
A Programmable Pipeline for Multi-Material

Fabrication

by

Kiril Vidimče

B.S. Computer Science
B.S. Mathematics

Mississippi State University (2000)

Submitted to the Department of Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

c© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Computer Science

May 21, 2014

Certified by. .
Wojciech Matusik

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie Kolodziejski

Chairman, Department Committee on Graduate Students

A Programmable Pipeline for Multi-Material Fabrication

by

Kiril Vidimče

Submitted to the Department of Computer Science
on May 21, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

3D printing hardware is rapidly scaling up to output continuous mixtures of mul-
tiple materials at increasing resolution over ever larger print volumes. This poses
an enormous computational challenge: large high-resolution prints comprise trillions
of voxels and petabytes of data and simply modeling and describing the input with
spatially-varying material mixtures at this scale is challenging. Existing 3D print-
ing software is insufficient; in particular, most software is designed to support only
a few million primitives, with discrete material choices per object. In this body of
work I present OpenFab, a programmable pipeline for synthesizing multi-material
3D printed objects that is inspired by RenderMan and modern GPU pipelines. The
pipeline supports procedural evaluation of geometric detail and material composition
by using shader-like fablets. The pipeline allows models to be specified easily and
efficiently. Additionally, I describe a streaming architecture for implementing Open-
Fab; only a small fraction of the final volume is stored in memory and output is
fed to the printer with little startup delay. I demonstrate the OpenFab pipeline and
programming model on a variety of multi-material objects.

Thesis Supervisor: Wojciech Matusik
Title: Associate Professor of Electrical Engineering and Computer Science

3

Acknowledgments

A number of people deserve recognition for providing valuable insight, support and

encouragement that ultimately helped produce this thesis. First, I would like to

thank my advisor, Wojciech Matusik who provided that always-needed gentle push

towards completion of this work. Szu-Po Wang helped write the OpenFL compiler

and served as a sounding board for many discussions related to OpenFab. Mark Leone

provided seed code that helped jump start the OpenFL compiler development. Jaakko

Lehtinen provided seed code for the rasterizer used to generate support structure

information. Ye Wang helped produce some of the results and contributed to many

discussions related to the user programming model. Pitchaya Sitthi-Amorn’s selfless

support of everyone in the lab was nothing short of amazing. Jonathan Ragan-

Kelley provided valuable comments and helped produce the conference submission

on the same subject. Fredo Durand provided very no-nonsense feedback that greatly

influenced how I formulated and presented my contributions. Justin Lan and Javier

Ramos taught me a great deal about the physical world of fabrication.

I owe my undergraduate research advisor, David Banks, deep gratitude for hiring

me as his Undergradute Research Assistant and teaching me a great deal about com-

puter graphics and mathematics. His commitment to teaching and advising students

and his academic and personal integrity is second to none.

Finally, my family provided key support and encouragement that lead me to the

difficult but rewarding decision to return to academia after 12 years in industry. My

parents, Nikola and Violeta Vidimče, instilled utmost respect for scholastic work and

selflessly supported me throughout my college years. My wife Nevena Zubčević, my

son Kalen and my dog Rusty provided the emotional support and inspiration.

5

Contents

Acknowledgments 5

List of Figures 9

1 Introduction 11

1.1 Overview . 13

2 Related Work 14

3 Design Philosophy 18

4 Programming Model 20

4.1 Input specification . 21

4.2 Tessellation . 22

4.3 Surface phase . 22

4.4 Voxelize . 23

4.5 Volume phase . 23

4.6 Dither . 24

4.7 Output . 24

4.8 Discussion . 25

5 Fablets and OpenFL 27

5.1 Example . 28

6 Architecture 30

7

6.1 Pipeline Stages . 32

7 Results 37

7.1 3D Prints . 37

7.2 Performance . 41

8 Discussion and Future Work 44

Bibliography 46

8

List of Figures

4-1 The OpenFab pipeline defines a programming model for synthesizing

continuous volumetric material mixtures for 3D printing. As an in-

put (blue) it takes a scene graph describing a set of object boundary

representations, textures, printer materials, and user-programmable

fablets—similar to shaders. From this input, it generates a discrete

volumetric material definition that is device specific. Some stages are

fixed-function (grey), controlled by high-level parameters and printer

characteristics, while fablet stages (red) are programmable by the user. 21

6-1 The architecture of the OpenFab implementation is designed to stream

over large, high-resolution print volumes with a fixed memory budget.

The printing volume is divided into slabs along the primary printer

axis, sized to bound memory usage. The pipeline processes one slab at

a time and streams the output to the printer. Minimizing the amount

of precomputation before streaming begins keeps startup time to a

minimum, letting the printer start working almost immediately after

OpenFab begins processing. Intermediate results like tessellated ge-

ometry that span slab boundaries are cached for reuse, and the caches

are also set to a fixed maximum size. 31

9

6-2 A 2D representation of the OpenFab support generation approach.

Voxels in green and yellow are part of the object being printed. Voxels

in grey are support voxels. Voxels in yellow are part of the depth

map that is generated with a high-resolution, fixed-point rasterizer.

Support voxels are generated for empty voxels iff there is a voxel in the

depth map above them. 32

7-1 Three rhinos, defined and printed using OpenFab. For each print, the

same geometry was paired with a different fablet—a shader-like pro-

gram which procedurally defines surface detail and material composi-

tion throughout the object volume. This produces three unique prints

by using displacements, texture mapping, and continuous volumetric

material variation as a function of distance from the surface. 37

7-2 Insect embedded in amber. Object priority is used to embed the pro-

cedurally displaced insect mesh inside the outer amber hemisphere.

The amber region mixes small amounts of white material according to

procedural noise to model cloudiness and variation in the amber. . . . 38

7-3 A procedurally-defined foam material makes the bunny and bear squishy.

Color and squishiness vary procedurally over the models. 39

7-4 The front face of the postcard (left) is texture mapped using a fore-

ground image. The back of the postcard (right) displaces the surface to

create a spatially varying transmission according to a combined fore-

ground and background image. The result is a hidden background

image which only appears when backlit (center). 40

7-5 Left : procedurally-defined materials with anisotropic mechanical prop-

erties. Center : Marble-like material generated using Perlin noise.

Right : Procedurally-defined and fully parameterized aspherical mi-

crolens array with baffles. 40

10

Chapter 1

Introduction

State-of-the-art 3D printing hardware is capable of mixing many materials at up to

600 DPI resolution, using, for example, photopolymer phase-change inkjet technology.

Each layer of the model is ultimately fed to the printer as a full-resolution bitmap

where each “pixel” specifies a single material and all layers together define on the

order of 108 voxels per cubic inch. This poses an enormous computational challenge

as the resulting data is far too large to directly precompute and store; a single cubic

foot at this resolution requires at least 1011 voxels, and terabytes of storage. Even for

small objects, the computation, memory, and storage demands are large.

At the same time, it is challenging for users to specify continuous multi-material

mixtures at high resolution. Current printer software is designed to process poly-

gon meshes with a single material per object. This makes it impossible to provide

a continuous gradation between multiple materials, an important capability of the

underlying printer hardware that is essential to many advanced multi-material ap-

plications (e.g., [40]). Similarly, there is no support for decoupling material from

geometry definition, and thus no ability to specify material templates that can be

reused (e.g., repeating a pattern that defines a composite material, or defining a

procedural gradation for functionally graded materials).

I believe the right way to drive multi-material 3D printers is a programmable

synthesis pipeline, akin to the rendering pipeline. Instead of a static mesh per piece

of material, users should be able to use a procedural method to synthesize the final

11

voxels of material at full printer resolution, on demand. This provides efficient storage

and communication, as well as resolution independence for different hardware and

output contexts. It also decouples material definition from geometry. A domain-

specific language and pipeline features specific to 3D printing make it much easier

for users to specify many types of procedurally printed output than they could by

writing standalone programs for every different material or fabrication application.

These observations lead me to the following thesis statement:

A pipeline of stages where each stage can be either configured or programmed allows

the user to procedurally generate geometric surface details and material composition

and thus provides a novel, expressive and efficient method for driving multi-material

fabrication.

The OpenFab pipeline is an embodiment of these principles. In OpenFab, a scene

graph describes geometry and attributes, while fablets procedurally modify the ge-

ometry and define material composition much like shaders in the rendering pipeline.

Fablets are written in a domain-specific language (OpenFL) and provide a flexible

toolset that supports many common material specification tasks.

I also propose a scalable architecture for implementing the OpenFab pipeline.

Since the total computational cost is large and it is impossible to fit the entire out-

put volume into memory, the pipeline is designed to progressively stream output to

the printer with minimal up-front precomputation and with only a small slab of the

volume kept in memory at any one time. An OpenFL compiler analyzes and trans-

forms the procedural computation described by the fablets as needed for efficient

implementation in the fabrication pipeline.

I evaluate the system on a variety of multi-material 3D objects that have been

specified and computed using my pipeline. I discuss how my system can be used to

easily describe meta-materials, graded-materials, and objects that contain materials

with varied appearance and deformation properties. I print a number of results using

a commercial multi-material 3D printer and evaluate the performance of my prototype

implementation.

12

1.1 Overview

In chapter 2 I discuss relevant related work. In chapter 3 I describe the design

principles that guided the development of OpenFab. In chapter 4 I describe the

abstract programming model presented to the user. In chapter 5 I introduce fablets

and OpenFL, the domain-specific language used to implement the programmable

aspects of the pipeline. In chapter 6 I describe the software architecture used to

efficiently implement the OpenFab pipeline. Chapter 7 presents a variety of objects

designed and fabricated using OpenFab and analyzes performance of the reference

implementation. I conclude with chapter 8 and discuss possible directions for future

work.

13

Chapter 2

Related Work

While the majority of current 3D printers use only a single material at a time, the

emerging class of multi-material 3D printers (e.g., Objet Connex series [32, 35]) is

capable of producing objects with almost arbitrary shape, deformation properties,

and appearance by combining different materials at high resolution within a single

object. Overall, there is substantial progress in the area of 3D printing hardware and

use of multiple materials due to the efforts from industry, academia, and hobbyists.

Graphics and Printing APIs/File Formats: Traditionally, 3D printing has syn-

thesized uniform material objects defined by unstructured surface meshes [1]. Mul-

tiple materials are supported by statically assigning a single material to each mesh.

Various companies have created proprietary formats to support their specific equip-

ment. Nevertheless, with current printing software, it is unclear how the geometric

data is translated to machine instructions, making the printing process difficult to

control from outside. Open-source efforts (e.g., RepRap, Fab@Home) largely target

fused deposition modeling (FDM) printing processes, which are motion vector-based,

low-resolution, and low-throughput architectures with limited support for multiple

materials (multiple materials are handled as separate STL files). The recent Additive

Manufacturing File Format (AMF) standard [3] allows description of object geom-

etry, its composition and color. Colors and materials can be specified with limited

proceduralism, using simple expressions from voxel coordinates to material choices.

14

However, its per-voxel expressions have limited power, and no architecture has been

proposed to efficiently implement it.

In contrast to the model-oriented descriptions supported by current 3D print-

ing software, standard APIs and formats in 3D rendering and 2D printing describe

how an output device should synthesize an image [2, 7, 24, 34, 37]. The OpenFab pro-

grammable pipeline model takes a similar approach. The scene description parallels

standard scene graph representations [4], with extensions specific to fabrication, and

without many complexities necessary for animation and interactivity.

Goal-Based Material Design Recent work has pursued goal-based fabrication

(e.g. [5, 6, 22, 41]). These methods allow specification of a certain goal, such as a

desired deformation under a given force, and then automatically solve for the shape

and material composition of the object. Chen et al. describe a generalized framework

that helps with implementing new goal-based methods [8]. The framework consists

of an API and novel data structures used for parameterizing the space of material

assignments and for describing and controlling the optimization process. In contrast,

OpenFab allows the user to directly specify and precisely manipulate the geometric

and material properties of the printed output.

Scalable Graphics Architectures: The OpenFab design is inspired in part by

RenderMan’s Reyes architecture [14]. Reyes was designed to render models with

extreme geometric detail and programmable shading. All geometric primitives are

discretized into micropolygons which provide a uniform representation through the

rest of the pipeline. Reyes manages complexity by processing a scene in image-space

tiles with limited memory footprint. Tile-based deferred rendering pipelines [31] make

a similar design choice.

Programmable Rendering Pipelines: Rendering pipelines like RenderMan, OpenGL,

and Direct3D [7, 14, 37] provide flexibility, simplicity, and performance by combining

a fixed pipeline with user-programmable stages. Programmable shaders decouple ge-

ometry from material description. The fabrication pipeline is inspired by the success

15

of programmable rendering pipelines, and uses shader-like fablets to describe micro-

geometry and material composition. However, the motivation is different: render-

ing focuses on simulating images of 3D scenes with lighting and surface reflectance,

while the OpenFab pipeline uses the programmable stages to procedurally synthe-

size material and geometric samples for each layer of printing based on coarse model

description. The visibility problems are also different in both domains.

Procedural Modeling: The procedural geometric and material modeling aspects

of the pipeline are conceptually similar to previous work on procedural solid mod-

eling by Cutler et al. [15]. In their work the authors describe a scripting language

that allows volume decomposition of solids into layers and procedural assignment of

materials within each layer using embedded code written in C. Similarly to OpenFab,

they provide signed distance function queries that can be used when evaluating the

procedural material function. Unlike OpenFab, their system is strictly designed as a

modeling and animation tool; in my work, the focus is on fabrication and I describe

a scalable and streaming architecture that can evaluate the object specification on

demand while the object is being printed.

Procedural Shading: Many languages have been defined for programmable ren-

dering pipelines [7, 13, 19, 30]. A fablet is similar to a programmable shader used in

rendering. A shader procedurally defines the appearance of an object to be rendered

in computer graphics; similarly, a fablet procedurally defines the material content

of an object to be fabricated using an additive manufacturing process. Many opti-

mizations and analyses developed for shader compilers are also important for fablets.

Interval analysis for conservative bounding of computed values, which has been used

for sampling and culling in traditional renderers [11, 20, 21, 23], is useful for bounding

surface displacements and adaptively sampling the material volume in fabrication.

Functionally Graded Materials: In material science and mechanical engineer-

ing, functionally graded materials (FGM) are heterogeneous materials whose material

composition varies over the volume of a given object. Prior work describes the diffi-

16

culty of modeling FGM objects, and proposes a variety of volumetric representations

based on tetrahedra and voxels [25]. MIT’s three-dimensional printing group describe

a system that uses a signed distance field to represent geometry while the material

composition is defined by a composition function. They also define 2D and 3D dither-

ing methods that consider anisotropic properties of fluids when 3D printing with an

inkjet printhead [27, 42].

17

Chapter 3

Design Philosophy

Mixing many materials with different optical and mechanical characteristics at inkjet

printer resolution allows extremely complex objects with countless unique and spa-

tially varying properties to be synthesized directly from a digital description. At

the same time, print volumes and speed are growing, while cost is falling, putting

additive multi-material manufacturing within reach of more and more applications.

These trends led to several major principles which guided my design:

• Continuous material definition. To unlock the full capabilities of printer

hardware, my system should allow continuous material definition at full printer

resolution.

• Streaming architecture. In order to achieve scalability necessary for printing

large build volumes at native resolution, the OpenFab pipeline should only use

local storage and computation wherever possible, streaming over the output

volume in the order required by the printer. It should also require as little

up-front precomputation as possible, to minimize printer startup delay.

• Procedural synthesis. Expressive tools, especially a shader-like language and

programming model, provide a more natural way to describe complex optical

and mechanical material logic than is currently possible with static meshes

per material. Procedural synthesis also supports scalability, trading memory

for computation: the material composition and geometric detail does not have

18

to be stored explicitly, but can be computed procedurally, as required by the

printer.

• Decoupling material from geometry. Complex material logic should be

defined independently of the mesh geometry, and be reusable across models.

• Automatic adaptation to hardware. Procedural synthesis of surface and

volume detail provides resolution independence for different output sizes and

resolution. Automatically normalizing and dithering multi-material mixtures,

accounting for physical constraints like different materials expanding or con-

tracting when cured, dramatically simplifies the development of device-independent

procedural materials.

19

Chapter 4

Programming Model

To meet these design goals, I propose a programmable pipeline abstraction for 3D

printing. The role of the pipeline is to process a combination of geometric input,

image textures, and fablets to synthesize device-specific fabrication output. The user

controls the process by defining geometry and textures, setting pipeline attributes

and options, and defining fablets. User-programmable fablets procedurally transform

and compute attributes at each vertex of the object mesh, and compute the material

mixture output at each point within the mesh volume.

The OpenFab pipeline has a number of logical stages, shown in Fig. 4-1. Similar

to rendering pipelines, some of the stages are fixed and others are programmable by

the user. The input to the pipeline is a fab world, a scene graph-like description

that consists of object boundary representations and associated attributes such as

transforms, image texture inputs and fablets.

In the first stage of the pipeline, the surface of the input objects is discretized

via tessellation. Tessellation generates micropolygon primitives that constitute the

common surface representation throughout the pipeline. Next, the surface phase of

the fablet is evaluated for all micropolygons. This stage is programmable, has access

to surface user attributes, and can reference external image textures. It can optionally

displace the surface geometry.

The next stage discretizes the volume enclosed by objects via voxelization. The

volume phase of the fablet is then evaluated over each voxel. This stage is also

20

fab world tessellate surface stage voxelize volume stage output dither

textures

fablets

materials

Figure 4-1: The OpenFab pipeline defines a programming model for synthesizing

continuous volumetric material mixtures for 3D printing. As an input (blue) it takes a

scene graph describing a set of object boundary representations, textures, printer ma-

terials, and user-programmable fablets—similar to shaders. From this input, it gener-

ates a discrete volumetric material definition that is device specific. Some stages are

fixed-function (grey), controlled by high-level parameters and printer characteristics,

while fablet stages (red) are programmable by the user.

programmable and allows the user to access externally defined resources such as

image textures and material definitions. Its output is a continuously defined mixture

of material quantities. Final volumetric quantization and discretization of material

quantities is performed in the dither stage. Finally, the device-specific output is

produced via different back-ends.

I now describe the input, pipeline stages, and output in more detail, highlighting

the key elements of the OpenFab programming model.

4.1 Input specification

The fab world input is akin to an input specification to a renderer and can be specified

via either a C++ API or an accompanying file format. I give a brief description of

each and highlight the important features specific to 3D printing.

The OpenFab API currently supports the definition of geometry in the form of

closed triangle and quadrilateral-based shapes. The shapes provide a boundary rep-

resentation of the volume of the object being printed. Fablets are written in OpenFL

and provide surface and material definition. Both the shape representation and the

21

fablets can be reused across different printable objects. Each printable object couples

a geometric shape with a fablet and accompanying data bindings. Complex objects

such as a mechanical assembly may contain numerous instances of the same geomet-

ric shape (e.g., a bolt or a gear) and thus, OpenFab provides an ability to uniquely

identify shapes and instance and transform them.

Given the ability to use the surface phase of the fablet to fine tune the geometric

details at the surface level, the interface between two objects that are in contact can

be very hard to define from a strictly geometric point of view (e.g., a procedurally

displaced object embedded inside another object). Thus, OpenFab allows for the

specification of object priorities defined as an integer value. If two or more objects

end up populating the same voxel either by design or as a result of a displacement,

OpenFab gives priority to the object with a higher priority value. This effectively

allows constructive solid geometry (CSG) operations such as union and difference,

but not intersection and is similar to the precedence operator described by Cutler et

al. [15].

4.2 Tessellation

The tessellation stage reduces the geometry input to micropolygons, a common inter-

nal surface representation throughout the pipeline. The tessellator uses the desired

output resolution to produce micropolygons that match the target printer resolution.

The tessellator also interpolates user-defined attributes and makes them available to

the later stages in the pipeline.

4.3 Surface phase

The surface phase of the fablet is evaluated over the surface of the printable object.

Conceptually, the surface fablet phase is evaluated point-wise, similarly to vertex

shaders [30]. The fablet is given the vertex location and the normal as an input. The

output consists of a list of user-defined attributes and the displacement of the vertex.

22

The additional surface user attributes will later be consumed by the volume phase of

the fablet. The procedural displacement allows for increased geometric detail and can

be an especially powerful mechanism for describing surface microgeometry that would

be infeasible to explicitly specify in the input. The fablet also has access to image

textures which allow texture-driven procedural effects. Image textures are explicitly

defined as an input to a particular fablet binding. This allows OpenFab to precisely

track data dependencies and perform certain optimizations such as automatic creation

of min-max textures for interval analysis.

4.4 Voxelize

The voxelization stage discretizes the volume enclosed by the tessellated and option-

ally displaced geometry. In order to voxelize objects in a consistent fashion, one has

to define rules for determining whether a given voxel is inside or outside at the ob-

ject’s boundaries. Consider a multi-part assembly where parts are printed separately.

To ensure the assembly fits together, one must follow consistent rules for defining the

part boundaries. OpenFab follows the rules of 26-separating voxelization [12]. Alter-

native rules can be used as long as they are applied consistently. Other discretization

approaches that result in a different internal volumetric representations can also be

used; examples include tetrahedral meshes or adaptively sampled distance fields [17].

4.5 Volume phase

The volume phase of the fablet is evaluated over the volume of its corresponding

printable object. The goal is to assign material mixtures to all voxels inside the

object. This is the part of the pipeline that allows for a procedural material definition

and makes it feasible to construct heterogeneous materials at the resolution of the

printer. Each available material is given a globally unique id as part of the input

specification. Similarly to image textures, all materials that the fablet will reference

are explicitly defined as part of the object-fablet binding. The input to the volume

23

phase consists of the voxel center and size. The output is a list of material-quantity

pairs and is normalized to completely fill the voxel volume. If the output is empty,

the voxel is marked as void.

When defining materials volumetrically, it is often useful to be able to determine

the relative position of a given voxel with respect to the object boundary [27]. Con-

sider the scenario where one would like to print a textured object. Unlike rendering,

one cannot assign colors simply to the outer layer of the surface. In order to achieve

a particular color, reflectance, and scattering behavior the printer needs to deposit

a certain amount of layered material to achieve the desired appearance properties.

Thus, one of the key features provided to the volume phase of the fablet is the ability

to query the distance to the nearest point on the surface. Similarly, the user can

query any user-defined surface attribute or any values generated by the surface phase

at the same point.

4.6 Dither

The output of the prior stage consists of a mixture of materials for each volume el-

ement. However, 3D printers typically are only capable of depositing a single type

of material at a given point. Therefore, OpenFab transforms this description of the

material mixture such that each voxel receives a single material assignment. This

is similar to two dimensional dithering performed for color 2D printing; the key dif-

ference is that the number of materials is potentially much higher and the dithering

should ideally be performed in 3D.

4.7 Output

The final output of the pipeline is device-dependent and targets a specific 3D printer.

Different back-ends can be implemented. I currently implement a streaming raster

slice format that’s appropriate for a drop-on-demand 3D printer. My implementa-

tion can also generate per-material geometric meshes that can be used with existing

24

commercial software. Due to the size of the output, when using those meshes, one is

limited to printing small build volumes on commercial printers; this can be remedied

by being able to directly provide the raster slices to the printer.

4.8 Discussion

The OpenFab pipeline bears strong resemblance to a modern programmable rendering

pipeline. This is not surprising since both process similarly defined 3D input datasets.

I note here the key differences between them and what makes the OpenFab pipeline

distinct.

Volumetric pipeline 3D printing is a process that produces physical 3D objects

rather than images. Thus, the OpenFab pipeline’s nature is fundamentally volumetric

and has to be able to generate and process orders of magnitude more data.

Wide target range Rendering creates images that target a wide range of displays

of disparate sizes, ranging from personal mobile devices, to large format TVs, to

projection screens. However, when taking resolution into account, rendering across

all of these devices have remarkably similar requirements. In contrast, the range of

sizes and resolutions of objects that one can 3D print is much wider. Recent work on

nanoscale 3D printing has demonstrated the ability to print 3D objects at resolutions

as high as 100 nanometers/voxel [10] whereas very large format 3D printers exist

whose build volumes are measured in hundreds of cubic feet. For instance, the build

volume of the VoxelJet VX4000 occupies on the order of 100 trillion voxels [39].

Physical constraints The pipeline has to handle additional constraints imposed

by the mechanics of the underlying printing process. First, most 3D printers print 2D

layers sequentially along one of the world axes. This constrains the order in which

the input specification needs to be interpreted, and the order in which the output

needs to be written. Drop-on-demand 3D printers and traditional stereolitography

both require support material to be placed underneath parts of the printed object

25

that do not lie directly on top of previous physical layers. The OpenFab pipeline not

only needs to be able to calculate the form of these support structures but it also

needs to be able to instruct the printer to place them at the very beginning of the

print process regardless of the eventual position of the part that relies on them.

Visibility Unlike rendering, the OpenFab pipeline cannot take advantage of tra-

ditional visibility culling, except when calculating placement of support material.

Object priority does impose ordering similarly to how depth imposes front-to-back

ordering in rendering. However, since the priority is specified per object, OpenFab

can pre-determine visibility even before fablet execution has occurred. Unlike 3D

rendering, OpenFab performs no clipping and no projection. Finally, the pipeline has

no concept of a viewpoint and thus cannot take advantage of any view-dependent

techniques or representations.

Importance of dithering Recall that the output of the volume fablet phase is a

fractional mixture of materials. Most 3D printers can only deposit one material at

any given position of the volume. Thus, the OpenFab pipeline needs to be able to

transform the abstract representation of the output into something that the printer

will be able to directly consume.

26

Chapter 5

Fablets and OpenFL

Fablets are written in OpenFL, a C-like programming language. OpenFL is similar in

most respects to shader languages like Cg and HLSL [7, 30]. Unlike most shader lan-

guages, OpenFL describes both surface and volume functionality together, as methods

on a single fablet object. Uniform parameters, including texture and material IDs,

are also declared in the object. OpenFL includes a standard library with common

math, texturing, and other routines. Unique to this domain, the standard library also

includes functions to query the distance to the nearest point on the surface, as well

as any interpolated mesh attributes at that point.

OpenFL is compiled by an LLVM-based fablet compiler [26]. Compilation is

staged, much like HLSL in Direct3D: the first phase statically compiles fablet source

into an intermediate representation which is saved to disk; at run-time, this interme-

diate representation is loaded and JIT compiled for its use in the pipeline, potentially

with concrete parameters bound.

Using a domain-specific language provides opportunities to both analyze and

transform the computation defining fablets. For example, the OpenFL compiler gen-

erates interval versions of each fablet to facilitate automatic inference of displacement

bounds or other run-time optimization. It is also designed to allow fast data paral-

lel code generation, as used for real-time shaders, though parallel code generation

remains future work.

27

5.1 Example

To understand how fablets can be used to define procedural surface detail and con-

tinuous volumetric material variation, consider the example in Fig. 7-4. One side is

flat and texture-mapped with the foreground image, while the other side is displaced

according to the desired brightness of the shadow background image. This object is

defined by the following fablet:

fablet MagicPostcard {

@uniform {
float2 border;
float textureDepth;
float maxThickness;
ImageTexture2D fg;
ImageTexture2D bg;
Material white;
Material black;

}

const int FRONT = 0;
const int BACK = 1;

@Surface(@varying {
SurfaceAttributes attr,
float2 uv,
int face,
out float2 uvOut,
out int faceOut

})
{

// pass through attributes
uvOut = uv;
faceOut = face;

if (face == BACK) {
// back face
float L = bg.Sample1(uv[0], uv[1], 0);
float thickness;
if (uv[0] < border[0] || uv[0] > 1 - border[0] ||

uv[1] < border[1] || uv[1] > 1 - border[1]) {
thickness = maxThickness;

} else {
// material approximation: transmission has
// quadratic falloff with thickness
thickness = sqrt(1 - L) * maxThickness;

}
return attr.n * thickness;

} else {
// no displacement on the front and sides
return 0;

}
}

28

@Volume(@varying {
VolumeAttributes attr,
@nearest float2 uv,
@nearest int face

})
{

MaterialComposition mc;
if (face == FRONT && abs(distance(attr.voxelCenter)) <= textureDepth) {
// front face surface texture
float L = fg.Sample1(uv[0], uv[1], 0);
mc.Set(white, L);
mc.Set(black, 1 - L);

} else {
// background/border
mc.Set(white, 1);

}
return mc;

}
}

Material and texture handles are declared as attributes of the fablet, along with

parameters for the dimensions of the rectangular border, maximum thickness as well

as the depth into the volume to which the texture should be deposited on the front

face.

The surface phase takes as arguments the position, normal, and texture coordi-

nates defined over the mesh, as well as a per-vertex enum-like flag indicating the face

of the cube (front, back, or side). If the currently processed vertex is on the back face,

the fablet computes a material thickness based on the luminance of the background

image and displaces the mesh accordingly. It creates a fixed-depth border in a narrow

band around the edges defined by the border parameter. Outside the back face, it

performs no displacement and simply returns the original vertex position.

The volume phase takes as its argument the 3D position of the center of the

currently-processed voxel. It then uses the face flag from the nearest surface point

to determine if it near the front face. If it is and the distance to the surface is within

textureDepth, it samples the foreground image texture based on the nearest surface

texture coordinates, and mixes black and white materials based on the brightness at

that point. Note that the texture cannot simply be deposited in an infinitesimal layer

on the surface. To show up clearly in real materials, it is usually necessary to deposit

colors down from the surface to some depth inside the interior volume. Elsewhere in

the object, it outputs plain white material.

29

Chapter 6

Architecture

The OpenFab pipeline bears resemblance to Reyes and modern real time rendering

APIs such as OpenGL [37] and Direct3D [7] (see Figure 6-1). The pipeline is designed

to facilitate efficient implementation. Specifically, it is designed to allow a streaming

implementation, starting to produce output quickly after startup, and driving the

printer on-demand within a fixed and controllable memory footprint. Additionally,

the fablet programming model is designed to admit massively data parallel compu-

tation, in the same style as shaders in rendering.

In the reference implementation, the fabricator was built to stream output with

a fixed memory budget and low startup time. It is a scalable foundation for a high

performance implementation, but many individual stages are internally unoptimized.

Nonetheless, it is more than fast enough to keep up with currently-available printers.

The OpenFab architecture is shown in Fig. 6-1 and proceeds as follows:

Precompute acceleration structures

foreach slab , in printer order:

foreach shape overlapping slab:

Compute surface microgeometry and attributes

Compute voxels and material composition

Normalize and dither materials to device capability

Output slab to printer

30

bound objects

calculate support

z sort objects

build nearest query
acceleration structure

priority sort objects

find objects in slab

foreach
slab

foreach
object

tessellate object

surface fablet phase

voxelize object

volume fablet phase

done
quit

dither

output

done

Figure 6-1: The architecture of the OpenFab implementation is designed to stream

over large, high-resolution print volumes with a fixed memory budget. The printing

volume is divided into slabs along the primary printer axis, sized to bound memory

usage. The pipeline processes one slab at a time and streams the output to the

printer. Minimizing the amount of precomputation before streaming begins keeps

startup time to a minimum, letting the printer start working almost immediately

after OpenFab begins processing. Intermediate results like tessellated geometry that

span slab boundaries are cached for reuse, and the caches are also set to a fixed

maximum size.

The individual stages are described in order in more detail below.

31

Figure 6-2: A 2D representation of the OpenFab support generation approach.

Voxels in green and yellow are part of the object being printed. Voxels in grey are

support voxels. Voxels in yellow are part of the depth map that is generated with a

high-resolution, fixed-point rasterizer. Support voxels are generated for empty voxels

iff there is a voxel in the depth map above them.

6.1 Pipeline Stages

Bounds: The pipeline begins by calculating bounds for each shape in the scene.

Users provide maximum displacement bounds but the fabricator additionally uses

interval arithmetic to automatically infer those bounds as well [11]. To infer the

maximum displacement, the fabricator executes an interval variant of the surface

phase of the fablet bound to each shape. The fabricator picks the minimum of the

user-provided and inferred bound.

Nearest query acceleration: Nearest surface point queries are expensive to com-

pute on demand. The fabricator creates acceleration structures to speed up the

queries performed in the volume phase of the fablet. It builds a bounding volume

hierarchy (BVH) that spatially partitions the base primitives of the input mesh. This

conservatively accounts for possible displacement using the displacement bounds cal-

culated in the prior stage. The fabricator refines the BVH until each subvolume

contains no more than a given target number of candidate primitives. This up-front

process is fast, since it is performed on the untessellated base primitives of the input.

32

Calculate support: If the target printer requires support structures, the fabricator

pre-calculates the places where such support is needed. It uses a fast, high-resolution,

fixed-point rasterizer to perform an orthographic render along the print platform

movement axis (typically, the z axis). It dilates each primitive to account for any

possible displacement using the bounds calculated in the first stage. The resulting

depth-map contains the highest point along the z axis at which material is present for

each voxel column represented by that given depth sample. During the output phase,

if a given voxel is void the fabricator outputs support if and only if the height of that

voxel is lower than the highest populated voxel for that particular voxel column as

recorded in the depth map (see Fig. 6-2). When printing with soft materials, one has

to additionally create support structures on the sides; this remains future work.

Z-Sort shapes: To progressively fabricate each shape along the print (z) axis,

the fabricator initially sorts the candidate shapes into a priority queue. It uses the

minimum z value of their bounding boxes as sort keys. Each shape is then retrieved

from this queue when the processed slab begins to intersect the bounding box of the

shape.

Slab processing (outer loop): The fabricator subdivides the print volume into

slabs. The size of the slab is dynamically calculated based on target memory usage,

and is a function of the resolution of the print and the total build volume. As each

slab is processed, the fabricator maintains a working set of shapes whose bounding

volume intersects the current slab. When processing each slab, the fabricator updates

the working set by removing shapes that are now beyond the current slab and adding

ones that are now under the slab’s domain.

Priority sort: Recall that each object has a user-provided priority that determines

which object occupies a given voxel in case of overlap. This is similar to Z-buffer

visibility in traditional rendering. However, given that the priority is assigned on a

per-object basis, the fabricator can forgo traditional per-visibility sample comparisons

and pre-sort the shapes up front, akin to performing the reverse painter’s algorithm at

33

the object level. Thus, during this phase all objects in the working set are sorted based

on their priority value. When voxelizing and populating the voxel buffer, if a given

voxel is already occupied, the newly arriving voxel can be immediately discarded,

giving opportunities for early culling. Culling voxels due to object overlap makes

fablet evaluation efficient: only one fablet (the one assigned to the highest priority

object) gets evaluated per voxel.

Shape processing (inner loop): The fabricator iterates over each shape in the

working set in order of priority and perform the next five stages of the pipeline.

Tessellate shape: The first stage of the loop performs partial tessellation. Sim-

ilarly to Reyes, regardless of the shape type, the fabricator always tessellates into

micropolygons, the common 2D primitive for the remainder of the pipeline. Tes-

sellated primitives are cached and reused if the primitive straddles multiple slabs.

Primitives can also be tessellated on demand in order to respond to a distance func-

tion or nearest user attribute query; such tessellations are also cached and reused.

The cache has a set size and entries are evicted using a simple LRU scheme.

Surface fablet phase: The fabricator evaluates the surface phase of the fablet

on the resulting tessellated mesh. It evaluates a quad at a time in order to compute

derivatives and thus calculate the filter width needed for filtered sampling of textures.

The texture engine implementation in the fabricator is based on the OpenImageIO

library [18].

Voxelize shape: The fabricator performs solid voxelization by using the odd-even

rule (Jordan curve theorem). It casts a ray along one of the principal axes and for

each triangle hit it flips the inside/outside bit for all voxels behind the hit. For each

hit within a given voxel, that voxel is considered to be inside the mesh iff the center

of the voxel is in front of the hit, thus following rasterization rules similar to the ones

in the OpenGL and DirectX pipeline. More efficient hierarchical edge-equation based

voxelizers exist [36]. Applying them is future work.

34

Volume fablet phase: The fabricator evaluates the volume phase of the fablet

for each voxel in the grid. The underlying voxel grid is optimized to store up to

16 materials out of a total of 64 materials that can be defined in the fab world.

Careful consideration is given to keeping the memory footprint as small as possible.

Surface distance and attribute queries are evaluated on demand by searching the

corresponding acceleration structure. To allow fast startup, the acceleration structure

encodes base mesh primitives (expanded conservatively to account for displacement

bounds). At search time, candidate base primitives are tessellated and displaced

by the surface fablet, and their microgeometry recursively searched for the nearest

point or attributes. The results of tessellation and fablet evaluation are cached in the

post-tessellation surface cache, so that they are rarely recomputed, but the cache size

limits potential memory overhead at the cost of redundant recomputation of surface

geometry required in multiple places.

Dither: The fabricator applies Floyd-Steinberg dithering [16] for each slice when

using multiple materials. It uses a sliding window to satisfy fixed memory require-

ments and reduce storage pressure for large slabs. It performs the dithering on a

grid of the same resolution as the voxelized grid; any errors due to the difference in

final effective resolution is simply distributed around the local neighborhood. Error

diffusion achieves the right balance: if the fablet outputs one material, the dithered

output matches the resolution of the printer. If the fablet outputs multiple materials,

the dithered output gracefully reduces resolution in order to to achieve the requested

material ratios. The current implementation dithers each slice in 2D. By using a 3D

kernel one could diffuse error across slices instead and avoid streaks [9].

Output: The fabricator outputs a custom raster format. When targeting commer-

cial printers that only take STL as input, the fabricator generates a set of boundary

meshes for each material used, using a method similar to marching cubes [28]. Given

the presence of multiple coordinate systems and resolutions within a given 3D printer

(e.g., from the motion system, linear encoders, arrays of printhead nozzles, variably-

35

sized droplets, different material properties), the OpenFab native output is abstract

enough that it allows a printer-specific backend to perform the necessary mapping to

low-level commands that take these various sources of resolution into account.

36

Chapter 7

Results

I have designed and fabricated a variety of different objects that highlight features of

the OpenFab pipeline.

7.1 3D Prints

Figure 7-1: Three rhinos, defined and printed using OpenFab. For each print, the

same geometry was paired with a different fablet—a shader-like program which proce-

durally defines surface detail and material composition throughout the object volume.

This produces three unique prints by using displacements, texture mapping, and con-

tinuous volumetric material variation as a function of distance from the surface.

The results were printed on an Objet Connex 500, a high-end multi-material

3D printer that uses photopolymer phase-change inkjet technology and is capable

of simultaneously printing with two primary materials and one support material. It

37

Figure 7-2: Insect embedded in amber. Object priority is used to embed the proce-

durally displaced insect mesh inside the outer amber hemisphere. The amber region

mixes small amounts of white material according to procedural noise to model cloudi-

ness and variation in the amber.

supports a variety of polymer-based materials that vary in color, elasticity and optical

qualities. It takes per-material geometry meshes as an input. The build volume of

the results is limited by the maximum number of primitives allowed by the Objet

driver software—at most about 10 million.

The first result, shown in Fig. 7-1, highlights the ability to easily apply different

fablets to the same base geometry. The appearance of the rhinos varies significantly,

and each uses a variety of features in OpenFab. For instance, the left rhino uses

displacement mapping in the surface phase of the fablet to create micro-spikes over

the rhino’s skin. The volume phase of the fablet samples from a zebra-like texture to

apply a layer of textured material near the surface. It uses the ability to query the

nearest point to both retrieve the texture coordinate necessary to sample the texture

and to determine whether to apply the textured material. The center rhino has holes

carved out throughout its body by returning void in the volume phase of the fablet.

The fablet uses a distance function to separate the transparent outer shell of the rhino

from the black inner core. The right rhino achieves its look in a similar fashion.

The next result, the butterfly (Fig. 7-2), highlights the use of object priority to

achieve a CSG difference-like operation. The butterfly is placed within a transparent

casing to simulate an amber fossil (the butterfly geometry has higher priority than the

38

Figure 7-3: A procedurally-defined foam material makes the bunny and bear squishy.

Color and squishiness vary procedurally over the models.

casing). The butterfly fablet procedurally defines volumetric cloudiness and particles

in order to increase the appearance realism of the amber.

The bunny and the teddy bear pair (Fig. 7-3) demonstrate the ability to reuse the

same fablet across different models. The material used to print these objects is flexible

but volume-preserving. The fablet introduces procedurally-defined and repeated void

spaces in order to achieve a compressible, foam-like material. This demonstrates the

ability to easily define and apply patterned materials. One could also make the 2D or

3D pattern be texture-driven. OpenFab allows one to build a library of such fablets

similarly to how material and light libraries are built for image rendering.

The magic postcard (Fig. 7-4) demonstrates a creative use of texture-driven dis-

placement mapping in its fablet (code in Sec. 5.1). The front face of the postcard

(shown left) is textured using a foreground layer of image texture. The back of the

postcard (shown right) displaces the surface to create a spatially varying transmission

effect. The amplitude of the displacement at each point is driven by the luminance

of the background image. When illuminated solely from the front, the background

layer is not visible. When another illumination source is added from the back, the

whole image becomes visible (shown center). Similarly to other textured objects, the

39

Figure 7-4: The front face of the postcard (left) is texture mapped using a foreground

image. The back of the postcard (right) displaces the surface to create a spatially

varying transmission according to a combined foreground and background image. The

result is a hidden background image which only appears when backlit (center).

Figure 7-5: Left : procedurally-defined materials with anisotropic mechanical proper-

ties. Center : Marble-like material generated using Perlin noise. Right : Procedurally-

defined and fully parameterized aspherical microlens array with baffles.

40

postcard fablet uses nearest point query and distance from the surface to perform

texture-driven material assignment.

The marble table in Fig. 7-5 (center) procedurally recreates the appearance of

marble. It uses Perlin noise [33] to define a solid texture in the volume phase of the

fablet. Note that the material distribution changes continuously to create a graded

material.

The microlens in Fig. 7-5 (right) demonstrates a working, procedurally-defined

microlens array. The surface phase of the fablet transforms a slab of material into an

array of aspherical lenses by using displacement mapping. The volume phase of the

fablet adds baffles in between the lenslets and assigns the two materials used (clear

for lenses and black for the baffles). The baffles reduce the light leakage between

neighboring lenses.

Finally, Fig. 7-5 (left) shows two examples of objects made of procedurally-defined

materials with anisotropic mechanical properties. The core of the material is made

of transparent and elastic material. The fablet procedurally inserts helical (left) or

straight (right) rods made of white and rigid material. These rods influence the

mechanical behavior: the helical rods allow twisting motion of the object in clockwise

direction and very little twist in the opposite direction; the straight rods transform

downward side pressure into transverse motion that causes elongation.

7.2 Performance

I ran a number of simulations to test the scalability of the initial implementation and

its ability to provide fabrication data in real time to the 3D printer. Despite the lack

of optimizations, my OpenFab implementation meets the design goals and provides

satisfactory performance; it can stream the data as fast or faster than a high-end,

multi-material 3D printer can output material (in this case, an Objet Connex 500).

I used three different models (center rhino shown in Fig. 7-1, butterfly shown in

Fig. 7-2, and marble table shown in Fig. 7-5) and varied their build volume from as

little as 3” to as high as 12” across their longest dimension. The simulation assumed

41

Models 3 inches 6 inches 12 inches

butterfly 0.22B voxels 1.8B voxels 14.2B voxels

first slice 3.18 secs 4.44 secs 9.32 secs

per-slice 0.48 secs 1.75 secs 6.63 secs

total 5 mins 33 mins 249 mins

rhino 0.12B voxels 0.94B voxels 7.5B voxels

first slice 1.26 secs 2.70 secs 7.80 secs

per-slice 0.46 secs 1.89 secs 6.99 secs

total 7 mins 56 mins 417 mins

marble table 0.15B voxels 1.20B voxels 9.6B voxels

first slice 2.44 secs 2.99 secs 20.52 secs

per-slice 0.70 secs 1.25 secs 12.79 secs

total 4 mins 25 mins 187 mins

Table 7.1: Computational performance as print volume increases. All model sizes

are printed at 300 DPI. Total number of synthesized voxels ranges from 120M to

14.2B. Startup cost is always negligible relative to print time, and time per-slice is

substantially faster than the printer speed. All results are synthesized with a fixed

1.5GB memory budget on a single processor, while computation time per voxel grows

slightly sub-linearly with print volume, suggesting that the OpenFab architecture is

scalable to large, high resolution prints.

300 DPI printer resolution. The results were collected on an Intel Xeon E5-2650

processor running at only 2.0 GHz.

Performance is summarized in Table 7.1. It reports startup time (time to first

slice delivery), per-slice time, and overall run time performance. Note that startup

time is always small relative to print time: the fabricator is able to start providing

print data within at worst 20 seconds. Memory footprint is kept under 1.5 GB, of

which 1 GB is reserved for slab data and the rest for ancillary caches and working set

data structures. Across different sizes of slices, the system is able to keep up with the

42

printer (e.g., the per-slice print time on the Connex 500 is about 24 seconds for a 12”

slice). I observe that a significant amount of the runtime is spent in nearest distance

and nearest point queries, which is unsurprising given their global nature. Between

parallel code generation of fablets and optimization throughout the individual pipeline

stages, I think there is an opportunity for at least an order of magnitude performance

increase in the near future.

43

Chapter 8

Discussion and Future Work

I have found the programmable pipeline abstraction a surprisingly powerful way to

describe complex multi-material 3D prints with a wide range of mechanical and optical

properties. I think the OpenFab pipeline provides a solid and scalable foundation on

which to build many multi-material fabrication techniques.

The current programming model is powerful, but it is not the most natural way

to describe all possible results. In the future, I think there is a great opportunity

to spread proceduralism throughout the pipeline. Procedural geometry plugins could

be more natural than the existing fablets for some types of geometry (e.g., synthesiz-

ing L-systems) and would be complementary to the existing stages. Programmable

dithering could also increase the flexibility of the pipeline and the degree of user

control over the exact printed output.

Designing a full ecosystem around this pipeline is a natural direction for follow-

up work. This could include a procedural modeling tool, a visual fablet authoring

tool, and print preview based on measured material properties. It is also desirable to

extend the pipeline to integrate various mesh optimizations for automatic partitioning

of large prints [29] and automatic detection and correction of structural stability [38].

Performance is another area of possible future work. My current implementation

is more than fast enough to keep up with current printers. But, as printers get

faster, build volumes grow, and fablets become more complex, it will be important

to improve performance. Fortunately, there is enormous room for optimization and

44

parallelization in my implementation. Nearest surface queries from the volume fablet

phase are a major component of the OpenFab programming model, and the single

most expensive operation in my implementation. There is an opportunity to make

these queries more efficient. Further, it will be interesting to define more complex

surface-volume attribute relationships, including alternative attribute interpolation

methods.

Finally, native backends for many types of printer hardware will be important

to realizing the full potential of the OpenFab pipeline. OpenFab was designed from

the outset to drive continuous material output at full printer resolution. Current

commercial printer software, however, is limited to STL format input and fails when

given more than a few million polygons. This significantly limits the scale of spatially

varying output one can feed to current commercially available printers. The printer

backends, however, take raw full-resolution bitmaps of each slice. Interacting with

printers at the raster level will allow streaming prints of continuous material variation

at much larger scale.

Given the high-frequency details in dithered multi-material slices, implementing a

back-end for vector path 3D printers (e.g., FDM) remains a challenge. Recent work

on ”multiplexer” extruders that combine multiple filaments is promising, though. I

imagine targeting such printers by using dither masks that map local dither patterns

to linearly-weighted combinations of the input filaments.

45

Bibliography

[1] 3DSystems. StereoLithography interface specification, 1988.

[2] Adobe Systems. PostScript language reference, 1985. URL http://partners.

adobe.com/public/developer/en/ps/PLRM.pdf.

[3] ASTMStandard. Standard specification for additive manufacturing file format

(AMF) version 1.1. July 2011. doi: 10.1520/F2915-12. URL http://www.astm.

org.

[4] Gavin Bell, Anthony Parisi, and Mark Pesce. The virtual reality modeling lan-

guage version 1.0 specification. Technical report, 1995.

[5] Amit Bermano, Ilya Baran, Marc Alexa, and Wojciech Matusik. ShadowPix:

Multiple images from self shadowing. Computer Graphics Forum, 31(2pt3):593–

602, May 2012. ISSN 0167-7055. doi: 10.1111/j.1467-8659.2012.03038.x. URL

http://dx.doi.org/10.1111/j.1467-8659.2012.03038.x.

[6] Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter

Pfister, Markus Gross, and Wojciech Matusik. Design and fabrication of materi-

als with desired deformation behavior. ACM Trans. Graph., 29:63:1–63:10, July

2010. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/1778765.1778800. URL

http://doi.acm.org/10.1145/1778765.1778800.

[7] David Blythe. The Direct3D 10 system. ACM Trans. Graph., 25(3):724–734,

July 2006. ISSN 0730-0301. doi: 10.1145/1141911.1141947. URL http://doi.

acm.org/10.1145/1141911.1141947.

46

http://partners.adobe.com/public/developer/en/ps/PLRM.pdf
http://partners.adobe.com/public/developer/en/ps/PLRM.pdf
http://www.astm.org
http://www.astm.org
http://dx.doi.org/10.1111/j.1467-8659.2012.03038.x
http://doi.acm.org/10.1145/1778765.1778800
http://doi.acm.org/10.1145/1141911.1141947
http://doi.acm.org/10.1145/1141911.1141947

[8] Desai Chen, Wojciech Matusik, Pitchaya Sitthi-Amorn, Piotr Didyk, and David

Levin. Spec2Fab: A reducer-tuner model for translating specifications to 3D

prints. ACM Trans. Graph., 32(4), July 2013.

[9] Wonjoon Cho, Emanuel M. Sachs, Nicholas M. Patrikalakis, and Donald E.

Troxel. A dithering algorithm for local composition control with three-

dimensional printing. Computer-Aided Design, 35(9):851–867, 2003. ISSN 0010-

4485. doi: 10.1016/S0010-4485(02)00122-7. URL http://www.sciencedirect.

com/science/article/pii/S0010448502001227.

[10] Klaus Cicha, Zhiquan Li, Klaus Stadlmann, Aleksandr Ovsianikov, Ruth

Markut-Kohl, Robert Liska, and Jurgen Stampfl. Evaluation of 3D structures

fabricated with two-photon-photopolymerization by using FTIR spectroscopy.

Journal of Applied Physics, 110(6):064911, 2011. doi: 10.1063/1.3639304. URL

http://link.aip.org/link/?JAP/110/064911/1.

[11] Petrik Clarberg, Robert Toth, Jon Hasselgren, and Tomas Akenine-Möller. An

optimizing compiler for automatic shader bounding. Computer Graphics Forum,

29(4):1259–1268, 2010. doi: 10.1111/j.1467-8659.2010.01721.x. URL http://

dx.doi.org/10.1111/j.1467-8659.2010.01721.x.

[12] Daniel Cohen-Or and Arie Kaufman. Fundamentals of surface voxelization.

Graph. Models Image Process., 57(6):453–461, 1995. ISSN 1077-3169. doi:

10.1006/gmip.1995.1039. URL http://dx.doi.org/10.1006/gmip.1995.1039.

[13] Robert L. Cook. Shade trees. In Proc. SIGGRAPH, pages 223–231, New York,

NY, USA, 1984. ACM. ISBN 0-89791-138-5. doi: 10.1145/800031.808602. URL

http://doi.acm.org/10.1145/800031.808602.

[14] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes image

rendering architecture. In Proc. SIGGRAPH, pages 95–102, New York, NY,

USA, 1987. ACM. ISBN 0-89791-227-6. doi: 10.1145/37401.37414. URL

http://doi.acm.org/10.1145/37401.37414.

47

http://www.sciencedirect.com/science/article/pii/S0010448502001227
http://www.sciencedirect.com/science/article/pii/S0010448502001227
http://link.aip.org/link/?JAP/110/064911/1
http://dx.doi.org/10.1111/j.1467-8659.2010.01721.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01721.x
http://dx.doi.org/10.1006/gmip.1995.1039
http://doi.acm.org/10.1145/800031.808602
http://doi.acm.org/10.1145/37401.37414

[15] Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthias Müller, and Robert

Jagnow. A procedural approach to authoring solid models. In Proc. SIGGRAPH,

pages 302–311, New York, NY, USA, 2002. ACM. ISBN 1-58113-521-1. doi:

10.1145/566570.566581. URL http://doi.acm.org/10.1145/566570.566581.

[16] Robert Floyd and Louis Steinberg. An adaptive algorithm for spatial gray scale.

In Proc. Society of Information Display, volume 17/2, pages 75–77, 1976.

[17] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones.

Adaptively sampled distance fields: a general representation of shape for com-

puter graphics. In Proc. SIGGRAPH, pages 249–254, New York, NY, USA,

2000. ACM. ISBN 1-58113-208-5. doi: 10.1145/344779.344899. URL http:

//dx.doi.org/10.1145/344779.344899.

[18] Larry Gritz. OpenImageIO 1.0. http://openimageio.org, 2012.

[19] Pat Hanrahan and Jim Lawson. A language for shading and lighting calculations.

In Proc. SIGGRAPH, pages 289–298, New York, NY, USA, 1990. ACM. ISBN

0-89791-344-2. doi: 10.1145/97879.97911. URL http://doi.acm.org/10.1145/

97879.97911.

[20] Jon Hasselgren and Thomas Akenine-Möller. PCU: the programmable culling

unit. ACM Trans. Graph., 26(3), July 2007. ISSN 0730-0301. doi: 10.1145/

1276377.1276492. URL http://doi.acm.org/10.1145/1276377.1276492.

[21] Jon Hasselgren, Jacob Munkberg, and Tomas Akenine-Möller. Automatic pre-

tessellation culling. ACM Trans. Graph., 28(2):19:1–19:10, May 2009. ISSN 0730-

0301. doi: 10.1145/1516522.1516530. URL http://doi.acm.org/10.1145/

1516522.1516530.

[22] Miloš Hašan, Martin Fuchs, Wojciech Matusik, Hanspeter Pfister, and Szymon

Rusinkiewicz. Physical reproduction of materials with specified subsurface scat-

tering. ACM Trans. Graph., 29:61:1–61:10, July 2010. ISSN 0730-0301. doi:

48

http://doi.acm.org/10.1145/566570.566581
http://dx.doi.org/10.1145/344779.344899
http://dx.doi.org/10.1145/344779.344899
http://openimageio.org
http://doi.acm.org/10.1145/97879.97911
http://doi.acm.org/10.1145/97879.97911
http://doi.acm.org/10.1145/1276377.1276492
http://doi.acm.org/10.1145/1516522.1516530
http://doi.acm.org/10.1145/1516522.1516530

http://doi.acm.org/10.1145/1778765.1778798. URL http://doi.acm.org/10.

1145/1778765.1778798.

[23] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. Sampling proce-

dural shaders using affine arithmetic. ACM Trans. Graph., 17(3):158–176, July

1998. ISSN 0730-0301. doi: 10.1145/285857.285859. URL http://doi.acm.

org/10.1145/285857.285859.

[24] Hewlett-Packard. Printer command language, 1984.

[25] Todd Robert Jackson. Analysis of functionally graded material object represen-

tation methods. PhD thesis, Massachusetts Institute of Technology, 2000.

[26] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-directed and Runtime Optimiza-

tion, CGO ’04, Washington, DC, USA, 2004. IEEE Computer Society. ISBN

0-7695-2102-9. URL http://dl.acm.org/citation.cfm?id=977395.977673.

[27] H. Liu, T. Maekawa, N.M. Patrikalakis, E.M. Sachs, and W. Cho. Methods for

feature-based design of heterogeneous solids. Computer-Aided Design, 36(12):

1141–1159, 2004. ISSN 0010-4485. doi: 10.1016/j.cad.2003.11.001. URL http:

//www.sciencedirect.com/science/article/pii/S0010448503002318.

[28] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution

3D surface construction algorithm. In Proceedings of the 14th annual conference

on Computer graphics and interactive techniques, pages 163–169, New York,

NY, USA, 1987. ACM. ISBN 0-89791-227-6. doi: 10.1145/37401.37422. URL

http://doi.acm.org/10.1145/37401.37422.

[29] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. Chopper:

partitioning models into 3D-printable parts. ACM Trans. Graph., 31(6):129:1–

129:9, November 2012. ISSN 0730-0301. doi: 10.1145/2366145.2366148. URL

http://doi.acm.org/10.1145/2366145.2366148.

49

http://doi.acm.org/10.1145/1778765.1778798
http://doi.acm.org/10.1145/1778765.1778798
http://doi.acm.org/10.1145/285857.285859
http://doi.acm.org/10.1145/285857.285859
http://dl.acm.org/citation.cfm?id=977395.977673
http://www.sciencedirect.com/science/article/pii/S0010448503002318
http://www.sciencedirect.com/science/article/pii/S0010448503002318
http://doi.acm.org/10.1145/37401.37422
http://doi.acm.org/10.1145/2366145.2366148

[30] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg:

a system for programming graphics hardware in a C-like language. ACM Trans.

Graph., 22(3):896–907, July 2003. ISSN 0730-0301. doi: 10.1145/882262.882362.

URL http://doi.acm.org/10.1145/882262.882362.

[31] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting

classification of parallel rendering. IEEE Computer Graphics and Applications,

14(4):23–32, 1994. ISSN 0272-1716. doi: http://dx.doi.org/10.1109/38.291528.

[32] Objet. Connex 500 multi-material 3D printing system.

[33] Ken Perlin. An image synthesizer. In Proc. SIGGRAPH, pages 287–296, New

York, NY, USA, 1985. ACM. ISBN 0-89791-166-0. doi: 10.1145/325334.325247.

URL http://doi.acm.org/10.1145/325334.325247.

[34] Pixar. The RenderMan Interface. Technical report, 11 2005.

[35] Zehavit B. Reisin. Expanding applications and opportunities with

PolyJetTMrapid prototyping technology. Technical report, Objet, 2009.

[36] Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid vox-

elization on GPUs. ACM Transactions on Graphics, 29(6):179:1–179:10, Decem-

ber 2010. doi: 10.1145/1866158.1866201. URL http://doi.acm.org/10.1145/

1866158.1866201.

[37] Mark Segal and Kurt Akeley. The OpenGL graphics system: A specification,

version 4.3. Technical report, SGI, 2012. URL http://www.opengl.org/.

[38] Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomı́r Měch.

Stress relief: improving structural strength of 3D printable objects. ACM Trans.

Graph., 31(4):48:1–48:11, July 2012. ISSN 0730-0301. doi: 10.1145/2185520.

2185544. URL http://doi.acm.org/10.1145/2185520.2185544.

[39] VoxelJet. VoxelJet VX4000 – the large-format 3D print system, 2013. URL

http://www.voxeljet.de/en/systems/vx4000/.

50

http://doi.acm.org/10.1145/882262.882362
http://doi.acm.org/10.1145/325334.325247
http://doi.acm.org/10.1145/1866158.1866201
http://doi.acm.org/10.1145/1866158.1866201
http://www.opengl.org/
http://doi.acm.org/10.1145/2185520.2185544
http://www.voxeljet.de/en/systems/vx4000/

[40] Lifeng Wang, Jacky Lau, Edwin L Thomas, and Mary C Boyce. Co-continuous

composite materials for stiffness, strength, and energy dissipation. Advanced Ma-

terials, 23(13):1524–9, 2011. ISSN 1521-4095. URL http://www.biomedsearch.

com/nih/Co-continuous-composite-materials-stiffness/21449055.html.

[41] Tim Weyrich, Pieter Peers, Wojciech Matusik, and Szymon Rusinkiewicz. Fab-

ricating microgeometry for custom surface reflectance. ACM Transactions on

Graphics, 28(3):32:1–32:6, July 2009. doi: 10.1145/1576246.1531338. URL

http://doi.acm.org/10.1145/1576246.1531338.

[42] M.Y. Zhou, J.T. Xi, and J.Q. Yan. Modeling and processing of functionally

graded materials for rapid prototyping. Journal of Materials Processing Tech-

nology, 146(3):396–402, 2004. ISSN 0924-0136. doi: 10.1016/j.jmatprotec.

2003.11.034. URL http://www.sciencedirect.com/science/article/pii/

S0924013603010574.

51

http://www.biomedsearch.com/nih/Co-continuous-composite-materials-stiffness/21449055.html
http://www.biomedsearch.com/nih/Co-continuous-composite-materials-stiffness/21449055.html
http://doi.acm.org/10.1145/1576246.1531338
http://www.sciencedirect.com/science/article/pii/S0924013603010574
http://www.sciencedirect.com/science/article/pii/S0924013603010574

	Acknowledgments
	List of Figures
	Introduction
	Overview

	Related Work
	Design Philosophy
	Programming Model
	Input specification
	Tessellation
	Surface phase
	Voxelize
	Volume phase
	Dither
	Output
	Discussion

	Fablets and OpenFL
	Example

	Architecture
	Pipeline Stages

	Results
	3D Prints
	Performance

	Discussion and Future Work
	Bibliography

