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Abstract

In the last few decades, the study of human history has been fundamentally changed by
our ability to detect the signatures left within our genomes by adaptations, migrations,
population size changes, and other processes. Rapid advances in DNA sequencing technology
have now made it possible to interrogate these signals at unprecedented levels of detail,
but extracting more complex information about the past from patterns of genetic variation
requires new and more sophisticated models. This thesis presents a suite of sensitive and
efficient statistical tools for learning about human history and evolution from large-scale
genetic data. We focus first on the problem of admixture inference and describe two new
methods for determining the dates, sources, and proportions of ancestral mixtures between
diverged populations. These methods have already been applied to a number of important
historical questions, in particular that of tracing the course of the Austronesian expansion in
Southeast Asia. We also report a new approach for estimating the human mutation rate, a
fundamental parameter in evolutionary genetics, and provide evidence that it is higher than
has been proposed in recent pedigree-based studies.
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Introduction

The field of population genetics is concerned with the study of the forces shaping variation
among the DNA sequences of groups of organisms, from individuals to entire species. The
classical models in the field were statistical descriptions of evolutionary processes derived
most prominently by R. A. Fisher, J. B. S. Haldane, and Sewall Wright in the early and
middle parts of the 1900s. Later, Motoo Kimura and others added important results after
the synthesis of the theory of genetic inheritance with that of the evolution of molecular
sequences. (Background information in this chapter is due primarily to Gillespie (1998) and
Charlesworth et al. (2010).)

More recently, population genetics has been revolutionized by DNA sequencing technol-
ogy and the resulting availability of vastly more data than had ever previously been possible.
New methods that take advantage of these large-scale data have led to significant advances
in understanding aspects of human history, but the pace of technological progress has out-
stripped that of the development of mathematical models (Pool et al., 2010; Pritchard, 2011).

In this thesis, we develop three statistical methods for analyzing large-scale population
genetic data and show a number of applications to worldwide human populations. First, we
describe two model-based inference procedures for analyzing historical mixture events. We
also present a new technique for estimating the human mutation rate by calibrating against
recombination in diploid genomes.

Evolutionary forces

As a population evolves, a number of biological and demographic forces combine to shape
the genetic makeup of individuals and the population as a whole. To the extent that we
understand how these forces operate, we can formulate models that describe their effects.
Then, from observed genetic data, we can attempt to reconstruct the forces that have been
present and thus learn about the history of a population. Here we briefly introduce some
of the most important evolutionary forces and how they contribute to patterns of genetic
variation.

Mutation

The ultimate source of genetic variation is mutation: spontaneous changes in the genome typ-
ically caused by errors in DNA replication. We will be concerned with heritable mutations,
i.e., those occurring in germ line cells and hence passed along to an individual’s offspring.
Mutations can take many forms, but we will primarily consider single-base changes rather
than events such as insertions and deletions.
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Genetic drift

Once variation is present in a population, several forces serve to shape it. The simplest
is genetic drift, which refers to random changes in allele frequencies from generation to
generation as a result of finite population sizes. Under the commonly used Wright-Fisher
model of a constant-size, randomly mating population, each copy of a genetic locus in a given
generation is equally likely to be descended from any copy in the parental generation. This
leads to well-known results such as an exponential distribution of times to common ancestor
and a constant accumulation of fixed changes, as well as to more complicated frameworks
such as diffusion approximations and coalescent theory.

Drift is often taken as a null model when testing for the presence of other forces, since it
can account for evolutionary trajectories due to random sampling without invoking natural
selection. At the same time, since drift accumulates over the generations and is stronger
in smaller populations, it is very useful in its own right as a metric of divergence between
populations, measuring a combination of time and population size.

Recombination

Genetic material is transmitted in the physical units of chromosomes, but during the process
of gamete formation in meiosis, double-stranded breaks can result in the exchange of what
were previously maternal and paternal copies of homologous regions, creating new combina-
tions of alleles on the chromosome passed to the next generation. This reshuffling is very
important both for evolution itself and in its effects on the statistical properties of pairs of
loci: since sites that are physically close together on a chromosome will rarely be separated
by a recombination event, their allelic states will tend to be correlated within a population.

Migration and admixture

When two populations are separated for a period of time, they will tend to diverge in their
genetic makeup. If members of these populations subsequently come into contact again
and exchange genes, this will result in the creation of a new population with recognizable
signatures of mixture. While some authors prefer to treat this process as a gradual exchange
of a few migrant individuals every generation, we will model it in terms of distinct pulses of
admixture. In the case of human history, such admixture events are common and generally
arise as a result of long-range migrations.

Natural selection

Perhaps the most canonical of evolutionary forces is natural selection, which causes alleles
that give a fitness benefit to their carriers to increase in frequency over time. However, we
will not be dealing directly with selection in this work.
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Admixture and genetic drift: building phylogenetic models with
MixMapper

Patterns of genetic differentiation among a set of populations related by drift and admixture
can be harnessed to learn about historical admixture events. Among the most popular
existing tools for studying admixture are principal component analysis (PCA) (Patterson
et al., 2006) and the clustering algorithm STRUCTURE (Pritchard et al., 2000), which
identify admixed populations as intermediates in relation to surrogate ancestral populations.
These methods are useful but limited, since they are not based on phylogenetic models of
population relationships.

In Chapter 1, we present MixMapper , a new method that uses allele frequency moment
statistics for building models of population history involving admixture (Lipson et al., 2013).
MixMapper allows for more precise inferences than have been possible with previous methods
by augmenting phylogenetic trees based on genetic drift distances with admixture events
between different branches. The program automatically determines the best-fitting topology
from the data, along the mixture proportions and the exact split points of the ancestral
mixing groups in relation to the sampled populations.

Admixture and recombination: LD-based inference with ALDER

Another approach to studying admixture to use the fact that recombination leads to a char-
acteristic mosaic pattern in genomes of admixed individuals, whereby each chromosome is
made up of a sequence of contiguous blocks whose ancestry can be traced back to each of the
ancestral mixing populations. In “local ancestry inference” (Tang et al., 2006; Sankararaman
et al., 2008; Price et al., 2009; Lawson et al., 2012), chromosomes of admixed individuals are
analyzed with the goal of recovering the exact positions of these blocks. When successful,
these techniques are informative about the source populations and the time since admix-
ture, since the blocks become smaller over time with successive recombinations. However,
local ancestry inference is difficult in practice when the blocks are short or the reference
populations used are highly diverged from the true mixing populations.

As an alternative, one can use the observation that even if ancestry blocks cannot be
observed directly, admixture causes statistical associations between nearby genetic loci on
account of their common ancestry (Chakraborty and Weiss, 1988). As recombination breaks
apart the blocks over the generations, the remaining amount of this “linkage disequilibrium”
(LD) exhibits an exponential decay as a function of both time and genetic distance (Moorjani
et al., 2011; Patterson et al., 2012).

We have developed a comprehensive software package known as ALDER for using LD
to investigate historical admixture events (Loh et al., 2013). In Chapter 2, we describe a
newly formulated weighted LD statistic and extend the theory of admixture LD to allow for
several new applications. In addition to dates of admixture, we show how to infer mixture
proportions and phylogenetic relationships among modern individuals and ancestral mixing
populations, even in the case when data are only available from the admixed population
itself and one reference group. We also present a formal LD-based test for the presence
of admixture and a novel algorithm for weighted LD computation that reduces typical run
times from hours to seconds.
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Mutation and recombination: estimating the human mutation rate

The rate at which new mutations accumulate in the genome is of fundamental importance
to several areas of genetics. Within population genetics, it is especially important as a
calibration for the time scale of divergence between species and populations, whose observed
degree of genetic similarity can be translated into ancestral split times. Direct sequencing-
based estimates of the mutation rate thus far have almost all been limited to counting de
novo mutations occurring in the course of at most a handful of generations, for a total of
only a few dozen base-pair changes out of three billion per parent–child transmission. While
these counts can be averaged over multiple samples, it remains difficult to separate true
mutations from sequencing errors at such a low frequency.

Within a single human genome, on the other hand, there are on average 2–3 million het-
erozygous positions, where the maternal and paternal copies of a chromosome carry different
bases. Each of these sites records a mutation that has occurred on one of the two lineages
between their common ancestral sequence and the present day. Thus, if we knew the time to
the most recent common ancestor (TMRCA), we could use this together with the number of
mutations that have accumulated to estimate a per-generation or per-year rate. This is made
difficult, however, by the fact that recombination events decouple the ancestry at different
points along chromosomes, meaning that the TMRCA varies on relatively short length scales
(on average, a few kilobases).

In Chapter 5, we show how we can in fact use this decorrelation of TMRCA caused by
recombination to determine the time scale over which the heterozygous sites in a diploid
genome have arisen. For a given region, the local TMRCA is related to the observed density
of heterozygous sites, and moving along the chromosome, the expected heterozygosity as
a function of distance depends on the probability of encountering a recombination event.
Thus, the decay of the TMRCA correlation, together with the local fraction of heterozygous
sites, couples the mutation and recombination rates and provides an estimate of the former
given the latter. We use this technique to provide a new estimate of the human mutation
rate that is higher than that from most recent studies but is in line with older results.

Applications

Within Chapters 1 and 2, we provide a number of novel insights about present-day human
populations, both as illustrations of the applicability of MixMapper and ALDER and as
results of interest in their own right. In Chapter 3, we further highlight several subsequent
papers that have made use of the two programs. Finally, in Chapter 4, we present an in-depth
study of the history of Austronesian-speaking populations in Southeast Asia, a particularly
fruitful application of the MixMapper method.

14



Chapter 1

Efficient Moment-Based Inference of
Admixture Parameters and Sources of
Gene Flow

The recent explosion in available genetic data has led to significant advances in understand-
ing the demographic histories of and relationships among human populations. It is still a
challenge, however, to infer reliable parameter values for complicated models involving many
populations. Here we present MixMapper , an efficient, interactive method for constructing
phylogenetic trees including admixture events using single nucleotide polymorphism (SNP)
genotype data. MixMapper implements a novel two-phase approach to admixture inference
using moment statistics, first building an unadmixed scaffold tree and then adding admixed
populations by solving systems of equations that express allele frequency divergences in terms
of mixture parameters. Importantly, all features of the model, including topology, sources of
gene flow, branch lengths, and mixture proportions, are optimized automatically from the
data and include estimates of statistical uncertainty. MixMapper also uses a new method to
express branch lengths in easily interpretable drift units. We apply MixMapper to recently
published data for HGDP individuals genotyped on a SNP array designed especially for use
in population genetics studies, obtaining confident results for 30 populations, 20 of them
admixed. Notably, we confirm a signal of ancient admixture in European populations—
including previously undetected admixture in Sardinians and Basques—involving a propor-
tion of 20–40% ancient northern Eurasian ancestry.∗

1.1 Introduction

The most basic way to represent the evolutionary history of a set of species or populations
is through a phylogenetic tree, a model that in its strict sense assumes that there is no gene
flow between populations after they have diverged (Cavalli-Sforza and Edwards, 1967). In
many settings, however, groups that have split from one another can still exchange genetic

∗The material in this chapter previously appeared in the August 2013 issue of Molecular Biology and
Evolution as “Efficient moment-based inference of admixture parameters and sources of gene flow” by Mark
Lipson, Po-Ru Loh, Alex Levin, David Reich, Nick Patterson, and Bonnie Berger (Lipson et al., 2013).
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material. This is certainly the case for human population history, during the course of
which populations have often diverged only incompletely or diverged and subsequently mixed
again (Reich et al., 2009; Wall et al., 2009; Laval et al., 2010; Green et al., 2010; Reich
et al., 2010; Gravel et al., 2011; Patterson et al., 2012). To capture these more complicated
relationships, previous studies have considered models allowing for continuous migration
among populations (Wall et al., 2009; Laval et al., 2010; Gravel et al., 2011) or have extended
simple phylogenetic trees into admixture trees, in which populations on separate branches are
allowed to re-merge and form an admixed offspring population (Chikhi et al., 2001; Wang,
2003; Reich et al., 2009; Sousa et al., 2009; Patterson et al., 2012). Both of these frameworks,
of course, still represent substantial simplifications of true population histories, but they can
help capture a range of new and interesting phenomena.

Several approaches have previously been used to build phylogenetic trees incorporating
admixture events from genetic data. First, likelihood methods (Chikhi et al., 2001; Wang,
2003; Sousa et al., 2009) use a full probabilistic evolutionary model, which allows a high level
of precision with the disadvantage of greatly increased computational cost. Consequently,
likelihood methods can in practice only accommodate a small number of populations (Wall
et al., 2009; Laval et al., 2010; Gravel et al., 2011; Sirén et al., 2011). Moreover, the tree
topology must generally be specified in advance, meaning that only parameter values can
be inferred automatically and not the arrangement of populations in the tree. By contrast,
the moment-based methods of Reich et al. (2009) and Patterson et al. (2012) use only
means and variances of allele frequency divergences. Moments are simpler conceptually
and especially computationally, and they allow for more flexibility in model conditions.
Their disadvantages can include reduced statistical power and difficulties in designing precise
estimators with desirable statistical properties (e.g., unbiasedness) (Wang, 2003). Finally, a
number of studies have considered “phylogenetic networks,” which generalize trees to include
cycles and multiple edges between pairs of nodes and can be used to model population
histories involving hybridization (Huson and Bryant, 2006; Yu et al., 2012). However, these
methods also tend to be computationally expensive.

In this work, we introduce MixMapper , a new computational tool that fits admixture trees
by solving systems of moment equations involving the pairwise distance statistic f2 (Reich
et al., 2009; Patterson et al., 2012), which is the average squared allele frequency difference
between two populations. The theoretical expectation of f2 can be calculated in terms of
branch lengths and mixture fractions of an admixture tree and then compared to empirical
data. MixMapper can be thought of as a generalization of the qpgraph package (Patterson
et al., 2012), which takes as input genotype data, along with a proposed arrangement of
admixed and unadmixed populations, and returns branch lengths and mixture fractions that
produce the best fit to allele frequency moment statistics measured on the data. MixMapper ,
by contrast, performs the fitting in two stages, first constructing an unadmixed scaffold tree
via neighbor-joining and then automatically optimizing the placement of admixed popula-
tions onto this initial tree. Thus, no topological relationships among populations need to be
specified in advance.

Our method is similar in spirit to the independently developed TreeMix package (Pick-
rell and Pritchard, 2012). Like MixMapper , TreeMix builds admixture trees from second
moments of allele frequency divergences, although it does so via a composite likelihood max-
imization approach made tractable with a multivariate normal approximation. Procedurally,
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Phase 2: Admixture fitting

• Two-way mixture fitting
• Three-way mixture fitting
• Conversion to drift units

Phase 1: Unadmixed scaffold
tree construction

• Unadmixed population filtering
(f3-statistics > 0)

• Unadmixed subset selection
(ranking by f2-additivity)

• Scaffold tree building
(neighbor joining) Bootstrap resampling

Figure 1.1. MixMapper workflow. MixMapper takes as input an array of SNP calls
annotated with the population to which each individual belongs. The method then
proceeds in two phases, first building a tree of (approximately) unadmixed populations and
then attempting to fit the remaining populations as admixtures. In the first phase,
MixMapper produces a ranking of possible unadmixed trees in order of deviation from
f2-additivity; based on this list, the user selects a tree to use as a scaffold. In the second
phase, MixMapper tries to fit remaining populations as two- or three-way mixtures between
branches of the unadmixed tree. In each case MixMapper produces an ensemble of
predictions via bootstrap resampling, enabling confidence estimation for inferred results.

TreeMix initially fits a full set of populations as an unadmixed tree, and gene flow edges
are added sequentially to account for the greatest errors in the fit (Pickrell and Pritchard,
2012). This format makes TreeMix well-suited to handling very large trees: the entire fitting
process is automated and can include arbitrarily many admixture events simultaneously. In
contrast, MixMapper begins with a carefully screened unadmixed scaffold tree to which ad-
mixed populations are added with best-fitting parameter values, an interactive design that
enables precise modeling of particular populations of interest.

We use MixMapper to model the ancestral relationships among 52 populations from the
CEPH-Human Genome Diversity Cell Line Panel (HGDP) (Rosenberg et al., 2002; Li et al.,
2008) using recently published data from a new, specially ascertained SNP array designed
for population genetics applications (Keinan et al., 2007; Patterson et al., 2012). Previous
studies of these populations have built simple phylogenetic trees (Li et al., 2008; Sirén et al.,
2011), identified a substantial number of admixed populations with likely ancestors (Patter-
son et al., 2012), and constructed a large-scale admixture tree (Pickrell and Pritchard, 2012).
Here, we add an additional level of quantitative detail, obtaining best-fit admixture param-
eters with bootstrap error estimates for 30 HGDP populations, of which 20 are admixed.
The results include, most notably, a significant admixture event (Patterson et al., 2012) in
the history of all sampled European populations, among them Sardinians and Basques.
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1.2 New Approaches

The central problem we consider is: given an array of SNP data sampled from a set of in-
dividuals grouped by population, what can we infer about the admixture histories of these
populations using simple statistics that are functions of their allele frequencies? Methodolog-
ically, the MixMapper workflow (Figure 1.1) proceeds as follows. We begin by computing
f2 distances between all pairs of study populations, from which we construct an unadmixed
phylogenetic subtree to serve as a scaffold for subsequent mixture fitting. The choice of pop-
ulations for the scaffold is done via initial filtering of populations that are clearly admixed
according to the 3-population test (Reich et al., 2009; Patterson et al., 2012), followed by
selection of a subtree that is approximately additive along its branches, as is expected in the
absence of admixture (see Material and Methods and Appendix A.1 for full details).

Next, we expand the model to incorporate admixtures by attempting to fit each popula-
tion not in the scaffold as a mixture between some pair of branches of the scaffold. Putative
admixtures imply algebraic relations among f2 statistics, which we test for consistency with
the data, allowing us to identify likely sources of gene flow and estimate mixture parameters
(Figure 1.2; Appendix A.1). After determining likely two-way admixture events, we further
attempt to fit remaining populations as three-way mixtures involving the inferred two-way
mixed populations, by similar means. Finally, we use a new formula to convert the f2 tree
distances into absolute drift units (Appendix A.2). Importantly, we apply a bootstrap resam-
pling scheme (Efron, 1979; Efron and Tibshirani, 1986) to obtain ensembles of predictions,
rather than single values, for all model variables. This procedure allows us to determine con-
fidence intervals for parameter estimates and guard against overfitting. For a data set on the
scale of the HGDP, after initial setup time on the order of an hour, MixMapper determines
the best-fit admixture model for a chosen population in a few seconds, enabling real-time
interactive investigation.
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AdmixedPop
(α . Parent1 + β . Parent2)
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MixedDrift = α2a+β2b+c
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B

MixedDrift1A

α1

FinalDrift1B

Branch3Loc
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AdmixedPop2
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Figure 1.2. Schematic of mixture parameters fit by MixMapper . (A) A simple
two-way admixture. MixMapper infers four parameters when fitting a given population as
an admixture. It finds the optimal pair of branches between which to place the admixture
and reports the following: Branch1Loc and Branch2Loc are the points at which the mixing
populations split from these branches (given as pre-split length / total branch length); α is
the proportion of ancestry from Branch1 (β = 1− α is the proportion from Branch2); and
MixedDrift is the linear combination of drift lengths α2a+ β2b+ c. (B) A three-way
mixture: here AdmixedPop2 is modeled as an admixture between AdmixedPop1 and
Branch3. There are now four additional parameters; three are analogous to the above,
namely, Branch3Loc, α2, and MixedDrift2. The remaining degree of freedom is the position
of the split along the AdmixedPop1 branch, which divides MixedDrift into MixedDrift1A
and FinalDrift1B.
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1.3 Results

1.3.1 Simulations

To test the inference capabilities of MixMapper on populations with known histories, we ran
it on two data sets generated with the coalescent simulator ms (Hudson, 2002) and designed
to have similar parameters to our human data. In both cases, we simulated 500 regions of 500
kb each for 25 diploid individuals per population, with an effective population size of 5,000
or 10,000 per population, a mutation rate of 0.5×10−8 per base per generation (intentionally
low so as not to create unreasonably many SNPs), and a recombination rate of 10−8 per base
per generation. Full ms commands can be found in Material and Methods. We ascertained
SNPs present at minor allele frequency 0.05 or greater in an outgroup population and then
removed that population from the analysis.

For the first admixture tree, we simulated six non-outgroup populations, with one of them,
pop6, admixed (Figure 1.3A). Applying MixMapper , no admixtures were detected with the
3-population test, but the most additive subset with at least five populations excluded pop6
(max deviation from additivity 2.0 × 10−4 versus second-best 7.7 × 10−4; see Material and
Methods), so we used this subset as the scaffold tree. We then fit pop6 as admixed, and
MixMapper recovered the correct gene flow topology with 100% confidence and inferred the
other parameters of the model quite accurately (Figure 1.3B; Table 1.1). For comparison, we
also analyzed the same data with TreeMix and again obtained accurate results (Figure 1.3C).

For the second test, we simulated a complex admixture scenario involving 10 non-
outgroup populations, with six unadmixed and four admixed (Figure 1.3D). In this example,
pop4 is recently admixed between pop3 and pop5, but over a continuous period of 40 gener-
ations. Meanwhile, pop8, pop9, and pop10 are all descended from older admixture events,
which are similar but with small variations (lower mixture fraction in pop9, 40-generation
continuous gene flow in pop10, and subsequent pop2-related admixture into pop8). In the
first phase of MixMapper , the recently admixed pop4 and pop8 were detected with the 3-
population test. From among the other eight populations, a scaffold tree consisting of pop1,
pop2, pop3, pop5, pop6, and pop7 provided thorough coverage of the data set and was more
additive (max deviation 3.5× 10−4) than the secon-best six-population scaffold (5.4× 10−4)
and the best seven-population scaffold (1.2 × 10−3). Using this scaffold, MixMapper re-
turned very accurate and high-confidence fits for the remaining populations (Figure 1.3E;
Table 1.1), with the correct gene flow topologies inferred with 100% confidence for pop4 and
pop10, 98% confidence for pop9, and 61% confidence for pop8 (fit as a three-way admixture;
39% of replicates placed the third gene flow source on the branch adjacent to pop2, as shown
in Table 1.1). In contrast, TreeMix inferred a less accurate admixture model for this data
set (Figure 1.3F). TreeMix correctly identified pop4 as admixed, and it placed three migra-
tion edges among pop7, pop8, pop9, and pop10, but two of the five total admixtures (those
originating from the common ancestor of pops 3-5 and the common ancestor of pops 9-10)
did not correspond to true events. Also, TreeMix did not detect the presence of admixture
in pop9 or the pop2-related admixture in pop8.
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Figure 1.3. Results with simulated data. (A-C) First simulated admixture tree, with
one admixed population. Shown are: (A) the true phylogeny, (B) MixMapper results, and
(C) TreeMix results. (D-F) Second simulated admixture tree, with four admixed
populations. Shown are: (D) the true phylogeny, (E) MixMapper results, and (F) TreeMix
results. In (A) and (D), dotted lines indicate instantaneous admixtures, while arrows
denote continuous (unidirectional) gene flow over 40 generations. Both MixMapper and
TreeMix infer point admixtures, depicted with dotted lines in (B) and (E) and colored
arrows in (C) and (F). In (B) and (E), the terminal drift edges shown for admixed
populations represent half the total mixed drift. Full inferred parameters from MixMapper
are given in Table 1.1.
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Table 1.1. Mixture parameters for simulated data.

AdmixedPop Branch1 + Branch2 # rep α Branch1Loc Branch2Loc MixedDrift
First tree
pop6 pop3 + pop5 500 0.253-0.480 0.078-0.195 / 0.214 0.050-0.086 / 0.143 0.056-0.068
pop6 (true) pop3 + pop5 0.4 0.107 / 0.213 0.077 / 0.145 0.066
Second tree
pop4 pop3 + pop5 500 0.382-0.652 0.039-0.071 / 0.076 0.032-0.073 / 0.077 0.010-0.020
pop4 (true) pop3 + pop5 0.4 0.071 / 0.077 0.038 / 0.077 0.016
pop9 Anc3–7 + pop7 490 0.653-0.915 0.048-0.091 / 0.140 0.013-0.134 / 0.147 0.194-0.216
pop9 (true) Anc3–7 + pop7 0.8 0.077 / 0.145 0.037 / 0.145 0.194
pop10 Anc3–7 + pop7 500 0.502-0.690 0.047-0.091 / 0.140 0.021-0.067 / 0.147 0.151-0.167
pop10 (true) Anc3–7 + pop7 0.6 0.077 / 0.145 0.037 / 0.145 0.150
AdmixedPop2 Mixed1 + Branch3 # rep α2 Branch3Loc
pop8 pop10 + pop2 304 0.782-0.822 0.007-0.040 / 0.040

pop10 + Anc1–2 193 0.578-0.756 0.009-0.104 / 0.148
pop8 (true) pop10 + pop2 0.8 0.020 / 0.039

Mixture parameters inferred by MixMapper for simulated data, followed by true values for
each simulated admixed population. Branch1 and Branch2 are the optimal split points for
the mixing populations, with α the proportion of ancestry from Branch1; topologies are
shown that that occur for at least 20 of 500 bootstrap replicates. The mixed drift
parameters for the three-way admixed pop8 are not well-defined in the simulated tree and
are omitted. The branch “Anc3–7” is the common ancestral branch of pops 3–7, and the
branch “Anc1–2” is the common ancestral branch of pops 1–2. See Figure 1.2 and the
caption of Table 1.2 for descriptions of the parameters and Figure 1.3 for plots of the
results.

1.3.2 Application of MixMapper to HGDP data

Despite the focus of the HGDP on isolated populations, most of its 53 groups exhibit signs
of admixture detectable by the 3-population test, as has been noted previously (Patterson
et al., 2012). Thus we hypothesized that applying MixMapper to this data set would yield
significant insights. Ultimately, we were able to obtain comprehensive results for 20 admixed
HGDP populations (Figure 1.4), discussed in detail in the following sections.

1.3.3 Selection of a 10-population unadmixed scaffold tree

To construct an unadmixed scaffold tree for the HGDP data to use in fitting admixtures,
we initially filtered the list of 52 populations (having removed San due to ascertainment
of our SNP panel in a San individual; see Material and Methods) with the 3-population
test, leaving only 20 that are potentially unadmixed. We further excluded Mbuti and Biaka
Pygmies, Kalash, Melanesian, and Colombian from the list of candidate populations due to
external evidence of admixture (Loh et al., 2013).

It is desirable to include a wide range of populations in the unadmixed scaffold tree
to provide both geographic coverage and additional constraints that facilitate the fitting of
admixed populations (see Material and Methods). Additionally, incorporating at least four
continental groups provides a fairer evaluation of additivity, which is roughly equivalent to
measuring discrepancies in fitting phylogenies to quartets of populations. If all populations
fall into three or fewer tight clades, however, any quartet must contain at least two pop-
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Figure 1.4. Aggregate phylogenetic trees of HGDP populations with and
without admixture. (A) A simple neighbor-joining tree on the 30 populations for which
MixMapper produced high-confidence results. This tree is analogous to the one given by Li
et al. (2008, Figure 1B), and the topology is very similar. (B) Results from MixMapper .
The populations appear in roughly the same order, but the majority are inferred to be
admixed, as represented by dashed lines (cf. Pickrell and Pritchard (2012) and Figure 1.5).
Note that drift units are not additive, so branch lengths should be interpreted individually.
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obtained with the TreeMix software, as reported in Pickrell and Pritchard (2012). Figure is
reproduced from Pickrell and Pritchard (2012) with permission of the authors and under
the Creative Commons Attribution License.
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ulations that are closely related. At the same time, including too many populations can
compromise the accuracy of the scaffold. We required that our scaffold tree include repre-
sentatives of at least four of the five major continental groups in the HGDP data set (Africa,
Europe, Oceania, Asia, and the Americas), with at least two populations per group (when
available) to clarify the placement of admixing populations and improve the geographical
balance. Subject to these conditions, we selected an approximately unadmixed scaffold tree
containing 10 populations, which we found to provide a good balance between additivity and
comprehensiveness: Yoruba, Mandenka, Papuan, Dai, Lahu, Japanese, Yi, Naxi, Karitiana,
and Surúı (Figure 1.4B). These populations constitute the second-most additive (max de-
viation 1.12 × 10−3) of 21 similar trees differing only in which East Asian populations are
included (range 1.12–1.23× 10−3); we chose them over the most-additive tree because they
provide slightly better coverage of Asia. To confirm that modeling these 10 populations as
unadmixed in MixMapper is sensible, we checked that none of them can be fit in a reason-
able way as an admixture on a tree built with the other nine (see Material and Methods).
Furthermore, we repeated all of the analyses to follow using nine-population subsets of the
unadmixed tree as well as an alternative 11-population tree and confirmed that our results
are robust to the choice of scaffold (Figures A.2–A.3; Tables A.1–A.3).

1.3.4 Ancient admixture in the history of present-day European
populations

A notable feature of our unadmixed scaffold tree is that it does not contain any European
populations. Patterson et al. (2012) previously observed negative f3 values indicating admix-
ture in all HGDP Europeans other than Sardinian and Basque. Our MixMapper analysis
uncovered the additional observation that potential trees containing Sardinian or Basque
along with representatives of at least three other continents are noticeably less additive than
four-continent trees of the same size without Europeans: from our set of 15 potentially
unadmixed populations, none of the 100 most additive 10-population subtrees include Eu-
ropeans. This points to the presence of admixture in Sardinian and Basque as well as the
other European populations.

Using MixMapper , we added European populations to the unadmixed scaffold via admix-
tures (Figure 1.6; Table 1.2). For all eight groups in the HGDP data set, the best fit was as
a mixture of a population related to the common ancestor of Karitiana and Surúı (in varying
proportions of about 20–40%, with Sardinian and Basque among the lowest and Russian the
highest) with a population related to the common ancestor of all non-African populations on
the tree. We fit all eight European populations independently, but notably, their ancestors
branch from the scaffold tree at very similar points, suggesting a similar broad-scale his-
tory. Their branch positions are also qualitatively consistent with previous work that used
the 3-population test to deduce ancient admixture for Europeans other than Sardinian and
Basque (Patterson et al., 2012). To confirm the signal in Sardinian and Basque, we applied
f4 ratio estimation (Reich et al., 2009; Patterson et al., 2012), which uses allele frequency
statistics in a simpler framework to infer mixture proportions. We estimated approximately
20–25% “ancient northern Eurasian” ancestry (Table 1.3), which is in very good agreement
with our findings from MixMapper (Table 1.2).
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Figure 1.6. Inferred ancient admixture in Europe. (A) Detail of the inferred
ancestral admixture for Sardinians (other European populations are similar). One mixing
population splits from the unadmixed tree along the common ancestral branch of Native
Americans (“Ancient Northern Eurasian”) and the other along the common ancestral
branch of all non-Africans (“Ancient Western Eurasian”). Median parameter values are
shown; 95% bootstrap confidence intervals can be found in Table 1.2. The branch lengths
a, b, and c are confounded, so we show a plausible combination. (B) Map showing a sketch
of possible directions of movement of ancestral populations. Colored arrows correspond to
labeled branches in (A).
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Table 1.2. Mixture parameters for Europeans.

AdmixedPop # repa αb Branch1Loc (Anc. N-Eur.)c Branch2Loc (Anc. W-Eur.)c MixedDriftd

Adygei 500 0.254-0.461 0.033-0.078 / 0.195 0.140-0.174 / 0.231 0.077-0.092
Basque 464 0.160-0.385 0.053-0.143 / 0.196 0.149-0.180 / 0.231 0.105-0.121
French 491 0.184-0.386 0.054-0.130 / 0.195 0.149-0.177 / 0.231 0.089-0.104
Italian 497 0.210-0.415 0.043-0.108 / 0.195 0.137-0.173 / 0.231 0.092-0.109
Orcadian 442 0.156-0.350 0.068-0.164 / 0.195 0.161-0.185 / 0.231 0.096-0.113
Russian 500 0.278-0.486 0.045-0.091 / 0.195 0.146-0.181 / 0.231 0.079-0.095
Sardinian 480 0.150-0.350 0.045-0.121 / 0.195 0.146-0.176 / 0.231 0.107-0.123
Tuscan 489 0.179-0.431 0.039-0.118 / 0.195 0.137-0.177 / 0.231 0.088-0.110

aNumber of bootstrap replicates (out of 500) placing the mixture between the two branches
shown.
bProportion of ancestry from “ancient northern Eurasian” (95% bootstrap confidence
interval).
cSee Figure 1.6A for the definition of the “ancient northern Eurasian” and “ancient western
Eurasian” branches in the scaffold tree; Branch1Loc and Branch2Loc are the points at
which the mixing populations split from these branches (expressed as confidence interval
for split point / branch total, as in Figure 1.2A).
dSum of drift lengths α2a+ (1− α)2b+ c; see Figure 1.2A.

Table 1.3. Mixture proportions for Sardinian and Basque from f4 ratio estimation.

Test pop. Asian pop. American pop. α

Sardinian Dai Karitiana 23.3 ± 6.3
Sardinian Dai Surúı 24.5 ± 6.7
Sardinian Lahu Karitiana 23.1 ± 7.0
Sardinian Lahu Surúı 24.7 ± 7.6
Basque Dai Karitiana 22.8 ± 7.0
Basque Dai Surúı 24.0 ± 7.6
Basque Lahu Karitiana 23.1 ± 7.4
Basque Lahu Surúı 24.7 ± 8.0

To validate the mixture proportions estimated by MixMapper for Sardinian and Basque,
we applied f4 ratio estimation. The fraction α of “ancient northern Eurasian” ancestry was
estimated as α = f4(Papuan, Asian; Yoruba, European) / f4(Papuan, Asian; Yoruba,
American), where the European population is Sardinian or Basque, Asian is Dai or Lahu,
and American is Karitiana or Surúı. Standard errors are from 500 bootstrap replicates.
Note that this calculation assumes the topology of the ancestral mixing populations as
inferred by MixMapper (Figure 1.6A).
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Table 1.4. Mixture parameters for non-European populations modeled as two-way
admixtures.

AdmixedPop Branch1 + Branch2a # repb αc Branch1Locd Branch2Locd MixedDrifte

Daur Anc. N-Eur. + Jap. 350 0.067-0.276 0.008-0.126 / 0.195 0.006-0.013 / 0.016 0.006-0.015
Surúı + Japanese 112 0.021-0.058 0.008-0.177 / 0.177 0.005-0.010 / 0.015 0.005-0.016

Hezhen Anc. N-Eur. + Jap. 411 0.068-0.273 0.006-0.113 / 0.195 0.006-0.013 / 0.016 0.005-0.029
Oroqen Anc. N-Eur. + Jap. 410 0.093-0.333 0.017-0.133 / 0.195 0.005-0.013 / 0.015 0.011-0.030

Karitiana + Japanese 53 0.025-0.086 0.014-0.136 / 0.136 0.004-0.008 / 0.016 0.008-0.026
Yakut Anc. N-Eur. + Jap. 481 0.494-0.769 0.005-0.026 / 0.195 0.012-0.016 / 0.016 0.030-0.041
Melanesian Dai + Papuan 424 0.160-0.260 0.008-0.014 / 0.014 0.165-0.201 / 0.247 0.089-0.114

Lahu + Papuan 54 0.155-0.255 0.003-0.032 / 0.032 0.167-0.208 / 0.249 0.081-0.114
Han Dai + Japanese 440 0.349-0.690 0.004-0.014 / 0.014 0.008-0.016 / 0.016 0.002-0.006

aOptimal split points for mixing populations.
bNumber of bootstrap replicates (out of 500) placing the mixture between Branch1 and
Branch2; topologies are shown that that occur for at least 50 of 500 replicates.
cProportion of ancestry from Branch1 (95% bootstrap confidence interval).
dPoints at which mixing populations split from their branches (expressed as confidence
interval for split point / branch total, as in Figure 1.2A).
eSum of drift lengths α2a+ (1− α)2b+ c; see Figure 1.2A.

At first glance, this inferred admixture might appear improbable on geographical and
chronological grounds, but importantly, the two ancestral branch positions do not represent
the mixing populations themselves. Rather, there may be substantial drift from the best-fit
branch points to the true mixing populations, indicated as branch lengths a and b in Fig-
ure 1.6A. Unfortunately, these lengths, along with the post-admixture drift c, appear only
in a fixed linear combination in the system of f2 equations (Appendix A.1), and current
methods can only give estimates of this linear combination rather than the individual val-
ues (Patterson et al., 2012). One plausible arrangement, however, is shown in Figure 1.6A
for the case of Sardinian.

1.3.5 Two-way admixtures outside of Europe

We also found several other populations that fit robustly onto the unadmixed tree using
simple two-way admixtures (Table 1.4). All of these can be identified as admixed using the
3-population or 4-population tests (Patterson et al., 2012), but with MixMapper , we are able
to provide the full set of best-fit parameter values to model them in an admixture tree.

First, we found that four populations from North-Central and Northeast Asia—Daur,
Hezhen, Oroqen, and Yakut—are likely descended from admixtures between native North
Asian populations and East Asian populations related to Japanese. The first three are esti-
mated to have roughly 10–30% North Asian ancestry, while Yakut has 50–75%. Melanesians
fit optimally as a mixture of a Papuan-related population with an East Asian population close
to Dai, in a proportion of roughly 80% Papuan-related, similar to previous estimates (Re-
ich et al., 2011; Xu et al., 2012). Finally, we found that Han Chinese have an optimal
placement as an approximately equal mixture of two ancestral East Asian populations, one
related to modern Dai (likely more southerly) and one related to modern Japanese (likely
more northerly), corroborating a previous finding of admixture in Han populations between
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Table 1.5. Mixture parameters for populations modeled as three-way admixtures.

Admixed2 Branch3a # repb α2
c Branch3Locd Drift1Ae Drift1Be Drift2e

Druze Mandenka 330 0.963-0.988 0.000-0.009 / 0.009 0.081-0.099 0.022-0.030 0.004-0.013
Yoruba 82 0.965-0.991 0.000-0.010 / 0.010 0.080-0.099 0.022-0.029 0.005-0.013
Anc. W-Eur. 79 0.881-0.966 0.041-0.158 / 0.232 0.092-0.118 0.000-0.024 0.010-0.031

Palestinian Anc. W-Eur. 294 0.818-0.901 0.031-0.104 / 0.231 0.093-0.123 0.000-0.021 0.007-0.022
Mandenka 146 0.909-0.937 0.000-0.009 / 0.009 0.083-0.097 0.022-0.029 0.001-0.007
Yoruba 53 0.911-0.938 0.000-0.010 / 0.010 0.077-0.098 0.021-0.029 0.001-0.008

Bedouin Anc. W-Eur. 271 0.767-0.873 0.019-0.086 / 0.231 0.094-0.122 0.000-0.022 0.012-0.031
Mandenka 176 0.856-0.923 0.000-0.008 / 0.008 0.080-0.099 0.023-0.030 0.006-0.018

Mozabite Mandenka 254 0.686-0.775 0.000-0.009 / 0.009 0.088-0.109 0.012-0.022 0.017-0.032
Anc. W-Eur. 142 0.608-0.722 0.002-0.026 / 0.232 0.103-0.122 0.000-0.011 0.018-0.035
Yoruba 73 0.669-0.767 0.000-0.008 / 0.010 0.086-0.108 0.012-0.023 0.017-0.031

Hazara Anc. E-Asianf 497 0.364-0.471 0.010-0.024 / 0.034 0.080-0.115 0.004-0.034 0.004-0.013

Uygur Anc. E-Asianf 500 0.318-0.438 0.007-0.023 / 0.034 0.088-0.123 0.000-0.027 0.000-0.009

aOptimal split point for the third ancestry component. The first two components are
represented by a parent population splitting from the (admixed) Sardinian branch.
bNumber of bootstrap replicates placing the third ancestry component on Branch3;
topologies are shown that that occur for at least 50 of 500 replicates.
cProportion of European-related ancestry (95% bootstrap confidence interval).
dPoint at which mixing population splits from Branch3 (expressed as confidence interval for
split point / branch total, as in Figure 1.2A).
eTerminal drift parameters; see Figure 1.2B.
fCommon ancestral branch of the five East Asian populations in the unadmixed tree (Dai,
Japanese, Lahu, Naxi, and Yi).

northern and southern clusters in a large-scale genetic analysis of East Asia (HUGO Pan-
Asian SNP Consortium, 2009).

1.3.6 Recent three-way admixtures involving western Eurasians

Finally, we inferred the branch positions of several populations that are well known to be
recently admixed (cf. Patterson et al. (2012); Pickrell and Pritchard (2012)) but for which
one ancestral mixing population was itself anciently admixed in a similar way to Europeans.
To do so, we applied the capability of MixMapper to fit three-way admixtures (Figure 1.2B),
using the anciently admixed branch leading to Sardinian as one ancestral source branch.
First, we found that Mozabite, Bedouin, Palestinian, and Druze, in decreasing order of
African ancestry, are all optimally represented as a mixture between an African population
and an admixed western Eurasian population (not necessarily European) related to Sardinian
(Table 1.5). We also obtained good fits for Uygur and Hazara as mixtures between a western
Eurasian population and a population related to the common ancestor of all East Asians on
the tree (Table 1.5).

1.3.7 Estimation of ancestral heterozygosity

Using SNPs ascertained in an outgroup to all of our study populations enables us to compute
accurate estimates of the heterozygosity (over a given set of SNPs) throughout an unadmixed
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Figure 1.7. Ancestral heterozygosity imputed from original Illumina vs.
San-ascertained SNPs. (A) The 10-population unadmixed tree with estimated average
heterozygosities using SNPs from Panel 4 (San ascertainment) of the Affymetrix Human
Origins array (Patterson et al., 2012). Numbers in black are direct calculations for modern
populations, while numbers in green are inferred values at ancestral nodes. (B, C)
Computed ancestral heterozygosity at the common ancestor of each pair of modern
populations. With unbiased data, values should be equal for pairs having the same
common ancestor. (B) Values from a filtered subset of about 250,000 SNPs from the
published Illumina array data (Li et al., 2008). (C) Values from the Human Origins array
excluding SNPs in gene regions.

tree, including at ancestral nodes (see Material and Methods). This in turn allows us to
convert branch lengths from f2 units to easily interpretable drift lengths (see Appendix A.2).

In Figure 1.7C, we show our estimates for the heterozygosity (averaged over all San-
ascertained SNPs used) at the most recent common ancestor (MRCA) of each pair of present-
day populations in the tree. Consensus values are given at the nodes of Figure 1.7A. The
imputed heterozygosity should be the same for each pair of populations with the same
MRCA, and indeed, with the new data set, the agreement is excellent (Figure 1.7C). By
contrast, inferences of ancestral heterozygosity are much less accurate using HGDP data
from the original Illumina SNP array (Li et al., 2008) because of ascertainment bias (Fig-
ure 1.7B); f2 statistics are also affected but to a lesser degree (Figure 1.8), as previously
demonstrated (Patterson et al., 2012). We used these heterozygosity estimates to express
branch lengths of all of our trees in drift units (Appendix A.2).
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et al., 2012) used in this study.

31



1.4 Discussion

1.4.1 Comparison with previous approaches

The MixMapper framework generalizes and automates several previous admixture inference
tools based on allele frequency moment statistics, incorporating them as special cases. Meth-
ods such as the 3-population test for admixture and f4 ratio estimation (Reich et al., 2009;
Patterson et al., 2012) have similar theoretical underpinnings, but MixMapper provides more
extensive information by analyzing more populations simultaneously and automatically con-
sidering different tree topologies and sources of gene flow. For example, negative f3 values—
i.e., 3-population tests indicating admixture—can be expressed in terms of relationships
among f2 distances between populations in an admixture tree. In general, 3-population
tests can be somewhat difficult to interpret because the surrogate ancestral populations
may not in fact be closely related to the true participants in the admixture, e.g., in the
“outgroup case” (Reich et al., 2009; Patterson et al., 2012). The relations among the f2
statistics incorporate this situation naturally, however, and solving the full system recovers
the true branch points wherever they are. As another example, f4 ratio estimation infers
mixture proportions of a single admixture event from f4 statistics involving the admixed
population and four unadmixed populations situated in a particular topology (Reich et al.,
2009; Patterson et al., 2012). Whenever data for five such populations are available, the
system of all f2 equations that MixMapper solves to obtain the mixture fraction becomes
equivalent to the f4 ratio computation. More importantly, because MixMapper infers all
of the topological relationships within an admixture tree automatically by optimizing the
solution of the distance equations over all branches, we do not need to specify in advance
where the admixture took place—which is not always obvious a priori. By using more than
five populations, MixMapper also benefits from more data points to constrain the fit.

MixMapper also offers significant advantages over the qpgraph admixture tree fitting
software (Patterson et al., 2012). Most notably, qpgraph requires the user to specify the entire
topology of the tree, including admixtures, in advance. This requires either prior knowledge
of sources of gene flow relative to the reference populations or a potentially lengthy search
to test alternative branch locations. MixMapper is also faster and provides the capabilities
to convert branch lengths into drift units and to perform bootstrap replicates to measure
uncertainty in parameter estimates. Furthermore, MixMapper is designed to have more
flexible and intuitive input and output and better diagnostics for incorrectly specified models.
While qpgraph does fill a niche of fitting very precise models for small sets of populations,
it becomes quite cumbersome for more than about seven or eight, whereas MixMapper can
be run with significantly larger trees without sacrificing efficiency, ease of use, or accuracy
of inferences for populations of interest.

Finally, MixMapper differs from TreeMix (Pickrell and Pritchard, 2012) in its emphasis
on precise and flexible modeling of individual admixed populations. Stylistically, we view
MixMapper as “semi-automated” as compared to TreeMix , which is almost fully automated.
Both approaches have benefits: ours allows more manual guidance and lends itself to in-
teractive use, whereas TreeMix requires less user intervention, although some care must be
taken in choosing the number of gene flow events to include (10 in the HGDP results shown
in Figure 1.5) to avoid creating spurious mixtures. With MixMapper , we create admixture
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trees including pre-selected approximately unadmixed populations together with admixed
populations of interest, which are added on a case-by-case basis only if they fit reliably as
two- or three-way admixtures. In contrast, TreeMix returns a single large-scale admixture
tree containing all populations in the input data set, which may include some that can be
shown to be admixed by other means but are not modeled as such. Thus, these populations
might not be placed well on the tree, which in turn could affect the accuracy of the inferred
admixture events. Likewise, the populations ultimately modeled as admixed are initially
included as part of an unadmixed tree, where (presumably) they do not fit well, which could
introduce errors in the starting tree topology that impact the final results.

Indeed, these methodological differences can be seen to affect inferences for both simu-
lated and real data. For our second simulated admixture tree, MixMapper very accurately
fit the populations with complicated histories (meant to mimic European and Middle East-
ern populations), whereas TreeMix only recovered portions of the true tree and also added
two inaccurate mixtures (Figure 1.3). We believe TreeMix was hindered in this case by
attempting to fit all of the populations simultaneously and by starting with all of them in
an unadmixed tree. In particular, once pop9 (with the lowest proportion of pop7-related
admixture) was placed on the unadmixed tree, it likely became difficult to detect as ad-
mixed, while pop8’s initial placement higher up the tree was likely due to its pop2-related
admixture but then obscured this signal in the mixture-fitting phase. Finally, the initial tree
shape made populations 3-10 appear to be unequally drifted. Meanwhile, with the HGDP
data (Figures 1.4 and 1.5), both methods fit Palestinian, Bedouin, Druze, Mozabite, Uygur,
and Hazara as admixed, but MixMapper analysis suggested that these populations are bet-
ter modeled as three-way admixed. TreeMix alone fit Brahui, Makrani, Cambodian, and
Maya—all of which the 3-population test identifies as admixed but we were unable to place
reliably with MixMapper—while MixMapper alone confidently fit Daur, Hezhen, Oroqen,
Yakut, Melanesian, and Han. Perhaps most notably, MixMapper alone inferred widespread
ancient admixture for Europeans; the closest possible signal of such an event in the TreeMix
model is a migration edge from an ancestor of Native Americans to Russians. We believe
that, as in the simulations, MixMapper is better suited to finding a common, ancient admix-
ture signal in a group of populations, and more generally to disentangling complex admixture
signals from within a large set of populations, and hence it is able to detect admixture in
Europeans when TreeMix does not.

To summarize, MixMapper offers a suite of features that make it better suited than
existing methods for the purpose of inferring accurate admixture parameters in data sets
containing many specific populations of interest. Our approach provides a middle ground
between qpgraph, which is designed to fit small numbers of populations within almost no
residual errors, and TreeMix , which generates large trees with little manual intervention
but may be less precise in complex admixture scenarios. Moreover, MixMapper ’s speed and
interactive design allow the user to evaluate the uncertainty and robustness of results in
ways that we have found to be very useful (e.g., by comparing two- vs. three-way admixture
models or results obtained using alternative scaffold trees).
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1.4.2 Ancient European admixture

Due in part to the flexibility of the MixMapper approach, we were able to obtain the notable
result that all European populations in the HGDP are best modeled as mixtures between a
population related to the common ancestor of Native Americans and a population related
to the common ancestor of all non-African populations in our scaffold tree, confirming and
extending an admixture signal first reported by Patterson et al. (2012). Our interpretation
is that most if not all modern Europeans are descended from at least one large-scale an-
cient admixture event involving, in some combination, at least one population of Mesolithic
European hunter-gatherers; Neolithic farmers, originally from the Near East; and/or other
migrants from northern or Central Asia. Either the first or second of these could be related
to the “ancient western Eurasian” branch in Figure 1.6, and either the first or third could
be related to the “ancient northern Eurasian” branch. Present-day Europeans differ in the
amount of drift they have experienced since the admixture and in the proportions of the
ancestry components they have inherited, but their overall profiles are similar.

Our results for Europeans are consistent with several previously published lines of evi-
dence (Pinhasi et al., 2012). First, it has long been hypothesized, based on analysis of a few
genetic loci (especially on the Y chromosome), that Europeans are descended from ancient
admixtures (Semino et al., 2000; Dupanloup et al., 2004; Soares et al., 2010). Our results
also suggest an interpretation for a previously unexplained frappe analysis of worldwide hu-
man population structure (using K = 4 clusters) showing that almost all Europeans contain
a small fraction of American-related ancestry (Li et al., 2008). Finally, sequencing of an-
cient DNA has revealed substantial differentiation in Neolithic Europe between farmers and
hunter-gatherers (Bramanti et al., 2009), with the former more closely related to present-day
Middle Easterners (Haak et al., 2010) and southern Europeans (Keller et al., 2012; Skoglund
et al., 2012) and the latter more similar to northern Europeans (Skoglund et al., 2012),
a pattern perhaps reflected in our observed northwest-southeast cline in the proportion of
“ancient northern Eurasian” ancestry (Table 1.2). Further analysis of ancient DNA may
help shed more light on the sources of ancestry of modern Europeans (Der Sarkissian et al.,
2013).

One important new insight of our European analysis is that we detect the same signal of
admixture in Sardinian and Basque as in the rest of Europe. As discussed above, unlike other
Europeans, Sardinian and Basque cannot be confirmed to be admixed using the 3-population
test (as in Patterson et al. (2012)), likely due to a combination of less “ancient northern
Eurasian” ancestry and more genetic drift since the admixture (Table 1.2). The first point
is further complicated by the fact that we have no unadmixed “ancient western Eurasian”
population available to use as a reference; indeed, Sardinians themselves are often taken to be
such a reference. However, MixMapper uncovered strong evidence for admixture in Sardinian
and Basque through additivity-checking in the first phase of the program and automatic
topology optimization in the second phase, discovering the correct arrangement of unadmixed
populations and enabling admixture parameter inference, which we then verified directly with
f4 ratio estimation. Perhaps the most convincing evidence of the robustness of this finding
is that MixMapper infers branch points for the ancestral mixing populations that are very
similar to those of other Europeans (Table 1.2), a concordance that is most parsimoniously
explained by a shared history of ancient admixture among Sardinian, Basque, and other
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European populations. Finally, we note that because we fit all European populations without
assuming Sardinian or Basque to be an unadmixed reference, our estimates of the “ancient
northern Eurasian” ancestry proportions in Europeans are larger than those in Patterson
et al. (2012) and we believe more accurate than others previously reported (Skoglund et al.,
2012).

1.4.3 Future directions

It is worth noting that of the 52 populations (excluding San) in the HGDP data set, there
were 22 that we were unable to fit in a reasonable way either on the unadmixed tree or as
admixtures. In part, this was because our instantaneous-admixture model is intrinsically
limited in its ability to capture complicated population histories. Most areas of the world
have surely witnessed ongoing low levels of inter-population migration over time, especially
between nearby populations, making it difficult to fit admixture trees to the data. We also
found cases where having data from more populations would help the fitting process, for
example for three-way admixed populations such as Maya where we do not have a sampled
group with a simpler admixture history that could be used to represent two of the three
components. Similarly, we found that while Central Asian populations such as Burusho,
Pathan, and Sindhi have clear signals of admixture from the 3-population test, their ances-
try can likely be traced to several different sources (including sub-Saharan Africa in some
instances), making them difficult to fit with MixMapper , particularly using the HGDP data.
Finally, we have chosen here to disregard admixture with archaic humans, which is known
to be a small but noticeable component for most populations in the HGDP (Green et al.,
2010; Reich et al., 2010). In the future, it will be interesting to extend MixMapper and
other admixture tree-fitting methods to incorporate the possibilities of multiple-wave and
continuous admixture.

In certain applications, full genome sequences are beginning to replace more limited
genotype data sets such as ours, but we believe that our methods and SNP-based inference
in general will still be valuable in the future. Despite the improving cost-effectiveness of
sequencing, it is still much easier and less expensive to genotype samples using a SNP array,
and with over 100,000 loci, the data used in this study provide substantial statistical power.
Additionally, sequencing technology is currently more error-prone, which can lead to biases in
allele frequency-based statistics (Pool et al., 2010).We expect that MixMapper will continue
to contribute to an important toolkit of population history inference methods based on SNP
allele frequency data.

1.5 Material and Methods

1.5.1 Model assumptions and f-statistics

We assume that all SNPs are neutral, biallelic, and autosomal, and that divergence times
are short enough that there are no double mutations at a locus. Thus, allele frequency
variation—the signal that we harness—is governed entirely by genetic drift and admixture.
We model admixture as a one-time exchange of genetic material: two parent populations
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mix to form a single descendant population whose allele frequencies are a weighted average
of the parents’. This model is of course an oversimplification of true mixture events, but it
is flexible enough to serve as a first-order approximation.

Our point-admixture model is amenable to allele frequency moment analyses based on
f -statistics (Reich et al., 2009; Patterson et al., 2012). We primarily make use of the statistic
f2(A,B) := ES[(pA − pB)2], where pA and pB are allele frequencies in populations A and
B, and ES denotes the mean over all SNPs. Expected values of f2 can be written in terms
of admixture tree parameters as described in Appendix A.1. Linear combinations of f2
statistics can also be used to form the quantities f3(C;A,B) := ES[(pC − pA)(pC − pB)] and
f4(A,B;C,D) := ES[(pA − pB)(pC − pD)], which form the bases of the 3- and 4-population
tests for admixture, respectively. For all of our f -statistic computations, we use previously
described unbiased estimators (Reich et al., 2009; Patterson et al., 2012).

1.5.2 Constructing an unadmixed scaffold tree

Our MixMapper admixture-tree-building procedure consists of two phases (Figure 1.1), the
first of which selects a set of unadmixed populations to use as a scaffold tree. We be-
gin by computing f3 statistics (Reich et al., 2009; Patterson et al., 2012) for all triples of
populations P1, P2, P3 in the data set and removing those populations P3 with any nega-
tive values f3(P3;P1, P2), which indicate admixture. We then use pairwise f2 statistics to
build neighbor-joining trees on subsets of the remaining populations. In the absence of
admixture, f2 distances are additive along paths on a phylogenetic tree (Appendix A.1;
cf. Patterson et al. (2012)), meaning that neighbor-joining should recover a tree with leaf-
to-leaf distances that are completely consistent with the pairwise f2 data (Saitou and Nei,
1987). However, with real data, the putative unadmixed subsets are rarely completely ad-
ditive, meaning that the fitted neighbor-joining trees have residual errors between the in-
ferred leaf-to-leaf distances and the true f2 statistics. These deviations from additivity are
equivalent to non-zero results from the 4-population test for admixture (Reich et al., 2009;
Patterson et al., 2012). We therefore evaluate the quality of each putative unadmixed tree
according to its maximum error between fitted and actual pairwise distances: for a tree T
having distances d between populations P and Q, the deviation from additivity is defined
as max{|d(P,Q)− f2(P,Q)| : P,Q ∈ T}. MixMapper computes this deviation on putatively
unadmixed subsets of increasing size, retaining a user-specified number of best subsets of
each size in a “beam search” procedure to avoid exponential complexity.

Because of model violations in real data, trees built on smaller subsets are more additive,
but they are also less informative; in particular, it is beneficial to include populations from
as many continental groups as possible in order to provide more potential branch points for
admixture fitting. MixMapper provides a ranking of the most additive trees of each size as
a guide from which the user chooses a suitable unadmixed scaffold. Once the rank-list of
trees has been generated, subject to some constraints (e.g., certain populations required), the
user can scan the first several most additive trees for a range of sizes, looking for a balance
between coverage and accuracy. This can also be accomplished by checking whether removing
a population from a proposed tree results in a substantial additivity benefit; if so, it may be
wise to eliminate it. Similarly, if the population removed from the tree can be modeled well
as admixed using the remaining portion of the scaffold, this provides evidence that it should
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not be part of the unadmixed tree. Finally, MixMapper adjusts the scaffold tree that the
user ultimately selects by re-optimizing its branch lengths (maintaining the topology inferred
from neighbor-joining) to minimize the sum of squared errors of all pairwise f2 distances.

Within the above guidelines, users should choose the scaffold tree most appropriate for
their purposes, which may involve other considerations. In addition to additivity and overall
size, it is sometimes desirable to select more or fewer populations from certain geographical,
linguistic, or other categories. For example, including a population in the scaffold that is
actually admixed might not affect the inferences as long as it is not too closely related to
the admixed populations being modeled. At the same time, it can be useful to have more
populations in the scaffold around the split points for an admixed population of interest
in order to obtain finer resolution on the branch positions of the mixing populations. For
human data in particular, the unadmixed scaffold is only a modeling device; the populations
it contains likely have experienced at least a small amount of mixture. A central goal in
building the scaffold is to choose populations such that applying this model will not interfere
with the conclusions obtained using the program. The interactive design of MixMapper
allows the user to tweak the scaffold tree very easily in order to check robustness, and in our
analyses, conclusions are qualitatively unchanged for different scaffolds (Figures A.2–A.3;
Tables A.1–A.3).

1.5.3 Two-way admixture fitting

The second phase of MixMapper begins by attempting to fit additional populations indepen-
dently as simple two-way admixtures between branches of the unadmixed tree (Figure 1.1).
For a given admixed population, assuming for the moment that we know the branches from
which the ancestral mixing populations split, we can construct a system of equations of f2
statistics that allows us to infer parameters of the mixture (Appendix A.1). Specifically, the
squared allele frequency divergence f2(M,X ′) between the admixed population M and each
unadmixed population X ′ can be expressed as an algebraic combination of known branch
lengths along with four unknown mixture parameters: the locations of the split points on
the two parental branches, the combined terminal branch length, and the mixture fraction
(Figure 1.2A). To solve for the four unknowns, we need at least four unadmixed populations
X ′ that produce a system of four independent constraints on the parameters. This condition
is satisfied if and only if the data set contains two populations X ′1 and X ′2 that branch from
different points along the lineage connecting the divergence points of the parent populations
from the unadmixed tree (Appendix A.1). If the unadmixed tree contains n > 4 populations,
we obtain a system of n equations in the four unknowns that in theory is dependent. In
practice, the equations are in fact slightly inconsistent because of noise in the f2 statistics
and error in the point-admixture model, so we perform least-squares optimization to solve
for the unknowns; having more populations helps reduce the impact of noise.

Algorithmically, MixMapper performs two-way admixture fitting by iteratively testing
each pair of branches of the unadmixed tree as possible sources of the two ancestral mixing
populations. For each choice of branches, MixMapper builds the implied system of equations
and finds the least-squares solution (under the constraints that unknown branch lengths are
nonnegative and the mixture fraction α is between 0 and 1), ultimately choosing the pair
of branches and mixture parameters producing the smallest residual norm. Our procedure
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for optimizing each system of equations uses the observation that upon fixing α, the system
becomes linear in the remaining three variables (Appendix A.1). Thus, we can optimize
the system by performing constrained linear least squares within a basic one-parameter
optimization routine over α ∈ [0, 1]. To implement this approach, we applied MATLAB’s
lsqlin and fminbnd functions with a few auxiliary tricks to improve computational efficiency
(detailed in the code).

1.5.4 Three-way admixture fitting

MixMapper also fits three-way admixtures, i.e., those for which one parent population is
itself admixed (Figure 1.2B). Explicitly, after an admixed population M1 has been added
to the tree, MixMapper can fit an additional user-specified admixed population M2 as a
mixture between the M1 terminal branch and another (unknown) branch of the unadmixed
tree. The fitting algorithm proceeds in a manner analogous to the two-way mixture case:
MixMapper iterates through each possible choice of the third branch, optimizing each im-
plied system of equations expressing f2 distances in terms of mixture parameters. With two
admixed populations, there are now 2n+ 1 equations, relating observed values of f2(M1, X

′)
and f2(M2, X

′) for all unadmixed populations X ′, and also f2(M1,M2), to eight unknowns:
two mixture fractions, α1 and α2, and six branch length parameters (Figure 1.2B). Fixing
α1 and α2 results in a linear system as before, so we perform the optimization using MAT-
LAB’s lsqlin within fminsearch applied to α1 and α2 in tandem. The same mathematical
framework could be extended to optimizing the placement of populations with arbitrarily
many ancestral admixture events, but for simplicity and to reduce the risk of overfitting, we
chose to limit this version of MixMapper to three-way admixtures.

1.5.5 Expressing branch lengths in drift units

All of the tree-fitting computations described thus far are performed using pairwise distances
in f2 units, which are mathematically convenient to work with owing to their additivity along
a lineage (in the absence of admixture). However, f2 distances are not directly interpretable
in the same way as genetic drift D, which is a simple function of time and population size:

D ≈ 1− exp(−t/2Ne) ≈ 2 · FST ,

where t is the number of generations and Ne is the effective population size (Nei, 1987).
To convert f2 distances to drift units, we apply a new formula, dividing twice the f2-length
of each branch by the heterozygosity value that we infer for the ancestral population at
the top of the branch (Appendix A.2). Qualitatively speaking, this conversion corrects
for the relative stretching of f2 branches at different portions of the tree as a function of
heterozygosity (Patterson et al., 2012). In order to infer ancestral heterozygosity values
accurately, it is critical to use SNPs that are ascertained in an outgroup to the populations
involved, which we address further below.

Before inferring heterozygosities at ancestral nodes of the unadmixed tree, we must first
determine the location of the root (which is neither specified by neighbor-joining nor in-
volved in the preceding analyses). MixMapper does so by iterating through branches of the

38



unadmixed tree, temporarily rooting the tree along each branch, and then checking for con-
sistency of the resulting heterozygosity estimates. Explicitly, for each internal node P , we
split its present-day descendants (according to the re-rooted tree) into two groups G1 and
G2 according to which child branch of P they descend from. For each pair of descendants,
one from G1 and one from G2, we compute an inferred heterozygosity at P (Appendix A.2).
If the tree is rooted properly, these inferred heterozygosities are consistent, but if not, there
exist nodes P for which the heterozygosity estimates conflict. MixMapper thus infers the
location of the root as well as the ancestral heterozygosity at each internal node, after which
it applies the drift length conversion as a post-processing step on fitted f2 branch lengths.

1.5.6 Bootstrapping

In order to measure the statistical significance of our parameter estimates, we compute boot-
strap confidence intervals (Efron, 1979; Efron and Tibshirani, 1986) for the inferred branch
lengths and mixture fractions. Our bootstrap procedure is designed to account for both the
randomness of the drift process at each SNP and the random choice of individuals sampled
to represent each population. First, we divide the genome into 50 evenly-sized blocks, with
the premise that this scale should easily be larger than that of linkage disequilibrium among
our SNPs. Then, for each of 500 replicates, we resample the data set by (a) selecting 50 of
these SNP blocks at random with replacement; and (b) for each population group, selecting
a random set of individuals with replacement, preserving the number of individuals in the
group.

For each replicate, we recalculate all pairwise f2 distances and present-day heterozygosity
values using the resampled SNPs and individuals (adjusting the bias-correction terms to
account for the repetition of individuals) and then construct the admixture tree of interest.
Even though the mixture parameters we estimate—branch lengths and mixture fractions—
depend in complicated ways on many different random variables, we can directly apply the
nonparametric bootstrap to obtain confidence intervals (Efron and Tibshirani, 1986). For
simplicity, we use a percentile bootstrap; thus, our 95% confidence intervals indicate 2.5 and
97.5 percentiles of the distribution of each parameter among the replicates.

Computationally, we parallelize MixMapper ’s mixture-fitting over the bootstrap repli-
cates using MATLAB’s Parallel Computing Toolbox.

1.5.7 Evaluating fit quality

When interpreting admixture inferences produced by methods such as MixMapper , it is
important to ensure that best-fit models are in fact accurate. While formal tests for goodness
of fit do not generally exist for methods of this class, we use several criteria to evaluate the
mixture fits produced by MixMapper and distinguish high-confidence results from possible
artifacts of overfitting or model violations.

First, we can compare MixMapper results to information obtained from other methods,
such as the 3-population test (Reich et al., 2009; Patterson et al., 2012). Negative f3 values
indicate robustly that the tested population is admixed, and comparing f3 statistics for
different reference pairs can give useful clues about the ancestral mixing populations. Thus,
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while the 3-population test relies on similar data to MixMapper , its simpler form makes it
useful for confirming that MixMapper results are reasonable.

Second, the consistency of parameter values over bootstrap replicates gives an indication
of the robustness of the admixture fit in question. All results with real data have some amount
of associated uncertainty, which is a function of sample sizes, SNP density, intra-population
homogeneity, and other aspects of the data. Given these factors, we place less faith in
results with unexpectedly large error bars. Most often, this phenomenon is manifested in
the placement of ancestral mixing populations: for poorly fitting admixtures, branch choices
often change from one replicate to the next, signaling unreliable results.

Third, we find that results where one ancestral population is very closely related to the
admixed population and contributes more than 90% of the ancestry are often unreliable.
We expect that if we try to fit a non-admixed population as an admixture, MixMapper
should return a closely related population as the first branch with mixture fraction α ≈ 1
(and an arbitrary second branch). Indeed, we often observe this pattern in the context
of verifying that certain populations make sense to include in the scaffold tree. Further
evidence of overfitting comes when the second ancestry component, which contributes only
a few percent, either bounces from branch to branch over the replicates, is located at the
very tip of a leaf branch, or is historically implausible.

Fourth, for any inferred admixture event, the two mixing populations must be contem-
poraneous. Since we cannot resolve the three pieces of terminal drift lengths leading to
admixed populations (Figure 1.2A) and our branch lengths depend both on population size
and absolute time, we cannot say for sure whether this property is satisfied for any given
mixture fit. In some cases, however, it is clear that no realization of the variables could
possibly be consistent: for example, if we infer an admixture between a very recent branch
and a very old one with a small value of the total mixed drift—and hence the terminal drift
c—then we can confidently say the mixture is unreasonable.

Finally, when available, we also use prior historical or other external knowledge to guide
what we consider to be reasonable. Sometimes, the model that appears to fit the data best
has implications that are clearly historically implausible; often when this is true one or more
of the evaluation criteria listed above can be invoked as well. Of course, the most interesting
findings are often those that are new and surprising, but we subject such results to an extra
degree of scrutiny.

1.5.8 Data set and ascertainment

We analyzed a SNP data set from 934 HGDP individuals grouped in 53 populations (Rosen-
berg et al., 2002; Li et al., 2008). Unlike most previous studies of the HGDP samples, how-
ever, we worked with recently published data generated using the new Affymetrix Axiom
Human Origins Array (Patterson et al., 2012), which was designed with a simple ascertain-
ment scheme for accurate population genetic inference (Keinan et al., 2007). It is well known
that ascertainment bias can cause errors in estimated divergences among populations (Clark
et al., 2005; Albrechtsen et al., 2010), since choosing SNPs based on their properties in
modern populations induces non-neutral spectra in related samples. While there do exist
methods to correct for ascertainment bias (Nielsen et al., 2004), it is much more desirable
to work with a priori bias-free data, especially given that typical SNP arrays are designed
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using opaque ascertainment schemes.
To avoid these pitfalls, we used Panel 4 of the new array, which consists of 163,313 SNPs

that were ascertained as heterozygous in the genome of a San individual (Keinan et al.,
2007). This panel is special because there is evidence that the San are approximately an
outgroup to all other modern-day human populations (Li et al., 2008; Gronau et al., 2011).
Thus, while the Panel 4 ascertainment scheme distorts the San allele frequency spectrum, it
is nearly neutral with respect to all other populations. In other words, we can think of the
ascertainment as effectively choosing a set of SNPs (biased toward San heterozygosity) at
the common ancestor of the remaining 52 populations, after which drift occurs in a bias-free
manner. We excluded 61,369 SNPs that are annotated as falling between the transcription
start site and end site of a gene in the UCSC Genome Browser database (Fujita et al., 2011).
Most of the excluded SNPs are not within actual exons, but as expected, the frequency
spectra at these “gene region” loci were slightly shifted toward fixed classes relative to other
SNPs, indicative of the action of selection (Figure 1.9). Since we assume neutrality in all of
our analyses, we chose to remove these SNPs.

1.5.9 Simulations

Our first simulated tree was generated using the ms (Hudson, 2002) command

ms 350 500 -t 50 -r 99.9998 500000 -I 7 50 50 50 50 50 50 50 -n 7 2 -n 1 2

-n 2 2 -ej 0.04 2 1 -es 0.02 6 0.4 -ej 0.06 6 3 -ej 0.04 8 5 -ej 0.08 5 4 -ej

0.12 4 3 -ej 0.2 3 1 -ej 0.3 1 7 -en 0.3 7 1.

After ascertainment, we used a total of 95,997 SNPs.
Our second simulated tree was generated with the command

ms 550 500 -t 50 -r 99.9998 500000 -I 11 50 50 50 50 50 50 50 50 50 50 50 -n

11 2 -n 1 2 -n 2 2 -em 0.002 4 3 253.8 -em 0.004 4 3 0 -es 0.002 8 0.2 -en

0.002 8 2 -ej 0.02 8 2 -ej 0.02 4 5 -ej 0.04 2 1 -ej 0.04 5 3 -es 0.04 12 0.4

-es 0.04 9 0.2 -em 0.042 10 9 253.8 -em 0.044 10 9 0 -ej 0.06 12 7 -ej 0.06

9 7 -ej 0.06 14 10 -ej 0.06 13 10 -ej 0.08 7 6 -ej 0.12 6 3 -ej 0.16 10 3 -ej

0.2 3 1 -ej 0.3 1 11 -en 0.3 11 1.

After ascertainment, we used a total of 96,258 SNPs. When analyzing this data set in
TreeMix , we chose to fit a total of five admixtures based on the residuals of the pairwise
distances (maximum of approximately 3 standard errors) and our knowledge that this is the
number in the true admixture tree (in order to make for a fair comparison).

1.5.10 Software

Source code for the MixMapper software is available at http://groups.csail.mit.edu/

cb/mixmapper/.
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Figure 1.9. Comparison of allele frequency spectra within and outside gene
regions. We divided the Panel 4 (San-ascertained) SNPs into three groups: those outside
gene regions (101,944), those within gene regions but not in exons (58,110), and those
within coding regions (3259). Allele frequency spectra restricted to each group are shown
for the Yoruba population. Reduced heterozygosity within exon regions is evident, which
suggests the action of purifying selection. (Inset) We observe the same effect in the genic,
non-coding spectrum; it is less noticeable but can be seen at the edge of the spectrum.
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Chapter 2

Inferring Admixture Histories of
Human Populations Using Linkage
Disequilibrium

Long-range migrations and the resulting admixtures between populations have been impor-
tant forces shaping human genetic diversity. Most existing methods for detecting and recon-
structing historical admixture events are based on allele frequency divergences or patterns of
ancestry segments in chromosomes of admixed individuals. An emerging new approach har-
nesses the exponential decay of admixture-induced linkage disequilibrium (LD) as a function
of genetic distance. Here, we comprehensively develop LD-based inference into a versatile
tool for investigating admixture. We present a new weighted LD statistic that can be used
to infer mixture proportions as well as dates with fewer constraints on reference populations
than previous methods. We define an LD-based three-population test for admixture and
identify scenarios in which it can detect admixture events that previous formal tests cannot.
We further show that we can uncover phylogenetic relationships among populations by com-
paring weighted LD curves obtained using a suite of references. Finally, we describe several
improvements to the computation and fitting of weighted LD curves that greatly increase the
robustness and speed of the calculations. We implement all of these advances in a software
package, ALDER, which we validate in simulations and apply to test for admixture among
all populations from the Human Genome Diversity Project (HGDP), highlighting insights
into the admixture history of Central African Pygmies, Sardinians, and Japanese.∗

2.1 Introduction

Admixture between previously diverged populations has been a common feature throughout
the evolution of modern humans and has left significant genetic traces in contemporary pop-
ulations (Li et al., 2008; Wall et al., 2009; Reich et al., 2009; Green et al., 2010; Gravel et al.,
2011; Pugach et al., 2011; Patterson et al., 2012). Resulting patterns of variation can provide

∗The material in this chapter previously appeared in the April 2013 issue of Genetics as “Inferring
admixture histories of human populations using linkage disequilibrium” by Po-Ru Loh, Mark Lipson, Nick
Patterson, Priya Moorjani, Joseph K. Pickrell, David Reich, and Bonnie Berger (Loh et al., 2013).
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information about migrations, demographic histories, and natural selection and can also be
a valuable tool for association mapping of disease genes in admixed populations (Patterson
et al., 2004).

Recently, a variety of methods have been developed to harness large-scale genotype data
to infer admixture events in the history of sampled populations, as well as to estimate a range
of gene flow parameters, including ages, proportions, and sources. Some of the most popular
approaches, such as STRUCTURE (Pritchard et al., 2000) and principal component analysis
(PCA) (Patterson et al., 2006), use clustering algorithms to identify admixed populations as
intermediates in relation to surrogate ancestral populations. In a somewhat similar vein, local
ancestry inference methods (Tang et al., 2006; Sankararaman et al., 2008; Price et al., 2009;
Lawson et al., 2012) analyze chromosomes of admixed individuals with the goal of recovering
continuous blocks inherited directly from each ancestral population. Because recombination
breaks down ancestry tracts through successive generations, the time of admixture can be
inferred from the tract length distribution (Pool and Nielsen, 2009; Pugach et al., 2011;
Gravel, 2012), with the caveat that accurate local ancestry inference becomes difficult when
tracts are short or the reference populations used are highly diverged from the true mixing
populations.

A third class of methods makes use of allele frequency differentiation among populations
to deduce the presence of admixture and estimate parameters, either with likelihood-based
models (Chikhi et al., 2001; Wang, 2003; Sousa et al., 2009; Wall et al., 2009; Laval et al.,
2010; Gravel et al., 2011) or with phylogenetic trees built by taking moments of the site
frequency spectrum over large sets of SNPs (Reich et al., 2009; Green et al., 2010; Patterson
et al., 2012; Pickrell and Pritchard, 2012; Lipson et al., 2013). For example, f -statistic-
based three- and four-population tests for admixture (Reich et al., 2009; Green et al., 2010;
Patterson et al., 2012) are highly sensitive in the proper parameter regimes and when the
set of sampled populations sufficiently represents the phylogeny. One disadvantage of drift-
based statistics, however, is that because the rate of genetic drift depends on population
size, these methods do not allow for inference of the time that has elapsed since admixture
events.

Finally, Moorjani et al. (2011) recently proposed a fourth approach, using associations
between pairs of loci to make inference about admixture, which we further develop in this
article. In general, linkage disequilibrium (LD) in a population can be generated by se-
lection, genetic drift, or population structure, and it is eroded by recombination. Within
a homogeneous population, steady-state neutral LD is maintained by the balance of drift
and recombination, typically becoming negligible in humans at distances of more than a
few hundred kilobases (Reich et al., 2001; The International HapMap Consortium, 2007).
Even if a population is currently well-mixed, however, it can retain longer-range admixture
LD (ALD) from admixture events in its history involving previously separated populations.
ALD is caused by associations between nearby loci co-inherited on an intact chromosomal
block from one of the ancestral mixing populations (Chakraborty and Weiss, 1988). Re-
combination breaks down these associations, leaving a signature of the time elapsed since
admixture that can be probed by aggregating pairwise LD measurements through an appro-
priate weighting scheme; the resulting weighted LD curve (as a function of genetic distance)
exhibits an exponential decay with rate constant giving the age of admixture (Moorjani et al.,
2011; Patterson et al., 2012). This approach to admixture dating is similar in spirit to strate-
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gies based on local ancestry, but LD statistics have the advantage of a simple mathematical
form that facilitates error analysis.

In this paper, we comprehensively develop LD-based admixture inference, extending the
methodology to several novel applications that constitute a versatile set of tools for investi-
gating admixture. We first propose a cleaner functional form of the underlying weighted LD
statistic and provide a precise mathematical development of its properties. As an immediate
result of this theory, we observe that our new weighted LD statistic can be used to infer mix-
ture proportions as well as dates, extending the results of Pickrell et al. (2012). Moreover,
such inference can still be performed (albeit with reduced power) when data are available
from only the admixed population and one surrogate ancestral population, whereas all pre-
vious techniques require at least two such reference populations. As a second application,
we present an LD-based three-population test for admixture with sensitivity complementary
to the 3-population f -statistic test (Reich et al., 2009; Patterson et al., 2012) and char-
acterize the scenarios in which each is advantageous. We further show that phylogenetic
relationships between true mixing populations and present-day references can be inferred by
comparing weighted LD curves using weights derived from a suite of reference populations.
Finally, we describe several improvements to the computation and fitting of weighted LD
curves: we show how to detect confounding LD from sources other than admixture, improv-
ing the robustness of our methods in the presence of such effects, and we present a novel
fast Fourier transform-based algorithm for weighted LD computation that reduces typical
run times from hours to seconds. We implement all of these advances in a software package,
ALDER (Admixture-induced Linkage Disequilibrium for Evolutionary Relationships).

We demonstrate the performance of ALDER by using it to test for admixture among all
HGDP populations (Li et al., 2008) and compare its results to those of the 3-population test,
highlighting the sensitivity trade-offs of each approach. We further illustrate our methodol-
ogy with case studies of Central African Pygmies, Sardinians, and Japanese, revealing new
details that add to our understanding of admixture events in the history of each population.

2.2 Methods

2.2.1 Properties of weighted admixture LD

In this section we introduce a weighted LD statistic that uses the decay of LD to detect signals
of admixture given SNP data from an admixed population and reference populations. This
statistic is similar to, but has an important difference from, the weighted LD statistic used in
ROLLOFF (Moorjani et al., 2011; Patterson et al., 2012). The formulation of our statistic is
particularly important in allowing us to use the amplitude (i.e., y-intercept) of the weighted
LD curve to make inferences about history. We begin by deriving quantitative mathematical
properties of this statistic that can be used to infer admixture parameters.

Basic model and notation

We will primarily consider a point-admixture model in which a population C ′ descends from
a mixture of populations A and B to form C, n generations ago, in proportions α + β = 1,
followed by random mating (Figure 2.1). As we discuss later, we can assume for our purposes
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Figure 2.1. Notational diagram of phylogeny containing admixed population and
references. Population C ′ is descended from an admixture between A and B to form C;
populations A′ and B′ are present-day references. In practice, we assume that
post-admixture drift is negligible, i.e., the C–C ′ branch is extremely short and C ′ and C
have identical allele frequencies. The branch points of A′ and B′ from the A–B lineage are
marked A′′ and B′′; note that in a rooted phylogeny, these need not be most recent
common ancestors.

that the genetic drift between C and C ′ is negligible, and hence we will simply refer to
the descendant population as C as well; we will state whether we mean the population
immediately after admixture vs. n generations later when there is any risk of ambiguity. We
are interested in the properties of the LD in population C induced by admixture. Consider
two biallelic, neutrally evolving SNPs x and y, and for each SNP call one allele ‘0’ and the
other ‘1’ (this assignment is arbitrary; ‘0’ and ‘1’ do not need to be oriented with regard to
ancestral state via an outgroup). Denote by pA(x), pB(x), pA(y), and pB(y) the frequencies
of the ‘1’ alleles at x and y in the mixing populations A and B (at the time of admixture),
and let δ(x) := pA(x)− pB(x) and δ(y) := pA(y)− pB(y) be the allele frequency differences.

Let d denote the genetic distance between x and y and assume that x and y were in
linkage equilibrium in populations A and B. Then the LD in population C immediately
after admixture is

D0 = αβδ(x)δ(y),

where D is the standard haploid measure of linkage disequilibrium as the covariance of alleles
at x and y (Chakraborty and Weiss, 1988). After n generations of random mating, the LD
decays to

Dn = e−ndD0 = e−ndαβδ(x)δ(y)

assuming infinite population size (Chakraborty and Weiss, 1988). For a finite population,
the above formula holds in expectation with respect to random drift, with a small adjustment
factor caused by post-admixture drift (Ohta and Kimura, 1971):

E[Dn] = e−nde−n/2Neαβδ(x)δ(y),

where Ne is the effective population size. In most applications the adjustment factor e−n/2Ne

is negligible, so we will omit it in what follows (Moorjani et al., 2013a, Note S1).
In practice, our data consist of unphased diploid genotypes, so we expand our notation

accordingly. Consider sampling a random individual from population C (n generations after
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admixture). We use a pair of {0, 1} random variables X1 and X2 to refer to the two alleles
at x and define random variables Y1 and Y2 likewise. Our unphased SNP data represent
observations of the {0, 1, 2} random variables X := X1 +X2 and Y := Y1 + Y2.

Define z(x, y) to be the covariance

z(x, y) := cov(X, Y ) = cov(X1 +X2, Y1 + Y2), (2.1)

which can be decomposed into a sum of four haplotype covariances:

z(x, y) = cov(X1, Y1) + cov(X2, Y2) + cov(X1, Y2) + cov(X2, Y1). (2.2)

The first two terms measure D for the separate chromosomes, while the third and fourth
terms vanish, since they represent covariances between variables for different chromosomes,
which are independent. Thus, the expectation (again with respect to random drift) of the
total diploid covariance is simply

E[z(x, y)] = 2e−ndαβδ(x)δ(y). (2.3)

Relating weighted LD to admixture parameters

Moorjani et al. (2011) first observed that pairwise LD measurements across a panel of SNPs
can be combined to enable accurate inference of the age of admixture, n. The crux of their
approach was to harness the fact that the ALD between two sites x and y scales as e−nd

multiplied by the product of allele frequency differences δ(x)δ(y) in the mixing populations.
While the allele frequency differences δ(·) are usually not directly computable, they can
often be approximated. Thus, Moorjani et al. (2011) formulated a method, ROLLOFF, that
dates admixture by fitting an exponential decay e−nd to correlation coefficients between LD
measurements and surrogates for δ(x)δ(y). Note that Moorjani et al. (2011) define z(x, y)
as a sample correlation coefficient, analogous to the classical LD measure r, as opposed to
the sample covariance (2.1) we use here; we find the latter more mathematically convenient.

We build upon these previous results by deriving exact formulas for weighted sums of
ALD under a variety of weighting schemes that serve as useful surrogates for δ(x)δ(y) in
practice. These calculations will allow us to interpret the magnitude of weighted ALD to
obtain additional information about admixture parameters. Additionally, the theoretical
development will generally elucidate the behavior of weighted ALD and its applicability in
various phylogenetic scenarios.

Following Moorjani et al. (2011), we partition all pairs of SNPs (x, y) into bins of roughly
constant genetic distance:

S(d) :=
{

(x, y) : d− ε

2
< |x− y| < d+

ε

2

}
,

where ε is a discretization parameter inducing a discretization on d. Given a choice of weights
w(·), one per SNP, we define the weighted LD at distance d as

a(d) :=

∑
S(d) z(x, y)w(x)w(y)

|S(d)|
.
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Assume first that our weights are the true allele frequency differences in the mixing
populations, i.e., w(x) = δ(x) for all x. Applying (2.3),

E[a(d)] = E

[∑
S(d) z(x, y)δ(x)δ(y)

|S(d)|

]

=

∑
S(d) 2αβE[δ(x)2δ(y)2]e−nd

|S(d)|
= 2αβF2(A,B)2e−nd, (2.4)

where F2(A,B) is the expected squared allele frequency difference for a randomly drifting
neutral allele, as defined in Reich et al. (2009) and Patterson et al. (2012). Thus, a(d) has
the form of an exponential decay as a function of d, with time constant n giving the date of
admixture.

In practice, we must compute an empirical estimator of a(d) from a finite number of
sampled genotypes. Say we have a set of m diploid admixed samples from population C
indexed by i = 1, . . . ,m, and denote their genotypes at sites x and y by xi, yi ∈ {0, 1, 2}.
Also assume we have some finite number of reference individuals from A and B with empirical
mean allele frequences p̂A(·) and p̂B(·). Then our estimator is

â(d) :=

∑
S(d)

̂cov(X, Y )(p̂A(x)− p̂B(x))(p̂A(y)− p̂B(y))

|S(d)|
, (2.5)

where

̂cov(X, Y ) =
1

m− 1

m∑
i=1

(xi − x)(yi − y)

is the usual unbiased sample covariance, so the expectation over the choice of samples satisfies
E[â(d)] = a(d) (assuming no background LD, so the ALD in population C is independent
of the drift processes producing the weights).

The weighted sum
∑
S(d) z(x, y)w(x)w(y) is a natural quantity to use for detecting ALD

decay and is common to our weighted LD statistic â(d) and previous formulations of the
ROLLOFF statistic. Indeed, for SNP pairs (x, y) at a fixed distance d, we can think of
equation (2.3) as providing a simple linear regression model between LD measurements
z(x, y) and allele frequency divergence products δ(x)δ(y). In practice, the linear relation is
made noisy by random sampling, as noted above, but the regression coefficient 2αβe−nd can
be inferred by combining measurements from many SNP pairs (x, y). In fact, the weighted
sum

∑
S(d) ẑ(x, y)δ̂(x)δ̂(y) in the numerator of formula (2.5) is precisely the numerator of the

least-squares estimator of the regression coefficient, which is the formulation of ROLLOFF
given in Moorjani et al. (2013a, Note S1). Note that measurements of z(x, y) cannot be
combined directly without a weighting scheme, as the sign of the LD can be either positive
or negative; additionally, the weights tend to preserve signal from ALD while depleting
contributions from other forms of LD.

Up to scaling, our ALDER formulation is roughly equivalent to the regression coeffi-
cient formulation of ROLLOFF (Moorjani et al., 2013a, Note S1). In contrast, the origi-
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nal ROLLOFF statistic (Patterson et al., 2012) computed a correlation coefficient between

z(x, y) and w(x)w(y) over S(d). However, the normalization term
√∑

S(d) z(x, y)2 in the

denominator of the correlation coefficient can exhibit an unwanted d-dependence that biases
the inferred admixture date if the admixed population has undergone a strong bottleneck
(Moorjani et al., 2013a, Note S1) or in the case of recent admixture and large sample sizes.
Beyond correcting the date bias, the â(d) curve that ALDER computes has the advantage
of a simple form for its amplitude in terms of meaningful quantities, providing us additional
leverage on admixture parameters. Additionally, we will show that â(d) can be computed
efficiently via a new fast Fourier transform-based algorithm.

Using weights derived from diverged reference populations

In the above development, we set the weights w(x) to equal the allele frequency differences
δ(x) between the true mixing populations A and B. In practice, in the absence of DNA
samples from past populations, it is impossible to measure historical allele frequencies from
the time of mixture, so instead, we substitute reference populations A′ and B′ that are
accessible, setting w(x) = δ′(x) := pA′(x)−pB′(x). In a given data set, the closest surrogates
A′ and B′ may be somewhat diverged from A and B, so it is important to understand the
consequences for the weighted LD a(d).

We show in Appendix B.1 that with reference populations A′ and B′ in place of A and
B, equation (2.4) for the expected weighted LD curve changes only slightly, becoming

E[a(d)] = 2αβF2(A
′′, B′′)2e−nd, (2.6)

where A′′ and B′′ are the branch points of A′ and B′ on the A–B lineage (Figure 2.1).
Notably, the curve still has the form of an exponential decay with time constant n (the
age of admixture), albeit with its amplitude (and therefore signal-to-noise ratio) attenuated
according to how far A′′ and B′′ are from the true ancestral mixing populations. Drift along
the A′–A′′ and B′–B′′ branches likewise decreases signal-to-noise but in the reverse manner:
higher drift on these branches makes the weighted LD curve noisier but does not change
its expected amplitude (Figure 2.2; see Appendix B.3 for additional discussion). As above,
given a real data set containing finite samples, we compute an estimator â(d) analogous to
formula (2.5) that has the same expectation (over sampling and drift) as the expectation of
a(d) with respect to drift (2.6).

Using the admixed population as one reference

Weighted LD can also be computed with only a single reference population by using the
admixed population as the other reference (Pickrell et al., 2012, Supplement Sec. 4). As-
suming first that we know the allele frequencies of the ancestral mixing population A and
the admixed population C, the formula for the expected curve becomes

E[a(d)] = 2αβ3F2(A,B)2e−nd. (2.7)

Using C itself as one reference population and R′ as the other reference (which could branch
anywhere between A and B), the formula for the amplitude is slightly more complicated,
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Figure 2.2. Weighted LD curves from four coalescent simulations of admixture scenarios
with varying divergence times and drift between the reference population A′ and the true
mixing population. In each case, gene flow occurred 40 generations ago. In the
low-divergence scenarios, the split point A′′ is immediately prior to gene flow, while in the
high-divergence scenarios, A′′ is halfway up the tree (520 generations ago). The high-drift
scenarios are distinguished from the low-drift scenarios by a 20-fold reduction in population
size for the past 40 generations. Standard errors shown are ALDER’s jackknife estimates of
its own error on a single simulation.
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population. When taking weights as allele frequency differences between the admixed
population and a single reference population R′, the weighted LD curve a(d) has expected
amplitude proportional to (αF2(A,R

′′)− βF2(B,R
′′))2, where R′′ is the point along the

A–B lineage at which the reference population branches. Note in particular that as R′′

varies from A to B, the amplitude traces out a parabola that starts at 2αβ3F2(A,B)2,
decreases to a minimum value of 0, and increases to 2α3βF2(A,B)2.

but the curve retains the e−nd decay (Figure 2.3):

E[a(d)] = 2αβ(αF2(A,R
′′)− βF2(B,R

′′))2e−nd. (2.8)

Derivations of these formulas are given in Appendix B.1.

A subtle but important technical issue arises when computing weighted LD with a single
reference. In this case, the true weighted LD statistic is

a(d) = cov(X, Y )(µx − p(x))(µy − p(y)),

where
µx = αpA(x) + βpB(x) and µy = αpA(y) + βpB(y)

are the mean allele frequencies of the admixed population (ignoring drift) and p(·) denotes
allele frequencies of the reference population. Here a(d) cannot be estimated accurately by
the näıve formula

̂cov(X, Y )(µ̂x − p̂(x))(µ̂y − p̂(y)),
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Figure 2.4. Unbiased polyache estimator for weighted LD using the admixed population
itself as one reference. Mathematica code and output are shown for computing the
polyache statistic that estimates the one-reference weighted LD,
E[(X − µx)(Y − µy)(µx − pA(x))(µy − pA(y))], where pA(·) are allele frequencies of the
single reference population and µx and µy denote allele frequencies of the admixed

population. In the above, S
(k)
0 := m(m− 1) · · · (m− k + 1) and Sr,s :=

∑m
i=1X

r
i Y

s
i , where

m is the number of admixed samples and i ranges over the admixed individuals, which
have allele counts Xi and Yi at sites x and y.

which is the natural analog of (2.5). The difficulty is that the covariance term and the
weights both involve the allele frequencies µx and µy; thus, while the standard estimators
for each term are individually unbiased, their product is a biased estimate of the weighted
LD.

Pickrell et al. (2012) circumvents this problem by partitioning the admixed samples into
two groups, designating one group for use as admixed representatives and the other as a
reference population; this method eliminates bias but reduces statistical power. We instead
compute a polyache statistic (Figure 2.4) that provides an unbiased estimator â(d) of the
weighted LD with maximal power.

Affine term in weighted LD curve from population substructure

Weighted LD curves computed on real populations often exhibit a nonzero horizontal asymp-
tote contrary to the exact exponential decay formulas we have derived above. Such behavior
can be caused by assortative mating resulting in subpopulations structured by ancestry per-
centage in violation of our model. We show in Appendix B.1 that if we instead model the
admixed population as consisting of randomly mating subpopulations with heterogeneous
amounts α—now a random variable—of mixed ancestry, our equations for the curves take
the form

E[a(d)] = Me−nd +K, (2.9)
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whereM is a coefficient representing the contribution of admixture LD andK is an additional
constant produced by substructure. Conveniently, however, the sum M + K/2 satisfies
the same equations that the coefficient of the exponential does in the homogeneous case:
adjusting equation (2.6) for population substructure gives

M +K/2 = 2αβF2(A
′′, B′′)2 (2.10)

for two-reference weighted LD, and in the one-reference case, modifying equation (2.8) gives

M +K/2 = 2αβ(αF2(A,R
′′)− βF2(B,R

′′))2. (2.11)

For brevity, from here on we will take the amplitude of an exponential-plus-affine curve to
mean M +K/2.

2.2.2 Admixture inference using weighted LD

We now describe how the theory we have developed can be used to investigate admixture.
We detail novel techniques that use weighted LD to infer admixture parameters, test for
admixture, and learn about phylogeny.

Inferring admixture dates and fractions using one or two reference populations

As noted above, our ALDER formulation of weighted LD hones the original two-reference
admixture dating technique of ROLLOFF (Moorjani et al., 2011), correcting a possible bias
(Moorjani et al., 2013a, Note S1), and the one-reference technique (Pickrell et al., 2012),
improving statistical power. Pickrell et al. (2012) also observed that weighted LD can be
used to estimate ancestral mixing fractions. We further develop this application now.

The main idea is to treat our expressions for the amplitude of the weighted LD curve
as equations that can be solved for the ancestry fractions α and β = 1 − α. First consider
two-reference weighted LD. Given samples from an admixed population C and reference
populations A′ and B′, we compute the curve â(d) and fit it as an exponential decay plus
affine term: â(d) ≈ M̂e−nd + K̂. Let â0 := M̂ + K̂/2 denote the amplitude of the curve.
Then equation (2.10) gives us a quadratic equation that we can solve to obtain an estimate
α̂ of the mixture fraction α,

2α̂(1− α̂)F2(A
′′, B′′)2 = â0,

assuming we can estimate F2(A
′′, B′′)2. Typically the branch-point populations A′′ and B′′

are unavailable, but their F2 distance can be computed by means of an admixture tree
(Patterson et al., 2012; Pickrell and Pritchard, 2012; Lipson et al., 2013). A caveat of this
approach is that α and 1 − α produce the same amplitude and cannot be distinguished by
this method alone; additionally, the inversion problem is ill-conditioned near α = 0.5, where
the derivative of the quadratic vanishes.

The situation is more complicated when using the admixed population as one reference.
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First, the amplitude relation from equation (2.11) gives a quartic equation in α̂:

2α̂(1− α̂)[α̂F2(A,R
′′)− (1− α̂)F2(B,R

′′)]2 = â0.

Second, the F2 distances involved are in general not possible to calculate by solving allele
frequency moment equations (Patterson et al., 2012; Lipson et al., 2013). In the special case
that one of the true mixing populations is available as a reference, however—i.e., R′ = A—
Pickrell et al. (2012) demonstrated that mixture fractions can be estimated much more
easily. From equation (2.7), the expected amplitude of the curve is 2αβ3F2(A,B)2. On the
other hand, assuming no drift in C since the admixture, allele frequencies in C are given by
weighted averages of allele frequencies in A and B with weights α and β; thus, the squared
allele frequency differences from A to B and C satisfy

F2(A,C) = β2F2(A,B),

and F2(A,C) is estimable directly from the sample data. Combining these relations, we can
obtain our estimate α̂ by solving the equation

2α̂/(1− α̂) = â0/F2(A,C)2. (2.12)

In practice, the true mixing population A is not available for sampling, but a closely-
related population A′ may be. In this case, the value of α̂ given by equation (2.12) with
A′ in place of A is a lower bound on the true mixture fraction α (see Appendix B.1 for
theoretical development and Results for simulations exploring the tightness of the bound).
This bounding technique is the most compelling of the above mixture fraction inference
approaches, as prior methods cannot perform such inference with only one reference popula-
tion. In contrast, when more references are available, moment-based admixture tree-fitting
methods, for example, readily estimate mixture fractions (Patterson et al., 2012; Pickrell
and Pritchard, 2012; Lipson et al., 2013). In such cases we believe that existing methods are
more robust than LD-based inference, which suffers from the degeneracy of solutions noted
above; however, the weighted LD approach can provide confirmation based on a different
genetic mechanism.

Testing for admixture

Thus far, we have taken it as given that the population C of interest is admixed and developed
methods for inferring admixture parameters by fitting weighted LD curves. Now we consider
the question of whether weighted LD can be used to determine whether admixture occurred
in the first place. We develop a weighted LD-based formal test for admixture that is broadly
analogous to the drift-based 3-population test (Reich et al., 2009; Patterson et al., 2012) but
sensitive in different scenarios.

A complication of interpreting weighted LD is that certain demographic events other
than admixture can also produce positive weighted LD that decays with genetic distance,
particularly in the one-reference case. Specifically, if population C has experienced a recent
bottleneck or an extended period of low population size, it may contain long-range LD. Fur-
thermore, this LD typically has some correlation with allele frequencies in C; consequently,
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using C as one reference in the weighting scheme produces a spurious weighted LD signal.
In the two-reference case, LD from reduced population size in C is generally washed

out by the weighting scheme assuming the reference populations A′ and B′ are not too
genetically similar to C. The reason is that the weights δ(·) = pA′(·)− pB′(·) arise from drift
between A′ and B′ that is independent of demographic events producing LD in C (beyond
genetic distances that are so short that the populations share haplotypes descended without
recombination from their common ancestral haplotype). Thus, observing a two-reference
weighted LD decay curve is generally good evidence that population C is admixed. There
is still a caveat, however. If C and one of the references, say A′, share a recent population
bottleneck, then the bottleneck-induced LD in C can be correlated to the allele frequencies
of A′, resulting once again in spurious weighted LD. In fact, the one-reference example
mentioned above is the limiting case A′ = C of this situation.

With these considerations in mind, we propose an LD-based three-population test for
admixture that includes a series of pre-tests safeguarding against the pathological demogra-
phies that can produce a non-admixture weighted LD signal. We outline the test now; details
are in Appendix B.2. Given a population C to test for admixture and references A′ and B′,
the main test is whether the observed weighted LD â(d) using A′–B′ weights is positive and
well-fit by an exponential decay curve. We estimate a jackknife-based p-value by leaving
out each chromosome in turn and re-fitting the weighted LD as an exponential decay; the
jackknife then gives us a standard error on the fitting parameters—namely, the amplitude
and the decay constant—that we use to measure the significance of the observed curve.

The above procedure allows us to determine whether there is sufficient signal in the
weighted LD curve to reject the null hypothesis (under which â(d) is random “colored” noise
in the sense that it contains autocorrelation). However, in order to conclude that the curve
is the result of admixture, we must rule out the possibility that it is being produced by
demography unrelated to admixture. We therefore apply the following pre-test procedure.
First, we determine the distance to which LD in C is significantly correlated with LD in
either A′ or B′; to minimize signal from shared demography, we subsequently ignore data
from SNP pairs at distances smaller than this correlation threshold. Then, we compute
one-reference weighted LD curves for population C with A′–C and B′–C weights and check
that the curves are well-fit as exponential decays. In the case that C is actually admixed
between populations related to A′ and B′, the one-reference A′–C and B′–C curves pick up
the same e−nd admixture LD decay signal. If C is not admixed but has experienced a shared
bottleneck with A′ (producing false-positive admixture signals from the A′–B′ and B′–C
curves), however, the A′–C weighting scheme is unlikely to produce a weighted LD curve,
especially when fitting beyond the LD correlation threshold.

This test procedure is intended to be conservative, so that a population C identified as
admixed can strongly be assumed to be so, whereas if C is not identified as admixed, we are
less confident in claiming that C has experienced no admixture whatsoever. In situations
where distinguishing admixture from other demography is particularly difficult, the test will
err on the side of caution; for example, even if C is admixed, the test may fail to identify
C as admixed if it has also experienced a bottleneck. Also, if a reference A′ shares some
of the same admixture history as C or is simply very closely related to C, the pre-test will
typically identify long-range correlated LD and deem A′ an unsuitable reference to use for
testing admixture. The behavior of the test and pre-test criteria are explored in detail with
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coalescent simulations in Appendix B.3.

Learning about phylogeny

Given a triple of populations (C;A′, B′), our test can identify admixture in the test popu-
lation C, but what does this imply about the relationship of populations A′ and B′ to C?
As with the drift-based 3-population test, test results must be interpreted carefully: even
if C is admixed, this does not necessarily mean that the reference populations A′ and B′

are closely related to the true mixing populations. However, computing weighted LD curves
with a suite of different references can elucidate the phylogeny of the populations involved,
since our amplitude formulas (2.10) and (2.11) provide information about the locations on
the phylogeny at which the references diverge from the true mixing populations.

More precisely, in the notation of Figure 2.1, the amplitude of the two-reference weighted
LD curve is 2αβF2(A

′′, B′′)2, which is maximized when A′′ = A and B′′ = B and is minimized
when A′′ = B′′. So, for example, we can fix A′ and compute curves for a variety of references
B′; the larger the resulting amplitude, the closer the branch point B′′ is to B. In the one-
reference case, as the reference R′ is varied, the amplitude 2αβ(αF2(A,R

′′) − βF2(B,R
′′))2

traces out a parabola that starts at 2αβ3F2(A,B)2 when R′′ = A, decreases to a minimum
value of 0, and increases again to 2α3βF2(A,B)2 when R′′ = B (Figure 2.3). Here, the
procedure is more qualitative because the branches F2(A,R

′′) and F2(B,R
′′) are less directly

useful and the mixture proportions α and β may not be known.

2.2.3 Implementation of ALDER

We now describe some more technical details of the ALDER software package in which we
have implemented our weighted LD methods.

Fast Fourier transform algorithm for computing weighted LD

We developed a novel algorithm that algebraically manipulates the weighted LD statistic into
a form that can be computed using a fast Fourier transform (FFT), dramatically speeding
up the computation (Appendix B.4). The algebraic transformation is made possible by the
simple form (2.5) of our weighted LD statistic along with a genetic distance discretization
procedure that is similar in spirit to ROLLOFF (Moorjani et al., 2011) but subtly different:
instead of binning the contributions of SNP pairs (x, y) by discretizing the genetic distance
|x − y| = d, we discretize the genetic map positions x and y themselves (using a default
resolution of 0.05 cM) (Figure 2.5). For two-reference weighted LD, the resulting FFT-based
algorithm that we implemented in ALDER has computational cost that is approximately
linear in the data size; in practice, it ran three orders of magnitude faster than ROLLOFF
on typical data sets we analyzed.

Curve-fitting

We fit discretized weighted LD curves â(d) as M̂e−nd + K̂ from equation (2.9), using least-
squares to find best-fit parameters. This procedure is similar to ROLLOFF, but ALDER
makes two important technical advances that significantly improve the robustness of the
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Figure 2.5. Comparison of binning procedures used by ROLLOFF and ALDER. Instead
of discretizing inter-SNP distances, ALDER discretizes the genetic map before subtracting
SNP coordinates.

fitting. First, ALDER directly estimates the affine term K that arises from the presence
of subpopulations with differing ancestry percentages by using inter-chromosome SNP pairs
that are effectively at infinite genetic distance (Appendix B.1). The algorithmic advances we
implement in ALDER enable efficient computation of the average weighted LD over all pairs
of SNPs on different chromosomes, giving K̂ and, importantly, eliminating one parameter
from the exponential fitting. In practice, we have observed that ROLLOFF fits are sometimes
sensitive to the maximum inter-SNP distance d to which the weighted LD curve is computed
and fit; ALDER eliminates this sensitivity.

Second, because background LD is present in real populations at short genetic distances
and confounds the ALD signal (interfering with parameter estimates or producing spurious
signal entirely), it is important to fit weighted LD curves starting only at a distance beyond
which background LD is negligible. ROLLOFF used a fixed threshold of d > 0.5 cM, but
some populations have longer-range background LD (e.g., from bottlenecks), and moreover,
if a reference population is closely related to the test population, it can produce a spurious
weighted LD signal due to recent shared demography. ALDER therefore estimates the ex-
tent to which the test population shares correlated LD with the reference(s) and only fits
the weighted LD curve beyond this minimum distance as in our test for admixture (Ap-
pendix B.2).

We estimate standard errors on parameter estimates by performing a jackknife over the
autosomes used in the analysis, leaving out each in turn. Note that the weighted LD mea-
surements from individual pairs of SNPs that go into the computed curve â(d) are not inde-
pendent of each other; however, the contributions of different chromosomes can reasonably
be assumed to be independent.
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2.2.4 Data sets

We primarily applied our weighted LD techniques to a data set of 940 individuals in 53
populations from the CEPH-Human Genome Diversity Cell Line Panel (HGDP) (Rosenberg
et al., 2002) genotyped on an Illumina 650K SNP array (Li et al., 2008). To study the
effect of SNP ascertainment, we also analyzed the same HGDP populations genotyped on
the Affymetrix Human Origins Array (Patterson et al., 2012). For some analyses we also
included HapMap Phase 3 data (The International HapMap Consortium, 2010) merged either
with the Illumina HGDP data set, leaving approximately 600K SNPs, or with the Indian data
set of Reich et al. (2009) including 16 Andaman Islanders (9 Onge and 7 Great Andamanese),
leaving 500K SNPs.

We also constructed simulated admixed chromosomes from 112 CEU and 113 YRI phased
HapMap individuals using the following procedure, described in Moorjani et al. (2011). Given
desired ancestry proportions α and β, the age n of the point admixture, and the number
m of admixed individuals to simulate, we built each admixed chromosome as a composite
of chromosomal segments from the source populations, choosing breakpoints via a Poisson
process with rate constant n, and sampling blocks at random according to the specified
mixture fractions. We stipulated that no individual haplotype could be reused at a given
locus among the m simulated individuals, preventing unnaturally long identical-by-descent
segments but effectively eliminating post-admixture genetic drift. For the short time scales
we study (admixture occurring 200 or fewer generations ago), this approximation has little
impact. We used this method in order to maintain some of the complications inherent in
real data.

2.3 Results

2.3.1 Simulations

First, we demonstrate the accuracy of several forms of inference from ALDER on simulated
data. We generated simulated genomes for mixture fractions of 75% YRI / 25% CEU and
90% YRI / 10% CEU and admixture dates of 10, 20, 50, 100, and 200 generations ago.
For each mixture scenario we simulated 40 admixed individuals according to the procedure
above.

We first investigated the admixture dates estimated by ALDER using a variety of ref-
erence populations drawn from the HGDP with varying levels of divergence from the true
mixing populations. On the African side, we used HGDP Yoruba (21 samples; essentially
the same population as HapMap YRI) and San (5 samples); on the European side, we used
French (28 samples; very close to CEU), Han (34 samples), and Papuan (17 samples). We
computed two-reference weighted LD curves using pairs of references, one from each group,
as well as one-reference curves using the simulated population as one reference and each of
the above HGDP populations as the other.

For the 75% YRI mixture, estimated dates are nearly all accurate to within 10% (Ta-
ble 2.1). The noise levels of the fitted dates (estimated by ALDER using the jackknife) are
the lowest for the Yoruba–French curve, as expected, followed by the one-reference curve
with French, consistent with the admixed population being mostly Yoruba. The situation is
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Table 2.1. Dates of admixture estimated for simulated 75% YRI / 25% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 9±1 20±1 49±2 107±5 195±9
Yoruba Han 9±1 21±1 50±2 107±6 191±12
Yoruba Papuan 9±1 21±1 49±3 118±8 223±23
San French 9±1 20±1 50±2 109±4 197±15
San Han 9±0 21±1 51±3 111±4 194±16
San Papuan 9±1 21±1 51±3 115±6 209±16
Yoruba 9±1 21±1 48±2 107±5 181±17
San 9±1 20±2 56±7 139±22 213±97
French 9±1 20±1 50±2 108±3 194±9
Han 9±0 21±1 52±2 110±6 192±17
Papuan 9±1 21±1 53±3 125±8 217±26

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various references. Rows in which only one
reference is listed indicate runs using the admixed population itself as one reference. Note
that standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

similar but noisier for the 90% YRI mixture (Table 2.2); in this case, the one-reference signal
is quite weak with Yoruba and undetectable with San as the reference, due to the scaling of
the amplitude (equation (2.11)) with the cube of the CEU mixture fraction.

We also compared fitted amplitudes of the weighted LD curves for the same scenar-
ios to those predicted by formulas (2.10) and (2.11); the accuracy trends are similar (Ta-
bles 2.3, 2.4).

Finally, we tested formula (2.12) for bounding mixture proportions using one-reference
weighted LD amplitudes. We computed lower bounds on the European ancestry fraction
using French, Russian, Sardinian, and Kalash as successively more diverged references. As
expected, the bounds are tight for the French reference and grow successively weaker (Ta-
bles 2.5, 2.6).

We also tried lower-bounding the African ancestry using one-reference curves with an
African reference. In general, we expect lower bounds computed for the major ancestry
proportion to be much weaker (Appendix B.1), and indeed we find this to be the case,
with the only slightly diverged Mandenka population producing extremely weak bounds. An
added complication is that the Mandenka are an admixed population with a small amount
of West Eurasian ancestry (Price et al., 2009), which is not accounted for in the amplitude
formulas we use here.

Another notable feature of ALDER is that, to a much greater extent than f -statistic
methods, its inference quality improves with more samples from the admixed test population.
As a demonstration of this, we simulated a larger set of 100 admixed individuals as above,
for both 75% YRI / 25% CEU and 90% YRI / 10% CEU scenarios, and compared the
date estimates obtained on subsets of 5–100 of these individuals with two different reference
pairs (Tables 2.7, 2.8). With larger sample sizes, the estimates become almost uniformly
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Table 2.2. Dates of admixture estimated for simulated 90% YRI / 10% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 10±0 21±1 50±2 107±7 193±19
Yoruba Han 10±0 20±1 51±2 109±10 220±32
Yoruba Papuan 10±0 22±1 53±3 111±11 233±65
San French 10±0 21±1 51±2 112±6 223±19
San Han 10±0 21±1 52±3 121±5 254±40
San Papuan 11±0 23±1 53±3 126±8 287±56
Yoruba 9±1 20±2 55±7 100±27 363±183
San 98±87 56±28 94±69 2±0 9±5
French 10±0 21±1 51±2 107±5 217±13
Han 11±0 21±1 52±2 111±7 234±25
Papuan 11±0 23±1 56±3 117±8 256±47

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various references. Rows in which only one
reference is listed indicate runs using the admixed population itself as one reference. Note
that standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

Table 2.3. Amplitudes of weighted LD curves (multiplied by 106) for simulated 75% YRI
/ 25% CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 1173 1139±20 1203±40 1188±54 1283±100 1202±88
Yoruba Han 693 678±17 717±28 711±43 774±73 716±74
Yoruba Papuan 602 598±13 631±23 595±34 775±96 835±152
San French 1017 981±23 1028±34 1044±49 1128±70 1037±130
San Han 574 556±18 590±24 604±42 667±39 626±65
San Papuan 491 487±17 514±20 503±34 589±45 574±60
Yoruba 75 77±2 81±4 74±4 83±6 71±13
San 40 40±3 42±3 50±6 66±13 43±34
French 655 626±12 660±21 666±31 721±42 656±49
Han 312 304±10 324±14 332±23 364±25 332±36
Papuan 252 256±9 273±13 267±17 331±34 314±55

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various references. Rows in which only one
reference is listed indicate runs using the admixed population itself as one reference.
Expected amplitudes were computed according to formulas (2.10) and (2.11). Note that
standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).
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Table 2.4. Amplitudes of weighted LD curves (multiplied by 106) for simulated 90% YRI
/ 10% CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 563 587±27 579±26 550±25 600±43 562±96
Yoruba Han 333 353±20 336±15 339±17 381±49 456±128
Yoruba Papuan 289 307±19 303±16 309±18 343±54 426±248
San French 488 522±25 512±22 488±25 519±28 625±89
San Han 276 305±18 291±12 289±16 338±23 464±132
San Papuan 236 266±18 262±13 254±12 306±38 486±186
Yoruba 6 6±1 6±1 7±1 7±3 44±89
San 1 16±15 8±3 10±7 -0±0 -1±1
French 454 473±19 471±18 450±19 481±19 566±55
Han 250 268±13 261±10 264±11 288±23 369±68
Papuan 212 231±14 233±13 243±11 276±35 366±125

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various references. Rows in which only one
reference is listed indicate runs using the admixed population itself as one reference.
Expected amplitudes were computed according to formulas (2.10) and (2.11). Note that
standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

Table 2.5. Mixture fraction lower bounds on simulated 75% YRI / 25% CEU mixtures.

Ref 10 20 50 100 200

French 24.6±0.3 25.7±0.5 25.7±0.7 27.0±1.0 25.2±1.3
Russian 23.8±0.3 24.9±0.5 24.8±0.7 25.6±0.8 25.3±1.0
Sardinian 21.3±0.3 21.9±0.5 22.0±0.6 23.6±0.9 22.3±1.1
Kalash 14.7±0.2 15.5±0.4 15.5±0.5 16.4±0.6 15.6±0.9
Yoruba 73.6±0.7 74.8±0.4 74.0±0.6 76.2±1.3 73.8±3.4
Mandenka 50.5±0.6 51.2±1.0 50.4±1.4 54.9±2.0 60.8±5.6

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various single references. The first four rows
are European surrogates and give lower bounds on the amount of CEU ancestry (25%); the
last two are African surrogates and give lower bounds on the amount of YRI ancestry
(75%). Note that standard errors shown are ALDER’s jackknife estimates of its own error
on a single simulation (not standard errors from averaging over multiple simulations).
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Table 2.6. Mixture fraction lower bounds on simulated 90% YRI / 10% CEU mixtures.

Ref 10 20 50 100 200

French 10.5±0.4 10.5±0.3 9.9±0.3 10.6±0.4 12.3±1.0
Russian 10.2±0.3 10.0±0.3 9.7±0.3 10.3±0.5 11.8±0.9
Sardinian 9.3±0.3 9.2±0.3 8.7±0.3 9.5±0.4 10.3±1.2
Kalash 7.2±0.3 7.0±0.3 6.8±0.2 7.4±0.4 8.9±0.8
Yoruba 89.1±1.0 89.1±1.1 90.1±1.5 89.4±3.7 98.5±2.0
Mandenka 18.2±2.3 17.3±2.5 19.5±4.8 63.1±25.5 30.7±220.4

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various single references. The first four rows
are European surrogates and give lower bounds on the amount of CEU ancestry (10%); the
last two are African surrogates and give lower bounds on the amount of YRI ancestry
(90%). Note that standard errors shown are ALDER’s jackknife estimates of its own error
on a single simulation (not standard errors from averaging over multiple simulations).

more accurate, with smaller standard errors. By contrast, we observed that while using a
very small sample size (say 5) for the reference populations does create noticeable noise,
using 20 samples already gives allele frequency estimates accurate enough that adding more
reference samples has only minimal effects on the performance of ALDER. This is similar to
the phenomenon that the precision of f -statistics does not improve appreciably with more
than a moderate number of samples and is due to the inherent variability in genetic drift
among different loci.

2.3.2 Robustness

A challenge of weighted LD analysis is that owing to various kinds of model violation, the
parameters of the exponential fit of an observed curve â(d) may depend on the starting
distance d0 from which the curve is fit. We therefore explored the robustness of the fitting
parameters to the choice of d0 in a few scenarios (Figure 2.6). First, in a simulated 75% /
25% YRI–CEU admixture 50 generations ago, we find that the decay constant and amplitude
are both highly robust to varying d0 from 0.5 to 2.0 cM (Figure 2.6, top). This result is not
surprising because our simulated example represents a true point admixture with minimal
background LD in the admixed population.

In practice, we expect some dependence on d0 due to background LD or longer-term
admixture (either continuously over a stretch of time or in multiple waves). Both of these
will tend to increase the weighted LD for smaller values of d relative to an exact exponential
curve, so that estimates of the decay constant and amplitude will decrease as we increase
the fitting start point d0; the extent to which this effect occurs will depend on the extent of
the model violation. We studied the d0-dependence for two example admixed populations,
HGDP Uygur and HapMap Maasai (MKK). For Uygur, the estimated decay constants and
amplitudes are fairly robust to the start point of the fitting, varying roughly by ±10%
(Figure 2.6, middle). In contrast, the estimates for Maasai vary dramatically, decreasing by
more than a factor of 2 as d0 is increased from 0.5 to 2.0 cM (Figure 2.6, bottom). This
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Table 2.7. Dates of admixture estimated for simulated 75% YRI / 25% CEU mixtures.

Yoruba–French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen
5 12±2 18±2 55±3 103±7 258±24
10 10±1 19±2 50±2 105±7 236±24
20 10±1 20±1 52±2 104±5 223±16
50 9±0 20±1 52±1 96±2 186±10
100 10±0 20±0 52±1 101±2 210±9

San–Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen
5 12±2 18±2 58±5 107±11 283±73
10 10±1 19±2 54±3 114±8 219±64
20 10±1 21±1 55±2 115±6 219±46
50 9±0 21±1 54±1 107±5 213±20
100 9±0 21±1 53±1 105±5 216±13

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using varying numbers of admixed samples. Note
that standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

Table 2.8. Dates of admixture estimated for simulated 90% YRI / 10% CEU mixtures.

Yoruba–French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen
5 11±2 21±2 52±6 101±17 253±42
10 11±1 19±1 48±4 94±8 241±46
20 11±1 21±1 48±3 102±8 209±30
50 11±0 21±1 48±2 98±5 202±21
100 10±0 20±1 50±1 99±4 185±15

San–Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen
5 14±2 22±3 63±8 110±30 335±91
10 12±1 20±2 54±4 110±15 265±55
20 12±1 21±1 52±4 131±15 234±33
50 11±0 20±1 53±4 122±8 221±23
100 11±0 20±0 53±3 109±5 219±10

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using varying numbers of admixed samples. Note
that standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).
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Figure 2.6. Dependence of date estimates and weighted LD amplitudes on fitting start
point. Rows correspond to three test scenarios: Simulated 75% YRI / 25% CEU mixture
50 generations ago with Yoruba–French weights (top); Uygur with Han–French weights
(middle); HapMap Maasai with Yoruba–French weights (bottom). The left panel of each
row shows the weighted LD curve â(d) (blue) with best-fit exponential decay curve (red),
fit starting from d0 = 0.5 cM. Remaining panels show the date estimate (middle) and
amplitude (right) as a function of d0. (We note that our date estimates for Uygur are
somewhat more recent than those in Patterson et al. (2012), most likely because of our
direct estimate of the affine term in the weighted LD curve.)
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Table 2.9. Effect of SNP ascertainment on date estimates.

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 47±12 51±13 56±10 41±10
Uygur French Han 15±2 14±2 13±2 16±2
Hazara French Han 22±2 22±3 23±2 22±3
Melanesian Dai Papuan 93±24 62±15 76±13 70±18
Bedouin French Yoruba 27±3 23±3 23±3 24±3
MbutiPygmy San Yoruba 33±12 33±6 41±14 30±8
BiakaPygmy San Yoruba 39±6 50±14 35±6 36±7

We compared dates of admixture estimated by ALDER on a variety of test triples from the
HGDP using SNPs ascertained as heterozygous in full genome sequences of one French,
Han, San, and Yoruba individual (Panels 1, 2, 4, and 5 of the Affymetrix Human Origins
Array (Patterson et al., 2012)). Standard errors are from a jackknife over the 22 autosomes.

behavior is likely due to multiple-wave admixture in the genetic history of the Maasai; indeed,
it is visually evident that the weighted LD curve for Maasai deviates from an exponential
fit (Figure 2.6) and is in fact better-fit as a sum of exponentials. (See Figure 2.7 and
Appendix B.3 for further simulations exploring continuous admixture.)

It is also important to consider the possibility of SNP ascertainment bias, as in any study
based on allele frequencies. We believe that for weighted LD, ascertainment bias could have
modest effects on the amplitude, which depends on F2 distances (Patterson et al., 2012;
Lipson et al., 2013), but will not affect the estimated date. Running ALDER on a suite of
admixed populations in the HGDP under a variety of ascertainment schemes suggests that
admixture date estimates are indeed quite stable to ascertainment (Table 2.9). Meanwhile,
the amplitudes of the LD curves can scale substantially when computed under different SNP
ascertainments, but their relative values are only different for extreme cases of African vs.
non-African test populations under African vs. non-African ascertainment (Table 2.10; cf.
Table 2 of Patterson et al. (2012)).

2.3.3 Admixture test results for HGDP populations

To compare the sensitivity of our LD-based test for admixture to the f -statistic-based 3-
population test, we ran both ALDER and the 3-population test on all triples of populations
in the HGDP. Interestingly, while the tests concur on the majority of the populations they
identify as admixed, each also identifies several populations as admixed that the other does
not (Table 2.11), showing that the tests have differing sensitivity to different admixture
scenarios.

Admixture identified only by ALDER

The 3-population test loses sensitivity primarily as a result of drift since splitting from the
references’ lineages. More precisely, using the notation of Figure 2.1, the 3-population test
statistic f3(C;A′, B′) estimates the sum of two directly competing terms: −αβF2(A

′′, B′′),
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Figure 2.7. Weighted LD curve parameters from coalescent simulations of continuous
admixture. In each simulation the mixed population receives 40% of its ancestry through
continuous gene flow over a period of 0–200 generations ending 40 generations ago. Panels
(A) and (B) show the admixture dates and weighted LD amplitudes computed by ALDER
for each of 11 simulations (varying the duration of mixture from 0 to 200 in increments of
20). Panels (C) and (D) show the curves and exponential fits for mixture durations at the
two extremes. Standard errors shown are ALDER’s jackknife estimates of its own error on
a single simulation.
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Table 2.10. Effect of SNP ascertainment on weighted LD curve amplitudes (multiplied by
106).

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 180±44 171±53 61±11 65±15
Uygur French Han 360±28 304±29 102±7 161±19
Hazara French Han 442±31 436±48 146±10 203±21
Melanesian Dai Papuan 868±277 559±150 207±51 312±91
Bedouin French Yoruba 227±32 196±25 104±11 146±13
MbutiPygmy San Yoruba 64±23 78±14 83±26 82±18
BiakaPygmy San Yoruba 104±19 133±46 90±15 103±22

We compared amplitudes of weighted LD curves fitted on a variety of test triples from the
HGDP using SNPs ascertained as heterozygous in full genome sequences of one French,
Han, San, and Yoruba individual (Panels 1, 2, 4, and 5 of the Affymetrix Human Origins
Array (Patterson et al., 2012)). Standard errors are from a jackknife over the 22 autosomes.

the negative quantity arising from admixture that we wish to detect, and α2F2(A
′′, A) +

β2F2(B
′′, B) + F2(C,C

′), a positive quantity from the “off-tree” drift branches. If the latter
term dominates, the 3-population test will fail to detect admixture regardless of the statistical
power available. For example, Melanesians are only found to be admixed according to the
ALDER test; the inability of the 3-population test to identify them as admixed is likely due
to long off-tree drift from the Papuan branch prior to admixture. The situation is similar
for the Pygmies, for whom we do not have two close references available.

Small mixture fractions also diminish the size of the admixture term−αβF2(A,B) relative
to the off-tree drift, and we believe this effect along with post-admixture drift may be the
reason Sardinians are detected as admixed only by ALDER. In the case of the San, who
have a small amount of Bantu admixture (Pickrell et al., 2012), the small mixture fraction
may again play a role, along with the lack of a reference population closely related to the
pre-admixture San, meaning that using existing populations incurs long off-tree drift.

Admixture identified only by the 3-population test

There are also multiple reasons why the 3-population test can identify admixture when
ALDER does not. For the HGDP European populations in this category (Table 2.11), the
3-population test is picking up a signal of admixture identified by Patterson et al. (2012)
and interpreted there as a large-scale admixture event in Europe involving Neolithic farmers
closely related to present-day Sardinians and an ancient northern Eurasian population. This
mixture likely began quite anciently (e.g. 7,000-9,000 years ago when agriculture arrived
in Europe (Bramanti et al., 2009; Soares et al., 2010; Pinhasi et al., 2012)), and because
admixture LD breaks down as e−nd, where n is the age of admixture, there is nearly no
LD left for ALDER to harness beyond the correlation threshold d0. An additional factor
that may inhibit LD-based testing is that in order to prevent false-positive identifications
of admixture, ALDER typically eliminates reference populations that share LD (and in
particular, admixture history) with the test population, whereas the 3-population test can
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Table 2.11. Results of ALDER and 3-population tests for admixture on HGDP
populations.

Both #LD #f3 Only LD # Only f3 # Neither
Adygei 205 139 BiakaPygmy 81 French 99 Basque
Balochi 123 204 Colombian 5 Han 13 Dai
BantuKenya 30 182 Druze 128 Italian 46 Hezhen
BantuSouthAfrica 27 11 Japanese 1 Orcadian 1 Karitiana
Bedouin 300 63 Kalash 20 Tujia 8 Lahu
Brahui 363 16 MbutiPygmy 77 Tuscan 59 Mandenka
Burusho 450 377 Melanesian 96 Miao
Cambodian 266 158 Pima 489 Naxi
Daur 29 8 San 155 Papuan
Han-NChina 1 77 Sardinian 45 She
Hazara 699 593 Yakut 435 Surui
Makrani 173 163 Yi
Maya 784 124 Yoruba
Mongola 76 385
Mozabite 313 107
Oroqen 68 5
Palestinian 308 64
Pathan 113 348
Russian 158 153
Sindhi 264 366
Tu 22 315
Uygur 428 616
Xibo 101 335

We ran both ALDER and the 3-population test for admixture on each of the 53 HGDP
populations using all pairs of other populations as references. We group the populations
according to whether or not each test methodology produced at least one test identifying
them as admixed; for each population, we list the number of reference pairs with which
with each method (abbreviated “LD” and “f3”) detected admixture. We used a
significance threshold of p < 0.05 after multiple-hypothesis correction.
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use such references.
To summarize, the ALDER and 3-population tests both analyze a test population for

admixture using two references, but they detect signal based on different “genetic clocks.”
The 3-population test uses signal from genetic drift, which can detect quite old admixture
but must overcome a counteracting contribution from post-admixture and off-tree drift. The
LD-based test uses recombination, which is relatively unaffected by small population size-
induced long drift and has no directly competing effect, but has limited power to detect
chronologically old admixtures because of the rapid decay of the LD curve. Additionally, as
discussed above in the context of simulation results, the LD-based test may be better suited
for large data sets, since its power is enhanced more by the availability of many samples.
The tests are thus complementary and both valuable. (See Figure 2.8 and Appendix B.3 for
further exploration.)

2.3.4 Case studies

We now present detailed results for several human populations, all of which ALDER identifies
as admixed but are not found by the 3-population test (Table 2.11). We infer dates of
admixture and in some cases gain additional historical insights.

Pygmies

Both Central African Pygmy populations in the HGDP, the Mbuti and Biaka, show evidence
of admixture (Table 2.11), about 28 ± 4 generations (800 years) ago for Mbuti and 38 ±
4 generations (1100 years) ago for Biaka, estimated using San and Yoruba as reference
populations (Figure 2.9A,C). The intra-population heterogeneity is low, as demonstrated
by the negligible affine terms. In each case, we also generated weighted LD curves with
the Pygmy population itself as one reference and a variety of second references. We found
that using French, Han, or Yoruba as the second reference gave very similar amplitudes,
but the amplitude was significantly smaller with the other Pygmy population or San as the
second reference (Figure 2.9B,D). Using the amplitudes with Yoruba, we estimated mixture
fractions of at least 15.9± 0.9% and 28.8± 1.4% Yoruba-related ancestry (lower bounds) for
Mbuti and Biaka, respectively.

The phylogenetic interpretation of the relative amplitudes is complicated by the fact that
the Pygmy populations, used as references, are themselves admixed, but a plausible coherent
explanation is as follows (see Figure 2.9E). We surmise that a proportion β (bounds given
above) of Bantu-related gene flow reached the native Pygmy populations on the order of 1000
years ago. The common ancestors of Yoruba or non-Africans with the Bantu population are
genetically not very different from Bantu, due to high historical population sizes (branching
at positions X1 and X2 in Figure 2.9E). Thus, the weighted LD amplitudes using Yoruba or
non-Africans as second references are nearly 2α3βF2(A,B)2, where B denotes the admixing
Bantu population. Meanwhile, San and Western (resp. Eastern) Pygmies split from the
Bantu-Mbuti (resp. Biaka) branch toward the middle or the opposite side from Bantu (X3

and X4), giving a smaller amplitude (Figure 2.3).
Our results are in agreement with previous studies that have found evidence of gene

flow from agriculturalists to Pygmies (Quintana-Murci et al., 2008; Verdu et al., 2009; Patin
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Figure 2.8. Coalescent simulations comparing the sensitivities of the 3-population
moment-based test for admixture (f3) and the LD-based test implemented in ALDER. We
varied three parameters: the age of the branch point A′′, the date n of gene flow, and the
fraction α of A ancestry.
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Figure 2.9. Weighted LD curves for Mbuti using San and Yoruba as reference populations
(A) and using Mbuti itself as one reference and several different second references (B), and
analogous curves for Biaka (C, D). Genetic distances are discretized into bins at 0.05 cM
resolution. Data for each curve are plotted and fit starting from the corresponding
ALDER-computed LD correlation thresholds. Different amplitudes of one-reference curves
(B, D) imply different phylogenetic positions of the references relative to the true mixing
populations (i.e., different split points X ′′i ), suggesting a sketch of a putative admixture
graph (E). Relative branch lengths are qualitative, and the true root is not necessarily as
depicted.
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Table 2.12. Amplitudes and dates from weighted LD curves for Sardinian using various
reference pairs.

Ref 1 Ref 2 Weighted LD amplitude Date estimate

CEU YRI 0.00003192 ± 0.00000903 48 ± 10
CHB YRI 0.00001738 ± 0.00000679 34 ± 8
CEU CHB 0.00000873 ± 0.00000454 52 ± 21

Data are shown from ALDER fits to weighted LD curves computed using Sardinian as the
test population and pairs of HapMap CEU, YRI, and CHB as the references. Date
estimates are in generations. We omitted chromosome 8 from the analysis because of
anomalous long-range LD. Curves â(d) were fit for d > 1.2 cM, the extent of LD correlation
between Sardinian and CEU computed by ALDER.

et al., 2009; Jarvis et al., 2012). Quintana-Murci et al. (2008) suggested based on mtDNA
evidence in Mbuti that gene flow ceased several thousand years ago, but more recently, Jarvis
et al. (2012) found evidence of admixture in Western Pygmies, with a local-ancestry-inferred
block length distribution of 3.1 ± 4.6 Mb (mean and standard deviation), consistent with
our estimated dates.

Sardinians

We detect a very small proportion of Sub-Saharan African ancestry in Sardinians, which
our ALDER tests identified as admixed (Table 2.11; Figure 2.10A). To investigate further,
we computed weighted LD curves with Sardinian as the test population and all pairs of
the HapMap CEU, YRI and CHB populations as references (Table 2.12). We observed an
abnormally large amount of shared long-range LD in chromosome 8, likely do to an extended
inversion segregating in Europeans (Price et al., 2008), so we omitted it from these analyses.
The CEU–YRI curve has the largest amplitude, suggesting both that the LD present is due
to admixture and that the small non-European ancestry component, for which we estimated
a lower bound of 0.6± 0.2%, is from Africa. (For this computation we used single-reference
weighted LD with YRI as the reference, fitting the curve after 1.2 cM to reduce confounding
effects from correlated LD that ALDER detected between Sardinian and CEU. Changing the
starting point of the fit does not qualitatively affect the results.) The existence of a weighted
LD decay curve with CHB and YRI as references provides further evidence that the LD
is not simply due to a population bottleneck or other non-admixture sources, as does the
fact that our estimated dates from all three reference pairs are roughly consistent at about
40 generations (1200 years) ago. Our findings thus confirm the signal of African ancestry
in Sardinians reported in Moorjani et al. (2011). The date, small mixture proportion, and
geography are consistent with a small influx of migrants from North Africa, who themselves
traced only a fraction of their ancestry ultimately to Sub-Saharan Africa, consistent with
the findings of Dupanloup et al. (2004).
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Figure 2.10. Weighted LD curves for HGDP Sardinian using Italian–Yoruba weights (A)
and HapMap Japanese (JPT) using JPT itself as one reference and HapMap Han Chinese
(CHB) as the second reference (B). The exponential fits are performed starting at 1 cM
and 1.2 cM, respectively, as selected by ALDER based on detected correlated LD.
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Japanese

Genetic studies have suggested that present-day Japanese are descended from admixture
between two waves of settlers, responsible for the Jomon and Yayoi cultures (Hammer and
Horai, 1995; Hammer et al., 2006; Rasteiro and Chikhi, 2009). We also observed evidence of
admixture in Japanese, and while our ability to learn about the history was limited by the
absence of a close surrogate for the original Paleolithic mixing population, we were able to
take advantage of the one-reference inference capabilities of ALDER. More precisely, among
our tests using all pairs of HGDP populations as references (Table 2.11), one reference pair,
Basque and Yakut, produced a passing test for Japanese. However, as we have noted, the
reference populations need not be closely related to the true mixing populations, and we
believe that in this case this seemingly odd reference pair arises as the only passing test
because the data set lacks a close surrogate for Jomon.

In the absence of a reference on the Jomon side, we computed single-reference weighted
LD using HapMap JPT as the test population and JPT–CHB weights, which confer the ad-
vantage of larger sample sizes (Figure 2.10B). The weighted LD curve displays a clear decay,
yielding an estimate of 45 ± 6 generations, or about 1,300 years, as the age of admixture.
To our knowledge, this is the first time genome-wide data have been used to date admixture
in Japanese. As with previous estimates based on coalescence of Y-chromosome haplotypes
(Hammer et al., 2006), our date is consistent with the archaeologically attested arrival of the
Yayoi in Japan roughly 2300 years ago (we suspect that our estimate is from later than the
initial arrival because admixture may not have happened immediately or may have taken
place over an extended period of time). Based on the amplitude of the curve, we also obtain
a (likely very conservative) genome-wide lower bound of 41 ± 3% “Yayoi” ancestry using
formula (2.12) (under the reasonable assumption that Han Chinese are fairly similar to the
Yayoi population). It is important to note that the observation of a single-reference weighted
LD curve is not sufficient evidence to prove that a population is admixed, but the existence
of a pair of references with which the ALDER test identified Japanese as admixed, combined
with previous work and the lack of any signal of reduced population size, makes us confident
that our inferences are based on true historical admixture.

Onge

Lastly, we provide a cautionary example of weighted LD decay curves arising from demogra-
phy and not admixture. We observed distinct weighted LD curves when analyzing the Onge,
an indigenous population of the Andaman Islands. However, this curve is only present when
using Onge themselves as one reference; moreover, the amplitude is independent of whether
CEU, CHB, YRI, GIH (HapMap Gujarati), or Great Andamanese is used as the second
reference (Figure 2.11), as expected if the weighted LD is due to correlation between LD
and allele frequencies in the test population alone (and independent of the reference allele
frequencies). Correspondingly, ALDER’s LD-based test does not identify Onge as admixed
using any pair of these references. Thus, while we cannot definitively rule out admixture,
the evidence points toward internal demography (low population size) as the cause of the
elevated LD, consistent with the current census of fewer than 100 Onge individuals.
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Figure 2.11. Weighted LD curves for Onge using Onge itself as one reference and several
different second references.

2.4 Discussion

2.4.1 Strengths of weighted LD for admixture inference

The statistics underlying weighted LD are quite simple, making the formula for the expec-
tation of â(d), as well as the noise and other errors from our inference procedure, relatively
easy to understand. By contrast, local ancestry-based admixture dating methods (e.g., Pool
and Nielsen (2009) and Gravel (2012)) are sensitive to imperfect ancestry inference, and
it is difficult to trace the error propagation to understand the ultimate effect on inferred
admixture parameters. Similarly, the wavelet method of Pugach et al. (2011) uses reference
populations to perform (fuzzy) ancestry assignment in windows, for which error analysis is
challenging.

Another strength of our weighted LD methodology is that it has relatively low require-
ments on the quality and quantity of reference populations. Our theory tells us exactly how
the statistic behaves for any reference populations, no matter how diverged they are from
the true ancestral mixing populations. In contrast, the accuracy of results from clustering
and local ancestry methods is dependent on the quality of the reference populations used in
ways that are difficult to characterize. On the quantity side, previous approaches to admix-
ture inference require a surrogate for each ancestral population, whereas as long as one is
confident that the signal is truly from admixture, weighted LD can be used with only one
available reference to infer times of admixture (as in our analysis of the Japanese) and bound
mixing fractions (as in our Pygmy case study and Pickrell et al. (2012)), problems that were
previously intractable.

Weighted LD also advances our ability to test for admixture. As discussed above, ALDER
offers complementary sensitivity to the 3-population test and allows the identification of
additional populations as admixed. Another formal test for admixture is the 4-population
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test (Reich et al., 2009; Patterson et al., 2012), which is quite sensitive but also has trade-
offs; for example, it requires three distinctly branching references, whereas ALDER and the
3-population test only need two. Additionally, the phylogeny of the populations involved
must be well understood in order to interpret a signal of admixture from the 4-population
test properly (i.e., to determine which population is admixed). Using weighted LD, on the
other hand, largely eliminates the problem of determining the destination or direction of
gene flow, since the LD signal of admixture is intrinsic to a specified test population.

2.4.2 One-reference versus two-reference curves

In practice, it is often useful to compute weighted LD curves using both the one-reference
and two-reference techniques, as both can be used for inferences in different situations. Gen-
erally, we consider two-reference curves to be more reliable for parameter estimation, since
using the test population as one reference is more prone to introduce unwanted signals, such
as recent admixture from a different source, non-admixture LD from reduced population
size, or population structure among samples. In particular, populations with more compli-
cated histories and additional sources of LD beyond the specifications of our model will often
have different estimates of admixture dates with one- and two-reference curves. There is a
small chance that date disagreement can reflect a false-positive admixture signal, but this is
very unlikely if both one- and two-reference curves exist beyond the correlated LD threshold
(see Appendix B.2). Two-reference curves also allow for direct estimation of mixture frac-
tions, although, as discussed above, we prefer instead to use the method of single-reference
bounding.

There are a number of practical considerations that make the one-reference capabilities
of ALDER desirable. Foremost is the possibility that one may not have a good surrogate
available for one of the ancestral mixing populations, as in our Japanese example. Also, while
our method of learning about phylogenetic relationships is best suited to two-reference curves
because of the simpler form of the amplitude in terms of branch lengths, it is often useful
to begin by computing a suite of single-reference curves, both because the data generated
will scale linearly with the number of references available and because observing a range
of different amplitudes gives an immediate signal of the presence of admixture in the test
population.

Overall, then, a sample sequence for applying ALDER to a new data set might be as
follows: (1) test all populations for admixture using all pairs of references from among
the other populations; (2) explore admixed populations of interest by comparing single-
reference weighted LD curves; (3) learn more detail by analyzing selected two-reference
curves alongside the one-reference ones; (4) estimate parameters using one- or two-reference
curves as applicable. Of course, step (1) itself involves the complementary usefulness of both
one- and two-reference weighted LD, since our test for admixture requires the presence of
exponential decay signals in both types of curves.

2.4.3 Effect of multiple-wave or continuous admixture

As discussed in our section on robustness of results, in the course of our data analysis,
we observed that the weighted LD date estimate almost always becomes more recent when
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the exponential decay curve is fit for a higher starting distance d0. Most likely, this is
because admixtures in human populations have taken place over multiple generations, such
that our estimated times represent intermediate dates during the process. To whatever
extent an admixture event is more complicated than posited in our point-admixture model,
removing low-d bins will lead the fitting to capture proportionately more of the more recent
admixture. By default, ALDER sets d0 to be the smallest distance such that non-admixture
LD signals can be confidently discounted for d > d0 (see Methods (Testing for admixture)
and Appendix B.2), but it should be noted that the selected d0 will vary for different sets
of populations, and in each case the true admixture signal at d < d0 will also be excluded.
Theoretically, this pattern could allow us to learn more about the true admixture history of
a population, since the value of a(d) at each d represents a particular function of the amount
of admixture that took place at each generation in the past. However, in our experience,
fitting becomes difficult for any model involving more than two or three parameters. Thus,
we made the decision to restrict ourselves to assuming a single point admixture, fit for a
principled threshold d > d0, accepting that the inferred date n represents some form of
average value over the true history.

2.4.4 Other possible complications

In our derivations, we have assumed implicitly that the mixing populations and the reference
populations are related through a simple tree. However, it may be that their history is more
complicated, for example involving additional admixtures. In this case, our formulas for
the amplitude of the ALD curve will be inaccurate if, for example, A and A′ have different
admixture histories. However, if our assumptions are violated only by events occurring before
the divergences between the mixing populations and the corresponding references, then the
amplitude will be unaffected. Moreover, no matter what the population history, as long
as A and B are free of measurable LD (so that our assumption of independence of alleles
conditional on a single ancestry is valid), there will be no effect on the estimated date of
admixture.

2.4.5 Conclusions and future directions

In this study, we have shown how linkage disequilibrium (LD) generated by population ad-
mixture can be a powerful tool for learning about history, extending previous work that
showed how it can be used for estimating dates of mixture (Moorjani et al., 2011; Patter-
son et al., 2012). We have developed a new suite of tools, implemented in the ALDER
software package, that substantially increases the speed of admixture LD analysis, improves
the robustness of admixture date inference, and exploits the amplitude of LD as a novel
source of information about history. In particular, (a) we show how admixture LD can be
leveraged into a formal test for mixture that can sometimes find evidence of admixture not
detectable by other methods, (b) we show how to estimate mixture proportions, and (c) we
show that we can even use this information to infer phylogenetic relationships. A limitation
of ALDER at present, however, is that it is designed for a model of pulse admixture between
two ancestral populations. Important directions for future work will be to generalize these
ideas to make inferences about the time course of admixture in the case that it took place
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over a longer period of time (Pool and Nielsen, 2009; Gravel, 2012) and to study multi-way
admixture. In addition, it would be valuable to be able to use the information from admix-
ture LD to constrain models of history for multiple populations simultaneously, either by
extending ALDER itself or by using LD-based test results in conjunction with methods for
fitting phylogenies incorporating admixture (Patterson et al., 2012; Pickrell and Pritchard,
2012; Lipson et al., 2013).

2.5 Software

Executable and C++ source files for our ALDER software package are available online at
the Berger and Reich Lab websites: http://groups.csail.mit.edu/cb/alder/, http:

//genetics.med.harvard.edu/reich/Reich_Lab/Software.html.
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Chapter 3

Applications of MixMapper and
ALDER

In addition to the examples in Chapters 1 and 2, a number of specific human populations
have been studied using the MixMapper and ALDER software in subsequent papers.

3.1 MixMapper

3.1.1 Austronesian expansion: introduction

The most in-depth application of MixMapper thus far has been to shed new light on the
Austronesian expansion, a Neolithic-era migration that was responsible for spreading the
Austronesian language family throughout Southeast Asia and Oceania (the full work can be
found as Chapter 4 of this thesis∗). It has been hypothesized that the Austronesian expansion
began in Taiwan, but previous genetic evidence has been inconclusive. Our study has now
helped to confirm this theory and has also demonstrated an unexpected genetic contribution
in Indonesia from a population related to present-day Austro-Asiatic speakers. The extensive
three-way admixture modeling involved was aided by improvements in MixMapper ’s two-
wave fitting procedure (see Chapter 4).

3.1.2 Ancient Eurasia

MixMapper is particularly well suited for use with ancient DNA. If ancient samples can be
found that predate admixture events of interest, they can provide unadmixed references to
include on the scaffold where perhaps no present-day population would fit. For example,
as shown in Chapter 1, present-day Europeans all share a signal of ancient admixture,
meaning that we were forced to rely on more distantly related populations in the scaffold
tree. Recently, however, Raghavan et al. (2014) have described the genome of a 24,000-
year-old individual from Mal’ta in Siberia that offers a glimpse of a Paleolithic population
in northern Eurasia. Using MixMapper among other methods, the authors showed that
this individual, MA-1, has genetic affinities both with Europeans and Native Americans,

∗Studies in this chapter marked with an asterisk are those to which I contributed.
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clarifying the relationship between the two groups that we discuss in Chapter 1 and providing
evidence that Native Americans are in fact admixed.

Another recent paper∗ also applied MixMapper to help study the relationships between
present-day European populations and several ancient European DNA samples (Lazaridis
et al., 2014). In this case, the authors used several techniques to probe the history of
Europeans and found strong evidence of three distinct ancestry components, one related to
Mesolithic European hunter-gatherers, one to Neolithic European farmers (who themselves
derive a portion of their ancestry from the Near East), and one to northern Eurasians
with affinities to MA-1. MixMapper simultaneously provided a means to estimate mixture
proportions, sources of gene flow, and the number of admixture events, without specifying a
fixed historical model in advance.

3.2 ALDER

3.2.1 Characterizing Indian admixture

Many of the f -statistic methods that underpin the MixMapper technology were first applied
in a landmark paper that demonstrated a widespread admixture event in the history of
Indian populations (Reich et al., 2009). More recently, a new study∗ further investigated
this north–south admixture with the help of ALDER (Moorjani et al., 2013b). In particular,
the authors adapted the ALDER formula for the weighted LD amplitude as part of a test
for multiple waves of mixture, using the fact that the amplitude inferred from a single-wave
model will be too small if the true history is more complex. Applying this test, the authors
were able to demonstrate that, for at least a subset of Indian groups, their admixture is
consistent with having occurred in a single pulse roughly 3000 years ago.

3.2.2 Southern and eastern Africa

Several of the ideas that went into ALDER, including inference of dates and mixture pro-
portions from single-reference LD curves, were initially used in a study∗ that was the first to
detect admixture in Khoisan hunter-gatherer populations in southern Africa (Pickrell et al.,
2012). A follow-up study∗ explored this mixture signal in much greater detail, using an
extension of the ALDER method to learn about multiple waves of admixture (Pickrell et al.,
2014). In general, this is a difficult problem, because multiple waves are manifested in the LD
curve as a sum of exponentials, which are not easily identifiable in the presence of noise. To
address this difficulty, the authors devised a new approach of calculating weighted LD curves
for a given test population using all pairs of references from a large panel and fitting the
resulting curves as a sum of two exponentials under the constraint of fixed dates for the two
waves. This greatly improves the ability of the method to estimate the two dates and also
allows for determining the sources of the two waves by finding which reference populations
give the largest amplitudes for each date. Applying this method to a large sample of sub-
Saharan Africans, the authors were able to distinguish several different admixture events,
including likely admixture from Arabia into East Africa, migration and resulting mixture of
admixed East African groups into southern Africa, and, separately, Bantu-related ancestry
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in a number of southern populations.

3.2.3 Other

Two other recent papers have also used ALDER to study admixture in sub-Saharan Africa.
One applied the program to date admixture between agriculturalists and hunter-gatherers
in the west-central rainforest (Patin et al., 2014), while another applied it to the case of
Austronesian–Bantu admixture in Madagascar (Pierron et al., 2014), the western terminus
of the Austronesian expansion.

Admixture can also have functional consequences, as demonstrated in a paper by Jeong
et al. (2014), who found that adaptive high-altitude alleles in Tibetans influencing hemoglobin
biology introgressed from neighboring Himalayan populations. The authors used both ALDER
and MixMapper to help determine the sources and timing of the admixture.
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Chapter 4

Reconstructing Austronesian
Population History

Austronesian-speaking populations are spread across half the globe, from Easter Island to
Madagascar. Linguistics and archaeology indicate that the “Austronesian expansion,” which
began 4–5 thousand years ago, likely had roots in Taiwan, but the ancestry of present-
day populations that speak Austronesian languages remains controversial. Here we analyze
genome-wide data from 56 populations with new methods for determining sources of gene
flow. We show that all Austronesian speakers today harbor ancestry that is more closely
related to aboriginal Taiwanese than to any present-day mainland population. A consider-
able surprise is that western Island Southeast Asians have all also inherited ancestry from
a source nested unambiguously within the variation of present-day populations speaking
Austro-Asiatic languages, which are thought to have always been restricted to the mainland.
Thus, Austronesian speakers may have passed through the mainland in the course of their
movements west rather than taking an all-island route as is usually supposed.∗

4.1 Introduction

Patterns of lexical diversity within the Austronesian (AN) language family point to Taiwan as
the AN homeland (Blust, 1995; Gray et al., 2009), as do elements of the archaeological record,
for example red-slipped pottery and Taiwanese-mined nephrite (Bellwood, 1997; Diamond
and Bellwood, 2003; Bellwood, 2005). However, some authors have argued that the AN ex-
pansion was driven primarily by cultural diffusion rather than large-scale migration (Donohue
and Denham, 2010; Blench, 2011; Barker and Richards, 2013), and other artifacts, such as
cord-marked and circle-stamped pottery, likely derive instead from the mainland (Anderson,
2005; Bellwood et al., 2011). It is also unknown how the history of populations in western
Island Southeast Asia (ISEA), which speak Western Malayo-Polynesian AN languages, dif-
fers from that of Central and Eastern Malayo-Polynesian speakers in eastern Indonesia and
Oceania.

Genetic data can provide a means for tracing human migrations and interactions that is

∗The material in this chapter is joint work with Po-Ru Loh, Nick Patterson, Priya Moorjani, Ying-Chin
Ko, Mark Stoneking, Bonnie Berger, and David Reich.
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complementary to information from linguistics and archaeology. Some single-locus genetic
studies have found affinities between Oceanian populations and aboriginal Taiwanese (Melton
et al., 1995; Sykes et al., 1995; Kayser et al., 2000; Trejaut et al., 2005; Kayser et al., 2008),
but others have proposed that present-day AN speakers do not have significant genetic links
to Taiwan (Su et al., 2000; Oppenheimer and Richards, 2001; Soares et al., 2011). Within
Indonesia, several surveys have noted an east–west genetic divide, with western populations
tracing a substantial proportion of their ancestry to a source that diverged from Taiwanese
lineages 10–30 thousand years ago (kya), which has been hypothesized to reflect a pre-
Neolithic migration from Mainland Southeast Asia (MSEA) (Hill et al., 2007; Karafet et al.,
2010; Jinam et al., 2012; Tumonggor et al., 2013). Genome-wide studies of AN-speaking
populations, which in principle can provide greater resolution, have to date been interpreted
as supporting both Taiwan-centered (Friedlaender et al., 2008; Xu et al., 2012) and multiple-
wave (Jinam et al., 2012) models. However, such work has relied primarily on clustering
methods and fitting bifurcating trees that do not model historical admixture events, even
though it is well known that many AN-speaking populations are admixed (HUGO Pan-Asian
SNP Consortium, 2009; Cox et al., 2010; Reich et al., 2011; Xu et al., 2012; Jinam et al.,
2012). Thus, these studies have not established firmly whether AN speakers have ancestry
that is descended from Taiwan, MSEA, or both.

4.2 Results and Discussion

To investigate the ancestry of AN-speaking populations at high resolution, we analyzed
a genome-wide data set of 31 AN-speaking and 25 other groups from the HUGO Pan-
Asian SNP Consortium (HUGO Pan-Asian SNP Consortium, 2009) and the CEPH-Human
Genome Diversity Panel (HGDP) (Li et al., 2008) typed at 18,412 single nucleotide polymor-
phisms (SNPs) (see Methods, Table C.1, and Figure C.1). To confirm that our results are
robust to SNP ascertainment strategy, we repeated our primary analyses with new data from
SNPs selected by merging the Pan-Asia data with HGDP samples typed on the Affymetrix
Human Origins array (Patterson et al., 2012) (see Methods and Tables C.6 and C.7). For
some tests requiring denser markers, we also used a smaller set of 10 AN-speaking groups
first published in Reich et al. (2011) and typed at over 500,000 SNPs.

To analyze the data, we used an extended version of the MixMapper software (Lipson
et al., 2013). MixMapper is a tool for building phylogenetic models of population relation-
ships that incorporate the possibility of admixture, using allele frequency correlations first
to construct an unadmixed scaffold tree and then to add designated admixed populations
with best-fitting ancestry proportions and placement on the scaffold. The topology of the
final model, in particular the sources of the genetic material in the admixed populations, is
inferred entirely from the data, and uncertainty in parameter estimates is measured through
bootstrap resampling (see Methods). Here, we substantially improve the three-way mix-
ture fitting procedure of the original version by implementing a rigorous test to determine
whether populations are best modeled as two- or three-way admixed and allowing for full
optimization of the inferred mixture proportions (see Methods). A strength of MixMapper
and related methods is that the underlying allele frequency correlation statistics, and hence
the inferences about population relationships, are robust to the way that SNPs are chosen
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for analysis (Pickrell and Pritchard, 2012; Patterson et al., 2012; Lipson et al., 2013).
We selected a scaffold tree consisting of 18 populations that are approximately unad-

mixed relative to each other (Figure 4.1; Tables C.2 and C.3): Ami and Atayal (aboriginal
Taiwanese); Miao, She, Jiamao, Lahu, Wa, Yi, and Naxi (Chinese); Hmong, Plang, H’tin,
and Palaung (from Thailand); Karitiana and Surúı (South Americans); Papuan (from New
Guinea); and Mandenka and Yoruba (Africans). This set was designed to include a diverse
geographical and linguistic sampling of Southeast Asia (in particular Thailand and southern
China) along with outgroups from several other continents (Lipson et al., 2013) (see Meth-
ods). We have previously shown that MixMapper results are robust to the choice of scaffold
populations (Lipson et al., 2013), and indeed our findings here were essentially unchanged
when we repeated our analyses with an alternative, 15-population scaffold (Figure C.2;
Tables C.8 and C.9) and with 17 perturbed versions of the original scaffold (Tables C.10
and C.11). Using this scaffold tree, we obtained confident results for 25 AN-speaking pop-
ulations (for geographical locations, see Figure 4.2): eight from the Philippines, nine from
eastern Indonesia and Oceania, and eight from western ISEA. Several populations in our
data set—Batak Karo, Ilocano, Malay, Malay Minangkabau, Mentawai, and Temuan—have
qualitatively similar ancestry to the 25 groups discussed here but were not as readily fit with
MixMapper , which we hypothesize is due to additional demographic complexity that our
models of one or two admixture events could not capture.

All admixed AN-speaking populations fit best as combinations of two or three ances-
try components out of a set of four: one closely related to Papuan (“Melanesian”), one
splitting deeply from the Papuan branch (“Negrito”), one most closely related to aboriginal
Taiwanese, and one most closely related to H’tin. While the relative proportions varied sub-
stantially from group to group, the (independently inferred) positions of the ancestral mixing
populations were highly consistent, leading us to assign them to these four discrete sources
(Figure 4.1). A total of 14 populations were best modeled as two-way admixed (Table C.4):
all eight from the Philippines (with Taiwan-related and Negrito ancestry), four from east-
ern Indonesia (with Taiwan-related and Melanesian ancestry), and both from Oceania (Fiji
and Polynesia, merged from Reich et al. (2011); also Taiwan-related and Melanesian). The
remaining 11 populations, including all eight from western ISEA, fit best as three-way ad-
mixed (Table C.5), all having both Taiwan-related and H’tin-related ancestry (Table C.12).
Among all 25 groups, the Taiwan-related component was inferred to account for approxi-
mately 30–90% of ancestry, while for the 11 three-way admixed groups, the H’tin-related
component was inferred to account for approximately 10–60%. By contrast, we found no
Taiwan-related ancestry in admixed MSEA populations speaking non-AN languages (Fig-
ure 4.2; Table C.13). We note that our estimates of mixture proportions are robust to
alternative histories involving multiple waves of admixture or continuous migration, since
MixMapper is based on allele-sharing statistics that measure the probability of descent from
each possible source of ancestry. Thus, continuous gene flow scenarios that preserve the
same topology relating the admixed population to the scaffold tree will produce the same
estimates of mixture proportions (Patterson et al., 2012; Lipson et al., 2013).

To obtain an independent estimate of how many sources of admixture are necessary
to explain the observed relationships among populations from ISEA, we applied a formal
test (Reich et al., 2012; Moorjani et al., 2013b) that analyzes f4 statistics among a set of
admixed and outgroup populations to determine a lower bound on the total number of an-

85



Miao

Hmong (Thailand)

She

Jiamao

Ami

Plang
H’tin

Wa
Palaung

Lahu

Yi

Naxi

Karitiana

Surui
Papuan

Mandenka

Yoruba

Atayal

Austro-Asiatic

Negrito

Melanesian

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

F2 distance

Philippine

W. Indonesian

E. Indonesian

Austronesian

- Agta
- Ati
- Ayta
- Iraya
- Mamanwa
- Manobo
- Tagalog
- Visaya

Ami

Plang
H’tin

Wa
Palaung

Lahu

Yi

Naxi

Papuan

Atayal

Karitiana

Surui

- Alorese
- Kambera
- Lamaholot
- Lembata

Ami

Plang
H’tin

Wa
Palaung

Lahu

Yi

Naxi

Papuan

Atayal

Karitiana

Ami

Plang
H’tin

Wa
Palaung

Lahu

Yi

Naxi

Papuan

Atayal

- Bidayuh
- Dayak
- Javanese Java
- Javanese Jkrt.
- Malay Indo.
- Malay S’pore
- Sunda

A

B C

D

Figure 4.1. Inferred sources of ancestry for admixed Austronesian-speaking populations.
Shaded ranges represent 95% bootstrap confidence intervals for branching positions; see
Tables C.4 and C.5 for complete mixing branch distributions. The topology of the scaffold tree is
shown using the full data set (slight variations are possible across bootstrap replicates). (A)
Overview of best-fitting admixture models. (B)–(D) Detailed results for highest-confidence
models of populations from (B) the Philippines, (C) eastern Indonesia, and (D) western ISEA.
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Figure 4.2. Locations and best-fit mixture proportions (see Methods) for AN-speaking
and other populations, with possible directions of human migrations supported by our
analysis. The “Negrito” ancestry present throughout western ISEA could be a result of
admixture with aboriginal peoples living on these islands, or alternatively of prior
admixture in the Philippines or on the mainland. With our techniques, we were unable to
rule out a small proportion of Negrito ancestry in eastern Indonesia and Oceania or a small
proportion of Melanesian ancestry in the Philippines, but the difference between the
branching positions of the two components indicates that they are largely, if not entirely,
distinct (Figure 4.1). For Toraja, however, we could not distinguish between Negrito and
Melanesian ancestry and show this component as red/orange.
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cestry sources (Table C.14). For the Philippines, we found that a maximal subset of six
groups (Agta, Ati, Ayta, Ilocano, Iraya, and Manobo) could be consistently modeled as
derived from a single pair of mixing populations (Figure C.1A). Likewise, the four eastern
Indonesian groups (Alorese, Kambera, Lamaholot, and Lembata) that were inferred to be
two-way admixed by MixMapper could be modeled with two total ancestry sources accord-
ing to the f4-based test (Figure C.1B). However, adding the two Manggarai populations
required a third source of ancestry, consistent with the H’tin-related ancestry inferred by
MixMapper , and suggesting that both methods are detecting the same three-way mixture.
In western ISEA, a large subset of six groups (Bidayuh, Dayak, Javanese Jakarta, Javanese
Java, Mentawai, and Sunda) was consistent with being derived from three ancestral mixing
populations (Figure C.1C), and moderately diverged subsets with as few as three popula-
tions (Bidayuh, Dayak, and either Javanese or Sunda) still required three sources of ancestry.
Larger subsets were always of greater complexity, indicating some additional, more localized
gene flow, such as a likely influx of Indian ancestry in some populations (HUGO Pan-Asian
SNP Consortium, 2009; Karafet et al., 2010). However, the presence of the subsets of popu-
lations that can be fit as mixtures of two or three sources increases our confidence that the
MixMapper models are useful approximations to the true history.

We used our recently developed ALDER software (Loh et al., 2013) to estimate dates
of admixture using linkage disequilibrium. For populations from the Philippines, eastern
Indonesia, and Oceania from Reich et al. (2011), we obtained dates of 30–65 generations ago
(0.9–1.8 kya assuming 29 years per generation; Figure C.3). These dates are considerably
more recent than the initial AN expansion (Bellwood, 1997; Diamond and Bellwood, 2003;
Bellwood, 2005; Gray et al., 2009), and thus they must reflect additional waves of interaction
involving populations with different proportions of Asian ancestry after the initial AN set-
tlement of the islands. We also applied ALDER to a merged set of populations from western
ISEA and estimated that their admixture occurred 76± 21 generations ago (2.2± 0.6 kya),
assuming a single-pulse model (Figure C.4). Again, this date sets a latest possible time for
the onset of population mixing and does not reflect the earliest episodes of admixture (Loh
et al., 2013).

Our results indicate that there is a component of ancestry that is universal among and
unique to AN speakers, that always accounts for at least a quarter of their genetic material,
and that is more closely related to aboriginal Taiwanese than to any population from the
mainland. In theory, this ancestry could be from a mainland source that was related to the
ancestors of aboriginal Taiwanese but was either displaced by subsequent migrations (such
as the expansion of Han Chinese) or whose descendants are not included in our data set.
Given our dense sampling of alternative source populations, however, our genetic data add
weight to the evidence for a Taiwanese origin of the AN expansion.

An unanticipated finding from our study is that populations in western ISEA (as well
as a few in eastern Indonesia) also contain an unambiguous signal of an additional source
of Asian ancestry, which is assigned to an ancestral population splitting roughly two-fifths
of the way down the H’tin branch in our scaffold tree with high confidence (Figure 4.1D).
The H’tin speak a language belonging to the Austro-Asiatic (AA) family, which may once
have been the major language group in MSEA following the expansion of rice farming (Bell-
wood, 2005). Later dispersals have resulted in substantial replacements of AA languages
outside of Cambodia and Vietnam, but AA-speaking tribal groups are still present in areas
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where Tai, Hmong, and Indo-European languages now predominate, extending as far west
as India (Bellwood, 2005). By contrast, no pockets of AA languages are found at all in
present-day ISEA, which, in conjunction with the absence of clear archaeological evidence
of AA settlement (Bellwood et al., 2011), makes it unlikely that AA-speaking populations
previously lived in the areas where we detect AA-related ancestry.

To test whether the genetic evidence of AA-related ancestry in AN speakers might be an
artifact of a back-migration from ISEA that contributed ancestry to the H’tin, we removed
H’tin from our scaffold tree and repeated our analysis for three-way admixed populations.
We found that the formerly H’tin-related ancestry component was now confidently inferred to
form a clade with Plang (primarily) or Wa, both of which speak AA languages, and when we
also removed Plang it formed a clade with Wa (Table C.15). We also applied MixMapper to
two admixed “Negrito” populations (Jehai and Kensiu) from peninsular Malaysia and found
that their Asian ancestry component branches closest to H’tin, in almost exactly the same
location as the H’tin-related component from ISEA (data not shown). Since the Jehai and
Kensiu speak AA languages, it is likely that the population contributing their Asian ancestry
did as well, and AA-related populations may once have been more widespread in this region.
We conclude that our signal indeed reflects gene flow from the mainland into ISEA from an
ancestral population that is nested within the radiation of AA-speaking populations, and
hence it is likely that this source population itself spoke an AA language.

While a major AA contribution to western speakers of AN languages has not been pro-
posed in the genetic literature, upon re-examination, results from previous genetic studies
are consistent with these findings. A clustering analysis of the Pan-Asia SNP data (HUGO
Pan-Asian SNP Consortium, 2009) showed a component of ancestry in populations from
(primarily western) ISEA that also appeared in AA speakers on the mainland, and a sepa-
rate study of the same data also related western ISEA ancestry to mainland sources (Jinam
et al., 2012). However, neither analysis concluded that these signals reflected an AA affinity.
Our results are also compatible with published analyses of mtDNA and Y chromosomes,
which have provided evidence of a component of ancestry in western but not eastern ISEA
that is of Asian origin (Karafet et al., 2010; Jinam et al., 2012; Tumonggor et al., 2013). The
O-M95 Y-chromosome haplogroup, in particular, is prevalent in western Indonesia (Karafet
et al., 2010) and was previously linked to AA-speaking populations (Kumar et al., 2007).

A potential explanation for our detection of AA ancestry in ISEA is that a western
stream of AN migrants encountered and mixed with AA speakers in what is now Vietnam or
Malaysia, and it was this mixed population that then settled western Indonesia (Figure 4.2).
This scenario is consistent with the AN mastery of seafaring technology and would be analo-
gous to the spread of populations of mixed AN and Melanesian ancestry from Near Oceania
into Polynesia (Kayser et al., 2000, 2008). Since we are unable to determine the date of
initial AN–AA admixture, and genetic data from present-day populations do not provide
direct information about where historical mixtures occurred, other scenarios are also con-
ceivable; in particular, we cannot formally rule out a wider AA presence in ISEA before the
AN expansion or a later diffusion of AA speakers into western ISEA. However, the absence
of AA languages in ISEA, together with our observation of both AA and AN ancestry in all
surveyed western ISEA populations, suggests that the admixture took place before either
group had widely settled the region.

Taken together, our results show that the AN expansion was not solely a process of
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cultural diffusion but involved a substantial migration of AN speakers from an ancestral
population that is most closely related to present-day aboriginal Taiwanese. In western
ISEA, we also find an Asian ancestry component that is unambiguously nested within the
variation of present-day AA speakers, which makes it likely that the ancestral population
itself spoke an AA language. Other suggestions of AN–AA interaction come from linguistics
and archaeology (Anderson, 2005), as Bornean AN languages contain probable AA loan
words (Blench, 2011), and there is evidence that rice (Bellwood, 1997; Donohue and Denham,
2010; Blench, 2011; Bellwood et al., 2011) and taro (Blench, 2011) cultivation, as well as
domesticated pigs (Larson et al., 2007), were introduced from the mainland. Interestingly, all
languages spoken today in both eastern and western ISEA are part of the AN family, which
raises the question of why AN languages were always retained by admixed populations. An
important direction for future work is to increase the density of sampling of populations
from Southeast Asia, with larger sample sizes and more SNPs (if possible in conjunction
with ancient DNA), to allow more detailed investigation of the dates and locations of the
admixture events we have identified.

Methods

Data set assembly

For our primary analyses, we merged data from two sources, the HUGO Pan-Asian SNP
Consortium (HUGO Pan-Asian SNP Consortium, 2009) and the CEPH-Human Genome
Diversity Panel (HGDP) (Li et al., 2008), yielding a set of 1,094 individuals from 56 pop-
ulations typed at 18,412 overlapping SNPs. We excluded likely duplicate samples, twins,
and first-degree relatives from the Pan-Asia data (a total of 79 individuals) as identified
in Yang and Xu (2011). We also removed 27 individuals identified as outliers by projecting
each population onto principal components using EIGENSOFT (Patterson et al., 2006) and
deleting samples at least 5 standard deviations away from the population mean on any of
the first three PCs.

We also used 10 populations from Reich et al. (2011), from a version of the published
data set merged with HapMap3 populations but not with Neandertal and Denisova, for a
total of 564,361 SNPs. We restricted to these populations when running ALDER and used
all of the SNPs. We also merged these samples with our primary data set, leaving 7,668
SNPs, in order to estimate MixMapper parameters for Polynesia and Fiji.

In order to test robustness to SNP ascertainment, we repeated our MixMapper analyses
with a data set formed by merging the Pan-Asia data with HGDP samples typed on the
Affymetrix Human Origins array (Patterson et al., 2012), replicating our primary data set
but with a collection of 9032 SNPs. Importantly, the SNPs are chosen according to a very
different strategy, having been selecting for the Human Origins chip based on their presence
as heterozygous sites in sequenced genomes from diverse individuals.

Full details for all study populations can be found in Table C.1.
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Admixture inference with MixMapper

The MixMapper software estimates admixture parameters using allele frequency moment
statistics under a tree-based instantaneous admixture model, as described previously (Lip-
son et al., 2013). The program works in two phases. First, we construct an (approximately)
unadmixed scaffold tree via neighbor-joining on a subset of populations chosen to have
a specified level of geographic coverage with minimal evidence of admixture based on f -
statistics (Reich et al., 2009; Patterson et al., 2012). We apply the 3-population test (Reich
et al., 2009; Patterson et al., 2012) to remove clearly admixed populations, then test the
additivity of possible subtrees from among the remaining populations (similar to the 4-
population test (Reich et al., 2009; Patterson et al., 2012)), and finally choose among closely
related candidate populations by comparing their fits when modeled as admixed. After
selecting the scaffold, we find the best-fit parameters for admixed populations by solving
a system of moment equations in terms of the pairwise distance measure f2, which is the
expected squared allele frequency difference between two populations. Specifically, the dis-
tance f2(C,X) between an admixed population C and each population X on the scaffold
tree can be expressed as an algebraic combination of known branch lengths along with four
unknown mixture parameters: the locations of the split points of the two ancestral mixing
populations from the scaffold tree, the combined terminal branch length, and the mixture
fraction α. In this way, the entire tree topology can be determined automatically, even for
large numbers of populations. Finally, we use a non-parametric bootstrap (Efron and Tib-
shirani, 1986) to determine confidence intervals for the parameter estimates, dividing the
SNPs into 50 blocks and resampling the blocks at random with replacement for each of 500
replicates. We note that the bootstrap encompasses the entire fitting procedure, including
the application of neighbor-joining to build the scaffold, so that uncertainty in the scaffold
topology is accounted for in the final confidence intervals.

For our analyses here, we improved upon MixMapper three-way mixture-fitting proce-
dure, whereby one ancestral mixing population is taken to be related to a population already
fit by the program as admixed. First, we can choose among alternative models—fitting a
test population C either as two-way admixed or as three-way admixed with one ancestor
related to a fixed admixed population A (for our applications, either Manobo or Alorese)—
by comparing the norm of the vector of residual errors for all pairwise distances f2(C,X).
Importantly, the two models have the same number of degrees of freedom, and we restrict
to those X on the initial scaffold (that is, we remove f2(C,A) from the vector for the three-
way model). Thus, our procedure is conceptually equivalent to augmenting the scaffold by
adding A (via the standard MixMapper admixture model) and then finding the best-fitting
placement for C. Then, for populations that are better fit as three-way admixed, we can
estimate their proportions of ancestry from all three components by re-optimizing this same
set of equations but now allowing all of the mixture fractions to vary (as well as the termi-
nal branch lengths for the admixtures, since these depend on the mixture fractions (Lipson
et al., 2013)). In order to prevent overfitting, however, we fix the branching positions of each
ancestry component as determined from the initial fit (for each bootstrap replicate).
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Chapter 5

Calibrating the Human Mutation
Rate Via Ancestral Recombination
Density in Diploid Genomes

The human mutation rate is an essential parameter for studying the evolution of our species,
interpreting present-day genetic variation, and understanding the incidence of genetic dis-
ease. Nevertheless, our current estimates of the rate are uncertain. Classical methods based
on sequence divergence have yielded significantly higher values than more recent approaches
based on counting de novo mutations in family pedigrees. Here, we propose a new method
that takes advantage of the mutational signal present in individual diploid genomes by com-
paring sequence divergence to the known rate of meiotic recombination. This allows us
to estimate the long-term mutation rate directly, without reference to external calibration
points. We estimate a rate of approximately 2.2× 10−8 mutations per base per generation,
with a confidence interval inconsistent with recent de novo studies. This higher rate supports
more recent divergences among human populations and between humans and other primate
species. ∗

5.1 Introduction

All genetic variation—the substrate for evolution—is ultimately due to spontaneous heritable
mutation in individual genomes. Here we consider the most commonly studied form of
mutation, namely single-nucleotide changes from one base to another base. The rate at
which these changes occur, in combination with other forces, determines the frequency of
variability at homologous nucleotides between members of a population.

Most previous work on estimating the human mutation rate has relied on one of two
approaches. The first method to be employed was to count the number of fixed genetic
changes between humans and chimpanzees (Li and Tanimura, 1987). Population genetic
theory implies that neutral mutations (those that do not affect an organism’s fitness) should
accumulate as fixed differences at a constant rate (this is the well-known notion of a “molec-

∗The material in this chapter is joint work with Po-Ru Loh, Nick Patterson, Bonnie Berger, and David
Reich.
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ular clock” (Kimura, 1968)). Thus, the mutation rate can be estimated based on the diver-
gence time of the species—if this can be confidently inferred from fossil evidence. In fact,
radiocarbon and other geological dating methods can have large uncertainty, especially for
older remains (Dabney et al., 2013), and it can be difficult to assign fossils to their proper
phylogenetic positions.

The second most common approach, which has only been implemented recently, is to
count newly occurring mutations in deep sequencing data from family pedigrees, especially
parent-child trios (Roach et al., 2010; Conrad et al., 2011; Kong et al., 2012; Campbell et al.,
2012). This provides a direct estimate but can be technically challenging, as it is sensitive
to genotype accuracy and data processing from high-throughput sequencing. In particu-
lar, sporadic sequencing errors can be difficult to distinguish from true de novo mutations.
Surprisingly, these sequencing-based estimates have consistently been in the neighborhood
of 10−8 per base per generation, as opposed to 2–2.5 ×10−8 for those based on long-term
divergence (Scally and Durbin, 2012; Campbell and Eichler, 2013).

One way to resolve this disagreement would be to develop new methods that are not
subject to the same sources of error as the established techniques. For example, one recent
study (Sun et al., 2012) used a model coupling single-nucleotide changes to the mutation of
nearby microsatellite alleles to infer a single-nucleotide rate of 1.4–2.3 ×10−8 per base per
generation. It would be valuable to obtain further estimates from methods that are based
directly on genetic data but that can use information from longer time scales than one or a
few generations.

Our approach here is to leverage long-term mutational accumulation as recorded in
present-day genomes, taking advantage of our more exact knowledge of the human recombi-
nation rate. Our intuition is as follows. At every site i in a diploid genome, the two copies
of the base have some time to common ancestor (TMRCA) Ti, measured in generations.
The genome can be divided into blocks of sequence that have been inherited together from
the same common ancestor, with different blocks separated by ancestral recombinations. If
a given block has a TMRCA of T and a length of L bases, then if µ is the per-generation
mutation rate per base, the expected number of mutations that have accumulated in that
block since the TMRCA is 2TLµ. This is the expected number of heterozygous sites that we
observe in the block today (disregarding the possibility of repeat mutations). We also know
that if the per-generation recombination rate is r per base, then the expected length of the
block is (2Tr)−1. Thus, the expected number of heterozygous sites per block (regardless of
length or age) is µ/r.

This argument shows how we can estimate µ given a good prior knowledge of r. Our
full method is more complicated but is based on the same principle. We show below how
we can capture the signal of heterozygosity per recombination and use our statistic, H(d),
to empirically infer a per-generation mutation rate spanning tens of thousands of years.
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5.2 Methods

5.2.1 Definition of the statistic H(d)

One difficulty of the simple method outlined above is that in practice we cannot accurately
reconstruct the breakpoints between adjacent non-recombined blocks. Instead, we use an
indirect statistic that contains information about the presence of breakpoints but can be
computed in a simple way and averaged over many loci in the genome (Figure 5.1).

We define H(d) as an average heterozygosity rate as a function of genetic distance (Fig-
ure 5.1A). Starting from a certain position in the genome, the TMRCA of the two haploid
chromosomes as a function of distance (left or right) will follow a step-like pattern, with
changes at ancestral recombination points. Heterozygosity, being proportional to TMRCA in
expectation (and directly observable), will follow the same pattern on average (Figure 5.1B).
We can also compute the average heterozygosity as a function of distance from a collection
of starting positions. In practice, this means defining bins by genetic distance d (in our
applications, typically 60 bins spanning in total from 0 to 0.1 cM) and then measuring, for
each bin, the average proportion of heterozygous sites H(d) over all starting points in all
samples.

In order for this statistic H(d) to be informative, we attempt to choose starting points
with similar local heterozygosities; this will be the value of H(d) at d = 0. As a function
of d, the H(d) curve should display a smooth decay toward the genome-wide average het-
erozygosity H̄: for increasing distances, the probability increases of having encountered a re-
combination since the starting position, which (usually) changes the TMRCA (Figure 5.1C).
Most importantly for our purposes, this probability is a function of the starting heterozy-
gosity H(0), since lower values of H(0) correspond to lower TMRCAs, with less time for
recombination to have occurred, and hence longer unbroken blocks. This relationship, with
lower starting heterozygosity corresponding to a slower decay rate of H(d), is what allows
us to calibrate µ against the recombination rate r.

5.2.2 Inference strategy

As described above, H(d) exhibits a decay as a function of d. We model recombination
as a Poisson process (in units of genetic distance), meaning that if the TMRCAs T1 and
T2 at two loci separated by a recombination event were independent, H(d) would have an
exponential functional form. However, there are two reasons why this is not true (McVean
and Cardin, 2005; Marjoram and Wall, 2006; Li and Durbin, 2011). First, both T1 and T2
must be older than the time at which the recombination occurred, which imposes different
constraints on T2 for different values of T1. This dependence becomes especially complicated
when the population from which the chromosomes are drawn has changed in size over time.
Second, the coalescence at time T2 can involve other lineages in the ancestral recombination
graph, making the expected time different than would be true for two lineages in isolation.
For example, with some probability, the two lineages split by the recombination can coalesce
together before joining the second chromosome, in which case T1 = T2.

These complicating factors mean that H(d) cannot be described as a closed-form function
of d. However, we know that H(d) decays from H(0) toward the average heterozygosity H̄,
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Figure 5.1. Explanation of the statistic H(d). (A) The statistic measures local
heterozygosity as a function of genetic distance; red circles represent heterozygous sites
along a diploid genome. (B) Ancestral recombinations separate chromosomes into blocks of
piecewise-constant TMRCA (and hence expected heterozygosity). (C) Taking the average
of H(d) over many starting points with similar values of H(0) yields a smooth decay
toward the genome-wide average heterozygosity.
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and the rate of decay is governed by the ratio µ/r. Thus, our strategy is to infer the true value
of µ by simulating sequence data matching our real data in all respects (see below for much
more detail) and with a range of different values of µ (by default, µ = 1, 2, 4×10−8). Then, we
can compare the observed H(d) curve to the same statistic calculated on each simulated data
set and infer µ by finding which value gives the best match. Computationally, we linearly
interpolate the observed H(d) curve between the simulated ones (typically from d = 0 to
0.1 cM, parametrized by the simulated µ values), and use variance-weighted least-squares to
find the best fit.

5.2.3 Matching details of H(d)

In order for our inferences to be accurate, the calibration curves must recapitulate as closely
as possible all aspects of the real data that could affect the shape of H(d). In the following
sections, we describe our methods for matching the simulations to the data.

5.2.4 Locating starting points

In order to maximize signal quality, we would like to measure H(d) averaged over many
starting points in the genome, but within a relatively narrow range of heterozygosity at
those points. We can also obtain independent estimates of µ using different starting values
H(0), which will reflect average values over different time depths in the past. Most often, we
use a low value H(0) ≈ 7.5× 10−5, corresponding to points with TMRCA roughly one-tenth
of the genome-wide average. This has two main advantages: first, there are relatively many
such points in non-African genomes because it corresponds to the age of the out-of-Africa
bottleneck, and second, a low H(0) corresponds to a slower and larger-amplitude decay of
H(d), making the curve easier to fit and less susceptible to genetic map error (see below).

Our means of determining the local heterozygosity is very simple. Rather than try to
compute heterozygosity precisely by delineating non-recombined blocks, we tile the genome
with 100-kb regions and count the proportion of heterozygous sites within each. The start-
ing points used to compute H(d) are then the midpoints of the 100-kb regions having a
heterozygosity at the desired level, for example 5–10 ×10−5 for out-of-Africa-age blocks with
H(0) ≈ 7.5× 10−5. This scheme may result in choosing starting points with unwanted true
heterozygosity if there are recombinations within the 100-kb region, but 100 kb should be
long enough that most regions within a narrow range of heterozygosity on that scale should
be similarly behaved. Additionally, any deviations should be the same for real and simu-
lated data and hence would only cause noise rather than bias in the estimated mutation rate.
Similarly, while the relationship between observed heterozygosity and TMRCA is non-linear
because of randomness in the number of accumulated mutations, this behavior will be the
same in both real and simulated data. As an attempt to avoid certain kinds of undesirable
behavior (for example, a very low heterozygosity over most of the region and a recombination
near one end followed by high heterozygosity), we also require at least one heterozygous site
in each half.

In practice, since we cannot simulate entire chromosomes (see below), we define wider
“super-regions” around the 100-kb regions and simulate the super-regions independently of
each other, matching the physical and genetic coordinates to the human genome. Since we
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typically plot H(d) from d = 0 to 0.1 cM, we define the super-regions to include at least 0.1
cM on both sides of their internal starting point, which typically leads to a total length of
several hundred kb per super-region.

5.2.5 Population size history

We estimate the historical population sizes for the data with PSMC (Li and Durbin, 2011).
The program returns parameters in coalescent units: the scaled mutation rate θ = 4Nµ,
the scaled recombination rate ρ = 4Nr, and population sizes going back in time, with both
the sizes and times in terms of the scaling factor N (the baseline total population size). We
do not know N , but the inferred θ together with the population size history are exactly
what we need in order to simulate matching data for the calibration curves. We do not
use the inferred value of ρ but rather set ρ = θr/µ, where r is the true recombination rate
and µ is the fixed mutation rate for a given calibration curve. This maintains the proper
ratio between r and µ for that curve, as well as the proper diversity parameter θ. While we
only use short regions of the genome in computing H(d), we run PSMC on the full genome
sequences. The exception is that when testing the method in simulations, we are limited to
running PSMC on the simulated segments (the super-regions).

PSMC runs on a reduced version of the genome, with consecutive sites grouped into bins
of 100 and each bin marked as 1 or 0 depending on whether there is at least one heterozygous
site in the bin or not. Bins can also be marked as “missing” if a certain number of the 100 sites
have un-called genotypes (90 in the original PSMC publication). We find that two aspects
of this procedure can affect the overall average heterozygosity of simulated data generated
from a PSMC-estimated population size history. First, different values of the missing-bin
threshold lead to different heterozygosity levels. Second, the PSMC program only “sees” a
maximum of one heterozygous site per bin, whereas there can in fact be more than one. This
effect is non-linear as a function of TMRCA; since heterozygosity varies substantially along
the genome, the program will systematically underestimate the age of the most anciently
coalesced regions.

To account for these factors, we first use an empirically-determined threshold of 35 un-
called sites per 100, which yields a more closely matching final heterozygosity. Second, we
implement a multiple-het-per-bin adjustment, as follows. Conditional on a local TMRCA T ,
we know the expected proportion of heterozygous sites, which we assume are independently
distributed. The population size history inferred from PSMC tells us how much of the
genome falls within different levels of bin-wise heterozygosity. Thus, we simply use a binomial
distribution to stretch these heterozygosity levels (more precisely, the times, in coalescent
units, defining the endpoints of the discretized time units used by PSMC) from the observed
probabilities of at least one heterozygous site per 100 bp to the implied expected number
of heterozygous sites per 100 bp. Creating calibration data according to these new values
should more accurately recapitulate the true distribution of heterozygosity levels across the
genome, as well as the total genome-wide heterozygosity.

Finally, we also apply an adjustment to the calibration curves themselves to correct for
residual unequal heterozygosity. The intercept values H(0) should match closely between
the real and simulated data, but if the total heterozygosity differs, the asymptotes of the
curves will not be aligned. Thus, we multiply the decay portion of the calibration curves
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(i.e., H(d)−H(0)) by the ratio of the heterozygosity of the real data (over all of the super-
regions) to that of the matching simulated data. From our experience, this correction is on
the order of 10% or less.

5.2.6 Complexity of the coalescent with recombination

As discussed above, the decay of H(d) reflects the decorrelation of heterozygosity as a func-
tion of genetic distance caused by recombination. However, in the sequence of TMRCAs for
the recombination-separated blocks along a chromosome, successive values are not indepen-
dent, and in fact the sequence is not Markovian, since even lineages that are widely separated
along the chromosome can interact within the ancestral recombination graph (McVean and
Cardin, 2005; Marjoram and Wall, 2006). This complexity is the primary reason why we
have adopted our simulation-based inference procedure. It is important, then, that our sim-
ulated data be generated according to an algorithm that captures all of the coalescent details
that could impact the history of a real-data sample. For this reason we use ms (Hudson,
2002) rather than a Markovian simulator, which would have had the advantage of greater
speed. In fact, we run the extended software msHOT (Hellenthal and Stephens, 2007) to allow
variable recombination rates matching the observed genetic map (see next section).

5.2.7 Genetic map error

The statistic H(d) is computed as a function of genetic distance, which we obtain from a
previously-estimated genetic map. However, while map distances (i.e., local recombination
rates) are known much more precisely than mutation rates, there is still some error in even
the best maps, which could impact H(d).

As with other variables, our approach is not to make a direct correction for map error
but rather to include it in a matching fashion in the calibration data. We first select a
baseline genetic map from the literature, and we plot H(d) as a function of d using this
base map as the independent variable. To make the calibration curves match the real data,
whose intrinsic, true map does not match the base map exactly, we simulate them using a
perturbed version of the base map, with the aim of capturing an equal amount of deviation
from the base map.

The base map we use is the “shared” version of an African-American (AA) genetic map
published in Hinch et al. (2011). The AA map was derived by tabulating switch points
between local African and European ancestry in the genomes of African-Americans, which
reflect recombination events since the time of admixture. The “shared” component of the
map was estimated as the component of this recombination landscape that is active in
non-Africans, particularly Europeans. From our experience, this map is the most accurate
currently available for non-Africans.

We have used several different methods to measure the degree of genetic map error, which
we now describe in detail.
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Basic model and previous estimates

Our basic model is that of Sankararaman et al. (2012). Consider a chromosomal interval
whose true genetic length is Z, a fixed unknown parameter. Given the measured length g
of the interval in our base map, we assume that Z ∼ Gamma(αg, α), so E[Z|g] = g and
var(Z|g) = g/α. The parameter α measures the per-distance variance of the map (and
hence of our perturbation), with a larger value of α corresponding to a smaller variance.
This gamma model has several desirable properties, in particular that it is scale-invariant.

This model was previously used to estimate α for two genetic maps: the deCODE
map (Kong et al., 2010), which was estimated by observing crossovers in a large Icelandic
pedigree cohort, and the Oxford LD map (Myers et al., 2005), which was estimated from vari-
ation in background LD levels in unrelated individuals. The authors used a cross-checking
data set with observed recombination events in a separate group of individuals and specified
a full probability model for those observations in terms of the error in the base map as well
as other parameters. In units of Morgans, they obtained α = 1400 ± 100 for the deCODE
map and α = 1220± 80 for the Oxford LD map.

For our purposes, once we have values of α, we use the gamma-distribution model to
generate the randomized perturbed maps that we input to msHOT to generate the calibration
data.

Modified prior distribution on Z

Here we also add one modification to this model of map error. For very short intervals in the
base map, in particular those with estimated (genetic) length 0, the original model states
that the true length of these intervals is 0 (since Z has mean g = 0 and Z ≥ 0), but in
fact, the map data might just have included no crossovers there by chance. (This is fairly
common; for example, the deCODE map is based on approximately 500,000 crossovers, so
for the resolution at which the maps are defined, the average inter-SNP interval only contains
one or two.) Overall, very short intervals are likely underestimated, while very long intervals
are likely overestimated.

To account for this effect, we modify the (implicit) prior distribution on the true length
Z by adding a pseudo-count adjustment, i.e., a minimal flat prior on the true map length.
In order for the model still to be additive, it is reasonable for the prior to be in units of cM
per base pair of physical distance. We make use of the Oxford LD map to set the magnitude
of the prior, with the reasoning that we can gain information about the true lengths of
very short intervals from their estimated lengths in an independent map. For all inter-SNP
intervals in the “shared” map with a length of 0–0.0005 cM (the intervals most strongly
affected by this adjustment), we run a linear regression of the Oxford genetic length (minus
the “shared” genetic length) against physical length and obtain a slope of 6.02± 0.13× 10−5

cM/kb. We interpret this quantity as the average genetic length per unit of physical length
by which very short intervals in the “shared” map are underestimated, and thus we use a
standard pseudo-count prior of π = 6 × 10−5 cM/kb (i.e., we model Z ∼ Gamma(αg′, α),
where g′ = γ(g + π) for a constant factor γ < 1 that preserves the total map length). We
can also measure the effects of uncertainty in the slope; while the statistical standard error
is small, there is potentially some error in the specification of the model (for example, the
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estimated slope is 6.49 ± 0.13 × 10−5 for 0–0.0006 cM intervals and 5.41 ± 0.12 × 10−5 for
0–0.0004 cM intervals).

Simplified two-map estimates

While a method to estimate α already exists in Sankararaman et al. (2012), we propose here
a few new approaches. Our first two computations use a cross-checking map and are similar
in spirit to the previous method but simpler. Suppose we have an interval with observed
length g in base map and h in an independent cross-checking map. The true length, as before,
is Z ∼ Gamma(αg, α). Given Z, we assume that the cross-checking map is derived from
counts of recombination events, so that βh ∼ Poisson(βZ), where β is a variance parameter
analogous to α and which can be thought of as the number of meioses used to derive the
map (see next section). Then var(h|Z) = Z/β, so

E[h2|g] = E[Z/β + Z2|g] = E[Z|g]/β + var(Z) + E[Z|g]2 = g/β + g/α + g2,

and
E[(h− g)2|g] = E[h2|g]− g2 = g × (1/α + 1/β).

This gives us a means to estimate (1/α + 1/β), for example by computing the slope of
a linear regression fit of (h − g)2 as a function of g. We do this using all intervals in our
base map. Since the variance of the error term in the regression model will be different for
different-length intervals, we use a weighted regression, based on an analytical calculation
using moments of the Gamma and Poisson distributions:

var((h− g)2) = g2 × (2/α2 + 4/αβ + 2/β2) + g × (6/α3 + 12/α2β + 7/αβ2 + 1/β3).

We note a slight complication that this variance itself depends on the unknown quantities α
and β in addition to g. In practice, though, we can test the robustness of the final inference
when assuming different values.

Overall, we find that the estimated variances are quite consistent for different map com-
parisons, different assumed values of α and β, different SNP marker sets, and different
restrictions of the interval lengths considered (Table 5.1). The map pairs that we believe
to fit best with the gamma-Poisson model are Oxford as the base map and deCODE or
the “shared” map as the cross-checking map, since the latter two are better assumed to be
Poisson but may have some bias for short intervals. If we assume the Oxford and deCODE
maps to be of comparable accuracy, as previously estimated (Sankararaman et al., 2012),
then the observed slopes in the range of 0.0003–0.0005 imply α ∼ 5000 for both maps, while
the smaller slopes when using the “shared” map in place of deCODE imply α closer to 10,000
for the “shared” map. (The deCODE and “shared” maps are not independent, since infor-
mation from the former was used in constructing the latter. Thus they cannot be compared
with this method, and indeed, the variances inferred from that pair are noticeably smaller.)

To build a final, standardized set of inferences, we set α = β = 5000 for the deCODE
and Oxford LD maps and 10,000 for the “shared” map in the regression weights. We also
restrict the regression to intervals less than 0.1 cM long (which are about 90% of the total
number), since this is the only range we consider in fitting H(d). We compute slopes for all
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Table 5.1. Regression-based variance estimates

Base map / Marker α = 104, α = 104, α = 103, α = 103, α = 104, β = 104,
checking map set β = 104 β = 103 β = 104 β = 103 length < 0.1 cM
Oxford / deCODE dense 0.000358 0.000387 0.000442 0.000445 0.000309
Oxford / “shared” dense 0.000302 0.000335 0.000388 0.00039 0.000261
Oxford / deCODE sparse 0.00043 0.000458 0.000514 0.000518 0.00038
Oxford / “shared” sparse 0.00032 0.000351 0.000411 0.000415 0.000264

Inferred values of (1/α + 1/β) in units of Morgans from the two-map regression method.
For the “shared” map, we add the pseudo-count adjustment before computing the slope.
The values of α and β in the heading refer to those assumed in the weight function for the
regression. “Dense” markers refer to the approximately 1.1M SNPs on which the “shared”
map is defined, while “sparse” markers refer to the approximately 280K SNPs on which the
deCODE map is defined (with all maps being interpolated onto a common set for each
comparison).

four map pairs and again obtain quite consistent estimates, even for the reverse pairs, with
the exception of the deCODE / Oxford comparison with the sparse marker set (Table 5.2).
Overall, the implied variance parameters are α ∼ 5000 for the Oxford and deCODE maps
and α ∼ 8000 for the “shared” map.

Our second approach to estimating α is the following. (This method is based in part on
ideas that are similar to those in the single-map method described in the next section; more
details can be found there.) Suppose again that Z is the true length, but now we view both
αg ∼ Poisson(αZ) and βh ∼ Poisson(βZ) as random variables. This makes it very easy
to calculate E[g] = E[h] = Z and E[(h − g)2] = Z × (1/α + 1/β). Thus, we can estimate
(1/α+ 1/β) = E[(h− g)2]/E[g] = E[(h− g)2]/E[h] by taking the ratios of the sample means
of (h− g)2 and either g or h.

Using this ratio method yields similar but slightly lower estimates of the variance param-
eters (Table 5.2), on the order of α ∼ 4500 for the Oxford and deCODE maps and α ∼ 7000
for the “shared” map.

Single-map estimates

We can also derive estimates of map error without reference to a second genetic map.
In this context, as with the two-map ratio method, we calculate expectations conditional

on the true map length Z, assuming that the base map is derived by observing the frequency
of recombinations in different parts of the genome in a large data set. Then if there were
G recombinations observed in our interval, from a total of m meioses, we model G as a
Poisson-distributed random variable, G ∼ Poisson(mZ). The estimated base map length for
that interval is then g = G/m, where g and Z are now assumed to be in units of Morgans.

We would like to create a perturbed version of the base map by generating a randomized
perturbed length X for our interval. Qualitatively speaking, our goal is for Z and X to be
equally different (in expectation) from the baseline map estimate g, which we formalize as
E[(g − Z)2|Z] = E[(g −X)2|Z].
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Table 5.2. Standardized variance estimates

Base map / Regression Ratio Regression Ratio
checking map (dense markers) (dense) (sparse) (sparse)
Oxford / deCODE 0.000314 0.000377 0.000386 0.000424
Oxford / “shared” 0.000273 0.000305 0.000269 0.000297
deCODE / Oxford 0.00047 0.000499 0.000195 0.000488
“shared” / Oxford 0.000383 0.000426 0.000426 0.000448

Inferred values of (1/α + 1/β) in units of Morgans from both two-map methods. In the
regression weights, we assume α = β = 5000 for the deCODE and Oxford LD maps and
10,000 for the “shared” map. For both methods, we restrict to intervals < 0.1 cM, and we
add the pseudo-count adjustment for the “shared” map. “Dense” markers refer to the
approximately 1.1M SNPs on which the “shared” map is defined, while “sparse” markers
refer to the approximately 280K SNPs on which the deCODE map is defined (with all
maps being interpolated onto a common set for each comparison).

We can easily compute E[(g−Z)2|Z] = Z/m by using moments of the Poisson distribu-
tion. We then decompose

E[(g −X)2|Z] = E[g2|Z]− 2E[gX|Z] + E[X2|Z].

The second term is
−2E[g × g|Z] = −2× (first term),

while the third term is

E[var(X|g) + E[X|g]2|Z] = E[g/α + g2|Z] = Z/α + first term.

Thus, taking the sum and equating the variances yields Z/m = Z/α, hence α = m. In
addition to the simplicity of the final answer, this model has the feature that the variance
parameter α is the same regardless of the value of Z we started with.

Among real genetic maps, the deCODE map is built in this way from approximately
15,000 meioses, although in practice, the crossovers cannot be localized to exact locations
in the genomes, making the effective α smaller (Kong et al., 2010). The “shared” map,
meanwhile, is estimated in a more complicated way than simply tabulating crossovers in
genomic intervals. The full AA map has roughly 15,000 effective meioses’ worth of signal,
and the estimated coefficient of variation of the full AA map is 1 at a length scale of about
5.5 kb, which would translate into α ∼ 15, 000 according to this single-map error model.
The “shared” version of the map, however, is designed to capture the European-specific
component and relies on other information and techniques to transform the AA map into
this form, so we would expect it to be somewhat less accurate.
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Other potential complications

We do not currently have an explanation for the discrepancy between our map variance
estimates and those found in Sankararaman et al. (2012). It is possible is that the previous
α for the deCODE map might be too low because of an inaccurate prior in the gamma-
distribution model, but this would not apply for the Oxford map. For the methods proposed
here, we do in fact obtain lower values of α when using the deCODE (or “shared”) map
as the base map (the gamma portion of the model) rather than the cross-checking map
(the Poisson portion). This indicates some degree of inaccuracy in the specified model and a
corresponding degree of uncertainty, since in theory, the regression slopes should be the same
when we reverse the pairs. However, overall, the different estimates are fairly consistent and
appear to be relatively robust to a number of possible model violations.

We note here a few other potential complications relevant to our map error estimation
procedure. First, the procedures for generating the maps we have considered are all more
complicated than simply counting crossovers in each inter-SNP interval, although we would
hope that our methods are flexible enough to return whatever the final realized variance
parameter may be. Additionally, all three maps are optimized for Europeans and thus might
be less accurate when applied to other populations. Our approach in this case is to investigate
the effect empirically by analyzing H(d) for different populations, but there may be other
factors involved (see Results).

As discussed above, we generated estimates for two different densities of SNP markers.
This is an issue because the methods make the assumption that all intervals are independent,
which will not be true, for example, if a map is interpolated to a finer scale. While we cannot
guarantee that the map intervals are independent even at the sparser SNP grid, it appears
to be a reasonably good assumption, and more importantly, the inferred values of α are
similar to those obtained from the denser grid. Related to this issue, when computing
H(d), we measure all genetic distances in both the real and simulated data by linearly
interpolating individual sites within the SNP marker grid. In truth, genetic distances will
not be uniform at sub-interval scales. We did attempt to test the importance of this effect
by creating (randomized) unevenly subdivided maps and did not obtain noticeably different
results (data not shown).

Finally, we note that a perturbed map generated according to our error model and used
for the calibration data is a randomized object, and hence the estimated value of µ could be
slightly different for different versions of the perturbed map. We attempt to account for this
by averaging our estimate over several different calibrations with different perturbed maps.
In the same way, there could be a small bias in our estimates of µ due to the exact form of
the true map, with a magnitude comparable to the variability in the calibration results for
different instantiations of the perturbed map.

5.2.8 Mutation rate heterogeneity

Thus far, we have assumed that µ is a single parameter, but different portions of the genome
can have different local mutation rates (see Discussion). To learn about the effects this
might have on H(d), we create, in addition to a baseline set of simulated data for testing our
method, a second set with significant variability in the mutation rate. To be precise, each
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super-region is assigned its own random baseline mutation rate uniformly between 0.5×10−8

and 2µ− 0.5× 10−8, where µ is the genome-wide average rate, and each is also divided into
three sections, with the middle section having either four times or one-fourth the local rate of
the flanking sections. It would also be possible to add a specified level of rate heterogeneity
to the calibration curves in order to match an estimated level in real data samples.

5.2.9 Selection

A similar issue to mutation rate heterogeneity within the genome is that of heterogeneity in
selective effects. Until now we have assumed implicitly that all loci are neutral with respect to
fitness, and thus their TMRCAs follow the distributions implied by the standard coalescent
model. However, if some sites have non-zero effects on fitness, then the local genealogies
there will have a different distribution from the genome-wide average (as replicated in the
calibration data via PSMC and msHOT).

One systematic example of such behavior could be background selection near functional
elements. As a rough test, we plotted H(d) restricted to 100-kb regions that do not overlap
any genes (about 30% of total regions) and found that the results were not significantly
different from the full data set (data not shown). Overall, we feel that the effects of selection
on our inferences would be similar to those of mutation rate heterogeneity and hence cap-
tured in the tests described above, since different local histories caused by selection would
be analogous to different local mutation rates given the starting assumption of a uniform de-
mographic history everywhere. Moreover, since the PSMC-inferred history still captures the
true genome-wide ancestral population size profile, the local variation in this profile would
not appear to be a major issue.

5.2.10 Genotype error

While our method is not as sensitive as de novo approaches to genotype errors (by which we
typically mean sites that are in fact homozygous but are mistakenly called as heterozygous),
it is still important to consider their effects. We have two main approaches for dealing with
errors in genotype calls. First, we have taken a number of steps to filter the data, discussed
below, such that the sites we analyze have high-quality calls and are as free from errors
as possible. Second, if there are residual false-positive heterozygous sites, this will tend to
artificially inflate our estimates of µ, which we can study by comparing curves with different
values of H(0). This is because the upward bias in the estimates is roughly proportional to
the local ratio of false to true heterozygous sites in the 100-kb regions in question, and the
error rate should be independent of the magnitude of H(0).

5.2.11 Population divergence and heterogeneity

Our basic model assumes that all the genomes used to calculate H(d) are drawn from the
same population, as our calibration data are based on the population history inferred from
the aggregate of all of the samples. Thus, to the extent that our set of individuals are
from populations with different population size histories, the real data will contain local
patterns on single genomes with population-specific histories, whereas the calibration curves
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will reflect the average population size profile. One way to minimize this issue, which we
attempt to do, is to use as homogeneous a set of data as possible. Any divergence among the
genomes could in theory also be estimated and then recapitulated in the calibration data.

A similar phenomenon occurs on a within-genome scale if the test genomes are relatively
recently admixed. In that case, the contribution to H(d) for each test region could be
derived from entirely within a single local ancestry block, with its corresponding population
size history profile. We thus avoid populations that we know to be admixed in a way that
might affect our inferences.

5.2.12 Noise and uncertainty

Many of the steps of our procedure have some associated statistical noise, in particular
the computation of H(d), the population size inference with PSMC, and the simulation of
calibration data. In order to capture this uncertainty, we use jackknife resampling to obtain
a standard error for our estimates, treating each autosome as a separate observation and
entirely leaving out one chromosome in each replicate. The reason for treating a chromosome
as the jackknife unit is that different individuals can have correlated coalescent histories
for a given locus, and nearby regions of a chromosome are also non-independent, so that
leaving out a chromosome at a time removes most or all of the dependencies among the data
contributing to H(d). Thus, each jackknife replicate entails running the entire inference
procedure but only for 21 of the 22 autosomes. For computational efficiency, when running
PSMC, we only include a single copy of each of the 21 chromosomes (chosen at random
from among the samples in the data set), which is conservative, but in our experience does
not greatly increase the standard error. Finally, we find that we obtain more reasonable
point-estimates of µ from running the procedure on the full data set rather than using the
jackknife estimator of the mean.

5.2.13 Simulations

To test the accuracy of our procedure in a controlled setting, we first run it with a simulated
data set of sample genomes. For the simulations reported here, we create 20 sample genomes
with an ancestral population size of 10,000 but a 10x bottleneck from 1000–2000 generations
ago. The data are simulated with msHOT, using µ = 2.5 × 10−8 and a perturbed version of
the “shared” AA genetic map (α = 10000). We run the full inference procedure as we would
with real data, generating 30 genomes’ worth of data per calibration curve. As mentioned
above, we run simulations both with default parameters and with a variable mutation rate
across the genome.

5.2.14 Real data and filtering

As mentioned previously, we generate our real-data estimates using genome sequences from
non-African individuals, with the main benefit being the presence of a large number of
relatively recently coalesced blocks arising from the out-of-Africa bottleneck, giving us more
data to work with at starting points with low heterozygosity. We use high-coverage sequences
published in Meyer et al. (2012) and Prüfer et al. (2014).
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In order to remove as many genotype errors as possible, we use a filtering scheme based
on that applied in the heterozygosity estimation in Prüfer et al. (2014). This consists of a
tandem repeat filter, mapping quality threshold (MQ = 30), genome alignability filter (all
possible 35-mers overlapping a given base match uniquely to that position in the genome,
with up to one mismatch), and coverage thresholds (central 95% of the depth distribu-
tion) (Prüfer et al., 2014). We additionally apply a strict genotype quality threshold in
order to preserve the highest-quality calls for analysis. From the GATK output, we compare
the PL likelihood score of the heterozygous state to the minimum of the two PL scores of the
homozygous states, imposing a quality threshold of 60 along with a prior of 31 (to reflect the
genome-wide average heterozygosity). That is, if the heterozygote PL is at least 60+31 = 91
lower than either homozygote PL, we call the site heterozygous; if it is at least 60− 31 = 29
higher, we call the site homozygous; and if it is in between, we mask the site as low-quality.
Finally, we also remove all sites 1 or 2 bases away from any masked base under the five filters
described.

We apply the same filters to the calibration data as to the real sequence data, on a
genome-matching basis (e.g., for a set of 10 genomes of real data and 50 genomes’ worth of
calibration data, the filters for each real sequence are applied to five simulated sequences).
In addition to masking individual sites, we impose a missing-data threshold for regions,
ignoring any with more than 50% of sites masked (either of the super-region or the 100-kb
central region).

5.3 Results

5.3.1 Simulations

We first generated 20 simulated genomes with a true mutation rate of µ = 2.5 × 10−8 and
ran our procedure as we would for real data, with α = 10000 to match the genetic map error
in the simulated data (see below for effects of changing the value of α used in calibration).
The H(d) curves match quite well between the test data and the calibration data, and the
least-squares inferred rate of µ = 2.54 ± 0.15 × 10−8 is very close to the true value, with
reasonably high precision (Figure 5.2A).

We also ran with data simulated to have a genome-wide average rate of µ = 2.5 × 10−8

but with substantial local variability. With these data, our estimate is slightly higher and
less precise, µ = 2.66 ± 0.32 × 10−8. Moreover, the shape of the H(d) curve is somewhat
skewed, being relatively too high (as compared with the calibration curves) at small genetic
distances and too low at larger genetic distances (Figure 5.2B). Overall, however, the final
estimate is not significantly different from the true rate.

5.3.2 Estimates for Europeans and East Asians

Our primary results for real data (Figure 5.3) are obtained from European and East Asian
individuals, a total of eight genomes (two each French, Sardinian, Han, and Dai). With
all eight individuals combined to maximize the signal quality, we estimate a mutation rate
of µ = 2.21 ± 0.20 × 10−8 (Figure 5.3A), where the mean is derived from the average of
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Figure 5.2. Results for simulated data. (A) Baseline simulated data; the inferred rate is
µ = 2.54± 0.15× 10−8. (B) Data simulated with variable mutation rate; the inferred rate
is µ = 2.66± 0.32× 10−8.
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running all the data with five different perturbed calibration maps, and the standard error
is from a single jackknife estimate. We used our standard parameter settings of α = 7000,
a pseudo-count prior of 6 × 10−5 cM/kb, starting regions selected with 5–10 heterozygous
sites per 100 kb, and 40 genomes’ worth of data per calibration curve. The variability for
different calibration maps was on the order of 1% of the mean estimate, which indicates that
there is only a very small amount of uncertainty caused by the unknown exact form of the
true genetic map.

It is possible that our full estimate could be slightly inaccurate due to population-level
differences in either the fine-scale genetic map or demographic history (see Methods). How-
ever, we expect Europeans and East Asians to be compatible in our procedure both because
they are relatively closely related and because they have very similar population size histo-
ries (Li and Durbin, 2011; Meyer et al., 2012). To test empirically the effects of combining
the populations, we estimated rates for the four Europeans and four East Asians separately
(Figure 5.3B–C). We found that the H(d) curves as well as the final inferred values were
quite similar to those for the full data (µ = 2.32× 10−8 for Europeans and µ = 2.15× 10−8

for East Asians, with standard errors that we expect to be modestly larger than 0.20×10−8).
Thus, we believe that the full eight-genome estimate is robust to any effects of population
divergence.

We note that to some degree these curves seem to be steeper at small versus large genetic
distances, as discussed above for the simulated data with a variable local mutation rate. We
expect that the behavior for the real data is due to the same cause. However, we note that
the magnitude of the effect is smaller here than in Figure 5.2B, where the inferred value of µ
was only about 5% larger than the constant-rate estimate. As a result, we believe that any
bias in the real-data inference due to rate heterogeneity is minor.

5.3.3 Estimates for other populations

We also ran the procedure for three other non-African populations: Australian, Karitiana,
and Papuan. We used two genomes per population and computed curves for starting regions
with 1–15 heterozygous sites per 100 kb in order to increase signal power. The inferred
rates differed only slightly from those given above, with point estimates of µ = 2.56× 10−8,
µ = 2.02 × 10−8, and µ = 2.30 × 10−8 for Australian, Karitiana, and Papuan, respectively
(Figure 5.4). As mentioned above, the “shared” genetic map may be less accurate for these
populations than for Europeans, but we do not see evidence of substantial errors. Overall, all
populations appear relatively similar, although it would also be reasonable to expect small
differences among them for historical, cultural, and/or biological reasons.

5.3.4 Varying H(0)

It is also interesting to compare our estimates for Europeans and East Asians with inferences
from the same set of eight genomes but different values of H(0) (Figure 5.5). We ran our
inference procedure with 1–5 and 10–20 heterozygous sites per 100 kb as alternative criteria
for the starting regions and obtained estimates of µ = 2.38 × 10−8 and µ = 2.30 × 10−8,
respectively. The close agreement between these independent estimates and our value above
for 5–10 heterozygous sites per 100 kb again increases our confidence in the robustness of
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Figure 5.3. Results for European and East Asian genomes. (A) All eight individuals
together; the inferred rate is µ = 2.21± 0.20× 10−8. (B) Results for the four Europeans;
the point estimate is µ = 2.32× 10−8. (C) Results for the four East Asians; the point
estimate is µ = 2.15× 10−8.
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Figure 5.4. Results for other populations. (A) Australian, µ = 2.56× 10−8. (B)
Karitiana, µ = 2.02× 10−8. (C) Papuan, µ = 2.30× 10−8.
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Table 5.3. Mutation rate dependence on map parameters

α = 4000 α = 7000 α = 10000

1.90± 0.25 2.21± 0.20 2.25± 0.21

Prior = 3 Prior = 6 Prior = 10
2.00 2.21 2.46

Inferred values of µ (multiplied by 108) with different map parameters in the error model.
Units are Morgans for α and 10−5 cM/kb for the pseudo-count prior. For the first row, we
use a fixed prior of 6× 10−5 cM/kb, while for the second row we use a fixed variance of
α = 7000.

our results. As expected according to theory, the rate of decay of H(d) is noticeably higher
for higher values of H(0), but the curves are otherwise very similar, as we would hope.
Moreover, as discussed in the Methods, we would anticipate that erroneous heterozygous
calls would cause the inferred rates to be higher for lower values of H(0), but the absence of
this pattern indicates that there is minimal bias from genotype error.

5.3.5 Changing genetic map error parameters

Finally, we tested the effects of changing the values of α and the pseudo-count prior in the
genetic map error model (Table 5.3). First, we found that if the “shared” map is in fact
less accurate than our methods indicated, then the inferred mutation rate would be lower:
for α = 4000, we obtain a rate of µ = 1.90 ± 0.25 × 10−8. By contrast, for α = 10000, we
obtain a rate of µ = 2.25 ± 0.21 × 10−8. For the magnitude of the pseudo-count prior, we
found the opposite pattern: assuming a smaller correction of 3× 10−5 cM/kb yielded a rate
of µ = 2.00× 10−8, whereas assuming a larger correction of 1× 10−4 cM/kb yielded a rate of
µ = 2.46 × 10−8 (Table 5.3). We note that these ranges for the parameters are larger than
the statistical uncertainty associated with our estimates of their values and are thus intended
to give a sense of the impact of some amount of violation of our models (see Methods).
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Figure 5.5. Results for alternative choices of H(0). (A) Curves with 1–5 heterozygous
sites per 100 kb; the inferred rate is µ = 2.38× 10−8. (B) Curves with 10–20 heterozygous
sites per 100 kb; the inferred rate is µ = 2.30× 10−8.
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5.4 Discussion

5.4.1 The meaning of an average rate

Having presented estimates of the genome-wide human mutation rate, it is important to
note that this rate is not a constant quantity at all sites. As we have discussed, we believe
that this variability does not cause a substantial bias in our inferences, but to the extent
that some bases mutate faster than others, a rate is only meaningful when associated with
the set of sites for which it is estimated. For example, exomes are more mutable than the
genome at large (Neale et al., 2012), while on a small scale, CpG bases are extremely prone
to point mutations (Conrad et al., 2011; Kong et al., 2012).

In our work, we filter the data substantially, removing more than a third of the sites in
the genome. The filters tend to reduce the heterozygosity of the remaining portions (Meyer
et al., 2012; Prüfer et al., 2014), which is expected, since the goal of masking certain sites
is to eliminate as many genotype errors as possible. However, it is also true that our rates
only correspond to a subset of the genome. This is not a problem, but rather, to be precise,
any other analyses that use these estimated rates should take into account which parts of
the genome they refer to.

5.4.2 Evolutionary implications and comparison to previous esti-
mates

A major reason for the interest in the discrepancy between divergence- and de novo-based
estimates of the human mutation rate is what a smaller rate would mean for the divergence
times of human populations from each other and from other great ape species (Scally and
Durbin, 2012). Essentially, all such dates would become twice as old as had traditionally
been assumed if the mutation rate were half as large. For the most part, this would put
the dates—for example, more than 10 million years ago for the human–chimp speciation—at
odds with fossil and other non-genetic evidence. Thus, our inference of a high rate (most
likely at least 2× 10−8 mutations per base per generation) is generally concordant with the
archaeology.

One possible explanation for the discrepancy is that it is very difficult to separate true
de novo mutations from genotype errors in trio sequencing studies, and it may be that
some mutations have been missed in previous work. For example, one exome-squencing
study (Iossifov et al., 2012) estimated an effective genome-wide mutation rate of approxi-
mately 1.5× 10−8, but in follow-up validation, the authors found that, in addition to all 89
tested sites from their filtered data set, seven out of ten sites that did not pass filters were
confirmed as true de novo mutations. Similarly, a more recent study (Fromer et al., 2014)
estimated an effective rate of approximately 1.2×10−8, but again, virtually all putative sites
passing filters were confirmed as true mutations, while roughly 20% of a subset of filtered
sites were validated as false negatives. These results suggest that there may be a relatively
large number of de novo mutations having low genotype quality metrics that are missed in
trio-based counts as a result.

Another possibility is that all existing mutation rate estimates are accurate and can be
reconciled. For example, it is possible that the rate has recently slowed (Scally and Durbin,
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2012) or that the distribution of mutations per generation has a long tail that only becomes
apparent over long time periods (Conrad et al., 2011). It is also important to remember
that the rate we estimate here is in units of mutations per base per generation rather than
per year. Thus, converting genetic divergences to split times in years relies on information
about the average generation interval. While changes in generation time could potentially
be implicated in the discrepancy, the number of new mutations inherited per generation is
strongly dependent on the age of the father, so that in fact the per-year rate may be more
stable than the per-generation rate (Kong et al., 2012).

In light of our new evidence for a high human mutation rate, it will continue to be a
priority both to examine current estimates closely and to derive new estimates. For exam-
ple, with the rise of ancient DNA technology, it is becoming possible to observe evolutionary
change directly between the past and present, as in the recent estimate of the age of an
archaic Denisovan fossil from Siberia using “branch shortening”—the observation that an-
cient samples have accrued fewer changes than modern ones when compared to a common
ancestor—together with an assumed date of the human-chimpanzee split (Meyer et al., 2012).
A combination of new data and new analytical techniques will hopefully shed more light on
both the long-term average rate and its variability across time and in different populations
and species.
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Appendix A

Supporting Information for Efficient
Moment-Based Inference of
Admixture Parameters and Sources of
Gene Flow

A.1 f-statistics and population admixture

Here we include derivations of the allele frequency divergence equations solved by MixMap-
per to determine the optimal placement of admixed populations. These results were first
presented in Reich et al. (2009) and Patterson et al. (2012), and we reproduce them here for
completeness, with slightly different emphasis and notation. We also describe in the final
paragraph (and in more detail in Material and Methods) how the structure of the equations
leads to a particular form of the system for a full admixture tree.

Our basic quantity of interest is the f -statistic f2, as defined in Reich et al. (2009), which
is the squared allele frequency difference between two populations at a biallelic SNP. That
is, at SNP locus i, we define

f i2(A,B) := (pA − pB)2,

where pA is the frequency of one allele in population A and pB is the frequency of the allele
in population B. This is the same as Nei’s minimum genetic distance DAB for the case of
a biallelic locus (Nei, 1987). As in Reich et al. (2009), we define the unbiased estimator
f̂ i2(A,B), which is a function of finite population samples:

f̂ i2(A,B) := (p̂A − p̂B)2 − p̂A(1− p̂A)

nA − 1
− p̂B(1− p̂B)

nB − 1
,

where, for each of A and B, p̂ is the the empirical allele frequency and n is the total number
of sampled alleles.

We can also think of f i2(A,B) itself as the outcome of a random process of genetic history.
In this context, we define

F i
2(A,B) := E((pA − pB)2),
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the expectation of (pA − pB)2 as a function of population parameters. So, for example, if B
is descended from A via one generation of Wright-Fisher genetic drift in a population of size
N , then F i

2(A,B) = pA(1− pA)/2N .

While f̂ i2(A,B) is unbiased, its variance may be large, so in practice, we use the statistic

f̂2(A,B) :=
1

m

m∑
i=1

f̂ i2(A,B),

i.e., the average of f̂ i2(A,B) over a set of m SNPs. As we discuss in more detail in Text A.2,
F i
2(A,B) is not the same for different loci, meaning f̂2(A,B) will depend on the choice of

SNPs. However, we do know that f̂2(A,B) is an unbiased estimator of the true average
f2(A,B) of f i2(A,B) over the set of SNPs.

The utility of the f2 statistic is due largely to the relative ease of deriving equations for
its expectation between populations on an admixture tree. The following derivations are
borrowed from Reich et al. (2009). As above, let the frequency of a SNP i in population X
be pX . Then, for example,

E(f i2(A,B)) = E((pA − pB)2)

= E((pA − pP + pP − pB)2)

= E((pA − pP )2) + E((pP − pB)2) + 2E((pA − pP )(pP − pB))

= E(f i2(A,P )) + E(f i2(B,P )),

since the genetic drifts pA − pP and pP − pB are uncorrelated and have expectation 0. We
can decompose these terms further; if Q is a population along the branch between A and P ,
then:

E(f i2(A,P )) = E((pA − pP )2)

= E((pA − pQ + pQ − pP )2)

= E((pA − pQ)2) + E((pQ − pP )2) + 2E((pA − pQ)(pQ − pP ))

= E(f i2(A,Q)) + E(f i2(Q,P )).

Here, again, E(pA − pQ) = E(pQ − pP ) = 0, but pA − pQ and pQ − pP are not independent;
for example, if pQ − pP = −pP , i.e. pQ = 0, then necessarily pA − pQ = 0. However, pA − pQ
and pQ − pP are independent conditional on a single value of pQ, meaning the conditional
expectation of (pA − pQ)(pQ − pP ) is 0. By the double expectation theorem,

E((pA − pQ)(pQ − pP )) = E(E((pA − pQ)(pQ − pP )|pQ)) = E(E(0)) = 0.

From E(f i2(A,P )) = E(f i2(A,Q)) +E(f i2(Q,P )), we can take the average over a set of SNPs
to yield, in the notation from above,

F2(A,P ) = F2(A,Q) + F2(Q,P ).

We have thus shown that f2 distances are additive along an unadmixed-drift tree. This
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Figure A.1. Schematic of part of an admixture tree. Population C is derived from
an admixture of populations A and B with proportion α coming from A. The f2 distances
from C ′ to the present-day populations A′, B′, X ′, Y ′ give four relations from which we are
able to infer four parameters: the mixture fraction α, the locations of the split points A′′

and B′′ (i.e., r and s), and the combined drift α2a+ (1− α)2b+ c.

property is fundamental for our theoretical results and is also essential for finding admixtures,
since, as we will see, additivity does not hold for admixed populations.

Given a set of populations with allele frequencies at a set of SNPs, we can use the
estimator f̂2 to compute f2 distances between each pair. These distances should be additive
if the populations are related as a true tree. Thus, it is natural to build a phylogeny using
neighbor-joining (Saitou and Nei, 1987), yielding a fully parameterized tree with all branch
lengths inferred. However, in practice, the tree will not exactly be additive, and we may
wish to try fitting some population C ′ as an admixture. To do so, we would have to specify
six parameters (in the notation of Figure A.1): the locations on the tree of A′′ and B′′; the
branch lengths f2(A

′′, A), f2(B
′′, B), and f2(C,C

′); and the mixture fraction. These are the
variables r, s, a, b, c, and α.

In order to fit C ′ onto an unadmixed tree (that is, solve for the six mixture parameters),
we use the equations for the expectations F2(C

′, Z ′) of the f2 distances between C ′ and each
other population Z ′ in the tree. Referring to Figure A.1, with the point admixture model,
the allele frequency in C is pC = α pA + (1− α) pB. So, for a single locus, using additivity,

E(f i2(A
′, C ′)) = E((pA′ − pC′)2)

= E((pA′ − pA′′ + pA′′ − pC + pC − pC′)2)

= E((pA′ − pA′′)2) + E((pA′′ − α pA − (1− α) pB)2) + E((pC − pC′)2)

= E(f i2(A
′, A′′)) + α2E(f i2(A

′′, A))

+(1− α)2E(f i2(A
′′, B)) + E(f i2(C,C

′)).
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Averaging over SNPs, and replacing E(f2(A
′, C ′)) by the estimator f̂2(A

′, C ′), this becomes

f̂2(A
′, C ′) = F2(A

′, X ′′)− r + α2a

+(1− α)2(r + F2(X
′′, Y ′′) + s+ b) + c

=⇒ f̂2(A
′, C ′)− F2(A

′, X ′′) = (α2 − 2α)r + (1− α)2s+ α2a

+(1− α)2b+ c+ (1− α)2F2(X
′′, Y ′′).

The quantities F2(X
′′, Y ′′) and F2(A

′, X ′′) are constants that can be read off of the neighbor-
joining tree. Similarly, we have

f̂2(B
′, C ′)− F2(B

′, Y ′′) = α2r + (α2 − 1)s+ α2a+ (1− α)2b+ c+ α2F2(X
′′, Y ′′).

For the outgroups X ′ and Y ′, we have

f̂2(X
′, C ′) = α2(c+ a+ r + F2(X

′, X ′′))

+(1− α)2(c+ b+ s+ F2(X
′′, Y ′′) + F2(X

′, X ′′))

+2α(1− α) (c+ F2(X
′, X ′′))

= α2r + (1− α)2s+ α2a+ (1− α)2b+ c

+(1− α)2F2(X
′′, Y ′′) + F2(X

′, X ′′)

and

f̂2(Y
′, C ′) = α2r + (1− α)2s+ α2a+ (1− α)2b+ c+ α2F2(X

′′, Y ′′) + F2(Y
′, Y ′′).

Assuming additivity within the neighbor-joining tree, any population descended from A′′

will give the same equation (the first type), as will any population descended from B′′ (the
second type), and any outgroup (the third type, up to a constant and a coefficient of α).
Thus, no matter how many populations there are in the unadmixed tree—and assuming
there are at least two outgroups X ′ and Y ′ such that the points X ′′ and Y ′′ are distinct—
the system of equations consisting of E(f2(P,C

′)) for all P will contain precisely enough
information to solve for α, r, s, and the linear combination α2a+ (1−α)2b+ c. We also note
the useful fact that for a fixed value of α, the system is linear in the remaining variables.

A.2 Heterozygosity and drift lengths

One disadvantage to building trees with f2 statistics is that the values are not in easily
interpretable units. For a single locus, the f2 statistic measures the squared allele frequency
change between two populations. However, in practice, one needs to compute an average
f2 value over many loci. Since the amount of drift per generation is proportional to p(1 −
p), the expected frequency change in a given time interval will be different for loci with
different initial frequencies. This means that the estimator f̂2 depends on the distribution
of frequencies of the SNPs used to calculate it. For example, within an f2-based phylogeny,
the lengths of non-adjacent edges are not directly comparable.

In order to make use of the properties of f2 statistics for admixture tree building and
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still be able to present our final trees in more directly meaningful units, we will show now
how f2 distances can be converted into absolute drift lengths. Again, we consider a biallelic,
neutral SNP in two populations, with no further mutations, under a Wright-Fisher model of
genetic drift.

Suppose populations A and B are descended independently from a population P , and
we have an allele with frequency p in P , pA = p + a in A, and pB = p + b in B. The (true)
heterozygosities at this locus are hiP = 2p(1− p), hiA = 2pA(1− pA), and hiB = 2pB(1− pB).

As above, we write ĥiA for the unbiased single-locus estimator

ĥiA :=
2nAp̂A(1− p̂A)

nA − 1
,

ĥA for the multi-locus average of ĥiA, and H i
A for the expectation of hiA under the Wright-

Fisher model (and similarly for B and P ).

Say A has experienced tA generations of drift with effective population size NA since the
split from P , and B has experienced tB generations of drift with effective population size
NB. Then it is well known that H i

A = hiP (1 −DA), where DA = 1 − (1 − 1/(2NA))tA , and
H i
B = hiP (1−DB). We also have

H i
A = E(2(p+ a)(1− p− a))

= E(hiP − 2ap+ 2a− 2ap− 2a2)

= hiP − 2E(a2)

= hiP − 2F i
2(A,P ),

so 2F i
2(A,P ) = hiPDA. Likewise, 2F i

2(B,P ) = hiPDB and 2F i
2(A,B) = hiP (DA + DB).

Finally,

H i
A +H i

B + 2F i
2(A,B) = hiP (1−DA) + hiP (1−DB) + hiP (DA +DB) = 2hiP .

This equation is essentially equivalent to one in Nei (1987), although Nei interprets his
version as a way to calculate the expected present-day heterozygosity rather than estimate
the ancestral heterozygosity. To our knowledge, the equation has not been applied in the
past for this second purpose.

In terms of allele frequencies, the form of hiP turns out to be very simple:

hiP = pA + pB − 2pApB = pA(1− pB) + pB(1− pA),

which is the probability that two alleles, one sampled from A and one from B, are different
by state. We can see, therefore, that this probability remains constant in expectation after
any amount of drift in A and B. This fact is easily proved directly:

E(pA + pB − 2pApB) = 2p− 2p2 = hiP ,

where we use the independence of drift in A and B.

Let ĥiP := (ĥiA + ĥiB + 2f̂ i2(A,B))/2, and let hP denote the true average heterozygosity in
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P over an entire set of SNPs. Since ĥiP is an unbiased estimator of (hiA +hiB + 2f i2(A,B))/2,

its expectation under the Wright-Fisher model is hiP . So, the average ĥP of ĥiP over a set
of SNPs is an unbiased (and potentially low-variance) estimator of hP . If we have already
constructed a phylogenetic tree using pairwise f2 statistics, we can use the inferred branch
length f̂2(A

′, P ) from a present-day population A to an ancestor P in order to estimate ĥP
more directly as ĥP = ĥA + 2f̂2(A,P ). This allows us, for example, to estimate heterozy-
gosities at intermediate points along branches or in the ancestors of present-day admixed
populations.

The statistic ĥP is interesting in its own right, as it gives an unbiased estimate of the
heterozygosity in the common ancestor of any pair of populations (for a certain subset of
the genome). For our purposes, though, it is most useful because we can form the quotient

d̂A :=
2f̂2(A,P )

ĥP
,

where the f2 statistic is inferred from a tree. This statistic d̂A is not exactly unbiased, but
by the law of large numbers, if we use many SNPs, its expectation is very nearly

E(d̂A) ≈ E(2f̂2(A,P ))

E(ĥP )
=
hPDA

hP
= DA,

where we use the fact that DA is the same for all loci. Thus d̂ is a simple, direct, nearly
unbiased moment estimator for the drift length between a population and one of its ancestors.
This allows us to convert branch lengths from f2 distances into absolute drift lengths, one
branch at a time, by inferring ancestral heterozygosities and then dividing.

For a terminal admixed branch leading to a present-day population C ′ with heterozygosity
ĥC′ , we divide twice the inferred mixed drift c1 = α2a + (1 − α)2b + c (Figure 1.2) by the
heterozygosity ĥ∗C′ := ĥC′ + 2c1. This is only an approximate conversion, since it utilizes a

common value ĥ∗C′ for what are really three disjoint branches, but the error should be very
small with short drifts.

An alternative definition of d̂A would be 1− ĥA/ĥP , which also has expectation (roughly)
DA. In most cases, we prefer to use the definition in the previous paragraph, which allows
us to leverage the greater robustness of the f2 statistics, especially when taken from a multi-
population tree.

We note that this estimate of drift lengths is similar in spirit to the widely-used statistic
FST . For example, under proper conditions, the expectation of FST among populations that
have diverged under unadmixed drift is also 1 − (1 − 1/(2Ne))

t (Nei, 1987). When FST is
calculated for two populations at a biallelic locus using the formula (ΠD − ΠS)/ΠD, where
ΠD is the probability two alleles from different populations are different by state and ΠS

is the (average) probability two alleles from the same population are different by state (as
in Reich et al. (2009) or the measure G′ST in Nei (1987)), then this FST is exactly half of

our d̂. As a general rule, drift lengths d̂ are approximately twice as large as values of FST
reported elsewhere.
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A.3 Robustness of MixMapper HGDP results to scaf-

fold choice
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Figure A.2. Alternative scaffold tree with 11 populations used to evaluate
robustness of results to scaffold choice. We included Mbuti Pygmy, who are known to
be admixed, to help demonstrate that MixMapper inferences are robust to deviations from
additivity in the scaffold; see Tables A.1–A.3 for full results. Distances are in drift units.
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Figure A.3. Summary of mixture proportions α inferred with alternative
9-population scaffold trees. We ran MixMapper for all 20 admixed test populations
using nine different scaffold trees obtained by removing each population except Papuan one
at a time from our full 10-population scaffold. (Papuan is needed to maintain continental
representation.) For each test population and each scaffold, we recorded the median
bootstrap-inferred value of α over all replicates having branching patterns similar to the
primary topology. Shown here are the means and standard deviations of the nine medians.
In all cases, α refers to the proportion of ancestry from the first branch as in Tables 1.2–1.5.
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Table A.1. Mixture parameters for Europeans inferred with an alternative scaffold tree.

AdmixedPop # repa αb Branch1Loc (Anc. N-Eur.)c Branch2Loc (Anc. W-Eur.)c MixedDriftd

Adygei 488 0.278-0.475 0.035-0.078 / 0.151 0.158-0.191 / 0.246 0.078-0.093
Basque 273 0.221-0.399 0.055-0.111 / 0.153 0.164-0.194 / 0.244 0.108-0.124
French 380 0.240-0.410 0.054-0.108 / 0.152 0.165-0.192 / 0.245 0.093-0.106
Italian 427 0.245-0.426 0.047-0.103 / 0.152 0.155-0.188 / 0.246 0.095-0.110
Orcadian 226 0.214-0.387 0.061-0.131 / 0.153 0.174-0.197 / 0.244 0.098-0.116
Russian 472 0.296-0.490 0.047-0.093 / 0.151 0.165-0.197 / 0.246 0.080-0.095
Sardinian 390 0.189-0.373 0.045-0.104 / 0.152 0.160-0.190 / 0.245 0.110-0.125
Tuscan 413 0.238-0.451 0.039-0.096 / 0.152 0.153-0.191 / 0.245 0.093-0.111

Mixture parameters inferred by MixMapper for modern-day European populations using an
alternative unadmixed scaffold tree containing 11 populations: Yoruba, Mandenka, Mbuti
Pygmy, Papuan, Dai, Lahu, Miao, She, Karitiana, Surúı, and Pima (see Figure A.2). The
parameter estimates are very similar to those obtained with the original scaffold tree
(Table 1.2), with α slightly higher on average. The bootstrap support for the branching
position of “ancient northern Eurasian” plus “ancient western Eurasian” is also somewhat
lower, with the remaining replicates almost all placing the first ancestral population along
the Pima branch instead. However, this is perhaps not surprising given evidence of
European-related admixture in Pima; overall, our conclusions are unchanged, and the
results appear quite robust to perturbations in the scaffold. See Figure 1.2A and the
caption of Table 1.2 for descriptions of the parameters.
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Table A.2. Mixture parameters for other populations modeled as two-way admixtures
inferred with an alternative scaffold tree.

AdmixedPop Branch1 + Branch2 # rep α Branch1Loc Branch2Loc MixedDrift
Daur Anc. N-Eur. + She 264 0.225-0.459 0.005-0.052 / 0.151 0.002-0.014 / 0.016 0.014-0.024

Anc. N-Eur. + Miao 213 0.235-0.422 0.005-0.049 / 0.151 0.002-0.008 / 0.008 0.014-0.024
Hezhen Anc. N-Eur. + She 257 0.230-0.442 0.005-0.050 / 0.151 0.002-0.010 / 0.016 0.012-0.034

Anc. N-Eur. + Miao 217 0.214-0.444 0.005-0.047 / 0.151 0.002-0.008 / 0.008 0.013-0.037
Oroqen Anc. N-Eur. + She 336 0.284-0.498 0.010-0.052 / 0.151 0.003-0.015 / 0.016 0.017-0.036

Anc. N-Eur. + Miao 149 0.271-0.476 0.007-0.046 / 0.151 0.002-0.008 / 0.008 0.018-0.039
Yakut Anc. N-Eur. + Miao 246 0.648-0.864 0.004-0.018 / 0.151 0.005-0.008 / 0.008 0.032-0.043

Anc. E-Asian. + Pima 71 0.917-0.973 0.008-0.020 / 0.045 0.022-0.083 / 0.083 0.028-0.042
Anc. N-Eur. + She 161 0.664-0.865 0.004-0.018 / 0.151 0.003-0.017 / 0.017 0.030-0.043

Melanesian Dai + Papuan 331 0.168-0.268 0.009-0.011 / 0.011 0.167-0.204 / 0.246 0.089-0.115
Lahu + Papuan 78 0.174-0.266 0.005-0.034 / 0.034 0.167-0.203 / 0.244 0.089-0.118

Han Karitiana + She 167 0.007-0.025 0.026-0.134 / 0.134 0.001-0.006 / 0.016 0.000-0.004
She + Surui 54 0.971-0.994 0.001-0.006 / 0.016 0.017-0.180 / 0.180 0.000-0.003
Anc. N-Eur. + She 65 0.021-0.080 0.004-0.105 / 0.152 0.001-0.007 / 0.016 0.000-0.003
Pima + She 82 0.009-0.033 0.022-0.085 / 0.085 0.001-0.007 / 0.016 0.000-0.004

Mixture parameters inferred by MixMapper for non-European populations fit as two-way
admixtures using an alternative unadmixed scaffold tree containing 11 populations:
Yoruba, Mandenka, Mbuti Pygmy, Papuan, Dai, Lahu, Miao, She, Karitiana, Surúı, and
Pima (see Figure A.2). The results for the first four populations are very similar to those
obtained with the original scaffold tree, except that α is now estimated to be roughly 20%
higher. Melanesian is fit essentially identically as before. Han, however, now appears nearly
unadmixed, which we suspect is due to the lack of an appropriate northern East Asian
population related to one ancestor (having removed Japanese). See Figure 1.2A and the
caption of Table 1.2 for descriptions of the parameters; branch choices are shown that that
occur for at least 50 of 500 bootstrap replicates. The “Anc. East Asian” branch is the
common ancestral branch of the four East Asian populations in the unadmixed tree.
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Table A.3. Mixture parameters for populations modeled as three-way admixtures inferred
with an alternative scaffold tree.

Admixed2 Branch3a # repb α2
c Branch3Locd Drift1Ae Drift1Be Drift2e

Druze Mandenka 309 0.958-0.984 0.004-0.009 / 0.009 0.088-0.102 0.021-0.029 0.005-0.013
Palestinian Mandenka 249 0.907-0.935 0.008-0.009 / 0.009 0.087-0.100 0.022-0.030 0.001-0.008

Anc. W. Eurasian 92 0.822-0.893 0.050-0.122 / 0.246 0.102-0.126 0.000-0.019 0.011-0.023
Bedouin Mandenka 303 0.852-0.918 0.006-0.009 / 0.009 0.086-0.101 0.022-0.030 0.007-0.019
Mozabite Mandenka 339 0.684-0.778 0.006-0.009 / 0.009 0.095-0.112 0.010-0.021 0.018-0.032

Yoruba 50 0.673-0.778 0.005-0.010 / 0.010 0.093-0.111 0.010-0.020 0.018-0.031
Hazara Anc. East Asian 390 0.350-0.464 0.009-0.023 / 0.045 0.084-0.119 0.001-0.033 0.004-0.012
Uygur Anc. East Asian 390 0.312-0.432 0.007-0.022 / 0.045 0.091-0.124 0.000-0.027 0.000-0.009

Mixture parameters inferred by MixMapper for populations fit as three-way admixtures
using an alternative unadmixed scaffold tree containing 11 populations: Yoruba,
Mandenka, Mbuti Pygmy, Papuan, Dai, Lahu, Miao, She, Karitiana, Surúı, and Pima (see
Figure A.2). In all cases one parent population splits from the (admixed) Sardinian branch
and the other from Branch3. All the parameters are quite similar to those obtained with
the original scaffold with only some relative changes in bootstrap support among
alternative topologies. See Figure 1.2B and the caption of Table 1.2 for further descriptions
of the parameters; branch choices are shown that that occur for at least 50 of the 390
bootstrap replicates having the majority branch choices for the two-way Sardinian fit. The
“Anc. East Asian” branch is the common ancestral branch of the four East Asian
populations in the unadmixed tree.
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Appendix B

Supporting Information for Inferring
Admixture Histories of Human
Populations Using Linkage
Disequilibrium

B.1 Derivations of weighted LD formulas

B.1.1 Expected weighted LD using two diverged reference popu-
lations

We now derive equation (2.6) for the expected weighted LD (with respect to random drift)
using references A′ and B′ in place of A and B, retaining the notation of Figure 2.1. Let
A′ and B′ have allele frequencies pA′(·) and pB′(·), and let δ′(·) := pA′(·) − pB′(·) denote
the allele frequency divergences with which we weight the LD z(x, y), giving the two-site
statistic

a(d) := z(x, y)δ′(x)δ′(y).

(For brevity, we drop the binning procedure of averaging over SNP pairs (x, y) at distance
|x − y| ≈ d here.) The value of the random variable z(x, y) is affected by sampling noise
as well as genetic drift between A and B, while the random variables δ′(x) and δ′(y) are
outcomes of genetic drift between A′ and B′. These random variables are uncorrelated
conditional on the allele frequencies of x and y in A′′ and B′′. We also assume that x and y
are distant enough to have negligible background LD and hence the drifts at the two sites
are independent. We then have

E[a(d)] = E[z(x, y)δ′(x)δ′(y)]

= E[E[z(x, y)δ′(x)δ′(y) | pA′′(x), pB′′(x), pA′′(y), pB′′(y)]]

= E[2αβδ(x)δ(y)δ′(x)δ′(y)e−nd]

= 2αβe−ndF2(A
′′, B′′)2,
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where in the last step the relation E[δ(x)δ′(x)] = E[δ(y)δ′(y)] = F2(A
′′, B′′) follows from the

fact that the intersection of the drift paths δ(·) and δ′(·) is the branch between A′′ and B′′

(Reich et al., 2009).

B.1.2 Expected weighted LD using one diverged reference popu-
lation

Using the admixed population C as one reference and a population A′ as the other, we have
pC(·) = αpA(·) + βpB(·) (assuming negligible post-admixture drift), giving weights

δA′C(·) = pA′(·)− αpA(·)− βpB(·) = αδA′A(·) + βδA′B(·),

where δPQ denotes the allele frequency difference between populations P and Q. Arguing as
above, the expected weighted LD is given by

E[a(d)] = E[2αβδ(x)δ(y)δA′C(x)δA′C(y)e−nd].

To complete the calculation, we compute

E[δ(·)δA′C(·)] = αE[δ(·)δA′A(·)] + βE[δ(·)δA′B(·)].

For the first term, the intersection of the A–B and A′–A drift paths is the A–A′′ branch,
so E[δ(·)δA′A(·)] = −F2(A,A

′′) with the negative sign arising because the paths traverse
this branch in opposite directions. For the second term, the intersection of the A–B and
A′–B drift paths is the A′′–B branch (traversed in the same direction), so E[δ(·)δA′B(·)] =
F2(B,A

′′). Combining these results gives equation (2.8). (Note that a slight subtlety arises
now that we are using population C in our weights: sites x and y can exhibit admixture
LD at appreciable distances, so δA′C(x) and δA′C(y) are not independent. However, only the
portions of δA′C(x) and δA′C(y) arising from post-admixture drift are correlated, and this
drift is negligible for typical scenarios we study in which admixture occurred 200 or fewer
generations ago.)

B.1.3 Bounding mixture fractions using one reference

We now establish our claim in the main text that the estimator α̂ given in equation (2.12) for
the mixture fraction α is a lower bound when the reference population A′ is diverged from
A. Equation (2.12) gives a correct estimate when A′ = A but becomes an approximation
when there is genetic drift between A and A′ or between C and C ′. (For accuracy, in this
section we relax our usual assumption of negligible drift from C to C ′.)

Rearranging equation (2.12), we have by definition

2α̂

1− α̂
:=

â0
F2(A′, C ′)2

. (B.1)
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From equation (2.7), the amplitude â0 is in truth given by

â0 = 2αβ(−αF2(A,A
′′) + βF2(B,A

′′))2e−n/2Ne ,

where we have included the post-admixture drift multiplier e−n/2Ne from the C–C ′ branch.
It follows that

â0
(−αβF2(A,A′′) + β2F2(B,A′′))2

=
2α

β
e−n/2Ne <

2α

1− α
. (B.2)

We claim that F2(A
′, C ′)2 > (−αβF2(A,A

′′) + β2F2(B,A
′′))2, in which case combining

(B.1) and (B.2) gives α̂/(1− α̂) < α/(1− α) and hence α̂ < α. Indeed, we have

F2(A
′, C ′) > F2(A

′′, C)

= α2F2(A,A
′′) + β2F2(B,A

′′)

> −αβF2(A,A
′′) + β2F2(B,A

′′).

Squaring both sides appears to give our claim, but we must be careful because it is possible
for the final expression to be negative. We will assume A′ is closer to A than B, i.e.,
F2(A,A

′′) < F2(B,A
′′). Then, if α < β, the final expression is clearly positive. If α > β, we

have α2F2(A,A
′′) > αβF2(A,A

′′) and so

F2(A
′, C ′) > α2F2(A,A

′′) + β2F2(B,A
′′) > αβF2(A,A

′′)− β2F2(B,A
′′).

Thus, squaring the inequality is valid in either case, establishing our bound. From the above
we also see that the accuracy of the bound depends on the sizes of the terms that are lost
in the approximation—αF2(A,A

′′), F2(A
′, A′′) and F2(C,C

′)—relative to the term that is
kept, β2F2(B,A

′′). In particular, aside from the bound being tighter the closer A′ is to A, it
is also more useful when the reference A′ comes from the minor side α < 0.5.

B.1.4 Affine term from population substructure

In the above, we have assumed that population C is homogeneously admixed; i.e., an allele
in any random admixed individual from C has a fixed probability α of having ancestry from
A and β of having ancestry from B. In practice, many admixed populations experience
assortative mating such that subgroups within the population have varying amounts of each
ancestry. Heterogeneous admixture among subpopulations creates LD that is independent
of genetic distance and not broken down by recombination: intuitively, knowing the value of
an allele in one individual changes the prior on the ancestry proportions of that individual,
thereby providing information about all other alleles (even those on other chromosomes).
This phenomenon causes weighted LD curves to exhibit a nonzero horizontal asymptote, the
form of which we now derive.

We model assortative mating by taking α to be a random variable rather than a fixed
probability, representing the fact that individuals from different subpopulations of C have
different priors on their A ancestry. As before we set β := 1 − α and we now denote by ᾱ
and β̄ the population-wide mean ancestry proportions; thus, µx = ᾱpA(x) + β̄pB(x). We
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wish to compute the expected diploid covariance E[z(x, y)], which we saw in equation (2.2)
splits into four terms corresponding to the LD between each copy of the x allele and each
copy of the y allele.

Previously, the cross-terms cov(X1, Y2) and cov(X2, Y1) vanished because a homoge-
neously mixed population does not exhibit inter-chromosome LD. Now, however, writing
cov(X1, Y2) = E[(X1 − µx)(Y2 − µy)] as an expectation over individuals from C in the usual
way, we find if we condition on the prior α for A ancestry,

E[(X1 − µx)(Y2 − µy) | p(A ancestry) = α]

= E[X1 − µx | p(A ancestry) = α] · E[Y2 − µy | p(A ancestry) = α]

= (αpA(x) + βpB(x)− µx)(αpA(y) + βpB(y)− µy)
= ((α− ᾱ)pA(x) + (β − β̄)pB(x))((α− ᾱ)pA(y) + (β − β̄)pB(y))

= ((α− ᾱ)pA(x)− (α− ᾱ)pB(x))((α− ᾱ)pA(y)− (α− ᾱ)pB(y))

= (α− ᾱ)2δ(x)δ(y).

That is, subpopulations with different amounts of A ancestry make nonzero contributions
to the covariance. We can now compute cov(X1, Y2) by taking the expectation of the above
over the whole population (i.e., over the random variable α):

cov(X1, Y2) = E[(α− ᾱ)2δ(x)δ(y)] = var(α)δ(x)δ(y) (B.3)

and likewise for cov(X2, Y1).

To compute the same-chromosome covariance terms, we split into two cases according to
whether or not recombination has occurred between x and y since admixture. In the case
that recombination has not occurred—i.e., the ancestry of the chromosomal region between
x and y can be traced back as one single chunk to the time of admixture, which occurs with
probability e−nd—the region from x to y has ancestry from A with probability α and from
B with probability β. Thus,

E[(X1 − µx)(Y1 − µy) | no recomb, p(A ancestry) = α]

= αE[(X1 − µx)(Y1 − µy) | A ancestry] + βE[(X1 − µx)(Y1 − µy) | B ancestry]

= α(pA(x)− µx)(pA(y)− µy) + β(pB(x)− µx)(pB(y)− µy)
= α(β̄pA(x)− β̄pB(x))(β̄pA(y)− β̄pB(y)) + β(ᾱpB(x)− ᾱpa(x))(ᾱpB(y)− ᾱpA(y))

= (αβ̄2 + βᾱ2)δ(x)δ(y).

Taking the expectation over the whole population,

E[(X1 − µx)(Y1 − µy) | no recomb] = (ᾱβ̄2 + β̄ᾱ2)δ(x)δ(y) = ᾱβ̄δ(x)δ(y) (B.4)

as without assortative mating.

In the case where there has been a recombination, the loci are independent conditioned
upon the ancestry proportion α, as in our calculation of the cross-terms; hence,

E[(X1 − µx)(Y1 − µy) | recomb] = var(α)δ(x)δ(y), (B.5)
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and this occurs with probability 1− e−nd.
Combining equations (B.3), (B.4), and (B.5), we obtain

E[z(x, y)] = E[(X − µx)(Y − µy)]
= 2 var(α)δ(x)δ(y) + 2e−ndᾱβ̄δ(x)δ(y) + 2(1− e−nd)var(α)δ(x)δ(y)

= (e−nd(2ᾱβ̄ − 2 var(α)) + 4 var(α))δ(x)δ(y).

Importantly, our final expression for E[z(x, y)] still factors as the product of a d-dependent
term—now an exponential decay plus a constant—and the allele frequency divergences
δ(x)δ(y). As it is the product δ(x)δ(y) that interacts with our various weighting schemes,
the formulas that we have derived for the weighted LD curve E[a(d)]—equations (2.4), (2.6),
(2.7), and (2.8)—retain the same factors involving F2 distances and change only in the
replacement of 2αβe−nd with e−nd(2ᾱβ̄ − 2 var(α)) + 4 var(α).

B.2 Testing for admixture

Here we provide details of the weighted LD-based test for admixture we implement in
ALDER. The test procedure is summarized in the main text; we focus here on technical
aspects not given explicitly in Methods.

B.2.1 Determining the extent of LD correlation

The first step of ALDER estimates the distance to which LD in the test population is corre-
lated with LD in each reference population. Such correlation suggests shared demographic
history that can confound the ALD signal, so it is important to determine the distance to
which LD correlation extends and analyze weighted LD curves â(d) only for d greater than
this threshold. Our procedure is as follows. We successively compute LD correlation for
SNP pairs (x, y) within distance bins dk < |x − y| < dk+1, where dk = kr for some bin
resolution r (0.05 cM by default). For each SNP pair (x, y) within a bin, we estimate the
LD (i.e., sample covariance between allele counts at x and y) in the test population and the
LD in the reference population. We then form the correlation coefficient between the test
LD estimates and reference LD estimates over all SNP pairs in the bin. We jackknife over
chromosomes to estimate a standard error on the correlation, and we set our threshold after
the second bin for which the correlation is insignificant (p > 0.05). To reduce dependence
on sample size, we then repeat this procedure with successively increasing resolutions up to
0.1 cM and set the final threshold as the maximum of the cutoffs obtained.

B.2.2 Determining significance of a weighted LD curve

To define a formal test for admixture based on weighted LD, we need to estimate the sig-
nificance of an observed weighted LD curve â(d). This question is statistically subtle for
several reasons. First, the null distribution of the curve â(d) is complex. Clearly the test
population C should not be admixed under the null hypothesis, but as we have discussed,
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shared demography—particularly bottlenecks—can also produce weighted LD. We circum-
vent this issue by using the pre-tests described in the next section and assume that if the
test triple (C;A′, B′) passes the pre-tests, then under the null hypothesis, non-admixture
demographic events have negligible effect on weighted LD beyond the correlation threshold
computed above. Even so, the â(d) curve still cannot be modeled as random white noise:
because SNPs contribute to multiple bins, the curve typically exhibits noticeable autocorre-
lation. Finally, even if we ignore the issue of colored noise, the question of distinguishing a
curve of any type—in our case, an exponential decay—from noise is technically subtle: the
difficulty is that a singularity arises in the likelihood surface when the amplitude vanishes,
which is precisely the hypothesis that we wish to test (Davies, 1977).

In light of these considerations, we estimate a p-value using the following procedure,
which we feel is well-justified despite not being entirely theoretically rigorous. We perform
jackknife replicates of the â(d) curve computation and fitting, leaving out one chromosome
in each replicate, and estimate a standard error for the amplitude and decay constant of
the curve using the usual jackknife procedure. We obtain a “z-score” for the amplitude
and the decay constant by dividing each by its estimated standard error. Finally, we take
the minimum (i.e., less-significant) of these z-scores and convert it to a p-value assuming it
comes from a standard normal; we report this p-value as our final significance estimate.

Our intuition for this procedure is that checking the “z-score” of the decay constant
essentially tells us whether or not the exponential decay is well-determined: if the â(d) curve
is actually just noise, then the fitting of jackknife replicates should fluctuate substantially. On
the other hand, if the â(d) curve has a stable exponential decay constant, then we have good
evidence that â(d) is actually well-fit by an exponential—and in particular, the amplitude
of the exponential is nonzero, meaning we are away from the singularity. In this case the
technical difficulty is no longer an issue and the jackknife estimate of the amplitude should
in fact give us a good estimate of a z-score that is approximately normal under the null.
The “z-score” for the decay constant certainly is not normally distributed—in particular, it
is always positive—but taking the minimum of these two scores only makes the test more
conservative.

Perhaps most importantly, we have compelling empirical evidence that our z-scores are
well-behaved under the null. We applied our test to nine HGDP populations that neither
ALDER nor the 3-population test identified as admixed; for each test population, we used as
references all populations with correlated LD detectable to no more than 0.5 cM. These test
triples thus comprise a suite of approximately null tests. We computed Q-Q plots for the
reported z-scores and observed that for z > 0 (our region of interest), our reported z-scores
follow the normal distribution reasonably well, generally erring slightly on the conservative
side (Figure B.1). These findings give strong evidence that our significance calculation
is sufficiently accurate for practical purposes; in reality, model violation is likely to exert
stronger effects than the approximation error in our p-values, and although our empirical
tests cannot probe the tail behavior of our statistic, for practical purposes the precise values
of p-values less than, say, 10−6 are generally inconsequential.
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Figure B.1. Q-Q plots comparing ALDER z-scores to standard normal on null examples.
We show results from nine HGDP populations that neither ALDER nor the 3-population
test found to be admixed. We are interested in values of z > 0; the Q-Q plots show that
these values follow the standard normal reasonably well, tending to err on the conservative
side.
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A’ B’C

shared
bottleneck

Figure B.2. Non-admixture-related demography producing weighted LD curves. The test
population is C and references are A′ and B′; the common ancestor of A′ and C experienced
a recent bottleneck from which C has not yet recovered, leaving long-range LD in C that is
potentially correlated to all three possible weighting schemes (A′–B′, A′–C, and B′–C).

B.2.3 Pre-test thresholds

To ensure that our test is applicable to a given triple (C;A′, B′), we need to rule out the possi-
bility of demography producing non-admixture-related weighted LD. We do so by computing
weighted LD curves for C with weights A′–B′, A′–C, and B′–C and fitting an exponential
to each curve. To eliminate the possibility of a shared ancestral bottleneck between C and
one of the references, we check that the three estimated amplitudes and decay constants are
well-determined; explicitly, we compute a jackknife-based standard error for each parameter
and require the implied p-value for the parameter being positive to be less than 0.05. If so,
we conclude that whatever LD is present is due to admixture, not other demography, and
we report the p-value estimate defined above for the significance of the A′–B′ curve as the
p-value of our test.

We are aware of one demographic scenario in which the ALDER test could potentially
return a finding of admixture when the test population is not in fact admixed. As illustrated
in Figure B.2, this would occur when A′ and C have experienced a shared bottleneck and C
has subsequently had a further period of low population size. We do not believe that we have
ever encountered such a false positive admixture signal, but to guard against it, we note that
if it were to occur, the three decay time constants for the reference pairs A′–B′, A′–C, and
B′–C would disagree. Thus, along with the test results, ALDER returns a warning whenever
the three best-fit values of the decay constant do not agree to within 25%.
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B.2.4 Multiple-hypothesis correction

In determining statistical significance of test results when testing a population using many
pairs of references, we apply a multiple-hypothesis correction that takes into account the
number of tests being run. Because some populations in the reference set may be very
similar, however, the tests may not be independent. We therefore compute an effective
number nr of distinct references by running PCA on the allele frequency matrix of the
reference populations; we take nr to be the number of singular values required to account
for 90% of the total variance. Finally, we apply a Bonferroni correction to the p-values from
each test using the effective number

(
nr

2

)
of reference pairs.

B.3 Coalescent simulations

Here we further validate and explore the properties of weighted LD with entirely in silico
simulations using the Markovian coalescent simulator MaCS (Chen et al., 2009). These
simulations complement the exposition in the main text in which we constructed simulated
admixed chromosomes by piecing together haplotype fragments from real HapMap individ-
uals.

B.3.1 Effect of divergence and drift on weighted LD amplitude

To illustrate the effect of using reference populations with varying evolutionary distances
from true mixing populations, we performed a set of four simulations in which we varied
one reference population in a pair of dimensions: (1) time depth of divergence from the true
ancestor, and (2) drift since divergence. In each case, we simulated individuals from three
populations A′, C ′, and B′, with 22% of C ′s ancestry derived from a pulse of admixture
40 generations ago from B, where A′ and B′ diverged 1000 generations ago. We simulated
5 chromosomes of 100 Mb each for 20 diploid individuals from each of A′ and B′ and 30
individuals from C ′, with diploid genotypes produced by randomly combining pairs of haploid
chromosomes. We assumed an effective population size of 10,000 and set the recombination
rate to 10−8. We set the mutation rate parameter to 10−9 to have the same effect as using
a mutation rate of 10−8 and then thinning the data by a factor of 10 (as it would otherwise
have produced an unnecessarily large number of SNPs). Finally, we set the MaCS history
parameter (the Markovian order of the simulation, i.e., the distance to which the full ancestral
recombination graph is maintained) to 104 bases.

For the first simulation (Figure 2.2A), we set the divergence of A′ and C ′ to be immedi-
ately prior to the gene flow event, altogether resulting in the following MaCS command:

macs 140 1e8 -i 5 -h 1e4 -t 0.00004 -r 0.0004 -I 3 40 40 60 -em 0.001 3 2

10000 -em 0.001025 3 2 0 -ej 0.001025 1 3 -ej 0.025 2 3

For the second simulation (Figure 2.2B), we increased the drift along the A′ terminal branch
by reducing the population size by a factor of 20 for the past 40 generations:

-en 0 1 0.05 -en 0.001 1 1
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For the third and fourth simulations (Figure 2.2C,D), we changed the divergence time of A′

and C ′ from 41 to 520 generations, half the distance to the root:

-ej 0.001025 1 3 -> -ej 0.013 1 3

We computed weighted LD curves using A′–B′ references (Figure 2.2), and the results
corroborate our derivation and discussion of equation (2.6). In all cases, the estimated date
of admixture is within statistical error of the simulated 40-generation age. The amplitude of
the weighted LD curve is unaffected by drift in A′ but is substantially reduced by the shorter
distance F2(A

′′, B′′) in the latter two simulations. Increased drift to A′ does, however, make
the weighted LD curves in the right two panels somewhat noisier than the left two.

B.3.2 Validation of pre-test criteria in test for admixture

To understand the effects of the pre-test criteria stipulated in our LD-based test for admix-
ture, we simulated a variety of population histories with and without mixture. In each case
we used the same basic parameter settings as above, except we set the root of each tree to
be 4000 generations ago and we simulated 10 chromosomes for each individual instead of 5.

Scenario 1

True admixture 40 generations ago; reference A′ diverged 400 generations ago (similar to
Figure 2.2C). All pre-tests pass and the our test correctly identifies admixture.

Scenario 2

True admixture 40 generations ago; reference A′ diverged 41 generations ago (similar to
Figure 2.2A). Because of the proximity of the admixed population C ′ and the reference A′,
the test detects long-range correlated LD and concludes that using A′ as a reference may
produce unreliable results.

Scenario 3

True admixture 40 generations ago; contemporaneous gene flow (of half the magnitude) to
the lineage of the reference population A′ as well. Again, the pre-test detects long-range
correlated LD and concludes that A′ is an unsuitable reference.

Scenario 4

No admixture; A and C simply form a clade diverging at half the distance to the root (similar
to Figure 2.2C without the gene flow). The test finds no evidence for admixture; weighted
LD measurements do not exhibit a decay curve.

Scenario 5

No admixture; A and C diverged 40 generations ago. As above, the test finds no decay in
weighted LD. In this scenario the pre-test does detect substantial correlated LD to 1.95 cM
because of the proximity of A and C.
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Scenario 6

No admixture; same setup as Scenario 4 with addition of recent bottleneck in population
C (100-fold reduced population size for the past 40 generations). Here, the test finds no
weighted LD decay in the two-reference curve and concludes that there is no evidence for
admixture. It does, however, detect decay curves in both one-reference curves (with A–C and
B–C weights); these arise because of the strong bottleneck-induced LD within population
C.

Scenario 7

No admixture; shared bottleneck: A and C diverged 40 generations ago and their common
ancestor underwent a bottleneck of 100-fold reduced population size for the preceding 40
generations. In this case the pre-test detects an enormous amount of correlated LD between
A and C and deems A an unsuitable reference.

B.3.3 Sensitivity comparison of 3-population test and LD-based
test for admixture

Here we compare the sensitivities of the allele frequency moment-based 3-population test
(Reich et al., 2009; Patterson et al., 2012) and our LD-based test for admixture. We simulated
a total of 450 admixture scenarios in which we varied three parameters: the age of the branch
point A′′ (1000, 2000, and 3000 generations), the date n of gene flow (20 to 300 in increments
of 20), and the fraction α of A ancestry (50% to 95% in increments of 5%), as depicted in
Figure 2.8. In each case we simulated 40 admixed individuals, otherwise using the same
parameter settings as in the scenarios above. Explicitly, we ran the commands:

macs 160 1e8 -i 10 -h 1e4 -t 0.00004 -r 0.0004 -I 3 40 40 80 -em tMix 3 2

migRate -em tMixStop 3 2 0 -ej tSplit 1 3 -ej 0.1 2 3

where tMix and tSplit correspond to n and the age of A′′, while migRate and tMixStop

produce a pulse of gene flow from the B′ branch giving C ′ a fraction α of A ancestry.
We then ran both the 3-population test (f3) and the ALDER test on C ′ using A′ and B′

as references (Figure 2.8). The results of these simulations show clearly that the two tests do
indeed have complementary parameter ranges of sensitivity. We first observe that the f3 test
is essentially unaffected by the age of admixture (up to the 300 generations we investigate
here). As discussed in the main text, its sensitivity is constrained by competition between the
admixture signal of magnitude αβF2(A

′′, B′′) and the “off-tree drift” arising from branches
off the lineage connecting A′ and B′ (Reich et al., 2009)—in this case, essentially the quantity
α2F2(A

′′, C ′). Thus, as the divergence point A′′ moves up the lineage, the threshold value of
α below which the f3 test can detect mixture decreases.

The ALDER tests behave rather differently, exhibiting a drop-off in sensitivity as the
age of admixture increases, with visible noise near the thresholds of sufficient sensitivity.
The difference between the f3 and ALDER results is most notable in the bottom panels of
Figure 2.8, where the reference A′ is substantially diverged from C ′. In this case, ALDER
is still able to identify small amounts of admixture from the B′ branch, whereas the f3 test
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cannot. Also notable are the vertical swaths of failed tests centered near α = 0.9, 0.75, and
0.65 for A′′ respectively located at distances 0.75, 0.5, and 0.25 along the branch from the
root to A′. This feature of the results arises because the amplitude of the single-reference
weighted LD curve with A′–C ′ weights vanishes near those values of α (see equation (2.8) and
Figure 2.3), causing the ALDER pre-test to fail. (The two-reference weighted LD exhibits
a clear decay curve, but the pre-test is being overly conservative in these cases.) Finally,
we also observe that for the smallest choice of mixture age (20 generations), many ALDER
tests fail. In these cases, the pre-test detects long-range correlated LD with the reference B′

and is again overly conservative.

B.3.4 Effect of protracted admixture on weighted LD

The admixture model that we analyze in this manuscript treats admixture as occurring
instantaneously in a single pulse of gene flow; however, in real human populations, admixture
typically occurs continuously over an extended period of time. Here we explore the effect of
protracted admixture on weighted LD curves by simulating scenarios involving continuous
migration. We used a setup nearly identical to the simulations above for comparing the
f3 and ALDER tests, except here we modified the migration rate and start and end times
to correspond to 40% B ancestry that continuously mixed into population C over a period
of 0–200 generations ending 40 generations ago. We varied the duration of admixture in
increments of 20 generations.

For each simulation, we used ALDER to compute the two-reference weighted LD curve
and fit an exponential decay. In each case the date of admixture estimated by ALDER
(Figure 2.7A) falls within the time interval of continuous mixture, as expected (Moorjani
et al., 2011). For shorter durations of admixture spanning up to 50 generations or so,
the estimated date falls very near the middle of the interval, while it is downward biased for
mixtures extending back to hundreds of generations. The amplitude of the fitted exponential
also exhibits a downward bias as the mixture duration increases (Figure 2.7B). This behavior
occurs because unlike the point admixture case, in which the weighted LD curve follows a
simple exponential decay (Figure 2.7C), continuous admixture creates weighted LD that is
an average of exponentials with different decay constants (Figure 2.7D).

B.4 FFT computation of weighted LD

In this note we describe how to compute weighted LD (aggregated over distance bins) in
time

O(m(S +B logB)),

where m is the number of admixed individuals, S is the number of SNPs, and B is the
number of bins needed to span the chromosomes. In contrast, the direct method of computing
pairwise LD for each individual SNP pair requires O(mS2) time. In practice our approach
offers speedups of over 1000x on typical data sets. We further describe a similar algorithm
for computing the single-reference weighted LD polyache statistic that runs in time

O(m2(S +B logB))
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with the slight trade-off of ignoring SNPs with missing data.

Our method consists of three key steps: (1) split and factorize the weighted LD product;
(2) group factored terms by bin; and (3) apply fast Fourier transform (FFT) convolution. As
a special case of this approach, the first two ideas alone allow us to efficiently compute the
affine term (i.e., horizontal asymptote) of the weighted LD curve using inter-chromosome
SNP pairs.

B.4.1 Two-reference weighted LD

We first establish notation. Say we have an S ×m genotype array {cx,i} from an admixed
population. Assume for now that there are no missing values, i.e.,

cx,i ∈ {0, 1, 2}

for x indexing SNPs by position on a genetic map and i = 1, . . . ,m indexing individuals.
Given a set of weights wx, one per SNP, we wish to compute weighted LD of SNP pairs
aggregated by inter-SNP distance d:

R(d) :=
∑
|x−y|≈d
x<y

D2(x, y)wxwy =
1

2

∑
|x−y|≈d

D2(x, y)wxwy

where D2 is the sample covariance between genotypes at x and y, the diploid analog of the
usual LD measure D:

D2(x, y) :=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)

m∑
i=1

cx,i

m∑
j=1

cy,j

=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy, (B.6)

where we have defined

sx :=
m∑
i=1

cx,i.

Substituting for D2(x, y), we have

R(d) =
1

2

∑
|x−y|≈d

(
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy

)
wxwy

=

 m∑
i=1

1

2(m− 1)

∑
|x−y|≈d

cx,iwx · cy,iwy

− 1

2m(m− 1)

∑
|x−y|≈d

sxwx · sywy. (B.7)

141



We have thus rewritten R(d) as a linear combination of m+ 1 terms of the form∑
|x−y|≈d

f(x)f(y).

(The sum over i consists of m such terms, and the final term accounts for one more.)

In general, sums of the form ∑
|x−y|≈d

f(x)g(y)

can be efficiently computed by convolution if we first discretize the genetic map on which
the SNP positions x and y lie. For notational convenience, choose the distance scale such
that a unit distance corresponds to the desired bin resolution. We will compute∑

bxc−byc=d

f(x)g(y). (B.8)

That is, we divide the chromosome into bins of unit distance and aggregate terms f(x)g(y) by
the distance between the bin centers of x and y. Note that this procedure does not produce
exactly the same result as first subtracting the genetic positions and then binning by |x−y|:
with our approach, pairs (x, y) that map to a given bin can have actual distances that are
off by as much as one full bin width, versus half a bin width with the subtract-then-bin
approach. However, we can compensate simply by doubling the bin resolution.

To compute expression (B.8), we write

∑
bxc−byc=d

f(x)g(y) =
B∑
b=0

∑
bxc=b

∑
byc=b−d

f(x)g(y)

=
B∑
b=0

∑
bxc=b

f(x)

 ∑
byc=b−d

g(y)

 . (B.9)

Writing

F (b) :=
∑
bxc=b

f(x), G(b) :=
∑
bxc=b

g(x),

expression (B.9) becomes
B∑
b=0

F (b)G(b− d) = (F ? G)(d),

a cross-correlation of binned f(x) and g(y) terms.

Computationally, binning f and g to form F and G takes O(S) time, after which the
cross-correlation can be performed in O(B logB) time with a fast Fourier transform. The
full computation of the m+ 1 convolutions in equation (B.7) thus takes O(m(S +B logB))
time. In practice we often have B logB < S, in which case the computation is linear in the
data size mS.

One additional detail is that we usually want to compute the average rather than the
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sum of the weighted LD contributions of the SNP pairs in each bin; this requires normalizing
by the number of pairs (x, y) that map to each bin, which can be computed in an analogous
manner with one more convolution (setting f ≡ 1, g ≡ 1). Finally, we note that our
factorization and binning approach immediately extends to computing weighted LD on inter-
chromosome SNP pairs (by putting all SNPs in a chromosome in the same bin), which allows
robust estimation of the horizontal asymptote of the weighted LD curve.

Missing Data

The calculations above assumed that the genotype array contained no missing data, but in
practice a fraction of the genotype values may be missing. The straightforward non-FFT
computation has no difficulty handling missing data, as each pairwise LD term D2(x, y) can
be calculated as a sample covariance over just the individuals successfully genotyped at both
x and y. Our algebraic manipulation runs into trouble, however, because if k individuals
have a missing value at either x or y, then the sample covariance contains denominators of
the form 1/(m− k − 1) and 1/(m− k)(m− k − 1)—and k varies depending on x and y.

One way to get around this problem is simply to restrict the analysis to sites with no
missing values at the cost of slightly reduced power. If a fraction p of the SNPs contain
at least one missing value, this workaround reduces the number of SNP pairs available to
(1− p)2 of the total, which is probably already acceptable in practice.

We can do better, however: in fact, with a little more algebra (but no additional com-
putational complexity), we can include all pairs of sites (x, y) for which at least one of the
SNPs x, y has no missing values, bringing our coverage up to 1− p2.

We will need slightly more notation. Adopting eigenstrat format, we now let our
genotype array consist of values

cx,i ∈ {0, 1, 2, 9}

where 9 indicates a missing value. (Thus, {cx,i} is exactly the data that would be contained
in a .geno file.) For convenience, we write

c
(0)
x,i :=

{
cx,i if cx,i ∈ {0, 1, 2}
0 otherwise.

That is, c
(0)
x,i replaces missing values with 0s. As before we set

sx :=
∑

i:cx,i 6=9

cx,i =
m∑
i=1

c
(0)
x,i

to be the sum of all non-missing values at x, which also equals the sum of all c
(0)
x,i because

the missing values have been 0-replaced. Finally, define

kx := #{i : cx,i = 9}

to be the number of missing values at site x.
We now wish to compute aggregated weighted LD over pairs (x, y) for which at least one
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of kx and ky is 0. Being careful not to double-count, we have:

R(d) :=
∑
|x−y|≈d
x<y

kx=0 or ky=0

D2(x, y)wxwy

=
1

2

∑
|x−y|≈d

kx=0 and ky=0

D2(x, y)wxwy +
∑
|x−y|≈d

kx=0 and ky 6=0

D2(x, y)wxwy

=
∑
|x−y|≈d

I[kx = 0]

1 + I[ky = 0]
D2(x, y)wxwy, (B.10)

where the shorthand I[·] denotes a {0, 1}-indicator.
Now, for a pair of sites (x, y) where x has no missing values and y has ky missing values,

D2(x, y) =
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i −

1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy.

(B.11)
Indeed, we claim the above equation is actually just a rewriting of the standard covariance
formula (B.6), appropriately modified now that the covariance is over m− ky values rather
than m:

• In the sum
∑m

i=1 cx,ic
(0)
y,i , missing values in y have been 0-replaced, so those terms vanish

and the sum effectively consists of the desired m− ky products cx,icy,i.

• Similarly, sy is equal to the sum of the m− ky non-missing cy,i values.

• Finally, sx−
∑m

i=1 I[cy,i = 9]cx,i represents the sum of cx,i over individuals i successfully
genotyped at y, written as the sum sx over all m individuals minus a correction.

Substituting (B.11) into expression (B.10) for R(d) and rearranging, we have

R(d) =
∑
|x−y|≈d

I[kx = 0]

1 + I[ky = 0]

(
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i

− 1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy

)
wxwy

=
m∑
i=1

∑
|x−y|≈d

(I[kx = 0]cx,iwx) ·
(

1

1 + I[ky = 0]

(
c
(0)
y,i +

I[cy,i = 9]sy
m− ky

)
wy

m− ky − 1

)

−
∑
|x−y|≈d

(I[kx = 0]sxwx) ·
(

sywy
(1 + I[ky = 0])(m− ky)(m− ky − 1)

)
.

The key point is that we once again have a sum of m + 1 convolutions, each of the form∑
|x−y|≈d f(x)g(y), and thus can compute them efficiently as before.
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B.4.2 One-reference weighted LD

When computing weighted LD using the admixed population itself as a reference with one
other reference population, a polyache statistic must be used to obtain an unbiased estimator
(Figure 2.4). The form of the polyache causes complications in our algebraic manipulation;
however, if we restrict our attention to SNPs with no missing data, the computation can still
be broken into convolutions quite naturally, albeit now requiring O(m2) FFTs rather than
O(m).

As in the two-reference case, the key idea is to split and factorize the weighted LD
formula. We treat the terms in the polyache separately and observe that each term takes
the form of a constant factor multiplied by a product of sub-terms of the form Sr,s, pA(x),
or pA(y). We can use convolution to aggregate the contributions of such a term if we can
factor it as a product of two pieces, one depending only on x and the other only on y. Doing
so is easy for some terms, namely those that involve only pA(x), pA(y), Sr,0, and S0,s, as the
latter two sums depend only on x and y, respectively.

The terms involving Sr,s with both r and s nonzero are more difficult to deal with but
can be written as convolutions by further subdividing them. In fact, we already encountered
S1,1 =

∑m
i=1 cx,icy,i in our two-reference weighted LD computation: the trick there was to

split the sum into its m components, one per admixed individual, each of which could then
be factored into x-dependent and y-dependent parts and aggregated via convolution.

Exactly the same decomposition works for all of the polyache terms except the one
involving S2

1,1. For this term, we write

S2
1,1 =

m∑
i=1

cx,icy,i

m∑
j=1

cx,jcy,j =
m∑
i=1

m∑
j=1

cx,icx,j · cy,icy,j,

from which we see that splitting the squared sum into m2 summands allows us to split
the x- and y-dependence as desired. The upshot is that at the expense of O(m2) FFTs
(and restricting our analysis to SNPs without missing data), we can also accelerate the
one-reference weighted LD computation.
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Supporting Information for
Reconstructing Austronesian
Population History
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A B 

C 

Figure C.1. PCA plots generated with EIGENSOFT (Patterson et al., 2006) for
AN-speaking groups from (A) the Philippines, (B) eastern Indonesia, and (C) western
ISEA, along with reference populations. The circled groupings indicate subsets of
populations consistent with simple histories according to our f4-based test: (A) Agta, Ati,
Ayta, Ilocano, Iraya, and Manobo (one wave of admixture), (B) Alorese, Kambera,
Lamaholot, and Lembata (one wave), and (C) Bidayuh, Dayak, Mentawai, Javanese
Jakarta, Javanese Java, and Sunda (two waves).
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Figure C.2. Alternative 15-population scaffold tree. See Tables C.8 and C.9 for full
MixMapper results from fitting admixed Austronesian-speaking populations using this
scaffold. Distances are in F2 units.
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Figure C.3. Weighted LD curves and estimated dates of admixture for (A) Fiji, (B)
Mamanwa, (C) Manobo, (D) Moluccas, (E) Nusa Tenggaras, and (F) Polynesia, obtained
using ALDER (Loh et al., 2013) with Papuan and Taiwanese reference populations.
Admixture dates are inferred as time constants of the exponential decay of weighted
covariance with genetic distance. LD analysis requires a higher SNP density than is
available with our full data set, so these inferences are restricted to samples from Reich
et al. (2011). We note that our dates are much more recent than those reported in Xu
et al. (2012); we hypothesize that the initial admixtures were followed by more recent
mixing between groups with different proportions of Taiwan-related ancestry, in which case
the date from ALDER is an intermediate one over the entire process. This would be
consistent with the fact that the curves appear to have some deviations from a pure
exponential decay shape.
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Figure C.4. Weighted LD curve and estimated date of admixture for western ISEA,
obtained using ALDER (Loh et al., 2013) with Papuan and CHB (HapMap Chinese from
Beijing (The International HapMap Consortium, 2010)) reference populations. The
admixture date is inferred as the time constant of the exponential decay of weighted
covariance with genetic distance. LD analysis requires a higher SNP density than is
available with our full data set, so these inferences are restricted to samples from Reich
et al. (2011). In order to enhance the signal-to-noise ratio, we pooled samples from four
populations, two each from Borneo (Bidayuh and Dayak) and Sumatra (Besemah and
Semende), into a single test set, under the assumption that all four have similar admixture
histories.
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Table C.1. Summary of populations used in this study

Population Country Data set Pan-Asia ID # samples Model status
Ami Taiwan Pan-Asia AX-AM 10 Scaffold
Atayal Taiwan Pan-Asia AX-AT 10 Scaffold
Miao China HGDP 10 Scaffold
She China HGDP 10 Scaffold
Jiamao China Pan-Asia CN-JI 31 Scaffold
Lahu China HGDP 8 Scaffold
Wa China Pan-Asia CN-WA 50 Scaffold
Yi China HGDP 10 Scaffold
Naxi China HGDP 8 Scaffold
Hmong Thailand Pan-Asia TN-HM 20 Scaffold
Plang Thailand Pan-Asia TH-PP 18 Scaffold
H’tin Thailand Pan-Asia TH-TN 15 Scaffold
Palaung Thailand Pan-Asia TH-PL 18 Scaffold
Karitiana Brazil HGDP 14 Scaffold
Surúı Brazil HGDP 8 Scaffold
Papuan Papua New Guinea HGDP 17 Scaffold
Mandenka Senegal HGDP 22 Scaffold
Yoruba Nigeria HGDP 21 Scaffold
Aboriginal Taiwanese Taiwan Reich et al. (2011) 10 ALDER reference
CHB China HapMap Phase 3 88 ALDER reference

(The International HapMap Consortium, 2010)

Papuan1 Papua New Guinea Reich et al. (2011) 24 ALDER reference
Agta Philippines Pan-Asia PI-AG 8 Three-way admixed
Ati Philippines Pan-Asia PI-AT 23 Three-way admixed
Ayta Philippines Pan-Asia PI-AE 8 Two-way admixed
Iraya Philippines Pan-Asia PI-IR 9 Two-way admixed
Mamanwa Philippines Pan-Asia PI-MW 17 Two-way admixed

Mamanwa1 Philippines Reich et al. (2011) 11 Two-way admixed
Manobo Philippines Pan-Asia PI-MA 18 Two-way admixed

Manobo1 Philippines Reich et al. (2011) 16 Two-way admixed
Tagalog Philippines Pan-Asia PI-UN 19 Two-way admixed
Visaya Philippines Pan-Asia PI-UI 20 Three-way admixed
Alorese Indonesia Pan-Asia ID-AL 19 Two-way admixed
Kambera Indonesia Pan-Asia ID-SB 20 Two-way admixed
Lamaholot Indonesia Pan-Asia ID-LA 20 Three-way admixed
Lembata Indonesia Pan-Asia ID-LE 19 Three-way admixed
Manggarai Ngada Indonesia Pan-Asia ID-SO 19 Three-way admixed
Manggarai Rampasasa Indonesia Pan-Asia ID-RA 16 Three-way admixed
Fiji Fiji Reich et al. (2011) 25 Two-way admixed

Polynesia Multiple2 Reich et al. (2011) 19 Two-way admixed
Toraja Indonesia Pan-Asia ID-TR 20 Three-way admixed
Moluccas Indonesia Reich et al. (2011) 10 Two-way admixed
Nusa Tenggaras Indonesia Reich et al. (2011) 10 Two-way admixed
Batak Toba Indonesia Pan-Asia ID-TB 20 Three-way admixed
Bidayuh Malaysia Pan-Asia MY-BD 47 Three-way admixed

Bidayuh1 Malaysia Reich et al. (2011) 10 Three-way admixed
Dayak Indonesia Pan-Asia ID-DY 12 Three-way admixed

Dayak1 Indonesia Reich et al. (2011) 16 Three-way admixed
Javanese Jakarta Indonesia Pan-Asia ID-JA 34 Three-way admixed
Javanese Java Indonesia Pan-Asia ID-JV 19 Three-way admixed
Malay Indonesia Indonesia Pan-Asia ID-ML 12 Three-way admixed
Malay Singapore Singapore Pan-Asia SG-MY 28 Three-way admixed
Sunda Indonesia Pan-Asia ID-SU 25 Three-way admixed
Besemah Indonesia Reich et al. (2011) 8 Three-way admixed
Semende Indonesia Reich et al. (2011) 9 Three-way admixed
Batak Karo Indonesia Pan-Asia ID-KR 17 Uncertain admixed
Malay Malaysia Pan-Asia MY-KN 18 Uncertain admixed
Malay Minangkabau Malaysia Pan-Asia MY-MN 19 Uncertain admixed
Mentawai Indonesia Pan-Asia ID-MT 15 Uncertain admixed
Ilocano Philippines Pan-Asia PI-UB 20 Uncertain admixed
Temuan Malaysia Pan-Asia MY-TM 37 Uncertain admixed
Melanesian Papua New Guinea HGDP 10 Uncertain admixed
Jehai Malaysia Pan-Asia MY-JH 42 Two-way admixed
Kensiu Malaysia Pan-Asia MY-KS 25 Two-way admixed
Zhuang China Pan-Asia CN-CC 24 Other mainland
Jinuo China Pan-Asia CN-JN 29 Other mainland
Han Cantonese China Pan-Asia CN-GA 28 Other mainland
Hmong China Pan-Asia CN-HM 20 Other mainland
Tai Lue Thailand Pan-Asia TH-TL 18 Other mainland
Tai Yuan Thailand Pan-Asia TH-TU 20 Other mainland

[Caption on next page.]
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Caption for Table C.1:
Summary of population samples used in this study. The first group of populations are
references used in the 18-population scaffold tree and for admixture date estimation, the
second group are Austronesian-speaking populations fit as admixtures, and the third group
are other populations used for comparison.
1Samples used for admixture date inference with ALDER were taken from Reich et al.
(2011) rather than from Pan-Asia or HGDP for the main MixMapper analysis.
2The Polynesian samples are from the Cook Islands (2), Futuna (4), Niue (1), Samoa (5),
Tokelau (2), Tonga (2), and Tuvalu (3).
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Table C.2. Populations with negative f3 statistics

Test population C Reference population A Reference population B f3(C;A,B) Std error Z-score
Alorese Tagalog Papuan -0.0106 0.00023 -45.36
Batak Karo Mentawai Kalash -0.00179 0.00025 -7.21
Batak Toba Mentawai Tuscan -0.00238 0.00024 -9.96
Han Cantonese Korean Jiamao -0.00079 0.00007 -12.04
Hmong China Hmong Thailand Mbuti Pygmy -0.00132 0.0002 -6.55
Ilocano Ami Bengali -0.00098 0.00024 -4.14
Javanese Jakarta Ilocano Jehai -0.00113 0.00015 -7.43
Javanese Java Ami Jehai -0.00133 0.00017 -7.69
Kambera Tagalog Papuan -0.00719 0.00025 -29.26
Lamaholot Toraja Papuan -0.0091 0.00022 -41.2
Lembata Toraja Papuan -0.00961 0.00022 -43.26
Malay Zhuang GIH -0.00322 0.00013 -24.5
Malay Indonesia Ami Bengali -0.00201 0.00028 -7.19
Malay Minangkabau Ami Hindi Haryana -0.00262 0.00026 -9.97
Malay Singapore Hindi Haryana Jiamao -0.00209 0.00011 -18.66
Manggarai Ngada Tagalog Papuan -0.00883 0.00025 -35.49
Manggarai Rampasasa Ilocano Papuan -0.00682 0.00029 -23.88
Manobo Ami Papuan -0.0006 0.00035 -1.7
Miao Hmong Thailand Colombian -0.0004 0.00028 -1.41
Plang Mlabri Han-NChina -0.00021 0.00027 -0.78
Sunda Ilocano Jehai -0.00113 0.00014 -8.15
Tagalog Ami Hindi Rajasthan -0.00214 0.00019 -11.11
Tai Yuan Htin CHB -0.00082 0.00008 -9.76
Toraja Ilocano Papuan -0.00213 0.00026 -8.18
Visaya Ami Hindi Rajasthan -0.00298 0.0002 -14.79
Wa Mlabri Naxi -0.00005 0.00028 -0.16
Yi Mlabri Naxi -0.00006 0.00034 -0.18
Zhuang Jiamao Lahu -0.0002 0.0001 -1.91

Asian populations from Table C.1 having at least one negative f3 value. For each test
population C, we show the two reference populations A and B in the data set giving the
lowest Z-score for f3(C;A,B). We note that all populations on this list that are used in the
scaffold have Z > −2, which indicates a non-significant result (especially given the presence
of many hypotheses). While a significantly negative f3 value demonstrates that the test
population must be admixed, a lack of a negative value does not prove a lack of admixture.
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Table C.3. Populations with no negative f3 statistics

Agta
Ami
Atayal
Ati
Ayta
Bidayuh
Dayak
Hmong Thailand
Htin
Iraya
Jehai
Jiamao
Jinuo
Kensiu
Lahu
Mamanwa
Mentawai
Mlabri
Naxi
Paluang
She
Tai Lue
Temuan

Asian populations from Table C.1 having no negative f3 value for any pair of reference
populations in the data set. While a significantly negative f3 value demonstrates that the
test population must be admixed, a lack of a negative value does not prove a lack of
admixture.
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Table C.4. Inferred mixture parameters for two-way admixed populations

Philippine
admixed population

Mixing branch 1
bootstrap distribution

Mixing branch 2
bootstrap distribution

Branch 1 ancestry
(Austronesian)

Agta
(Ami,Atayal)

Ami
44%
56%

Papuan 100% 51–62%

Ati
(Ami,Atayal)

Ami
15%
85%

Papuan 100% 50–59%

Ayta
(Ami,Atayal)

Ami
Atayal

20%
7%

73%
Papuan 100% 25–38%

Iraya
(Ami,Atayal)

Ami
28%
72%

Papuan
Papuan opp. African

76%
20%

61–80%

Mamanwa
(Ami,Atayal)

Ami
Atayal

25%
62%
13%

Papuan 100% 51–61%

Manobo
(Ami,Atayal)

Ami
11%
89%

Papuan 100% 78–83%

Tagalog (Ami,Atayal) 99%
Papuan

Papuan opp. African
71%
28%

83–92%

Visaya
(Ami,Atayal)

Ami
88%
11%

Papuan
Papuan opp. African

85%
15%

74–85%

E. Indonesian / Oceanian
admixed population

Mixing branch 1
bootstrap distribution

Mixing branch 2
bootstrap distribution

Branch 1 ancestry
(Austronesian)

Alorese
(Ami,Atayal)

Ami
Atayal

77%
17%

6%
Papuan 100% 37–44%

Fiji
(Ami,Atayal)

Ami
Atayal

19%
64%
17%

Papuan 100% 30–41%

Kambera (Ami,Atayal) 100% Papuan 100% 67–73%

Lamaholot
(Ami,Atayal)

Ami
93%

6%
Papuan 100% 50–56%

Lembata (Ami,Atayal) 94% Papuan 100% 47–53%

Polynesia
(Ami,Atayal)

Ami
Atayal

20%
54%
26%

Papuan 100% 61–72%

Sources of ancestry and mixture proportions (95% confidence intervals) from MixMapper
for two-way admixed populations. “Papuan opp. African” refers to the common ancestral
branch of all populations in the scaffold other than Papuan and Africans, while (Ami,
Atayal) designates the common ancestral branch of Ami and Atayal (see Figure 4.1).
Branch topologies are shown that occur for at least 5% of 500 bootstrap replicates.
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Table C.5. Inferred mixture parameters for three-way admixed populations

E. Indonesian / Oceanian
admixed population

Percent bootstrap reps
with Branch 3 = H’tin

Branch 3 ancestry
(Austro-Asiatic)

Branch 1 ancestry
(Austronesian)

Manggarai Ngada 100% 24–29% 31–37%
Manggarai Rampasasa 100% 34–41% 29–37%

Toraja 100% 10–17% 68–75%
W. Indonesian

admixed population
Percent bootstrap reps
with Branch 3 = H’tin

Branch 3 ancestry
(Austro-Asiatic)

Branch 1 ancestry
(Austronesian)

Batak Toba 92% 22–32% 50–57%
Bidayuh 100% 50–57% 37–44%
Dayak 100% 35–42% 48–56%

Javanese Jakarta 100% 57–63% 29–35%
Javanese Java 100% 57–64% 28–34%

Malay Indonesia 100% 26–34% 56–64%
Malay Singapore 100% 38–45% 37–43%

Sunda 100% 54–61% 30–36%

Mixture parameters from MixMapper for three-way admixed populations. Mixture
proportions shown are 95% confidence intervals for re-optimized values (see Methods),
using the bootstrap replicates (percentages given, out of 500) assigning the third ancestry
component to the H’tin branch.
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Table C.6. Inferred mixture parameters for two-way admixed populations with
alternative SNP ascertainment

Philippine
admixed population

Mixing branch 1
bootstrap distribution

Mixing branch 2
bootstrap distribution

Branch 1 ancestry
(Austronesian)

Agta
(Ami,Atayal)

Ami
Atayal

51%
38%
11%

Papuan 62% 51–66%

Ati (Ami,Atayal) 93% Papuan 100% 53–68%

Ayta
(Ami,Atayal)

Ami
Atayal

31%
17%
48%

Papuan 89% 23–45%

Iraya
(Ami,Atayal)

Ami
Atayal

29%
59%
12%

Papuan
Papuan opp. African

35%
6%

60–86%

Mamanwa
(Ami,Atayal)

Ami
Atayal

41%
42%
17%

Papuan 100% 49–66%

Manobo
(Ami,Atayal)

Ami
33%
66%

Papuan 100% 77–87%

Tagalog (Ami,Atayal) 98% Papuan 78% 85–93%

Visaya
(Ami,Atayal)

Ami
Atayal

87%
5%
8%

Papuan 99% 82–91%

E. Indonesian / Oceanian
admixed population

Mixing branch 1
bootstrap distribution

Mixing branch 2
bootstrap distribution

Branch 1 ancestry
(Austronesian)

Alorese
(Ami,Atayal)

Atayal
72%
20%

Papuan 100% 38–47%

Kambera (Ami,Atayal) 95% Papuan 100% 65–75%
Lamaholot (Ami,Atayal) 93% Papuan 100% 51–62%

Lembata
(Ami,Atayal)

Ami
Atayal

55%
15%
30%

Papuan 100% 48–57%

Sources of ancestry and mixture proportions (95% confidence intervals) from MixMapper
for two-way admixed populations, using SNPs selected by merging the Pan-Asia data with
HGDP samples typed on the Affymetrix Human Origins array (Patterson et al., 2012).
“Papuan opp. African” refers to the common ancestral branch of all populations in the
scaffold other than Papuan and Africans, while (Ami, Atayal) designates the common
ancestral branch of Ami and Atayal (see Figure 4.1). Branch topologies are shown that
occur for at least 5% of 500 bootstrap replicates. The results are very similar to those
obtained with the original scaffold (see Table C.4).
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Table C.7. Inferred mixture parameters for three-way admixed populations
with alternative SNP ascertainment

E. Indonesian / Oceanian
admixed population

Percent bootstrap reps
with Branch 3 = H’tin

Branch 3 ancestry
(Austro-Asiatic)

Branch 1 ancestry
(Austronesian)

Manggarai Ngada 66% 20–31% 29–42%
Manggarai Rampasasa 27% 29–38% 33–44%

Toraja 85% 6–14% 70–79%
W. Indonesian

admixed population
Percent bootstrap reps
with Branch 3 = H’tin

Branch 3 ancestry
(Austro-Asiatic)

Branch 1 ancestry
(Austronesian)

Batak Toba 28% 19–35% 49–60%
Bidayuh 99% 42–58% 36–50%
Dayak 98% 27–44% 46–59%

Javanese Jakarta 100% 49–64% 28–40%
Javanese Java 100% 52–70% 24–38%

Malay Indonesia 76% 18–33% 58–73%
Malay Singapore 74% 29–49% 35–51%

Sunda 100% 50–65% 27–41%

Mixture parameters from MixMapper for three-way admixed populations, using SNPs
selected by merging the Pan-Asia data with HGDP samples typed on the Affymetrix
Human Origins array (Patterson et al., 2012). Mixture proportions shown are 95%
confidence intervals for re-optimized values (see Methods), using the bootstrap replicates
(percentages given, out of 500) assigning the third ancestry component to the H’tin branch.
The results are very similar to those obtained with the original scaffold (see Table C.5),
with slightly lower but still substantial bootstrap support for the H’tin-related ancestry
component.
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Table C.8. Inferred mixture parameters for two-way admixed populations on a
15-population alternative scaffold

Philippine
admixed population

Mixing branch 1
bootstrap distribution

Mixing branch 2
bootstrap distribution

Branch 1 ancestry
(Austronesian)

Agta
(Ami,Atayal)

Ami
44%
56%

Papuan 100% 50–60%

Ati
(Ami,Atayal)

Ami
12%
88%

Papuan 100% 49–58%

Ayta
(Ami,Atayal)

Ami
Atayal

21%
7%

72%
Papuan 100% 24–37%

Iraya
(Ami,Atayal)

Ami
16%
84%

Papuan
Papuan opp. African

39%
60%

56–78%

Mamanwa
(Ami,Atayal)

Ami
Atayal

40%
53%

7%
Papuan 100% 51–61%

Manobo
(Ami,Atayal)

Ami
9%

91%
Papuan 100% 78–83%

Tagalog (Ami,Atayal) 100%
Papuan

Papuan opp. African
64%
34%

83–92%

Visaya
(Ami,Atayal)

Ami
82%
18%

Papuan
Papuan opp. African

78%
22%

72–85%

E. Indonesian / Oceanian
admixed population

Mixing branch 1
bootstrap distribution

Mixing branch 2
bootstrap distribution

Branch 1 ancestry
(Austronesian)

Alorese
(Ami,Atayal)

Ami
84%
14%

Papuan 100% 37–43%

Fiji
(Ami,Atayal)

Ami
Atayal

16%
66%
18%

Papuan 100% 30–40%

Kambera (Ami,Atayal) 100% Papuan 100% 68–72%
Lamaholot (Ami,Atayal) 96% Papuan 100% 49–56%
Lembata (Ami,Atayal) 98% Papuan 100% 47–53%

Polynesia
(Ami,Atayal)

Ami
Atayal

23%
52%
25%

Papuan 100% 61–72%

Sources of ancestry and mixture proportions (95% confidence intervals) from MixMapper
for two-way admixed populations using a 15-population alternative scaffold tree. The
results are very similar to those obtained with the original scaffold (see Table C.4).
“Papuan opp. African” refers to the common ancestral branch of all populations in the
scaffold other than Papuan and Africans, while (Ami, Atayal) designates the common
ancestral branch of Ami and Atayal (see Figure 4.1). Branch topologies are shown that
occur for at least 5% of 500 bootstrap replicates.
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Table C.9. Inferred mixture parameters for three-way admixed populations on
a 15-population alternative scaffold

E. Indonesian / Oceanian
admixed population

Percent bootstrap reps
with Branch 3 = H’tin

Branch 3 ancestry
(Austro-Asiatic)

Branch 1 ancestry
(Austronesian)

Manggarai Ngada 83% 24–30% 30–36%
Manggarai Rampasasa 81% 35–43% 28–36%

Toraja 90% 7–17% 68–77%
W. Indonesian

admixed population
Percent bootstrap reps
with Branch 3 = H’tin

Branch 3 ancestry
(Austro-Asiatic)

Branch 1 ancestry
(Austronesian)

Batak Toba 52% 23–33% 49–57%
Bidayuh 100% 52–62% 33–43%
Dayak 100% 35–44% 46–56%

Javanese Jakarta 100% 59–66% 27–33%
Javanese Java 100% 60–69% 25–33%

Malay Indonesia 87% 26–36% 54–65%
Malay Singapore 68% 40–47% 35–42%

Sunda 100% 58–65% 26–33%

Mixture parameters from MixMapper for three-way admixed populations using a
15-population alternative scaffold tree. The results are very similar to those obtained with
the original scaffold (see Table C.5), with slightly lower but still substantial bootstrap
support for the H’tin-related ancestry component. Mixture proportions shown are 95%
confidence intervals for re-optimized values (see Methods), using the bootstrap replicates
(percentages given, out of 500) assigning the third ancestry component to the H’tin branch.

Table C.10. Consistency of mixture parameters for two-way admixed
populations on 17-population alternative scaffolds

Philippine
admixed population

Taiwan
bootstrap support

Papuan
bootstrap support

Taiwan
ancestry fraction

Agta 100 ± 0% 99 ± 0% 56 ± 1%
Ati 100 ± 0% 100 ± 0% 55 ± 0%

Ayta 99 ± 1% 100 ± 0% 32 ± 1%
Iraya 100 ± 0% 79 ± 8% 73 ± 2%

Mamanwa 100 ± 0% 100 ± 0% 56 ± 0%
Manobo 100 ± 0% 100 ± 0% 81 ± 0%
Tagalog 100 ± 0% 69 ± 11% 89 ± 0%
Visaya 100 ± 0% 83 ± 6% 83 ± 0%

E. Indonesian / Oceanian
admixed population

Taiwan
bootstrap support

Papuan
bootstrap support

Taiwan
ancestry fraction

Alorese 100 ± 0% 100 ± 0% 40 ± 0%
Fiji 100 ± 1% 100 ± 0% 36 ± 0%

Kambera 100 ± 0% 100 ± 0% 70 ± 1%
Lamaholot 100 ± 0% 100 ± 0% 53 ± 1%
Lembata 100 ± 0% 100 ± 0% 50 ± 1%
Polynesia 100 ± 0% 100 ± 0% 66 ± 0%

Sources of ancestry and mixture proportions (95% confidence intervals) from MixMapper
for two-way admixed populations, removing one population at a time (other than Papuan)
from the 18-population scaffold tree (Figure 4.1). Values are means ± standard errors over
the 17 different perturbed scaffolds. Austronesian ancestry refers to splits from the Ami
and Atayal branches and their common ancestor, while Papuan support only includes splits
from the Papuan branch. The results are very similar to those obtained with the original
scaffold (Table C.4). Note that the branch support values are over 100 replicates, while the
mixture proportions are point-estimates using all data rather than bootstraps.
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Table C.11. Consistency of mixture parameters for three-way admixed
populations on 17-population alternative scaffolds

E. Indonesian / Oceanian
admixed population

Percent bootstrap reps
with Branch 3 = H’tin, Plang, Wa

Branch 3 ancestry
(Austro-Asiatic)

Branch 1 ancestry
(Austronesian)

Manggarai Ngada 100 ± 1% 26 ± 2% 34 ± 2%
Manggarai Rampasasa 96 ± 15% 37 ± 2% 34 ± 2%

Toraja 99 ± 4% 12 ± 1% 72 ± 1%
W. Indonesian

admixed population
Percent bootstrap reps

with Branch 3 = H’tin, Plang, Wa
Branch 3 ancestry
(Austro-Asiatic)

Branch 1 ancestry
(Austronesian)

Batak Toba 93 ± 12% 27 ± 2% 53 ± 2%
Bidayuh 100 ± 0% 54 ± 2% 40 ± 1%
Dayak 100 ± 0% 39 ± 2% 52 ± 1%

Javanese Jakarta 100 ± 0% 59 ± 2% 32 ± 2%
Javanese Java 100 ± 0% 60 ± 2% 31 ± 2%

Malay Indonesia 97 ± 9% 31 ± 1% 60 ± 1%
Malay Singapore 98 ± 7% 41 ± 3% 40 ± 2%

Sunda 100 ± 0% 57 ± 2% 33 ± 1%

Mixture parameters from MixMapper for three-way admixed populations, removing one
population at a time (other than Papuan) from the 18-population scaffold tree
(Figure 4.1). Values are means ± standard errors over the 17 different perturbed scaffolds.
The results are very similar to those obtained with the original scaffold (see Table C.5).
Mixture proportions shown are re-optimized values (see Methods), using the 17-population
trees in which the third ancestry component is Austro-Asiatic (H’tin, Plang, or Wa), which
were 16 of 17 for Batak Toba and Manggarai Rampasasa and all 17 trees for the other
populations. Note that the branch support values are over 100 replicates, while the
mixture proportions are point-estimates using all data rather than bootstraps.

Table C.12. Admixture model selection for three-way admixed populations

E. Indonesian / Oceanian
admixed population

Residual norm
from 2-way fit

Residual norm
from 3-way fit

Difference (95% CI)

Manggarai Ngada 27.0 22.7 (-1.4, 9.8)
Manggarai Rampasasa 31.2 25.1 (-1.4, 14.5)

Toraja 11.3 7.9 (-0.8, 7.0)
W. Indonesian

admixed population
Residual norm
from 2-way fit

Residual norm
from 3-way fit

Difference (95% CI)

Batak Toba 22.2 16.5 (-5.5, 15.2)
Bidayuh 23.1 15.5 (-1.6, 16.5)
Dayak 32.8 11.1 (11.4, 28.1)

Javanese Jakarta 34.3 15.3 (12.4, 23.8)
Javanese Java 32.8 15.0 (10.8, 24.0)

Malay Indonesia 18.8 10.1 (0.8, 14.9)
Malay Singapore 38.8 27.0 (0.6, 21.1)

Sunda 39.1 16.8 (15.8, 27.8)

Quality of fit for alternative models for three-way admixed populations. Shown are the
median norms of the vectors of residual errors for all pairwise distances f2(C,X) (see
Methods for details), along with 95% confidence intervals for the differences (all multiplied
by 106). Smaller norms indicate more accurate model fits.
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Table C.13. Two-way mixture fits for East and Mainland Southeast Asian
populations

Admixed population Mixing branch 1 + branch 2 % reps Branch 1 ancestry
Chinese Singapore (Ami,Atayal,Jiamao) + Karitiana 56% 98–99%

(Ami,Atayal,Jiamao) + Naxi 21% 85–93%
(Ami,Atayal,Jiamao) + Surui 15% 98–100%

Han Hakka (Ami,Atayal,Jiamao) + Naxi 75% 83–91%
(Ami,Atayal,Jiamao) + She 9% 58–89%

Han Minnan (Ami,Atayal,Jiamao) + Naxi 63% 84–91%
(Ami,Atayal,Jiamao) + Surui 13% 99–99%

(Ami,Atayal,Jiamao) + Karitiana 13% 99–99%
(Ami,Atayal,Jiamao) + She 8% 60–88%

Hmong China Hmong Thailand + Jiamao 40% 71–89%
Hmong Thailand + (Ami,Atayal,Jiamao) 34% 57–74%

Hmong Thailand + She 20% 56–80%
Jinuo (H’tin,Plang,Wa) + Yi 16% 77–91%

(Naxi,Yi) + Wa 12% 52–80%
(Karitiana,Mandenka,Naxi,Papuan,Surui,Yi,Yoruba,root) + Wa 11% 65–88%

(H’tin,Plang,Wa) + (Naxi,Yi) 8% 41–83%
(H’tin,Plang,Wa) + Hmong Thailand 7% 82–97%

(H’tin,Plang,Wa) + Papuan 7% 97–99%
(H’tin,Plang,Wa) + Naxi 6% 74–93%

Karen (H’tin,Plang,Wa) + Papuan 93% 92–98%
(H’tin,Plang) + Papuan 7% 90–96%

Lawa (H’tin,Plang) + Papuan 82% 93–98%
(H’tin,Plang,Wa) + Papuan 5% 95–98%

H’tin + Papuan 5% 93–98%
Mlabri H’tin + Papuan 70% 86–97%

H’tin + (Mandenka,Yoruba,root) 18% 85–95%
H’tin + (Mandenka,Yoruba) 9% 92–98%

Mon (H’tin,Plang,Wa) + (Mandenka,Yoruba,root) 90% 80–86%
Tai Khuen Jiamao + H’tin 99% 65–75%

Tai Lue Jiamao + H’tin 97% 68–81%
Tai Yong Jiamao + H’tin 95% 66–76%
Tai Yuan Jiamao + H’tin 86% 48–60%

(Ami,Atayal,Jiamao) + H’tin 10% 56–66%
Yao (Ami,Atayal,Jiamao) + Hmong Thailand 79% 60–86%

Hmong Thailand + H’tin 6% 87–94%
(Ami,Atayal,Jiamao,She) + Hmong Thailand 6% 81–89%

Zhuang Jiamao + H’tin 99% 87–92%

Inferred sources of ancestry (with bootstrap support) and mixture proportions (95%
confidence intervals) from MixMapper for East and Mainland Southeast Asian populations.
Names with parentheses refer to the common ancestral branches of the specified nodes (see
Figure 4.1). Branch topologies are shown that occur for at least 5% of 500 bootstrap
replicates. We see essentially no evidence of the four ancestry components found in
Austronesian-speaking groups, aside from H’tin-related (Austro-Asiatic) ancestry in several
populations. We note that some of the populations here may not truly be admixed, but we
show all of the fits for completeness.
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Table C.14. Formal test for numbers of sources of admixture

Test subset p-value for 2 sources p-value for 3 sources p-value for 4 sources
Agta, Ati, Ayta, Ilocano, Iraya, Manobo 0.000 0.110 0.156
Alorese, Kambera, Lamaholot, Lembata 0.000 0.486 0.428
Alorese, Kambera, Lamaholot, Lembata, 0.000 0.000 0.366
Manggarai Ngada, Manggarai Rampasasa
Bidayuh, Dayak, Javanese Jakarta, 0.000 0.000 0.068
Javanese Java, Mentawai, Sunda
Bidayuh, Dayak, Javanese Jakarta 0.000 0.018 NA

We applied a formal test based on f4 statistics, as described in Reich et al. (2012)
and Moorjani et al. (2013b), to estimate how many sources of admixture are necessary to
explain the observed relationships among a collection of admixed populations. Briefly, we
estimate the rank of a matrix of values f4(A,B;C,D), where A and B are populations in a
test set and C and D are populations in a reference set. To remove trivially linearly
dependent rows and columns, we fix A and C to be the first populations in each list
(without loss of generality) and let B and D vary. In order to maximize sensitivity for
separate sources of Asian ancestry, we used a reference set consisting of Yoruba as the fixed
outgroup C and 31 East and Southeast Asian populations as the other references D. We
used a p-value threshold of 0.05; a score below this threshold implies that at least that
many sources are necessary to explain the relationships among the test set. In bold are the
maximal significant values, indicating the estimated number of sources for each set.

Table C.15. Robustness of Austro-Asiatic ancestry with modified scaffolds

E. Indonesian / Oceanian
admixed population

Percent bootstrap support
with H’tin removed

Percent bootstrap support
with H’tin and Plang removed

Manggarai Ngada 95% 16%
Manggarai Rampasasa 44% 0%

Toraja 84% 36%
W. Indonesian

admixed population
Percent bootstrap support

with H’tin removed
Percent bootstrap support

with H’tin and Plang removed
Batak Toba 45% 24%

Bidayuh 100% 98%
Dayak 100% 93%

Javanese Jakarta 100% 100%
Javanese Java 100% 100%

Malay Indonesia 69% 29%
Malay Singapore 63% 31%

Sunda 100% 100%

Robustness of the Austro-Asiatic ancestry component from MixMapper for three-way
admixed populations with either H’tin or H’tin and Plang removed from the 18-population
scaffold tree. Shown are the percentages of bootstrap replicates (out of 500) assigning the
third ancestry component in a three-way admixture model to an Austro-Asiatic branch in
the scaffold (Plang or Wa in the first column and Wa in the second column). The fits on
the reduced scaffolds are not as robust for the eastern Indonesian populations, while the
lower confidences for Batak Toba and the Malay populations may be due to a small
proportion of Indian ancestry (HUGO Pan-Asian SNP Consortium, 2009; Karafet et al.,
2010) that is picked up more often with fewer Austro-Asiatic references present.
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