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Abstract

Facing the growing challenges of energy, environment, security and disease treatment, the demand
for novel materials are growing. While the material centric approach have resulted in development
of new materials for advanced applications, we introduce a geometric approach as a
complementary point of view for further innovation in this ever expanding and growing field.
Inspired by the ubiquitous fractals-like geometry of in natures, the scale transformation (i.e.
dilation or contraction) is included in the framework since fractal geometries shows structures at
all scales (usually discrete and finite in physical world). We developed our framework using
metamaterials since it enable us to design "atoms" or "molecules" and their relative arrangement
with greater freedom (i.e. not limited by the chemical bond or ionic bond in classical materials
system).
We studied metamaterials using prefractals from both exact-self similar fractal and random fractal
samples. For exact-self similar fractals, we choose H tree based prefractals and Hilbert Curve
prefractals bounded system given their unique geometric properties and wide applications. Guided
by the framework, we investigated several key parameters (e.g. level of iteration, geometric
anisotropy, impedance contrast, arrangement of subunit, resolution) that would dictate the
dispersion behavior of the system. It was found that for exact-self similar prefractals, multiple
spectrum bandgaps (i.e. broadband response) can be achieved with increased level of iterations
where translation symmetry is imposed through boundary condition. Furthermore, the transition
from scale dependence and independent described by the general framework has been observed
for all the samples we studied. Furthermore, for single prefractal resonator, subwavelength
(~1/75k) behavior has been observed and explained using a simple analytical model. For
metamaterials based on fractional Brownian motion, the Hurst constant is found to be a good
indicator of phononic behavior of the system, besides other parameters studied.
Our findings does not only expand the repertoire for novel materials by introducing the ubiquitous
yet unconventional geometry to metamaterials; but also have interdisciplinary applications in
biology, seismology, arts, hence shine lights on our understanding of nature.

Thesis Supervisor: Edwin L. Thomas
Title: William and Stephanie Sick Dean of the George R. Brown School of Engineering Professor
of Materials Science and NanoEngineering
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1. Introduction: A Blueprint for Innovation
As material scientists and engineers, we continue to design materials with improved/unique

properties for new applications. There are two general approaches taken in developing new

designer materials. One is the "materials centric" approach, which focuses on developing new

materials possessing properties that address specific applications; the other "geometry centric"

approach focuses on engineering structure or geometry/architecture of conventional materials to

achieve novel properties through fabrication of systems of materials (device-like materials, e.g. a

Si/Air photonic crystal). While both approaches take different perspectives, they can be

complementary in materials engineering. Advancements in nanotechnology expand the range of

feature size (with respect to shape of the artificial atom) achievable, hence open up platform for

exploring the novel configurations/structures that can cover a wide range of length scale and

include a wide variety of materials.

With the traditional material science tetrahedron emphasizing the relationship between the

structure, processing and properties and performance, the material centric approach usually starts

from the building blocks, such as atoms, molecules and connect them in new and often complex

ways though new and better processing techniques. This approach allows endless possibilities

since so many different parameters can be varied and yields new high performance materials in

various categories, with a growing atomistic understanding of the original properties of the

materials. Meanwhile, the proposal of "artificial atoms" to create metamaterials is another highly

innovative approach to design new material systems. The expansion of building blocks beyond

atoms and molecules and new ways to arrange/bond them greatly expand the horizon for material

scientists and engineers. Since the artificial atoms are not limited by the elementary units (i.e. ions,

electrons, molecules), their shapes and sizes can have unlimited choice. This defines the

foundation for a geometric approach for designing new materials. Furthermore, the bonding

between unites can expand beyond the traditional choice (i.e. ionic, covalent, or Van der Waals

etc.) and be visualized as versatile links with geometric characteristics, e.g. one can employ

magnetic forces to assemble units. While the "artificial atoms" provide many exciting

opportunities to expand the designer material repertoire, it also presents a formidable challenge

given so many choices.
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To address this challenge, we endeavor to develop a general intuitive framework, that would

provide a systematic way not only consistent with the set of metamaterials so far discovered, but

also able to provide a blueprint for innovation. Hence, a general framework to shine light on

material design and also needs to be formulated from a practical point of view. Koh(C. Y. Koh,

2011) proposed a governing framework to guide the design of phononic metamaterials utilizing a

combination of global symmetry principles with conservation principles and the concept of broken

symmetry. This theoretical approach would be a powerful tool for designing materials for wide

range of advanced applications; moreover, the general framework is applicable for a wide range

of wave/particle interactions with structures given the minimal assumption require.

1.1 Phononic metamaterials

To implement and verify the theory, a phononic metamaterial system was chosen, where both

theoretical knowledge and experimental technologies have undergone progress over the past few

years. Here the phononic metamaterial refers to artificial materials that possess exotic phononic

properties that are not present in nature, i.e. spectral bandgap, negative refraction(C. Y. Koh,

201 1)(Feng, 2009)(Genet & Ebbesen, 2007)(X. Xiao et al., 2011). Their unique properties are

usually derived from new materials components and/or novel architecture/structures. This make

them attractive for a wide range of applications, for example, a superlens, negative bulk modulus,

negative density etc.

Photonic crystals and photonic metamaterials have seen significant growth in the past few years

due to technological development for various applications(S. Zhang, 2010) (H.-H. Huang, 2009).

The temptation to draw an analogy between photons and phonons leads to similar applications for

phononic metamaterials. Although the analog seems to be natural, given the similar form of

equation governing the propagation of electromagnetic waves and elastic waves in periodic

structures, phonons behave differently than photons. Two polarization degrees of freedom can be

supported in structures made of non-conducting materials due to the transverse nature of

electromagnetic wave propagation. In contrast, three polarization degrees of freedom can be

supported for phonons propagating in solids. Although the added degree of freedom gives more

flexibility and control for designing materials' properties, it also adds complexity in understanding

the behavior.
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Despite the challenges and limitations, significant progress has been made for phononic

crystal/metamaterials(Guenneau et al., 2005)(I, Mihail Sigal et. al, 2005)(Y. Pennec, 2010)(S.

Yang, 2002)(S. Zhang, 2010)(Feng, 2009). While the flourishing field of photonics provides a

wide variety of choice for optimize performance of phononic metamaterials for tailored

applications(H. Chen, 2010)(Chin, R., 2009) (F. Liu, 2009), a general guidelines that could unify

most of the hypothesis would be desirable from a practical point of view. The framework proposed

by Koh (C. Koh, 2011) could potentially shine light on this extremely diverse field by pointing out

the fundamental principles and developing physical intuition.

By utilizing the concept of the global symmetry principle with the conservation principle, the

framework developed by Koh leads to a physical understanding behind the relations between the

physical geometry of topography and wave propagation behavior in phononic metamaterials. To

verify the framework, it is natural to apply it to design experiments and compare prediction with

experimental observables.

A local resonant sonic system has attracted a great deal of attention in the literature after the

pioneering work by Liu et al. (Z. Liu, 2000). While conventional Bragg scattering requires the

periodic structure to be comparable to the wavelength of the acoustic wave, on the contrary, a

"local resonator" can be up to two orders of magnitude smaller in size than the wavelength in the

matrix. This feature is attractive for allowing highly compact structures for various applications,

i.e. sound shielding, superlens (Ho, 2003; P. Sheng, 2003)(G. Wan, 2004; H.Gang, 2006; Milton,

2006; P. Sheng, 2007).

Aiu et al. obtained a subwavelength spectral gap by using 3D matrix-rubber-scattering system

fabricated by Liu etc. They also obtained transmission dips with rubber coated lead particles

randomly distributed in the matrix, which leads to the conclusion that local resonator is essential

for the formation of the subwavelength spectral [Liu, Z. (2000).] while the periodic lattice is not

necessary. They therefore claimed they discovered a new paradigm for the band gap opening

mechanism (different from Bragg Scattering mechanism), which could be described by "negative

bulk modulus" near the resonance. Their system can been modeled by a mass spring model, with

the lead as internal mass connected to the matrix through the rubber shell acting as a spring. The

dispersion co (k) appears as Figure 1. 1D, where k is the wave vector for the periodic structure in

reciprocal space, and co is the eigenfrequency corresponds to the wave vector. The built in
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Figure 1.1: Cross section of a rubber coated lead sphere that forms the basic structure unit (B) for an 8X8X8 sonic
crystal. (C) Calculated (solid line) and measured (circles) amplitude transmission coefficient along the [100]
direction are plotted as a function of frequency. The calculation is for a four-layer slab of simple cubic arrangement
of coated spheres, periodic parallel to the slab. The observed transmission characteristics correspond well with the
calculated band structure (D), from 200 to 2000 Hz, of a simple cubic structure of coated spheres. Three modes (two
transverse and one longitudinal) are distinguishable in the [110] direction, to the left of the F point. The two
transverse modes are degenerate along the [100] direction, to the right of the F point. Note the expanded scale near
the F point. Image obtained from (Z. Liu, 2000).

resonance generates flat bands that interact with the linearly dispersed elastic wave and open the

subwavelength spectral gap. Hence, the position of the gap is primarily determined by the material

properties of the resonator, under the mass-spring model.

The researchers later attributed the negative dynamic mass to the relative out of phase motion

between the scatterer and the matrix allowed by the soft rubber using a simulation with multiple

scattering methods(Sheng, 2003). They also developed an analytical model using the generalized

effective medium theory to predict the double negative (i.e. both effective density and effective

bulk modulus) behavior with rubber sphere arranged in fcc lattice in water(J. Li & C. Chan, 2004).

The same structure generates both monopolar and bipolar resonance that are responsible for the

negative bulk modulus and density respectively.

Despite their claim of not requiring periodic microstructure, Sanchez et al. (S. Dehesa, 2003)

conducted a theoretical study using a variational method and found that the subwavelength gaps

produced by local states depended on symmetry of the lattice, similar as the Bragg gaps, due to

the weak interaction between the localized states. Recently, Larabi et al. (Sheng et al., 2007) also

investigated the multicoaxial cylinders in water. They find that the transmission properties and

band structure can be significantly affected by the nature of the matrix, i.e. solid or fluid. Using
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FDTD simulation, they demonstrate that the transmission dip can be tuned by varying the

geometric parameters of the coaxial cylinders. A transmission dip has also been obtained with a

1 D array of subwavelength Helmholtz resonators connected to a tube by Zhang et al (Zhang et al,

2008. The negative group delay time/velocity infers a negative effective dynamic modulus near

the resonance frequency. They further demonstrated a 3D holey-structured metamaterial superlens

that can image down to a feature size of X/50(Zhu et al., 2010). The holey structured materials can

couple strongly to the evanescent waves with Fabry-Perot resonance, which carry subwavelength

information of the sample, and transmit these waves through the lens to obtain image that

overcomes the diffraction limit. This demonstration promises potential for range of a wide

advanced applications, such as high resolution non-destructive ultrasonic evaluation.

Since this metamaterial relies on the built-in resonance of the scatterers, the quasistatic limit, long

wavelength assumption for an effective medium becomes problematic. Zhang et al. (Zhu et al.,

2010) tried to introduce an effective theory by abandoning the quasistatic assumption and

demonstrated that effective mass density, effective bulk modulus and effective shear modulus can

all be negative in a 2D system.

The conventional distinction between a resonant metamaterial and a crystal lies in the position, i.e.

frequency/wavelength, where the primary (the lowest o) spectral gap forms. Moreover, the

proposed mechanism for a local resonance sonic system does not require a periodic arrangement

of the scatterers (Z. Liu, 2000)(P. Sheng, 2003). Although the proof for this is relatively weak, it

is based on a far-field transmission calculation of a disordered system, which although it proves

the scattering mechanism, does not prove anything definite about the origin of bandgap formation,

because it also depends on other factors, i.e. the source excitation and matrix geometry, the

interface where the interaction occurs etc.

This local approximation assumption may be misleading due to by the material choices in the

particular system. Because of the large material impedance contrast between rubber and lead, the

mechanical spring is only weakly coupled through the lattice. Therefore, the non-locality is weak

in this system masked by the choice of the materials; the perceived local mechanism is not a

distinct mechanism itself(C. Y. Koh, 2011). Furthermore, the fact that the avoided crossing

happens at a small but finite wave vector, indicates non-locality of the interaction.
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Our studies show that each eigenmode's polarization field has to conform to the little group of the

respective wave vectors. Avoided crossing is the general mechanism to form spectral gap and it

implies non-locality in the presence of a lattice. The choice of the constituent materials will only

perturb the degree of non-locality; sometimes, depending on the degree of impedance contrast,

making the system seemly behave in a local regime. This can be demonstrated by tuning the

material parameters such that the "weakness" of the non-locality becomes clear (Appendix A).

1.2 Fractal geometry

Complex geometries, especially fractal (i.e. self-similar structure) geometries, are ubiquitous in

nature(Mandelbrot, 1977, 1983, 1997, 1999, 2002, 2004a), e.g. a coastline, mountain skylines,
trees, water falls, as shown in Figure 1.1. However, due to its "problematic" nature, e.g. such

curves, surfaces are non-differentiable, they were shunned by mathematicians or even termed as

Figure 1.2: Fractal geometry observe in nature and biological system
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"monster" curves. Then in the 1960s, mathematician Benoit Mandelbrot coined the term "fractal"

from the Latin Adjectivefractus.(Mandelbrot, 1983) to discuss a new geometry that embraces the

roughness of nature. Fractal geometry is "a rough or fragmented [geometry] that can be split into

parts", which is characterized by self-similarity, i.e. the degree of their irregularity and/or

fragmentation is similar at all length scales. This soon captured the interests of many

mathematicians with their "abnormal" properties that deviate from those associated with the

smooth geometries.

Fractal geometry can be generated by several techniques; one of them is the Iterated Function

System (IFS), whose algorithms can be deterministic or random. If we represent a linear

transformation f as a matrix A = rs, -sn)' then an affine linear transformation can be
rsinO -scoso)

defined as a map F : R2 -+R2if FQ) =A() +( .

Hence, we define a mapping F : S -4: S as contraction if for some 0 < a < 1,

IIF(zl) - F(Z 2 )11 ; aIIz, -z 211, for all z 1 , z 2 E S.

Then Iterated Function System (IFS) is the system {S : F = Uv 1 F1}, where Fi, F2, ... , FN are

family of contractions mapping in the complete matrix space Rk and S is a close bounded subset

of Rk. Some common fractal geometries, such as Sierpinski Triangle and Koch Curve (as shown

in Fig 1.3, can be generated using this method. Moreover, the Koch Curve was the first example

for a curve that is not differentiable anywhere.

Figure 1.3 Fractal geometry observe in nature and biological system
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To study the fractal geometry in a more rigorous way, various parameters and tools are used.

Dimension is central to fractal geometry as it measures irregularities at different scales of size.

Hence, it contains much information about the geometrical properties of a set. Starting from a cube

with length 1, we subdivide it into many small cubes with side-length s = 1/k for any positive

integer k. We obtain N(s) = k3 = s-3 little cubes, where the exponent 3 here is the dimension.

Similarly, if a set X in R" can be subdivided into some finite number N(s) of subsets, each a

rescaled copy of X by a linear factor s, then we define the "self-similarity dimension" of X as the

unique value d that satisfies N(s) = s-d, where d = log(N(s))/log(l/s). This dimension is usually

applicable to exact linear self-similarity, i.e. each piece is a rescaled copy of the total set. However,

for more general set, where the similarity is not exact, the Box-counting dimension (Figure 1.3) is

introduced. Again for a bounded subset X in R", a regular grid of cubes with side-length s is used

to partition R. If there are N(s) cubes intersecting X, then "box-counting dimension" of X is

defined as lim-+O log(N(s))/log(l/s). This approach can be implemented by easily computer;

however, it is not always well defined since the limit will not exist in many cases. If we further

relax the requirement of same size cubes and replace them with circles, we can derive the more

general Hausdorff dimension. The Hausdorff dimension has the advantages of being defined for

any geometry, and is mathematically easy to manipulate. However, Hausdorff dimension is also

difficult to calculate or estimate using computational methods.

Figure 1.1.4: Ways to estimate different fractal dimension for coastline of Great Britain, box counting dimension with
different edge width value s (a) and Hausdorff dimension with different measuring circle diameter (b).
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There is no simple agreed upon definition for fractals that can encompass all the objects in the

physical world. However, mathematicians still try to define fractals such that they can be studied

more rigorously using mathematical tools. Mandelbrot defined it as "a set for which the Hausdorff

Besicovith dimension strictly exceeds the topological dimension". The topological dimension is

our intuitive understanding of integer dimension in Euclidean space, e.g. a point is zero

dimensional, a smooth curve is one-dimensional, a disc in the plane is two-dimensional etc.

Given fractals are not smooth and have divergent derivatives, the assumption of differentiability

renders the traditional differential calculus insufficient. Hence to adequately study the behavior

and properties of fractal geometries, fractional calculus was introduced. Although mathematical

fractal themselves can be a fascinating subject in the abstract, and applications in physical systems

make it even a more attractive system to investigate. Although there is no real fractal existing in

nature (due to the infinity requirement), the exact ideal fractal can be used to study the approximate

fractals found in nature. The concept of fractal can be extended in both the spatial and temporal

sense. The self-similar behavior makes these objects attractive model to study system without the

translational symmetry required in crystal solids. The fractional calculus can be a powerful tool to

study complexity, when time scales of macroscopic and microscopic processes cannot be well

separated. Since we cannot smooth out the microscopic fluctuations, the conventional Hamilton's

equation of motion ceases to be adequate. Therefore, fractional calculus can be used to study

several physical and biological systems, such as turbulent flow, viscoelastic materials (with

memory) and phase transitions. When nonlinearity and randomness start to influence the system

behavior, a new modeling strategy is necessary. Therefore, fractional time derivatives (with

diverging initial values and long-time memory) and special fractal derivatives (with long-range

interaction) have been used to modeling complex dynamic system and chaos (Mandelbrot,

1997)(Mandelbrot, 2004b).

1.3 Fractals in wave processes

Four groups of phenomena have been studied extensively using the fractal approach due to their

inherent fractal characteristic in physics. They are 1) aggregation behavior, 2) random walks and

diffusion, 3) percolation and 4) dynamical chaos. Fractal properties in wave processes have also
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been studied in depth for the last few decades. The fractal nature in wave processes can exhibit

themselves in different ways: 1) materials with fractal geometry serve as bulk medium for wave

propagation; 2) emissions and scattering of emitters/scatterers with a fractal distribution; 3) fractal

interface between a medium that interacting with waves; 4) fractal behavior arising from the

nonlinearity of the wave interaction. For a bulk fractal medium, a transition from low frequency

delocalized phonon states to a high frequency localized "fractons state" has been observed. The

frequency spectrum of the fractons exhibits a power law distribution due to the scale invariance.

This model has been used to explain the behavior of disordered media, such as amorphous

polymers and resins. The peculiar fracton-phonon interaction can describe the thermal behavior of

disordered media quite effectively.

Acoustic cavitation initiated the development of fractal analysis for random signals and fields. The

sound emitted by the cavitation bubble in an intense sound field exhibits chaotic behavior due to

its nonlinear dynamics. This concept finds further application in seismoacoustics to help predict

earthquakes by studying the wave propagation behavior. A fractal drum has also captured attention

when it was proposed and studied by B. Sapoval et al. By fixing a membrane to a fractal Koch

Curve-like boundary made of steel, the fractal drum tried to address whether you can tell the shape

of the drum by listening to its sound alone. It was found the fractal contour with Dirichlet boundary

condition changes the special character of the wave field drastically. It imposes a strong spatial

decay of the waveform inside fractal contour bounded cavities. Strong attenuation of vibration

near the rigid edge was observed, which could be useful for damping applications. The density of

states at lower frequencies was also found to be lowered, due to repulsion between states.

Moreover, the localized waveform, named "fractinos" to distinguish them from fractons was found

near the boundary. This fractal interface model is proposed to study binary amorphous glasses or

composites where interfaces could have fractal dimension.

Several approaches have been taken to compute the eigenvalues and eigenvectors of fractal

systems. For fractal drums (fractal interface), the vibration spectrum is computed using the analogy

between the Helmholtz equation AW = (-) and the diffusion equation AT = ( ). By
c at2  D t

defining the solution to be of the form z (x, y, t) = i(x, y) exp (- t) the initial distribution (of
_P
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particles) $ O(x, y) can be found with given boundary condition. Then, the next state can be found

by z 1(x, y, t = 0) = zo(x, y, t = 0) - $fO(x, y) f jO(x, y)zO(x, y, t = 0)dxdy . To study the

eigenfunctions on Koch Snowflakes, Lehel mapped the unit disk to a polygon approximating the

fractal conformally first and then solved a weighted eigenvalue problem on the unit disk by a

spectral collection method. Most of the methods involve iteration, which make sense given the

iterative nature of IFSs in generating the fractals.

Designer materials based on fractal geometry have also been investigated by several groups

(Bader, 2005; Cmojevic-Bengin, 2008; Doyle, 2010; X. Huang 2010; Ito, 2010; Jacquin, 1994;

Kubota, 2009; Levy-Vehel 2010; Rammal, 1983; Schreiber, 1985; Shalaev, 2000a, 2000b, 2000c).

Its irregularity and self-similarity leads to unique properties that are different from conventional

periodic crystals or metamaterials, hence herald new opportunities for a range of applications.

Fractal geometry has also attracted interest in the antenna community since they allow for more

compact design, with their lower resonant frequency compared to conventional antenna(Crnojevic,

2010; Potapov, 2008;) (Jacquin, 1994; Potapov & Matveev, 2010). Since fractal antennas possess

self-similarity, the scaling law then indicates that they will exhibit multi-band character and high

confinement of the EM field, hence high Q factors(Evelyne Lutton, 2005; X. Huang et al., 2009;

Jacquin, 1994; Kubota et al., 2009; Seuront, 2010; F. Miyamaru et al., 2008; Palandoken, 2010).

Studies also showed how the geometric factor and fractal order would influence the performance

of the fractal resonators(Kubota 2009; Mejdoubi 2009; F. Miyamaru 2008). Besides fractal

antennas, small particles fractal aggregates also demonstrate interesting behavior(Seuront, 2010;

Potapov, 2010; V. Shalaev, 2000; V. M. Shalaev, 2000b, 2000c). Due to a lack of long range order

yet high connectivity, the localized electric field on the fractal cluster leads to huge field

enhancement, which hence leads to nonlinear optical phenomena, such as the Kerr effect, enhanced

optical emission, etc.

Recently, fractal geometry (mostly H shaped units) has also been introduced in electric, magnetic

and plasmonic metamaterials(X. Huang et al., 2009). With self-similarity, the structures possess

multiband EM responses covering a broad frequency. By stacking fractal patterns, the structure

exhibits a polarization and incidence angle-independent stop band. A fractal plasmonic

metamaterials supports both TE and TM polarized Surface Plasmonic Polariton (SPP). It also

possesses multiple resonances in both in-plane directions. All these unique properties present
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opportunities for applications, i.e. superlens, light polarization manipulator, slow light(Ito, 2010;

Jacquin, 1994; Potapov, 2010)(X. Huang et al., 2010).

There exist far fewer studies regarding phononic metamaterials with fractal geometry(Bader, 2005;

Ldvy-Vehel 2005). Although fractal structure has been used in architecture for acoustic purposes,

more often it is for aesthetic reasons(Woloszyn, 2005). With a growing interest in phononic

metamaterials with frequencies ranging from ultrasonic to heat, a general framework would be

valuable to both understand the mechanisms and guide the designs. The design of framework

proposed by Koh(C. Y. Koh, 2011), could be utilized to guide and unify the field.

1.4 Scale relativity

Significant progress has been made on the study of both abstract fractals, e.g. fractal groups and

fractal sets, and physical and biological systems with inherent fractal properties. The question

about the physical origin of fractal behavior still fascinates scientists and engineers. To address

this question, we shall go back and start from the very foundation of modern physics by introducing

the framework of scale relativity. Aiming to address how to reconcile the concept of quantum

mechanics with the concept of general relativity, scale relativity tries to find the underlying

fundamental principles for quantum mechanics' postulates and rules.

Starting from principle of relativity, i.e. "laws of physics should be of such a nature that they apply

for any state of the reference system", which implies that physical quantities are defined relative

to the state of a reference system. Although this principle is still philosophical at this stage, it can

be implemented by three interconnecting principles in a physical system: 1) the principle of

covariance, 2) the principle of equivalence and 3) the geodesic principle. It was found that if the

principle of relativity itself is applied to scales, in addition to position, orientation and motion, the

quantum mechanics can be derived/recovered from this foundation. Hence the introduction of scale

variables, which represent dilation and contraction, the laws of physics could include both classical

and quantum laws. This would shine light on the transition from the quantum to the classical

regime.
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To comply with the principle of relativity, a continuous space-time assumption is still retained. A

clarification is needed here before we proceed further. "Continuity" and "differentiability" are two

different concepts since a continuous curve (e.g. Koch Curve) can be nondifferentiable (in the

traditional sense) anywhere. As mentioned before, by giving up the assumption of differentiability,

a new generalization of the description of space-time is needed. This generalization can be

considered the continuation of generalization from flat geometry to curved space-time geometry.

It was found that the nondifferentiable and fractal geometry of space-time will lead to the essence

of quantum physics. Besides the fractal geometry we observed in nature, the theory was also

motived by another perspective from quantum mechanics itself. Feynman found that the typical

quantum mechanics path (i.e. those that contribute to path integral) are nondifferentiable and

fractal. The transition from quantum to classical regime was defined as the de Broglie scale XdB

h/p, where p is the momentum of the particle.

Under the scale relativity framework, the generalized Heisenberg relation may be deduced from

the conjectured fractal structure. By reformulating the wave function, the Schr6dinger equation

can be derived from this equation of motion. The general solution with a mathematical structure

of Lorentz groups for both motion and scale (log-Lorentz form) is obtained for special relativity

theory. An existence of a universal, unreachable lower scale in Nature is also been derived from

the breaking of scale relativity symmetry at the de Broglie scale and the log-Lorentz form of scale

transformation. Since this unreachable scale is invariant under dilation; it plays a similar role as

vacuum light velocity for motion.

Therefore, this thesis endeavors to build on the design framework laid out by Koh using the

conceptual framework from scale relativity. Starting from the geometric perspective, we strive to

apply the framework on metamaterials with complex fractal geometry. In Chapter 2, we will briefly

explain the original design framework and expand it further by borrowing the concepts from scale

relativity. Then we will apply the framework on metamaterials based on exact self-similar like

prefractal geometry in chapter 3. To deviate further from conventional well-defined symmetric

structure, we studied metamaterials based on fractional Brownian motion in Chapter 4 (random

fractals that are statistically similar). With the physical understanding of the framework in mind,

we applied it to design mesoscopic surface acoustic devices, which can be potentially used for
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"smart skin" device in chapter 5. The chaotic behavior of acoustic cavitation have also been

Finally, future works would be proposed based on the unique properties of the fractal structures in

Chapter 7. Finally, we conclude the thesis by highlighting the findings and a high level vision for

the future of metamaterial based on for fractal geometries.
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2. The General Framework for Metamaterials

2.1 Design framework

Phonons are present in all media with a general frequency range that covers 12 orders of magnitude

in scale and with up to 3 polarization degrees of freedom. The rich and complex behavior of

phonons presents both challenges and opportunities to manipulate and control them. In this

chapter, we set out the framework to address the question of how to optimize the phononic

behavior of metamaterials with the same set of governing principles.

The framework builds upon the mathematical structure of group theory and concepts of symmetry

breaking, which illuminate the phononic behavior in and across different media. By pointing out

the importance of relevant length scale, the feasibility of using the continuum approximation in

forming the guideline is established given that the classical limit still holds even at the 10-100nm

length scale.

Starting from the conservation equations, i.e. continuity of mass and momentum flow, the general

equations of classical waves can be developed. For some conserved quantity, M(t), in some region

of space K2, with a boundary ZH, and boundary gradient normal n, the conservation principle states

as (C. Y. Koh, 2011)

dt)=Rt +Std~t = R(t) + S(t)
dt

whereM(t) = fn p(rt)dV,R(t) = fa [(r,t)* ndS,S(t) = f s(r,t)dV,

dM(t)
dt = R(t) + S(t)

where M(t) = f~ p(2, t)dV, R(t) = I $( t) -ndS, S(t) = fa s(1, t)dV,

F(r,t) and S (r, t) represent the corresponding flux of the quantity, and source (sink) in the region

respectively. If the mass and linear momentum are substituted in the equation for elastic waves,

the elastic wave equation can be recovered. Moreover, this approach provides additional insight

through correct identification of the processes that lead to the development of the wave equation.

Since the polarization states of phonons pose a major challenge, understanding their physical

origin is crucial. Phonons are a simple form of Goldstone modes, which result from breaking the
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continuous symmetry of the medium. The atoms form a discrete array with translational symmetry

such that moving along by lattice spacing leaves the properties invariant. Each such broken

symmetry will give rise to a maximum of one new mode. It can be proven that the most general

classification of polarization eigenstates is determined by the underlying symmetry of the medium.

Therefore, when the inhomogeneities reach the length scale that can be sampled by the wave (i.e.

breaking the apparent continuous/homogenous symmetry/medium), the phononic spatial

dispersion behavior would change. Hence, the relevant length scale is determined by the

inhomogeneity in the medium and the wavelength. Since there is no absolute relevant length scale,

the distinction between artificial structure and bulk crystal become itself artificial and can be

removed.

Group theory studies the linear algebraic structure of groups and has several applications in physics

and chemistry since it can transform complex symmetry operation into simple linear algebra. By

connecting symmetry operations to matrices and basis functions, the representation theory can

shine light on properties of physical systems. Group theory dictates that the spatial symmetries of

the particular phonon eigenmodes have to be an irreducible representation (irreps) of the isotropy

group of the wave-vector of interest. While the global constraints delineate the possible phonon

eigenmodes a material system might have, knowledge of the microscopic dynamics in the

dispersion relation is necessary for designing in desirable functionality. The most common

desirable property to explore is to find the condition that determines the formation of wide

complete spectral gap. Bragg scattering at the Brillion Zone is a well-known mechanism to

generate a bandgap in a periodic structure along a particular direction. Recently, local resonance

of a material element has been also identified as a distinct gap opening mechanism. A closer study

of the eigenmodes in particular structures reveals that both mechanisms are manifestation of a

more general notion, that of avoided crossing. Avoided crossing can be defined as "detuned

crossing" where the eigenvalues (of the Hamiltonian) remain different due to coupling between

states). One typical example is the diatomic system, where the potential energy curves do not cross

each other(Redding, 1973; Sun L. et al, 1992). An intuitive way to understand this can be achieved

using the Schrodinger equation and its wave functions. If the two original states Vi are Y2

independent of each other (i.e. exist in orthogonal subspace), they would cross each other and

remain an exact solution of the Schrodinger equation without being perturbed. However, if the two

states Vi are V2 are not independent of each other and have some common properties, the system
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will find admix them in certain way (i.e. coupling might happen). And the common properties can

be manifested in the symmetry of the state since it is the most general spatial properties, regardless

of the electron state. No longer the exact solution of the Schrodinger equation, 01 and 42 - the

diabatic solution- can be used to represent Vi are XV2 - adiabatic solution. Since the coupling

between 01 and 02 could perturb the system, the resultant adiabatic solution will not cross(Raoul

B, et al, 2011). A similar principle also applies in the metamaterial system, avoided crossing

happens between eigenmodes with the same irreps. Therefore, by identifying the symmetry of

medium, avoided crossings can be predicted and controlled to form bandgaps.

Avoided crossing occurs at all length scales and depends on the relevant isotropy groups of the

wave vector. The interaction strength between modes influences the extent of spatial dispersion

(non-locality), i.e. a spatially localized wave usually has a flat dispersion curve. The extent of non-

locality is influenced by geometry (e.g. the mechanics connectedness of a medium), and the

relevant impedance contrast of the different constituents, which control the group velocity along

the bands. To further illuminate the relation of the physical topology of a structure to its phononic

properties, the concept of "dynamical mechanical band" is introduced to classify the nature of

phononic behavior: extended and tight-biding lattice classes. This simplified concept is derived

from the knowledge that dynamic impedance contrast is the key factor that determines phononic

behavior at the interface between constituents.

In sum (Figure 2.1), this framework starts from conservation principle to drive the governing

equations. It utilizes the mathematical construct of group theory to establish the global principles

governing the possibilities of band dispersion. Using the concept of broken symmetry, the

eigenmodes are classified according to representation theory of the groups. Avoided crossing is

the fundamental mechanism for opening a spectral gap, and it can only happen between

eigenmodes with the same symmetry group with respect to the relevant wave vector. Therefore,

it shows that the generalized requirement for gap opening is i) choice of the correct plane or space

groups symmetry for scattering motifs and their lattice; ii) controlling the set of avoided crossings.

While the interaction strength for a particular avoided crossing depends on several characteristics,

fortunately, they can be collected under one parameter, the so called "dynamic mechanical bond"

to simplify the design principle, the Moreover, by taking a variational approach, this framework
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General Framework
1) Global Principle: global invariants
and related phonon dispersion

Group theomy and Mheory of nupmeentstlan

Decompose solution into k..Lu& k //u

2)W
Underlying Symmetry + Polarization of the Eigenmodes

Possibility of avoided crossing(s)

2) Non ocal Principle: lattice is Important
Avoided crossing(s) only occurs between eigenmodes

with the same symmetry

W~ A
3) Local Principle: fine tune

sigenfrequency spectra @
several k points

B

Figure 2.1 Schematic of thes movinge 3 main principles listed. The dispersion plot shows 3
bands, where Mode I and 3 have the same symmetry group with respect to k and an avoided crossing occurs at A.
Band and 2 can cross, as at B since they have different symmetry with respect to k.

proves to be a powerfuln theo control and design the phononic medium to achieve desirable

properties tailored towards specific applications. To verify our design framework, we next apply

the framework to study conventional metamaterials systems detailed in Appendix A.

2.2 Review of escale relativity

As the physical approaches moving from descriptive modeling to predictive theory founded on

basic principles, physical science evolved through several stages, e.g. Ptolemy's model to

Newton's theory to Einstein's general relativity and quantum theory. Scale relativity theory aims

to pave the way to unifying the quantum and relativity concept on the basis of first principles. In

the framework of scale relativity, the quantum field becomes the manifestation of geometry of

space-time, which now includes a scale parameter. (Laurent Nottale, 2011). Using the principles

and construct of relativity, scale relativity introduced new operators to account the

nondifferentiability of the space-time-scale. A more detailed review of the major principles and
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derivation process is included in Appendix B. By giving up the differentiability of space-time,

scale relativity redefine derivatives in order to not give up the partial differential equation. For

system where nondifferentiability can be neglected, the standard differentiable physics would be

sufficient. However, nondifferentiability cannot be ignored with small and large length scale, as

well as complex mesoscopic system. To construct the scale relativity theory, the laws of scale at a

given point and instant was first constrained by the principle of relativity. Then the laws of motion

are derived to include the effects of nondifferentiability and fractality. After that, the law of

coupling between scale and motion are developed.

As mentioned in chapter 1, the length of the fractal curve can be estimated using L(s, e) = s(-),

where s is a renormalized curvilinear coordinate along the fractal curve and the exponent is defined

as r = DF - DT, where DF and DT are the fractional and topological dimension respectively. To

a
carry out the scale transformation, an infinitesimal dilation operator is derived as D = E a-, which

shows 1n6 as the natural variable for the resolution. The simplest equation for L under scale

OL(s~e _)

transformation is achieved when it is a function of L only, i.e. L = f(L),

Defining P(L)=a+bL+..., we haveL(s, E) = L0(s)f 1 + <(s) }. Therefore the projection of L

on any direction can be written as X(s, E) = x(s){1 + <,(s) ()}. The differential of the

projection can be written as dX = dx + d., where dx is a classical differential element and d oc

variation of the length variation of the fractal dimension

fractal 2 fractal

scale- .N .
E fdp~letindep7endentt

------------ ---------

is

logarithm of resolution logarithm of resolution

Figure 2.2: Fractal length and fractal dimension for self-similar fractals. The two figures show the scale dependence

of a length of a fractal and the fractal dimension in the case of inertial scale laws (i.e.f3 (.L) =a+b.C+...,), which are
solutions of simple first order scale differential equations. It transforms from scale dependent at small scale to scale-
invariant large scale. Figure reproduced from ( L. Nottale., 2011)
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dxl/DF. It is obvious that the dx corresponds to the differentiable element while d captures the

nondifferentiability. It is easy to see that when (i) for E «A, L(s, E) LO(s){(s) ()} L

follows a power law fractal curve, when (ii) for E >> A, L(s, e) ~ LO(s) is given by a scale

invariant, as shown in Figure 2.2.

The scale symmetry is spontaneously broken by the very existence of standard symmetries, (e.g.

translation, rotation) or the introduction of constant a in P(L). The symmetry breaking is achieved

by domination of one law over the other when moving through different length scales. And this

transition is identified with the Einstein-De Broglie scale, which conceptualize the quantum to

classical transition as being fractal to nonfractal transition in scale space(L Nottale, 1995).

The relationship can be further generalize by including even higher order term, e.g.. aL(s'E> = a +
alnE

bL + cL 2 ..., which would leads to two transitions to scale independence (both large and small

scales) as shown in Figure 2.3.

By introducing a complex value of b

() [1 + bcos(owlnE)]}.

(or fractal dimension) such that, we have L(e) = Lo{1 +

which exhibit log-periodic behavior, like a stationary wave in scale-space.

-15 -10 -5 0 5

C
0

E

0.8

0.6

0.4

-15 -10 -5
kIe

Figure 2.3 Fractal length and fractal dimension for self-similar fractals: two transitions. The two figures show the scale
dependence of a length of a fractal and the fractal dimension in the case of inertial scale laws, which are solutions of
simple first order scale differential equations. It transforms from scale dependent at small scale to scale-invariant large
scale. Figure reproduced from ( L. Nottale., 2011)
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a a
With the scale transformation (F->*') defined, a complex operator - = + V -V - iDy is

introduced to deal with the nondifferentiability by replacing d/dt. Here V is differentiable part of

the complex velocity field and D characterizes the amplitude of fractal fluctuation. This operator

enables us to recover the form of physical laws as their differentiable counterpart. Starting from

Newton's equation of dynamics m V = -V(P and defining (p = ei8/2mD, we obtain

D2A(p +iD - p = 0, (1)

When h = So = 2mD, standard Schrodinger equation can be recovered(L. Nottale, 1998). Hence

there is natural link between the Compton relation and the Schrodinger equation, where D can be

Assume: Non
diferentiability but

continuous

(~Z~~VVWd

Figure 2.4: Fractal length and fractal dimension for self-similar fractals: two transitions. The two figures show the

scale dependence of a length of a fractal and the fractal dimension in the case of inertial scale laws, which are

solutions of simple first order scale differential equations. It transforms from scale dependent at small scale to scale-

invariant large scale.
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defined by the fractal-nonfractal transaction. Hence the quantum-type mechanics (in regard to laws

of motion) in space-time can be derived from the simplest possible scale laws constrained by the

scale relativity principle and law of motion. Hence, scale relativity theory provides a new way of

looking at the scaling laws the physical laws, its main elements can be summarized in Figure 2.4.

Besides the satisfaction derived from finding the underlying link between geometry (in a broad

space-time-scale sense), the theory also has other interesting applications. Quantum behavior

might be observed in macroscopic (in traditional sense) for irreversible reflection process that meet

the condition described by quantum like tool. The analogy between medium-scatter and space (or

space-time) object holds potential for studying material physics to understand fundamental physics

(Laurent N, 2005, 2011)

2.3 Physics of fractional operator

While the scale relativity tried to understand the fractal system from the foundation of modem

physics principles, mathematical tools have also been developed to deal with the

nondifferentiability of geometry or process. The success of statistical physics relies largely on the

separation of microscopic and macroscopic processes(Daniel R, 1997). However, ordinary

statistical physics is no longer adequate when such separation does not exist (i.e. system with long-

time memory). Hence fractional differential equation has been developed to more accurately

describe such systems. Two of the most common equations studied are Schrodinger equation and

diffusion equation( Cresson, 2000; Dong et al, 2007; Mahata, 2013; Muslih, et al, 2010). The

general fractional Schrodinger equation (fSE) can be write as

cDaW(r, t) = - -Dao (h a-) W(r, t) - -I V(r)W(r, t)

where cDt is Caputo derivative, i5as is a new quantum diffusion constant. By varying the value

of a and p, we can apply fractional derivative on space and or time depending on the system we

study(Bruce W. et al., 2003).

For diffusion equations, the most general transport equation can be written as Dt" [u(x, t)] -

t u = Rau(x, t)r(1-fl)
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Where D0 is the fractional time derivative (non integer) operator, R' is the fractional space

derivative. Similarly, we can simplify it by applying fractional operative on just space

((xt) = Ra[P(x, t)]) or just time (Df[P(x, t)] = D )

The fractional calculus is closely associated with chaotic system. "Chaos can be defined as a

sensitive dependence of the solutions to a set of nonlinear, deterministic, dynamical equations, on

initial condition". Chaos and noise could be source of confusion. It is well known that chaotic

solution can result from a nonlinear system with only a few dynamical variables. Therefore, chaos

(i.e. erratic behavior of limited predictability) arises from nonlinear deterministic interaction in an

isolated dynamical system. However, noise results from environmental effect on a system since

the environment is assumed to have an infinite number of elements coupled to the system(Bruce

W et al., 2003).

Fractional random walks will impose an inverse power law memory on system response for a

random process. As a signature of fractal statistical process, the inverse power law spectrum can

be related to the fractal dimensions of the time using its index. Extending the modal to continuum

results in Fractional Brownian Motion (fBM), which is Gaussian but non-Markovian. By applying

fractional in time while second order in space, fBM with long-term memory can be modeled for

their stochastic dynamical process.

2.4 Generalized geometric design framework

By utilizing the group concept and representation theory, Koh's design framework better revealed

the underlying physical principles that govern the wave dispersion behavior in metamaterials,

especially phononic metamaterials. Realizing the potential of the geometric approach towards

designing materials, a more generalized framework can be developed to expand the horizon of

novel designer materials. Inspired by the ubiquitous fractals-like geometry of in nature, scale

transformation needs to be included in the framework since fractal geometries show structures at

all scales. By giving up the nondifferentiability of the geometries in order to describe the roughness

of fractal system/process, scale relativity must be added to the framework in addition other

conventional transformations, such as translation, rotation etc. Although this framework employed

fractal as a more abstract concepts, it can be helpful to understand fractal material system given
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the analogy between medium-scatter and space (or space-time)-object. Based on this foundation,

we can develop a generalized framework that would have potential to expand the horizon for

designer materials, e.g. those based on complex geometries, such as fractals.

For a material system with fractal-like geometry, its properties must undergo a fractal-nonfractal

transition due to the relationship X(s, E) = x(s)f 1 + (' (s) ( }. For natural system with multiple

fractal dimensions at different scale intervals (i.e. multifractal)- e.g. the Coast of Britain, the

material may go through several transitions X(s, e) = x(s){1 + ()+ }, as shown in

Figure 2.5. If we define the action S = 2mD = h, one transaction would correspond to the de

Broglie relationship in standard quantum mechanics, where AdB = h/p, (p is the momentum).

Since for phonons, the crystal momentum is defined as hk, where k is the wave number for

phonons, we have AdB = 1/k. Therefore when a fractal geometry comprised of crystalline

materials, a transition from the quantum to the classical should occur close to the atomic space

should be observed. This is consistent with our observation in the Koh framework, where the

displacement can be conceptualized as a smooth and continuous field. Hence we might observe

the scale independence behavior resulting from the translational and other symmetries common in

classical metamaterials.

Similarly, for materials that still retain translational symmetry yet with fractal-motifs (in their unit

cell), this fractal to nonfractal transition could be manifested. Hence Koh's framework would still

be applicable when the wavelength is comparable to the unit cell. However when the wavelength

is much smaller than the unit cell, the standard Hamiltonian and Schrodinger equation would not

be sufficient. For example, power-law behavior is common in fractal geometry and processes, yet

it cannot be a general solution to the standard linear time independent Schrodinger equation. To

account to the nondifferentiability of the geometry, we could generalize the physical law by

redefining the derivatives and integral to maintain the structure of governing equations.

This generalized process can be achieved in a different way: develop the fractional calculus where

the order of derivatives and/or integrals do not have to be integer anymore; or complex velocity

can be introduced with a modified time derivative operator, as scale relativity did. The similar

properties achieved in both approaches maybe a manifestation of the underlying link between these

two views.
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Hence, the general design framework presented could be tested on both exact-self similar fractal-

like samples and random fractal samples. The numerical and experimental study would verify the

theoretical construct and serve as general guideline for designing novel engineering materials.

Furthermore, by introducing fractal geometry to metamaterials, it expended the repertoire for

materials scientists. It might also be helpful to understand natural materials given their ubiquitous

existence in nature.

Figure 2.5: Schematics of generalized design framework
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3.Metamaterials based on Deterministic Fractal
3.1 Overview of deterministic fractal

As mentioned before, a fractal can be derived as a secondary property from a continuous and

nondifferentiable manifold with scale divergence in the limit resolution F-> 0. It does not

necessarily imply self-similarity at different scales; vice versa, self-similarity at different scale

does not necessarily mean fractal geometry. One typical example is a coastline, which is not self-

similar (even statistically) yet is still a fractal(Mandelbrot, 1983). Hence strictly speaking self-

similar fractals are a more restrictive view of fractals. However, we shall focus on self-similar

fractals given their potential for broadband and subwavelength behaviors that we are particularly

interested in.

Figure 3.1: One common way of classifying fractals according to their correlation at different scales. The examples
shown below are Sierpinski triangle, Mandelbrot set and Lung branching. Many natural objects do display some
degree of "statistical" self-similarity over a limited range of spatial or temporal scales, for example, lung branching
shows self-similarity over 14 dichotomies.
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Self-similar fractals can be divided into deterministic and random fractals according to their

correlation relationship. Deterministic fractals can be further divided into geometric and algebraic

fractals(Edgar, 2007). Geometric fractals are composed of several scaled down and related copies,

hence they can be created by repeating a process infinitely many times. The most common

geometric fractals created are Sierpinski Triangle and the von Koch snowflake. Algebraic fractals

can be created by calculating an equation (i.e. nonlinear iteration map) many times, such as Julia

Set and Mandelbrot Set (Wareham et al., 2010). Their development was accelerated after the

invention of personal computer. Both fractals are determined by their initial condition and usually

exhibit exact self-similarity or semi self-similarity. Random fractals have an additional element of

randomness and are commonly used to model natural phenomenon. However, randomness is not

equivalent to chaos, which itself is deterministic process(Kaye, 2008). Random fractals usually

have the property of statistical self-similarity, meaning they show similar statistical properties at

different scales.

Deterministic fractals would be a natural candidate to start with given that their geometric

symmetry elements in the conventional sense are relatively easy to identify. We will first study a

system where the scatterer phase is fractal-like geometry with high connectivity, e.g. H tree; and

then we will study a metamaterial system where the interface between the scatterers and the matrix

phase is the space filling fractal curve - Hilbert Curve.

3.2 Theoretical Study of Metamaterials based on H tree motifs

A fractal using H pattern has been studied and investigated in an electromagnetic metamaterials

based on fractal geometry(Huang et al., 2009)(Hou et al., 2008). Their geometrical properties

enable quite diverse applications. Since the distance between the center and all the distal points

are equal, the H tree prefractal has been used as a clock distribution network for routing timing

signals to all parts of a chip in VLSI design(Ullman, 1984)(Burkis, 1991). Similarly, microstrip

antenna arrays with H tree geometry have also been used to enable radio signals to read each

individual antenna with equal propagation delay (Yang et al., 2004). Since it is a more space

efficient way of interconnecting processors than conventional binary tree layout, H tree geometry

has been used in parallel supercomputing(Browning, 1980).
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The H tree curve in strictly mathematical sense is a space-filling curve with Hausdorff dimension

of two. The planar H tree curve can also be extended in 3 dimensions by adding branches in 3 rd

directions, which might be used as artificial building blocks, e.g. atoms, in designing novel

metamaterials(Hou et al., 2008). Furthermore, the bifurcation geometries in both trees and river

network have been investigated as an optimized geometry for distribution given certain

constrain(Leopold, 1971) . For trees, it has been proposed that bifurcation at the stem is necessary

result of local biomechanical stress and constrain(Leopold, 1971). Recently, the Htree geometry

is found to be a result of resistance minimization principle that allows the volume-to-point flow to

continue its outward expansion(Bejan, 2000). Further study has been conducted to study the

diamter, branch angle and branch (a)symmetry to find the opitmized geometries for its thermal

conductivities and resistence (Liu, 2005; Wang et al., 2007). 2D plate with finte thickness H tree

patten has also been used to model the thermal conductivity of vascular branch our epidermal

layer(Bejan et al., 2013).

3.2.1 Theoretical study of 2D fractal system based on H tree motif

Since the H tree can only be implemented at a finite level in any real physical system, the level of

the iteration is varied to study how the number of generations influences the behavior.

Furthermore, other parameters such as the thickness/length ratio and materials properties has also

been investigated, as listed in Table 3.1 and Figure 3.2.

Table 3.1: H patterns geometric parameters for system studied, where t and 1 is the thickness and length as defined in
Figure 3.2 below.

S ample L evel t/I Fill ratio (Htree) Comments
Name

H2 N = 2 t/l= 1/9 0.2125 only for first level, t is constant

H2_thin N = 2 t/ = 1/18 0.10625 only for first level, t is constant

H3 N = 3 t/l= 1/9 0.3575 only for first level, t is the same for
N =1,2 and t is halved for N = 3

H4 N = 4 t/l= 1/9 0.413 only for the first level, t is the same for N
= 1,2 and t is halved for each iteration

afterwards
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Figure 3.2: Schematics of H tree based binary system unit cell where blue is the scatterer phase and white is the matrix
phase, where thickness 1 and length ratio t are indicated. The symmetry in all units is p2mm.

To define the physics, H like patterns (blue region) are set as scatterers while the background

(white region) is set as the matrix material. The dispersion curve is then calculated from MATLAB

by exporting the file from COMSOL and sweeping the k vector over the BZ.

Along the FX direction, there is mirror plane symmetry along X-axis (Mx) and identity (E), the

displacement is either symmetric (mode 2) or antisymmetric (model) with respect to the wave

vector krx. The polarizations remain the same along the band. For bands with different symmetry

(with respect to krx,) they can cross each other without avoided crossing happening, (e.g. between

band 2 and 3 at 0.7 krx. Along the XM direction, the symmetry is My and E, and the displacement

fields are again either symmetric or antisymmetric with respect to the wave vector kxM.

At point X, avoided crossings happen between mode I(M1) and 9(M9) as well as mode 3(M3) and

11 (Ml 1) since their modes are symmetric and antisymmetric with respect to mirror plane. Hence

the bands that appear to bound the bandgap are not necessarily the bands that are interacting to

form the gap.

3.2.1. 1 Plane Strain vs. Plane Stress

We computed for both plane stress and plane strain conditions for H2 pattern. Plane stress occurs

for thin samples, where az =0. And plane strain occurs for extremely thick samples, where Cz = 0.

Due to the applicability of thin sample for both fabrication and testing, plane stress computation

are emphasized. The effect of the plane stress vs plane strain model on the H pattern has also been

studied and is shown in Figure 3.4. No significant changes have been observed for the polarization
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Figure 3.3: (a) The dispersion curves for sample H2 plane strain (red dot dash line) and H2 plane stress (blue dash
line) along the BZ of the unit cell (along F-' X-M) as indicated in the unit cells in the bottom right insert. (b)The
eigenmodes corresponded are arranged at the side as indicated, where the color (red - large, blue-small displacement)
indicates the magnitude and the arrow indicates the direction of the displacement. Both eigenmodes MI and M9 are
symmetric with respect y axis while M3 and M 1 are anti-symmetric with respect to y axis at X point. At X point, the
interacting pairs are MI M8 (symmetric with respect y axis), and M3 M II (anti-symmetric with respect y axis).

of the displacement field except that the frequencies are relatively lower than the corresponding

modes at plane strain model. This is predictable given reduced rigidity of the plane stress model,
which leads to lower eigenfrequencies. The general framework is still applicable for such system

3.2.1.2 Material Properties

Within the framework for the global behavior, the local interactions can be tuned by varying the

material properties, e.g. lower the modulus of the matrix materials, as shown in Figure 3.5, where

the eigenfrequencies are reduced due to the lower modulus of the system. While the long

wavelength eigenmodes (i.e. Ml and M2 at F point) exhibit smaller difference, the eigenmodes at

higher frequencies are quite different. In general, the displacement field is more confined with

increasing mechanical impedance contrast between the matrix and scatterer phase. .For Em =4.35e

9Pa, the high strain region can exist in both scatterer and matrix, e.g. M17 at F, X and M point,

where the polarization have been symmetric with respect x axis or y axis. Even for eigenmodes

where high strain region are mainly located in the matrix phase, they can still spread into the

scatterer phase through higher level H arm, especially the corner of the H arms. For Em =4.35e6

Pa, the fields are well confined in the matrix phase. Given the larger contrast of the scatterer vs.

matrix modulus, eigenmodes with higher frequency prefer to be concentrated in at the less rigid

phase, i.e., the matrix in this case.

3.2.1.3 Thickness/Length ratio

The geometries of the arms that form the H also affect the behavior of H tree based system, as

shown in Figure 3.6. Due to the decreasing filling fraction of the more rigid scatterer phase from

H2 (0.2125) to H2_thin (0.10625), the eigenfrequencies of the system decrease. The displacement

fields at higher frequency are also less confined in t/l = 1/18. The general guideline about symmetry

and avoided crossings still applies in this case, as demonstrated in the eigenmodes plot in Figure

3.6(b). For both sample, the longitudinal and transverse modes at long wavelength again are
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The eigenmodes corresponded (as highlighted by solid triangle (or circle) are arranged at the side as indicated, Eigenmodes M1, M2 (3) at F, X, M point shows are

the goldstone modes (longitudinal or transverse displacement). The symmetry of displacement polarization are the same for both plane strain and plane stress at F

point.
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Table 3.2: Material properties used for the simulation for dispersion curves. The scatterer here approximates the
properties of lead and the matrixi has properties similar to the epoxy SU8. The Matrix3 is close to that of a rubber.
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(d) F point X point M point
Em = 4.35e9 Em = 4.35e6 Em = 4.35e9 Em = 4.35e6 Em = 4.35e9 Em = 4.35e6

M0 17 M 16 M 17 M 17

7 7

Figure 3.5: (a) The dispersion curves for sample H3 with varying Young's Modulus for Matrix from 4.35e9 to 4.35e6 along the BZ of the unit cell (along M4
Y4 174 X4M) as indicated in the unit cells in the top insert. (b) The dispersion curves along the BZ of the unit cell (along M4 Y4 F X4M) for sample H3
where Em = 4.35e9 and bandgap is highlighted in hatched rectangle; (c) The dispersion curves for sample H3 along the BZ of the unit cell (along M 4 Y-) F-+
X-M) where Em = 4.35e6 and bandgap is highlighted in hatched rectangle as indicated in the unit cells in the top insert. (d) The eigenmodes corresponding to H3
with different Em (as highlighted by solid triangle). Eigenmodes Ml, M2 at F, X, M point are the goldstone modes (longitudinal or transverse displacement). The
symmetry of displacement are symmetric with respect to either x or y axis or both. For sample with larger impedance contrast, the high strain region are more
localized to the matrix, where the high strain region can exist in both scatterer and matrix phase (e.g. M17)
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(b) F
t/ = 1/9

point
t/I = 1/18

X point
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M point
t/I = 1/Q

Figure 3.6: (a) The dispersion curves (with plane stress mode) for sample H2 (t/l = 1/9) (red short dash dot) and H2 (t/l = 1/18) (blue dash) along the BZ of the unit
cell (along M-4 Y 4 F-* X-*M) as indicated in the unit cells in the right insert. (b)The eigenmodes for t/l=1/9 (black solid triangle (or circle)) and t/l = 1/1 8(olive
solid triangle) are arranged at the side as indicated, Eigenmodes Ml, M2 at F, point are the goldstone modes (longitudinal or transverse displacement). The
symmetry of displacement are symmetric with respect to either y (MI and M9 (10) at X point and M1 (2) and M8 (10) AT M point) and or x axis (Ml and M9 (10)
at X point, M3 and M9 (11) at M point). The eigenmodes are more localized with H2 compared to H2_thin.
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observed across the BZ boundary (e.g. Ml, M2 (3) at F, X and M point). Given that both F, X and

M point has the mirror symmetry with respect to both x and y axis, eigenmodes at higher frequency

exhibit polarization that is symmetric with either x axis (e.g. M2 at F point, M3 and Ml 1(12) at X

and M3 and Ml 1(9) at M point) or y axis (e.g. Ml and M5 at F point, Ml and M9(10) at X and

M1(2) and M8(10) at M point) or both or two fold symmetry (e.g. M4(5) at F point). Eigenmodes

with same symmetry would undergo avoided crossing that contributes to the bandgaps formed in

Figure 3.6(a). The eigenmodes are H2 and H2_thin have similar symmetry element, while they

exhibit slight difference in localization of high strain region. .

3.2.1.4 Levels of Iterations

To study how a fractal like system would behave at different length scale, the level of iterations

for H pattern has been studied (Fig 3.7). As the filling fraction of more rigid scatterer phase

increase from 0.2125 (H2) to 0.3575(H3), the eigenfrequencies for goldstone mode (long

wavelength that corresponds to the unit cell as a whole) increase. Multiple spectral bandgap has

been observed for both H2 and H3 (as shown in Fig. 3.7(a)), while the numbers of spectral gaps

for higher level of iteration (i.e. H3) is larger. For the frequency range calculated, Sample H2 has

only three bandgap clustered towards the lower frequency range of the spectrum. While the

bandgap for H3 are spread out to higher frequency range calculated with varying sized. This could

due to the interaction of the higher level H tree unit (i.e. the smaller unit) at the frequency

comparable to their feature size. Similar trends have been observed in sample pair H2 and H4 (as

shown in Figure 3.8(a), where the eigenfrequencies for goldstone mode increases as the fill ratio

of scatterer phase from 0.2125 (H2) to 0.413(H4). Compared to H3, H4 has smaller average

bandgap size despite the fact it has even larger number of spectrum gap, as shown in Table 3.3.

To investigate the nature of interaction between bands with the same symmetry (with respect to

the relevant k vector, the eigenmodes are plotted in Figure 3.7(b). For H3, the longitudinal and

transverse modes again are observed across the BZ boundary (e.g. M1, M2 (3) at F, X and M

point). Then eigenmodes with similar symmetric elements compared to H2 has been observed, i.e.

M4 of H2 and M5 of H3 at F point (Figure 3.6(b) and Figure 3.7(b). As the eigenfrequency goes

higher, the eigenmodes would symmetric with either x axis (e.g. Ml and M7 at F point, M3 and

M7 at X and M point) or y axis (e.g. M2 and M5 at F point, Ml and M4 at X and M point) or both
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(e.g. M6 and Ml 1 at F point, M5 and M10 at X and M6 and M10 at M point) or exhibit two fold

symmetry. Eigenmodes with same symmetry would undergo avoided crossing that contributes to

the bandgaps formed in Figure 3.7(a). For medium frequencies range, the H tree on the first level

have minimal displacement while the four quarters delineated by it shows mixed displacement (a

rotational nature) as if scale the mixed modes by half and arrange with different symmetry element,
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Figure 3.7: The dispersion curves (with plane stress mode) for sample H2 (t/l = 1/9) (red short dash dot) and H2 (t/l = 1/18) (blue dash) along the BZ of the unit

cell (along M4 Y+ F-+ X+M) as indicated in the unit cells in the right insert. (b)The eigenmodes for t/l=1/9 (black solid triangle (or circle)) and t/l = 1/18(olive

solid triangle) are arranged at the side as indicated. Eigenmodes MI, M2 at F, point are the Goldstone modes (longitudinal or transverse displacement). The
symmetry of displacement are symmetric with respect to either y (M3 and M7 at X and M point or x axis (Ml and M4 at X point and M points) or both (M5 (6)
and M10 at X and M point).
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which only appear in few modes in sample H2. Given the interface grows with the increased

number of iteration, the effective path for impedance discontinuity also increase. For H4, the

symmetry patterns are retained; it also have eigenmodes that are symmetric with either x axis (e.g.

M2 and M5 at F point, MI and M4 at X and M point) or y axis (e.g. MI and M7 at F point, M3

and M6 at X and M point) or both (e.g. M6 and M10 at F point, M5 and M9 at X and M point) or
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Figure 3.8: (a) The dispersion cur.es for sample H2 (black dot line) and H3 (red short dash dot) along the BZ of the unit cell (along M 4 Y+ F4 X-M) as

indicated in the unit cells in the right insert. (b) The eigenmodes for t/l=1/9 (black solid triangle (or circle)) and t/l = 1/18(olive solid triangle) are arranged at the

side as indicated, Eigenmodes Ml, M2 at F, point are the Goldstone modes (longitudinal or transverse displacement). The symmetry of displacement are symmetric

with respect to either y (M3 and M6 at X and M point) or x axis (MI and M4 at X point and M points) or both (M5 and M9 at X and M point).
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Table 3.3: Bandgaps data formed for samples with different levels of iteration and impedance contrast (for the
frequency range we investigated)

H 2 3 0.265 Ks/ Km = 96.022

H3 6 0.312 Ks/KM = 96.022

H4 6 0.171 Ks/Km = 96.022

H2 5 0.327 Ks/Km = 303.022

H3 6 0.591 Ks/Km = 303.022

H4 9 0.293 Ks/Km = 303.022

exhibit two fold symmetry, as shown in Figure 3.8(b). Compared to H3, the absolute displacement

is lowered while the eigenfrequencies is higher since the fill fraction of the softer matrix phase

actually decreases from H3 to H4. However, the increase in effective Young's modulus is not

sufficient to explain the difference, since normalized eigenfrequencies for H3 (i.e. coa/2nc) are still

lower than H4. This can be further explained by the more flattened dispersion curve of H3 due to

the more localized nature of its eigenmodes compared to H4 with same impedance contrast.

Furthermore, the transition from large to small strain in the unit cell does not have the 1 generation

H tree acting as the rough interface anymore, comparing Figure 3.7(b) and Figure 3.8(b).

3.2.2 Theoretical Study of 2D plate with finite thickness Metamaterials based on H tree
motifs

The study of eigenmodes in 2D in previous section provides interesting insight in the behavior of

H tree based system. To accelerate the implementation of such system in devices application, 2D

plate with finite thickness systems are investigated for both in plane displacement In this case, the

single unit with the H tree prefractals would be the sample of interest, where the periodic boundary

condition is removed at four edge faces. The dimension of the sample is chosen such that it would

be optimal for the acoustic/ultrasonic setup. The edge of the square is the 20mm (equivalent of a

in 2D system) and the thickness is 3mm (for thick sample) and 1mm (for thin samples). The

dimensions of the H tree slits obtain the same ratio as a/t/l of H2_thin sample in the above section,
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as shown in Figure 3.8 insert. To ensure structural integrity, we define the matrix as the solid phase

while the scatter phase are silts filled with medium (water or air) later.

The 2D plate with finite thickness sample geometry is drawn in AutoCAD and the imported into

COMSOL to find its eigenmodes through full wave simulation. After the eigenfrequencies are

obtained, they would be used as the frequency of a point source at certain distance from the sample

(Fig 3.8). Then stimulated eigenmodes (by the point source) are investigated to better understand

how the source wave would activate the eigenmodes. The boundary of the sample were set to be

acoustic-structure boundary and the fluid domain is bounded by sound radiation boundary

condition.

For samples with two levels of H trees in water, the lowest eigenmode dominated by in plane

displacement has a frequency of 2090.5Hz with two fold symmetry, so does the fluid pressure field

with a high and low pressure region on each edge of the sample (Fig 3.8). As the frequency

increases, eigenmodes with other in plane symmetries have also been observed, e.g. symmetric

with both x and y axis (e.g. 3583.2Hz), symmetric with y axis (e.g. 7475.lHz). It is likely the

lowest eigenmode corresponds to the stretch and compression along the longest dimension

possible (diagonal) and then move to the edges (half a sinusoidal wave) and then decreasing

wavelength of displacement with increasing frequencies. As the frequency increase, the number

of nodes in the fluid pressure field also increase (e.g. 35445Hz), which is consistent with the

relationship between the energy and displacement nodes. The eigenfrequency is then used as the

frequency for waves from a point source and the resultant displacement field and fluid pressure

Table 3.4: Bandgaps data formed for samples with different levels of iteration and impedance contrast (for the frequency range
we investigated)

Modulus 3.2e9

Density 1000 Rho(pA[l/Pa],T[l/K])(kg/m^3) 1190

Poisson Ratio - - 0.35

Speed of Sound 1497 346.65 2800
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Stimulated modes at eigenfrequencies

Figure 3.9: The displacement field (on the sample) and the pressure field (outside the sample) of 2D plate with finite thickness Htree (level two) at the top row with
eigenfrequencies 2090.5Hz, 3583.2Hz, 7475.1Hz, 35445Hz (from left to right), and stimulated modes (in water) at eigenfrequency of the 1s row, where the color
indicates the magnitude and the arrow indicates the direction of the displacement. The point source and the wave front (black short dash dot) are indicated in the
second row second column.
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Eigenmodes of H3 in water

Stimulated modes at eigenfrequencies

Poiri
soul

0

Figure 3.10: The displacement field (on the sample) and the pressure field (outside the sample) of 2D plate with finite thickness Htree (level three) at the top row
with eigenfrequencies 740.1Hz, 1224.0Hz, 2484.1 Hz and stimulated modes (in water) at eigenfrequency of the I" row, where the color indicates the magnitude
and the arrow indicates the direction of the displacement. The point source and the wave front (black short dash dot) are indicated in the second row second column.
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Eigenmodes of H3 in air

Stimulated modes at eigenfre uencies

so

Figure 3.11: The displacement field (on the sample) and the pressure field (outside the sample) of 2D plate with finite thickness Htree (level three) at the top row
with eigenfrequencies 855.2 Hz, 1630.6Hz, 2879.6Hz, 5525.3Hz and stimulated modes (in air) at eigenfrequency of the 1st row, where the color indicates the
magnitude and the arrow indicates the direction of the displacement. The point source and the wave front (black short dash dot) as the same as above
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Eigenmodes of H3_thin

Stimulated modes at eigenfrequencies

Figure 3.12: The displacement filed (on the sample) and the pressure field (outside the sample) of 2D plate with finite thickness Htree (level three thin) at the top
row with eigenfrequencies 830.7Hz, 1582.6Hz, 2785.1Hz, 5374.7Hz, and stimulated modes (in air) at eigenfrequency of the 1st row, where the color indicates
the magnitude and the arrow indicates the direction of the displacement. The point source and the wave front (black short dash dot) as the same as above
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field is plotted in second row. For eigenmodes that are symmetric with x axis, their symmetry

properties are retained with little variation. On the other hand, for eigenmodes that are not

symmetric with respect x axis, their displacement vary significantly (e.g. 2090.5Hz, 7475.1Hz). It

is worth point out that the eigenfrequency of the in-plane eigenmodes (2090.5 Hz) is much lower

compared to the frequency corresponding to the dimension of the plate (i.e. 1500m/s / 20 mm =

75 kHz). To understand this deep subwavelength behavior, we proposed a simple analytical model

using Helmholtz resonator tree, as will be discussed later.

For samples H3 in water, the lowest eigenmodes dominated by in plane displacement also has two

fold symmetry with a frequency of 740.1Hz, so does the fluid pressure field on each edge of the

sample (Fig 3.9). As the frequency increases, eigenmodes with similar displacement features as in

H2 (level 2) have been observed, e.g. symmetric with both x and y axis (e.g. 1224.0Hz,), symmetric

with y axis (e.g. 2484.1 Hz). For displacement of stimulated modes, similar features have been

observed as with H tree (level two). Therefore, as the level of iteration increases, the frequency of

eigenmodes further decreases from 2090.5Hz to 740.1Hz.

For H3 trees in air, the lowest eigenmodes dominated by in plane displacement also has two fold

symmetry with a frequency of 855.7Hz, while the fluid pressure field on surrounding the sample

also have a two-fold symmetry (Fig 3.10). As the frequency increases, eigenmodes with similar

displacement features as in water have been observed, e.g. symmetric with both x and y axis (e.g.

1630.6Hz,), symmetric with y axis (e.g. 2879.6 Hz). For displacement of stimulated modes, similar

features have been observed as with H3 (in water). Therefore, by varying the surrounding fluids

medium, the frequency of eigenmodes change from 740.lHz to 855.7Hz. To study how the

thickness of the sample would affect the behavior of the in-plane behavior, the H3 thickness

decrease from 3cm to lcm, as shown in Figure 3.11. The frequency for the corresponding

eigenmodes (i.e. similar symmetry properties in-plane) lowered with the decreasing sample

thickness.

Besides the full wave simulation, a simple analytical model has also been implemented to develop

a physical intuition of the system and shine lights on the mechanism of subwavelength eigenmodes

observed. The Helmholtz resonator is simple acoustic resonant system (Fig 3.12(a)) with a hollow

spherical shell connected to an open neck. Its acoustic properties can be characterized by cavity

volume Vo, the neck length lneck and the cross sectional area of neck S as well as speed of sound v
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and density of surrounding medium p. A close analogy can be established between propagation of

sound in pipes/champers and electricity flow in electric circuits, i.e. the closed end of chamber is

like a capacitor, the narrow neck can be modelled by a resistor and inductor in series as shown in

Figure 3.12 (b). In this model, the impedance of an open tube can be represented by its

inductanceL = pl/S, the capacitance of the chamber can be written as C = Vo/pv 2 , and the

resistance can be modeled by R = pv/S. For the circuit, the external and internal pressure can be

represented by

(a)

R L

Pi C P

T )

RU2 V L- 0' PV 2 o

Vo, P10

U00  -,

dV, P

(c) R2 Lzo

[ ho C:2  P20

L~R0Io0UC Po R, LI

00 LU1 1 CIO PI

-7-4-EJ& A(!)

Figure 3.13: (a) Helmholtz resonator and (b) its equivalent circuit (c) Example of a Helmholtz resonator tree; (d) its

equivalent circuit. Source: Rafael P. and Vesa V. Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-

12), 2012
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the voltage p I and p0 respectively, while the medium flow through the neck can be represented by

current. The acoustic impedance of a single resonator is given by

Z(o) = (jo)2LC+joRC+1
jCoC

Where o is the frequency in rad/s and j is square root of -1.

The Helmholtz resonator has been extended further to build a resonator tree to represent a musical

instrument better (Fig 3.12(c)). Since many acoustic problems have been studied using acoustic

circuit by applying electric circuit theorems, the equivalent circuit framework has also been used

to study this system. Hence the impedance of a Helmholtz resonator tree with N branches can be

determined through iteration process

ZK ) =(jw)
2 LC +jwRC + 1

jwC + Z i ZK-1,n(

Where K is the level of iteration and N is the number of branches.

The Helmholtz resonator tree can also be used to model the Htree structure given the branching

quality of both systems. The impedance of the Helmholtz resonator tree structure has been

calculated by implementing the equation in MATLAB. With increasing level of iteration, the

lowest resonance of the system continuous decreasing as shown in Figure 3.13. For 7 level of

iteration, the lowest eigenfrequency is about 520 Hz, corresponding well with Htree (level 3) and

5 level of iteration has the lowest resonance frequency of 5400Hz, corresponding to Htree (level

2). Moreover, within increasing level of iteration, the number of resonance dips also increase as

shown in Figure 3.12 and Figure 3.13. Both features are a demonstration of the properties of the

iterative impedance generation function, which shows that the number of the dips are relates to the

poles in the equation (i.e. level of the iteration) and the lowest dips are related to the effective path

of the current.
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Figure 3.14: Magnitude response showing the effect of changing the number of branch division for the Helmholtz
resonator tree for Lower resistance R circuit (a) and High Resistance R circuit (b).

3.2.3 Fabrication of 2D plate with finite thickness Metamaterials based on H tree motifs

Fabrication of fractals can be done with both top-down and bottom up approaches(Kubota, 2009;

Pawlak, 2010; Seuront, 2010a; Shalaev, 2000c). Small particle aggregates can be prepared through

atomic deposition onto a cold substrate by gravitational deposition. Self-affine random metal-
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dielectric plate has also been fabricated by thermal evaporation or sputtering of metal onto an

insulating substrate. More regular fractal pattern has also been fabricated with standard

lithographic techniques.

H tree based system has been fabricated using a high resolution 3D printer (Project 6600) using

3D design software AutoCAD, as shown in Figure 3.14. The contact point and scaffolding

geometry have to be optimized to ensure both the reliability of the fine features and easy removal

of supporting scaffolding. Too sparse contact point might result in closure or defects in the fine

slit feature, while too dense contact point may result in cracking of fine feature when breaking off

the supporting scaffold.

SupPlate 1 0.25 2.25 2.5 1
SupPlate 2 0.1875 1.6875.1.875 0.75
SupPlate 3 0.125 1.1251 1.25 0.5

Figure 3.15: 3D drawing of H tree based sample for SAM measurement tapered platform (a) Fabricated samples using

3D printer (Project 6000) (b) detailed dimension schematics of the H tree (c) and samples dimension (d)
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3.2.4 Characterization of Metamaterials based on Fractal Geometry

Another robust technique that can be used to test the phononic behavior of the system is Scanning

Acoustic Microscopy (SAM). A Scanning acoustic microscope is a characterization tool that uses

focused acoustic waves to image a sample (Briggs, 1982). However, the mechanism for image

formation is very different from optical microscope (OM) or scanning electronic microscope

(SEM)(Maev, 2008). As shown in Fig 3.15, an acoustic wave is generated using piezoelectric

materials (e.g. PVDF or quartz) with in house electronic circuit to control their frequency and

profile. The acoustic wave will be focused by acoustic lens (usually made of sapphire and

spherical) and will then propagate through a coupling medium (e.g. water) to interact with the

sample sited beneath. The reflected and transmitted wave consists information about the properties

of the materials and microstructures within the sample. Therefore, a mechanical image can be

obtained by scanning a stationary sample with focused acoustic wave.

Since sound can interact with opaque materials, SAM can be used to imaging subsurface features

in samples, and as such, SAM is as a common Non-destructive testing technique commonly used

in semiconducting industry(Maev, 2008; Manual, n.d.; Sam, 2008). To filter relevant information

for testing or imaging for specific purpose, SAM offers several scanning modes, which allows

insight into of the materials properties in xy plane, xz plane, 3D etc. (Fig 3.15). Since SAM is very

sensitive to mechanical properties and discontinuity in materials, it can be used to map a

mechanical composition of a surface by setting a reference signals. For example, it can be used to

image the texture structure (e.g. crystallographic orientation) of polished surfaces without the need

for etching.

Moreover, SAM can also be used to investigate composite materials, once such example is

concrete sample made with granitic aggregate grains and Portland cement. Using a transducer

centered around 400 MHz, SAM can clearly identify the boundaries between different materials

as well as their distribution, some of which are hardly distinguishable from SEM. Therefore, a

SAM image carries rich information that is valuable for mapping out mechanical composition of

an object.

Besides hard materials, SAM has also been used to investigate soft materials in biological and

medicine studies (Maev, 2008). For example, SAM has been used to study the physiochemical

processes of cell during heating. It was found that cell delamination-detachment would happen,
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followed by cell death if the temperature was increased further. Due to its unique imaging

formation mechanism, SAM can be used to obtain distinct information about samples, which are

difficult to accesses from other techniques. The SAM apparatus at MIT currently has an imaging

resolution of around 6 um, which could be potentially attractive for samples with comparable or

larger features sizes. The SAM can also be used in both transmission and reflection modes,

although reflection modes is preferred in many case due to the less strict requirement in the

thickness of the sample. Despite its robust and versatile capacities, few studies have been done to

use SAM to probe structures with micrometer feature sizes. By modifying the profile of the

incident acoustic waves and tailor making the samples, SAM could potentially be a powerful tool

to probe the phononic properties, especially surface/interface phonic properties, which are really

attractive for device design and applications.

To fully leverage on the capacity of SAM, we tested a sample made of transparent resin from high-

resolution 3D printer as described from the last section. The H tree pattern is the slits (i.e. scatter

phase) while the matrix phase are plastic solid surrounding the slits. The edge of the matrix square

a is 5mm, while the a/l/t ratio is the same as sample H2_thin. The center frequency we used for

Scan Modes
Grain boundary structures,
textures

Particles,
inclusions,

GD-scanprecipitations
Cracks

Voids,~

Delamination, bubbs, Z Throu- a
holesadhesion

artefacts
P-scan Xsa

Figure 3.16: Schematics for image forming mechanisms of the scanning acoustic microscope (SAM). The transducer
generates acoustic waves that are incident on sample containing microstructures, such as cracks, delamination, voids
or particle inclusions. Different scanning modes in SAM offer various applications, C scan is the most common xy
plane scanning, where B scan is xz or yz plane, which can be used for thickness analysis using time of flight.
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Transducer 1: 1
Source/receiver

Transducer 1:
Sour

Jagducer 2:
Receiver '

Echo mode (5X5mmA2) Transmission Mode (5X5mmA2)

Figure 3.17: Scanning Acoustic Microscope (SAM) image of the 4XH2 tree sample (middle insert) in both reflection (a) and transmission (b) modes with the
optical image of the comer overlap on top of the SAM images. The schematics of both modes has been shown on top of the images with the instrument in the
middle.
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imaging is 50 MHz (i.e. um), where both reflection and transmission mode are used for the

imaging. As mentioned above, SAM is very sensitive to surface features of the sample in reflection

modes, especially in a defocused position. The surface finish of the sample from our 3D printer

around the slits shows clearly in the image in the reflection modes, where the height difference

between immediate vicinity of the slit and those further away is reflected in the different grey value

of the image. Furthermore, the sharp corners in the 3D drawing are rounded in the images, which

could result from limitation of both the 3D printing and the SAM imaging. Furthermore, the

dimension of the slits and other features has also been measured, which correspond well with the

design parameters defined in the AutoCAD software. The transmission mode is a complementary

technique to the reflection modes. The sharp corner is not preserved for the images which is likely

due to the diffraction at the sharp corner.

3.3 Metamaterials with Hilbert Curve as the binary phase boundary

3.3.1 Theoretical study

Hilbert curve is a continuous space-filling curve that can visit every point in a square grid with a

size of 2x2, 4x4, 8x8, 16x16, or any other power of 2. It was first described by David Hilbert in

1892 as a variant to other spacing-filing curve developed by Giuseppe Peano(David, 1869). Its

length in Euclidean space varies with the level of iteration as2' - 2-, which grows exponentially

yet is bounded within a finite area.

Since Hilbert curve as well as its prefractal preserves locality when mapping between 1D and 2D

space, (i.e. points are close by along the curve would also have nearby coordinate values in xy

plane), they have been used widely in computer science(Nikos Mamoulis et al., 2009). They have

been used to in linear mapping between multidimensional data warehouse by utilizing its unique

clustering properties(Moon et al., 2001; Nguyen et al. , 2012; Zhou et al., 2012). To further

improve their performance, modified Hilbert Curves have been used to adapt to constrains and

demands of data applications(Hamilton et al., 2008; Meng et al., 2007). It also been used for

visualization of genome data to get better insight than conventional way of presenting data(Anders,

2009). A triple band flexible loop antenna based on third order Hilbert Curve was found to exhibit

omnidirectional radiation pattern and circular polarization(Yang, 2012).
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The subdomains of the scatterer and matrix are separated by the approximate Hilbert curve with

different level of literation, as shown in Figure 3.18, where periodic boundary condition is applied

at the edge of the square cell. To investigate the scale dependent behavior of the system, the

iteration level has been varied. Similarly, Young's modulus and the arrangement have also been

varied to study their effect on Hilbert Curve bounded system.

HbI Hb2 Hb3 H4

X X X X

Figure 3.18: Top row is Hilbert curve with iteration level of 3, 4, 5 and 6 respectively, the corresponding unit cells
HbI, Hb2, Hb3 and Hb4 are plotted in second row, where blue is the scatterer phase and the white region is the matrix
phase. The filling ratio of Hb1, Hb2, Hb3 and Hb4 are 0.4373, 0.4708, 0.4862 and 0.4868 respectively. The BZ zone
is also superimposed on top of the unit cell, where the edge length of the unit cell is indicated for Hb too.

Table 3.5: Hb patterns fill fraction for system studied

Samnple Level of Hilbert Curve iterations Fill ratio (Scatterer phase)
Nanme

HblN =3 0.437

Hb2 N =4 0).471

Hb4 N=6 0.487
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3.3.1.1 General framework

As shown in Figure 3.19, the Hilbert curve bounded pattern has a mirror plane along y axis and

identity at F point while the symmetry element reduced to identify along FX and MF direction.

Along the XM direction, the symmetry is again mirror along y axis and identity, where the

displacement can be either symmetric or antisymmetric with respect to the wave vector kxM. At

point X, mode 1 and 4 as well as mode 13 and 14 are both antisymmetric with respect to y axis

mirror, and an avoided crossing leads to the band gaps. Similarly, two other pairs, mode 3 and 8

as well and mode 11 and 12, are antisymmetric with respect to y axis mirror. At point M, the y

Hb ; -(a) Hb1 Em = 4.35e7

U - -

3 .. ,..*.--......... .. I....

0*

- * I * I a .* . I i.

M X M
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(b) F point X point M point

M8M 14 M 8 M 14

M2 M3 M 13 M3 M 13

M4 M 12 M4 M 12 M 4 M 12

M1 Mi1 MI Mi1 M2 Mi1

Figure 3.19: (a) The dispersion curves for sample H2 (Es = 4.35e7Pa) (red short dash dot) along the BZ of the unit cell (along r4+ X+M) as indicated in the unit
cells in the right insert. (b)The eigenmodes (highlighted as black solid triangle (or circle) are arranged at the side as indicated, Both eigenmodes Ml and M9 are
symmetric with respect y axis while M3 and Ml 1 are anti-symmetric with respect to y axis at X point. At X point, the interacting pairs are MI M8 (symmetric with
respect y axis), and M3 M 1 (anti-symmetric with respect y axis).
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axis mirror symmetry and the identity also enable the possibility of avoid crossing. The pairs with

symmetric (with respect to y axis) eigenmodes are M2 (M4) and M 1 (M12); the pairs with

antisymmetric (with respect to y axis) eigenmodes are M3 (M8) and M13 (M14).

3.3.1.2. Material Properties

The materials properties investigated are listed in Table 3.2 for the binary system, where the

Young's Modulus of the scatterer phase is varied. When the modulus of the scatterer decreases

from 4.35e10 Pa to 4.35e6 Pa, the eigenfrequencies will decrease as expected, as shown in Figure

3.20. For long wavelength (or lower frequency) eigenmodes, the eigenmodes of samples with rigid

and soft scatterers looks similar except the Hilbert curve boundary is more conspicuous at a higher

impedance contrast, (e.g. M1 and M3(4) at X point in Figure 3.19 eigenmodes plot). This high

impedance contrast between scatterers and matrix results in more localized displacement fields,

i.e. the displacement are better confined in the soft scatterer phase. Hence, the eigenmodes at

higher frequency appear to be more localized, hence the dispersion curve are flattened (as shown

in Figure 3.19 eigenmodes M14 (15) at X point and M16 (15) at M point).

3.3.2.3 Levels of iterations

The effect of the level of iteration has also been studied for the Hilbert curve pattern, as shown in

Figures 3.21, 3.22 and 3.23. As mentioned above, the filling fraction of scattering phase increases

gradually with increasing N (i.e. 0.4373, for iteration level N = 3, 0.4708 for iteration level N =

4, 0.4862 for iteration level N = 5). When the scatterer phase has a higher Young's modulus, the

eigenfrequency increases with increasing N, as shown in Figure 3.21. However, when scatterer

become the softer phase (i.e. Es < Em), the eigenfrequencies decrease from sample Hb1 to Hb3,

Therefore, filling fraction itself is insufficient to determine the eigenfrequency even the material

properties are the same for the binary phase. At the low frequency, the eigenmodes correspond to

the longitudinal and transverse mode, hence the salient features of the eigenmode are retained since

the wavelength is much larger than the feature size in the binary composite. However, with

increasing level of iteration, the number if bandgaps and size seems to increase from Hbl to Hb2

and then decrease Hb3. For Hb3, the dispersion curve seems to indicate more extended

displacement field, which is reflected in the than the feature size in the binary composite. However,

with increasing level of iteration, the number if bandgaps and size seems to increase from Hbl to
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Hb2 and then decrease Hb3. For Hb3, the dispersion curve seems to indicate more extended

displacement field, which is reflected in the localization characteristic of eigenmodes.

Table 3.6: Material properties of the system studied for binary and matrix phase, the Young's Modulus of the scatterer
phase is varied. The scattererl here approximates the properties of lead and Scatterer2 has Young's Modulus similar
to the epoxy. The Matrix3 is close to that of a rubber. The properties of matrix is close to PMMA.

Young's Modulus Pa

Poisson Ratio

Density kg/ml3

(a)

(I

U-

F

4.35e0

0.329

972

4.35e7

0.329

972

X

4.35e6

0.329

972

4.35e8

0.375

2500

M r
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X point
eScl0 eSc7 eScl0

M point
eSc7

Figure 3.20: (a) The dispersion curves for sample Hb2 with varying Young's Modulus for scatterer phase, e.g. Es =
4.35elOPa (black dot line), Es = 4.35e7Pa (red short dash dot) and Es = 4.35e6Pa (blue dash) along the BZ of the unit

cell (along F4 X-M+ F) as indicated in the unit cells on the right insert. (b)The eigenmodes (highlighted as black

solid triangle are arranged at the side as indicated, , All eigenmodes are symmetric or anti-symmetric with respect to

y axis where the high strain region is more localized for samples with higher mechanical impedance contrast.

Table 3.7: Material properties used for the simulation for dispersion curves. The scatterer here approximates the

properties of lead and the matrixl has properties similar to the epoxy SU8. The Matrix3 is close to that of a rubber.

Bulk Modulus Pa 4.35e9 4.35e7 4.35e6

Poisson Ratio 0.368 0.368 0.368

Density kg/M3 1180 1180 1180

4.08e10

0.37

11600
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Furthermore, given multiple spectral band gaps formed, several avoided crossings happened

between eigenmodes with the same symmetry even at higher frequencies, as shown in Figure 3.23

(c). Furthermore, as the level of iteration increases, the location of lowest bandgaps shifted upward

comparing Hb2 and Hb3, as shown in Figure 3.22 and Figure 3.23.

At higher frequency, the displacement are also more spread out for Hb3 than for Hb2 and Hbl (Fig

3.19, 3.21 eigenmodes). Although all the eigenmodes still possess antisymmetric/symmetric with

respect to y axis or identity, the eigenmodes no longer resemble one another. While the transition

for high strain/high energy (i.e. high displacement) and low strain/low energy (i.e. low

displacement) region at smaller N (i.e. Hbl) are smoothed over sharp corners of Hilbert Curve

boundary, the transition follows the Hilbert Curve more closely at higher N, such as M5 (7) and

M7 (6) at M point for Hbl (3) (Fig 3.19, 3.21 eigenmodes).

When the literation level becomes relatively high (N = 5 and N = 6), the difference at lower

frequency become less and less since the composite becomes almost homogeneous given the ratio

of wavelength/feature size of phase boundary), as shown in dispersion curves of Hb3 and Hb4

from Figure 3.23. With increasing level of iteration and torturous nature of the boundary, the

transition for hot (i.e. high displacement) and cold (i.e. low displacement) region are more linear

compared to lower level iteration (i.e. the displacement direction have less rotational component).

For all the four samples we studied, two impedance contrast are chosen since increase impedance

would affect the dispersion behavior locally. By tabulating the features of bandgaps in table 3.8,

Hbl Hb2 Hb3

.x ....
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(b) r point X point M point
Hb2 Hb3 Hb2 Hb3 Hb2 Hb3

M 18 M 24 M 23 M 26 M 23 M 3

M 12 M 20 M21 M 25 M 21 M 33

M 17 M 23 M 17 M 24 M 8M 23

M 10 M 19 -- M10 M 12 M 11 M 22

Figure 3.22: (a) The dispersion curves for samples Hbl (black dot line), Hb2 (red short dash dot) and Hb3 (blue dash) along the BZ of the unit cell (along 174

X-M+ F) as indicated in the unit cells in the Figure 3.18. The materials constants used are Es = 4.35e7, others are listed in Table 3.2. (b)The eigenmodes for

Hbl (black solid triangle) and Hb3 (olive solid triangle) are arranged at the side as indicated, Both eigenmodes Ml and M9 are symmetric with respect y axis while

M3 and M 1 are anti-symmetric with respect to y axis at X point. At X point, the interacting pairs are Ml M8 (symmetric with respect y axis), and M3 M 1 (anti-

symmetric with respect y axis)...
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Table 3.8: Bandgaps data formed for samples with different levels of iteration and impedance contrast (for the

frequency range we investigated)

Hb1 31 0.689 Ks/Km = 96.023

Hb2 42 0.572 Ks/Km = 96.023

Hb3 28 0.149 Ks/Km = 96.023

Hb4 9 0.025 Ks/Km = 96.023

HbI 35 0.769 Ks/Km = 303.023

Hb2 54 0.770 Ks/Km = 303.023

1b3 50 0.491 Ks/Km = 303.023

Hb4 27 0.133 Ks/Km = 303.023

Hbl_2 43 0.684 Ks/Km = 96.023

Hbl_2 48 0.821 Ks/Km = 303.023

Hb2_3 28 0.124 Ks/Km = 96.023

Hb2_2 40 0.342 Ks/Km = 303.023

we can see that the size of bandgap increase with increasing impedance contrast, however, the

trend with levels of iteration is less obvious. From the system we investigated, Hbl and Hb2 are

both good candidate for broadband response system. Furthermore, Hbl might be even superior

given the number of bandgaps is smaller.

3.3.2.4 Variation of the arrangement of building blocks

Since structures having higher levels of iteration are hard to fabricate, it would be interesting to

know if their properties can be mimicked by arranging the building blocks with lower level of

iteration. To mimic the behavior of Hilbert Curve with iteration level 4, we arrange the building

blocks with Hilbert Curve with iteration level 3 (sample Hbl_2), as shown in unit cell in Figure

3.23. We define the scatterer and matrix in such a way that matrix are connected across the unit

cell, similar to original cell Hb2, while the boundary between scatterers and matrix are still similar
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to by approximate Hilbert Curve. It can be reorganized that the top portion of Hbl_2 is identical

to Hb2 while the bottom portion is complementary to Hb2. The dispersion curves differs from each

other significantly for sample Hbl_2 and Hb2 for Young's Modulus of Em = 4.35e7Pa (Fig 3.24

(a)) and Em = 4.35e6Pa (Fig 3.24 (b)). The filling ratio of the stiffer scatterer phase of Hbl_2

(0.455) is smaller than that of Hb2 (0.4708) and the dispersion curve shift downwards from Hb2

(Fig 3.23(a)).

A similar process was applied to Hb2 and Hb3 as shown in the unit cell in Figure 3.24. Again the

top portion of Hb2_3 is identical to Hb3 while the bottom portion is complementary to Hb3. The

dispersion curves differ from each other for sample Hb2_3 and Hb3 for Young's Modulus of Em

= 4.35e7Pa (Fig 3.25 (a)) and Es = 4.35e6Pa (Fig 3.25(b)). The filling ratio of stiffer scatter phase

of Hb2_3 (0.4715) is smaller than that of Hb3 (0.4868) By simply modifying the arrangement of

the motif, the size of bandgaps increases comparing Hbl_2 to Hb2, as shown in Table 3.8

However, the trend is not preserved for sample Hb2_3 and Hb3.

H b2 Hbl2

HV 3
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Figure 3.25The dispersion curves for sample Hb3 (red short dash dot) (a) Hb2_3 (blue dash) (b) with Young's Modulus of scatterer phase Em = 4.35e6 along the

BZ of the unit cell (along M4 Y-> 174 X4M) as indicated in the unit cells above the dispersion curve. The filling ratio q of Hb3 and Hb2_3 are 0.4868 and

0.5715 respectively.



3.3.2 Fabrication of 3D Metamaterials based on Hilbert tree motifs

Hilbert Curve bounded systems with different levels of iterations have been fabricated using high

resolution 3D printer (Project 6600) by designing using AutoCAD, as shown in Figure 3.24. As

the level of iteration increases, the fabrication process is more challenging since the supporting

scaffolding would have more point of contact with sample for facilitate the thin slit structure. The

contact point and scaffolding geometry have to be optimized to ensure both the reliability of fine

feature and easy removal of supporting scaffolding. Too sparse contact point might result in

closure or defects in the fine slit feature, while too dense contact point may result in break of fine

feature when braking off the supporting scaffold.

Figure 3.26: 3D drawing of Hilbert Curve based sample for out of plan transmission measurement with increasing
level of iterations from left to right, 2 nd row are the corresponding samples fabricated from high resolution 3D
printer (project 6000) with the clear resin.
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3.4 Conclusion

Deterministic fractals, e.g. Sierpinski Triangle and the Koch snowflake, have captured the

attention of mathematicians for their unique properties. Their unique properties render them as

interesting for applied applications, such as metamaterials, sound absorbing materials and

biological diffusion system. Metamaterial based on deterministic prefractals have been studied

(e.g. H tree prefractal) and they exhibit novel behavior. In this chapter, we aim to further our

understanding of phononic metamaterials based on deterministic prefractal by study two systems

using the theoretical framework introduced in chapter 2: one where the scatterer phase has fractal

like geometry, e.g. H tree prefractal; the other is fractal interface e.g. Hilbert curve prefractal,

between the scatterer and matrix phase

For H tree based metamaterials, we studied both in-plane eigenmodes and out-of-plane

transmission behavior for 2D and 2D plate with finite thickness systems. For 2D system, several

factors have been studied systematically on how they would impact the behavior of the systems.

It was found that the length/thickness ratio, level of iteration and materials properties can all be

used to control the wave propagation behavior in the system through different mechanism. By

increasing the level of iteration, multiple bandgaps can be achieved across different length scale.

For 2D fractal resonator with finite thickness, the lowest eigenmodes exhibit subwavelength

frequencies from full wave simulation, which is 1/75 of the frequency comparable to the Euclidean

dimension of the plate. A simple equivalent electric circuit is developed to describe the Helmholtz

resonator tree, which in turn can be used to explain in-plane eigenmodes of the 2D plate with finite

thickness slab with H tree prefractal. The resonance frequency obtained are consistent with the full

wave simulation. 2D fractal resonators with finite thickness have been fabricated using high

resolution 3D printer, where the scaffolding and other parameters have to be optimized to achieve

the precision and robust mechanical properties of the final sample. To study their mechanical

behavior, SAM has also been used for imaging the surface and subsurface of sample (in reflection

mode) as well as the transmission characteristic of such samples (in transmission mode). The

reflection images revealed topographic features informative of the surface finish of the sample.

For Hilbert Curve prefractal bounded sample, their in-plane eigenmodes have been studied for 2D

system. Again multiple spectral band gaps have been observed for the samples studied. It was
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found that higher impedance contrast between scatterers and matrix are preferred for band opening

since high strain region are more localized in softer phase, hence flatten the dispersion curves.

Furthermore, the bandgap size increases and decrease with increasing level of iteration (as well as

filling ratio of scatterer phase), which might indicate an optimal fill fraction. Furthermore, the

eigenmodes are less confined with increasing level of iterations although they still obey the

symmetry of the relevant k vector. Besides the level of iterations, arrangement of the building

blocks also influence the behavior, although the symmetries of the unit cell is retained, their

variation in local dynamics also changed the dispersion behavior system. The bandgap size of

modified system can be larger or smaller than the pure prefractal system depending on the level of

iteration. Furthermore, it was found the bandgap size of the fractal interface is larger than that of

a fractal phase (although the interface of H tree prefractal also exhibit certain fractal like

properties).

Hence, both broadband behavior and subwavelength (for compact devices) has been observed for

metamaterials based on deterministic prefractals, which could be beneficial for a wide range of

applications. The knowledge gained can further be used to understand and model the fractal system

in nature since it can serve as a transition from crystal material to fractal system observed in nature.

Their unique properties can be used to control and manipulate wave propagation through such

systems. Hence studying metamaterial systems based on deterministic fractal would further

expand the horizon for novel designer materials.

100



3.5 Reference

Shalaev, V. M. (2000). Small-Particle Fractal Aggregates. In Nonlinear optics ofRandom
Media: Fractal composites and metal-Dielectric Films (pp. 21-73). Springer.

Anders, S. (2009). Visualization of genomic data with the Hilbert curve. Bioinformatics (Oxford,
England), 25(10), 1231-5.

Bejan, A. (2000). Shape and Structure, from Engineering to Nature (p. 324). Cambridge
University Press.

Bejan, A., & Zane, J. P. (2013). Design in Nature: How the Constructal Law Governs Evolution
in Biology, Physics, Technology, and Social Organizations (p. 296). Knopf Doubleday
Publishing Group.

Briggs, A. (1982). An introduction to scanning acoustic microscopy (p. 70). Oxford science
publications.

Browning, S. A. (1980, January 1). The Tree Machine: A Highly Concurrent Computing
Environment. California Institute of Technology.

Burkis, J. (1991). Clock tree synthesis for high performance ASICs. In [1991] Proceedings
Fourth Annual IEEE International ASIC Conference and Exhibit (pp. P9-8/1-3). IEEE.

David Hilbert. (1869). Ueber die stetige Abbildung einer Linie auf ein Flachenstuick.
Mathematische Annalen, 12.

Edgar, G. (2007). Measure, Topology, and Fractal Geometry (Google eBook) (p. 288). Springer.
Group,. Scanning Acoustic Microscope. Image (Rochester, N. Y).
Hamilton, C. H., & Rau-Chaplin, A. (2008). Compact Hilbert indices: Space-filling curves for

domains with unequal side lengths. Information Processing Letters, 105(5), 155-163.
Hou, B., Xie, H., Wen, W., & Sheng, P. (2008). Three-dimensional metallic fractals and their

photonic crystal characteristics. Physical Review B, 77(12), 125113.
Huang, X., Xiao, S., Zhou, L., Wen, W., Chan, C. T., & Sheng, P. (2009). Photonic

Metamaterials Based on Fractal Geometry. In Metamaterials: Theory, Design, and
Applications (pp. 215-245).

Kaye, B. H. (2008). A Random Walk Through Fractal Dimensions (Google eBook) (p. 452). John
Wiley & Sons. Retrieved from http://books.google.com/books?id=Kp582WW-
GkcC&pgis=1

Kubota, S., Miyamaru, F., & Takeda, M. W. (2009). Terahertz response offractal
metamaterials. 2009 34th International Conference on Infrared, Millimeter, and Terahertz
Waves (pp. 1-2).

Leopold, L. B. (1971). Trees and Streams: The Efficiency of Branching Patterns. J Theor. Biol.,
31, 339-354.

Liu, T. (2005). Optimum Bifurcating-Tube Tree for Gas Transport. Journal ofFluids
Engineering, 127(3), 550.

Maev, R. G. (2008). Acoustic Microscopy: Fundamentals and Applications. New Journal of
Physics (1st ed., Vol. 15, p. 291). Wiley-VCH;

Mandelbrot, B. B. (1983). Thefractal geometry of nature (p. 468). San Francisco: W.H.
Freeman, c1983.

Manual, U. (n.d.). User manual. Data Base.
Meng, L., Huang, C., Zhao, C., & Lin, Z. (2007). An improved Hilbert curve for parallel spatial

data partitioning. Geo-Spatial Information Science, 10(4), 282-286.

101



Moon, B., Jagadish, H. V., Faloutsos, C., & Saltz, J. H. (2001). Analysis of the clustering
properties of the Hilbert space-filling curve. IEEE Transactions on Knowledge and Data
Engineering, 13(1), 124-141.

Nguyen, G., Franco, P., Mullot, R., & Ogier, J. (2012). Mapping high dimensional features onto
Hilbert curve:

Nikos Mamoulis, Thomas Seidl, Torben Bach Pedersen, Kristian Torp, I. A. (2009). Advances in
Spatial and Temporal Databases: 11th International Symposium, SSTD 2009 Aalborg,
Denmark, July 8-10, 2009 Proceedings (Google eBook) (p. 466). Springer.

Pawlak, D. A., Turczynski, S., Gajc, M., Kolodziejak, K., Diduszko, R., Rozniatowski, K.,
Vendik, I. (2010). How Far Are We from Making Metamaterials by Self-Organization? The
Microstructure of Highly Anisotropic Particles with an SRR-Like Geometry. Advanced
Functional Materials, 20(7), 1116-1124.

Sam, X.-R. (n.d.). Scanning Acoustic Microscopy. Science, 1-89.
Seuront, L. (2010). Self-Similar Fractals. In Fractals and Multifractals in Ecology and Aquatic

Science (pp. 25-98). CRC press Taylor & Francis Group.
Shalaev, V. M. (2000). Small-Particle Fractal Aggregates. In Nonlinear optics ofRandom

Media: Fractal composites and metal-Dielectric Films (pp. 21-73). Springer.
Ullman, J. D. (1984). Computational aspects of VLSI (p. 495). Computer Science Press.
Wang, X.-Q., Mujumdar, A. S., & Yap, C. (2007). Effect of bifurcation angle in tree-shaped

microchannel networks. Journal ofApplied Physics, 102(7), 073530.
Wareham, R. J., & Lasenby, J. (2010). Generating Fractals Using Geometric Algebra. Advances

in Applied Clifford Algebras, 21(3), 647-659.
Yang, D.-O. K. C.-Y. K. D.-G. (2012). Flexible Hilbert-Curve Loop Antenna Having a Triple-

Band and Omnidirectional Pattern for WLAN/WiMAX Applications. International Journal
of Antennas & Propagation;, 2012, 9.

Yang, L. T., Guo, M., Gao, G. R., & Jha, N. K. (Eds.). (2004). Embedded and Ubiquitous
Computing (Vol. 3207). Berlin, Heidelberg: Springer Berlin Heidelberg.

Zhou, Y., & Jiang, L. (2012). Hilbert Curve Based Spatial Data Declustering Method for Parallel
Spatial Database. In 2012 2nd International Conference on Remote Sensing, Environment
and Transportation Engineering (pp. 1-4). IEEE.

102



4. Metamaterials based on Random Fractal

4.1 Why these systems are interesting?

Random fractals are more common than deterministic fractals in nature. This is due to the

aggregation of many small parts in the physical objects (spatial fractal process) or in the process

itself (temporal random fractal process). The randomness for the objects or processes implies

scale-related repetitions of overall complexity but not of an exact pattern. Random Fractal analysis

have applications in many areas, such as ecology system, biological growth, distribution of

galaxies, solar activities, stock market, seismic wave, internet traffic, turbulence etc.

Coastlines are examples of random fractals that have been studied extensively by Mandelbrot, who

showed that the fractal dimensions of coastlines vary within certain range. How would they behave

differently with respect to reflecting waves (e.g. tsunami or just regular tide)? To go one step

further, what is the cause of the variation in their fractal dimension? The fractal dimension of lungs

are correlated to the health of the individual. Since several organs and their vitals exhibit fractal

properties, modern medicine could use analysis of fractal properties to help differentiate between

health and diseased individuals. For example, it was found that the fractal dimension of the lung

and the lung sound spectrum appears to vary between healthy and sick lungs, which might provide

a new way to help diagnosis. Hence study metamaterial systems that exhibit randomness would

increase the repertoire for novel designer materials; moreover, it may also contribute our

understanding of natural physical systems and processes.

4.2 Overview of Random Fractal

4.2.1 Fractional Brownian motion

After the discovery of Brownian motion, it is one of the most common stochastic processes used

in a variety of applications. However, the assumption of independent increment is limited for

modeling systems with long-range correlation or long-term memories. To meet the demands of

such applications, the independent increments assumption is removed, resulting in a more

generalized stationary Gaussian process called fractional Brownian motion (fBM). Given its

statistical nature, correlation functions have been valuable approaches to give quantitative

description of the fractal random/stochastic system (Heory, 2010; Mandelbrot, 1977; Seuront,
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2010a).

If we define a general density function as, where is density at position r and averaging over all

possible ro, then for self-similar fractals (isotropic scaling), the general density function would

obey a homogeneous power-law:

Where a = d-D, where d is the Euclidean dimensionality of the embedding space, and D is usually

the fractal dimension. For anisotropic scaling (i.e. scale differently along different dimensions), a

new concept self-affine has been introduced. For a set of points X = (x 1, x2 . XDE), a self-

affine transformation would result in a new set of points as Ax = (A 1x 1 , ; 2 x 2 . -.. .ADEXDE)'

where the scale ratios (A1 , 2, .---- , ADE ) are all different. Brownian motion is a self-affine

process since it scales differently with respect to time and space (Mandelbrot, 1977, 2006; V. M.

Shalaev, 2000d).

Fractional Brownian motion can be applied to both spatial and temporal processes. The fractional

Brownian diffusion process can be described by both fractional calculus and stochastic calculus.

One of the continuum models often used is the KPZ equation (Rothman, D. H. 2008):

d(x,t) A
= vV 2h(x,t) + - Vh(x,t) 2 +7q(x,t)

C1 2

where v is diffusivity, ri is the Gaussian noise, and A is average normal velocity

For a spatial process, self-affine surfaces are common in nature (e.g. mountains) and can be

described by h(x) = b-H h(bx), where h(x) is the height of the surface and H is called Hurst

exponent. We define W(L) as the root mean square fluctuation of height over length L, then the

fluctuation of the height over length L (Rothman, D. H. 2008) can be described as

W2(L)= | h(x)|2dxocL2H
0

For 0<H<1, the surfaces are called fractional Brownian surfaces, and the surfaces can be

categorized according to value of H

* 0<H<1/2 is anti-persistent or sub-diffusive case,

" H =1/2 corresponds to pure diffusion
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1/2<H<1 is persistent or super-diffusive cases

Various models have been proposed to construct a self-affine surface with different features, one

of them will be explained in detail in next section.

4.2.2 Methodology to generate random fractal based on fractional Brownian motion

To generate a random fractal with binary phases/components, we use a spatial generation process

to obtain the fractional Brownian field/surface (Dirk P. K. 2013). Starting from generating fBm on

a uniform grid, the increment processes (x, = w - w,_, ), also known asfractional Gaussian noise,

can be obtained from a discrete zero-mean stationary Gaussian process with covariance

cov(Xi,Xi+k ) = 1(Ik + Ila - 2|kI a + k - 1Ia), k = 0,1, 2 ....

Where H=a/2 is the Hurst constant that measures the self-similarity of the process.

Fractional Gaussian noise can be generated using a circulant embedding approach to exploit the

structural properties of the stationary Gaussian process. The stationary process is characterized by

constant expectation function and an invariant covariance function under translation. This

approach is implemented by four steps: 1) the covariance matrix is built and stored, the matrix is

uniquely characterized by its first block row and has a symmetric block-Toeplitz structure, where

the matrix contains blocks repeated down the diagonals of the matrix, just as Toeplitz matrix has

elements repeated along the diagonals of the matrix. This step is usually the most time consuming

step in typical applications. 2) Each Toeplitz matrix is embedded in upper left corner of a circulant

2 2 0.7

0.50. 0460.

00

0.5 1 0.3

-1 - N -0.1

0 02 04 0A6 0.6 1 0 02 04 0.6 0.A 1 0 02 04 0.6 OA

Figure 4.1: Self-affine fractional Brownian motion (fBm) characterized by various Hurst constants. Image from Dirk
P. K., Zdravko I. B. (2013).
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matrix. 3) square root of the block circulant matrix is computed. 4) The appropriate sub-block is

extracted to obtain the Gaussian field on the grid. Using this approach, fBms with different Hurst

constant are generated as shown in Figure 4.1.

To extend this process into two dimensions, fractional Brownian field/surface can be obtained,

which is a zero mean Gaussian process with non- stationary covariance function defined by

Cov(X,,)X)= p(s,t)=|| s I| +\t |la -||s -t |la

Where H = a/2 is Hurst constant that controls the roughness of the surface, and the Hausdorff

dimension can be found by DH = 2- H.

To obtain an fBms on a unit disk in the first quadrant, a stationary Gaussian field X, is generated

over the quarter disk with the covariance function

( s,t)= c0 +c2 | ISOt2 L11sOtl9 where constants c0 ,c 2 0.

Once X, is generated, X, can be obtained via the adjustment

X, can be generated using intrinsic embedding via the following covariance function

W0 + c2 \|h ||2 0 11 h F || h |\]1
'~'h- /RUG||h H)3

J(h) = 1011 h ||OR
||I h I |

0 11 h ||O R

where the value of the constant depends on the value of a. As an example, for a grid size of m=n

= 1000, the fBms with different Hurst constants are generated as shown in Figure 4.2. Hence higher

Hurst constants lead to smoother surfaces while the smaller ones lead to rougher surfaces.

A 2D binary system can be then obtained from fractional Brownian surface/field(fBs) following

the follow procedure: Defining a plane with height hc to intersect the fractional Brownian surface

with grid numbers N (i.e. N numbers of unit per edges, hence NxN total grid squares in the yellow

plane), where N is also the grid number for generating the fBs. Then if the height of the fBs is

larger than the value of hc, we would draw a circle at the grid; otherwise, it would be left empty.

After this procedure, there would be random distributed circles (serving as a scatterer) reflecting
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fH = 0.5

Figure 4.2: Examples of the fractional Brownian surface generated using the code for different Hurst constants.

Image from Dirk P. K., Zdravko I. B. (2013).

the spatial relationship of the heights, as shown in Figure 4.4 To implement this concept in

MATLAB, we first generated the matrix of height and then sort them to find our critical value h,.

Once we find the he, all the nodes with height above it would be center of circles. The distributions

generated with H = 0.1, 0.3, 0.5, 0.7, 0.9 are shown in Figure 4.4. Therefore, the filling ratio (area

of scatterer/total area) is determined by the hc, if we fix the diameter of the circles to be the same

as the grid size (more detail can be found at Appendix C: MATLAB code for the 2D geometry).

The two dimensional image generated is then imported into COMSOL as the geometric object,

where the circles are scatterers, where the rest of region is defined as matrix. The materials

properties are listed in Table 1 below. By saving the COMSOL models as m files, the full wave

eigenfrequency varies with respect to the wave vector k) can be calculated to gain insight in overall

H =0.2 H= 0.5 H= 0.8

Figure 4.3: Demonstration of a cap plane intersecting fractional Brownian surface generated with different Hurst

constants, the transparent yellow planes are the cap plane.
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behavior of the system (more detail can be found at Appendix C: MATLAB code for calculating

the dispersion curve of the system. Then individual eigenmodes at a particular k vector will be

studied further using COMSOL.

4.3 Metamaterials system based on random fractals

To obtain translational symmetry for the system, periodic boundary conditions are applied to both

left-right and top-bottom pairs of edges on the unit cell. Therefore, the scatterers inside the unit

cell would have certain spatial correlation as defined by the Hurst constant while the translational

symmetry is also obeyed by the samples.

H = 0.1

S. Le S.-

t too

H = 0.7

I

K

I

H =0.3

02

x0 
P

0

H =0.9

x

Figure 4.4: Examples of the planar binary metamaterials unit based on a fractional Brownian surface with different
Hurst constants as listed on top of the unit cell. The circles are scatterer phase and its diameter is determined by the
grid number (d/a = N /2 = 25). The white phase represents the matrix. Since hc is fixed for the samples, the fill fraction
for the samples are the same as 7.85%.
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4.3.1 Is the Hurst constant sufficient to represent the behavior of the system?

Due to the random nature, the binary geometry generated each time is not exactly the same, as

shown in Figure 4.5. Hence, it would be interesting to find out if the Hurst constant is a unique

parameter to characterize the co(k) properties of the systems. Three random fractal based unit cell

with same Hurst constant (H = 0.1) and same fill fraction (hc = 0. 9 hmax) were generated as shown

in Figure 4.5. Their dispersion behavior has been studied to find out if they would be invariant

under same Hurst constant and fill fraction despite the apparent differences from sample to sample.

From the dispersion curves given in Figure 4.6, it can be seen at long wavelength/high

eigenfrequency, the dispersion curves nearly coincide with each other for the three different unit

cells. However, when the frequency increase to higher values (i.e. shorter wavelength), there are

slight deviation of the dispersion bands observed. To further verify the features of different

iterations, their eigenmodes have also been studied. It was found that for dispersion the similar

eigenmodes exhibit nodes similar to homogeneous slab (i.e. M9 at X point) while the deviation of

frequencies can be reflected in difference of high/low displacement features too (i.e. M10 at M

point), as shown in the eigenmodes plot in Figure 4.6

To further confirm that the Hurst constant could be a good indicator of the system behavior, the

Young's Modulus of scatterer phase is varied by a factor of 1000, as listed in Table 4.1. The

difference between different iterations would increase relatively comparing to system where the

impedance contrast of scatterers and matrix are smaller (i.e. Scattererl and matrix). Given the

* *

*.e

I 3

Figure 4.5: Unit cells of random fractal based metamaterials with the same Hurst constant (H = 0.1) and same fill

fraction (h, = 0.9hm,) as 7.85%, where the blue circle are the scatterers, and the white background are the matrix

phase.
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consistency of the dispersion behavior between different iterations, the Hurst constant and fill ratio

can be used to characterize the systems based on random fractals for binary system. However, it

should also be kept in mind that the exact distribution of scatterers could have nuance effect in the

dispersion behavior, especially when the impedance contrast increase further, as shown in Figure

4.7 with eigenmodes plotted at X and M point.

Table 4.1: Material properties used for the simulation for dispersion curve.

Young's Modulus Pa 4.35e10 4.35e7 4.35e6

Poisson Ratio 0.329 0.329 0.329

Density kg/m 972 972 972

Impedance contrast Ks/Km = 2.374 Ks/Km=0.075 Ks/Km = 0.024
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Figure 4.6: (a) Dispersion curves along the BZ of the unit cell (along I-> X+M- F) as indicated in the unit cells in
the Figure 4.5 for different iterations of random fractal based sample with H = 0.1 (i.e. iteration 2 (black dot line),
iteration 3 (red short dash dot) and iteration 4 (blue dash)), where the Young's modulus of the scatterers are Es =
4.35elOPa (where impedance contrast is Ks/Km = 2.374), others are listed in Table 4.1. (b) The eigenmodes
corresponded (highlighted as solid triangle) are arranged at the bottom as indicated, where the Mode 9 of It 2 and It 4
have similar displacement that have mirror symmetry with respect to y axis approximately. On the other hand, Mode
10 of 1t2 and 1t4 at M point have different features.
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X point
It 4 If t9

M point
It '

Figure 4.7: (a) Dispersion curves along the BZ of the unit cell (along 174 X4M4 F) as indicated in the Figure 4.5 for different iterations of random fractal based

sample with H = 0.1 (i.e. iteration 2 (black dot line), iteration 3 (red short dash dot) and iteration 4 (blue dash)), where the Young's modulus of the scatterers are

Es = 4.35e7Pa (where impedance contrast is Ks/Km = 0.075), others are listed in Table 4.1. (b) The eigenmodes corresponded to It 2 (cyan circle), It 3 (black solid

triangle) and Iter4 (olive triangle/circle) are arranged at the bottom as indicated, where the Mode 3 and Mode 4 of It 3 and It 4 exhibit complementary displacement

pattern (i.e. high/low strain) where the interaction between M3 and M4 for It 4 seems to be larger compared to It 3 from dispersion curve. On the other hand, Mode

9 and Mode 10 of It2, 1t3 and It4 at M point have different features.
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4.3.2 Varying the Hurst constant of the system

Since the Hurst constant characterize the spatial distribution of the scatterers, we studied binary

systems with different Hurst constants and the material properties used are shown in Table 4.1.

The filling ratio is also kept at 0.0785 (for h = 0.9hmax ) for all the samples, which means only the

node with height on the top 10% is used as the centers for the scatterers.

Since waves with small frequency (i.e. long wavelength relative to certain scale) are not very

sensitive to the heterogeneous nature in the material properties (i.e. the sample appears to be

homogeneous to the wave), the extended modes for samples with different Hurst constant are

relatively small (as shown in the lowest dispersion curves Figure 4.8). The extended nature is

reflected in the linear bands along the FX direction, where the group velocity can be derived from

the tangent of the curve. In general, for H = 0.1, the scatterers are more distributed and isolated,

the average cluster size is small and comparable to individual scatterer size (as shown in Figure

4.4 and 4.5). As the H value increases, the scatterer are more connected and clustered together,

hence the average cluster size also increases. Since the critical scale are related to the feature size,

which can be approximated by cluster size in this case, the critical scale increases with increasing

H value. Therefore, sample with H = 0.1 exhibits dispersion behavior similar to a homogeneous

square unit cell since its transition scale is the smallest (hence shortest wavelength), as shown in

Figure 4.8 dispersion curves. At the F point, the eigenmodes up to 4 th mode resemble the

homogeneous plate closely (MI in Fig 4.8) while the higher eigenmodes also retain certain degree

of regularity observed in homogeneous samples (M20 in Fig 4.8). At X and M point, the

eigenmodes are relatively extended with more dispersion curves have a larger slope along XM and

M F at higher frequency comparing to sample with H value of 0.5 and 0.9.

As the H value increase, the presence of scatterer clusters would become more obvious at lower

frequencies, which reflect in both localized displacement (i.e. relatively flat dispersion bands) and

the lowered frequencies. For H = 0.5, the lowest eigenmodes still exhibit longitudinal and

transversal like modes, as shown in M1 or M 3 at X M point in Figure 4.8 eigenmodes plot. They

eigenmodes exhibit regular high/low displacement region like homogenous plate up to bands six.

However, at higher frequency (shorter wavelength), the eigenmodes become more localized at the
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X point M point

Figure 4.8: (a) Dispersion curves along the BZ of the unit cell (along 174 X4M4 F) as indicated in the Figure 4.5 for random fractal based sample with different
Hurst constant, e.g. H = 0.1 (black dot line), H = 0.5 (red short dash dot) and H = 0.9 (blue dash)), where the Young's modulus of the scatterers are Es = 4.35e7Pa
(where impedance contrast is Ks/Km = 0.075),,, others are listed in Table 4.1. (b) The eigenmodes corresponded to H = 0.1 (cyan circle), H = 0.5 (black solid
triangle) and H = 0.9 (olive triangle/circle) are arranged at the bottom as indicated, where the longitudinal and transverse modes are observed at F point for all three
samples (e.g. Ml), where at higher frequencies, the high strain regions are more concentrated in the softer scatterers (e.g. M20). At X point, the eigenmodes of
sample with H = 0.9 differs from the other two significantly with high strain more confined to scatter phase (M3 of H = 0.9) given its largest cluster size. While
the Ml for all samples are extended at M point, the eigenmodes of high frequencies are more confined (e.g. M 20) for H = 0.5 and H =0.9.

116

r point(b)
H=

0.1

0.5

0.9
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Figure 4.9: Dispersion curves along the BZ of the unit cell (along F-> X4M+ F) as indicated in the Figure 4.5 for

random fractal based sample with different Hurst constant, e.g. H = 0.3 (black dot line), H = 0.5 (red short dash dot)
and H = 0.7 (blue dash)), where the Young's modulus of the scatterers are Es = 4.35e7Pa (where impedance contrast
is Ks/Kin = 0.075), others are listed in Table 4.1.

scatterer phase, from larger scatterer size to smaller scatterer size (M20 at F, X and M point in Fig

4.8 eigenmodes). Following similar trend, for samples with H = 0.9, their eigenfrequency

decreased further since the cluster sizes are much larger and this begin to affect the dispersion
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behavior at longer wavelength. Although they still retain the longitudinal and transverse like

eigenmodes (Ml and M 3 in Fig 4.8 eigenmodes), the displacement quickly localized in the soft

scatterer phase, where the nodes and antinodes start to develop within the scatterer cluster region

as if it is the pseudo unit cell. Similar trends of dispersion behavior can be observed for samples

with H = 0.3, H =0.5 and H =0.7, as shown in Figure 4.9. However, as the frequency increases,

the dispersion bands begin to differentiate from each other, as shown in Figure 4.5. As the average

cluster size S increases with H, the eigenfrequency also shifted downwards. Hence, the H constant

can be used to tune the phononic behavior of the system through the average cluster size with a

fixed filling ratio.

4.3.3 Varying the filling ratio of scatterers

Besides the distribution of the scatterers, their filling ratio is another factor that affects how they

interact with waves. Since the filling ratio is controlled by h, for our system, the cap value of height

h is varied to study how the behavior of the system would change with it. h, = 0.5 is chosen since

it is close to the bond percolation threshold value in 2D. The filling ratio is increases from 0.0785

(for h = 0.9hma, ) to 0.3927 (for h = 0.5hmax ) for all the samples. Samples with different H value

are again generated, as shown in Figure 4.0 (a), where the average cluster size increases with

increasing value of H. As expected, the eigenfrequency of the system shifted downwards with

decreasing hc, even when the impedance contrast is relatively small between matrix and scatterers,

as shown in Figure 4.10.

For all the samples, the longitudinal and transverse like eigenmodes are still retained at lower

frequency at X and M points (Ml, M 3 as shown in Figure 4.11 eigenmodes). However, as the

frequency increases, the eigenmodes now localized in the scatterer phases at longer wavelength

(compared to h=0.9hm.) and no longer resemble the homogeneous plate eigenmodes. The cluster

with largest sizes would dominate in the lower frequency (as shown in M3 and M4 at X and M

point) while the number of node/antinode increases with increasing frequency) (M20 at X and M

point). The localized features of the eigenmodes at higher frequencies is demonstrated through the

relatively flat dispersion bands. Therefore, the clusters serve as a pseudo unit cell where higher

order harmonics appears as the frequency increases.
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Figure 4.10: a) Examples of the planar binary metamaterials unit based on fractional Brownian surface with different
Hurst constants as listed on top of the unit cell. The circles are scatterer phase while the rest is the matrix phase. b)
Dispersion curves along the BZ of the unit cell (along F4 X+M4 F) as indicated in the Figure 4.10 for random
fractal based sample with different Hurst constant, e.g. H = 0.1 (black dot line), H = 0.5 (red short dash dot) and HO.9
(blue dash)), where the Young's modulus of the scatterers are Es = 4.35e7Pa, others are listed in Table 4.1.
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Figure 4.11: (a) Dispersion curves along the BZ of the unit cell (along 17+ X+M 4 F) as indicated in the Figure 4.5 and 4.10 for random fractal based sample

with different Hurst constant, e.g. with H = 0.1 (black dot line), H = 0.5 (red short dash dot) and H = 0.9 (blue dash)), where the Young's modulus of the scatterers

are Es = 4.35e7Pa (where impedance contrast is Ks/Km = 0.075),, others are listed in Table 4.1. (b) The eigenmodes corresponded to H = 0.1 (cyan circle), H =

0.5 (black solid triangle) and H = 0.9 (olive triangle/circle) are arranged at the bottom as indicated. The longitudinal and transverse modes are observed at F point

for all three samples (e.g. MI). At higher frequencies, the high strain regions are more concentrated in the softer scatterers (e.g. M20). At X point, the eigenmodes

of samples started to have high strain region confined to scatterer phase even at relatively low frequency (M3 (4) MI (2) at X point) given the increased cluster

size.
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(b) r point X point M point

A___._______ I

O5max
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Figure 4.12: (a) Dispersion curves along the BZ of the unit cell (along F4 X+M-> F) as indicated in the Figure 4.5
and Figure 4.10 for random fractal based sample with H = 0.1 yet different filling ratios 0.0785 (i.e. h = 0.9hmax )
(red short dash dot) and or 0.3927 (i.e. h = 0.5h., ) (blue dash), where the Young's modulus of the scatterers are Es
= 4.35e7Pa(where impedance contrast is Ks/Km = 0.075),, others are listed in Table 4.1. (b) The eigenmodes
corresponded to h = 0.9hm. (black solid triangle) and h = 0.5hm. (olive triangle/circle) are arranged at the bottom as
indicated, the eigenmodes of hc = 0.9hm. are more regular (in terms of high/low strain regions) displacement pattern
compared to hc = 0.5hm.. On the other hand, the transition from high to low strain region are more influenced by the
shape of clusters for samples of hc = 0.5hma.

For H = 0.5, the eigenmodes become localized in the cluster with the largest cluster size in the unit

cluster (i.e. top right and bottom left of the unit cell), as M20 shown at X and M point in the

eigenmodes plot in Figure 4.11. While for the sample with H =0.9, the eigenmodes are localized

at the top right corner, demonstrated in M3 at X and M4 at M point as well as M20. For the scatterer

to form spanning cluster, he ~ 0.4 is required, which corresponds to fill fraction for site percolation

threshold (0.593).

To have a more direct comparison of samples with different value of the fill fraction, samples with

the same H value are plotted in Figure 4.12 and 4.13. In both cases, the eigenfrequency decreases

with increasing fill fraction of the softer scatterer phase. For H = 0.1, the regularity of high/low

displacement regions also decreases as the fill fraction of scatterer increases at the frequency range

we studied, (M3, M5 and M4 shown in eigenmodes plot in Figure 4.12). For H = 0.9, both samples

exhibit eigenmodes localized to the soft scatterer phase, where the largest size of cluster for h =

0.5hmax is larger than those of h = 0.9 hmax. Therefore, the corresponding eigenfrequency of h =

0.5hmax is smaller than those of h = 0.9hmax, as shown in Figure 4.12.
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r point X point M point

h =
O9hfmx
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Figure 4.13: (a) Dispersion curves along the BZ of the unit cell (along 17+ X+M4 F) as indicated in the Figure 4.5 and Figure 4.10 for random fractal based

sample with H = 0.9 yet different filling ratios 0.0785 (i.e. h = 0.9hmax) (red short dash dot) and or 0.3927 (i.e. h = 0.5hmax) (blue dash), where the Young's

modulus of the scatterers are Es = 4.35e7Pa(where impedance contrast is Ks/Km = 0.075),, others are listed in Table 4.1. (b) The eigenmodes corresponded to h

= 0.9hmax (black solid triangle) and h = 0.5hmax (olive triangle/circle) are arranged at the bottom as indicated, where the color indicates the magnitude and the

arrow indicates the direction of the displacement. The eigenmodes for both samples has the high strain confined to softer scatterers region since the average size

of the scatters are comparable to the wavelength investigated.
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4.3.4 Varying the scale of the system

As mentioned before, the scale, or more precisely the relative scale of individual scatterer diameter

and unit cell, can be varied artificially by introducing more grid numbers (i.e. N = 100 and N =150)

per unit cell in the system, as shown in Figure 4.14.And it is likely that by including the number

of scatters per unit cell, it would represent the system more accurately, given the statistical nature

of the system It should be mentioned that this is different from self-similarity in strict sense since

periodic boundary condition has been applied at the unit cells in all cases. To investigate whether

N = 50 would be sufficient to simulate the behavior of the system based on random fractal, we

increase grid number to N = 100 and N = 150 and compared their behavior with the case for N

50.

For H = 0.1, the dispersion curves traces closely for samples with grid number m=n= 100 and

m=n=150, as shown in Figure 4.15 (a), especially at lower frequencies, since they corresponds to

the extended modes of homogeneous plate closely. This might due to the fact the wavelength

studied are larger than the critical length scale (corresponding to the scatterer/cluster size of

m=n=100 and m=n=150); Hence the wavelength studied cannot sense the difference in the

numbers of scatterers per unit cell. This could be beneficial for the simulation since it allow for

choice of a small unit cell, hence less demanding for the simulation. For H = 0.5, the dispersion

curves start to deviate more from each other at higher frequency (as circled in the figure) while the

dispersion curves at lower frequency still overlap with each other closely, as shown in Figure 4.15

(b). For H = 0.9, the dispersion curves for harder scatterer/soft matrix have less a clear trend with

increasing grid number per unit cell, as shown in Figure 4.16(a). For softer scatterers, the

dispersion varies significantly with increasing number of grid number per unit cell, as shown in

Figure 4.16(b). At F point, the longitudinal and transverse like eigenmodes occurred with the

homogeneous plate like eigenmodes M4 for grid number 50 and 100 (as shown in Figure 4.17).

However, as the number increase to 150, this regular periodic eigenmodes is replaced by a more

localized modes (despite the four lower displacement region at M4). Hence, its frequency is also

lowered with increasing grid number as shown in dispersion curve in Figure 4.16 (b). At X and M

point, the lowest few eigenmodes exhibit disturbed transverse and longitudinal like eigenmodes,

where the frequency split is the smallest for N = 150. Hence it is important to choose the
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appropriate length scale for averaging, otherwise, misrepresentation and loss of information could

happen.

H = 0.1
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Figure 4.14: Examples of the binary metamaterials unit based on fractional Brownian surface with different Hurst
constants as listed on top of the unit cell and grid number per unit cell of m=n=100 (first row) and m=n=150 (second
row). The circles are scatterer phase while the rest is the matrix phase.
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H = 0.1,Es = 4.35e10
. N = 50

------ N = 100
(a)

C)

CD)
Cr
()

LL.

(b)

N

C

C)

LL

H = 0.1, Es = 4.35e7
'... N ='50

----- ' N = 100
N 150

1- 10

"b~rp; \

X M v M Y r X M
Figure 4.15: Dispersion curves along the BZ of the unit cell (along 174 X4M4 F) for random fractal based sample with H = 0.1 for Es = 4.35elOPa(where
impedance contrast is Ks/Km = 2.374), a) and Es = 4.35e7Pa(where impedance contrast is Ks/Km = 0.075), b) yet different number of grid point in the unit N =
50(black dot line), N = 100 (red short dash dot line) and N = 150 (blue dash line) others are listed in table 4.2.
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4.3.5 Varying the arrangement of the system

Even though the fractal dimension description greatly extends our ability to describe artificial and

natural geometry and processes, sometimes a single fractal dimension is not sufficient to describe

the complex and/or dynamic system occurring in nature. Hence a multifractal system was proposed

where a spectrum of exponent I used to characterize systems/processes in nature. They have been

used to study fully fluid dynamics, stock market, biological system, geophysics, astronomy, image

modeling. As mentioned before, multifractal can be demonstrated as varying fractal dimension at

different resolution (both spatial and temporal) in scale relativity framework. In practice, the

multifractal analysis algorithms have been developed to describe natural systems and even used to

predict their behavior. To mimic the multifractal system, we studied two system: one with a Hurst

constant H = 0.5, and the other is a multifractal super-cell consist of four cells with pairs of H =

0.3 and H = 0.7 arranged diagonally, as shown in Figure 4.16. The grid number and unit cell are

adjust such that the two systems have same filling ratio and unit cell size. The dispersion curve

were studied to find out how they phononic behavior would be affected by different spatial

arrangement of two system having an average H = 0.5

The dispersive behavior of the two systems are plotted in Figure 4.18. Significant differences

develop due to rearranging the distribution of scatterers. In general, the multifractal sample with a

mixture of H values (i.e. MixedH) have eigenmodes with more extended displacement compared

with samples with the single H (i.e. SingleH) value (as shown in eigenmodes plot in Figure 4.18.

H = 0.9 H = 0.9 H = 0.9

Aa
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Figure 4.16: Dispersion curves along the BZ of the unit cell (along 174 X4M4 F) for random fractal based sample with H = 0.9 for Es = 4.35elOPa(where
impedance contrast is Ks/Km = 2.374), a) and Es = 4.35e7Pa (where impedance contrast is Ks/Km = 0.075), b) yet different number of grid point in the unit N =
50(black dot line), N = 100 (red short dash dot line) and N = 150 (blue dash line) others are listed in Table 4.1.
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X oint M Doint

Figure 4.17: The eigenmodes corresponding to Figure 4.16(b) from sample with grid number N= 50 (Cyan solid triangle/circle), N = 100 (Cyan solid triangle/circle)

and N = 150 (olive triangle/circle).The longitudinal and transverse like modes are observed at X point for all three samples (e.g. MI and M2) where the location

of the super-cluster define the low/high strain transition. At M point, the diagonal half without the cluster would become the low strain region where (as well as

the center of super-cluster) while the displacement are relative antisymmetric with respect to the diagonal of the unit cell (M1 (4) at M point.
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At the F point, M3 for the sample MixedH, a regular arrangement of high/low displacement is

found, while M3 for sample SingleH have its transition region affected by the boundary of

scatterers at the lower right corner. The M4 mode for sample SingleH is localized while M4 for

sample MixedH still shows features similar to regular square plate (M4 at Figure 4.18 eigenmodes

plot). At M point, the longitudinal and transverse like modes exhibit themselves with different

degrees of distortion due to scatterer clusters, as shown in Ml, M2 and M3 at X point in Figure

4.18. The localized M4 modes for sample SingleH is retained while it is more extended for sample

MixedH. At M point, all eigenmodes with the lowest frequencies show all eigenmodes with the

lowest frequencies show extended features. However, the eigenmodes are similar to nodes and

antinodes features of homogeneous plate more closely with more regular node/antinode in

displacement. This might be explained by the fact that the arrangement of mixed H value block

are artificially periodic (i.e. in a 2by2 fashion), which could define the dispersion behavior at lower

frequencies.

This indicates that the arrangement of the unit cell does affect the behavior of the super cell

significantly; Hence H value of supercell cannot be simply averaged over its cells with different

H value.

4.3.6 Vary the modulus of the system

With an understanding of the non-locality of dispersion behavior, we can further fine tune the

system by varying the material properties of the system, e.g. Young's Modulus of the scatterer

phase as shown in Table 4.2.

For all the systems studied, the eigenfrequency shifted downwards with decreasing Young's

modulus of the scatterer phase. For H = 0.1, the extended modes become more localized with

Table 4.2: Material properties used for the simulation for dispersion curve of sample H=0.1, H=0.5.

Young's Modulus Pa 4.35e10 4.35e7 4.35e6 3e9

Poisson Ratio 0.329 0.329 0.329 0.375

Density kg/m 972 972 972 2500
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(b) oint X point M int
H=-

0.5 M,- M4M4 -M 4

M3 M1 M M2'

03
0.7

Figure 4.18: (a) Dispersion curves along the BZ of the unit cell (along F4 X+M4 F) as for random fractal based sample having H = 0.5 (red short dash dot) and
H = 0.3, H =0.7 mix (blue dash), where the insert of the second sample are shown in the insert on the right, (where impedance contrast is Ks/Km = 0.075), and
other materials properties are listed in Table 4.1. b) The eigenmodes corresponded to H = 0.5 (black solid triangle) and H = 0.7/0.3 (olive triangle/circle) are
arranged at the bottom as indicated, the longitudinal (M3 (4)) and transverse (Ml (2)) like modes are observed at X point for all three samples (e.g. Ml). Samples
with mixed H value seems to exhibit eigenmodes with an underlying size of a quarter of the unit cell (same of the unit cell used to build the super cell).
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increasing impedance contrast, as shown in Figure 4.19 (a). When the Young's Modulus change

by from 4.35e7 to 4.35e6, the longitudinal and transverse modes varied little since the dispersion

curve coincide. However, the higher frequency modes are more localized, as reflected in the flat

dispersion curves (blue dash line compared to red dash dot line). Similar behavior have been

observed with samples of H = 0.5 and N = 100, as shown in Figure 4.19 (b).

4.4 Conclusion

Although quasicrystals attracted a great deal of attention in recent years, metamaterials design is

still based primarily on periodic structure, due to both theoretical and experimental limitations

(Pawlak, D. A 2010). However, many "rough surface" exist in nature and biological system,

therefore metamaterials based on fractal geometry might introducing new materials/systems with

novel properties for various applications. This chapter utilized the concepts of fractional Brownian

surface to study a binary system based on random fractals. It has been found that Hurst constant,

which characterizes the fluctuation or width of the surface height, could be used to characterize

the behavior of random fractal based system with moderate impedance contrast (i.e. !L < 1/V10.

Although the statistical variable Hurst constant can be used to describe the statistical properties of

random fractals of different iterations, the detailed distribution of scatterers does affect the nuanced

dispersion behavior of the system, especially at higher frequencies, whose fluctuations in the

scatterers influence the behavior. By varying the Hurst constant H, the dispersion behavior also

varies as their cluster sizes vary with different H value. Moreover, the filling fraction also affects

the behavior of the system by influencing both the effective properties at long wavelength and the

largest cluster size.

It was also found that the dispersion behavior seems to vary little with different grid number/cell

(i.e. relative scale) with small impedance contrast. This could be beneficial since smaller system

can be used to study pseudo-random fractal system, which would reduce computation time and

resource consumption. It was also found that for supercell with different H value at local cells, the

arrangement of the cell affects the behavior of the system. However this might be due to the

periodic arrangement of the local cell since they are artificially defined as 2by2 array.
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By taking a systematic approach to study fractal based metamaterials, the factors that could

influence the dispersion behavior have been identified and discussed. Although this likely is an

incomplete list, this chapter shines light on the mechanisms of such system. The knowledge gained

can further be used to understand the abundant fractal systems in nature; it can also be used to

design system that can control and manipulate wave propagation through such systems. Hence

studying metamaterial systems based on random fractal would increase the repertoire for novel

designer materials; moreover, it may also contribute our understanding of natural physical system

and processes.
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5. Mesoscopic Metamaterials

5.1 Surface Acoustic Wave Device

Since the introduction of planar integrated circuits in the early 1960s, surface acoustic wave (SAM)

become dominant in acoustic technology. Compared to conventional bulk acoustic device, SAW

can provide many advantages such as compatibility with the microelectronic fabrication

technology. Since the acoustic wavelength is about 10' of that of electromagnetic wave with the

same frequency, it enables miniaturization of the devices(Campbell, 1989). Over the last few

decades, SAW has become a sophisticated, versatile technology using piezoelectric films and other

semiconducting materials(Balin, et al., 2009; Bohlein, et al., 2012; Bonello, et al., 2006; Dutcher

et al., 1992; Glass, et al., 1983; Lnge, et al., 2008). Given the flexibility of this technology, SAW

has been used widely in various applications both high volume consumer products and specialized

applications such as microfluidics, sensor etc. The high demand from telecommunication products

further fueled the development SAW devices for high-frequency applications in the range of 100

MHz to a few GHz (Laude, Wilm, Benchabane, & Khelif, 2005; Lima & Santos, 2005; Maznev &

Wright, 2009; Nardi et al., 2009; Tanaka & Tamura, 1998; Wu, Huang, & Lin, 2004; Zhang, 2009).

Surface acoustic wave can be generated in different ways and the interdigital transducer (IDT) is

the most common one since it is especially adapted to signal processing applications. Invented by

White and Voltmer, IDT uses sets of finger electrodes on piezoelectric substrates, where the shape

and arrangement of the finger electrodes can control the characteristic of the surface acoustic wave.

Since the acoustic energy is strongly confined at the surface of the devices in the range of the

acoustic wavelength, the wave is potentially very sensitive towards changes on the surface(Linge

et al., 2008). For specialized sensors, the device can be coated with sensitive functional polymer

for various species, such as gas, protein etc. The challenges they face are attenuation of the

displacement and fragile property with the thin thickens.
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Figure 5.1: Schematic representations of a two-port delay-line SAW sensor (a) and a Love-mode SAW sensor (b)
Source J. Sensors V 2009. The device structure and working principle for the SAW-driven PDLC light shutter. The
magnified part shows a reversible switching process between two different LC droplet configurations. c) Source
Adv. Mater. 2011, XX, 1-4,

Besides sensing, surface acoustic wave can also be used as actuating element for special

applications. By interacting with special materials, they can be used to switch on and off by

transform transparent materials into translucent/opaque, as shown in Figure 5.1(Liu et al.,

201 1)(Zhang, 2009).

Hence an understanding of the surface acoustic wave behavior would be beneficial for the

designing surface acoustic wave devices with specific applications. Therefore it would be really

attractive to engineer surface that can interact with acoustic wave in specific ways for targeted

applications. In this chapter, we studied mesoscopic surface wave system where the system has

two characteristic featured periodicity, one is the pitch of 1 d grating while the other is scatters.

5.2 Mesoscopic Metamaterials with spherical scatters in 2D

As mentioned before, there are two periods in the mesoscopic, one from the grating and the other

is the period of scatters. Starting from 2D system with grating and scatter represented by rectangles

and circles (Figure 5.2 insert below). To mimic the final 3 dimensional system with only the

gratings and scatters as the active features on silicon substrate, the thickness of the silicon

(represented by red) in the 2D system has been reduced compared to grating and the scatters. From

principles listed in the framework, a few factors are identified to affects the dispersion behavior

and studied systematically.
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Figure 5.2: (a) the dispersion curves for sample 2D2 (black dot line), 2D4 (red dash dot dot) and 2D8 (blue dash)
along the BZ of the unit cell (along M4 Y4 174 X4M) as indicated in the unit cells in the bottom right insert. The
top right inserts is zoomed in dispersion curve for the 3 samples. (b) The eigenmodes corresponded for 2D4 (black
triangles/circle) and 2D8 (olive triangle/circle) are arranged at the bottom as indicated by the arrow and circles, where
the color indicates the magnitude and the arrow indicates the direction of the displacement.
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5.2.lVary the period of the 1D grating

We choose samples 2D2 (as shown in insert 5.2) as reference system, since all the scatters are in

contact with both grating and scatters. For sample pair 2D4 and 2D8, the scatters would cluster

together at the center of the trench bounded by 1d grating with different period of 1D grating a.,

while other parameters remain the same. Similarly for sample pair 2D5 and 2D9, the scatters are

in contact with 1 d grating with different period of 1 D grating ax changed while other parameters

remain the same. Compared to reference system 2D2, the dispersion behavior changed

significantly along LX direction by simply removing the mutual contact point. This is not

surprising since the wave propagate along LX direction can pass from ld grating and scatters

without passing through Si phase (despite the point contacts) in 2D2, but not for the rest of the

samples. Therefore, the eigenfrequencies along LX direction is suppressed with relatively flat

dispersion curve in the rest of the samples.

To zoom in at the frequencies along LX direction, the eigenfrequencies along rX direction would

decrease with increasing ax (Figure 5.2 zoom in inserts). For sample pair 2D4 and 2D8, the

dispersion behavior along X-M-F and M-> Y-> F for extended modes overlap with each other,

since they corresponds to eigenmodes of 1D grating, as shown in Figure 5.2. Since the Id grating

along XM direction are identical for 2D4 and 2D5, the eigenmodes restricted to 1 d grating are also

identical propagating modes (i.e. extended modes with linear dispersion curves). Moreover, the

eigenfrequencies corresponds to the cluster modes (i.e. flat bands) vary little by increasing the ax

ld grating, which indicates that coupling between the cluster and ld grating is weak. However, to

zoom in at the lower frequencies and their eigenmodes (fig 5.2 inserts and eigenmodes MlM2 (3)),

the eigenmodes correspond to the displacement of center cluster and their frequencies decrease

with increasing ax along FX direction and XM direction.

Meanwhile, the dispersion curves for sample pair (2D5 and 2D9) with different ax are found to

behave differently (Fig 5.3) where the extended modes along X+M-*L and M4 Y4 L no longer

overlap with each other. In general, the eigenmodes are relatively lower with larger ax (sample

2D9) along all Brillouin zone boundaries. The eigenmodes at lower frequencies vary by only a

little since their displacement eigenmodes are similar to each other, as shown in Fig 5.3

eigenmodes. At M point, the degeneracies pairs for both samples appear to have shifted along y

axis by half of period, i.e. symmetric with y axis mirror and antisymmetric with x axis mirror
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Figure 5.3: (a) the dispersion curves for sample 2D2 (black dot line), 2D5 (red dash dot dot) and 2D9 (blue dash)
along the BZ of the unit cell (along M-> Y+ F4 X+M) as indicated in the unit cells in the bottom right insert. The
top right inserts is zoomed in dispersion curve for the 3 samples. (b) The eigenmodes corresponded for 2D5 (black
triangles/circle) and 2D9 (olive triangle/circle) are arranged at the bottom as indicated, where the color indicates the
magnitude and the arrow indicates the direction of the displacement.
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(Fig 5.3 eigenmodes). Similarly, at the extreme low frequencies, the eigenfrequencies decrease

with increasing ax along LX directions, since they behave as dump bell with thin link (Si substrate)

in between (Fig 5.3 eigenmodes).

For both pairs, the dispersion bands along Y+ F4 X are relatively flat given they have to pass

through the Si substrate (much thinner link) while the dispersion along other direction are

extended. Therefore, to introduce more localized modes along these direction, a defects can be

introduced to induce more tight-band like behavior.

5.2.2 Vary the arrangement of the scatter

It has been demonstrated above that the dispersion behavior depends on the arrangement of the

scatters inside the trench, since that scatters are moved from the center of the trench (pair 2D4

2D8) to be in contact with the I d grating and 2D5 2D9. By connecting the scatters with 1 d grating,

2D5 and 2D9 allow eigenmodes with lower frequency to appear along X - M 4F direction. This

is because by coupling the scatter to the Id grating, it allows the wave to curve along the circular

scatters, as shown in Fig 5.2 and Fig 5.3. The analogy can be drawn with circular cavity coupled

with straight waveguide in photonic devices, where the electromagnetic wave demonstrate whisper

modes by circling along the circumference of the cavity before exiting into the straight waveguides

again. In other words, the effective path for the wave has been extended by coupling the scatter

with ID grating, which effectively decreased the eigenfrequencies along all direction for the

system. Furthermore, the eigenmodes of 2D5 (2D9) at X point with frequencies close of 2D4 (2D8)

have similar nodes and antinodes (e.g. nodes number and position), as shown in Figure 5.4(5.5).

Moreover, no degeneracy is observed at X point for sample 2D5 (2D9) where M10 and M 11

exhibit same symmetry along both x axis and y axis; while the quarter period shifting along y axis

change the symmetry with respect to the y axis.

5.2.3Vary the materials properties (e.g. Young's Modulus)

Since the mechanical bonds were used to conceptualize the bonding among building blocks, the

impedance properties of the materials can be fined tuned to vary the bonding among building

blocks. For sample 2D4, as the Young's Modulus of the scattering materials is lowered (as shown

in Table 5.1), the eigenfrequencies of the flat bands from both samples also dropping with
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Figure 5.4: (a) the dispersion curves for sample 2D2 (black dot line), 2D5 (red dash dot dot) and 2D9 (blue dash)
along the BZ of the unit cell (along M4 Y4 IF4 X4M) as indicated in the unit cells in the bottom right insert. The
top right inserts is zoomed in dispersion curve for the 3 samples. (b) The eigenmodes corresponded for 2D4 (black
triangles/circle) and 2D5 (olive triangle/circle) are arranged at the bottom as indicated, where the color indicates the
magnitude and the arrow indicates the direction of the displacement.
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Figure 5.5: (a) the dispersion curves for sample 2D2 (black dot line), 2D5 (red dash dot dot) and 2D9 (blue dash)
along the BZ of the unit cell (along M+ Y+ F-- X+M) as indicated in the unit cells in the bottom right insert. The
top right inserts is zoomed in dispersion curve for the 3 samples. (b) The eigenmodes corresponded for 2D8 (black
triangles/circle) and 2D9 (olive triangle/circle) are arranged at the bottom as indicated, where the color indicates the
magnitude and the arrow indicates the direction of the displacement.

Table 5.1 Material properties used for the simulation for dispersion curve.

4.35e

0.329

Young's Modulus Pa

Poisson Ratio

Density kg/m3 972
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5.6: the dispersion curves for sample 2D4 (top), 2D5 (bottom) along the BZ of the unit cell (along M4 Y4 F4
X-M) with varying Young's modulus of scatters. The top right inserts is zoomed in dispersion curve for the 2
samples.
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minimal changes to the extended modes that corresponds to the ld grating, as shown in Figure 5.6.

This again demonstrates the weak link between the center cluster and the ld grating in the system.

As the Young's Modulus of scatters drop further, they dispersion curves is flattened since the

displacement are more localized now. For 2D5, the general features of the dispersion bands

retained while the frequencies decrease with decreasing Young's Modulus, since the scatter and

Id grating are now coupled.

5.3 Mesoscopic Metamaterials with spherical scatter in 3D

As mentioned before, there are two characteristic length-scales in the mesoscopic, one from the

grating and the other is the period of scatters, as shown in Figure 5.7 below. The diameters and

periods of both grating and scatters have been retained to study the dispersion behaviors by varying

a few factors identified to affects the dispersion behavior from the framework. By allowing the

boundary condition to Si substrate to be free, the extended Golden modes would appear at F point

as expected. However, since our interests focus mostly on the surface waves along the system, the

extended modes are not included in the dispersion curves except the one from reference system

3D2 where the all scatters are in contact with the other scatters and ID grating simultaneously.

5.3.1Vary the period of the 1D grating

For sample pair 3D4 and 3D8, the scatters would cluster together at the center of the trench

bounded by 1D grating with different period of 1D grating ax, while other parameters remain the

same. Similarly for sample pair 3D5 and 3D9, the scatters are in contact with ID grating with

different period of 1 D grating ax. The dispersion bands are relative flat along FX and MY direction

and extended along X-M-)F. Similarly, the dispersion curves along the BZ zone closely follow

each other for pair 3D4 and 3D8 with features similar to 2D system studied in last section (Fig

5.2). The extended modes correspond to displacement along 1D gratings, resemble the features of

nodes (antinodes) from the 2D systems, as shown in Figure 5.7. For sample 3D4, the flat bands

reflect localized eigenmodes dominated by spherical scatters. At X point, for eigenmodes

dominated by 1D grating (Fig 5.7 eigenmodes M9M10 for 3D4), the shift in quarter period (in y

direction) occurs again, which transform its symmetry from symmetric (with respect
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Figure 5.7: (a) the dispersion curves for sample 3D2 (black dot line), 3D4 (red solid dot) and 3D8 (blue up triangle)
along the BZ of the unit cell (along M4 Y4 F4 X+M) as indicated in the unit cells in the bottom right insert. The
right inserts is zoomed in dispersion curve for the 3 samples corresponds to extended modes around F. (b) the
eigenmodes corresponded for 3D4 (black triangles/circle) and 3D8 (olive triangle/circle) are arranged at the bottom
as indicated, where the color indicates the magnitude and the arrow indicates the direction of the displacement.
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Figure 5.8: (a) the dispersion curves for sample 3D2 (black dot line), 3D5 (red solid dot) and 3D9 (blue up triangle)
along the BZ of the unit cell (along M+ Y4 F4 X+M) as indicated in the unit cells in the bottom right insert. The
top right inserts is zoomed in dispersion curve for the 3 samples. (b) The eigenmodes corresponded for 3D5 (black
triangles/circle) and 3D9 (olive triangle/circle) are arranged at the bottom as indicated, where the color indicates the
magnitude and the arrow indicates the direction of the displacement.
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to x Axis) to antisymmetric with a slight jump in frequencies. To zoom in at the frequencies along

FX direction, the eigenfrequencies (for longitudinal and transverse wave of the whole unit cell)

along FX direction would decrease with increasing ax. Moreover, the dispersion curve of 3D4 and

3D2 also overlap with each other for the three branches since the substrates and ID grating in the

unit cell dominate the displacement in this case.

On the other hand, sample pair 3D5 and 3D9 behave differently as in 2D case studied in last

section, where the extended modes along X->M->F and M-> Y-> F no longer overlap with each

other and the degeneracies observed along MY and XM for sample 3D4(8) have been lifted as

shown in Figure 5.8. For sample 3D5, the flat bands reflect localized eigenmodes dominated by

spherical scatters. At X point, for eigenmodes dominated by 1D grating (Fig 5.8 eigenmodes

M15M16 for 3D5 and 3d9), the shift in quarter period (in y direction) occurs again with a small

jump in frequencies, which transform its symmetry from symmetric (with respect to x Axis) to

antisymmetric. At M point, the eigenmodes with dominant 1D grating displacement are

antisymmetric with both x Axis and y Axis and leave a tiny gap when the two bands are close to

cross each other. As the coupling of the scatters in contact with opposite grating weakened with

increasing ax, the coupling of scatters in contact with same grating starts to dominant, as shown in

Ml 1 at X and M point for the pair. Furthermore, the longitudinal and transverse modes of the

whole unit cell is not observed at low frequencies in sample 3D9 close to F point. This could have

important implication in membrane design, they can restrict movement of substrate by simply

increasing the period of the 1 D grating.

5.3.2 Vary the arrangement of the scatter

As demonstrated above, by connecting the scatters with 1D grating instead of the cluster together,

3D5 and 3D9 allow eigenmodes with lower frequency to appear. This is because weakly coupled

scatters allow for low frequency eigenmodes to appear with frequencies relatively independent of

the 1D grating, as shown in Fig 5.9 and Fig 5.10 eigenmodes MlM5M9. These modes correspond

to the expansion and relative movement of scatters since the scatters are not attached to the

substrate or grating physically (i.e. a free contact), hence they usually appear in a group of four

(for sample 3D5) or two (for sample 3D9) with frequencies close to each other since the four

scatters are equivalent. However, the cluster in 3D4 (8) form an entity that moves together (Fig

5.9). Furthermore, the eigenmodes with similar nodes and
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Figure 5.9: (a) the dispersion curves for sample 3D2 (black dot line), 3D4 (red solid dot) and 3D5 (blue up triangle)
along the BZ of the unit cell (along M4 Y4 r-> X-M) as indicated in the unit cells in the bottom right insert. The
top right inserts is zoomed in dispersion curve for the 3 samples. (b) The eigenmodes corresponded for 3D4 (black
triangles/circle) and 3D5 (olive triangle/circle) are arranged at the bottom as indicated, where the color indicates the
magnitude and the arrow indicates the direction of the displacement.
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Figure 5.10: (a) the dispersion curves for sample 3D2 (black dot line), 3D8 (red solid dot) and 3D9 (blue up triangle)
along the BZ of the unit cell (along M4 Y4 F4) X-M) as indicated in the unit cells in the bottom right insert. The
top right inserts is zoomed in dispersion curve for the 3 samples. (b) The eigenmodes corresponded for 3D8 (black
triangles/circle) and 3D9 (olive triangle/circle) are arranged at the bottom as indicated, where the color indicates the
magnitude and the arrow indicates the direction of the displacement.

antinodes (e.g. nodes number and position) has frequencies closer to each other, e.g. MiOM11 for

3D4 (5) and M15M16 for 3D8 (9), as shown in Figure 5.7(5.8). As in 2D case, the dispersion
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bands along X + M 4*F direction are suppressed separated scatters system compared to clustered

scatter system. And the extended bands correspond to pure grating are perturbed in 3D5 (9) due to

the coupling between the scatters and gratings. Comparing clustered system scatters and separated

scatters, the latter is a preferred for application where band gaps are desired. Furthermore, different

grating period would impact features of band gaps (Fig 5.10)

5.3.3Vary the size of the spherical scatters

To further fine tune the system properties, the size of scatters has also been reduced by 20 percent

for both 3D4 and 3D5 to generate 3D6 and 3D7. For clustered scatters, the extended bands

dominated by grating vary little with decreasing size (80%) of the scatters (Fig 5.1 la),

demonstrated by the overlapping bands of 3D4 and 3D6. However, the flat bands of localized

eigenmodes have a higher frequencies with smaller scatters. The symmetry and patterns of the

eigenmodes also vary little for 3D4 and 3D6.

On the other hand, for sample 3D5 and 3D7, both the eigenfrequency of both flat bands and

extended modes have been affected with decreasing scatter size, where the symmetry and features

of eigenmodes at the X and M point varied little for both the grating and scatters. Therefore, the

band gaps for surface acoustic wave can be adjusted by varying the size of the scatters. Meanwhile,

given the sensitivity of the dispersion behavior to the size of the scatters, they can be leveraged on

to characterizing the size of nanoparticles or micro particles or even a dynamic system where sizes

of the particles varies continuously.

5.3.4 Vary the materials properties (e.g. Young's Modulus)

For all the systems, as the Young's Modulus of the scattering materials is lowered (as shown in

Table 5.1), the eigenfrequencies of the localized modes lowered accordingly, since they dropped

lower than eigenfrequencies of the extended modes dominated by grating, only flattened dispersion

bands are observed for the first few lower bands, as shown in Figure 5.12. As the Young's Modulus

of the scatters lowered, their eigenfrequencies become lower than eigenfrequencies of 1 D grating,

hence only localized eigenmodes are observed for the first twenty bands in the dispersion curves.
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5.4 Mesoscopic metamaterials with cylinder scatter and soft bridge

It is seen from the last section that 1D grating allow extended modes along XM direction, by

coupling scatters to grating, it would introduce avoid crossing between bands with same symmetry

with respect to k of interest. To gain further insights on how the bonds would affects the behavior

of the system, bonds between the grating and the scatters are artificially defined with a softer

rubber phase. The scatters was changed to cylinder for contact, which can also be fabricated with

common lithography techniques as 1D grating. Furthermore, it is clear that the gratings facilitate

the extended modes along the X-> M - F direction, which is not optimal if spectral gaps are the

desirable properties of applications. Therefore, defects are introduced to study how they would

affects the behavior of the system by disturbing the extended modes along X4 M - F direction.

5.4.1 Vary the coupling among the scatters

The coupling among the scatters is varied by linking along the edges (P4) or diagonal (P4m) of

the square defined by the four cylindrical scatters, as shown in Figure 5.13 below. By introducing

rubber as the soft block, eigenmodes with lower frequencies (compared to reference sample) are

dominant by the softer linking blocks. Although both cylindrical scatters and rubber links have

p4mm symmetry, they demonstrate different properties. Since the four linking blocks are

equivalent to each other for P4, a group of four closely packed eigenmodes can be observed, which

reflect the four fold symmetry of the center motif (scatter and links). The representative

eigenmodes of first few groups are plotted in Fig 5.13: 1) bending of rubber links in xy plane; 2)

flex or twisting in one of the linking blocks; 3) bending in z direction of the links, etc.

For sample P4m, there are several closely positioned dispersion bands pairs with the eigenmodes

rotate by n/2 (Fig 5.13 M2M3 at X point), which usually are symmetric along x (or y) axis. Since

there are only two diagonal links equivalent to each other, their eigenfrequencies are more spread

out compared to sample P4. Also along XM, the more extended modes with displacement

dominated by the ld grating still persisted in both system (Fig 5.13 M13M14 at X and M13M14

at M point) and they overlap with each other consistently. Hence, the ID grating and linked scatters

are weekly coupled in both case for the two system. From the dispersion behavior along, the first

structure is preferred to generate large bandgap; while the second structure is more apt for

multispectral frequency gaps for surface gaps.
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Figure 5.13: (a) the dispersion curves for sample P4m (open red circle), P4 (blue up triangle) along the BZ of the unit
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5.4.2 Vary the coupling among the scatters and 1D grating

The coupling between the scatters and 1D gratings is varied by connecting them through bridge

(P2m) or over the top cap blocks (P2mCap), as shown in Figure 5.14 schematics. The soft rubber

linkage enable lower frequencies eigenmodes to appear compared to the Ref Samples (Figure 5.14

dispersion curves). For P2m, the two center rubber linkage (10) are a little bit longer than the four

rubber blocks (7.5) linking the scatter and 1 D grating. Hence the lowest frequencies eigenmodes

corresponds to bending of the center linking block (Fig 5.14 eigenmodes M1), followed by a group

of four closely positioned flats bands whose displacement demonstrates bending of four side

linking block (Fig 5.14 eigenmodes M5); twisting of the middle linkage block (Fig 5.14

eigenmodes M5) is followed by the twisting of the side linkage block (group of four eigenmodes

with frequencies close to each other). Then the block would band upward (downward) in z

direction (Fig 5.14 eigenmodes M17). Hence the eigenmodes of rubber blocks follows similar

trends for P4 and P4m sample, where bending in xy plane, twisting and then bending

upwards/downwards). Furthermore, the extended modes corresponds dominated ID grating along

XM have also be observed (as shown in Fig 5.14), which shift downward a little compared to

reference samples. The side links disturb the frequencies slightly while the scatters and center link

block remains almost stationary (Fig 5.14 eigenmodes M19M20 at X point).

For P2mcap, the eigenfrequencies of eigenmodes are lower further compared to p2m. Similarly,

the lowest eigenmodes corresponds to the displacement of the middle segments (Fig 5.14

eigenmodes Ml), since movement in xy plane is more restricted now by the changed

width/thickness ratio, a slight twist is observed instead of bending in xy plane; it is followed by

the displacement of the side portion (that link the scatter and the 1D grating) with a group of four

bands (Fig 5.14 eigenmodes M3); The twisting of the middle segment followed the upward

bending of the cap link (Fig 5.14 eigenmodes M7M13 at X point). Since the eigenmodes are

relatively localized, they vary little at M point from X point, hence only eigenmodes at X point are

listed below. Furthermore, the extended modes is not observed at the frequencies around that of

P2m (Ref) along XM direction, since the eigenmodes are still dominated by the rubber cap link.
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Figure 5.14: the dispersion curves for sample P2m (open red circle), P2mCap (blue up triangle) along the BZ of the
unit cell (along M4 Y+ IF~' X4M). The eigenmodes corresponded is arranged at the bottom as indicated by the
arrow and circles, where the color indicates the magnitude and the arrow indicates the direction of the displacement.
The 3D and top view schematics of mesoscopic surface acoustic wave system are on the right: P4m, and P4mCap,
with the BZ indicated on the top view of the three systems, consisting of ID grating (green), scatters (blue), rubber
(gray) and red (silicon substrate).
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Figure 5.15: the dispersion curves for sample Ref (open red circle), Ext (blue up triangle) along the BZ of the unit cell

(along M-4 Y-* F-) X-M). The eigenmodes corresponded is arranged at the bottom as indicated by the arrow and

circles, where the color indicates the magnitude and the arrow indicates the direction of the displacement. The 3D and

top view schematics of mesoscopic surface acoustic wave system are on the right: Reference (top) and Exp, with the
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BZ indicated on the top view of the three systems, consisting of ID grating (green), scatters (blue), rubber (gray) and
red (silicon substrate).

5.4.3 Vary the diameter the scatters

When the cylinders are expended in radius, the extended modes that corresponds to ID grating

vary little due to the weak coupling between the scatters and the 1D grating (Figure 5.15), as

illustrated in last section with sphere scatters. However, the localized modes dominated by scatter

changed with the eigenfrequencies lowered with lower radius of the scatter (Fig5.15 eigenmodes

M19 (10), since reduced radius decrease the stiffness of the scatters.

5.4.4 Introducing defects along XM direction

As mentioned before, the extended eigenmodes dominated 1D grating can be affected by

introducing defects to achieve localized eigenmodes and a flat dispersion curve. Therefore a short

segments of the 1D grating is removed for all the samples studied, as shown in Fig 5.16 schematics.

As expected, flat dispersion curves are observed for both P4 and P4m sample, as shown in Fig

5.16. The eigenmodes dominated by scatters and links are not disturbed due to the weak coupling

between the 1D grating and the scatter(links) (Fig 5.16 eigenmodes), so their dispersion curves

overlap well with each other. Moreover, at X point the frequencies of the 1D grating dominated

modes vary little too, since their displacements are similar to the original system with only the

center part are removed. The eigenmodes vary little as k travel from X to M point, hence a localized

modes, which are very different from the original system.

For sample P2m, the extended modes along XM are also disturbed by introducing the defects as

shown in Fig 5.17. The 1D dominated modes also disturbed little at X point, while changed

significantly at M point. On the other hands, the introduction of defects affects little on sample

P2mCap since the eigenmodes are dominated by the cap link with minimal involvement of the 1D

grating.

For sample Ref and Exp, the defects causes drastic change since the extended modes along XM

are now disturbed, as shown in Fig 5.17. The eigenmodes are more localized with the two smaller

segments along XM direction and flat dispersion bands have been achieved for surface acoustics

wave. Furthermore, the eigenfrequencies have also been varied due to the introduction of

displacement with changed features.
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Figure 5.16: the dispersion curves for sample Ref (open red circle), Exp (blue up triangle) along the BZ of the unit
cell (along M4 Y+ IF4 X->M). The eigenmodes corresponded is arranged at the bottom as indicated by the arrow
and circles, where the color indicates the magnitude and the arrow indicates the direction of the displacement. The
3D and top view schematics of mesoscopic surface acoustic wave system are on the right: Reference (top) and Exp,
with the BZ indicated on the top view of the three systems, consisting of ID grating (green), scatters (blue), rubber
(gray) and red (silicon substrate).
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Figure 5.17: the dispersion curves for sample Ref (open red circle), Exp (blue up triangle) along the BZ of the unit
cell (along M4 Y4 I-+ X+M). The eigenmodes corresponded is arranged at the bottom as indicated by the arrow
and circles, where the color indicates the magnitude and the arrow indicates the direction of the displacement. The
3D and top view schematics of mesoscopic surface acoustic wave system are on the right: Reference (top) and Exp,
with the BZ indicated on the top view of the three systems, consisting of I D grating (green), scatters (blue), rubber
(gray) and red (silicon substrate).
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and circles, where the color indicates the magnitude and the arrow indicates the direction of the displacement. The 3D
and top view schematics of mesoscopic surface acoustic wave system are on the right: Reference (top) and Exp, with
the BZ indicated on the top view of the three systems, consisting of ID grating (green), scatters (blue), rubber (gray)
and red (silicon substrate).

5.4.5 Change the material properties of the scatters

Similarly to previous system, the eigenfrequencies could be further fine-tuned by changing the

Young's modulus of the scatters (or other components) in system of interest, as shown in Fig 5.18.

For sample Ref, lowering the Young's modulus of leads to lowered resonance modes of the

scatters, hence the lower frequencies are populated by these localized modes, which leads to the

flat dispersion curve (Fig 5.18). To take a closer look at gamma point, the transverse and

longitudinal eigenmodes corresponds to the entire unit cell is also affected by the scatters' Young

Modulus. Therefore, for simple system, the behavior can be manipulated by changing the

mechanical impedance of the system.
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5.5 Fabrication of Mesoscopic Phononic Metamaterials

Due to scaling properties of the general framework, the feature dimensions as well as the materials

can be designed to enable characterization using technique, Brillion Light Scattering (BLS). The

feature size and materials would then determine the most suitable fabrication techniques. Both the

feature size and materials should be substantially varied in order to test the robustness of the

framework.

5.5.1 Vertical deposition methods

As a simple and versatile technique, the vertical deposition method (Retsch, 2009) is used to

fabricate local resonance structures. The process is demonstrated in Figure 5.19. To obtain a more

uniform distribution of the nanoparticles on the patterned substrate, a more concentrated colloidal

system is used, since a large area of the substrate does not need to be covered by nanoparticles.

When using the concentrated PS colloidal solution, the coverage is more uniform, as shown in

Figure 5.19. However, this might also due to the fact that the ID grating become thinner, i.e. the

trench width/sphere diameter is close to 2/1.

9 9 9 9 Y 0 0 o00 0 o ;

F mre 1.3. Forua~ioe of colloidal ciystaLt via a) i adoewtin b) w fiagaflow, c)fihiwu, d) .le'-
mudworoune, a)ruwcaldeosahon, or 1) comprausm on ledb&.

Figure 5.20: Schematics of the vertical deposition method from (Retsch, 2009) . a) sedimentation, b) centriftugation,
c) filtering, d) electrodeposition, e) vertical deposition, or f) compression molding.
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Withdraw
speed
Is 30 ul/hr

Deposition
direction both
perpendicular
and parallel to
line direction

Line pitch is
about 350nm
and line width
is around 40
nm

Figure 5.21: SEM structure of the resulted structure from the vertical deposition of
fine ID grating at withdrawing speed of 30ul/hr

130nm PS nanoparticles on the

Figure 5.22: SEM structure of the resulted structure from the vertical deposition of 130nm PS nanoparticles on the
fine 2D dot (Top) for withdrawing speed of 30ul/hr
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Diluted PS (130 nmn)
nanoparticles: ethanol with
1:25 volume ratio

No significant changes
compared with the
concentrated case

Diluted PS (130 mm)
nanoparticles: ethanol with
1:50 volume ratio

The partices start to form
clusters in the solution and
they deposited on the
substrate as clusters

Figure 5.23: SEM structure of the resulted structure from the vertical deposition of 130nm PS nanoparticles with
diluted colloidal system for withdrawing speed of 30ul/hr

Diluted PS (130
nm) nanoparticles:
ethanol with 1:25
volume ratio

Figure 5.24: SEM structure of the resulted structure from the vertical deposition of 130nm PS nanoparticles with
diluted colloidal system on PDMS substrate for withdrawing speed of 30ul/hr
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5.5.2 Vary the substrate pattern:

When the pattern changes to 2D square dot structure, the coverage varies accessibility for the

nanoparticles changes. The coverage is not uniform from a zoom out image as shown in Figure

5.22. Despite some short-range order hexagonal stack, there is no long range order of the particles

In order to minimize the ratio of the multi-layer colloidal crystal, the colloidal system is diluted

with ethanol. SEM image seems to indicate more uniform coverage with less short range order for

1:25 volume ratio. The multi-layer colloidal crystal still persists on this substrate. When the

volume ratio is 1:50, the nanoparticles start to cluster in the solutions and deposit on the substrate

too, as shown in Figure 5.22. Therefore, other parameters need to be optimized to minimize

snapping phenomena in the vertical to obtain more uniform sample.

5.5.3 Vary substrate materials:

PDMS is often used as a substrate for the placement of nanoparticles through convective and

capillary assembly(Teh, 2004)(Malaquin, 2007). Hence patterned PDMS (with soft lithography)

was also used as substrate for the vertical deposition. The fine grating pattern is not observed on

the PDMS stamp and the deposited nanoparticles seems to be "sintered" (Figure 5.23) together

with reasons unknown for now.

5.6 Conclusion

Surface acoustic wave device had been wide used in a wide range of applications, from gas sensor

to microfluidic devices. Hence, a more in depth understanding of how metamaterials surface can

manipulate the surface acoustic wave propagation would accelerate the application the surface

acoustic wave device further.

To mimic the surface acoustic wave, we first use a 2D toy system with same dimensions, but

reduced thickness for the substrates section. The behavior we obtained shine light on the behavior

of system interested in 3D.

For system with 1D grating and spherical scatters, there are several parameters we can use to

manipulate the behavior: the period of 1 D grating, the size of spherical scatters, arrangement of

the scatters and the materials properties of scatters. It was found that in order to achieve spectral

gaps for real applications, system where scatters in contact with ID grating would be preferred.
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For system with 2D grating and cylindrical scatters, the bonding between the scatters and/or 1D

grating are varied using soft rubber blocks. It was found that the scatter cluster and 1D grating are

almost independent with each other. However, by bonding the scatters with 1D grating, localized

eigenmodes and flattened dispersion behavior can be achieved. The bonding through cap block on

top of both scatters and 1 D gratings are shown to be particularly effective.

Furthermore, the extended modes along the XM direction can also be eliminated by remove a short

segment of the 1D grating. Both multiple spectrum gap and fewer large spectrum gap can be

achieved by varying the bonding between the scatters and/or ID grating.

Besides the simulations, samples with 1D grating and spherical scatters have also been fabricated

using a vertical deposition technique, where the density can be controlled by the deposition

parameters.
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6. Application: Mesoscopic Structure of Kidney Stones and

Shockwave Induced Fracture

6.1 Introduction of the kidney stone

Kidney stones are a common clinical problem that affected up to 10% of men and 5% of women

throughout the United States. Stone disease can cause pain and suffering, occasional renal failure

or even fatal in rare cases. However, the pathology is not well understood despite significant

progress made over the last few decades. Moreover, the patients also encounter treatment cost and

additional loss of productivity at workplace.

Kidney stones consist of mineral microcrystals aggregates and organic substances incorporated in

various ways. They are classified into several categories according to their chemical compositions

and morphologies.

6.1.lMajor classes of kidney stone

The most common kidney stones consists of calcium oxalate (60~70% of kidneys stones), which

crystallizes in three different chemical and crystallographic forms: 1) Calcium oxalate

monohydrate CaC2049H20 (COM), also known as whewellite and 2) Calcium oxalate dihydrate

CaC2O4e2H20 (COD), also called weddellite and 3) Calcium oxalate trihydrate CaC204eH20

(COT). The single crystals usually have a size of 2-3m and packed together tightly with some

porosity (Sokol, Nigmatulina, Maksimova, & Chiglintsev, 2005). COM can be present as single

crystal or aggregated polycrystalline particles, as shown in Figure 6.1 top. Their morphology can

be simple biconcave ovals, dumbbells, twinned dumbbells or rosettes or spherulite (Saeed R. Khan

& Hackett, 1987), as shown in Figure 6.1 bottom. These stones made of COM crystal mostly are

frequently hard, dark brown with a dull gray exterior. When sectioned, they present radial growing

pattern from nidus with round off wedges that lead to a smooth exterior (Figure 1 bottom b) and

f)). COD crystallizes as bipyramids due to its tetragonal crystal point group symmetry, yet its

structure can change with additives, as shown in Figure 6.2. Pure COD stones are usually small

and spherical with a tan or yellow cluster of platelets, which are sharp with various orientations

(Figure 6.2 bottom d) and f)).

The second major class of components of stones is phosphate salts (15-20% of
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(A)0

Figure 5.25: Top (A) The crystal faces developed and major crystallographic directions indicated for a COM single
crystal of six-sided polyhedral habit. Twinned crystals of COM which are often classified as penetration twin (B) and
contact twin (C). Indexing with black letters corresponds to Tazzoli's notation and with red to Deganello's
notation(Thomas, 2009).
Bottom: (a) COM stone with dumbbell /fan-like morphology. (b) Polished cross-section of a COM spherulitic stone
representing concentric laminations, image from (Sokol et al., 2005) (c) SEM image of fractured surface of COM
stone showing modified shape of the crystal habit. (d) SEM image of fractured surface of a COM stone exhibiting the
randomly stacked plate, (e) SEM image of fractured surface of COM stone shows edges of closely stacked plate-like
crystals. These crystals are stacked by contacts between their (100) faces. (f) Fractured surface showed concentric
circles at the edge of the stone.

kidney stones), which includes four different calcium phosphate salts and two magnesium

phosphate salts. The calcium phosphate salts have different calcium-to-phosphate ratio, hydroxyl-

vs.-hydrogen ion content. One typical example is magnesium ammonium phosphate hexahydrate

stone (Struvite), they usually have off-white to light brown color
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Figure 5.26: Top: Schematic representation of the influence of polyacrylate (PAA) concentration on the morphologies
of COD.
Bottom: SEM images of COD crystals produced in the presence of 1.2 mM CaOx and
(a) 16, (b) 48, (c) 64, (e) 96 pg/mL PAA. These images show the morphological development of COD. (a) Tetragonal
bipyramids, (b) elongated tetragonal bipyramids, (c) tetragonal bipyramidal prisms, (d) kidney stone mainly composed
of COD, (e) dumbbells and (f) kidney stone mainly composed of COD. Image from (Thomas, 2009), except (d) and
(f) from Louis C. Herring &Company website.

with a rough textured surface. They frequently grow in a stag horn shape with concentric rings in

its interior(Walton, Kavanagh, & Heywood, 2003), as shown in Figure 6.3.

L-cystine crystal has also been found in kidney stone, which affect at least 20,000 individuals in

the United States. Compared to calcium oxalate, stones made of L-cystine mostly are larger (Figure

6.3) and can cause chronic kidney disease due to more frequent occurrence. Uric Acid stones

(10%) usually have a smooth yellow-orange surface with spherical shape. Orange concentric rings

usually appeared as its sectioned interior (Figure 6.3). In contrast, Uric acid dehydrate stone is

darker orange with small spherical regions. Its interior usually has a well-defined nidus with thick
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concentric rings (Walton et al., 2003).

6.1.2 Crystal - Matrix relationship

Besides the inorganic crystal, kidney stones also contain various organic substances. Various

groups have investigated the role of organic substance. In the early studies, it was found that for

calcium oxalate crystalluria, the organic material tends to concentrate at the center and selected

concentric layers (Saeed R. Khan & Hackett, 1987). For a kidney stone with dumbbell

morphology, the matrix were found to be mostly fibrillar, mostly arranged mostly radially in

longitudinal cross section and appeared reticulate in transverse cross section, as shown in Figure

6.4.

Several functionality of the organic matrix has been proposed, organic substance can form matrix

to bind the crystal nuclei together to facilitate the growth of crystal aggregates. The

macromolecules absorbed on top of mineral crystal surface can protect them from dissolving. The

matrix may also help regulate the crystal habit and texture of

Figure 5.27: Various morphology for several classes of kidney stone, top left image from Lithostat website. All the
reset images are retrieved from Louis C. Herring &Company website.
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Cd

Figure 5.28: a) Higher magnification TEM of a cross-section through the bar of the dumbbell ghost showing
compactness of the organic material and its reticulate nature. x262,500. b) Higher magnification of a longitudinal
section through the bar of a dumbbell ghost. Most of the organic material is organized radially. x60,OOO. c) A cross-
section through the bar of the dumbbell ghost showing a compact center (N). x55,000. d). Longitudinal section through
the periphery of a dumbbell ghost showing internal partition by a radial membrane (arrowheads). x135,375. Image
from (Saeed R. Khan & Hackett, 1987)

the stones. (Saeed R. Khan & Hackett, 1987). The discrepancy between volume and weight ratio

(around 2%) of organic components leads Sokol to conclude porosity is common in stones.

Furthermore, the presence of amorphous caphosphates or globules of biogenic apatite in the center

of stone cast doubt (Sokol et al., 2005) on hypothesis that protein contribute to intra-crystalline

ultrastructure formation in kidney stones. (Walton et al., 2003)
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6.1.3 Pathway of stone formation

Stone formation usually starts with mass heterogeneous nucleation from supersaturated urine,

which can be facilitated by fragments of exfoliated epithelium, blood clots, and bacterial colonies.

It was also proposed that calcium oxalate might crystallize on the uric acid and its salts due to the

high correlation between uric acid excretion and the formation of oxalate kidney stones (Mandel

(1996). The crystals formed would move along nephritic tubules with urine flow, some of which

might be retained and attached to soft tissue(Sokol et al., 2005) and then form aggregates, as shown

in Figure 6.5; the mechanism for this process can be described by Randall - Carr's theory (Randall,

1937; 1940; Carr, 1953; Hess & Kok, 1996). Since COD crystal are likely to be voided, most

kidney stone retained mainly consists of COM. Study also suggested a correlation between history

of hypertension and attachment of crystal to urothelium. Healthy urothelium has been shown to be

able to protect against nucleation and adhesion of calcium oxalate crystals. On contrary,

chemically injured urothelium does not have such property and results in the adherence of calcium

oxalate crystals. Heparin, a sulfated heteropolysaccharide of glucuronic acid and glucosamine, was

shown to be able to restore the anti-crystal-adhesion capacity of injured urothelium (Walton et al.,

2003).

Studies have been conducted to investigate how various factors affect the morphology of the stone,

especially for calcium oxalate stones. Millan et al (Millan, 2001) conducted both theoretical and

experimental studies on other factors that influences crystal shape of the two COM (whewellite)

polymorphs. They found that theoretical modals based on basic structure of COM crystal

performance better than those based on derivative crystal structures. They hence concluded that

the crystal shape is depended on the basic structure instead of the enantiotropic phase

transformation between 38 and 45 'C. The spherulites formation of needle crystal might suggest

random condensation of linear nuclei, which could be produced by fast mixing of supersaturated

reactants solution. They also found that intensive interaction between Ca2+, C2042 and water

molecules leads to wetting effect on crystal formed in water. Since additives can induce crystal

habit modification, e.g. flattening of crystal along [100] direction, it was proposed that to eliminate

the active
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Figure 5.29: Pathway for the formation of COM and COD calculi. The crystals which are not voided through urine
are aggregated through the adsorption of macromolecules and grow into larger aggregates. The morphology of COM
and COD calculi are generally classified as type I (papillary) and type II (non-papillary). The regions shaded with
grey color are either organic matter or hydroxyapatite or a minor fraction of COM. Images reproduced from (Thomas,
2009)

COM (100) surface in urine environment, therapeutic agents that reduce the size of (100) surface

or adhesion strength upon adsorption would be effective (Wesson & Ward, 2007).

Thomas also conducted systematic studies on how sodium salt of polyacrylate (PAA) can change

structure and habit of calcium oxalates crystals. They found that with a fixed CaOx concentration,

the hydration states of calcium oxalates can be determined by pH of the start solutions. The rare

COT was found at higher pH value in absence of PAA. The concentration of PAA also affects the

morphology of COD crystals. Besides, organic gels, agar, agarose, carrageenan and gelatin were

used to generate biomimetic calcium oxalates. It was founded again pH affects the hydration state

while the saturation level affects the morphology of the crystal, as shown in Figure 6.6. Not

surprisingly, it was also found that temperature affects the morphology of the final crystal

morphology as well(Thomas, 2009).
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Figure 5.30: Morphology and hydration state map of calcium oxalate aggregates grown in 2w.-% agar gels at different

pH values (Thomas, 2009).

A study conducted by the authors confirmed some of the literature findings. Modified COM crystal

habit was found in kidney stone's fractured surface, which resemble the shape in the presence of

additives or mucoprotines (Millan, 2001), as shown in Figure 6.1 (c,d,e). Struvite with different

crash resistance can have different microscopic structures, stones that are harder to crash tend to

have more crystalline phase while the relatively softer ones seem to have amorphous porous

network with crystalline phase in between, as shown in Figure 6.7. The struvite stones studied

processes core-envelop layer structure, where the relatively smooth interface between them is

observed at a fractured envelope piece (Figure 6.7 bottom right).
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Figure 5.31: SEM images of fractured struvite stones. Top row is for stones that are harder to crash, while the
bottom row is for stone that is easier to crash. Bottom right images shows a smooth interface that could be the
interface between the core and the envelop layers.

A common structure for large stones with smooth surface seems to be calcium oxalate layer

enveloping uric acid stones. The closed packed layered structures was observed in fractured

surface with macroscopic laminar structure, due to varying pigment densities at each layer, as

shown in Figure 6.8. The fractured images showed layered structure along the radial direction and

also periodic serrated surface transversely. Although this closely packed regular structure might

contribute to the toughness of the stone, it is hard to identify if the fractured surface corresponds

to any crystal surface of calcium oxalate. Microcrack along the transverse direction has also been

observed, which might indicates the disruption during the growth or could be caused during

crashing of the stones. This are consists with report that uric acid stone might serve as nuclei for

calcium oxalate crystal to deposit and grow the densely packed laminar structure.
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Figure 5.32: The SEM images (zoomed in on the right) shows the laminar structure on the calcium oxalate
enveloping layers, AFM height and phase images confirmed the periodic structure in both radial and transverse
direction.

For stones with smooth, reflective and scratch resistant surface, they seem to share common

macrostructure, where dense amorphous (organic) substance cover the stone with small mineral

crystals clusters exposed at times, as shown in Figure 6.9. This difference between the interior

layered structure and the amorphous structure at the surface might indicate growth disruption at

the surface. Also smaller crystal size seems to lead to higher packing density, hence higher scratch

resistance of the stone surface. Whether the disruption of layer growth caused the growth of

amorphous structure or the attachment of amorphous substance disrupts the growth could be an

interesting question to investigate. A better understanding might help us to develop ways to control

the size of the stone size.
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Figure 5.33: The SEM images (zoomed in on the right) for the top row show the surface structure with amorphous
substance densely packed and crystal cluster exposed at times.
The bottom row shows the surface structure of another kidney stone sample. The inserts show the macroscopic look
of fractured kidney stones.

Moreover, the dumbbell structure common in synthetic COD crystal has also been observed in the

natural stone fracture interior surface, although with more pointing tips, as shown in Figure 6.10.

The dumbbell structure also appeared at stone surface near a spherulites structure. Although

spherulite structure has also been produced in synthetic COD crystal, this structure occurred in

natural stone seems to have different building blocks. Since COD crystals are unlikely to form big

aggregates, they might have deposited on the surface randomly during or after the growth.

Moreover, there are also organic buddle like structure observed on the surface and interior of

densely packed crystals, as shown in Figure 6.11. The buddle seems smooth with little texture and

it is not clear if it is structurally relevant. Further studies on its chemical composition might help

to understand its properties and its role in stone formation.
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Figure 5.34: The SEM images showed dumbbell structure observed at fracture surface. Spherulite structure has also
been showed at the surface of the stone with dumbbell like crystallite despite randomly. The inserts show the
macroscopic look of fractured kidney stones

Moreover, enzymes could also play a role in stone formations. Difference in enzyme activity

between stone formers and healthy group has been show. The crystallization of calcium oxalate in

vitro has shown to be retarded by L-glutamic acid (Azoury, Garti, Perlberg, & Sarig, 1982). A later

study conducted by Duncan seems to suggest that 0. formigenes might play an important role in

oxalate degradation activity. Although its importance cannot be confirmed exclusively, a single

oral ingestion of 0. formigenes do show recovered oxalate degradation ability for a prolonged time

(Duncan et al., 2002). For cystine stones, Rimer et al also use AFM measurement to demonstrate

that a potentially benign crystal growth inhibitor (unsymmetrical L-CME) at low concentrations

can minimize L-cystine crystallization. Therefore, it might have the potential to replace drugs that

contains alkalinizing potassium or sodium salts for L cysteine stone prevention

(Rimer et al., 2010).
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6.1.4 Pathological mechanisms for kidney stones formation

Since the stone pathway involves multiple stages, many factors can contribute to stone formation.

Supersaturation of urinary CaOx can be affected by cellular defect or dysfunction, which can affect

participating urinary ions and macromolecules. Other endogenous processes that produce

substances like oxaluria, citrate, pyrophosphate and several other macromolecules can also affect

stone formation. Moreover, genes that connected to hypercalciuria, such as CLCN5, CASR,

CLDN16, have also been suspected despite the lack of substantial proof (Saeed R Khan, 2011).

Surface: buddle like structure Surface zoom in

Figure 5.35: The SEM images showed buddle like structure at stone surface. The inserts show the macroscopic look
of fractured kidney stones

Renal epithelial injury was showed to promote crystallization of calcific crystals in vivo in animal

modals. Large aggregates of calcific crystals were continuously excreted in the urine with the
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presence of epithelial injury (Stoller, Meng, Chung, & Abrahams, 2007). It was found that crystal

binding became possible on surfaces of mature cells only after injury, which support the hypothesis

that renal injury might promote crystal retention by facilitating stone nidus on renal papillary

surface(S. R. Khan, 2011). Moreover, the architecture of human kidney might also explain the

preferred stone deposit site of stone due to disturbance of the urinary flow and impedance of the

crystal movement. Dietary has long been suspected as another trigger for stone formation. Study

showed that supersaturation of urinary CaOx depends on the concentration of Ca and Ox, as well

as but also occurrence of ions like citrate and magnesium (Stoller et al., 2007).

6.2 Early study on mechanical properties of the stones

Kidney stone has been investigated over several decades and various techniques have been

employed to characterize their properties.

Mechanical properties of kidney stones have been studied few decades ago. Knoop micro hardness

indentation tests were performed on stones composed of calcium oxalate, calcium phosphate, uric

acid, cystine, and magnesium ammonium phosphate (Johrde & Cocks, 1985, 1986). They found

that hardness along one layer is higher compared to hardness across layers (due to alternation of

crystal and organic matrix phase). They also found that exposure to urine (for pH with a range of

4 to 12) would decrease their hardness compared (up to 55 %) to dry hardness. A Knoop micro-

hardness study was also conducted to study the difference between COM and COD stones. The

COM stone is harder than COD stone although pure COM crystal has higher hardness value than

COM crystal (Girija, 2000). Therefore, the superstructure between pure crystals does play a role

in micro-hardness of the stones. During a static loading, working hardening as well as working

softening has also been observed.

To study the morphology of various natural and/or synthetic stone, mostly fractured or cross

section surfaces have been studied by Scanning electron microscopy (SEM). To study how crystal

and organic matrix interact with each other, decalcified stone ghosts (decalcified stone) have also

been studied using Transmission electron microscopy
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Figure 5.36: The height (left) and phase (right) images obtained from the same flakes of kidney stones,
demonstrated the heterogeneous structure of the kidney stone.

(S R. Khan et al, 1987). To study the macroscopic concentric laminar structure of transversal cross

section if COM stones, Polarized light microscope could be quite a suitable tool. Moreover, to

study the in situ growth of crystal, AFM measurement has also been used(Rimer et al., 2010).

AFM has also been used to measure the adhesive force of various surface of COM and COD

crystals. They found that COM (100) exhibits the largest adhesion strength among all the faces

examined, which might be the main reasons that COM stacking in aggregates and attaching to

epithelial cell(Wesson & Ward, 2007).

Since natural kidney stone usually are hybrid crystal aggregates, X-ray diffraction analysis (XRD)

has been used to identify crystalline components with more than 5 wt. % in stone powders.

However, XRD can be limited by its sensitivity with limited amount of sample and may fail to

characterize sample whose crystal structure is unpublished. Accompanied with SEM, Energy-

Dispersive X-ray Spectroscopy (EDX) can be used to map chemical composition of fracture

surface. To identify individual chemical mineral elements, CAMEBAX electron micro-probe was

also used for quantitative analysis with petrographic thin-section samples(Sokol et al., 2004). To

identify the chemical bonds inside of the kidney stones, transmission IR-spectra is attractive due

to its high sensitivity. Raman Spectroscopy has also been used as a nondestructive analytical tool

to study the chemical bonds of cysteine, phosphate and uric acid type stone. (Venkata Venkata R.
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K. et al 1990 a) and b);( Venkata R. K. et al, 1991). AFM might also be helpful to look at finer

structure and obtain phase information of stone structures, as shown in Figure 6.12.

6.3 Treatments for kidney stones

Various treatments for kidney stone exist to mitigate the pain and/or prevent future occurrence. If

the stone is small enough, patient can let the stone pass with help from pain medication and/or take

more fluid. The doctor might also prescribe other medication to help pass the stone(s). Various

home remedies have also been suggested with herbs and fluidic mixtures. If the stone is large

enough to block the urinary tract and/or you are experience severe pain, the doctor might suggest

a procedure, such as lithotripsy or surgery. In literature, both medication and lithotripsy

optimization have been active research area. It was found oral intake of the bacteria (Oxalobacter

formigenes) that breaks down the calcium oxalate crystal might reduce urinary oxalate excretion

and recover oxalate degrading activity in adults (Duncan et al., 2002).

Extracorporeal shock wave lithotripsy (ESWL) is a treatment option that use acoustic waves to

break the kidney stone into smaller parts to pass out. It is preferred due to the non-invasiveness

compared to surgery.

6.3.1The physics of acoustic waves to break the stone

The acoustic wave breaks the stone through several mechanisms: 1) cavitation, which causes

pitting on stones surfaces; 2) spalling, a large tensile stress near the back wall of the stone that

generate cracks 3) dynamic fatigue, where the micro-crack progressively developed and coalesce

into crack that result in disintegration, as illustrated in Figure 6.13.

6.3.1.1 Cavitation

When acoustic wave passes through the fluid near the stone surface, gas cavities (i.e. bubbles) can

be generated when the tensile phase is sufficient to rip the fluid apart. The bubble generated can

go through inertial cavitation where they expand and collapse subsequently due to the pressure

difference the bubble wall experiences. The collapse of
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Figure 5.37: Mechanism of stone fracture by Lithotripter generated shock wave (Murtuza Lokhandwalla and Bradford

Sturtevant, 2000)

bubble generates high-speed liquid jet, which causes surface pitting on rigid stone surfaces.

Various theories have been proposed to describe the cavitation behavior due to the undesirable

corrosive effects in machines like propeller and turbines(Neppiras, 1980).
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Although theoretical studies on single spherical bubble in acoustic field have made significant

progress, multi-bubbles in acoustic fields and condition for its instabilities to form and develop

remains an active research fields.

Starting with the laws of conservation of Mass, Momentum and Energy, general relationship can

be written and solved by applying appropriate boundary condition and reasonable assumptions.

Due to the short time frame, the collapsing of bubble is usually considered as inertial controlled

adiabatic process. The pressure and temperature profile near the collapsing bubble wall has been

simulated, which depends on the initial radius, driving amplitude and frequency. The collapsing

bubble can also emit acoustic waves, which can result in shock waves when they start to crowd

each other. Studies showed that the pressure around the bubble wall, however, drops more rapidly

than typical geometric law. Experimental studies confirmed that only in the immediate vicinity,

the shock pressure of collapsing bubbles can have cavitation effects. On the other hand, the

experimental studies have shifted form natural bubble-aggregates to controlled single cavities or

bubble fields with high-speed photographic techniques.

Recently, acoustic cavitation has been used in sonochemistry since it can concentrate acoustic

energy and heat the gas up to thousands of Kevin at the end of collapse. Its ability to convert

acoustic energy into extreme physics can be used for other applications. However, the

multidisciplinary nature of the acoustic cavitation also makes it challenging to understand the

physics of the process(Louisnard et al., 2011). The nonlinear oscillation, sub-harmonic spectral

component f/2 or a broadband spectrum has been correlated to erosive effects experimentally.

Early experiments showed that subharmonic and chaotic sound emission is caused by the

subharmonic and chaotic bubble oscillation (W. Lauterbornt, 1994).

Although the energy released during collapsing for single bubble might peak at certain frequency,

it cannot be generalized to multi-bubbles. Furthermore, the nucleation and spatial distribution of

bubbles observed is inhomogeneous and non-stationary. Some common bubble structures are

streamers and filaments, jelly fish layers and cluster (Louisnard & Gonzailez-garcia, 2011). Several

conceptual frameworks have been used to explain the bubble distributions and their dynamic

behavior. Strange attractors has also been used to study the geometric properties as well as the

nonlinear dynamics of the multi-bubble fields (W. Lauterbornt, 1994). To explain the dendritic

branch structure of erosion surface by cavitation, diffusion limited aggregation modal has also

been used to describe the bubble distribution(Jing & Jian, 2009).
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6.3.1.2 Spalling and tensile stress

Spalling is the overlap of reflected acoustic waves from the stone's back wall and the tensile tail

of the subsequent propagating waves. The resulted tensile stress causes nucleation and growth of

microcracks, which eventually reach critical size to result in stone fragmentation.

Various studies have been conducted to modeling the behaviors of stones under stress loading. To

learn how the cracks propagate, a model was built to study how each pre-pulse (5n) and post-pulse

(6n+1) crack opening related to each other, given the values of pulse amplitude and duration (ai,

,), and stone physical properties. They use springs (or absent of) to modal interlamellar flowed

region (or void) the stone materials. To simplify the process, a worst case scenario with linear

fragmentation process and a best case scenario with logarithmic fragmentation process is assumed

(Murtuza L. and Bradford S., 2000). They found that the number of shocks need to spall stone into

two pieces is Oin - f f, where m. is the fracture stress of the stone, tc = pc6 cr/2 aYf provides a

characteristic time scale for the process of crack growth. Although this might be informative of

the crack propagation process due to stress, the uniform flaw-free crystalline material assumption

might be too simplified given the complex structure of the stones. Moreover, the interlamellar

flowed region in between the layers might fill with organic matrix or organic substance, whose

viscoelastic properties might not fully represented by spring used in the modal.

A finite difference analysis has also been used to study the propagation of shock waves in kidney

stones with spherical and cylindrical geometries. By plotting out the stress and displacement, they

found that minimal longitudinal perturbations happened after the shock wave passage from the

divergence images of particle velocity (Figure 6.14). However, shear wave is generated at the

edges of the stone and an inverted diffracted compression wave is produced. This shear wave is

caused by the interaction of the shock
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Figure 5.38: (color) Snapshots of the divergence, curl, max tensile stress and maximum shear stress inside a cylindrical
stone at 2.6, 3.2, 3.6, 3.8 and 4.8 Ps after the SW is incident on the stone. The shock wave is incident from beneath
the stone(Cleveland & Sapozhnikov, 2005).

wave in the water passing the outside of the stone, which also intensify the shear stress. They found

the peak tensile stress occurs due to an interaction of reflected longitudinal wave with shear wave

at 3.8 gs for cylindrical stone. Moreover, the peak tensile strain almost coincides with the peak

tensile stress spatially. It was proposed that shear wave interacting with the longitudinal waves

caused by passage of pressure waves outside stone results in highest stress and strain.
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Moreover, the focal zone diameter also influences all of the peak stresses significantly. The

increased shock rise time was found to decrease all the peak stresses (tensile, compressive, and

shear) in the stone. However, the generation of high stresses was not strongly related to stone

shape. Hence it was proposed that lithotripters with large focal widths and short rise times will

result in high peak stresses inside the stone (Cleveland & Sapozhnikov, 2005). Despite the fact

that wavelength of acoustic wavelength is usually much larger than the interface of kidney stone,

the assumption that stones behave as linear, isotropic, elastic medium might be source of concern

since the effective medium methodology might over simplified the process.

It has been largely agreed upon that spalling and cavitation work synergistically to disintegrate

kidney stone in ESWL. It is thought that stress wave-induced fracture is important for the initial

disintegration of kidney stones while cavitation helps to make finer stone fragments passable

(Cleveland & Sapozhnikov, 2005). Since the cracks are usually initiated at junctures of growth

increments or structural discontinuity (e.g. border between adjacent spherulites), they are usually

vulnerable sites for disintegration.

The high degree of viscoelasticity of kidney stones requires quite a few strong, tissue-injuring

ultrasound impulses in ESWL (Sokol et al., 2005). Worse still, the scattering of acoustic wave

increase number of shocks from a few hundred to a few thousands to reduce the size of the

fragments to below 2 mm clinically (Bierkens et al. 1992), (Zhu, 2002).

Besides the ones mentioned above, others mechanisms have also been proposed to contribute to

breaking the stones. Different sounds speed in stones and surrounding fluid can lead to maximum

stress at side and back wall of the stone. This can lead to squeezing and splitting along the axial of

the stones. Moreover, the geometry of the stone might also contribute to the focus of the reflected

wave (from the stone's back wall) by refraction or diffraction.

6.3.2 Mechanism of Tissue damage

Since acoustic impedance mismatch between tissue and water is small, the acoustic or shock wave

can pass the water-tissue interface without significant reflection. If the sound wave cannot sense

the impedance variation in the tissue, the sound speed in tissue will be almost constant, hence

avoiding differential squeezing stress.

However, tissue with size 10 gm to 1 mm could encounter significant stress variation as shock

wave passes through them. Moreover, non-uniform shear strain resulted from the short rise time
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of shock waves could also result in shearing forces, which could cause damage since tissue

structure are sensitive to shear. Besides shear stress, cavitation is another major cause of tissue

damage, which is well known to exert significant effects in vitro setting. It was found that blood

vessels are more vulnerable to cavitation-induced injury than surrounding tissue. This is because

blood pools from vessel rupture provide a fluid filled space for cavitation to happen (Skolarikos,

Alivizatos, & de la Rosette, 2006).

There has been biochemical evidence of renal injury right after ESWL treatment. The most

common renal trauma is gross haematuria, which usually resolves or heals in a few days. However,

transient functional damage of tubular function in children due to shock wave energy has been

observed, and small kidneys are more prone to the renal vasoconstriction induced by ESWL.

Furthermore, evidence shows that cavitation suppression can reduce lithotripsy damage

(Skolarikos et al., 2006).

Moreover, animal modal has also been conducted to study the tissue damage of shock wave. They

found a range of damage to renal tubules, such as total tubular destruction, focal cellular

fragmentation, necrosis, cell vacuolarization, and membrane blebbing. They also propose

cavitation as a major factor for tissue damage due to the tensile stressed induced and free radicals

generated. It was found that normal physiology of collecting ducts can be altered as a result of

ESWL treatment, which results in increased urinary pH, calcium phosphate supersaturation, and

crystallization of calcium phosphate rather than calcium oxalate (Stoller et al., 2007).

6.3.3 Ways to improve the performance

Based on mechanism for stone fragmentation, various ways have been proposed to improve the

effectiveness of ESWL. To maximize the impact of cavitation, a dual beam configuration is

proposed (Xi, 2000). It was found that stone comminution could be
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Figure 5.39: Top: Schematic of cloud cavitation control and typical cavitation control waveform. The high-frequency
ultrasound is focused at the stone surface to generate cavitation. The bubble cloud is forced to collapse by low
frequency focused ultrasound. The interval time between pulses should be long enough to dissolve all of the bubbles
into the surrounding liquid
Bottom: Results of model stone crushing tests. Three waves are focused upon the U-30 stones. In figure, case a is high
frequency wave (3.82 MHz) alone, b is low-frequency (545 kHz) wave alone and c is the C-C waveform. The PRF of
the each ultrasound wave is 25 Hz. Each stone is subjected to 2.0 min ultrasound irradiation
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significantly enhanced when the shock wave-bubble interaction occurred during the collapsing

phase of the bubbles. Hence, a dual beam setup was proposed using piezoelectric annular array

(PEAA) and electrohydraulic sources (EH). Both PEAA and EH sources are powered by two

independent high voltage pulse generators, which leads to different shock wave profiles. When the

PEAA shock wave arrives near the collapsing phase of the bubbles, the stone fragmentation

increase by 60% to 80%, as shown in Figure 6.15. A tandem shock wave setup was proposed by

Loske, et al. Using rectangular and spherical stone phantoms, the fragmentation efficiency was

significantly enhanced when the second pulse was delayed by 400 gs and 250 gs respectively

(Loske, Prieto, Fern ndez, & Cauwelaert, 2002).

As mentioned before, due to scattering and viscoelastic property of the stone, large number of

shock waves is needed to reduce the stones size, which also leads to tissue damage around the

stones. To minimize the tissue damage, a dual pulse of C-C form has been proposed. Such setup

can localize the timing and location of the cavitation collapsing with high reproducibility

(Yoshizawa et al., 2009). These studies all contributed to the understanding of maximizing

synergies between cavitation and spalling. However, the common concern might be that the modal

stones are usually uniformly inorganic, which might be very different from heterogeneous

structure natural kidney stones have. On the one hand, the interface might provide vulnerable site

for crack initiation; on the other hand, it might also stop/delay the propagation of crack inside the

stones.

Moreover, in real clinical situation, the stones might move due to aspiration. Hence feedback loop

to compensate for the movement has been proposed. They suggest to adjust for the movement by

tracking and following the affected area through stereo ultrasound imaging while simultaneously

irradiating the affected area(Norihiro et al. 2008).

6.4 Conclusion

In conclusion, kidney stone have negative impact on people's life, sometimes can be debilitating.

Kidney stones can be classified according to the major crystal component. The most crystals are

calcium oxalate, phosphate salts and L-cystine, usually mixed with organic substance in various

ways. The morphology of inorganic crystals is influenced by several factors, such the ion

concentration, macromolecules, pH value of urine etc. Various roles of organic materials have
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been proposed and studied, including matrix materials that contribute to the architecture of kidney

stones.

The pathway for stone formation includes nucleation, crystal growth, attachment and/or

aggregates. The multiple stages involved leads to various risk factors that might contribute to the

stone formation. Both intrinsic factors (such genetics, renal cell injury) and extrinsic factors (such

as dietary, other ions and urine pH) could influence in stone formation.

To improve and optimize treatment for kidney stones, its properties have been studied using

various techniques. The current treatment options include biochemical intervention and physical

removal, such as lithotripsy or surgery. Our focus has been on lithotripsy since it is noninvasive

compared to surgery and could be further improved. Currently, thousands of shocks needs to be

fired to break large stone into passable fragment <2mm. This could be caused by several reasons:

a) the shock wave cannot focus accurately on the stone due to respiration movement; b) shock

wave's effectiveness is reduced due to scattering by tissue, smaller stone fragment; c) shock wave

temporal and spatial profile is not optimized to break the stones. d) Acoustic cavitation mechanism

is not fully optimized to break the stone, instead causing damage to tissue, especially to blood

vessels.

To address these issues, several methods have been proposed to improve the efficacy of lithotripsy

treatment. A dual beam configuration with two beams focuses on same spot to control the size and

time of wave's focus has been show to increase the stone fragmentation efficiency. A tandem dual

pulse is shown to improve the stone break ability when the second pulse impacts at the collapsing

phase of bubbles. Other theoretical and experimental studies have also been conducted to

understand acoustic cavitation and stone breaking under shockwave induced stress. However, the

multi-disciplinary nature of the cavitation problem and the heterogeneous nature of stones are

challenges to be overcame in this active research field. It is also a delicate balance to strike between

the inexpensive simulation and expensive clinical trial for better understanding of the process.

In order to improve the impact of cavitation on stone while minimize tissue damage, better model

to describe bubble fields interacting with acoustic/shock waves is needed. Theory showed that a

large focal zone and fast rise time is desirable to generate maximum stress and strain in stones.

However, large focal zone might mean more chances to affect the surrounding tissue and short rise

time might mean severe shear stress in tissue. Hence a tradeoff between maximizing effectiveness

and minimizing damage need to be achieved. Moreover, it is appreciated that cavitation and
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spalling work synergistically to break the stone. More studies are needed to understand and realize

the full potential of the synergy from both mechanisms.
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7. Future Work
Our investigation of phononic metamaterial based on fractal geometry (PMFG) shows promising

properties, such as broadband response, subwavelength and nonlinear behavior for a wide range

of applications. To further our understanding of PMFG, both numerical work and experimental

investigation need to be carried out in future. We will discuss future work based on our current

work and future outlook.

7.1 Theoretical Work

Although we have conducted extensive study on three PMGF systems, there are still several

aspects of their behavior that entail more in-depth study to shine light on this new kind of

metamaterial.

7.1.1 Simulation of SAM with moving point source

To understanding the behavior of materials system, there is tension and synergetic interaction

between experiments and simulation. When the experimental equipment have constrain, a more

sophisticated simulation model is required in order to find the correspondence between

experiments and theory. In this case, all our simulation assumes a stationary point source to excite

the PMFG system. However, the current SAM has a moving point source moving together with

the receiver. Therefore, if we can implement a model in COMSOL with a moving acoustic wave

source, we can compare the simulation result and compare them to experiment result to verify the

simulation. Furthermore, we can also extract additional information from the simulation result to

help us optimize the experimental parameters to gain insight on the behavior of in-plane

eigenmodes and out of plane transmission for PMFG.

Once such simulation is implemented, it can have an even wider implication where other type of

samples can also be studied. Since simulation is usually a cost effective way of implementing

different constrains and varying parameters, it can help design experiments more effectively for

specific experiments. For example, the scanning speed, center frequency of the acoustic wave

source.

7.1.2 Optimize the parameter for phononic metamaterials based on deterministic fractals
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Although the system we studied exhibit broadband response, especially with increased levels of

iteration for both fractal scatterer phase or fractal interface between scatterer and matrix phase, the

bandgaps has been interrupted or segmented by flat bands isolated in the bandgap. If we can further

optimize the design parameters, i.e. t/l of H arm, material impedance contrast, we can obtain a

single broad bandgap by merging all the bandgap together. Furthermore, an in-depth study on the

symmetry of the eigenmodes might also allow us to identify the polarization specific bandgap, e.g.

bandgap for transverse (longitudinal) wave specifically where only longitudinal (transverse wave)

can pass the material with that specific frequency(Koh, 2011). We already shown that larger t/l

resulted in stronger interaction and localization of eigenmodes, hence it might lead to larger

bandgaps with both increased separation and flattened dispersion bands.

To benchmark their performance, we should also survey the status quo of comparable systems and

map out their performance space in terms of relevant system parameters. For visualization purpose,

usually three parameters can be chosen (where x and y coordinates and color represents each of

them respectively) and the performance can be represented in z-axis. However, we can always

have built up a database with more than three parameters and give user the flexibility to choose

relevant parameters for their applications. Furthermore, once the infrastructure of the database has

been setup, we can invite the metamaterials community to contribute by inputting their data to the

database system. This does not only setup a systematic way of evaluating performance of such

broadband system, but might also help us further improve the guidelines to make it more accessible

and applicable for industrial designer and general audience.

7.1.3 Expending the meaning of symmetry

As mentioned in Chapter 4, most of the fractal like geometry in nature, such as terrain, river

network, mountain, has a random fractal nature(Mandelbrot, 1977, 1983). Although there is no

unified grand theory to explain the cause of such geometry, different theory has been proposed to

explain the behavior, with the theme of optimizations with regard to the energy efficiency(Salat et

al., 2011) or global access to flow(Bejan 2013, 2000). Since fractal dimensions can be used to

characterize natural geometries, we might be able to answer a more fundamental question: can we

"hear" the shape of the objects? While the shape is often linked to "sight" (i.e. light), a phononic

signature might be beneficial for opaque materials, which are not accessible for electromagnetic
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wave due to scattering or absorption. Since most of the materials in seismology or exploration

geophysics are opaque(Miyashita, 2005; Zosimov et al., 1995), a better understanding for such

system would also accelerate the development in seismic science and oil and gas explorations.

If we can establish (or even disapprove) an isomorphic relationship between the phononic

spectrum and shape of the fractal geometry, it might help us to better characterize the opaque

materials system. Furthermore, in order to apply our general framework to such system from a

material scientist point of view, we need to extend the definition of symmetry(Greene, 2011).

Symmetry itself can have different layers of meaning, from the simplest geometric symmetry to

supersymmetry in particle physics(Gross, 1996). While the geometric symmetry we discussed so

far are sufficient to describe the crystals and deterministic fractal based PMFG, further extension

of symmetry concept are needed to describe the PMFG based random fractal. Given the link

between the random matrix, chaos theory and fractal geometry(Edelman et al., 2005), there might

be a mathematical tool we can borrow to further generalize our framework to include a large class

of natural materials.

To go even one step further, by understanding the behavior of such fractal based system, it might

shine light on the cause of fractal geometries and reveal the underlying relation between the second

thermodynamics laws and self-organized behavior, hence further our pursue in the boundless

journey of understanding nature.

7.2 Experimental Work

Besides the theoretical studies, further experimental studies should also been carried out to verify

the extensive simulations we have conducted on the three PMGF systems.

7.2.1Characterization of fractal based material using Scanning Acoustic Microscope

As mentioned in chapter 3, the SAM can be used to measure transmission of acoustic/elastic waves

through structures (i.e. extraordinary acoustic transmission)(Christensen, Martin-Moreno, &

Garcia-Vidal, 2008; Ghaemi & Thio, 1998; Jean, Strehlow, & Ziebarth, n.d.; Lu et al., 2007; Wang,

2010). For the H tree samples studied, SAM can be used as a detector/receiver to scan the

transmitted signals in xy plane by providing a stationary planar or point source. It has been shown

that novel electromagnetic wave transmission behavior can be achieved by stacking fishnet like

structures. Hence it would be interesting to see whether the experimental transmission behavior
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would correspond to the simulation result obtained in Chapter 3. Besides the transmission property,

the in-plane (xy plane) eigenmodes of the structure can also be used to investigate the displacement

behavior. Since the z position of the transducer can be adjusted, a 3D scan of surface displacement

can be obtained to conduct in depth study of surface waves as well as bulk waves.

Figure 5.40: 3D drawing of H tree based sample for out of plan transmission measurement with increasing level of
iterations from left to right. Fabricated samples using 3D printer (Project 6000) (2 nd row)

Supposing the future experimental results correspond well with our numerical studies as well as

our hypothesis, other fractal structures can be designed and studied to tailor their behavior for more

specific applications. For example, fractal structures for heat management and Nano-phononic

engineering, which have profound impact on super computers given the ever increasing need for

computation capacity with lower power constrains.

A similar experimental setup can also be used to study samples based on the random fractals

studied in Chapter 4. Both out of plane transmission and in plane eigenmodes can be probed using

the same setup, the experimental data could further reinforce our understanding this new classes

of metamaterials. Furthermore, this setup would allow us to study the "fractal drum" problem (the
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fractal bounded membrane) at a much smaller length scale since the relevant wavelengths are

reduced to the micrometer scale(Banjai, 2007)(Sapoval et al., 1991).

7.2.2 Characterization of mesoscopic phononic metamaterials

As mentioned in Chapter 5, a mesoscopic scale system can be used to manipulate surface acoustic

waves by varying the types of geometries and the strength of the bond between the grating and

scatters. It would be interesting to verify the prediction with experimental results to accelerate

applications in surface acoustic wave devices. Brillion light scattering (BLS) can be used to

investigate the phononic behavior of the metamaterials, since it allows direct measurement of the

complete phononic dispersion relation (Gorishnyy, 2005)(Still, 2009)(Kuzmany, 2009). A Brillion

light scattering apparatus has been built for our group. For highly transparent samples, the

transmission setup is used with angle resolved capability, i.e. the incident angle can be varied to

access a larger range (almost 0 to 180 degree) of the q vector. The sample holder has a separate

rotation stage to allow adjustment of sample orientation, such that the sample plane is normal to

the scattering plane. For opaque samples, the samples are measured in the backscattered setup.

Some of my prelimilary experiments indicate that one of the major challenges is to increase singal

to noise ratio for thin samples.

Furthermore, to study temperature-dependent acoustic phonon spectra in our sample, we can also

setup micro-BLS by adding focusing optics and sample micropositioning to our current BLS. In

micro-BLS, laser light is focused onto the sample by microscope objective. For example, a focal

spot as small as about 250 nanometers can be realized for the probing light with the wavelength of

514 nanometers. The micro-focus BLS setup has been used to study eigenmodes of submicrometer

magnetic squares with Landau domain structure and spin caloritronic and thermal transport

phenomena.

Besides the BLS technique, Near-Field Scanning Optical Microscopy (NSOM) is another

technique to probe the surface acoustic wave behavior of a fabricated system. NSOM is a versatile

technique that allows flexibility for designing the experiments(Bhushan & Othmar Marti, 1985),

i.e., NSOM is a type of modified optical scanning acoustic microscope. For an all-optical scanning

acoustic microscope, the acoustic wave is usually generated by a pulsed laser with high intensity;

while the probing wave is usually a continuous wave with lower intensity(Sharples, 2003).
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Figure 5.4 1: Schematics for experimental setup of Brillion light scattering with forward scattering (transmission) mode

(top) and backscattering (reflection) geometry (bottom).

The optical energy transferring to the sample as thermal energy will cause a thermoelastic response

or ablation, depending on the intensity of the laser as well as the absorptivity of the materials. To

minimize the damage to the sample, the surface acoustic wave can also generated by patterning a

piezoelectric materials on one side of the feature. Various optical detection techniques for surface

acoustic waves have been proposed and used: knife-edge techniques, interferometry techniques,
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holographic techniques, diffraction techniques, photo-emf detection etc(Dhar 2000; D. Hurley,

Morkog, 1987a, 1987b; J.P. Wolfe; S. Tamura 1995; Tachizaki, 2006; Vines 1995)(Profunser,

2006). Among them, knife-edge techniques and interferometric techniques are preferred for

probing a general broadband wave disturbance. Some techniques provide spatial-amplitude or

time-angle scanning, which elucidates the regions of energy localization and features of the band

structure. Recently, Dieter et. al. used Sagnac interferometer"(Tachizaki et al., 2006) that can map

surface phonon in real time in two dimensions up to 1GHz using a ID phononic crystal. The direct

measure of the amplitude and phase of the field over space and time would infer the full 2D band

structure and Bloch Harmonics. Given the current setup of the MIT NSOM, a modified knife-edge

technique could be employed.

7.2.3 Where art meets science: Jackson Pollock's painting in 3D

Jackson Pollock received tremendous acclaim as a leading "Abstract Expressionism" artist. The

complexity of his painting does not only fuel the imagination of artist and its viewers, but also

attracted attention from the scientific community. Taylor et al. found that the pattern of Jackson

Pollock's painting is fractal using box counting methods(Taylor et al., 1999). Colors were filtered

using the physical model based on red-green-blue primaries and a perceptual model on L*a*b

color space. They found that the fractal dimension of Jackson's painting has evolved from a lower

D value (e.g. D = 1.1) to a higher D = 1.7 from his classical period.

On the other hand, eye-tracking techniques have been used to study gaze behavior in artworks with

fractal patterns having different D values. Surprisingly, the eye movement of the search pattern

traces exhibit a value of around D = 1.5 regardless of the D values of the fractal pattern observed.

The link between the fractal pattern's D value and visual esthetic preference is also intriguing. It
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Figure 5.42: The fractal dimension D of Pollock paintings plotted against the year in which they were painted (1943-
1953). The right hand images show computer constructions of three of Pollock's paintings. Source:(Taylor et al.,

2011)
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Figure 5.43: The plot of log N (L) versus log L for the aluminum trajectories of the painting 'Blue Poles'. The black

line is the data (composed of 1523 data points within the first decade). The red and blue lines indicate the two gradients.

Note that the graph remains linear beyond the range shown. The upper inset shows a plot of pattern density P versus

the X and Y positions across the painting 'Number 14' (0.57m by 0.78m). P is defined as the percentage of the canvas

surface area filled by the pattern within a square of side length L= 0.05m. The plotted ranges are 0 < P < 100% and

0< X, Y < 0.43m. Source:(Taylor et al., 2011)
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was found that highest average visual preference is observed for fractal dimension in 1.3-1.5 range

for simple fractals (e.g. natural fractal, mathematical fractals and manmade fractals) with little

variance based on gender and cultural background. It is proposed that we prefer patterns with D =

1.3-1.5 because nature's fractals cluster around D = 1.3 and the exposure to them establishes

familiarity. It is conjectured that Jackson Pollock's high D value paintings esthetically challenging

to engaging the viewer's eyes in constant search through the dense structure.

Furthermore, another study has shown that Jackson's painting showed different D values

originated from two different processes, chaotic dripping of painting and his lateral movement

across the canvas. The analysis reveals two distinct D values over the ranges lmm<L<5cm and

5cm<L<2.5m, as shown in Figure 7.4. Hence fractal paintings show scale dependent behavior due

to different mechanisms in their creation (Taylor et al., 2011).

Despite the significant progress in understanding the mathematical nature of art work and our

aesthetic perceptions, there is still great potential to be further explored in mimicking the fractal

geometry to design novel materials for advance applications.

7.3 Future Applications

Given its unique properties, PMFG can be implemented for several applications depending on their

frequency (wavelength), as shown in Figure 7.5. As mentioned in last section, Jackson Pollock's

painting exhibit fractal dimension, if we can extract the 2D pattern and add in the third dimension

parameter by either argument the thickness of the paint) or convert the color into numerical height

value, we might be able to create a Jackson Pollock's sculpture. Therefore, not only the visually

impaired people can enjoy Jackson Pollock's painting, we might also enjoy it from a different

"sense". Furthermore, given its broadband response and well-known damping

properties(Jusserand et al., 2012; Russ et al., 2002; Felix, et al.), we can also use PMFG to design

and fabricate shielding devices for various applications. One interesting applications related to

Chapter 6 would be to design biocompatible shielding "membrane" to cover the tissue surrounding

the kidney stone so it can minimize the impact of shockwave. Obviously, this structure can also

be used for blast resist vest for soldiers and equipment in battlefields.

Given its long range correlation and sparse spatial distribution, we can design new generation of

stealth smart skin (i.e. sensor network) to be embedded in structural components, e.g. aircraft shaft,
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bridges, buildings, to provide real-time structural data to centralized or distributed headquarter for

monitoring. Hence it might be able to prevent catastrophic failure of structural and better

understanding the mechanical behavior of system. Furthermore, a fractal gene has also been

proposed to explain to encode the fractal geometry reoccurring at different length scale in human

body. If we can utilize the scalable features of fractal geometry, we might be able to implement

such smart skin to various structural components using similar governing rule. Hence we achieve

the most efficient way of information processing using scale invariant algorithm. Besides, the

vascular systems in human are within the reach of every five cells while only occupy a small

portion of human body(Guidolin et al., 2011; Seuront, 2010). Therefore it is a very efficient

geometry for distribution and circulation, where a constructal law has been proposed to describe

Acoustic Sculpture Smart Skin

H10 M10Hz

I
0 101 102 103 104 105

Broadband Shielding Thermal Management
Figure 5.44: Potential applications for Phononic metamaterial based on fractal geometry (PMFG) Images retrieved
from Google for acoustic sculpture, broadband shielding and thermal management. Image courtesy to Google:
(Acoustic Sculpture) http://www.ibiblio.org/wm/paint/auth/pollock/ (broadband shielding)
http://health.ucsd.edu/specialties/surgery/urology/areas-expertise/kidney-stone-center/treatments/Pages/shock-wave-
lithotripsy.aspx (thermal management) http://news.sciencemag.org/sciencenow/1997/04/04-Ol.html

it as a geometry "provides easier access to the imposed current that flow through it" in order to

persist in time(Bejan, 2000). Since the tree-like geometry has been proposed to achieving flow
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access between one point and a volume, it might be in interesting geometry to be implemented for

thermal management where the heat need to be dissipated a point to surrounding volume.
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8. Conclusion
Facing the growing challenges of energy, environment, security and disease treatment, the demand

for novel materials remains strong. Meanwhile, the advancement of science and technology has

expanded the horizon for material research, e.g. increasing computation power and higher

resolution imaging instruments. Facing the growing challenges and opportunities, material

scientists and engineers continues to innovate through both gradual and breakthrough discoveries.

While the material centric approach has resulted in development of new materials for advanced

applications, we introduced a geometric-centric approach as a complementary point of view for

further innovation in this ever expanding and growing field.

The potential of the geometric approach can be illustrated in metamaterials, artificial materials

designed to exhibit novel properties. Since metamaterials enable us to design "atoms" or

"molecules" and their arrangement relatively with greater freedom (i.e. not limited by the chemical

bond or ionic bond in classical material systems), the geometric feature of building blocks and

their arrangement can be greatly exploited to develop new materials. To fully leverage on this

perspective, we aim to develop a design framework that would enable engineers to develop a

physical intuition on design of material systems for specific applications. Using the symmetry

group concept and representation theory, Koh's design framework highlighted the underlying

physical principles that govern the wave dispersion behavior in metamaterials, especially phononic

metamaterials (C. Y. Koh, 2011). To expand the framework on more complex geometries, a more

generalized framework can be developed leveraging on the new theories developed in theoretical

physics.

Inspired by the ubiquitous fractals-like geometry in natures, scale transformation (i.e. dilation or

contraction) is included in the framework since a fractal geometry shows structures at all scales

(but of course discrete and finite in the physical world). To describe the roughness of fractal

system/process, scale relativity gives up the differentiability of geometries and processes and adds

scale transformation (e.g. resolution variables) in addition to other conventional transformations,

such as translation, rotation etc. Although this framework employed fractal as a more abstract

concept, some of the concepts and tools can be helpful in understanding fractal material system

given the analogy between medium-scatterer and space (or space-time)-object. Based on this
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foundation, we developed a generalized framework that could expand the horizon for designer

materials, e.g. based on complex geometries.

To capture both scale dependent and scale independent behavior of the materials observed, the

relationshipX(s, E) = x(s){1 + ,(s) - }, which relates the properties of the material with a

fractal-like geometry undergoing a fractal-nonfatal transition, is employed. Therefore, for

materials that still retain translational symmetry yet with fractal-motifs (in their unit cell), Koh's

framework would still be applicable when the wavelength is comparable to the unit cell.

We aim to further our understanding of phononic metamaterials and our framework using

prefractals from both exact-self similar fractal and random fractal samples. For exact-self similar

fractals, we choose the H tree based prefractals and Hilbert Curve prefractals bounded system. The

H tree is chosen since it allows the scatterer phase to be highly connected (i.e. you can travel

between any two point in the scatterer phase without ever leaving the scatter phase within the unit

cell), hence one phase exhibit fractal like geometry. On the other hand, the Hilbert Curve, a spacing

filling curve (i.e. filling the 2D plane after an infinite number of iterations), defines a fractal like

interface between the scatterer and matrix phase.

For H tree based metamaterials, we studied both in-plane eigenmodes and out-of-plane

transmission behavior for 2D and 2D plate with finite thickness systems. For 2D system, several

factors have been studied systematically on how they would impact the behavior of the systems.

It was found that the length/thickness ratio, level of iteration and materials properties can all be

used to control the wave propagation behavior in the system through different mechanism. By

increasing the level of iteration, multiple bandgaps can be achieved across different length scale.

For 2D fractal resonator with finite thickness, the lowest eigenmodes exhibit subwavelength

frequencies from full wave simulation, which is - 1/75 of the frequency comparable to the

Euclidean dimension of the plate. A simple equivalent electric circuit is developed to describe the

Helmholtz resonator tree, which in turn can be used to explain in-plane eigenmodes of the 2D plate

with finite thickness slab with H tree prefractal. The resonance frequency obtained are consistent

with the full wave simulation. 2D fractal resonators with finite thickness have been fabricated

using high resolution 3D printer, where the scaffolding and other parameters have to be optimized

to achieve the precision and robust mechanical properties of the final sample. To study their
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mechanical behavior, SAM has also been used for imaging the surface and subsurface of sample

(in reflection mode) as well as the transmission characteristic of such samples (in transmission

mode). The reflection images revealed topographic features informative of the surface finish of

the sample.

For Hilbert Curve prefractal bounded sample, their in-plane eigenmodes have been studied for 2D

system. Again multiple spectral band gaps have been observed for the samples studied. It was

found that higher impedance contrast between scatterers and matrix are preferred for band opening

since high strain region are more localized in softer phase, hence flatten the dispersion curves.

Furthermore, the bandgap size increases and decrease with increasing level of iteration (as well as

filling ratio of scatterer phase), which might indicate an optimal fill fraction. Furthermore, the

eigenmodes are less confined with increasing level of iterations although they still obey the

symmetry of the relevant k vector. Besides the level of iterations, arrangement of the building

blocks also influence the behavior, although the symmetries of the unit cell is retained, their

variation in local dynamics also changed the dispersion behavior system. The bandgap size of

modified system can be larger or smaller than the pure prefractal system depending on the level of

iteration. Furthermore, it was found the bandgap size of the fractal interface is larger than that of

a fractal phase (although the interface of H tree prefractal also exhibit certain fractal like

properties).

While the prefractals of exact self-similar fractals retain certain degrees of familiarity (i.e.

symmetry elements) of a traditional material, they add in the new element of scale variance. To

move into a space where symmetry element exhibit a more statistical nature, e.g. fractional

Brownian Surface., we studied a binary system based on random fractals generated from projection

of a fractional Brownian surface. We choose the Hurst constant as a key factor to define the

behavior of random fractal based system with moderate impedance contrast since it defines the

geometric correlation relations among scatterers in the binary phase. Despite the loss of

information on detailed distribution of displacement eigenmodes due to the statistical nature, it

was found that the Hurst constant can be used to characterize the dispersion behavior of

metamaterials based on random fractals. Furthermore, the filling fraction also affects the behavior
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of the system through both effective mechanical properties at long wavelength and at the scale of

the largest cluster size of scatterers.

Furthermore, it was also found that the dispersion behavior varies little with different grid

number/cell (i.e. relative scale) for system with small impedance contrast. This is desirable for

studying pseudo-random fractal systems with reduced computation time and resource

consumption. Since the arrangement of the local cells also affects the geometric properties of the

supercell, we found that a given the super cells with a homogenous H value or mixed H value have

different behavior.

By taking a systematic approach to the study of fractal based metamaterials, the factors that could

influence the dispersion behavior have been identified and discussed. This opens up a new field

for further investigation in light of both better understanding of nature, but also developing novel

materials for ever more demanding applications. It can also serve as a model system for simulating

microcrack propagation for wave propagating medium, if the scatters are assumed as initiation site

of microcrack.

Besides understanding the fundamental physics of wave propagation in metamaterials, we are also

interested in applying them into device design and integration. One potential application area is

surface acoustic wave device, which has grown substantially for a wide range of applications.

We employed a 2D simplified system to probe the behavior of a mesoscopic system consisting of

a 1D continuous grating and circular scatterers. The system shine light on how the 1D grating

would interact with circular scatterers in different ways through different arrangement of the 1D

gratings and scatterers.

Moving into 3D full wave simulation, we first studied a system with a 1D grating and spherical

scatterers. We found several parameters that enable us to manipulate dispersion behavior of the

surface wave or pseudo-surface wave, e.g. the period of ID grating, the size of spherical scatterers,

arrangement of the scatterers and the materials properties of the scatterers. For applications where

wide spectral gap is desirable, spherical scatters should be in contact with 1 D grating to perturb

their behavior along the longer axis of 1D grating (i.e. direction with continuous 1D grating

phase).
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For a system with 1D grating and cylindrical scatterers, artificial mechanical bonding between

scatters and/or 1D grating are introduced and varied using soft rubber connecting blocks. Similarly,

without the bound, cylindrical scatterers and 1D grating are almost independent with each other.

However, by bonding the scatters with ID grating, localized eigenmodes and flattened dispersion

behavior can be achieved. The bonding through a cap block on top of both scatters and 1D gratings

are shown to be particularly effective. Furthermore, introducing defects in the 1D grating can

eliminate the extended modes along the XM direction. The diversity of bonding between scatterers

and/or 1D grating would enable it to generate multiple spectral gaps or fewer large gaps for surface

waves.

Besides the full wave simulations, experimental samples with 1D grating and spherical scatterers

(i.e. nanoparticles) have also been fabricated using a vertical deposition technique, where the

density and fill ratio can be controlled by the deposition parameters.

Another interesting application is understanding the shock wave induced fracture of kidney stone

as a non-invasive treatment of kidney stones. Kidney stones can have debilitating effects in

people's life, causing much pain and discomfort. Kidney stones have a wide range of chemical

composition and morphology due to their dynamic growth environment in the human body. The

multiple stages in stone formation allows several risk factors in stone formation, both internal and

external factors.

Depending on the size and location of the stone, different options can be used to treat kidney stone.

Extracorporeal lithotripsy is non-invasive compared to surgery by launching shockwave through

the abdomen or the back to breakdown the stone. There are two main mechanism involved in

breaking up the stone: 1) spalling: stressed-induced expansion of stone 2) cavitation: microject

cause induced pitting on the surface, hence initiate crack/defects sites. Studies suggest that

cavitation and spalling work synergistically to break the stone. More studies are needed to

understand and realize the full potential of the synergy from both mechanisms. This treatment can

be further improved to increase the effectiveness of stone breaking and minimizing the tissue

damage. Several methods have been proposed to improve the efficacy of lithotripsy treatment: 1)

A dual beam configuration with two beams focused on same spot to control the size and time of
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wave's focus 2) tandem dual pulse where the second pulse impacts at the collapsing phase of

bubbles(Loske, Prieto, Fern ndez, & Cauwelaert, 2002) (Yoshizawa et al., 2009).

Despite the advancement, the multi-disciplinary nature of the cavitation problem and the

heterogeneous nature of kidney stones are challenges to be overcame in this active research field.

For the multibubble cavitation field, the distribution of bubbles and the emission of sound waves

showed fractal characteristics. Given that we are more interested in the collective (or statistical)

properties of the impact of cavitation field, a fractal model might be appropriate to capture the

spatial attributes and the collective wave produced to better understand its interaction with the

kidney stone.

Therefore, the general design framework put forth in this thesis provides an intuitive yet insightful

way for materials scientists to design new materials for advanced application, such as acoustic

sculpture, broadband shielding devices, smart skin and fractal thermal devices. By introducing the

complex geometry into metamaterial, it does not only expands the repertoire for novel materials

system; but also provides us a way to understand nature better since fractal geometry is so

ubiquitous. Compared to natural systems, most manmade systems adopt a regular geometry in

Euclidean space, e.g. continuous smooth lines, surfaces, volume (although strictly speaking all

volume consuming object are 3 dimensional) since their deterministic nature makes them easy to

standardize, mass produce and be stable. They serve their functions well most of the time since

they are used in relatively well controlled environments for limited time (e.g. life time of manmade

object). However, systems in nature usually adopt a less regular geometry (i.e. fractal) since they

have nonlinear and deterministic interaction within a dynamic system.

As material scientists, we are constantly humbled by the material systems in nature and trying to

learn from them through mimicking. On the other hand, we are constantly trying to exceed nature

by designing metamaterials that behave differently than natural materials. With understanding of

materials based on fractal geometries, we can fully utilize their potential in applications requiring

adaptive and dynamic properties. On the hand, our mimicking effort should not lose sight of the

importance of simplifying and abstracting from nature, which might enable superior performance.
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Appendix A: Theoretical Studies on Local Resonance-like systems in
more details

To verify the general framework, we carried out studies on several metamaterials system with

different symmetry and other local properties. As mentioned in the introduction, avoided crossing

is the general mechanism to form spectral gap and is applicable to both Bragg scattering and local

resonance. Since the avoided crossing will only happens to eigenmodes with the same symmetry

(i.e. irreducible representation for the relevant wave vector), material system with different

symmetry will be studied. Moreover, since the material choice will perturb the degree of non-

locality, the material properties, e.g. impedance, will be varied to tune the degree of impedance

contrast. It will be demonstrated that by tuning the material parameters, the "weakness" of the non-

locality becomes clear.

A.lHow does the symmetry of the lattice affect the spectral gap opening?

As mentioned before, the irreps of the wave vector determines of the eigenmode of the polarization

field. Avoided crossing only happens between/among eigenmodes with the same symmetry

(irreducible representation with respect to the relevant wave vectors). To prove the first point, track

the polarization field along the boundary F*M4K- F for a three phases system (with scatter,

rubber and matrix, adopted from the sonic crystal used by Liu et al). The band diagrams from three

different lattice types demonstrate that the symmetry of the unit cell irreps would determine which

two bands would encounter avoided crossing, as shown in Figure A. 1.

F point as shown in Figure 3.2 bottom:

For p6mm, the symmetry is C6, m and E. the symmetry at the center of the scatter is C2, mx, y

and E, since the two mirror plane is equivalent, the two mode are degenerate. For p4mm, the

symmetry is C4, mx, y and E, since the two mirror plane is equivalent, the two mode are

degenerate. p2mm at the F point lower the symmetry (only C2, m and E) and the perturbation

lifted the degeneracy as shown in the dispersion curve and correspond eigenmodes.
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Figure A. 1: Top: dispersion curves calculated for three structures with unit cell possessing different symmetry. From

left to right, the symmetry at F point is hex (p6mm isotropic in 2D), p4mm and p2mm. Bottom, the corresponding

eigenmodes at IF point for the three system with different symmetry.
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Figure A.2: Displacement plot for selected eigenmodes and the dispersion curves calculated from COMSOL for the

selected three phase system. F point has C3v symmetry. Along FM direction, the symmetry is entity E; along MK it

has the mirror plane; along KF, it has mirror plan (mx). The eigenmodes on the left corresponds to F and four dashed

lines on the diagram on the right.

For the eigenmodes along the BZ boundary, as shown in Figure A2, the symmetry of the

displacement filed for certain eigenmode is determined by the irreps of the relevant wave vector.

To further investigate the necessary condition for avoided crossing to happen, the unit cell with

p4mm and p2mm are chosen. For both p4mm and p2mm, along the FX direction, the k vector has

mx, E symmetry; hence the eigenmode would conform to the

Table A. 1 Materials constant used in the simulation

Scatter Rubber Matrix
Young's Modulus Pa 400e8 4.35e8 43.5e8
Poisson Ratio 0.25 0.25 0.25
Density kg/m3 11600 1180 1180
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symmetry of the wave vector along this direction. Avoid crossings occur between modes 2 and 5

as well as between modes 1 and 4 since they are symmetric and antisymmetric with respect to mx

plane.

Even if we reduce the elastic constant to 0.435e8 Pa holding the other parameters constant, the

band diagram starts to resemble the local resonance system. However, if the eigenmode is

investigated further, the general principles still apply to this system: the symmetry of the

polarization still conforms to the irreps of the relevant wave vector. Moreover, avoided crossing

happens only between the bands with the same symmetry regardless of the position where the

spectral gaps happens, i.e. Bragg like or subwavelength resonant like. Therefore, the position and

width of spectral gaps are not always determined by the bands that bound the gap. Furthermore,

the fact that the avoided crossing happens not at F point for the second case indicates the non-

locality of the mechanism. Therefore, the system studied further verified the hypothesis proposed

by Koh. While the symmetry of the structure bound the possibilities of interaction through global

invariants, the local properties, i.e. group velocity, strength of interaction can be manipulated with

other parameters.

A.2 Fine tune the materials properties to manipulate the dispersion curve
As mentioned before, the local phononic behavior can be tuned by several parameters, e.g.

geometry and material constants. Therefore, the material property for the rubber interlayer is varied

(as listed in Table A2) to study its effect on local dispersion behavior of the system.

For the p4mm case, as we tune rubber from constants of Lead scatter to matrix and then to soft

rubber, the system evolves from crystal case to local resonant like system, as shown in Figure Al

and Figure A4. As the rubber become softer, the eigenmodes are more localized. For example, by

inspecting modes 4, 5 from the top left to the right

Table A2: The materials constants used in the simulation

Rubber1 Rubber2 Rubber3 Rubber4 Rubber5

Young's Modulus Pa 400e8 43.5e8 13.5e8 4.35e8 0.435e8
Poisson Ratio 0.25 0.25 0.25 0.25 0.25
Density kg/m3 11600 1180 1180 1180 1180
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bottom dispersion curve, as shown in Figure A4. The frequency where the avoided crossing

happens also decrease with decreasing elastic constant of the rubber. It is also noted that the modes

at the long wavelength limit is relatively less affected, since the wavelength can hardly

probe/resolve the change in rubber properties. Comparing Figure A4 and Figure A3, indicates that

avoided crossing between mode 2 and 5 happen closer at smaller k value as the elastic constant of

the rubber is decreased keeping other materials properties constant. Since the avoided crossing for

mode 1 and 4 occurs near the BZ edge, the k value are less affected by the varying of the material

properties.

Similar trends are found for the p2mm case as demonstrated Figures A3 and A4. Similar trends

are also observed in the p6mm system. Therefore, by varying the material property, the dispersion

curve can evolve dramatically, i.e. from crystal-like to local resonance-like. Note that the general

framework remains valid throughout all the case studied so far.

The first one is a binary system with the "rubber phase" has the same material constant as the

scatter, as shown in Figure A5. The binary systems exhibit properties similar to phononic crystal

with a spectral gap occurring at a length scale comparable to the lattice period, i.e. Bragg-like

scattering at the BZ boundary.

If the scatter take the property of rubber, i.e. Es = 0.0435e8 Pa. The dispersion curves demonstrate

local resonance-like behavior, as shown in Figure A6. The softer scatter introduces a resonance

state at subwavelength scale, when its symmetry is the same as the extended state in the matrix,

avoided crossing will happen and generate the subwavelength spectral gap.

A.3 Symmetry of the scatter motif
Besides the material property, the symmetry of the scattering motif also affects the dispersion

behavior, as shown in figure A7. When the scatter varies from single circle to paired triangle to

connected paired triangle, the dispersion curve varied accordingly. When changing from circular

to triangular pair, the 2nd spectral gap shifted upwards. Comparing the middle and the right

dispersion curves, the connecting channel between two triangular pair lowered the symmetry of

the scatter motif from p6mm to p2mm at the
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center of the unit cell. It induces an avoided crossing between band 2 and 3 along FM direction

(mode 3 shown in the band diagram).
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Figure A6: Displacement plots for selected eigenmodes and the dispersion curve calculated from the COMSOL the

for hex (left), p4mm (middle) and p2mm (right) system with case for soft scatter

The symmetry of the scatter also affects the polarization field, i.e. mode 3 at ri = 1 on the middle

and right dispersion curve. At M point, mode 1 and 7, mode 3 and 8, and mode 4 and 11 are

interacting with each other since they share the same symmetry with respect to the mirror plane.

At K point, mode 1 and 7, mode 2 and 10, and mode 4 and 8 are interacting with each other since

they share the same symmetry with respect to the mirror plane.

Relatively little effect occurs across at the long wavelength limit (k - 0) along FK. As the wave

vector goes closer to the BZ boundary, the connecting channel slightly modify the polarization

direction in the middle section where channel sits, (see mode 2). The presence of the cut also

reduces the group velocity of eigenmode and the displacement field concentrate along the channel

with a polarization perpendicular to the channel, i.e. mode 7. It also affect the polarization field,

i.e. mode 11 at ri = 1 on the middle and right dispersion curve.
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Appendix B: Scale Relativity

As the physical approaches moving from descriptive modeling to predictive theory founded on

basic principles, we evolved from Ptolemy's model to Newton's theory to Einstein's general

relativity and quantum theory. Scale relativity aims to pave the way to unifying the quantum and

relativity concept on the basis of first principles. In the framework of scale relativity, quantum

field become manifestation of geometry of space-time, which now included a scale parameter.

Since the scale relativity naturally follows the general relativity, we will review the important

concepts in relativity theory.

Starting from the foundation of theoretical physics-principle of least action and conservation laws,

basic equations can be constructed relating energy, momentum and angular momentum. The action

is defined as the integral of Lagrange function S = ft L(x, v, t) dt , which exists given a

generalized coordinates xi and generalized velocity vi = dxi/dt. The principle of least action

states that the motion of the system between x (ti) and x (t2) is such that it optimizes the value of

this action to a constant, minimum value (i.e.6S = 0). The principle of least action become the

geodesic principle in relativity theory, where geodesic is generalized notion of "straight line" to

"curved space".

From the principle of least action, a generalized form of motion equation can be derived

d 'L ai
dt 6"V - x=0

Which is the known as Euler-Lagrange equation, which become Newton's fundamental equation

of dynamics if we write L(x, v, t) = Z mv2 _ (X).
2

Linked to this principle, the existence of physical quantities and the conservation laws can be

proved (Noether's theorem). Due to the symmetries of the underlying basic variables that describe

the system, their characters are conserved. Hence, energy is conserved due to the uniformity of

time; momentum is conserved due to the uniformity of space.
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Given the tools to describe laws of physics using mathematical equation, the principle ofrelativity

states that the laws of physics should apply for any state of reference system (origin, orientation,

motion, scale etc.). To implement this principle, three related principles have to be developed.

First, the principle of covariance requires "equations of physics keep their form under change of

the state of reference system". Secondly, principle of equivalence states "a gravitational field is

locally equivalent to an acceleration field". In the framework of scale relativity, quantum behavior

is locally equivalent to nondifferential and fractal motion. Third, geodesic principle defines free

trajectories as the geodesics of space-time. This principle means the fundamental equation of

dynamics is completely determined by the geometry of space-time. Hence, the action dS can be

identified with the fundamental metric invariant ds - the proper time - as dS = -mcds. To go

even further, instead of thinking geodesic as trajectories of particles, they can be viewed as pure

geometrical path, from which the various properties of wave-particle emerge.

By giving up the differentiability of space-time, scale relativity redefine derivatives in order to not

give up the partial differential equation. For system where nondifferentiability can be neglected,

the standard differentiable physics would be sufficient. However, when nondifferentiability cannot

be ignored with small and large length scale, as well as mesoscopic complex system. Scale

relativity suggests that all scales are connected together via scale differential equations and various

physical quantities now also dependent on the space-time scale/resolution. Therefore, fundamental

equation of physics will also depends on scale, constrained by the requirement to be covariant

under scale transformation of resolutions, where resolution con be considered as the measuring

sticks in simplest case (although its nature is tensorial).

To construct the scale relativity theory, the laws of scale at a given point and instant, was first

found constrained by principle of scale relativity. Then the laws of motion in standard space-time

are found, including the effects of nondifferentiability and fractality in the differentiation. After

that, the law of coupling between scale and motion are developed.

From a continuous and nondifferentiable manifold with scale divergence in the limit resolution

6-> 0, fractal can be derived as secondary property. As mentioned in chapter 1, the length of the

fractal curve can be estimated using L(s, E) = s(A)T, where s is a renormalized curvilinear
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coordinate along the fractal curve and the exponent is defined as T = DF - DT, where DF and DT

are the fractional and topological dimension respectively.

To carry out for the scale transformation, an infinitesimal dilation operator is derived as D = e
aLnE'

which shows lns as the natural variable for the resolution. The simplest equation for L under scale

transformation is achieved when it is a function of L only, that is aL(sE)= (L), Defining P(L)
alnE

=a+bL+..., we have

L(s, E) = L 0 (s){1 + c(s) }, Therefore the projection of L on any direction can be written as

X(s, E) = X(s){1 + ((s) ()}. The differential of the projection can be written as dX = dx +

df, where dx is a classical differential element and df oc dxl/DF. It is obvious that the dx

corresponds to the differentiable element while d captures the

variation of the length variation of the fractal dimension

CDC

" scale-
E independent

------------ ........ dn

logarithm of resolution logarithm of resolution

Figure 2.2 Fractal length and fractal dimension for self-similar fractals. The two figures show the scale dependence

of a length of a fractal and the fractal dimension in the case of inertial scale laws, which are solutions of simple first

order scale differential equations. It transforms from scale dependent at small scale to scale-invariant large scale.

nondifferentiability. It is easy to see that when (i) E «< A, L(S, E) - 0 (s){(s) (E), L follows

a power law observed fractal curve, when (ii)E >> A L(s, E) ~ LO (s) is given by a scale invariant,

as shown in the plot. This transition can be clearly seen in Figure 2.2.

The scale symmetry is spontaneous broken by the very existence of standard (e.g. translation,

rotation). The symmetry breaking is achieved by domination of one law over the other when
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moving to extreme scale. And this transition is identified with the Einstein-De Broglie scale. This

would reveal that quantum classical transition as being fractal-nonfractal transition in scale space.

To further generalize the relationship, we can include even higher order term by writing aLr(sE
alnE

a + bL + cL 2 ..., which would leads to two transitions to scale independence (both large and small

scales) as shown below.
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Figure 2.3 Fractal length and fractal dimension for self-similar fractals: two transitions. The two figures show the

scale dependence of a length of a fractal and the fractal dimension in the case of inertial scale laws, which are

solutions of simple first order scale differential equations. It transforms from scale dependent at small scale to scale-

invariant large scale.

One the hand, by introducing a complex value of b (or fractal dimension) such that

OL(sE) vL = X, set v' = v + rj, the solution is L(E) = aE'[1 + bE'1 ], by defining i=ioalnE

L(E) = aEv[1 + bcos(wlnE)],

To make it more realistic by adding in term Lo, we have

L(E) = Lo{1 + (O) [1 + bcos(wlne)]}.

We will obtain a log-periodic behavior, which can be viewed as a stationary wave in scale-space.

With the scale transformation (E->E') defined, we need to find the form of physical equations under

such transformations. To obey the principle of covariance for fractal length L under scale

transformation, we need to find four functions a(V), b(V), c(V) and d(V) such that
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In-= a(V)ln- + b(V)r,

-' = c(V)ln + d(V)r,

where T'and r are scale time or "dj inn". The general solution to this problem is the Lorentz group.

To solve this problem, we impose the physical constrain: composed transformation keep the same

form as the initial ones; reflection invariance where the choice of x axis orientation should not

U+v.
alter the relation. Hence, the Lorentz scale transformation can be derived as W = in

terms of scale,

where M, v, Q are scale ratios, W = Iny, U = nv, V = Ing , C = InK is a fundamental

dimensionless scale constant that related to the universal length. Define A = K x AO , the

composition law now takes the form

U+V inv + Ine 22 ln(0) + Ine
__= = _ny = In- =
1 + U x V/C 2  I + InvInQ/lK 1+ n( 4)In/2n2(_)

it can be shown that we cannot find any scale 2 < A if we start from any scale 2 >A. Hence A is

invariant under dilations and contractions, which resulted from principle of scale relativity and

existence of fractal to non-fractal transition.

With the foundation laid out, the special relativity can be constructed under the scale relativity

framework. The nondifferentiability of the space have three main consequences:

1) Infinite number ofgeodesics demands defining a fractal velocity fields V = V(x(t, dt), t, dt)

for the flow of the geodesics. This loss of information (purely geometric origin) meaning

at the level of particle paths, probabilistic description will replace the deterministic

description.

2) Fractal geodesics requires a fractal velocity field, which can be defined as V[x, t, dt] =

1

v[x, t] + w[x, t, dt] = v[x, t]{1 + () D}, where t. is a transition time-scale. This

equation shows that scale dependent persists for all scale although it is dominated by
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different parts at different scale. Fractal part dominates at small scale while the

differentiable classical part dominates at large scale. The transition is identified as the de

Broglie scale of quantum to classical transition. Moreover, it might also predict the

classical behavior in quantum regime and vice visa.

3) Symmetry breaking under the reflection (dt -4 -dt) implies two valuedness of the velocity,

V+[x(t, dt), t, dt] = v+[x(t), t] + w+[x(t, dt), t, dt],

V_ [x(t, dt), t, dt] = v_ [x(t), t] + w_ [x(t, dt), t, dt],

which is shown to be the origin of the complex nature of the quantum tool.

Again to obey constrain of internal composition law and recovering classical limit, the velocity

field is defined as

V=(v++v- - a v~v') + (+&-- a Lc-
221 2 2

A complex operator d = + V - V - iDAis introduced to deal with the nondifferentiability by

replacing the d/dt. Here V is differentiable part of the complex velocity field and D characterizes

the amplitude of fractal fluctuation since D = where i ,j = x, y, z
±28ijdt

This operator enables us to recover the form of physics laws as their differentiable counterpart.

Starting from Newton's equation of dynamics m V = -VO and defining (p = eis/2mD, we

obtain

D2Ap + iD ap -- p = 0, (1)at 2m(1

When h = So = 2mD standard Schrddinger equation can be recovered. Hence there is natural link

between the Compton relation and the Schr6dinger equation, where D can be defined by the

fractal-nonfractal transaction. Since m = S0 /2D, it can be perceived as a large-scale geometric

property of fractal geodesics, which emerged from the geometry itself.

ds as -
Similarly, new form of Langrage in terms of complex action is defined as L = d = + V - VS,

and the covariant Hamiltonian function is defined as

If =2-P-t=VKP-iDVKP-L. (2)

238



By redefining the Hamiltonian operator as J- = -2mD 2 A + #, again the Schrodinger equation

can be written as

Rq = (-2mD2A + j)<p = 2imD (3)
at

Further generalization can be obtained b introduce full wave function ' = -2iDV1nC and

accounting for doubling of the partial time derivative

at_2a t at at

Hence the more general Schrodinger Equation would present as

D2AC + M C - 1 = 0 (5)
at 2m

Given that the derivation only needing parameter D to be conservative, this model is applicable

for macrophysics. The general method can be applied to macrophysics, where a new constant

instead of h = 2mD (particular case applicable for microphysics ) could be

introduced. While all the derivation above assumes the fractal dimension DF =2, the theory can

be further expand by considering the fractal dimension 1 <DF <2, which however lead to degenerate

and unphysical Schrodinger equation.

The fractal space-time can also be introduced in framework for relativistic quantum mechanics.

Since the energy is now expressed as E2 p 2 c2 + m 2 c4 , the transition from fractal to nonfractal

is now given by the four-dimensional de Broglie scale A, = h/p'. Since its corresponding time

rdB = = h/ p 2 c2 + m 2 c 4 is always smaller than the E = = h/mc2 , then fractal space will

happen first and then fractal space and time when going down the scale. The time differential

element has to be replaced by proper time differential element ds. To account for the three discrete

symmetry breaking from the nondifferentiability of space, i.e. ds < -ds dxm <+ -dx" xt <->

-x's, biquanternionic velocity is introduced. The two valuedness properties originated from

reflection in s and dx and standard effect of Parity (P) and time reversal (T).

Hence the quantum-type mechanics (regard to laws of motion) in space-time can be derived from

the simplest possible scale laws constrained by scale relativity principle and stand law of motion.
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Another field of application for the scale relativity framework is the gauge field, by considering

resolution variables as function of the space-time coordinates. It is proposed that gauge fields can

be constructed as the manifestation of the dilations of the scale variable. By introducing the new

scale symmetry, the charge can be constructed as the conservative quantities, hence as the

generator of the scale transformation group. Furthermore, the links between electromagnetism and

scale variation is made. This leads to correspondence between local expansion/contraction or

staticity of the fractal space-time to a charged or an uncharged particle. Therefore, gauge field is

conceptualized as locally equivalent to expansions or contractions of the internal resolution

variables for describing a nondifferentiable manifold.

Besides the quantum type law of motion derived above, a quantum scale-law can also be

constructed under the scale relativity framework. One approaches propose a "scale law function

the V) [Ine(x, t), x, t]. If it only depends on time variables, a Schrodinger equation can be written

as

D2 a +iD E M- = 0 (6)

It gives rise to a log-periodic behavior, equivalent to classical stationary wave equation. The

probability of a structure present at some relative scale can be described by the solution. The

propagation of quantum wave can then be described by the time dependent solutions in scale space.

A more generalized Schrodinger equation can be obtained by introducing wave function i()

to account for the tensorial nature of the scale variables:

DE 2 a8. jv VJ+ ME 0I...~ (6)

Another approach for quantum scale law can be arrived by considering djinn or "scale time" as the

main new variable. The Schrodinger equation can be constructed starting from the Euler-Lagrange

form:

Ds 2 "I'+ iM, ( sW = 0 (7)S(alnL)
2 + t 2D--as ~~ = 7

Starting from fractal objects in nature, the concept of fractal abstracts into a geometric description

through several stages. Starting from Mandelbrot's fractal objects, scale relativistic fractals are
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proposed by suggesting only scale ratio has physical meaning. Furthermore, if the scale ratios

between structures become the variable of the coordinates (with non-static fractal structure), the

gauge transformations can be interpreted with a scale relativistic interpretation. And the Fourier

transform of solution TW(ln) from equation (7) will provide probability amplitude for the

possible values of 1ne. Hence the probability density will be given by I y12 (In), which describe

a given probability for two structures to be related by a given ratio. Hence an infinite family of

possible behavior will self-organize since some value of InL become more probable than others.

Furthermore, a conserved quantity will emerge from the uniformity of the new time scale variable

if the equation is invariant with respect to djinn (or scale time). This quantity is defined as E =

V - £, defined as a scale energy "Complexergy", equivalent of energy for motion. The
av

complexergy is universally quantized (i.e. discrete level of hierarchy of organization in nature) due

to the universal minimal value of djinn (t>O). Hence the system would jump from one organization

to a more complicated one if the system is to increase its energy with time.

Besides the satisfaction derived from funding the underlying link between geometry (in a broad

space-time-scale sense), the theory also have interesting applications. As mentioned before,

quantum behavior might be observed in macroscopic (in traditional sense) for irreversible

reflection process. Hence in the framework of scale relativity, a system might meet the condition

and described by quantum like tool. For mesoscopic and macroscopic fractal systems, it would be

interested to know the necessary condition for the possible existence of a macroscopic Schrodinger

regime. Numerical studies carried out showed the prerequisite to be a large enough scale range

(scale ratio of 1 e5 between the upper and lower transition) exhibiting fractal behavior. A scale

ratio is applicable to time-scale as well as length-scales, which could be hard to achieve in

laboratory scale. However, the demonstration of applying such framework has already been

achieved (e.g. the Higgs mechanism and super conductivity). The analogy between medium-

scatter and space (or space-time) object holds potential for studying material physics to understand

fundamental physics. The propagation of waves in geological media has already attracted huge

amount of interest, other fractal medium also present potential system for studying quantum like

behavior.

The other interesting application is to understand the relation between quantum laws and

diffusions, given their formal similarity between their governing equations
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DAP - - = 0 for classical diffusion equationat

DAJ + io = 0 for free Schrodinger-type equation
at

Despite the similarity of the format in their equation, their difference is quite striking: the diffusion

is dissipative, non stationary, non isentropic with an tendency to become disorganization; on the

other hand, the Schrodinger equation exhibits stationary and quantized solution for a given

boundary condition, hence tendency toward self-organization. To reconcile the differences, it was

proposed to conceptualize Quantum laws as anti-diffusion. Starting from the complex velocity

field, by expressing force as probability density at each point and instant, a diffusion potential -

Pdiff = 2D2Ap/p - exactly opposite to quantum potential can be derived. By varying the

value of D, three regimes can be identified: self-organizing quantum-type process D2 ; weakly

organized classical process (D 2 = 0); disorganizing entropy increasing diffusion process (-D 2 ).

Since dimension D is not tied to the h, the transition among the three stages might be observed by

fine-tuning the quantum potential. Hence an experimental setup to simulate the quantum potential

has been proposed. It involves three steps retroactive loop with detector, computer and actuators.

The detector measures the quantity as the density, the computer will compute the quantum

potential Q = 2D 2 Af'7/,Jpj, the actuator will apply the new value of potential to the system at

each time tn. Hence the continuous loop might stimulate quantum like behaviors.
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Appendix C: MATLAB Code to generalize random fractal

function fieldl=Brownian field(H,n)

% generates Fractional Gaussian field projected binary system with a given Hurst parameter 'H';

% the covariance function is isotropic and the method used is

% inputs:
% 'H' is the Hurst parameter
% 'n' is the number of grid points on a square lattice that includes the circular region of interest

% output:
% plot, which is also plotted as shown below

clear all

R=2; % [0,R]^2 grid, may have to extract only [0,R/2]^2

n=150; m=n; % size of grid is m*n; covariance matrix is mA2*nA2

tx=[l:n]/n*R; ty=[1:m]/m*R; % create grid for field

Rows=zeros(m,n);
H = 0.5;

for i=1:n
for j=1:m % rows of blocks of cov matrix

Rows(j,i)=rho([tx(i),ty(j)],[tx(1),ty(1)],R,2*H);
end

end
BlkCirc row=[Rows, Rows(:,end-l:-1:2);

Rows(end-1:-1:2,:), Rows(end-l:-1:2,end-l:-l:2)];

% compute eigen-values
lam=real(fft2(BlkCircrow))/(4*(m-l)*(n-1));
lam=sqrt(lam);
% generate field with covariance given by block circular matrix

Z=complex(randn(2*(m-1),2*(n-1)),randn(2*(m-1),2*(n-1)));
F=fft2(lam.*Z);
F=F(1:m,1:n); % extract sub-block with desired covariance

[out,cO,c2]=rho([O,O],[O,O],R,2*H);
fieldl=real(F); field2=imag(F); % two independent fields

% make correction for embedding with a term c2*r^2

fieldi=fieldl + kron(ty'*randn,tx*randn)*sqrt(2*c2);
[X,Y]=meshgrid(tx,ty);

%renormalize field 1
fieldl((X >1)j(Y>1))=nan;
fieldl=fieldl (1:n/2,1 :m/2);
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field1 =fieldl -median(median(fieldl))

%find the threshold value of h
B = reshape (fieldl,[],1);
Bsort = sort(B);

p = 0.9;
cap = Bsort(floor(numel(Bsort)*p));
fprintf ('the cap value is %f,', cap);

%surf(tx(1:n/2),ty(1:m/2),fieldl,'EdgeColor','none')
%colormap pink
[row 1,coll ]=find(fieldl>cap);

% draw the circles

for jj = 1:1:numel(rowl)

r= R/n;
x(jj)=rowl(jj)*R/n;

y(jj)=coll(jj)*R/n;

rectangle('Position',[x(jj),y(jj),r,r],'Curvature',[ 1,1]);
hold on;
axis equal;

end

axis([O R/2 0 R/2]);

%define function rho

function [out,cO,c2]=rho(x,y,R,alpha)
% embedding of covariance function on a [0,R]^2 grid
if alpha<=1.5 % alpha=2*H, where H is the Hurst parameter

beta=O;c2=alpha/2;cO=1-alpha/2;
else % parameters ensure piecewise function twice differentiable

beta=alpha*(2-alpha)/(3*R*(R^2-1)); c2=(alpha-beta*(R-1 )A2*(R+2))/2;

cO=beta*(R-1)A3+1 -c2;
end
% create continuous isotropic function
r=sqrt((x(1)-y(l))A 2+(x( 2 )-y(2))A2 );
if r<=1

out=c0-rAalpha+c2*rA2;
elseif r<=R

out=beta*(R-r)A3/r;
else
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out=O;
end
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Appendix D: MATLAB Code to generate dispersion curve

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\Users\Snowocean\Desktop\environmentalcomplex');

model.name('CS43_2n100_H3H7mixCap9.mph');

model.param.set('ax', '325');
model.param.set('gx', 'pi/ax');
model.param.set('kl x', 'ri *gx');
model.param.set('kl y', '0*gy');
model.param.set('k2x', '0*gx');
model.param.set('k2y', 'r2*gy');
model.param.set('rl', '0');
model.param.set('r2', '0');
model.param.set('eM', '3e9');
model.param.set('vrM', '0.375');
model.param.set('rhoM', '2500');
model.param.set('vrSc', '0.329');
model.param.set('rhoSc', '972');
model.param.set('d', '1 e6');
model.param.set('eR', '4.35e8');
model.param.set('vrR', '0.25');
model.param.set('rhoR', '1180');
model.param.set('eSc', '4.35e7');
model.param.set('ay', '325');
model.param.set('gy', 'pi/ay');

model.modelNode.create('modl');

model.geom.create('geoml', 2);
model.geom('geoml').feature.create('imp1', 'Import');

model.geom('geoml').feature.create('rl', 'Rectangle');
model.geom('geoml').feature.create('r2', 'Rectangle');

model.geom('geoml').feature.create('spll', 'Split');

model.geom('geoml').feature.create('difl', 'Difference');

model.geom('geoml').feature.create('copyl', 'Copy');

model.geom('geom ').feature.create('dif2', 'Difference');

model.geom('geom ').feature.create('mov 1', 'Move');

model.geom('geom l').feature('imp l').set('type', 'dxf);

model.geom('geom l').feature('imp l').set('filename',
'C:\Users\Snowocean\Desktop\nl 00_H3H7.dxf);
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model.geom('geom ').feature('rl ').set('pos', {' 118''47'});
model.geom('geoml').feature('rl').set('size', {'343' '341'});
model.geom('geom l').feature('r2').set('pos', {'518''47'});
model.geom('geoml ').feature('r2').set('size', {'343' '341'});
model.geom('geoml').feature('spll').selection('input').set( {'imp 1'});
model.geom('geom ').feature('difl').selection('input').set( {'rl '});
model.geom('geoml ').feature('difl').selection('input2').set({'spl (1)' 'sp 11(100)' 'spl1 (101)'
'spll(106)' 'spll(11)' 'spll(13)''spll(145)' 'spll(146)' 'spll(14 7)' 'spll(15)' ...
'spll(17)' 'spll(177)' 'spll(18)' 'spll(182)' 'spll(19)' 'spll(20)' 'spll( 2 02)' 'spll( 209 )' 'spll(21)'
'spll(222)' ...
'spll(223)' 'spi1(224)' 'spll(238)' 'spi1(249)' 'spll(250)' 'spll(265)' 'spll(266)' 'spi1(273)'
'spll(2 7 4 )' 'spll(282)' ...
'spll(283)' 'spll(2 8 8)' 'spll(2 89)' 'spll(29 7)' 'spll(2 98 )' 'spll(299)' 'spll(3)' 'sp11(300)' 'spll(301)'
'spll( 3 11)' ...
'spll(312)' 'spll(3 13 )' 'spll( 3 14)' 'spll(315)' 'spll( 3 16 )' 'spll( 3 17 )' 'spll( 32 7)' 'spll(32 8 )'
'spll(329)''spll(33)' ...
'spll( 3 30)' 'spll(331)' 'spll(34)' 'spll(35)' 'spll(36)' 'spll(37)' 'spll(38)' 'spll(39)' 'spll(54)'
'spll(55)' ...
'spll(56)' 'spll(5 7)' 'spll(58)' 'spll( 59 )' 'spll( 7)' 'spll(71)' 'spll(72)' 'spll( 73 )' 'spll(74)'
'spll( 8 6)' ...
'spll(87)' 'spll(8 8)' 'spll(89)''spll(9)'});
model.geom('geom l').feature('copyl ').set('displx', '400');
model.geom('geom ').feature('copy l').selection('input').set( {'difl'});
model.geom('geom ').feature('dif2').selection('input').set( {'r2'});
model.geom('geoml').feature('dif2').selection('input2').set(f{'copyl '});
model.geom('geoml').feature('mov 1').set('displx', '-400');

model.geom('geom l').feature('mov l').selection('input').set({'dif2'});
model.geom('geoml').run;

model = mphload('CS43_2n100_H3H7mixCap9.mph');

% (Default values are not included)
matfile = ['C:\Users\Snowocean\Desktop\environmentalcomplex\list.txt'];
A = load(matfile);
rhoA= A(:,1).*1e3;
vA= A(:,2);
eA=A(:,3).*1e9;
ss=31;
xx=max(size(A));% number of iterations
fprintf('starting the sweep CS43_2n150_H5Cap9 now!\n')

rl=0;
r2=0;
neig = 23;
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EigFreqGX= zeros(21,neig);
nEigFreqGX= zeros(21,neig);
% --------------------------------------------------------------------------

for mm=1:xx
update=['\n we are running entry' num2str(mm) 'now\n'];

fprintf(update)
material=['the E is' num2str(eA(mm)) 'the rho is' num2str(rhoA(mm)) 'the vr is'

num2str(vA(mm)) '\n'];

fprintf(material)

for jj=0:20
ind=jj/20;

r2=ind;
rl=1;
fprintf('rl =')
fprintf(num2str(rl));
fprintf('r2=')
fprintf(num2str(r2));

model.param.set('rl', num2str(rl));
model.param.set('r2', num2str(r2));
model.param.set('vrSc', num2str(vA(mm)));
model.param.set('rhoSc', num2str(rhoA(mm)));
model.param.set('eSc',num2str(eA(mm)));

ModelUtil.showProgress(true) % display the progress bar?
model.sol('soll').runAll; % solve

Freq_Imag = mphglobal(model,'imag(freq)')';
Freq_Real= mphglobal(model,'real(freq)')';

EigFreqGX(jj+1,1:length(FreqReal))= Freq_Real;
nEigFreqGX(jj+1,1:length(Freq_Real))= EigFreqGX(jj+1,1:length(FreqReal))*2.58621e-10;

end

filesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\nlOOH3H7cap9'
num2str(mm)'XM.txt'];
save(filesave, 'EigFreqGX', '-ascii', '-tabs');

nfilesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\Nn1 0OH3H7cap9'
num2str(mm) 'XM.txt'];
save(nfilesave, 'nEigFreqGX', '-ascii', '-tabs');
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fprintf('finished XM\n');

clear Freq_Real FreqImag EigFreqGX nEigFreqGX

for jj=0:20
ind=jj/20;

r2=1;
rl=1-ind;% we pin r2 as zero
fprintf('rl =')
fprintf(num2str(rl));

fprintf('r2=')
fprintf(num2str(r2));% Constants

model.param.set('rl', num2str(rl));
model.param.set('r2', num2str(r2));
model.param.set('vrSc', num2str(vA(mm)));
model.param.set('rhoSc', num2str(rhoA(mm)));
model.param.set('eSc',num2str(eA(mm)));

ModelUtil.showProgress(true) % display the progress bar?
model.sol('soll').runAll; % solve

Freq_Imag = mphglobal(model,'imag(freq)')';
Freq_Real = mphglobal(model,'real(freq)')';

EigFreqGX(jj+ 1, 1:length(Freq_Real))= FreqReal;
nEigFreqGX(jj+1,1:length(FreqReal))= EigFreqGX(jj+1,1:length(FreqReal))*2.58621e-10;

end

filesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\nlOOH3H7cap9'
num2str(mm) 'MY.txt'];
save(filesave, 'EigFreqGX', '-ascii', '-tabs');

nfilesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\NnlOOH3H7cap9'
num2str(mm) 'MY.txt'];
save(nfilesave, 'nEigFreqGX', '-ascii', '-tabs');

fprintf('finished YG\n');

clear Freq_Real Freq_Imag EigFreqGX nEigFreqGX

for jj=0:20
ind=jj/20;

rl=O;
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r2=1-ind;% we pin r2 as zero
fprintf('rI=')
fprintf(num2str(rl));

fprintf('r2=')
fprintf(num2str(r2));% Constants

model.param.set('rl', num2str(rl));
model.param.set('r2', num2str(r2));
model.param.set('vrSc', num2str(vA(mm)));
model.param.set('rhoSc', num2str(rhoA(mm)));
model.param.set('eSc',num2str(eA(mm)));

ModelUtil.showProgress(true) % display the progress bar?
model.sol('soll').runAll; % solve

Freq_Imag = mphglobal(model,'imag(freq)')';
FreqReal= mphglobal(model,'real(freq)')';

EigFreqGX(jj+ 1, 1:length(FreqReal))= Freq_Real;
nEigFreqGX(jj+1,1:length(Freq_Real))= EigFreqGX(jj+1,1:length(Freq_Real))*2.58621e-10;

end

filesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\n 0OH3H7cap9'
num2str(mm) 'YG.txt'];
save(filesave, 'EigFreqGX', '-ascii', '-tabs');

nfilesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\NnlOOH3H7cap9'
num2str(mm) 'YG.txt'];
save(nfilesave, 'nEigFreqGX', '-ascii', '-tabs');

fprintf('finished YG\n');

clear Freq_Real FreqImag EigFreqGX nEigFreqGX

for jj=0:20
ind=jj/20;

rl=ind;
r2=0;% we pin r2 as zero

fprintf('rl=')
fprintf(num2str(rl));

fprintf('r2=')
fprintf(num2str(r2));% Constants

model.param.set('rl', num2str(rl));
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model.param.set('r2', num2str(r2));
model.param.set('vrSc', num2str(vA(mm)));
model.param.set('rhoSc', num2str(rhoA(mm)));
model.param.set('eSc',num2str(eA(mm)));

ModelUtil.showProgress(true) % display the progress bar?
model.sol('soll').runAll; % solve

Freq_Imag = mphglobal(model,'imag(freq)')';
FreqReal = mphglobal(model,'real(freq)')';

EigFreqGX(jj+1, 1: length(FreqReal))= Freq_Real;
nEigFreqGX(jj+1,1:length(FreqReal))= EigFreqGX(jj+1,1:length(FreqReal))*2.58621e-10;

end

filesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\nOOH3H7cap9'
num2str(mm) 'GX.txt'];
save(filesave, 'EigFreqGX', '-ascii', '-tabs');

nfilesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\Nn1 0OH3H7cap9'
num2str(mm) 'GX.txt'];
save(nfilesave, 'nEigFreqGX', '-ascii', '-tabs');

fprintf('finished GX\n');

clear Freq_Real FreqImag EigFreqGX nEigFreqGX

for jj=0:20
ind=jj/20;

r2=1-ind;
rl=r2;% we pin r2 as zero

model.param.set('rl', num2str(rl));
model.param.set('r2', num2str(r2));
model.param.set('vrSc', num2str(vA(mm)));
model.param.set('rhoSc', num2str(rhoA(mm)));
model.param.set('eSc',num2str(eA(mm)));

fprintf('rl=')

fprintf(num2str(r1));
fprintf('r2=')
fprintf(num2str(r2));

ModelUtil.showProgress(true) % display the progress bar?
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model.sol('soll').runAll; % solve

FreqImag = mphglobal(model,'imag(freq)')';
FreqReal = mphglobal(model,'real(freq)')';

EigFreqGX(jj+1, 1:length(FreqReal))= Freq_Real;
nEigFreqGX(jj+1,1:length(Freq_Real))= EigFreqGX(jj+1,1:length(FreqReal))*2.58621e-10;

end

filesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\nlOOH3H7cap9'
num2str(mm) 'MG.txt'];
save(filesave, 'EigFreqGX', '-ascii', '-tabs');

nfilesave=['C:\Users\Snowocean\Desktop\environmentalcomplex\dispersion\NnlOOH3H7cap9'
num2str(mm) 'MG.txt'];
save(nfilesave, 'nEigFreqGX', '-ascii', '-tabs');

fprintf('finished MG\n');

clear Freq_Real Freq_Imag EigFreqGX nEigFreqGX

end
fprintf('finished run here of the contact SAWn1OOHlcap9\n')
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