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Abstract

This thesis presents two computational approaches for identifying chromatin interac-
tions at high spatial resolution from ChIA-PET data. We introduce SPROUT which is
a hierarchical probabilistic model that discovers high confidence interactions between
binding events that it accurately locates. We apply SPROUT to CTCF ChIA-PET
data from mouse embryonic stem cells and demonstrate that SPROUT discovers in-
teractions that are more consistently supported by biological replicates than an alter-
native method called The ChIA-PET Tool. We also introduce GERM which models
genome-wide distributions of protein occupancy without assuming that proteins can
be accurately modeled as binding to point locations. We demonstrate that the lo-
cations that GERM identifies as interacting with transcription start sites of genes
accurately align with ChIP-Seq data that are associated with active enhancers. Fi-
nally, we apply GERM to RNA Polymerase II ChIA-PET data from embryonic stem
cells and motor neuron progenitors and make several observations about the usage of
enhancers during motor neuron development.
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Chapter 1

Considerations for discovering

chromatin interactions from

high-throughput sequencing data

Complex regulatory mechanisms allow for the great diversity of gene expression pat-

terns observed in different cell types. Despite containing DNA sequence for the same

set of genes in the genomes of their cells, different cell types within the same organism

will express widely different sets of genes [56]. These differences in gene expression are

fundamental to allowing different cell types to play different functional roles within

the organism. During development, cells express different sets of genes as they move

through the stages of differentiation [38]. Fully differentiated cell types in mature

organisms turn genes on or off in response to stimuli to allow the organism to main-

tain homeostasis [2]. Even in the absence of environmental changes, different genes

are expressed as a cell progresses through the cell cycle [5]. The variability of gene

expression patterns even in cells containing the same genome sequence illustrates one

of the core problems of genomics research which is to understand how the expression

of genes is regulated.
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1.1 Interpreting gene regulation through linear ge-

nomics

Until recently, genomics research has taken a mostly linear view of the genome. It

is convenient to think of the genome as a one dimensional sequence scattered with

regions of importance to gene regulation. The sequence corresponding to genes that

contain the information necessary for producing proteins, known as protein-coding

genes, makes up only about 3% of the total Human genome sequence [6]. Protein-

coding genes have well defined structural components including transcription start

sites (TSSs), exons made up of codons that specify amino acids, and introns which are

post-transcriptionally spliced out of mRNAs transcribed from protein-coding genes

that are specified by splicing signals. The characteristic sequence structure of genes

allows for very accurate computational prediction which, along with experimental

methods, have led to a thorough inventory of the protein coding genes present in

most sequenced genomes [27].

The regions of importance to gene regulation other than the transcribed regions

of genes are more difficult to identify from genome sequence alone. The genome se-

quence that is proximal and just upstream of the TSS of a gene, referred to as the

promoter region, plays an important role in regulating the expression of the gene [35].

The binding of a transcription factor within a few kilobases of a TSS will often have

an affect on transcription, usually in concert with the binding of other transcription

factors. The dominant methods for measuring transcription factor binding involve

a chromatin immunoprecipitation (ChIP) step. An antibody that recognizes a pro-

tein of interest is used to isolate fragments of genomic DNA that are bound by the

protein of interest from a sample of fragmented chromatin extracted from a cell pop-

ulation. Until the advent of high-throughput sequencing technologies, ChIP-enriched

fragments were probed for sequences that match a known location in the genome by

quantitative PCR or several known locations using microarray technology. Even very

dense modern microarray designs are limited in the number of probes that they con-

tain. This limitation prevents high resolution genome-wide profiling of transcription
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factor binding and requires that researchers choose the genomic regions that they are

most interested in profiling. Given the convenience of looking near annotated TSSs

as opposed to the vast majority of the genome which is much less well characterized,

much of genomics research until relatively recently focused on characterizing genomic

features near annotated TSSs.

The recently developed ability to inexpensively sequence millions of short reads

from DNA fragments by high-throughput sequencing has enabled the development

of technologies for profiling genomic features genome-wide. By analyzing genome-

wide datasets, it was noted that many transcription factors bind very frequently to

regions distal to any annotated TSS. This has led to a focus on the identification and

characterization of distal regulatory elements such as enhancers and insulators. Ex-

periments have profiled not just the binding of transcription factors by ChIP followed

by high-throughput sequencing (ChIP-Seq), but also the association of other proteins

with the genome. An important class of proteins that associate with DNA are the

histone proteins that make up the protein component of nucleosomes. DNA wraps

around histone octamers to form nucleosomes which act as the fundamental unit of

chromatin structure [29]. Nucleosome positioning plays a role in gene regulation and

can be profiled by ChIP-Seq. Yet, the position of nucleosomes is only part of the

role that they play in gene regulation. An interesting property of histone proteins is

that they have a "tail" that is not part of the core structure around which DNA is

wrapped.

Histone tails are covalently modified in many different ways by nuclear enzymes.

It has been observed that certain modifications are correlated with functional activity

in the genomic region surrounding the nucleosome containing the modified histone.

We will denote histone modifications by the histone type, the residue that is modified,

and the type of modification. For example, H3K4me3 refers to trimethylation (me3)

of the fourth residue which is a lysine (K4) of histone H3. This particular modification

tends to appear near the start sites of actively transcribed genes [66]. Other histone

modifications such as H4K4mel [65] and H3K27ac (acetylation) [11] have been associ-

ated with enhancer activity. In some cases, the enzymes that catalyze certain histone
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modifications are known. For example, p300 is an acetyltransferase that acetylates

H3K27 and p300 binding is frequently used as an indicator of enhancer activity [61].

Other factors that have been profiled by ChIP-Seq to help identify distal regulatory

elements include CTCF and components of the Cohesin and Mediator complexes. The

role of CTCF in genome function is a field of active inquiry and it may be the case

that it has many different functions [51]. The binding of CTCF is thought to have

an insulating effect in that the regulatory influence of elements such as enhancers

on genes may be blocked by CTCF binding events that exist between the element

and the gene. Mediator is known to bind to transcription factors that are bound to

enhancers as well as the transcription apparatus which binds to the TSS of genes

that are to be transcribed [26]. Cohesin has been shown to bind to DNA at locations

that are bound by CTCF or Mediator in a mutually exclusive manner [26]. Cohesin

has been shown to act as a stabilizer of chromatin loops, allowing locations that are

distal in terms of the genome sequence to be spatially proximal in the nucleus. These

observations have led to an understanding that the three dimensional conformations

that chromosomes take in the nucleus, including the formation of chromatin loops

between distal locations, are a central aspect of genome function.

1.2 Methods for characterizing chromosome con-

formation

Only very recently have methods been developed for characterizing chromosome con-

formation in a high throughput fashion. These methods generally incorporate a prox-

imity ligation step inspired by the low throughput method chromosome conformation

capture (3C) [12]. Prior to proximity ligation, crosslinked protein and DNA are ex-

tracted from cell nuclei and then fragmented by either the application of a restriction

enzyme or by sonication. By applying a very low concentration of DNA ligase, the

ligation of DNA fragments that are connected by crosslinked proteins is favored over

fragments that are not physically connected. This has the effect of favoring the lig-
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ation of DNA fragments that were spatially proximal in the nucleus despite the fact

that they might not be located proximally in terms of the genome sequence.

In this thesis we develop methods for analyzing data produced by a method known

as chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) [18].

This method combines ChIP for isolating fragmented chromatin that contains a pro-

tein of interest with proximity ligation. We define two types of ligation events that

may occur as part of this process. When one DNA fragment ligates to itself, we call

this a self-ligation event. When two DNA fragments ligate to each other, we call

this an inter-ligation event. Prior to the proximity ligation step, DNA linkers are

ligated to the ends of the DNA fragments that were isolated by ChIP. The proximity

ligation of two DNA ends containing the added DNA linkers results in a sequence

that is recognized by the restriction enzyme MmeI. This enzyme cuts the DNA 20 bp

away from the recognition site formed by the ligated linkers allowing a small DNA

fragment containing a portion of the sequences of the genomic DNA ends involved

in the proximity ligation to be extracted. These fragments are paired-end sequenced

and aligned to a reference genome.

Results obtained from ChIA-PET data provide the opportunity to help fill a large

gap in our understanding of genome function. ChIP-Seq data have enabled the identi-

fication of genomic locations associated with particular proteins. However, ChIP-Seq

data do not directly provide information about the connectivity of distal genomic

locations. Recent observations have suggested that enhancers may regulate the ex-

pression of genes that are located megabases or more away [1]. It has also been

suggested that looping between CTCF binding events demarcate large regulatory

domains [51]. ChIA-PET data contain information about chromatin interactions be-

tween locations bound by proteins which allows enhancers to be associated with their

target genes and the discovery of regulatory domain boundaries. However, like other

high-throughput sequencing technologies, ChIA-PET datasets are large and plagued

by experimental noise. Analyzing these datasets requires sophisticated computational

methods for distilling datasets with tens of millions of datapoints into manageable

sets of interpretable results.
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At present, both ChIP-Seq and ChIA-PET require the use of chromatin extracted

from millions of cells. The results obtained from these experiment types reflect the

behavior of a protein averaged over a large population of cells. Because of this,

we take the perspective that ChIP-Seq and ChIA-PET results should be interpreted

as reflecting the likelihood of a protein behaving in a certain way. For example,

ChIP-Seq results reflect the likelihood that a protein occupies a particular location

in the genome. Likewise, ChIA-PET results reflect the likelihood that a protein

simultaneously occupies two locations in the genome. The joint occupancy of two

genomic locations by a protein implies that those locations are involved in a chromatin

interaction and that a chromatin loop has formed between them.

The most common approach to analyzing ChIA-PET data is implemented by the

ChIA-PET Tool [36]. In this approach, read pairs are classified as having been gen-

erated by self-ligation or inter-ligation based on a heuristically determined cutoff on

the distance spanned by the read pairs. Self-ligation read pairs are used to determine

point locations that are bound by the protein. Inter-ligation read pairs are used to

discover chromatin interactions. The locations of binding events computed from the

self-ligation read pairs are not used to inform the discovery of interactions. Regions

potentially involved in interactions, called anchors, are determined by extending the

ends of inter-ligation read pairs by several hundred base pairs and then identifying

regions where a significant number of extended read pair ends overlap. These anchors

are generally several kilobases in length, much wider than the amount of DNA that

would be occupied by any single instance of a protein. The number of inter-ligation

read pairs that connect a pair of potential anchors is used to determine the significance

of the interaction between the anchors.

In this thesis we present two novel methods for analyzing ChIA-PET data. In both

methods we make the assumption that inter-ligation read pairs provide evidence about

the simultaneous occupation of two genomic locations by a protein. Based on this

assumption, both methods incorporate information from the alignment of self-ligation

read pairs about the marginal occupancy of the protein in the interaction discovery

process. We will demonstrate that this assumption allows our methods to identify the
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pairs of locations that are simultaneously occupied by a protein with a high degree

of spatial accuracy. We will also present evidence from examining other forms of

high-throughput sequencing data that the high spatial accuracy of the interaction

anchors that we identify allow our methods to discover high confidence interactions

of functional importance.

1.3 Thesis outline

We have developed two methods for analyzing ChIA-PET data because we recognized

that different types of proteins occupy the genome in different ways. Factors such as

CTCF tend to occupy consistently narrow genomic regions that are mostly isolated

from each other. In Chapter 2 we introduce SPROUT which models interaction anchors

as point binding event locations. SPROUT utilizes models of the way that reads align

relative to the locations of binding events and incorporates both self-ligation and

inter-ligation read pairs when discovering these locations. In Chapter 3 we present

GERM which does not make the assumption that the protein being studied binds

to isolated point locations. GERM builds high resolution genome-wide models of

the occupancy of a protein. This approach is appropriate for factors such as RNA

Polymerase II (PolIl) which tend to occupy the genome in broad regions of variable

width. By relaxing the assumption of point location binding, GERM is able to provide

a detailed view of protein occupancy without introducing the types of artifacts that

arise from trying to force a point location model to fit PolII data. In Chapter 4 we

apply GERM to embryonic stem cell and motor neuron progenitor data and make

several observations about the usage of enhancers during motor neuron development.

27



28



Chapter 2

Probabilistic modeling of binding

events and chromatin interactions

between them

ChIA-PET data consist of read pairs that were generated by two different types of

ligation events. Self-ligation read pairs are the result of a DNA fragment circular-

izing to ligate to itself. Inter-ligation read pairs are the result of two distinct DNA

fragments ligating to each other. However, the reads that make up self-ligation and

inter-ligation read pairs all correspond to the ends of the DNA fragment(s) involved

in ligation events. The DNA fragments subjected to the proximity ligation step of

the ChIA-PET procedure are enriched for fragments that are bound by the protein

of interest by the preceding ChIP step of the procedure. We assume then that the

reads that make up both types of read pairs align to positions in the genome that are

arranged stochastically around binding events. The fragmentation step that precedes

ChIP induces a distribution over genomic locations that describes where reads are

likely to align.

Accurately modeling the positions of binding events is important for extracting

high quality results from ChIA-PET data. Assuming proteins bind to fixed, punctate

locations in the genome, we will demonstrate that we can combine information from

both self-ligation and inter-ligation read pairs to estimate the positions of binding
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events accurately. By modeling the distribution of read alignment relative to binding

events from both types of read pairs, we will demonstrate that we are also able to

accurately assign inter-ligation read pairs to pairs of binding events. This reduces

the false positive rate of interaction discovery by reducing the degree to which inter-

ligation read pairs are assigned to the same interaction when in fact they do not

correspond to the same pair of binding events. Likewise, we are able to distinguish

between nearby binding events to discover interactions at greater spatial resolution.

2.1 Prior work

The development of methods for analyzing ChIA-PET data has been quite limited.

Most published ChIA-PET analyses have been performed using the ChIA-PET Tool

software. One paper analyzing H3K4me2 ChIA-PET data [7] applied a method called

Density-Based Spatial Clustering of Applications with Noise. The implementation of

this method was not made available. On the other hand, many methods for analyzing

ChIP-Seq data have been developed. The analysis of ChIP-Seq data shares many

concerns with the analysis of ChIA-PET data. A variety of approaches have been

taken for identifying binding event locations from ChIP-Seq read alignments including

extending the length of aligned reads [53], shifting aligned reads [67], and estimating

the distributions of positive and negative strand reads separately [23, 25, 60]. The

ChIA-PET tool has a component for identifying binding events from self-ligation

read pairs which takes advantage of the fact that the ends of self-ligation read pairs

correspond to the ends of an individual DNA fragment that was bound by the protein,

therefore removing the need for extension or shifting of reads. All of these approaches

identify locations where the overlap of reads or the estimated read density is greatest

as locations that are bound by the protein.

The approach taken by SPROUT for identifying binding events which it considers as

interaction anchors is most similar to the approach taken by the ChIP-Seq algorithm

GPS [21]. SPROUT and GPS both utilize models of the expected distribution of reads

relative to a location bound by the protein. Furthermore, they are both generative
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models which estimate binding event locations which maximize the likelihood of the

observed data. SPROUT extends GPS in several ways. Since ChIA-PET data consist

of paired reads, SPROUT utilizes models of the distribution of pairs of reads relative

to binding events rather than individual reads. SPROUT also estimates the type of

each read pair and uses models of read pair distribution appropriate to the estimated

read pair type. A difference in modeling decision between SPROUT and GPS is that

GPS initially considers every position in the genome as a potential binding event

and then iteratively removes positions from consideration to result in a sparse set

of positions that explain the data. SPROUT is initialized with a number of binding

events that is much smaller than the size of the genome. These binding events can be

removed from consideration in a similar manner to GPS. However, the positions of

the binding events in SPROUT are variable so that they can be repositioned. Through

a combination of repositioning and removal, SPROUT discovers a sparse set of binding

events that explain the data. This approach to locating binding events is more similar

to MultiGPS [41] than the original GPS formulation.

2.2 Modeling ChIA-PET read pairs with a hierar-

chical generative model

In this section we formulate a hierarchical generative model for accurately modeling

ChIA-PET read pairs that we call SPROUT. SPROUT is a hierarchical generative

model for ChIA-PET data that discovers interaction anchors, and a set of binary

interactions between anchors. SPROUT models read-pair data with a mixture over

distributions describing the generation of self-ligation pairs and inter-ligation pairs.

The components of the model describing these two types of read pairs are themselves

mixtures of distributions corresponding to the way pairs of reads are expected to be

distributed around anchors. We assume that the paired-end sequence data generated

by a ChIA-PET experiment have been processed appropriately resulting in a set

R = {rj,..., rN} such that each ri = (rf, ri ) is a pair of genomic coordinates
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corresponding to the aligned positions of a pair of reads. Such processing includes

removing linker tags from the reads, filtering out pairs that are identified as chimeric

because of their heterogeneous linker tags, and aligning the reads to the genome. The

following is the likelihood of R

N 'M 'M M ~

Pr(R, 7, 0, p, 1) = fj p E w Pr(riI 1j) + (1 - P) [: 17 1 j,k Pr(ri I1, lk)
i=1 . j=1 .j=1 k=1 .

(2.1)

Where 0 p <1, K=1 i= 1, ) = 1

SPROUT identifies a set 1 = {11,... ,l} that specifies the locations of sites that

are bound by the protein of interest and are potential anchors for interactions. p is

the probability that a pair of reads was generated by self-ligation. Self-ligation pairs

reflect the ligation of a DNA fragment to itself to form a circular fragment. Such

pairs are associated with one anchor and the self-ligation component of the model is

a mixture of distributions each taking a single parameter to specify the location of the

anchor position. These distributions take the form Pr(rillj) as shown in Figure 2-la.

A relative weight wy is associated with each anchor j. These distributions describe

the length and arrangement of fragments around an anchor which are induced by the

fragmentation step of the ChIA-PET protocol.

Inter-ligation pairs can be associated with either the same anchor or two different

anchors that were in close proximity in the nucleus. The inter-ligation component of

the model is a mixture of distributions each taking two parameters that specify the

locations of the anchor(s) that the fragments were associated with. A relative weight

7Qj,k is associated with each pair of anchors j and k. The distributions Pr(ri l1, lk) take

different forms because if j = k, such as in Figure 2-1b, then there are constraints

on the ends of the fragments involved in the ligation. For example, the fragments

cannot have been overlapping since they were part of the same chromosome prior to

fragmentation. If j # k, such as in Figure 2-1c, it is assumed that the ends were

generated independently by two one-dimensional distributions centered around the

two anchors Pr(rillj, 1k) = Pr(r 1 ) l) Pr(r(2 l). We also assume that ri implicitly
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Figure 2-1: Examples of read distributions learned from CTCF ChIA-PET
data. SPROUT is initially run with "generic" distributions and then the distributions
are re-estimated using the strongest events and SPROUT is re-run with the empirically
learned distributions to discover more accurate predictions. (a) The positions of the
ends of self-ligation pairs are modeled using a two dimensional distribution. (b) The
positions of the ends of inter-ligation pairs where both ends are assigned to the same
anchor are also modeled using two dimensional distributions. Each of the four possible
strand combinations has its own constraints in terms of where the ends are likely to
be positioned relative to each other and to the anchor. This figure demonstrates the
distribution associated with inter-ligation pairs where both ends map to the positive
strand. (c) The positions of the ends of inter-ligation pairs are modeled separately
using one dimensional distributions.

carries information about the strandedness of the reads because in both the case

where j = k and j # k the distributions depend on strandedness.

ChIA-PET data are noisy, and we observe reads that do not correspond to anchors.

To account for these reads, we introduce a noise component with dummy variable 1B

(B {1, .. . , M}). In this work we consider uniform Pr(rIllB), however knowledge

about the propensity for genomic regions to generate background noise could be

incorporated into a more refined noise distribution. We assume that Pr(rillj, ik)

where j = B or k = B is defined in the same way as the case in which j and k specify

two different anchors: Pr(ri l3 , lik) = Pr(r l rr 2 )Ilk) and Pr(r{~l3 ) is uniform

when j = B.

To avoid overfitting, we wish to find a minimal number of anchors that explain

the data well while allowing the noise distribution to account for reads that are not

accounted for by anchors. Additionally, we assume that among all possible pairs of
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anchors most pairs are not interacting. Thus, we wish to find a minimal number of

interacting pairs of anchors that explain the observed data. To achieve both of these

types of sparsity we introduce negative Dirichlet priors [16] on 7r and 4' as specified

by Equations 2.2 and 2.3.

M

Pr(7rIa) cx HIr (2.2)
j=1
M M

Pr( /41) cx (2.3)
j=1 k=1

As will become apparent when the inference procedure is described, the Oz and /

parameters have the effect of specifying the minimum number of pairs of reads that

must be associated with an anchor or an interaction, respectively, in order to avoid

being eliminated from the model.

We also introduce priors on I and p. For 1 we introduce a Bernoulli prior which

reflects our prior belief that an anchor exists at a particular genomic coordinate and

that at most one anchor exists at any genomic coordinate. Given L possible genomic

coordinates,

L

Pr(l1k) = ]J kl'E) (1 - kj) 1(g') (2.4)
i=1

L M k1
- fJ(i - ki) H 1- kl (2.5)

i=1 j=1

M
C H 1 k (2.6)

j=1

In this work we consider uniform k, but k could be made non-uniform to reflect

any prior belief about where anchors should be located. For p we introduce a Beta

prior
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Pr(pla, b) , pa-(1 - p)2-.

In this work we let a = 1 and b = 1 which is a uniform prior on p.

Each pair of reads is either a result of a self-ligation event or an inter-ligation

event and is associated with one or two anchors. We introduce latent variables Z

{Zi,... , ZN} such that each zi = (zi , z{) is a pair of anchor indices 1 . .. M or special

index B reflecting the noise distribution. Another special index is used to indicate

that a pair of reads was generated by self-ligation i.e. zi = (j, -

The complete data likelihood is

Pr(R, Z17r, 4', p, 1) = Pr(R I Z, 1) Pr(Z17r, 4, p) (2.8)
N [M M

= JJ [pir Pr(rillj)]1(zi=)'-) J [(1 - p)4 ,k Pr(rilljle 1(zi=(j,k)) (2.9)
i=1 .j=1 k=1

We are interested in inferring likely values for r, 4, p, and 1. To accomplish this

we employ a variant of the EM algorithm [13] to maximize the complete data log

posterior

N M

log Pr(l, 7r, 4, pjR, Z, k, OZ, 3, a, b) Z 1(z, = (j, -)) (logp + log-rF + log Pr(rillj))
i=1 _j=1-

M -
+Z 1(zi = (j k)) (log(1 - p) + lo '0j,k +log Pr(r ll, ]))

k=1 -

M M M M

-a log r -- log ,k + I:log k + (a - 1) log p + (b - 1)(1 - p) + C
j=1 j=1 k=1 j=1 I

(2.10)
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E Step:

= =1  [p7ij Pr(ril1j)]1(zi(i,)) H-'i [(1 -- p) 4 ,, Pr(r l , l= ) (j,k))

(z fPk)+ [(1 - P)Oj,kPr(rill, 1k)]= (2.11)

M Step:

N [ M

ii = argmax{Y Iy(z= (j, -)) logPr(rilx) + Z [(zi (j, k)) logPr(rilx, lk)]
i=1 . k=1

+ log 1 kx } (2.12)

max(Nj - a, 0) (2.13)
N ,

M

N, = E max(N - a, 0) (2.14)

j=1

N

Nj = -y(zi =(,-)(2.15)
i=21

yk = max(Njk- 0) (2.16)
No

M M

NV = max(NJ,k - ,0) (2.17)
j=1 k=1

N

Nj,k Z y(zi = (j, k)) (2.18)

p = ±a(2.19)
N + a + b

The E and M steps are repeated until the posterior approximately converges. The

components of 1 that correspond to non-zero components of ir are the estimated anchor

locations. Non-zero components of 0 indicate pairs of anchors that are candidates

for significance testing as interactions.

The algorithm is initialized with uniform 7r and 1 set at regular intervals through-

out the genome. Components of in that do not assign probability to any pairs of reads
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are set to 0 and effectively eliminated from the model. Components with Nj < a

are eliminated shortly thereafter. In the estimation of 1, during each M step the

components of I other than the jth component are held fixed making this algorithm

an instance of the expectation-conditional maximization algorithm [45]. Thus, the

posterior is not necessarily maximized at each iteration but convergence to a local

maximum is still guaranteed. The estimation of ij is tractable, despite the lack of a

closed form solution, because for the set of pairs of reads such that '(Zi (j, .)) > 0,

Pr(rilx) > 0 for any pair of reads in the set for x in only a small neighborhood

around the previous value of Ii. Only x in that neighborhood need be considered

which reduces the search space for the optimal x considerably.

To test the significance of a component 7<Uk, the posterior is recomputed with that

component removed. The greater the ratio of the posterior with the component to the

posterior without the component, the greater the significance of the corresponding

interaction. Making the conservative assumption that all components with Nj,k < 2

are false positives, we set a threshold for the posterior ratio to be the value such that

5% of the components deemed significant have Nk <2.

2.3 Evaluating SPROUT

We appied SPROUT to a CTCF ChIA-PET dataset in mouse embryonic stem (ES)

cells published by Handoko et al. [22]. We chose to analyze these data for several

reasons.

1. CTCF complies with our assumptions about protein binding in that it binds in

a punctate fashion

2. CTCF recognizes a well characterized sequence motif which is strongly predic-

tive of binding

3. CTCF has been suggested to play a significant role in the structural organization

of the genome
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For these reasons, we expected that SPROUT would perform well on these data

and that the results would be useful towards understanding genome structure. We

processed the paired sequence data by filtering out chimeric ligation read pairs that

contain two different linker sequences, aligning the read pairs using BOWTIE [34], and

removing paired positional duplicates to avoid spurious results from PCR artifacts.

We applied SPROUT to obtain a set of CTCF binding events and a set of pairs of

binding events that are determined to be significantly interacting. SPROUT does not

place any constraints on the distance between binding events that may interact. It

has generally been observed when measuring chromatin interactions using any of the

standard approaches that locations that are closer along the linear sequence of a chro-

mosome are more likely to interact. It is often assumed that this reflects the mono-

tonic relationship between the distance along a polymer between two monomers and

the distance in space between the monomers [58]. Assuming chromosomes undergo

some amount of random movement, one would expect linearly proximal locations to

randomly interact at some rate. We were curious to see whether this effect mani-

fested itself in the results from SPROUT. In Figure 2-2 we first plotted the frequency

at which two CTCF binding events exist in the genome at distances ranging from

0 bp to 20 kb. We observed that it is relatively common for CTCF binding events

to be located between 2 kb and 4 kb away from another CTCF binding event. At

distances greater than 4 kb we observed a constant frequency of CTCF binding events

separated by up to 20 kb. We then plotted the frequency at which two interacting

CTCF binding events were detected at distances of linear separation up to 20 kb. We

observed that a majority of pairs of CTCF binding events with linear separation less

than 4 kb are detected as interacting. At distances of linear separation greater than

4 kb, very few pairs of CTCF binding events interact relative to the frequency at

which pairs of binding events exist separated by distances greater than 4 kb. This is

not to say that pairs of binding events that are linearly separated by more than 4 kb

are never detected as interacting. Rather, there seems to be a general tendency for

linearly proximal CTCF binding events to interact while more distal pairs of binding

events only interact in specific cases. This suggests that when pairs of CTCF binding
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Figure 2-2: Smoothed plots of the frequency at which binding events are
identified by SPROUT as interacting at linear separations up to 20 kb. Most

pairs of binding events that are separated by at most 4 kb are detected as interacting.

At linear separations greater than 4 kb relatively few pairs of binding events are

detected as interacting.

events are detected as interacting and are separated by a linear distance of more than

4 kb that these interactions were induced by some active mechanism and not random

movement of the chromosome.

One of the strengths of SPROUT is the positional accuracy of the binding events

that it identifies. Handoko et al. published a set of binding events that they estimated

from the read pairs that they determined to have been generated by self-ligation. We

also ran a state of the art ChIP-Seq algorithm [20] on an independent ChIP-Seq

dataset as a positional "gold standard" for comparison. We scanned the genome for

matches to the CTCF motif and computed the percentage of the motif matches that

we found that were within distances up to 500 bp from binding events from the three

sets as shown in Figure 2-3. The GEM results from ChIP-Seq data identify binding

events at about 15% of the motif matches with very high spatial accuracy. If we

allow binding events located 100 bp or more to be associated with motif matches,

SPROUT is able to identify more binding events near motif matches than the other

two methods. We also examined the utility of the measures of significance associated

with the binding events in the three sets for identifying binding events associated with

motif matches. Assuming that binding events and motif matches may be associated if

they are within 250 bp of each other, Figure 2-3b shows that SPROUT identifies more

binding events overall that are within 250 bp of a motif match than the other sets

of binding events. The measure of significance that SPROUT associates with binding
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Figure 2-3: Evaluation of the accuracy of CTCF binding events predicted
by SPROUT and Handoko et al. from the ChIA-PET data as well as by
GEM from an independent ChIP-Seq dataset. (a) The percentage of CTCF
motif matches in the genome that have a binding event identified within distances

up to 500 bp. (b) We used the presence of a CTCF motif match within 250 bp of
an event as an approximate indicator of true positive anchor calls. As thresholds for

significance are varied for each method, the number of true positive and false positive
calls are plotted.

events also consistently avoids more binding events that do not have a motif match

within 250 bp given a fixed number of binding events with a motif within 250 bp than

the other sets.

The chromatin interactions published by Handoko et al. are not pairs of interac-

tion between CTCF binding events, but rather are between anchors whose locations

are not directly informed by the locations of CTCF binding events. The Handoko et

al. interaction anchors are determined only from the aligned locations of read pairs

that they determine to have been generated by inter-ligation. The self-ligation read

pairs were not considered and thus do not help refine the locations of interaction

anchors as is the case with SPROUT. As shown in Figure 2-4 the interaction anchors

published by Handoko et al. are quite broad compared to the binding events consid-

ered by SPROUT which are assigned to point locations in the genome. The Handoko

et al. anchors are most frequently around 2 kb in width which is about the same

as the most frequently observed distance between CTCF binding events as shown in

Figure 2-2. This illustrates an advantage of the results from SPROUT in that inter-
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Figure 2-4: A histogram of the widths of anchors identified by Handoko et
al. illustrating the breadth of many of the anchor regions.

actions are explicitly between pairs of binding events whereas it is more difficult to

unambiguously assign the interactions published by Handoko et al. to specific pairs

of binding events.

We compared the interactions identified by SPROUT to the interactions published

by Handoko et al. and initially found that for many of the Handoko et al. interactions

there were no SPROUT identified interactions between pairs of binding events that

are within 4 kb of anchors involved in the Handoko et al. interactions (Figure 2-

5). We compared the binding event locations identified by Handoko et al. to the

anchors of the interactions that they published and discovered that one or both of the

anchors for more than half of the interactions for which there are no matching SPROUT

identified interactions do not contain binding events. This observation illustrates

an assumption that is made implicitly by Handoko et al. when not using binding

events to help inform the locations of interaction anchors. This assumption is that

chromatin interactions detected from CTCF ChIA-PET data need not be between

CTCF binding events. SPROUT does not make this assumption because we assume

that both inter-ligation and self-ligation read pairs should reflect the ends of DNA

fragments that are bound by CTCF. This large fraction of the interactions published

by Handoko et al. are therefore not discoverable by SPROUT. Of the other interactions

published by Handoko et al. that do not match SPROUT identified interactions,
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Figure 2-5: Most of the interactions identified by Handoko et al. are not

supported by pairs of reads with ends that fit SPROUT's read distribution.

more than three quarters of them are based on read pair alignments that do not fit

SPROUT's read distributions. An example of such an interaction is shown in Figure 2-

6a. The remainder of the interactions published by Handoko et al. that do not match

SPROUT identified interactions are supported by fewer than two read pairs. These

interactions may reflect weak interactions that are not detected by SPROUT or they

may reflect differences in the read alignments used as input for the two methods. The

interactions published by Handoko et al. did not contain matches to almost a third

of the interactions identified by SPROUT. Most of the unmatched SPROUT identified

interactions contained binding events published by Handoko et al. at both anchors

and it is unclear why they were not identified by Handoko et al. An example of an

interaction that is identified by both methods is shown in Figure 2-6b. The region

shown in Figure 2-6b also contains a second distinct SPROUT identified interaction

that is not identified by Handoko et al. Figure 2-6b illustrates the ability of SPROUT

to provide a detailed view of interactions between distinct binding events.

One of the benefits of the read distributions modeled by SPROUT is that the

interactions identified by SPROUT tend to be more uniformly supported by biological

replicates. We considered two sets of interactions. One set which we call the good fit

set consists of the 200 interactions are are identified by Handoko et al. and SPROUT.

The other set which we call the bad fit set consists of the 685 interactions identified
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Figure 2-6: Two interactions that are identified by Handoko et al. The
boxes indicate the anchor regions that they identify. (a) This interaction is not called

significant by SPROUT because the pairs of reads that connect the anchor regions do

not fit SPROUT's model. (b) SPROUT does call a significant interaction between the

anchors that fall within the Handoko et al. anchor regions because the pairs of reads

that connect the regions were likely to have been generated by the anchors within the
regions according to SPROUT's model. Note that there is a second potential anchor

on the left side that falls outside of the Handoko et al. identified region. This binding
events is identified by both SPROUT and Handoko et al. and is identified by SPROUT

but not by Handoko et al. as an independent interaction with the anchor on the right.
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by Handoko et al. that are not matched by interactions identified by SPROUT but do

contain at least one binding event within both anchors. We chose to define the sets

of interactions in this manner to highlight the beneficial effect of explicitly modeling

the distribution of read alignments around binding events rather than just counting

the number of read pairs whose ends align within two broad regions. We found that

the interactions in the good fit set are supported by an average of 4.15 read pairs

while the interactions in the bad fit set are supported by an average of only 2.73 read

pairs. We then computed the difference for each interaction in both sets between the

numbers of read pairs that support the interaction from the two biological replicates

that make up the full dataset published by Handoko et al. Figure 2-7a shows that

the distribution of differences for the good set is monomodal and centered near zero

suggesting that the replicates tend to support the interactions in this set more equally.

Figure 2-7b shows that the distribution of differences for the bad set is bimodal and

that the support for the interactions in this set from the two replicates tends to be

unequal. The differences between these two distributions suggests that the Handoko

et al. interactions that are not matched by SPROUT identified interactions are weaker

and less replicable implying that they are more likely to be false positives than the

interactions identified by both methods.
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Figure 2-7: Evaluation of biological replicate consistency in interactions
discovered by both methods and in interactions identified by Handoko
et al. that do not fit SPROUT's read distributions. (a) A histogram of the
difference in the number of pairs of reads from each biological replicate that connect
anchors identified by Handoko et al. that subsume interactions called by SPROUT. To
account for the overall difference in signal strength, the values were subtracted by the
mean per interaction difference. There are interactions that differ in support between
the biological replicates. However, the normalized difference in pairs between the
biological replicates is most frequently close to 0. (b) A histogram of the difference
in the number of pairs of reads from each biological replicate that connect anchors
identified by Handoko et al. that are supported by a plausible number of read pairs
but do not fit SPROUT's read distributions. As in (a), the differences are subtracted
by the mean difference. The biological replicates differ much more frequently than
they agree.
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Chapter 3

Modeling the joint occupancy of

genomic locations by proteins

The assumption that protein binding can be accurately modeled as isolated point

binding locations does not hold in some cases. A notable example is the manner in

which RNA Polymerase II (PolII) associates with the genome. The enrichment of

PolIl spreads over much larger domains than are typically observed for transcription

factors like CTCF. The distribution of Poll ChIA-PET reads in a region of mouse

chromosome 5 is shown in Figure 3-1. When applied to these data, SPROUT at-

tempts to position a number of binding events throughout this region to explain the

read alignments. These locations fail to accurately reflect the pattern of enrichment

that we observe. SPROUT positions some binding events at locations where the level

of enrichment is relatively low in order to help explain the breadth of the domain of

enrichment. In general, such domains of enrichment are highly variable in terms of

their width and the pattern of enrichment within the domains. SPROUT gains statisti-

cal power when analyzing punctate binding data by maintaining a less complex model

of protein binding. However, accurately modeling Poll enrichment requires that we

alter the assumptions that we made with SPROUT about how proteins associate with

DNA.

We relax the assumptions that we made with SPROUT such that we no longer

assume that there exists some number of discrete binding events. Rather, we de-
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Figure 3-1: The distribution of PolIl ChIA-PET reads is not well modeled

by point binding locations

velop a new algorithm GERM with which we model a full genome-wide distribution

of protein occupancy. With SPROUT we assumed that the probability that a protein

occupies the vast majority of locations in the genome is zero. With GERM we assume

that every location in the genome will have some probability of occupation by the

protein. This approach is much more flexible and allows the highly variable domains

of Poll enrichment to be modeled more accurately. Aspects of GERM were inspired

by methods developed in the image processing literature. To further illustrate the

difference in the assumptions made with SPROUT and with GERM we consider two

images that one might wish to model in Figure 3-2. Figures 3-2a and 3-2c represent

images that we would like to recover from the blurred images in Figures 3-2b and 3-2d

respectively. We can safely assume that the image that we would like to recover from

Figure 3-2b can be accurately approximated by a number of point locations that is

much smaller than the number of pixels in the image. As such, the problem of recov-

ering Figure 3-2a from Figure 3-2b becomes the relatively simple task of estimating

the number and locations of the points. Figure 3-2c is much more complicated and

contains much more detail than Figure 3-2a. We cannot make the simplifying as-

sumption that Figure 3-2c can be accurately modeled by a number of point locations
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Figure 3-2: Examples of image reconstruction problems that require differ-
ent modeling assumptions

that is much smaller than the number of pixels in the image. We must therefore

maintain a more complex model in which we assume that the intensity of every pixel

in Figure 3-2c may contribute to the blurred image that we observe in Figure 3-2d.

In the remainder of this chapter we describe GERM which is a novel method for

analyzing ChIA-PET data that presents a detailed view of the occupancy of the

genome by a protein of interest. An overview of the GERM workflow is shown in

Figure 3-3. GERM models the distribution of self-ligation read pairs as a convolution

of a model of the chromatin fragmentation process with the marginal distribution of

protein occupancy. We apply an adapted blind deconvolution algorithm to simulta-

neously recover the model of the fragmentation process as well as an estimate of the

marginal distribution of protein occupancy for a portion of the genome. The structure
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of the estimated fragmentation model allows an estimate of the genome-wide marginal

distribution of protein occupancy to be obtained efficiently. The estimated marginal

distribution is then used to inform the estimation of the joint distribution of protein

occupancy. The joint distribution reflects a detailed view of the likelihood that pairs

of genomic locations are simultaneously occupied by a protein of interest. Finally, we

introduce a variation on GERM denoted GERMx in which we compute distributions of

protein occupancy conditioned on genomic locations in a set X. A practical example

of X when analyzing PolII ChIA-PET data is the set of all annotated transcription

start sites (TSSs).

Table 3.1 describes the notation that will be used in this chapter.

3.1 Prior work

Extensive work has been done on deconvolution in the context of image reconstruc-

tion. Non-blind deconvolution methods assume that the function that characterizes

the blurring effect of the imaging system is known. This function, known as the point

spread function (PSF), is often very difficult or impossible to estimate a priori. In

some systems, this function may even change in unpredictable ways with every im-

age that is captured. To deal with this issue, methods have been developed which

do not require knowledge of the PSF a priori. These methods are known as blind

deconvolution methods. There are several general classes of blind deconvolution algo-

rithms. The distribution of protein occupancy that GERM estimates is nonnegative

and GERM does not assume a parametric form for the blurring effect of fragmenta-

tion. This places the blind deconvolution component of GERM among the general

class of blind deconvolution methods known as nonparametric deterministic image

constraints restoration techniques. Examples of methods in this class include iter-

ative blind deconvolution (IBD) [4] which utilizes the fast-Fourier transform and is

fast and robust to noise but generally unstable. Another example is the simulated

annealing (SA) [44] approach which is more reliable but converges very slowly. The

nonnegativity and support constraints recursive inverse filtering (NAS-RIF) [32] ap-
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Table 3.1: GERM notation

Definition

(1) (2))
ri = (ri , rf )
R
Rself, Rinter
zi

d(ri)

N
N++, N+-, N-+, N__

NseIf, NAnter

K1, K2
h-+, hnon-+, hself

ISE(f)
qi

RSF((x - u, y - u))

(-A, A)
reg
w
p
Z

Y

M
ti
ni

Ti

f
Zmax

C

eloc

The aligned locations of the ith read pair
The set of all aligned read pair locations
The sets of aligned self-ligation or inter-ligation read pairs
The indicator of whether the ith read pair was produced by
self-ligation or inter-ligation
The distance between the aligned locations of the ith read
pair
The total number of aligned read pairs
The number of aligned read pairs with a particular strand
orientation
The number of aligned self-ligation or inter-ligation read
pairs
The standard univariate or bivariate Gaussian kernel
The bandwidth parameters for kernel density estimates
The integrated square error of f relative to f
The location occupied by the protein associated with the
ith read pair
The read spread function describing the probability of
observing a self-ligation read pair r = (x, y) given q = u
The peak of the estimated RSF
A genomic region
The size (in base pairs) of reg
The probability of protein occupancy in reg
A random variable representing the number of read pairs
associated with reg according to the estimated distribution of
occupancy
A random variable representing the number of read pairs
associated with reg according to the null model
The size of the mappable genome
= u Pr (q = (u, vi) )|Ri,,e,,)
= Pr(q =v i )
The estimated mass missing from ti
A significance threshold
The index of the element in X with the greatest estimate
mass

(c - 1)tma is an estimate of the total amount of mass that
should be associated with vi
The location within a region that is jointly occupied with
another region that has the greatest probability of being
jointly occupied

51

Term



++ ______ _

-igKDE of Pr(rI z=self)
Wweighted by Pr(z=self I d(r,))

Self-Ligation Read Pair
Distribution

I
Marginal Occupancy Distribution

Blind
Deconvolution

Protein Joint Distribution

+' Strand

-' Strand

Single End
Read Spread Functions

Sinfcn .. nteract....ng

Significant Interacting
Region

Germrss*

eloc

Interaction
Gene

Figure 3-3: The workflow of Germ and GermX.
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proach presents a compromise between the computational complexity of SA and the

efficiency of IBD but has been shown to be quite sensitive to noise. The blind de-

convolution component of GERM is an adaptation of an approach sometimes referred

to as a double iteration algorithm. One of the most popular approaches to non-blind

deconvolution is the Richardson-Lucy (RL) [52, 39] algorithm which applies the EM

algorithm to image reconstruction. The double iteration approach recognizes that the

original image and the PSF are symmetric in the model of convolution that describes

the process of generating the blurred image. Based on this symmetry, EM iterations

are applied alternately to update estimates of the original image and the PSF. More

extensive reviews of blind deconvolution methods are contained in [30, 31, 24].

The only other explicit application of a blind deconvolution method to sequencing

data that we are aware of is the CSDECONV [40] algorithm for analyzing ChIP-Seq

data. This method has a similar double optimization structure to RL blind deconvo-

lution. However, a significant difference is that the distribution of protein occupancy

is modeled as a set of point locations. This modeling assumption is related to the

assumptions made by the GPS and SPROUT methods. Also, rather than utilizing the

EM algorithm for optimization, CSDECONV utilizes random-restart gradient descent.

3.2 The GERM algorithm

3.2.1 Estimating the 2D Self-Ligation Read Pair Distribution

We assume that ChIA-PET linker tags have been removed from the read pair se-

quences, that read pairs that are known to have resulted from chimeric ligation events

because they contain two different linker tags have been removed, and that the re-

maining linkerless read pairs have been aligned to the reference genome. Let R be

the set of all aligned read pairs such that each read pair ri C R is represented by

the pair of genomic coordinates to which the ends of the read pair align. We assume

that the coordinates for each read pair are ordered so that if ri = (ri , ri ), then

ri < r(. We also assume that each read pair has an associated label according to
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the chromosome strands to which the ends align. There are four possible strandedness

labels given the imposed ordering on the read pair ends. They are ++, -+, +-, and

-. All self-ligation read pairs have strand orientation -+, but not all -+ read pairs

were produced by self-ligation.

A distribution estimated from all -+ read pairs would not accurately model the

distribution of self-ligation read pairs because self-ligation read pairs are much more

likely to align within a short distance than inter-ligation read pairs. This is because

the fragment length distribution induced by fragmentation limits the distance between

which the ends of self-ligation read pairs may align whereas there is no constraint

on the distance between which the ends of inter-ligation read pairs may align. To

more accurately estimate the distribution of self-ligation read pairs, we weight the

contribution of each -+ read pair by the estimated likelihood that the read pair was

produced by self-ligation according to the distance between the aligned locations of

the read pair ends.

Let zi indicate whether -+ read pair ri was produced by self-ligation or inter-

ligation and d(ri) be the distance between the aligned locations of the ends of -+ read

pair ri. The likelihood that -+ read pair ri was produced by self-ligation according

to d(ri) can be expressed in terms of quantities that can be estimated from the data

Pr(d(rj)jzj = self) Pr(zi = self) (3.1)Pr(z2  self~d(ri)) =r (3.1)
Pr(d(ri))

Pr(d(ri)) for all -+ read pairs can be estimated by applying an unweighted kernel

approach

Pr(d(r) = x) = h NK 1 (j h- (3.2)

N-+ is the total number of -+ read pairs and K1 is a standard univariate Gaussian

distribution. The bandwidth h-+ is a parameter that controls the trade-off between

fitting the training data and discovering a smooth estimate. To choose an appropriate

h-+ we use a least-squares cross-validation approach that minimizes the integrated

square error (ISE) of Pr(x).
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ISE(f) = J(f - f)(2

The ISE(Pr(d(r) = x)) can be approximately minimized by minimizing for all -+

read pairs [54]

K1(
v/2h-+

2

N-+
(3.4)

We cannot estimate Pr(d(ri) zi = self) directly for the same reason that we

cannot estimate the self-ligation read pair distribution directly. We can estimate

Pr(d(ri)lzi = inter) directly because all non -+ read pairs are produced by inter-

ligation. We also apply an unweighted kernel approach to estimate this distribution

N,,on-+

Pr(d(r) = xz = inter) K1,
hnon-+Nnon-+ hnon-+ )

(3.5)

We choose an appropriate hon-+ by approximately minimizing the ISE(Pr(d(r) =

x Iz = inter)).

Given estimates for Pr(d(ri)) and Pr(d(ri)Izi = inter), we can estimate Pr(d(ri)Izi=

self) by assuming that Pr(d(ri)) is a mixture of the distributions Pr(d(ri)lzi = self)

and Pr(d(ri)lzi = inter)

Pr(d(ri)) = Pr(zi = self) Pr(d(ri)lzi = self) + Pr(zi = inter) Pr(d(rj)jzj = inter)

(3.6)

By rearranging the terms in this equation we can obtain

Pr(d(ri)lzi = self) =
Pr(d(ri)) - Pr(zi = inter) Pr(d(ri)lzi = inter)

Pr(zi - self)

The final missing component is Pr(zi = self) = 1 - Pr(zi = inter). We assume

that the average number of read pairs with each of the three strand orientations other
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Pr(d(ri)) - I

N-+ - I

d(ri) - d(rj)
v/2h-+



than -+ is a good estimator for the number of -+ read pairs that were produced by

inter-ligation. We use this information to estimate Pr(zi = inter)

.r avg. # non -+ read pairs
Pr(zi = inter) = #-redpis(3.8)rkz2  # -+ read pairs

This allows us to estimate the self-ligation read pair distribution using a weighted

kernel approach weighted by Pr(z = self d(ri))

N+

Pr(r = (x, y) z = self) = Pr(z = self d(ri))K (3.9)
hself hself

where in this case K 2 is a bivariate standard Gaussian distribution with no cor-

relation between the dimensions. To choose an appropriate bandwidth hself we ap-

proximately minimize ISE(Pr(r = (x, y) z self)) by minimizing

Pr(z = self d(r )) Pr(z self d(rj))K ri - r
vFhselfhself

2 Fr(rjz, = self) Pr(z=sel fd(ri))-

N v' -7r(3.10)
N z3  , Pr(z = self d(rj))

3.2.2 Estimating the 1D Marginal Distribution of Protein

Occupancy

We assume that the self-ligation read pair distribution is the result of the convolution

of the marginal distribution of protein occupancy and a distribution that models DNA

fragmentation which we will refer to as the read spread function (RSF). If we let q

be the genomic location occupied by the protein,

Pr(r = (x, y)|z = self) = EPr(q = u)RSF((x - u, y - u)) (3.11)

Simultaneously deconvolving the marginal distribution of protein occupancy and

the RSF from the self-ligation read pair distribution is an example of a blind decon-

volution problem. This problem commonly arises in the context of image processing.
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It is often the case that a camera will systematically blur the images that it captures

because of flaws in its lens. This blurring process is modeled as a convolution of the

distribution of light that enters the camera lens with a point spread function (PSF)

that is induced by the flaws in the lens. The PSF specifically describes the effect

that the lens flaws will have on a theoretical point source of light. In our case, the

RSF describes the manner in which self-ligation read pairs are likely to be distributed

given the theoretical occupancy of the protein at a genomic location.

If we assume at first that the RSF is known, the marginal distribution of pro-

tein occupancy can be approximately recovered using a standard approach known as

Richardson-Lucy (RL) deconvolution [39, 52]. The RL algorithm iteratively applies

the following EM-like update

Pri+(q = u)

{ Pr(r = (x, y) Iz = self)
Pri (q = u) E E RSF(-(x -U, y - U))

X Y E,1rj(q =v)RSF((x -v,y -V))_

(3.12)

RL deconvolution has been shown empirically to converge to a maximum-likelihood

estimate for Pr(q = u) and preserves the non-negativity and sum of the initial guess

Pro(q = u). To extend RL deconvolution to the blind case, we take an approach

similar to that proposed in [17] and alternate the updates described by Equation 3.12

with the following updates

RSFj+1 ((x, y)) =

RS~j ((x, y)) Pr(r = (x - u, y - u) Iz = self) P~ u

U TvRS~j((x-- u- v, y -u-v))Pr(q =v)_

(3.13)

The overall procedure then entails going back and forth between updating Pr(q =
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u) for several iterations while holding RSF((x - u, y - u)) fixed and then updating

RSF((x - u, y - u)) for several iterations while holding Pr(q = u) fixed. Despite

the unconstrained nature of this approach, the recovered RSF conforms to our ex-

pectations. The RSF in Figure 3-4 is typical of what is recovered from RNA PolI

ChIA-PET data. Given a location bound by the protein, we would expect the most

likely alignment of the ends of self-ligation read pairs to be roughly equidistant to the

occupied location with the distance from the occupied location determined by the de-

gree of fragmentation. The typical RSF that we estimate has the greatest value along

the line through the origin that is perpendicular to the identity line. Points along this

line reflect self-ligation read pairs that align equidistantly to the occupied location

which is represented by the origin in the RSF. The distance of the peak in the RSF

from the origin reflects the most likely fragment size generated by the sonication step.

Thus, the RSF that we recover using our blind deconvolution approach conforms to

our expectations and provides useful information about the fragmentation step of the

ChIP procedure.

Note that this distribution is similar to the self-ligation read distribution learned

by SPROUT from punctate data (Figure 2-1a). Both distributions model the arrange-

ment of self-ligation read pairs relative to a location occupied the protein of interest.

The similarity between these distributions is to be expected because these distribu-

tions are induced by the DNA fragmentation step that is common to all ChIA-PET

experiments. SPROUT and GERM differ in the assumptions that they make about the

manner in which proteins associate with the genome. Yet, despite taking different

approaches to modeling ChIA-PET data, both methods recover appropriately similar

information about the ChIA-PET method itself.

Efficiently estimating the genome-wide protein occupancy distribution

RL blind deconvolution works well for deconvolving the protein occupancy distribu-

tion for regions of the genome that are on the order of megabases in size. However,

the time that it would take to deconvolve the full genome-wide distribution of protein

occupancy is impractical. Based on observations made about typical RSFs estimated
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Figure 3-4: A typical read spread function estimated from RNA PolIl ChIA-

PET data and an approximation of it that makes deconvolution efficient

by RL blind deconvolution from portions of real ChIA-PET datasets, we devised a

highly efficient procedure that achieves a level of accuracy comparable to full RL blind

deconvolution. We observed that typical RSFs estimated by RL blind deconvolution

from portions of real datasets are unimodal and sharply peaked. This implies that

the RSF can be approximated by a function with all of its mass at the peak of the

RSF as in Figure 3-4. This approximation allows for a very efficient deconvolution

procedure. If the peak of the estimated RSF is at (-A, A), we estimate the protein

occupancy distribution as

Pr(q = u) oc Pr(r = (u - A, u + A) z = self) (3.14)

In summary, to estimate the marginal distribution of protein occupancy from a

full genome-wide ChIA-PET dataset we first estimate the genome-wide self-ligation

read pair distribution. We then apply RL blind deconvolution to a 5 megabase region

of the genome to obtain a good estimate for the RSF. Finally, we identify the peak

of the estimated RSF and estimate the distribution of RNA PolIl occupancy as in

(3.14).
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3.2.3 Estimating the 2D Joint Distribution of Protein Occu-

pancy

Chromatin looping allows proteins to simultaneously occupy two genomic locations

[64]. Inter-ligation read pairs can be thought of as samples from a joint distribution

of protein occupancy with positional noise introduced by fragmentation. We make

several assumptions about this process. We assume that the inter-ligation read pairs

are based on independent samples from the joint distribution of protein occupancy.

We associate the lower coordinate protein location q(l) with the lower coordinate end

of the read pair r') and the higher coordinate protein location q( 2) with the higher

coordinate end of the read pair r

Pr(q (u, v)IRinter) = I1 Pr(q = (u, v)I(r, 2r())) (3.15)
Ni~nter Ei i)

ri ERinter

1 N Pr(q(1) = uI (r , r(2 )) Pr(q( = v- -q =U, (r (1 , rf)) (3.16)

Nztr rGRinter

1 N Pr(qN1 = Ulr( ) Pr(q(2 ) = vlq = U, r ) (3.17)
N~trriCRinter

The last equality reflects an assumption that we make that the location occupied

by the protein is independent of the read pair end that it is not associated with.

We will demonstrate that these terms are non-zero in only a relatively small window

around their associated read pair end and that the non-associated read pair end has

minimal effect on the manner in which we compute these terms. We transform the

first term within the sum into quantities that we can compute using Bayes' Theorem

i P() lq(' = u) Pr(qNl = U)
Pr(qN) = ulr ()) = Pr(r 1 q( r() (3.18)

Pr(r )

We assume that we can obtain Pr(r(1 )1q(l) = U) by marginalizing the RSF that

was estimated during the blind deconvolution step. For read pair ends that align to
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the - strand

Pr(ri{ q() = u) = RSF((r' - u, y - u)) (3.19)
y

Correspondingly, for read pair ends that align to the + strand

Pr(rf Jq( = u) = RSF(x - u, - u)) (3.20)
X

Pr(q(1 ) = U) is the distribution of protein marginal occupancy that was estimated

in the previous step. The prior read distribution Pr(r ) reflects any factors that

might influence the alignment of reads to locations in the genome. Such factors might

include the uniqueness of the sequence around that location in the genome and bias

in the library preparation or sequencing for the sequence around that location. We

assume that Pr(ri ) is uniform in this work. However, future work may be improved

by utilizing a more informative prior distribution.

We also transform the second term within the sum in (3.17) using Bayes' Theorem

Pr(q(2 ) = V -qN = U, r)

Pr(r(2 ) q(l) = U, q (2) v) Pr(q(2 ) == (3.21)

Pr(r(2 ) q(l) = U)

Pr(r 2)q = v) Pr(q = v) (.
((2 .(3.22)

Pr(ri

The approximation in (3.22) incorporates assumptions to simplify all terms in-

volved. We assume that r( only depends on the location of protein occupancy that

it is associated with, and hence Pr(r 2 )Jq(1) = , q(2 ) = v) Pr(r(2 Iq (2) = v) which

we obtain by marginalizing the estimated RSF. We next assume that q(l) and q(2)

are independent. This is clearly not true, since otherwise we would have no need of

estimating their joint distribution. But, since Pr(r(2 ) q( 2) = v) is only non-zero in a

relatively small range around v, the purpose of Pr(q(2 ) = vlq(l) = u) is mainly to fine

tune the probability that q(2 ) = v if r( 2) falls within that range. We expect the loca-
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tions of peaks of Pr(q(2 ) = V = u) to roughly agree with peaks of Pr(q(2 ) = v) if

they exist, and so we assume that we can swap one for the other in this case. Finally,

we assume that r(2) is independent of the location of protein occupancy that it is not

associated with, allowing us to substitute Pr(r (2 ) for Pr(r(2 1 q(1) = U).

These transformations allow us to write the estimated joint distribution of protein

occupancy as

Pr(q = (u, v)IRinter) OC

Pr(r)q (1) = u) Pr(q() = u) Pr(r (2 )q(2) = v) Pr(q(2 ) = v) (3.23)
ri CRinter

GermX: Estimating the Conditional Distribution of Protein Occupancy

with a Set of Locations X

In many situations we are interested in estimating the joint occupancy of a protein

with a set of genomic locations X. For example, when analyzing RNA Poll ChIA-

PET data, a common query might be to detect regions that are jointly occupied

by RNA Poll along with a location from set of annotated transcription start sites

(TSSs). If we define TSS to be a set of annotated TSSs, we refer to GermTSS as the

process of estimating Pr(q = (u, v) Rinter) only for v E TSS.

3.2.4 Evaluating the Significance of Portions of Estimated

Distributions of Marginal and Joint Protein Occupancy

Once we have estimated distributions of marginal and joint protein occupancy from

ChIA-PET data we evaluate the significance of the estimated protein occupancy

within a given region or the joint occupancy within a given pair of regions. We

describe our approach as applied to a marginal distribution of protein occupancy

and then extend the approach to joint distributions. Given a genomic region reg

of size w base pairs, let p = EuEreg Pr(q = u). If we let Z ~ Binomial(Nself, p)

and Y ~ Binomial(Nelf, -) where M is the size of the mappable genome, we then
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evaluate the significance of the protein occupancy within reg as Pr(Y > Z). In

other words, we calculate the probability that more self-ligation read pairs would

be associated with reg according to a uniform distribution of protein occupancy

than would be associated with reg according to the estimated distribution of protein

occupancy.

We extend this approach to evaluating the significance of pairs of regions ac-

cording to a joint distribution of protein occupancy. Given a pair of regions rega

and regb, let pjoint = UreGga V~reg Pr(q = (u, v) Rinter), Pa = Eurega 1r(q = u

and Pb = ZuCregb Pr(q = u). If we then let Z ~ Binomial(Ninter, pjoint) and Y ~

Binomial(Ninter, PaPb), we then evaluate the significance of the joint protein occu-

pancy of the regions 'rega and 'reg as Pr(Y > Z).

Significance evaluation for GermX

The estimate Pr(q = (u, v) Rinter) for v C X that is obtained by applying Germx is

void of mass for much of its domain. This is because not enough inter-ligation read

pairs can be sequenced to fully explore this space given current technologies. Without

considering the mass that is missing from the estimate of Pr(q = (u, v) JRintr), the

significance of portions of the distribution for which mass is estimated will be over-

estimated. To remedy this issue, we introduce a method for estimating how much

mass is missing from the estimate of Pr(q = (u, v) Rinter) in order to more accurately

evaluate the significance of portions of this distribution. We assume an ordering on

the vi e X and let ti = E 1r(q = (u,vi)|Rinter) and mi = Pr(q = vi). If we assume

that there is some amount of mass Ti that is missing from ti, then we can find a

setting of the Ti such that .- 'i However, there are many valid settings of

the Ti and larger values of the Ti will cause portions of the estimated distribution to

be evaluated as less significant.

To choose an appropriate setting of the Ti we introduce a procedure that allows

us to choose T i large enough to avoid overestimating the significance of portions

of the estimated distribution. We first choose a set of candidate regions for each

vi E X which we will evaluate for significance based on Pr(q = (u, v) Rinter). We
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do this by setting a threshold f and adding a region reg to the set for vi if Vu E

reg, Pr((u, vi) Rinter) > f. We then identify an imax such that Vi, tim ;> ti. We

choose some c > 1 and set rima = (c - 1)ti.ax We hold rimax fixed and apply an

iterative procedure to find settings for Ti (i / imax) such that zti±T = T For

each iteration, we cycle through i # imax and compute

i j (tj + T1 ) (3.24)

Once this converges, we evaluate the significance of the regions defined using

the threshold f in the following way. For a region reg in the set for vi we let p
er 1r((A) Ier) and p' = EUEe, Pr(u). If we then let Z - Binomial(Ninter, p) and

Y - Binomial(Ninter, p'), the significance of the estimated joint protein occupancy of

vi and reg is Pr(Y > Z). We evaluate the significance of the regions in the sets for

all v E X and identify the regions that have an associated Pr(Y > Z) less than some

threshold such as 0.05. We call these regions significant. For each region, we also note

the number of read pairs in Rinter that contributed to p for that region. If the ratio of

the number of significant regions supported by only one read pair to the total number

of significant regions is greater than some target threshold, such as 0.1, we increase

c and begin the process of finding a new set of Ti. If there are too few significant

regions supported by one read pair with Pr(Y > Z) < 0.05 we reduce c and find new

Ti. In this manner we search for c that achieves a target fraction of weakly supported

jointly occupied regions within the set of all regions that evaluate as significant.

3.3 Evaluating GERM

We applied GERMTSS to RNA PolII ChIA-PET data from mouse embryonic stem

(mES) cells to evaluate the ability of GERMTSS to identify regions that interact

with TSSs and exhibit characteristic features of enhancers. As described in Chapter

1, enrichment for Mediator, p300, Cohesin, and H3K27ac is associated with active

enhancers. We also know that Oct4, Sox2, and Nanog frequently bind to active

enhancers in mES cells because they have been shown to be important regulators of
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the mES cell state. We assume that chromatin loops form to allow active enhancers

to become spatially proximal to the TSSs of the genes that they regulate. In this

section we examine the regions that we discover to be jointly occupied by Poll with

annotated TSSs based on the assumption that joint occupation by PolII should reflect

chromatin looping between active enhancers and TSSs. We will demonstrate that

the regions that we discover do in fact exhibit the characteristic features of active

enhancers that we examined.

We processed the RNA Poll ChIA-PET sequence data by filtering out chimeric

ligation read pairs that contain two different linker sequences, aligning the read pairs

using BOWTIE, and removing paired positional duplicates to avoid spurious results

from PCR artifacts. We obtained ChIP-Seq sequence data for Medi, p300, Smcla,

H3K27ac, Oct4, Sox2, and Nanog as well as whole cell extract (WCE) data in mES

cells [11, 26, 62]. These data were also aligned to the reference genome using BOWTIE.

We used annotated TSSs from the UCSC knownGene database [27] to discover regions

jointly occupied by PolIl with TSSs using GERMTSS. For each region reg in this set,

we identified the location Vv E TSS, eloc = maxuEreg Pr(q = (u, v)Riter). eloc is

the location within reg that is most likely to be jointly occupied by RNA PolIl with

some v E TSS.

In order to avoid detecting interactions between TSSs, we conservatively selected

for regions with eloc that is at least 2 kb away from any annotated TSS. This left us

with 2924 regions that interact with a TSS and do not contain TSSs themselves. We

centered 500 bp windows on the eloc within each region and evaluated the enrichment

of each of the ChIP-Seq datasets compared to WCE within those windows as shown

in Table 3.2. Notably, over 90% of the GERMTSS identified regions are enriched for

the Mediator component Med1. Enrichment for p300 and the Cohesin component

Smcla is high as well (84.7% and 78.8% respectively). Almost 90% of the regions are

enriched for H3K27ac. Oct4 is enriched in almost 80% of these regions while Sox2 and

Nanog are enriched in nearly 50%. The enrichment of these transcription factors is

somewhat less than Mediator, p300, and Cohesin, although still strongly suggestive

that these are active enhancers. It may be that these factors are not necessarily
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Table 3.2: Regions identified to interact with TSSs that are enriched for
enhancer-associated ChIP-Seq data 2924 TSS-distal, TSS jointly occupied re-
gions were identified using GermTSS and 3098 were identified from the results from
[68]. For the GermTSS regions, the most likely jointly occupied location was iden-
tified and for the regions taken from the [68] results the midpoint was identified. A
500 bp region centered on the identified location within each region was evaluated
for ChIP-Seq data enrichment. For each ChIP-Seq dataset, this table includes the
number of regions that are enriched and the percentage of the total number of each
type of region that number constitutes.

Factor # GermTSS % GermTSS # Zhang et al. % Zhang et al.

Medi 2648 90.6 1908 61.6
p300 2477 84.7 1782 57.5
Smcla 2303 78.8 1675 54.1
H3K27ac 2629 89.9 2014 65.0
Oct4 2257 77.2 1457 47.0
Sox2 1336 45.7 952 30.7
Nanog 1433 49.0 1015 32.8

present at all active enhancers despite the importance of these factors in maintaining

pluripotency in mES cells.

Through a comparison with the results published with the ChIA-PET data that we

analyzed, we discovered that a greater percentage of the GERMTSS identified regions

are enriched for all of the ChIP-Seq datasets that we considered and that GERMTSS

identifies a larger absolute number of locations enriched for each dataset. To make

this comparison, we obtained the interaction calls from [68] based on the same data

to which we applied GERMTSS. We filtered out the interactions that do not contain

a TSS within either anchor region. Since these interactions do not include estimates

of the most likely locations within the anchor regions that are jointly occupied by

RNA PolI, we chose the midpoint of each anchor region as the approximate eloc.

We further filtered the interactions to identify the set of interactions that contain a

TSS within one anchor region and for which the midpoint of the other anchor region

is at least 2 kb away from any TSS. In this manner we identified 3098 regions from

the published results. We examined the same ChIP-Seq data to evaluate whether

these regions exhibit properties of active enhancers. We centered a 500bp window
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around the midpoints of these regions and evaluated the enrichment in that window

for each ChIP-Seq dataset. We found that much lower percentages of the regions were

significantly enriched for each of the datasets than the GERMTSS identified regions.

To further demonstrate the spatial accuracy of GERMTSS, we visualized the ChIP-

Seq data contained within the regions identified by both methods as shown in Figure

3-5. Each row within each box represents ChIP-Seq data from one of the regions

identified by each method. The rows are sorted by the measure of significance assigned

to the corresponding interaction by the method. We have already demonstrated in

Table 3.2 that GERMTSS identifies a greater number of regions that are enriched for all

of the ChIP-Seq datasets. Figure 3-5 illustrates the spatial accuracy of the ChIP-Seq

enrichment within 6 kb windows centered on the eloc or midpoint of the GERMTSS

and Zhang et al. regions respectively. Stronger enrichment, as indicated by darker

shades of blue, tends to exist in the center of the GERMTSS identified regions. The

Zhang et al. regions do not exhibit the same centering of ChIP-Seq enrichment. This

comparison illustrates the usefulness of the detailed estimates of joint occupation by

GERMTSS for identifying putative enhancers that regulate genes through chromatin

interactions.
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Figure 3-5: Visualization of ChIP-Seq data in regions detected to interact

with TSSs. The top row of boxes contains TSS-distal, TSS jointly occupied regions

identified by GermrTSS. The bottom row of boxes contains the corresponding regions

from [68]. The 6 kilobase regions are centered on the estimated eloc or midpoint

and are ordered by the significance associated with the interaction. Each column

represents data from a ChIP-Seq dataset that is associated with active enhancers.
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Chapter 4

Enhancer utilization during motor

neuron development

In Chapter 3 we introduced GERM, a novel algorithm for analyzing ChIA-PET data

that presents a detailed view of the occupancy of the genome by a protein of inter-

est. We applied a variant of GERM denoted GERMTSS to RNA Polymerase II (PollI)

ChIA-PET data in mES cells in order to discover regions that interact with annotated

transcription start sites (TSSs). We demonstrated that the regions that interact with

TSSs that are not themselves TSSs exhibit characteristics of active enhancers. Fur-

thermore, we showed that with GERMTSS we are able to identify putative enhancers

with high spatial accuracy. Here we apply GERMTSS to an additional Poll ChIA-

PET dataset in mouse motor neuron progenitors (pMN). We compare the results

obtained by analyzing independently derived biological replicate datasets and make

observations about the replicability and sensitivity of the ChIA-PET methodology.

Keeping in mind the caveats that we learn from this comparison, we make several

observations about differential enhancer usage during motor neuron development.

4.1 Sensitivity and Specificity of GERMTSS results

We generated replicate PolIl ChIA-PET libraries from independent derivations of

pMN cells that were produced by in vitro differentiation [63]. After filtering out
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chimeric ligation read pairs, aligning the read pairs, and removing paired positional

duplicates we obtained more than 30 million aligned read pairs. We processed the

published ES PolII ChIA-PET data [68] in the same fashion resulting in over 60

million aligned read pairs. To demonstrate that GERMTSS discovers consistent re-

sults from independent ChIA-PET experiments in the same cell type, we first applied

GERMTSS independently to the replicate pMN datasets. We discovered 56,913 in-

teractions in one replicate and 46,466 interactions in the other replicate. In 23,954

cases the two sets contained interactions between the same TSS and locations that

are within 500 bp. Since we are particularly interested in interactions between TSSs

and distal enhancers, we identified the interactions from the two sets such that one

location involved in the interaction is at least 2 kb from any annotated TSS and

examined the overlap between these TSS-nonTSS interactions. Out of the 6,634 and

5,872 TSS-nonTSS interactions in the two sets, 1,822 pairs of interactions involve

nonTSS locations within 500 bp.

There are several potential factors that may limit the overlap between the results

from the two replicates. One factor that is not well understood and is difficult to

characterize given current technology is biological variability. It is not clear how

stable chromatin interactions are and to what degree cells in a population take on

similar chromatin conformations even if the population is homogeneous in terms of

cell type [9, 33, 46]. ChIA-PET datasets also contain very little dynamic range

compared to more mature technologies such as ChIP-Seq. The number of possible

chromatin interactions is quadratic in the number of possible binding events. As a

consequence, the ideal complexity of ChIA-PET libraries would be quadratic relative

to the complexity of high quality ChIP-Seq libraries. However, it is not yet feasible

to prepare ChIA-PET libraries with this complexity. Furthermore, sequencing such

libraries would be very expensive even given relatively inexpensive current sequencing

technologies. Because of these limitations, we expect that there is a fairly high false-

negative rate inherent to existing ChIA-PET datasets that results in limited overlap

between the sets of chromatin interactions detected from independently performed

ChIA-PET experiments.
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To assess the degree to which GERMTSS results are affected by experimental noise,

we constructed a randomly permuted ChIA-PET dataset from one of the pMN repli-

cate datasets. We took each read pair and randomly swapped an end with an end

of another read pair from the same chromosome. This resulted in a dataset with the

same number of read pairs as well as the same marginal read distribution as a real

ChIA-PET dataset, but in which the read pairings have been scrambled such that

they should not contain real information about Poll joint occupancy. We applied the

GERM'ss algorithm and discovered 4,658 significant interactions of which only 231

overlap with interactions discovered from the original dataset. We also limited our

comparison to the 521 TSS-nonTSS interactions called from the randomized dataset

of which only 10 overlap with TSS-nonTSS interactions discovered from the original

dataset. The much smaller number of interactions identified from the randomized

dataset as well as the low overlap between the results from the randomized dataset

and the original dataset suggest that the interactions identified by GERMTSS from

nonrandomized datasets reflect real signal in the data and that the effects of experi-

mental noise are relatively minimal.

We estimated the total number of discoverable TSS-nonTSS interactions in pMNs

and discovered that it is very unlikely that the same overall set of TSS-nonTSS inter-

actions exist in ES cells. We assumed that the same set of TSS-nonTSS interactions

were discoverable in the cell populations used for the replicate pMN ChIA-PET exper-

iments. We also assumed that the TSS-nonTSS interactions discovered by GERMTSS

are sampled from this set with equal probability. Given these assumptions we esti-

mated that 21,380 (Figure 4-lA) GERMTSS discoverable TSS-nonTSS interactions are

present in pMN cells. We computed this by maximizing the likelihood of the hypergeo-

metric distribution given the size of the overlap between the TSS-nonTSS interactions

discovered by GERMTSS from the two replicates. We then applied GERMTSS to one

of the ES cell replicates to discover 11,974 TSS-nonTSS interactions. Despite the

much larger number of TSS-nonTSS interactions discovered by GERMTSS from this

dataset compared to either of the pMN replicates, only 733 of these interactions over-

lap with the TSS-nonTSS interactions discovered from the first pMN replicate. We
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Figure 4-1: Examining the likelihood that the same set of TSS-nonTSS in-
teractions exist in pMN and ES cells. (A) The likelihood of the hypergeometric
distribution given the sizes of the sets of TSS-nonTSS interactions discovered by
GERMTSS from the two replicate pMN datasets while varying the total number of
discoverable TSS-nonTSS interactions. The most likely total number of discoverable
TSS-nonTSS interactions is 21,380. (B) The likelihood of the hypergeometric distri-
bution assuming the 6,634 TSS-nonTSS interactions discovered from the first pMN
replicate and the 11,974 discovered from the first ES replicate were sampled from the
same total discoverable set of 21,380 TSS-nonTSS interactions while varying the size
of the overlap between the sets of discovered interactions. The actual overlap between
the two sets is 733 and is indicated by the red line. The probability of observing an
overlap this small or smaller is effectively zero. Given our assumptions this suggests
that it is very unlikely that the same set of discoverable TSS-nonTSS interactions are
present in both pMN and ES cells.

find that the probability that the GERMTSS discovered ES and pMN TSS-nonTSS

interactions were sampled from the same set of interactions is effectively zero (Fig-

ure 4-1B). Therefore, despite the high false negative rate inherent to ChIA-PET, it

is very likely that the data analyzed for ES and pMN cells reflect different sets of

TSS-nonTSS interactions that are present in the two cell types.

Based on the observations made from analyzing the permuted dataset, we made

the assumption that experimental noise is not a major source of variation in the re-

sults that we obtain from replicate experiments and combined the replicates for each

cell type to maximize the number and confidence of interactions that we detect. We
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applied GERMTSS to the two combined datasets and discovered 93,582 chromatin

interactions involving TSSs in ES cells and 82,177 such interactions in pMNs. As

a positive control we ensured that we detect several previously characterized inter-

actions in ES cells (Figure 4-2). We found that a majority of detected TSS based

interactions are with other annotated TSSs (Figure 4-3). These interactions have been

proposed to indicate the gathering of co-regulated genes into so-called transcription

factories [8]. A minority of the detected TSS-based interactions are with genomic

locations distal to annotated TSSs that we call nonTSS locations. To ensure that

nonTSS locations are distinct from TSSs we conservatively define nonTSS locations

to be locations that are at least 2 kb from any annotated TSS.

4.2 Enhancer properties of regions that interact

with TSSs

To investigate the hypothesis that TSS-nonTSS interactions represent functional in-

teractions with active enhancers we gathered ChIP-Seq data for the active enhancer

related marks H3K27ac, Medi, Med12, p300, and Smcla in ES cells [11, 26]. Most of

the TSS-nonTSS interactions (72.6%) that we discovered in ES cells are enriched in a

500 bp window centered on the nonTSS end for all of the enhancer related marks we

considered. These results suggest that enhancers that interact with TSSs are likely

to harbor nucleosomes acetylated at H3K27 by p300 and that an ensemble including

Mediator and Cohesin stabilize the chromatin interaction allowing PolIl to jointly

occupy the enhancer along with the TSS.

We reasoned that the ChIP-seq enhancer related marks and the GERM identified

enhancers would be highly spatially concordant. We applied the GEM algorithm [20]

to accurately identify locations of binding events in the Medi, p300, and Smcla data.

We also computed the peaks of the PoIII conditional joint occupancy distribution

within each nonTSS location. These peaks reflect the most likely anchor position

of the interaction between the nonTSS location and the TSS. Strikingly, the GERM
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Figure 4-2: Discovery of interactions that were previously characterized in

the literature. GERMTSS identified regions that interact in ES cells with the TSSs

of (A) Nanog and (B) Leftyl and are at least 2 kb from any TSS are represented by

blue boxes. The interacting regions that were verified by 3C [26] are labeled "Kagey

et al."

74



10

4-

2- MTSS-TSS
TSS-nonTSS

0
ES pMN

Figure 4-3: Breakdown of GERMTSS identified interactions.

interaction peaks line up very closely with the locations of enhancer related bind-

ing events (Figure 4-4). This evidence further suggests that the joint occupancy of

enhancers and TSSs by PolII is directly related to the occupancy of enhancers by

mediator, cohesin, and p300.

We discovered that individual GERM identified enhancers and transcription start

sites can exhibit 20 or more distinct interactions. By clustering proximal nonTSS ends

of TSS-nonTSS interactions, we discovered 9,127 putative enhancers that are utilized

by genes in one or both cell types. 9,574 TSSs interact with putative enhancers in

one or both cell types. TSSs in both cell types interact with as many as 20 distinct

putative enhancers (Figure 4-5A). We also found that several highly utilized enhancers

engage in an even greater degree of connectivity (Figure 4-5B).

We performed RNA-Seq with both ES cells and pMNs and discovered that tran-

scription is correlated with the degree of connectivity of TSSs with nonTSS locations

(Figure 4-6). It has been previously demonstrated that greater enrichment of Poll

at TSSs is correlated with higher levels of transcription [57]. The observation that

the degree of connectivity of a TSS with nonTSS locations is correlated with higher
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Figure 4-4: Alignment of ChIP-Seq binding events with GERMTSS identified

nonTSS locations that interact with TSSs. Binding events were identified from

ChIP-Seq data using the GEM algorithm. The frequency of binding event locations

relative to the nonTSS ends of TSS-nonTSS interactions is shown for (A-C) ES data

and (D-F) pMN data.
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Figure 4-5: Degrees of connectivity of TSSs and enhancers in ES cells and
pMN cells. (A) TSSs interact with varying numbers of putative enhancers in each
cell type. The dot size reflects the frequency of TSSs that interact with the numbers
of enhancers in ES cells and in pMN cells denoted by the position of the bubble. (B)
Enhancers interact with varying numbers of TSSs in each cell type. The positions of
the dots denote combinations of numbers of interactions in ES cells and pMN cells
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levels of transcription may imply that the greater degree of enrichment of Poll at the

TSSs of highly transcribed genes is related to the greater degree of joint occupation

of such TSSs with distal regulatory elements. However, since PolIl ChIA-PET reads

are more likely to be observed at locations that are more strongly enriched for PolII,

it is also possible that interactions that involve a TSS that is less enriched for Poll

are more likely to be underrepresented in the data.

By comparing the levels of transcription of genes involved in interactions with

putative enhancers to the levels of the 4,321 genes closest to the same set of enhancers,

we discovered that chromatin interactions with GERM identified enhancers predict

higher levels of transcription than genomic proximity to the same set of enhancers

(Figure 4-7A). A greater fraction of the genes most proximal to the GERM identified

putative enhancers have transcription levels less than any given threshold than the

genes that interact with the putative enhancers (Figure 4-7B). This evidence suggests

that GERM identified putative enhancers have a more strongly activating influence

on genes that they interact with than the genes that are closest to them.

We also hypothesized that enhancers that engage in greater numbers of interac-

tions with TSSs may exhibit stronger enhancer characteristics. We measured levels

of enrichment in 1kb windows centered on the enhancers from both cell types for

the H3K27ac, Medi, Med12, p300, and Smcla ChIP-Seq data (Figure 4-8). All five

features are correlated with the degree of connectivity of enhancers in ES cells.

4.3 Enhancer switching and gene switching

Cells at various stages of development are known to utilize dramatically different sets

of enhancers as has been demonstrated by observing differential histone modification

enrichment at enhancers [59]. Our efforts to detect differential enhancer usage be-

tween cell types will be confounded to some degree by the high false negative rate that

is inherent to ChIA-PET data. However, since we have shown that it is likely that

the sets of TSS-nonTSS interactions present in ES and pMN cells are quite different,

we examined the dynamics of enhancer usage between ES and pMN cells keeping in
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Figure 4-6: Transcription levels are correlated with the number of nonTSS

locations with which a TSS interacts. Genes are categorized based on the

number of nonTSS locations that their TSSs interact with in (A) ES cells and (B)

pMNs. The boxplots reflect the distribution of FPKM values computed for the genes

in each group from RNA-Seq data.
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Figure 4-8: Enrichment for enhancer associated features is correlated with
the number of TSSs with which a nonTSS location interacts. All nonTSS
locations that are involved in an interaction with a TSS in at least one of the cell
types were considered. The nonTSS locations were categorized based on the number
of TSSs that they interact with in (A) ES cells and (B) pMN cells. RPKM values were
computed from ChIP-Seq data in 1 kb windows centered on each nonTSS location.
The boxplots reflect the distributions of RPKM values for the nonTSS locations in
each group for each ChIP-Seq dataset.

mind that many of the interactions that appear to be missing in either cell type may

in fact be present. Of the 9,127 putative enhancers that we detect from both cell

types, 1,102 (12.1%) of them interact with TSSs in both cell types. Of the 39 highly

utilized enhancers that interact with at least 20 TSSs in at least one of the cell types,

31 of them are utilized in both cell types. All 8 of the highly utilized enhancers that

are not utilized in both cell types only interact with TSSs in ES cells. This suggests

that highly utilized enhancers are established in ES cells and that many of them

continue to be utilized during development. Of the 3,554 TSSs that interact with

enhancers in both cell types, only 966 (27.2%) TSSs maintain an interaction with the

same enhancer in both cell types. Given the caveat about the high false negative rate,

differentially active sets of enhancers appear to be not only related to genes that turn

on or off during development but also to genes that switch enhancers to maintain or

adjust their expression. The differential enhancer usage we observed led us to note

that in some cases enhancers also switch the genes with which they interact. Of the
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1,102 enhancers that interact with TSSs in both cell types, 661 (60.0%) maintain an

interaction with the same TSS. Thus, it appears that many of the enhancers that are

active in both cell types do maintain their associations with the same genes but that

the genes that an enhancer regulates may not be entirely fixed between cell types.

4.4 Motif analysis of enhancer regions

Of the enhancer related factors that we examined, Medi was most strongly aligned

with the nonTSS ends of TSS-nonTSS interactions. Mediator is an integral compo-

nent of enhancer-gene interactions that links enhancer-bound transcription factors to

the promoter-bound PolII complex. Given the known association between Mediator

and enhancer-bound transcription factors we hypothesized that cell type appropriate

transcription factor motifs would be present near Medi binding events that interact

with TSSs in one or both cell types. We assigned the 8,867 TSS-nonTSS interactions

in ES cells and 4,089 TSS-nonTSS interactions in pMN cells that have a nonTSS an-

chor that is within 500 bp of a Medi binding event to the nearest Medi binding event.

This resulted in 4,097 Medi binding events being associated with at least one TSS-

nonTSS interaction. We further grouped together Medi events from either cell type

that are within 500 bp to form 3,481 enhancer units. This resulted in 2,217 Med1+

enhancers that are only interacted with in ES cells, 950 that are only interacted with

in pMN cells, and 314 that are interacted with in both cell types.

We discovered the presence of cell-type appropriate motifs within the GERM dis-

covered cell-type specific enhancers (Figure 4-9) from a set of 1,182 PWMs collected

from the JASPAR, UniPROBE, and TRANSFAC databases [42, 43, 47]. We looked

in 1 kb windows around the most central Medi binding event within each of the 3,481

enhancer units for motif matches. The stem cell factor Klf4 [37] motif is present in

almost half of the ES cell enhancers, and is the most common motif present in these

enhancers. Both the Klf4 and Oct4 [49] motifs are present in about twice the percent-

age of ES specific enhancers as they are in pMN specific and shared enhancers. pMN

specific enhancers are enriched for the RXR::RAR [48] motif and many of the Hox
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Figure 4-9: Enhancer usage reflects cell-type appropriate motif enrichment.
1 kb windows centered on Medi binding events involved in interactions with TSSs in

one or both cell types were scanned for matches to known transcription factor motifs.

Medi binding events were categorized based on whether they interact with TSSs

in one or both cell types. The bar graphs reflect the percentages of Medi binding

events in each group that have a motif match within 500 bp for several important

transcription factors.

[15] factor motifs compared to ES specific enhancers. Interestingly, the Sox2 [3, 19]

motif is at least twice as common in enhancers specific to either cell type as in the

shared enhancers. Sox2 is an important transcription factor for both cell types and

it may be the case that the two cell types utilize mostly non-overlapping sets of Sox2

binding events to regulate gene expression.

4.5 Discussion

We have demonstrated that applying GERM to ChIA-PET data successfully recovers

genomic locations that are enriched for enhancer-related ChIP-Seq data. Their iden-
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tity as enhancers is further supported by the observation that the interactions that

we identify between these locations and TSSs is correlated with transcription levels.

Technologies for profiling chromatin interactions genome-wide such as ChIA-PET,

Hi-C, and 5C have yet to reach maturity and present analytical challenges such as

inherently high false negative rates. Our observations suggest that gene regulation

by long-range chromatin interactions with enhancers is a highly dynamic process.

Genes that are expressed in more than one cell type may utilize different enhancers

to maintain or adjust their expression. This hypothesis is supported by the obser-

vation that differentially utilized enhancers contain varying sets of motifs that are

recognized by cell-type appropriate transcription factors. This observation that the

relationships between enhancers and genes may be not fixed between cell types has

been previously noted [28], although caveats about the high false negative rate in-

herent to ChIA-PET data have been largely ignored. Theories have been proposed

[10, 14, 50, 55] which have begun to characterize the principles underlying regulatory

relationships in the genome, yet the logic behind the placement of enhancers relative

to the genes that they regulate has yet to be fully elucidated. We hope that the

observations about enhancer usage that we have characterized will help guide future

studies that address these important questions regarding transcriptional regulation.
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Chapter 5

Conclusion

5.1 Summary of results

In this thesis we presented two novel computational methods, SPROUT and GERM,

which are both designed to recover information about the manner in which chromatin

folds within the nucleus to allow proteins to simultaneously occupy distal genomic

locations.

SPROUT is best suited for analyzing ChIA-PET data that profile proteins that

bind to the genome in a punctate fashion. SPROUT assumes that protein binding can

be accurately modeled by point locations in the genome. The positions of binding

events and the existence of interactions between them are estimated by simultaneously

considering self-ligation and inter-ligation read pair alignments. Models of the aligned

positions of both types of read pairs relative to binding events are utilized to position

binding events at high resolution. These models are also used to accurately assign

read pairs to binding events in order to avoid overestimating the significance of an

interaction from spurious read to binding event assignments. We demonstrate by

examining independently derived biological replicate CTCF ChIA-PET datasets that

interactions discovered by the ChIA-PET Tool that are not discovered by SPROUT are

less uniformly supported by the replicates. This finding suggests that by modeling

the distribution of read alignments relative to binding events, SPROUT is able to

reduce the false positive interaction calls that are discovered when patterns of read
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pair alignment are not modeled in this way.

GERM makes different assumptions from SPROUT about how proteins associate

with the genome. While SPROUT assumes that protein binding can be approxi-

mated by point locations in the genome, GERM does not make this assumption and

estimates genome-wide distributions of protein occupancy. The assumptions that

SPROUT makes are appropriate for many proteins, such as most transcription fac-

tors, and allow SPROUT to gain statistical power. However, some proteins such as

Poll do not appear to bind to distinct point locations in the genome. Rather, Poll is

observed to occupy broad regions within which PolII seems to favor specific locations

to varying degrees. The detailed distributions of protein occupancy that GERM esti-

mates help preserve a more detailed view of the manner in which a protein associates

with the genome. We applied GERM to PolI ChIA-PET data and showed that the

sites that GERM detects as interacting with transcription start sites (TSSs) are more

enriched for features that are associated with active enhancers than the corresponding

sites detected by the ChIA-PET Tool.

We expanded our analysis of Poll ChIA-PET data with GERM to include both

data collected from embryonic stem (ES) cells as well as motor neuron progenitors

(pMN). This analysis provided the opportunity to examine the dynamics of enhancer

usage during neural development. We observed a correlation between the number of

interactions that a TSS engages in and the transcription level of the corresponding

gene. We also observed a correlation between the number of interactions that a distal

location engages in with TSSs and the strength of the enhancer features at the distal

location. We presented some caveats about the high false negative rates inherent to

current ChIA-PET datasets. Given these caveats, we noted that in many cases, TSSs

that are involved in interactions in the two cell types interact with different distal

locations. By examining the prevalence of motifs in enhancers that are interacted

with in only one of the two cell types, we observed that motifs that are important

to a particular cell type are more abundant in the enhancers that are only interacted

with in that cell type. We hypothesize that genes use different enhancers in order to

maintain their expression in the different transcription factor environments of different
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cell types.

5.2 Future work

Technologies that measure chromatin conformation in a high throughput fashion are

still very young. There is much work yet to be done to characterize sources of noise

or biases that may affect the results that are obtained from these data. This the-

sis characterized the high false negative rate that is inherent to current ChIA-PET

datasets. More work should be done to better understand how confident we can be

in the existence of the chromatin interactions that we identify and the nonexistence

of the interactions that we do not identify. As more labs are able to successfully

perform ChIA-PET experiments, it will be important for experimentalists to collab-

orate with computationalists in order to maximize the quality of the results that can

be obtained. To more fully characterize the set of chromatin interactions that are

present in a given cell type, it may be necessary to create more biological replicate

datasets or to find ways to increase the complexity of the libraries that are sequenced.

A related issue which affects the interpretation of ChIA-PET data is that the sta-

bility of chromatin interactions has not been well characterized. ChIA-PET data

reflect the conformational state of chromosomes averaged over the millions of cells

that were used to perform the experiment. It is unclear which chromatin interactions

may occur simultaneously or may be mutually exclusive and how variable the overall

conformation of the genome is in a population of cells. Improvements in imaging

technology and perhaps single-cell technologies may help provide clarification. At the

moment these issues make it difficult to make statements about interactions that are

differential between cell types and synergistic effects of interactions within the same

cell type.

One of the strengths of the ChIA-PET approach to measuring chromatin inter-

actions is that it utilizes an antibody to detect chromatin interactions that involve

locations bound by a particular protein. In theory, this enables different functional

types of chromatin interactions to be characterized. However, ChIA-PET datasets
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only exist for a handful of proteins in mostly non-overlapping cell types. Performing

ChIA-PET experiments for several proteins with different functional roles in the same

cell type would provide the opportunity to create more complex models of chromatin

conformation. Both SPROUT and GERM could conceivably be extended to analyze

combined datasets with read pairs corresponding to different antibodies. If assump-

tions are made about the consistency of chromatin conformation within separate cell

populations of the same cell type, ChIA-PET data from experiments that use differ-

ent antibodies could be considered together to improve the sensitivity and accuracy

of the overall model of chromatin conformation. Labels could then be assigned to

the discovered chromatin interactions corresponding to the proteins involved in the

interactions. Such a model could improve our understanding of how chromatin con-

formation contributes to the regulation of gene expression.

Another direction in which ChIA-PET-based studies could be extended is in dis-

covering differential interactions across a greater number of cell types. At present,

the high false negative rate inherent to current ChIA-PET datasets would reduce the

confidence of any claims made based on differential interaction calls. However, as the

ChIA-PET experimental method matures, considering multiple ChIA-PET datasets

will provide interesting opportunities for computational modeling. Experiments per-

formed on cells taken from multiple stages along a differentiation pathway or cells

that are responding to some sort of environmental stimulus will provide information

about the dynamics of chromatin conformation. If the ChIA-PET method is made

more efficient, allowing experiments to be performed using fewer cells, experiments

performed on samples taken from different tissues within an organism would allow the

variability of chromatin conformation within different tissues to be examined. Sim-

ilarly, experiments performed on different types of cancerous cells would allow the

effects of genome rearrangements and other mutations on chromatin conformation to

be studied. Datasets with temporal structure or other underlying relationships will

provide opportunities for interesting modeling challenges.

Advances in technologies that measure genomic properties in a high throughput

fashion have been a boon to functional genomics. Long stretches of mammalian
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genomes that were once thought to be of little functional importance are now thought

to contain crucially important functional elements. As experimental technologies that

utilize next generation sequencing continue to mature, computational methods will

continue to be essential for extracting high confidence, interpretable results from large

genomics datasets. We hope that the ideas and methods presented in this thesis will

be useful towards the ultimate goal of understanding the way the genome functions.
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