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Abstract

Glial scarring is a major problem seen in brain electrode implants that can hinder electrode
function. One major contributing factor is the mechanical mismatch between the stiff electrode
and the soft brain tissue'. Hydrogel coatings are being investigated to determine their
effectiveness in providing the necessary biocompatibility. Polyethylene glycol hydrogels of
various formulations were fabricated and produced elastic moduli ranging from 13kPa to 687
kPa, which lie within two orders of magnitude of the elastic moduli of the brain (6kPa).
Dehydration of the hydrogels provides the mechanical rigidity necessary for implantation into
the brain. The surrounding aqueous environment allows the dried hydrogel to return to its
swollen state. The swelling process in the brain phantom is slower than in unconstrained
swelling. The equilibrium swollen hydrogel was also slightly smaller in the constrained state,
implying the strain is being distributed between the hydrogel and the brain phantom.
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1. Introduction

1.1. Significance

Errors in chemical and electrical signal transmissions can lead to miscommunication

between different regions of the brain and cause circuit disorders. Treatments include deep

brain stimulation, which has proven to be effective for several disorders. This surgical

treatment allows scientists to electrically modulate and record brain activity in target regions

by implanting an electrode into specific areas of the brain i.

A large problem with device implantation into the brain is the brain tissue's response to

these implants. Research has suggested that the surrounding tissue will initiate an

inflammatory and wound healing response that is exacerbated over time as a result of the

brain's micro-motions from everyday movement. A fibrous capsule develops over time that

interferes with electrode and neuron cell body contact, which can negatively impact device

function".

Previous experiments have demonstrated a direct correlation between induced strains at

the probe-tissue interface and the resultant scarring, suggesting mechanical mismatch to be a

cause of scar formation"'. The elastic modulus of neural implants is often orders of

magnitude larger than that of the brain. Borosilicate glass and the brain have elastic moduli

of 69GPa and 6kPa, respectively. This mismatch causes the soft brain tissue to experience the

majority of the strain. When the modulus of the implant is reduced, more strain will be

shared between the device and the brain tissue. Subbaroyan et al showed through finite

element analysis that reducing the moduli of the implant to the scale of megapascals can

reduce the strain on the brain by two orders of magnitudes. This demonstrates a need for

mechanical compatibility between the device and the brain tissue to minimize the brain's

immune defenses and promote long-term usage of the device.
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Coating neural probes with hydrogels is one potential approach to improve compatibility

with brain tissue and reduce the strain caused by micro-motions. One problem with a coating

is its adhesion strength to the capillary. Weak adhesion between the hydrogel and the

capillary can damage the hydrogel during implantation. This thesis studies the effectiveness

of using dehydration to preserve the hydrogel during implantation. It is hypothesized that a

dehydrated hydrogel can be safely implanted and rehydrated from the high water content of

the brain.

1.2. Hydrogels

Hydrogels are materials formed from a cross-linked network of polymer chains. A variety

of hydrogels can be developed by manipulating the polymer composition and the cross-

linking mechanism. Crosslinks can be formed through both chemical and physical means.

The result is a hydrophilic material with unique mechanical and physical properties,

including the ability to imbibe water and swell. Many hydrogels have been developed that

are environmentally sensitive to factors such as pH, temperature, and ionic strength'.

Hydrogels are frequently used in bioengineering because they are easily modified and highly

biocompatible.

One frequently used mechanism for forming crosslinks is photo-polymerization. The

process utilizes light and photo-initiators to induce free radical polymerization of molecules.

This method is beneficial because of its fast curing time, spatial and temporal control, and

ability to be conducted in ambient temperatures. This allows for the formation of hydrogels

on complex shapes, such as coatings on surfaces. The photo-polymerization process is

initiated when a photo-initiator molecule is exposed to a specific wavelength of light and

forms a radical species. The photo-initiator can be mixed into the hydrogel precursor solution
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so that after activation, the radical species that are formed will cause the polymerization

process to proceed throughout the bulk of the solution to form the hydrogeliv (Figure 1).

Rad*+ H2C = CH -F Rad-CH 2- CH
I I
R R

Rad-CH2- CH'+ H2C CH - Rad-CH2-CH- CH2 -CH
I I I I

Figure 1. Photo-polymerization generates free radicals to initiate the polymerization process. Final
representation of the hydrogel is idealized.

Polyethylene glycol (PEG) is a synthetic polyether that is biologically compatible due to

its low toxicity and hydrophillicity. It is frequently used in vivo because it does not activate

an immune response and prevents protein adhesion to surfaces. PEG chains can be easily

functionalized with terminal acrylate groups to form PEG-diacrylate or PEG-dimethacrylate

for cross-linking purposes v (Table 1).
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Table 1

Structure of three forms of poly (ethylene glycol) polymers

Name Structure

Poly(ethylene glycol) H
-n

0
o COH2

Poly(ethylene glycol) diacrylate H2C O C
0 -

0

Poly(ethylene glycol) dimethacrylate H2C 0 CH2

1.3. Hydrogel Swelling

A useful property of hydrogels is their ability to swell when placed in a

thermodynamically compatible solvent. The tendency of systems towards higher entropy

states drives the thermodynamic force of mixing, which causes the hydrogel to expand. The

elastic force from the stretching polymer chains keeps the hydrogel together. The hydrogel

will continue to imbibe the solvent until the increase in elastic energy of the chains balances

the decrease in free energy from mixing. No additional swelling will occur and the hydrogel

will stay at equilibrium. This effect is described the Flory-Rehner equation which can be

rearranged to give an estimate of the average molecular weight between crosslinksv.

1 2 (-ln (1-v2,S)+v2,s+x*v2,s
2

1/ V2,SMC Mn V2,s'1 2

9



where Mn is the number average molecular weight of the polymer chains, v is the specific

volume of the bulk polymer in the amorphous state (0.893 cm 3/g)vii, V1 is the molar volume

of the solvent (18 cm3/mole), x is the polymer-solvent interaction parameter and v2,s is the

polymer volume fraction in the swollen state.

The interaction parameter is relatively constant at x = 0.426 at room temperature for

polymer volume fractions ranging from 0.04 to 0.2"". The polymer volume fraction in the

swollen state is a simple ratio of the volume of polymer to the total gel volume. It can be

expressed in terms of the mass ratio and the densities of the polymer and solventv.

V2,s =!P = Q, - 1/Pp (2)

Qm is the mass ratio or the swelling ratio and is defined as the mass of the gel over the mass

of the polymer. The polymer volume fraction measures how much fluid can be taken up and

retained by the hydrogel while the average molecular weight M, between crosslinks is a

measure of the degree of crosslinking.

A modified equation for the average molecular weight between crosslinks is used for

hydrogels prepared in the presence of water. This altered equation takes into account the

water-induced elastic contributions to swelling.

1 2 (In (1-v2,s)+v2,s+x*v2,S
2

- = - -v2, (3)
MC-M. V2,r[ '/3 -(1)(V~)

[:2,r 2y

The V2 ,r term is the volume fraction of the hydrogel in the relaxed state. This is the state of

the hydrogel just after crosslinking but prior to being submerged in solvent to swell. The

swelling ratio and the average molecular weight between crosslinks are the most useful

values used to characterize hydrogel network structure.
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1.4. Elastic Moduli

An elastic modulus for the hydrogel can be estimated using the rubber elasticity theory.

This theory can be applied because up to deformations of 20%, hydrogels behave elastically

and are capable of returning to their initial dimensions. The stress to a hydrogel samplex is

S=pRT 2 2,s)113T=,,,(1- c (a 1V r(4)
c Mn / \ L) V2r

where a is extension parameter, or the final length over the initial lengthx. This theory

assumes Gaussian behavior of the polymer chains. The equation can be rearranged to solve

for an approximation of the elastic modulus, which approaches a third of the Young's

Modulus as the limit of a approaches l'x.

(a--) Mc* 3 (V2r)

2. Methods

2.1. Materials

Poly (ethylene glycol) diacrylate (PEG-DA) with a molecular weight of 700g/mole was

obtained from Sigma-Aldrich (St. Louis, MO). Poly (ethylene glycol) dimethacrylate PEG-

DM with molecular weights of 2000, 4000, 6000 and 8000 g/mole were synthesized using a

published protocolx. Fluorescent and non-fluorescent Polybead@ Polystyrene micro-particles

of 6.0 [tm were obtained from Polysciences, Inc. (Warrington, PA). All other reagents and

chemicals, unless specifically mentioned were obtained from Sigma-Aldrich (St. Louis, MO).
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2.2. Preparation of Hydrogel

The hydrogel precursor solution was produced from a mixture of either form of PEG, de-

ionized (DI) water and photo-initiator. The PEG was dissolved in DI water to form

concentrations of 5, 10 and 20% m/v PEG. The photo-initiator, 2-Hydroxy-4'-(2-

hydroxyethoxy)-2-methylpropiophenone (224 g/mole) was added (0.2% m/v) and the

solution was mixed until the solids were fully dissolved.

2.3. Preparation of Hydrogel Coating on Capillary

The production of a hydrogel coating on the glass capillary is a two-step process that can

be performed at room temperature. The first step is the functionalization of a borosilicate

glass capillary tube with methacrylate groups to allow for stronger covalent bonds between

the hydrogel and the tube. The tube is subsequently coated with a hydrogel precursor solution

and exposed to UV light to form the hydrogel.

a)I Piranha
STreatment

OH OH OH OH

b) 1mM TPM under N2
in 4:1 Heptane:CC14

0 0

Ai I i
0 0

d) 365 nm UV light

Figure 2. a) capillary tubes are treated with piranha solution to hydroxylate the surface b)
capillary tubes are functionalized with methacrylate groups using TPM c) poly (ethylene
glycol)- dimethacrylate polymer chains are introduced d) exposure to UV light starts a photo-
polymerization process that allows the methacrylate end groups of the polymer chains to bond
to the surface and crosslink with each other
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Capillary tubes with outer diameters of 150im were first treated with a piranha solution

to remove organic residues and hydroxylate the surface. The solution was created from a 3:1

mixture of 80% sulfuric acid to 30% hydrogen peroxide. The tubes were submerged in the

solution for 10 minutes, washed with DI water, and dried with nitrogen gas.

The tubes were then treated with 1mM-3-(trichlorosilyl) propyl methacrylate (TPM) in

order to add methacrylate end groups. The tubes were added to a 4:1 ratio of heptane and

carbon tetrachloride. TPM was introduced under nitrogen at 0.1644ptl/mL of the total

solution. The solution was allowed to stir for 10 minutes. The tubes were washed with

heptane, acetone and DI water.

A glass capillary mold with an inner diameter of 400 pm was used to constrain the

hydrogel coating over the capillary tube. The hydrogel precursor solution then filled into the

empty space through capillary action. The mold was exposed to 365 nm UV light for

approximately 30s for each centimeter in length. Coated capillary tubes were stored in DI

water at room temperature until use.

2.4. Gel Dependence on PEG MW and % PEG

Hydrogel precursor solutions of varying concentrations and molecular weights were

synthesized according to Section 2.2. 0.2 g of each solution was added to a 1.5 mL eppendorf

tube. The tube was exposed uniformly to UV light for 90s or until the solution gelled. The

post-gelation weight was recorded and a hole was poked on the top of the eppendorf tube.

The tubes were dried in vacuum for 2 days. The mass of the PEG (Mp), mass of the water

(Mw), the relaxed gel mass (Mr) and the dry gel mass (Md) for each sample was measured.

The dry gel mass was assumed to be equivalent to the polymer mass (Mp). These

measurements were used to calculate the mass swelling ratios, the polymer volume fraction,

13



the average molecular weight between crosslinks and the elastic modulus using equations

(1)-(3).

2.5. Time Dependence of Swelling

Hydrogel coated capillaries were studied under an inverted optical microscope at

different swelling states to determine the time evolution of swelling under free and

constrained conditions. The capillary re-swelled in DI water in the unconstrained

experiments. Constrained swelling experiments were conducted using a brain phantom

composed of a 0.6% agarose gel with 0.005% w/v of Polybead@ polystyrene 6.0 [tm

microparticles. Small 1mm holes were drilled into the sides of 12-well cell culture plates and

the agarose solution was gelled inside the wells. Hydrogel coated capillaries were immersed

in DI water and allowed to swell to an equilibrium diameter (Ds). The capillary was

dehydrated in a vacuum for 20 minutes and the diameter recorded (DA). The dried capillary

was then inserted into the agarose through the hole in the well plate as horizontally as

possible to stay within the focus of the microscope. Images were taken at various time points.

These images were used to determine an equation to describe the time dependence of

swelling. Additionally, using ImageJ's Particle Image Velocimetry plug-in, the movement of

the particles in the agarose solution was observed to generate a vector plot to show agarose

and gel movement during different time intervals.
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3. Results

3.1. Gel Dependence on PEG MW and % PEG

Four different molecular weights and three different mass percentages of PEG were

studied. The swelling parameters as shown in Table 2 are the average of three determinations

of the specimens. Some insolubility at the highest molecular weights (8000 g/mole) was

observed. The hydrogel was difficult to cross-link at the lower mass percentages, and the gel

was observed to be less 'gel-like' and more fluid.

Table 2
Summary of swelling parameters for different hydrogel formulations

MW M/v % Qm V2,s M*C

5% 20.2+2.7 0.043+0.004 306+8
700 PEG-DA 10% 10.5+2.6 0.079+0.008 269±16

20% 5.9+0.6 0.132+0.015 221+26
5% 20.7+4.1 0.041+0.002 733+28

2000 PEG-DM 10% 10.1+1.4 0.082+0.011 514+90
20% 7.6+0.9 0.105+0.002 523+14
5% 18.9+10.8 0.046+0.005 1047+150

4000 PEG-DM 10% 12.2+ 1.6 0.069+0.009 909i163
20% 5.9+0.3 0.132+0.002 425i36
5% 46.7+10.8 0.020+0.005 3124+353

8000 PEG-DM 10% 13.3+1.5 0.063+0.003 1365+109
20% 6.0+0.1 0.129+0.004 554+36

The swelling ratios are approximately the inverse of the mass percentages, which is

consistent with expectations. The values for average molecular weight between crosslinks are

shown in Figure 3. Two trends can be observed. First, an increase in polymer concentration leads

to a decrease in the average molecular weight between crosslinks, which suggests an increase in

crosslink density. Second, the average molecular weight between crosslinks increases linearly

with the molecular weight of the original polymer. This relationship is less clear in hydrogels

with higher percentages of PEG due to increased numbers of physical crosslinks. This form of

15



crosslinks include weak van der Waals' forces and entanglements, both of which are more

significant at higher concentrations of polymer.

3500

3000 y =0.3844x - 110.08
R= 0.95808

S 2500
+5%

2000 W 10%
y = 0.1488x + 217.36

R2= 0.97991 20%
1 1500

1000

y=0.0329x + 310.04
R= 0.4851

RU

0
0 - ----- ~ - -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Molecular Weight of PEG (g/mol)

Figure 3. Increased polymer concentrations leads to increased crosslink densities. Increased
molecular weights of PEG leads to increased molecular weight between crosslinks.

The elastic modulus for different hydrogels was calculated using equation (4). The

unadjusted molecular weight between crosslinks values were used (Figure 4). The crosslink

density decreases when the molecular weight between crosslinks increases, which leads to

softer hydrogel with a smaller elastic modulus. This phenomenon is, however, not clear from

the results shown. The modulus of the 20% PEG- 2000 gel is lower than expected and the

modulus of the 5% PEG-4000 gel is higher than expected.
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1000
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800

ro.700

= 600

500 5%

400 1l%

I' 20%LU 3002%

200

100

0 ---- - --- - -- - - - - -~ ~ - ~ ~ - -

PEG- 700 PEG-2000 PEG-4000 PEG-8000

Molecular Weight of PEG g/mol)

Figure 4. Estimated elastic modulus for different hydrogel formulations. Increasing the polymer

concentration is an effective way to change the elastic modulus.

3.2. Swelling Ratio of Hydrogel-Coated Capillaries

A high degree of variability in the quality of the hydrogels was observed due to the

difficulty in removing the hydrogel from the mold during the fabrication process. Part of the

hydrogel coating often sheared off. Care was taken to use hydrogel-coated capillaries with no

prominent defects for subsequent experiments. The diameter of the hydrogel-coated capillary

was measured at different time points using Image J's 'Distance Between Polylines' plug-in

to determine the swelling ratios from swelling and drying capillaries.
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IRREM PP ii I

-i50 um Dd: 185 urn D i

DO: 386 urn

Figure 5. Capillary is not centered within the hydrogel after the fabrication process. The overall

cross-section of the hydrogel is still assumed to be spherical due to the shape of the mold. During re-

swelling, the side with a thinner layer of hydrogel reaches equilibrium first

The cross-sectional area (Al) of the hydrogel at each time point was estimated using the

total measured diameter (Di) from ImageJ and the expected diameter of the capillary (Dc),

which for these experiments were 150pm (Figure 5).

Ai = 7w [Di)2 - (5Ojtm)2] (6)
A [ = 2-) - (1su 2 )

Once the cross-sectional area was determined, the swelling ratio was estimated using

QM=(At-Ad)Pw+Ad'Pp (7)

Ad*pp

where At is the cross-sectional area of a swollen gel at time t and Ad is the cross-sectional

area of the dried gel. At is equal to A0 for calculations of the initial swelling ratio, where Ao

is the initial diameter prior to drying out.

18
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Table 3
Average parameters for hydrogel coated capillary (10%, 700 MW PEG-DA)

Sample 1 Sample 2 Sample 3 Average
Initial Diameter* (jim) 390 389 381 386
Dry Diameter (pm) 188 178 189 185a

Initial Area (pm 2) 101,512 100,992 96,109 99,352
Dry Area (pm2 ) 9,935 7,275 10,230 9,147

Swelling Ratio 9.2 12.4 9.4 10.4
*Diameter refers to the full diameter of the hydrogel- coated capillary

The swelling ratiol of the hydrogel on the capillary (10.4) is within range of the swelling

ratio of the hydrogel alone (10.5) as shown in table 2 and 3. This suggests that having the

hydrogel coated onto a capillary does not change the swelling parameters drastically.

Figure 6. a) Initial swollen hydrogel at equilibrium, b) Dried hydrogel c) Swollen gel after 1 minute

of re-swelling.

3.3. Time Dependence of Swelling

Insertion of a swollen hydrogel into the brain phantom caused shearing of the hydrogel

(Figure 7). Dehydrating the hydrogel prior to insertion avoided this problem. Dehydrated

hydrogels swelled after insertion into the brain phantom due to the agarose's high water

content.

1 To avoid confusion, the swelling ratio refers to the ratio of the initial gel mass to the dry gel

mass. The re-swelling ratio refers to the ratio of gel mass after re-swelling to the dry gel mass.
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Figure 7. When the hydrogel is inserted into the brain phantom without dehydration, the
hydrogel shears off and the coating is compromised.

The corresponding hydrogel cross-sections were calculated using equation (6) and the re-

swelling ratios using equation (7). The resulting time course of swelling was fit using a

power law equation. Figure 8 below compares the time courses for swelling in water and

swelling in agarose. The constrained swelling in agarose is slower than the unconstrained

process in water as expected. The gel had not yet reached equilibrium at the time the last data

point was taken (~ one hour) for both swelling experiments.

6

Water: y = 3.1562xc" 7

5.5R' 0.91359

S

4.5 ~Agarose: V 3.0S39x6D.6'c
~ R2 =0.96761

C4
+ Water

3.5 Agarose

3

2.5

2
0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

Figure 8. Time course for the swelling of a 10% 700 MW hydrogel coated capillary in water versus

agarose
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The time course experiment was repeated using 20%, 700 MW PEG- DA hydrogels. The

re-swelling ratio levels off before 300 seconds, demonstrating that the hydrogel reached

equilibrium (Figure 9) in both the water and agarose swelling experiments.

6

4

0

fu

3

2

1

0
0 500 1000 1500 2000

Time (s)

- Water

1 Agarose

2500

Figure 9. Time course for the swelling of 20% 700 MW hydrogel coated capillary in water versus

agarose. The gel reached equilibrium around 125 seconds.

Figure 10 shows the swelling time course before the gel reached equilibrium. The power law

fit has an exponent of 0.25-0.27 which is higher than the exponent from Figure 6 for the 10%

gel (0.065). This suggests that swelling in the 20% gel occurs more rapidly than in the 10%

gel. Figure 10 also confirms that swelling in agarose is slightly slower than the swelling in

water.
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Figure 10. Time course for the swelling of 20% 700 MW hydrogel coated capillary in water versus
agarose for the first 125 seconds before the gel reached equilibrium.

3.4. Vector Plot Observations

The effect of the hydrogel expansion on the agarose can be observed using Particle Image

Velocimetry. The data presented in this section was for the gel shown in Figure 11 a-b. Figure

I1 shows a sample vector plot that shows the direction and magnitude of the agarose

movement. The average displacement in the x and y directions are plotted in Figure 11 c-h as

a function of distance away from the capillary for different time intervals. The magnitude of

the total displacement is also shown.

Positive x-displacement is defined as moving away from the capillary. Positive y-

displacement is defined as moving down because the capillary was inserted in the downward

direction. Negative x-axis values correspond to the agarose to the left of the capillary while

the positive x-axis values correspond to the agarose on the right side.
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The surrounding agarose moved in a similar direction as the capillary two seconds after

implantation. The agarose shifted as if it was 'pulled' along, as indicated by the large

displacements in the positive y-direction (Figure IId). The figure also shows that the effects

of implantation can be felt up to 2000 ptm away. The agarose 'readjusted' and shifted upward

to its undisturbed position as indicated by the large negative y displacements after 4 seconds

(Figure lI e). The displacements decrease linearly as the distance from the capillary increases

in both Figures IId and 11 e. In Figure 11 f, the effect of both the agarose re-adjusting and the

hydrogel expanding can be seen. The gel is still re-adjusting upwards although with smaller

magnitudes than before on the right side of the capillary. The left side shows that the

displacement is now decreasing exponentially with distance from the capillary, which is

caused by the expansion of the hydrogel. Figure I Ig shows that after 36 seconds, the bulk of

the agarose stopped moving and all displacement was due to the expanding hydrogel. Small

perturbations seen on the graphs for the right side of the capillary is due the expanding

hydrogel pushing the capillary to the right side slightly. Similar phenomena can be seen from

126-296 seconds in Figure 1 h.
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Figure 11. a) capillary showing direction of implantation b) capillary after 300 seconds of swelling
in agarose c) sample vector plot for time interval of 2-4 seconds with white lines indicating the
capillary and gel boundaries d) 0-2s: large y displacement values indicate agarose is moving along the
direction of implantation e) 2-4s: large negative y displacement values indicate agarose is readjusting
back to its initial position f) 4-36s: displacement exponentially decays on the left side due to hydrogel
expansion while displacement linearly decreases on the right side due to agarose readjusting. g/h)
bulk of agarose is at equilibrium; all movement is due to agarose expansion.
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4. Discussion

4.1. Gel Dependence on PEG MW and % PEG

It was commonly reported in the literature that a recently cross-linked gel was allowed to

swell in PBS for over 2 days to reach the equilibrium, swollen state . No additional swelling

was detected in these experiments. The 10% and 20% gels experienced a loss in mass. This

can likely be attributed to the small size of the hydrogel. The surface of the hydrogel began to

dry out immediately upon exposure to open air, giving an inaccurate measure of the weight.

The recently cross-linked state was considered to be the swollen state in calculations for

V2,s to compensate. The relaxed state volume fraction (V2,r) was calculated using the initial

masses of PEG and water. This adjustment produces an over-estimation in elastic moduli

calculations since less swelling was detected than most likely existed in actuality.

Elastic moduli calculated using adjusted molecular weight between crosslinks values

were approximately an order of magnitude larger than those shown in Figure 4. Calculations

using the unadjusted molecular weights produced elastic moduli values that were more

consistent with those reported from previous literature". Bryant reported compressive

moduli of 34-36OkPa for 10-20% PEG-DM gels of MW 3400. It is not unexpected that the

calculated results would be higher than those reported by Bryant as a result of the way the

volume fractions were determined.

Figure 4 did not show clearly than an increase in MW of PEG leads to a decrease in

elastic modulus as expected. This is because the expected trend exists within the same order

of magnitude. The error bars show that values within one order of magnitude cannot

accurately be distinguished. This error can be attributed to the small sample sizes used.

Masses as low as 0.009g were measured. Values at this scale can be inaccurate so future

hydrogel characterization experiments should use larger sample sizes. Figure 4 did show that
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an increase in percentage of PEG leads to an increase in elastic modulus. Increasing the

percentage of PEG from 5 to 20% was able to increase the elastic modulus by almost 2

orders of magnitude for the PEG-8000 gel.

4.2. Swelling Ratio of Hydrogel-Coated Capillaries

Drying out the hydrogel allowed the capillary to be inserted easily as expected. The brain

phantom provided the water necessary for the hydrogel to return to its initial swollen state.

Most hydrogel coatings over the capillary were uneven, as shown in Figure 6 and I Ia. This

makes it difficult to predict the effects of the cylindrical shape on the swelling. An even

hydrogel coating will expand radially and along the length of the capillary as well.

Buckling (Figure 12) was observed in some samples as the hydrogel swelled due to the

hydrogel being chemically tethered down to the capillary. Samples where this occurred were

not used because it would cause uneven strain on the surrounding agarose. This was more

likely to occur in samples that were left to dry for over a day.

Figure 12. Buckling of the hydrogel occurred during swelling in some samples when the hydrogel
dried for extended periods of time
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4.3. Time Course of Hydrogel-Coated Capillaries

A power law fit assuming Fickian diffusion has the exponent of around 0.5. The fits for

the swelling of 10% and 20% gels as shown in Figure 8 and 10 have exponents lower than

0.5. This "Less Fickian" behavior occurs when the water penetration rate is much lower than

the polymer chain relaxation rate. Previous literature report power law fits only relevant for

swelling below 60%i. The power law fit was able to describe swelling up to equilibrium in

these experiments. This is most likely because the total hydrogel thickness is very thin (on

the scale of im) while most literature reports have used hydrogels on the scale of

millimetersxl.

The difference between swelling in agarose and water is very slight for both percentages

of PEG, but both do show that swelling in agarose is slower, as expected. The equilibrium

hydrogel state for the 20% gel in agarose was observed to be smaller than the equilibrium

state of the gel in water. This implies that the hydrogel is slightly compressed as well, which

matches hypotheses that the hydrogel will absorb some of the strain.

Experiments using the 20% hydrogels were able to reach equilibrium at around 2 minutes

while the 10% hydrogels did not reach equilibrium within an hour. This can be explained by

the difference in elastic moduli. Figure 4 showed that the elastic modulus for the 20%

hydrogel is higher than that of the 10% hydrogel. A higher elastic modulus allows the 20%

hydrogel to push more against the agarose, expand faster and reach equilibrium sooner.

Further experiments are needed to determine when the 10% hydrogels will reach equilibrium.

Swelling in the brain will be slower than swelling in the brain phantom. The brain

phantom is composed of 99.4% water while the brain's water content is generally accepted to

be around 75%. Water from the brain will be less accessible to the hydrogel, which will slow
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the swelling process. Mouse models will provide better insight into the swelling time course

in brain tissue.

The rapid swelling of the hydrogel coating could prove to be problematic during

implantation into brain tissue. Surgical implantation procedures require accuracy and

precision so the implantation process is on the scale of minutes or more. This contrasts with

the swelling of a hydrogel, which is capable of reaching almost 70% of its equilibrium state

within 30 seconds. This could compromise the integrity of the hydrogel and cause more

injury during implantation.

4.4. Vector Field Observations

Most of the strain from inserting the capillary occurred within the first four seconds as a

result of the insertion. The surrounding agarose shifted in the direction of movement and then

shifted backwards to readjust. The effects of this phenomenon could be felt up to 2000ptm

away. The effects of the hydrogel expansion only affected the regions nearest to the capillary

(within 250ptm).

One problem during the collection of the data was that in order to ensure that the inserted

hydrogel was in focus, an initial portion of the capillary was inserted slightly. Any hydrogel

on the capillary tip swelled immediately. This soft hydrogel tip caused less tearing of the

agarose during implantation, but exacerbated the 'pulling' phenomenon, which resonated

more throughout the gel.

5. Conclusion

PEG-DA and PEG-DM hydrogel coated capillaries were synthesized and

characterized. The properties of the hydrogels were varied by altering the percentage

and molecular weight of PEG. Calculated elastic moduli values ranged from 13kPa to

687 kPa and are similar to that of the brain (6kPa). Dehydration of the hydrogels
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allowed the capillary to be easily inserted into brain phantoms. Nearly instantaneously,

the hydrogel began to imbibe water and swell. Hydrogels with higher moduli were

observed to swell faster in both water and agarose. The 20% hydrogels reached

equilibrium within 300 seconds while the 10% hydrogels did not reach equilibrium

within an hour. Swelling in agarose was slower than swelling in water and reached a

smaller equilibrium state. In the future, time course experiments need to be conducted

with more hydrogel formulations to confirm the trends observed. Mouse models can be

used to more accurately determine swelling behavior in brain tissue. A mechanism

needs to be developed to produce even hydrogel coatings. This would normalize the

results more effectively since it is uncertain how much data variability is due to

hydrogel variability. Additional tests are needed to determine the ideal thickness of the

coating such that it provides enough mechanical compatibility without compromising

device function.
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