), with γ < δ and δ > β. If g(wδ) is of the form v, then applying Claim 3.6 with
g(wδ) as v′ proves the 2-3 Branching Lemma.

If g(wδ) is not of the form v, then g(wγ) must be of the form v. In this case, Builder
creates a new apex, such that if g(wδ) is of the form m or c, then the new apex is of the
form x or a, respectively. Builder then connects the new apex to g(wγ) and reassigns the
label g(wδ) to the new apex. If the edge between g(wγ) and the new g(wδ) is red, then
the 2-3 Branching Lemma is proven.

Otherwise, any red-edge stoppage is moved to further along the sequence S. Construc-
tion of images under g of elements of S then proceeds as in the proof of the 2-2 Branching
Lemma, with no modifications. If a blue T is to be prevented, a red-edge stoppage occurs
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between some g(wε) and g(wζ), with ε < ζ and ζ > δ. Proof proceeds as from (†), with
ε, ζ replacing α, β, respectively.

Since the sequence S is finite and stoppages cannot be pushed infinitely far along it,
the 2-3 Branching Lemma must hold if a blue T is to be prevented.

We may therefore assume that Builder can force N .
Suppose Builder can force a (2-colored) graph J having weight-1 vertex t. We say

that the Fork Property holds in red if Builder can force at least one of the three graphs
depicted in Figure 11(a) and that the Elongation Property holds in red if Builder can
force at least one of the two graphs depicted in Figure 11(b). Let graphs Z1, Z2, Z1,1,
Z1,2, and Z2,2 be as depicted in Figure 11(c). Then, say that the Fork-Fork Property holds
in red if Builder can force either Z1 or else both Z1,1 and Z1,2 and that the Fork-Extend
Property holds in red if Builder can force either Z2 or else both Z1,2 and Z2,2. Say that
the Iterated Fork Property holds in red if both the Fork-Fork Property and Fork-Extend
Property hold in red.

We likewise say that one of the above Properties holds in blue if Builder can force the
appropriate graphs with those edges being blue which are shown as red in Figure 11.
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Figure 11: (a) the Fork Property, (b) the Elongation Property, (c) the graphs involved in
the Iterated Fork Property.

Claim 3.11. Suppose that, for all J and weight-1 t that Builder can force, the Fork
Property holds in blue. Then, Builder can win.

Proof. Builder maintains two trees T1 and T2, with T1 red and T2 blue, each a copy of a
fitting subtree of T . For i = 1, 2, a certain leaf of Ti is called the root, corresponding with
a leaf of T ; the root remains fixed even as Ti grows. Every leaf of Ti except the root is of
weight 1. We let pi : V (Ti) → V (T ) be the function taking vertices of Ti to corresponding
vertices of T . The color of Ti is denoted c(Ti).
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Initially, both trees are a single vertex (the root). Builder’s strategy is to apply the
Fork and Elongation Properties to progressively enlarge T1 and T2 (applying properties
to Ti in the color c(Ti)). Given a leaf x of Ti, Builder applies the following:

• Nothing, if pi(x) is already a leaf of T .

• The Fork Property, if pi(x) is a fork of T .

• The Elongation Property, if pi(x) is adjacent to a fork y of T such that y 6∈ pi(V (Ti)).

• Either the Fork Property or the Elongation Property (it doesn’t matter which)
if pi(x) is not a leaf and is at distance at least 2 from any fork y of T such that
y 6∈ pi(V (Ti)). In this case the whole strength of the Fork and Elongation Properties
is not used, and the edges added to Ti are either (i) a single edge in c(Ti) starting at
x and with terminal vertex of weight 1, or (ii) a path of two edges in c(Ti) starting
at x and with terminal vertex of weight 1.

The process will terminate after a finite amount of time, with pi(V (Ti)) being all of
V (T ). It only remains to be shown that Builder can apply the Fork and Elongation
Properties in the manner desired. By assumption, the Fork Property holds in blue, and
by the 2-2 Branching Lemma, it holds in red. It suffices to show that at any point either
Builder can apply the Elongation Property to T1 in red or else she can apply it to T2 in
blue.

Consider T1 and T2 at such a point that the Elongation Property is required by T1 at
the vertex x1 and by T2 at the vertex x2. Builder first constructs two edges emanating
from each xi, with the other endpoints of these edges at new vertices. If either edge at xi

is in c(Ti), the Elongation Property is achieved in c(Ti) on Ti and we are done. Otherwise,
both edges at x1 are in blue and both edges at x2 are in red. Connecting x1 and x2 by
an edge then forces the Elongation Property either in red on T1 or in blue on T2.

Claim 3.12. Suppose that, for all J and weight-1 t that Builder can force, either the Fork
or Iterated Fork Property holds in blue. Then, Builder can win.

The proof of this claim follows closely the proof of the previous claim. The graph
Z1 depicted in Figure 11(c) can be thought of as a composite of the Fork Property with
another Fork Property applied at one of the leaves of the fork. The graph Z2 is a composite
of the Fork Property with the Elongation Property applied at one of the leaves of the
fork. The graphs Z1,1, Z1,2, and Z2,2 may be described similarly as composites of the Fork
Property with some combination of Fork and Elongation Properties applied at the leaves
of the fork.

We now finally are able to prove the 3-3 and 2-3 Branching Lemmas.

Proof of the 3-3 Branching Lemma. Per Claim 3.11, Builder begins by forcing some J
and t for which the Fork Property in blue does not hold. Builder also forces the H and
v in the statement of the 3-3 Branching Lemma. Let the graphs C1, C2, D1, D2 be as
depicted in Figure 12.
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Figure 12: The graphs C1, C2, D1, and D2.

If Builder can force C1 and D1, then the 3-3 Branching Lemma holds, since connecting
v in C1 to t in D1 yields either the Fork Property in blue at t or else the 3-3 Branching
Lemma at v. Hence, if Builder can force C1 and D2, then the 3-3 Branching Lemma
holds, since connecting v in C1 to t in D2 yields either D1 or else yields the 3-3 Branching
Lemma at v. Also, if Builder can force C2 and D1, then the 3-3 Branching Lemma holds,
since connecting v in C2 to t in D1 yields either C1 or else yields the Fork Property in blue
at t. We conclude that if Builder can force C2 and D2, then the 3-3 Branching Lemma is
proven, since connecting v in C2 to t in D2 yields either C1 or D1. Hence, it suffices to
show that Builder both can force either C1 or C2 and can force either D1 or D2.

We first prove that, if the 3-3 Branching Lemma does not hold, Builder can force either
C2 or C1. Builder makes an edge vw from v in H to a new vertex w. If vw is blue, then
C2 is obtained. Otherwise, vw is red, and Builder applies the Tree Extension Lemma at
w. She then makes an edge from v to a new vertex x. If vx is blue, then C1 is obtained.
Otherwise, vx is red, and Builder applies the Tree Extension Lemma at x, proving the
3-3 Branching Lemma.

Now, we prove that Builder can force either D2 or D1. Builder first makes an edge
from t in J to the central vertex q in the graph N shown in Figure 8(a). If tq is red, then
D2 is obtained. Otherwise, tq is blue, and Builder draws a new edge from t in J to the
vertex q in a different copy of N . If this new edge is red, then D1 is obtained. Otherwise,
the Fork Property in blue holds at t.

Hence, if the 3-3 Branching Lemma does not hold, then Builder both can force C1 or
C2 and can force D1 or D2, completing our proof.

Proof of the 2-3 Branching Lemma. Per Claim 3.12, Builder begins by forcing some J and
t for which neither the Fork nor the Iterated Fork Property holds in blue at t. Builder
also forces H and v as in the statement of the 2-3 Branching Lemma. Let the graphs
C1, C2, C3, D1, D2, E be as depicted in Figure 13, with the vertex u of E as marked.

Builder begins by taking a copy of H and constructing an edge from v to a new vertex
w. If this edge vw is red, then applying the Tree Extension Lemma at w yields C3.
However, if Builder can force C3, Claim 3.6 implies that the 2-3 Branching Lemma holds.
Hence, we may assume vw is blue, in which case C2 has been created.

We now prove that Builder can force D2 or D1. Builder first makes an edge from t in
J to the vertex q in a copy of N . If tq is red, then D2 is obtained. Otherwise, tq is blue,
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Figure 13: The graphs C1, C2, C3, D1, D2, and E.

and Builder draws a new edge from t in J to the central vertex q in a different copy of N .
If this new edge is red, then D1 is obtained. Otherwise, the Fork Property in blue holds
at t.

If Builder can force C1 and D1, then the 2-3 Branching Lemma holds, since connecting
v in C1 to t in D1 yields either the Fork Property in blue at t or else the 2-3 Branching
Lemma at v. Hence, if Builder can force C1 and D2, then the 2-3 Branching Lemma holds,
since connecting v in C1 to t in D2 yields either D1 or else the 2-3 Branching Lemma at
v. Since we know Builder can force either D1 or D2, we conclude that if Builder can force
C1, then the 2-3 Branching Lemma holds.

Builder now forces two copies of C2 and one isolated red edge ab. She proceeds to
connect the vertex a with the vertex v in each copy of C2. If either edge is red, then C1

has been formed and so the 2-3 Branching Lemma holds. We may therefore assume that
both edges are blue, in which case E has been created.

Our strategy from here on is to prove that the Iterated Fork Property holds in blue
at t if the 2-3 Branching Lemma does not hold at v and the Fork Property does not hold
in blue at t. We must show that both the Fork-Fork and Fork-Extend Properties hold in
blue at t.

Builder begins by forcing a copy of either D1 or D2, as well as a copy of H. She then
connects the v in the H with the t in the Di. If the connecting edge is red, then C3 has
been produced and the 2-3 Branching Lemma holds. Otherwise, the edge is blue.

Builder now adds an edge from v to a new vertex s. If vs is blue, then, if i = 1, the
Fork Property holds in blue at t, and, if i = 2, D1 is created, allowing for a repetition of
the previous steps with i = 1. We may therefore assume that vs is red. Builder applies
the Tree Extension Lemma at s. We denote by P the background graph at this point (see
Figure 14(a)).

(‡) We now show that the Fork-Fork Property holds: namely, that Builder can force
either Z1 (as shown in Figure 11(c)) or else both Z1,1 and Z1,2. Builder forces E and
connects the vertex u in E with the existing vertex v. If the connecting edge is red, then
the 2-3 Branching Lemma holds. Otherwise, uv is blue. Then, if i = 1, Z1 is forced.
Suppose then that i = 2.
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Builder now forces another copy H ′ of H and connects its copy v′ of v with the existing
vertex t. If v′t is red, then C3 is produced. Otherwise, v′t is blue. Builder now adds an
edge from v′ to a new vertex s′. If v′s′ is blue, then Z1 is forced. We may therefore
assume v′s′ is red. Builder applies the Tree Extension Lemma at s′. We denote by Q the
background graph at this point (see Figure 14(b)).

Builder now forces another copy E ′ of E and connects its copy u′ of u with the existing
vertex v′. If the connecting edge is red, then the 2-3 Branching Lemma holds. Otherwise,
u′v′ is blue, in which case Z1,1 is forced.

Builder now forces another copy of Q and also a copy of N , drawing the edge v′q
between them. If v′q is red, then the 2-3 Branching Lemma holds. Otherwise, v′q is blue,
in which case Z1,2 is forced. We conclude that Builder can force either Z1 or else both
Z1,1 and Z1,2.

We must also show that the Fork-Extend Property holds. Builder here forces another
copy of the graph P and proceeds from (‡) with the modification that in the paragraph
(‡) the graph E is replaced by N and the vertex u by q.

We conclude that both the Fork-Fork and Fork-Extend Properties hold in blue at t,
implying that the Iterated Fork Property must as well. This is a contradiction, and so
the 2-3 Branching Lemma holds.

We have at last proven the Tree Extension, 2-2 Branching, 3-3 Branching, and 2-3
Branching Lemmas. Builder can use these lemmas to force a red copy of T . She does this
by forcing a red copy of the maple T ′ obtained from T by appending edges as necessary
to the leaves of T such that each leaf is at even distance from its nearest fork. This red
copy of T ′ may be expressed by an injective function k from V (T ′) to the vertex set of
the background graph of the game, such that two adjacent vertices in V (T ′) are send to
vertices adjacent by a red edge.

Builder defines such a function progressively over V (T ′). She starts at some leaf u of
the maple T ′, assigning k(u) to the vertex c of a copy of the graph L (see Figure 10(a))
and making the remaining vertices of L be images of elements of V (T ′) as adjacency
warrants.

Assume that Builder has already defined k(V (U)) for some fitting subtree U of T ′,
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where all leaves of U have images of weight 1. We let p : V (U) → V (T ′) be the natural
inclusion function. Given a leaf v of U such that p(v) is a fork, we let a v-successor be a
fork or leaf that abuts p(v) and is not in p(V (U)). Each leaf v of U such that p(v) is a
fork must have exactly two v-successors.

Then, given a leaf v of U such that p(v) is not a leaf, Builder applies at k(v) either
the Tree Extension Lemma or one of the Branching Lemmas, as follows:

• Builder applies the Tree Extension Lemma if p(v) is not a fork.

• Builder applies the 2-2 Branching Lemma if p(v) is a fork and if the two v-successors
are both at even distance from v.

• Builder applies the 3-3 Branching Lemma if p(v) is a fork and if the two v-successors
are both at odd distance from v.

• Builder applies the 2-3 Branching Lemma if p(v) is a fork and if one of the two
v-successors is at even distance from v while the other is at odd distance.

After applying at k(v) the Tree Extension Lemma or one of the Branching Lemmas,
Builder assigns images under k of elements of V (T ′) as adjacency warrants.

This process ends exactly when U = T ′. Builder thus can create a red copy of T ′ and
hence of T .

Our proof of Theorem 3.1 is finally complete. We thus have classified all trees T
satisfying R̊∆(T ) ≤ 4. Butterfield et al. [1] described all trees T satisfying R̊∆(T ) ≤ 3;
these trees are the paths Pn and the claw K1,3. Hence, we obtain immediately the following
as a corollary to Theorem 3.1:

Corollary 3.13. The set of trees T for which R̊∆(T ) = 4 is the set of maples with the
addition of the graph K1,4 and with the removal of the claw K1,3 and of all paths Pn.

4 Further Questions

It is our hope that our classification of trees T satisfying R̊∆(T ) = 4 will be useful in the
development of a general classification of graphs G which satisfy R̊∆(G) = 4. We will
shortly be presenting a proof that all cycles satisfy this equation, as well as a description
of many other graphs which satisfy it. However, the problem of full classification appears
to us to be quite challenging.

Many other questions are open relating to on-line degree Ramsey numbers, including
the following, suggested in [1]: Can graphs G with maximum degree fixed at d have
arbitrarily large on-line degree Ramsey numbers? Additionally, the generalizations of our
results and those in [1] to a game with additional colors could prove interesting.
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