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ABSTRACT

Cantilevers are a popular way to express form and create unique feature spaces. From a
design perspective, cantilevers are amazing feats for the built environment, and
structurally, present many opportunities. However, conceptual cantilever design can be a
difficult task for Architects and Structural Engineers because there are many structural
systems or strategies designers could choose to carry loads to supports.

This thesis begins with examples of built cantilevers which are distilled into five categories
of structural systems. These structural systems serve as the beginning of the design
process. In addition to choosing a structural system, there are many parameters of a
cantilever that can be altered that all impact the overall structural performance to varying
degrees.

This thesis proposes to study these parameters to better understand how they relate to one
another through analytical derivations of global deflection and member forces. Secondly,
with these analytical relationships, this thesis attempts to quantitatively measure the
effectiveness of each structural system through an optimization sequence that takes into
account both material use and deflection criteria. This method of optimization can then be
applied to particular examples and be used as a systematic approach to conceptual
cantilever design. A design example is optimized for material weight while satisfying a
given deflection criteria, as a way to illustrate the differences between each structural
system.

Thesis Supervisor: Pierre Ghisbain

Title: Lecturer in Civil and Environmental Engineering





Acknowledgements

I would like to thank my parents for their unwavering support. Without their
encouragement and dedication I would not have the chance to study at MIT.

I would like to thank all the professors that I have had the pleasure of meeting while at MIT.
They have taught me so much about engineering. Special thanks to Professors Pierre
Ghisbain and Jerome Connor for their guidance both inside and outside the classroom.

I also would like to thank all of my friends, especially those in the M.Eng program (Goggles
on for Freedom!). Thanks for an amazing year. It was a pleasure to study with all of you.

5



6



Table of Contents
A cknow ledgem ents ................................................................................................................................................................ 5

Table of Figures ........................................................................................................................................................................ 9

Introduction ............................................................................................................................................................................. 11

Com parisons betw een Structural System s ................................................................................................................. 14

Prim ary concerns .............................................................................................................................................................. 14

Loading ............................................................................................................................................................................. 15

Category 1: Steel Braced Truss ........................................................................................................................................ 17

1.1 Case Studies ................................................................................................................................................................. 17

1.2 M odel of Steel Braced Truss ................................................................................................................................. 27

1.2.1 D eflection Criteria ............................................................................................................................................ 28

1.2.2 D esign Exam ple ................................................................................................................................................. 30

1.2.3 V arying the num ber of bays ......................................................................................................................... 37

1.3 A nalysis ......................................................................................................................................................................... 39

1.3.1 Steel Truss O ptim ization Com parison ..................................................................................................... 39

1.3.2 Strength Criteria Check .................................................................................................................................. 42

Category 2: Steel V ierendeel Truss ................................................................................................................................ 43

2.1 Case studies ................................................................................................................................................................. 43

2.2 M odel of Steel V ierendeel Truss .......................................................................................................................... 45

2.2.1 Strength Criteria ................................................................................................................................................ 46

2.2.2 D eflection Criteria ............................................................................................................................................ 47

2.2.3 Cost A nalysis ....................................................................................................................................................... 51

2.3 A nalysis ......................................................................................................................................................................... 53

2.3.1 D esign Exam ple ................................................................................................................................................. 53

2.3.2 Category 2 O ptim ization com parison ....................................................................................................... 56

Category 3: D eep Beam ....................................................................................................................................................... 59

3.1 Case Studies ................................................................................................................................................................. 59

3.2 M odel of D eep Beam ................................................................................................................................................ 63

3.2.1 D eflection Criteria ............................................................................................................................................ 64

3.3 A nalysis ......................................................................................................................................................................... 67

Category 4: Bending Tube .................................................................................................................................................. 71

4.1 Case studies ................................................................................................................................................................. 71

4.2 M odel of a Bending Tube ........................................................................................................................................ 77

7



4.2.1 Strength Criteria ................................................................................................................................................ 78

4.2.2 D eflection Criteria ............................................................................................................................................ 78

4.3 A nalysis ......................................................................................................................................................................... 81

4.3.1 D esign exam ple .................................................................................................................................................. 82

4.3.2 D esign exam ple .................................................................................................................................................. 85

Category 5: Suspended Beam ........................................................................................................................................... 89

5.1 Case Studies ................................................................................................................................................................. 89

5.2 M odel of Suspended Beam .................................................................................................................................... 93

5.2.1 Strength Criteria ................................................................................................................................................ 94

5.2.2 D eflection Criteria ............................................................................................................................................ 96

5.3 A nalysis ......................................................................................................................................................................... 97

5.3.1 D esign Exam ple ................................................................................................................................................. 97

W eight Com parison betw een Structural System s ................................................................................................ 103

A ppendix ................................................................................................................................................................................ 107

References ............................................................................................................................................................................. 109

8



Table of Figures
Figure 1: The choice of a structural system ................................................................................................................... 11
Figure 2: Equivalent nodal loads Q..................................................................................................................................... 16
Figure 3: M odel of a Steel Braced Truss........................................................................................................................... 27

Figure 4: Area of optim al diagonal m ember vs. Height ....................................................................................... 31
Figure 5: Area of optim al top m ember vs. Height .................................................................................................. 31

Figure 6: Area of optim al bottom member vs. Height.......................................................................................... 32

Figure 7: Optim al Area vs. W eight ...................................................................................................................................... 32
Figure 8: Height of truss vs. W eight................................................................................................................................... 33
Figure 9: Deflection due to diagonal members vs. changing truss height................................................. 34
Figure 10: Deflection due to top m em bers vs. height.......................................................................................... 35

Figure 11: Deflection due to bottom m embers vs. height ................................................................................. 35
Figure 12: Deflection due to vertical m embers vs. height.................................................................................. 36
Figure 13: Total deflection vs. height ................................................................................................................................ 36
Figure 14: Cost vs. height ........................................................................................................................................................ 37
Figure 15: W eight vs. num ber of bays with optim ized area............................................................................ 41

Figure 16: Cost vs. num ber of bays with optim ized area..................................................................................... 42

Figure 17: Alpha vs. span ........................................................................................................................................................ 42

Figure 18: Sim plified m odel of a Vierendeel Truss................................................................................................ 46

Figure 19: Cross section of bending m ember................................................................................................................ 47

Figure 20: Deflected shape of m odel 1 ............................................................................................................................. 48

Figure 21: Model of a single bending m ember.............................................................................................................. 48

Figure 22: Deflected Shape of m odel 2............................................................................................................................. 50
Figure 23: Sim plified m odel of the Vierendeel truss ............................................................................................. 51

Figure 24: Optim al m om ent of inertia vs. Height ................................................................................................... 55

Figure 25: M om ent of inertia vs. Truss Deflection................................................................................................ 55
Figure 26: Mom ent of inertia vs. W eight ......................................................................................................................... 56
Figure 27: Mom ent of inertia vs. Cost ............................................................................................................................... 56

Figure 28: W eight vs. num ber of bays............................................................................................................................... 58

Figure 29: Cost vs. num ber of bays..................................................................................................................................... 58

Figure 30: M odel of Deep beam ........................................................................................................................................... 64

Figure 31: Cross Section of Beam........................................................................................................................................ 65

Figure 32: Length vs. Beam depth....................................................................................................................................... 69

Figure 33: Deflection vs. Beam depth................................................................................................................................ 70

Figure 34: W eight vs. Beam depth...................................................................................................................................... 70

Figure 35: Cost vs. Beam depth ............................................................................................................................................ 71

Figure 36: Model of the bending tube ............................................................................................................................... 78

Figure 37: Distributed loading along the bending tube........................................................................................ 79

Figure 38: Length of tube vs. area for optimized flange thickness ............................................................... 84

Figure 39: Length of tube vs. W eight for optim ized flange thickness .......................................................... 85

Figure 40: Length of tube vs. Cost for optimized flange thickness................................................................ 85

Figure 41: Length of tube vs. Optim al Height................................................................................................................87

Figure 42: Length of tube vs. Area for optimized height..................................................................................... 88

9



Figure 43: Length of tube vs. W eight for optimized height .............................................................................. 88
Figure 44: Length of tube vs. Cost for optimized height .................................................................................... 89
Figure 45: Length of tube vs. alpha for optimized height.................................................................................. 89
Figure 46: Model of a suspended beam with vertical loads .............................................................................. 94

Figure 47: Model of suspended beam with transverse loads ................................................................................ 95
Figure 48: Cross section of member A .............................................................................................................................. 96
Figure 49: Length of beam vs. Optimal Area.................................................................................................................. 99
Figure 50: Length of beam vs. W eight.............................................................................................................................100
Figure 51: Length of beam vs. Cost...................................................................................................................................100
Figure 52: Normalized weight vs. Categories 1: Steel Braced Truss and Category 2: Steel Vierendeel

T ru s s ................................................................................................................................................................................................ 1 0 4

Figure 53: Normalized weight vs. Categories 3: Deep Beam and 4: Bending Tube .................................. 105
Figure 54: Normalized weight vs. Structural systems ............................................................................................ 106

10



Introduction
Cantilever design is primarily driven by aesthetics and form and is wildly popular

with architects. From a structural perspective, they have pushed the envelope for great

engineers to create record breaking structures. The case studies presented in the following

chapters are only a sample of the extraordinary work that Architects/Structural Engineers

have built in recent years. It is for this reason that this thesis focuses on cantilever design

as a way to encourage the undertaking of further cantilever projects.

Cantilevers in the conceptual stages of a design can be a difficult task for Architects

and Structural Engineers because there are many strategies one can use to carry loads to

the ground or other supports. The problem or task is often an initial choice of structural

system or strategy, as represented in Figure 1.

Figure 1: The choice of a structural system

The case studies presented in each of the chapters demonstrate the variety of ways

designers have approached the problem posed in Figure 1. They have been distilled down

to 5 common structural systems:
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1. Steel Braced Truss (axial loads only)

2. Steel Vierendeel Truss (acts in bending)

3. Concrete Beam (could also be steel but is limited to short spans)

4. Bending tube (Concrete or Steel)

5. Suspended platform

.....
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The case studies presented are either for residential or commercial use and the

cantilever is an integral part of useable space (rather than a cantilevered canopy such as

those seen in the roofs of sports stadiums). Once a structural system is chosen, the next

steps in conceptual design are less understood. Rules of thumb for how to go about

cantilever design do exist but are generally vague and are not particularly helpful since

they do not apply to a specific structural system. For example, there is the "one-to-three"

rule:

"Generally speaking, if a cantilever exceeds 1/3 of the total backspan, economy is

lost and may lead to design difficulties. So ifyour beam has a 30' backspan, try to

keep an adja cent cantilever to less than 10'long." - Craig BurschI

This ratio may apply to some structures but it is evident from the case studies

shown in the following chapters that many are far more ambitious with cantilevered span

than suggested in the one-to-three rule.

In the conceptual design phase, cantilevers have many parameters that can be

altered that all greatly impact its structural performance. Such parameters include height,

span, width of the global structure, the number of bays, the total deflection under live

loading, size of members, thickness of concrete etc. Some of these parameters can be

regarded as fixed by constrains either by the owners/designers or the code, while others

are variable and open for experimentation. Each parameter's influence on deflection and

weight will be discussed for the five structural systems.

In addition to understanding the effect of these parameters on the overall

performance, it would also be useful for the designer to be able to approximate member

sizes without running a complex analysis model. The analytical relationships provided in

each of the categories include determining member forces. Since structural members are

often an integral part of a cantilever's aesthetic, being able to size members from their

forces is important to the decision making process.

1 Bursch, Craig. "6 Rules of thumb for structural steel design" Matrix: the official newsletter of the American
Institute ofArchitects Minnesota. Matrix., May 2006. Web. 20 Apr 2014.
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Comparisons between Structural Systems
The decision of which structural system to pick depends on many factors:

Structural performance

Desired member sizes

Material choice

Dimension constraints

set by the site or the

designer

Scale of the structure to

the human body

Programmatic

constraints set by the

architect or client

Can members take only tension loads, axial loads, bending, or

a combination of these?

Members could have small cross sectional area (e.g. cables),

medium sized steel sections, or very large concrete beams.

Steel, Reinforced Concrete, Timber or a hybrid of these.

Certain structural systems have depth requirements that may

not comply with the intentions of the design. E.g. concrete

beams have a minimum depth and can only be implemented if

there is enough space or if the inhabitable cantilevered space

can be elevated above ground.

Considerations for the designer could be if the structural

system is inhabitable or hidden below the floor? Does a

person interact with the structure if it is visible?

Programmatic desires such as minimum ceiling heights or

unobstructed views/access could rule out certain structural

systems and their associated constraints. For example,

minimum ceiling heights for a Vierendeel truss will determine

the height the truss before a span can be found.

Primary concerns
It should be noted that cantilever design is a primarily deflection governed task. In

the design examples, strength checks are done but indicate that the designs are controlled

by deflection due to long spans rather than material yielding or crushing. For this reason,

the comparison between structural systems is done on the condition that deflection criteria
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are met, with the strength check being of secondary concern. With this method, it allows

the designer to compare the material use and/or deflection sensitivity between the

structural systems knowing that they all satisfy the deflection criteria.

Techniques often used to reduce overall deflection involve cambering the structure

under dead loads since they can be accurately determined, reducing the self-weight of

structure, stiffening the structure and finally, optimizing geometry (only putting material

where it is needed) for structural efficiency. The last technique will be the focus of this

thesis and the design example in chapter 6 offers a comparison between the effectiveness

of optimized geometry for different structural systems.

The scope of this thesis does not cover vibration analysis, earthquake and wind

loading, creep of materials over time, buckling of members, local effects, connection, and

foundation design. These issues are important and need to be designed for but are not the

basis for an initial conceptual design of a cantilever.

Loading
A live load of 100 psf was applied to each of the structural systems. For trusses

(categories 1 and 2), this live load was converted into an equivalent point load of Q = 10

Kips applied at the nodes. The span can be lengthened by increasing the number of bays,

thereby increasing the number of nodes, but the same load Q = 10 Kips is applied. This

ensures that as the span increases, there are greater overall loads applied to the structure.

For categories 3, 4, 5 this live load was converted into a linear distributed load of w = 1

Kip/ft, which will be used throughout the design examples. A width of 10 feet is chosen for

the examples but can be changed by adjusting the applied load Q or w using tributary areas.

For categories 1 and 2, the length of each bay is assumed to stay the same, while the

number of bays (n) can vary and thus produce longer spans. A diagram of the tributary

area used to get nodal loads Q is shown below.
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Figure 2: Equivalent nodal loads Q

Live Load is only considered in deflection calculations since dead load can be

cambered out. Methods to camber involve bending steel in the shop or specifying certain

members to be shorter such that the overall structure is cambered up. In concrete, the

formwork can be built to slope upwards, or the use of Post/Pre Tensioning rods located

above the center of gravity of the slab can be used to pull the slab upwards.
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Category 1: Steel Braced Truss

1.1 Case Studies
The following case studies presented are all recently completed projects and are

only a sample of built cantilevers that have a steel truss as a structural system. An interior

view is provided to show the different ways designers have incorporated the structure into

the aesthetic of the space.

Balancing Barn

Architect MVRDV and Mole architects

Structural Jane Wernick Associates
Engineer
Location Suffolk, UK

Year 2007-2010

Cantilever Length 57ft
http://www.mvrdv.nl/en/

Z I U
http://www.mvrdv.nl/en/

17
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http://www.mvrdv.nl/en/

4 r

http://www.mvrdv.ni/en/
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Emerald Art Glass house

Architect Fisher Architecture

Structural Engineer Eric Fisher

Location Pittsburgh, PA

Year 2011

Cantilever Length 53 ft

-

http://www.fisherarch.com/

ntp://www.nsnerarcn.com/

nttp://www.nsherarch.com/
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Tanglewood 2 House

Architect Schwartz/Silver
Architects

Structural Engineer Sarkis Zerounian &
Associates

Location West Stockbridge,
MA, USA

Year 2009

Cantilever Length 45 ft

nttp://scnwartzsiiver.com/

nttp://sclnwartzsilver.com/
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Section

http://schwartzsilver.com/
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Villa Mediterranee

Architect Stefano Boeri
Architetti

Structural Engineer AR&C

Location Marseille, France

Year 2004-2013

Cantilever Length 131 ft
http://www.stefanoboeriarchitetti.net/en/

http://www.stefanoboeriarchitetti.net/en/

7 - - - - - - - -

'I
L I I I IIHI I l i i I I

ii T I

http://www.stefanoboeriarchitetti.net/en/
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Nest and Cave House

Architect Idis Turato

Structural Engineer Ivan Arbanas

Location Opatija, Croatia

Year 2012

Cantilever Length 55 ft
nttp://www.arcnaaiiy.com/zv/bki/nest-cave-nouse-iais-turato/
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Krishna P. Singh Center for
Nanotechnology
Architect Weiss/Manfredi

Structural Engineer Severud Associates

Location Philadelphia, USA

Year 2013

Cantilever Length 68 ft

http://www.weissmanfredi.com/

nttp://www.weissmanrreai.com/

http://www.weissmanfredi.com/
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Tampa Museum of Art

Architect Stanley Saitowitz
Office / Natoma
Architects

Structural Engineer Walter P Moore

Location Tampa, Florida

Year 2010

Cantilever Length 40 ft

http://www.saitowitz.com/portfolio.htmi

Structural Engineering& Design (Aug 2010)

http://www.saitwitz.com/portfolio.htm
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1.2 Model of Steel Braced Truss
The steel braced truss is a very common strategy for cantilever design. The

members act in either tension or compression and the members can be an integral part of

the cantilever's aesthetic (both interior and exterior). Since member sizes are thin

compared to the overall size of the cantilever, this scheme allows for glazing and views in

between the diagonal members. The geometry of a steel truss structural system can be

simplified to the following model (shown in Figure 3) with the variables used listed in the

table below.

L

H

4rQ 4rQ 4rQ Q 4Q 4Q Q Q

nth 3

Assume all members have the same E

Figure 3: Model of a Steel Braced Truss

2 1

Variables Description Units
H Height Inches
L Length of one bay Inches
n Number of bays

Q Applied nodal load (width of truss determines the Kips
magnitude but is kept to 1 Kip in examples)

Ai Cross sectional area of a particular member in the ith bay in 2

ADiagonal Area of all diagonal members in the truss in 2

ATop Area of all top members in the truss in 2

ABottom Area of all bottom members in the truss in 2

Avertical Area of all vertical members in the truss in 2

ay = 50 Ksi

s Diagonal length (s) = VH 2 + L2  in

P Density of steel = 0.26 lbs
_______________ ~in3

__ _________

27
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The forces in each member of the truss can be solved using the method of joints and

written in terms of the ith number of bays counting from the tip of the cantilever.

ForceDiagonal memberi = H

ForceTop memberi = (i 2 -i)QL
2H

ForceBottom member, - _(i 2 + i)QL
2H

ForceVerticali = -(i - 1)Q

1.2.1 Deflection Criteria
The deflection caused by each member force is governed by

1 FLiu= Q Y A where i = for each bay of the truss
Q EAi

Fi = force of each member

Thus, the total deflection is the summation of the deflection of each member for all

members of the truss:

Q- n i 2s 3  L3 (i2 - i) 2  L3 (i2 + i) 2  H(i - 1)2
utotal = + + + I

E [ HADiagonal 4H2 ATop 4H2 ABottom Avertical

Assume a deflection limit of
360

Total weight of the truss is the volume of steel multiplied by the density of steel:

W = [snADiagonal + LnATop + LnABottom + HnAvertical] X P

The total Cost function (C) to be optimized against member areas is not a monetary

dollar amount but more of a sum of weight and deflection, factors that are important

considerations to the design of a cantilever. A constant a is introduced as an adjustment

factor for both consistency of units and for control on deflection. For larger a values, the

cantilever is more deflection sensitive and thus Cost is more deflection governed than

28



weight governed. The numerical values of a appear in the design example in the 1.2.2

Design Example and is a constant selected by the designer to achieve a target deflection. In

this study, the target deflection is the deflection limit of L/360.

The Cost equation is

Cost = Weight + a x utotal

For a generic steel truss braced frame, an optimal area of diagonal, top, bottom and

vertical members can be found while minimizing overall cost. The variables height (H) and

number of bays (n) will be chosen as they are the most interesting to analyze. The length of

each bay (L) remains constant but the total span increases with (n). Point load Q can be

assumed to be 20 Kips and can be scaled up or down for other loading cases, depending on

the tributary width of the truss.

Optimizing Cost with respect to different member areas give:

dC
dADiagonal 0

n

Afiagonal-optimal - QSH2 2

dC
dATOp = 0

dC
=0

dABottom

dC
dAVerticai

-> ATop-optimal =

-4 ABottom-optimal

-> Averticaioptimai

n
aQL2 _ (i2 i) 2

4pEnH2

n
aQL2  

0 +
4pEnH2

n
(i - 1) 2

It is important to note that the optimization of each member type (Diagonal, Top,

Bottom, Vertical chords of the truss) can be done independent of other members. This is

because the truss is statically determinate, so the member forces do not depend on the

29



member areas. Thus, the optimal truss overall is the synthesis of the areas found from each

optimization.

1.2.2 Design Example
An optimization procedure for height (H) is computed to illustrate how this optimization

process would be done. The following parameters are chosen as dimensions:

H = (10:30) * 12 Height of each bay (in)
L = 20*12 Length of each bay (in)
a =39500 Weighing constant in Cost function
Deflection limit =3.33 in
n = 5 number of bays
E = 29000 Ksi
Q = 20 Nodal Load (Kips)

The range of feasible heights for a truss of this size (see category 1 for general

dimensions) are H = 10 ft to 30 ft. The total length of this truss is 20 ft per bay with 5 bays.

For each value of H (done in 1 ft increments), an optimum area of the diagonal member is

found and plotted. The relationship between Area and Height is derived:

n

ADjagonal optimal = pnH2 /2 -> Aijiagonai optimal

each value of H, an optimum area of the

n

ATop-optimal = H2  i2 - i2
4EnH2 ( 2 -)

top and bottom members is found:

-> ATop-optimal OC H

n

ABottom optimal = 4H (j + j)2

4EnH2 Yi,+i
> AOttomoptimal c 1Hi

The optimal area of the vertical members do not depend on H, and thus there is no

optimal solution for this design example. The area of the vertical member does not change

with a changing height of the truss and the relationship is a horizontal line for different

heights. These area and height relationships are shown in Figure 4, Figure 5 and Figure 6.

30
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Each point on the following plots represents an alternative truss design, with the points

from the left starting at truss height = 10 ft to height = 30 ft. Each of these heights has one

corresponding optimal area for each group of members.

Area of diagonal vs. Height
20:-

19-

18-

17-

16-

15-

14-

13-

12-

10 -
100 300 350 400

Figure 4: Area of optimal diagonal member vs. Height

Area of top chord vs. Height

*L

150 200 250
Height (in)

.C

C

150 200 250
Height (in)

30

~0
0r

46
cc
0)

25-

20-

15

10-

10 300 350 400

Figure 5: Area of optimal top member vs. Height
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Area of bottom chord vs. Height

45 *

40-

-o

0
o-c35-
E
0

30-

S25-

20 -

15 r r
100 150 200 250 300 350 400

Height (in)

Figure 6: Area of optimal bottom member vs. Height

Weight = Area x Member length, and both area and length are increasing with

increasing truss height. This is because as the height of the truss increases it also elongates

the diagonal and vertical members (but not the top or bottom members). An optimal area

is found for when every member of the truss has the same area. For each optimal area, a

plot of it against weight shows that as area of the members increase, the weight of the

structure (which is Area x Length) also increases in an almost linear relationship.

Weight vs. Area
70

65-

60-

55

50

45

40

35

30 r
20 25 30 35 40 45 50 55 60

Area (in)

Figure 7: Optimal Area vs. Weight
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Similarly, a plot of weight against the changing variable height shows the same

relationship. From above we know that Area of top, bottom and diagonals are inversely

proportional to Height Area oc (again, area of vertical members is not related to height).

Increasing the height of the truss also lengthens the diagonal chord s (s = VH 2 + L2 ). This

graph shows that as height of the truss increases, there is greater bending capacity and the

weight of the truss reduces in a W oc relationship.

Height vs. Weight

150 200 250
Height (in)

300 350 400

Figure 8: Height of truss vs. Weight

For each truss height ranging from 10 to 30 ft, an optimal diagonal member area can

be found. This optimal area is then used to find a corresponding deflection due to diagonal

members.

[(1H 2 + L2)]

U D iagonal 
HC [H 2AI2 A+ L ]

WDiagonal

Substituting in ADiagonal oC 1 gives

UDiagonal oc H 2

The relationship between height and deflection is plotted, and a parabolic relationship with

a minimum deflection is present (see Figure 9).
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1.75,

1.7

.65

C
0

1.6 1

.55 F

1.5 [

.45

1.4 [

1.35'-
100

Deflection due to diagonal members vs. Height
L L L L

-

F*~

150 200 250 300 350 400
Height (in)

Figure 9: Deflection due to diagonal members vs. changing truss height

Similarly, by varying the truss height H, optimal areas of top and bottom members produce

deflections in an inverse relationship:

UTop OC 4H2ATopI

Substitute in ATop C

1
Gives UTOP OC -

H

Utotal C 4H2ABOttoml

Substitute in ABottom C -

H

1
Gives uBottom oC -

34
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Deflection due to top members vs. Height
1.8

1.6

1.4

1.2
C
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Height (in)

Figure 10: Deflection due to top members vs. height

Deflection due to bottom members vs. Height
4 L L

3.5

3-

F*
C

1 r

2.5-

2 -

1.5-

100 150 200 250 300 350 400
Height (in)

Figure 11: Deflection due to bottom members vs. height

Height does not factor into the optimal area of the vertical members, so a constant value of

optimal vertical area is used to calculate the deflection. The relationship looks like this:
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Deflection due to vertical members vs. Height

-Too 150 200 250
Height (in)

300 350 400

Figure 12: Deflection due to vertical members vs. height

Combining Figure 9, Figure 10, Figure 11, and Figure 12 gives the total deflection due to all

members when height is varied. This is seen in Figure 13.

7-

6.5-

6-

5.5-

S4.5-

4-

3.5-

000

Deflection due to all members vs. Height

150 200 250
Height (in)

300 350 400

Figure 13: Total deflection vs. height

36

0.18

0.16

0.14

0.12
C:
0

0.1

0.08

0.06

t-



Lastly, of concern to the designer is the overall cost of the structural system. A plot

of height against Cost shows that it follows a similar relationship to the Height vs. Weight

plot. Here, the curve is the summation of Figure 13 and Figure 8, with the deflection having

a greater influence on Cost (due to a large cc value).

0

x 10 5
1.6.

1.5-

1.4-

1.3-

1.2-

1.1

1~

0.9-

0.8-

0.0

Cost vs. Height of truss

150 200 250
Height of truss (in)

300 350 400

Figure 14: Cost vs. height

1.2.3 Varying the number of bays
Changing the variable n (number of bays) and thus changing the span also produces

interesting results. From the design example, it is evident that weight and therefore cost is

a cubic relationship to the number of bays (and thus the length of the cantilever). This

relationship is proved with the analytical equations derived in 1.2.2 Design Example.

ADiagonal-optimal 1 i2

Using sum of series

Substitute in to get

i2 = 1n(n + 1)(2n + 1)
6

A Diagonal-optimal oc
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n

A TOPoptimal

Using sum of series

(i2 _2
1

1 5 n(n - 1)(n + 1)(3n 2 - 2)

Substitute in to get

ATop-optimal cx n2

ABottom optimal = - 2 + i)2

Using sum of series
n S(i2 + i)2=

1
-n(n +
i5

1)(n + 2)(3n 2 + 6n + 1)

Substitute in to get
ABottomoptimal cx n2

n

Averticaioptimai =

Using sum of series
n

(i-1)2 = 1 (2 - 3n + 1)

Substitute in to get
AVertical-optimal io n

Weight = 0.26
lbs
TH3x [snADiagonal + LnATop LfABottom + LflVerticai]

Weight c n3
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1.3 Analysis

1.3.1 Steel Truss Optimization Comparison
The following example is shown to indicate the differences between precision in

optimization of member areas and its impact on self-weight. The first analysis is referred to

as "crude" because it is the simplest optimization scheme. Crude refers to the assumption

that all the areas in the truss for all members are the same area (A) and thus only one area

A is optimized. This produces the heaviest cantilever.

Next, "medium" refers to the assumption that each type of truss member (diagonal,

top, bottom and verticals) is the same size. These areas Ad, At, Ab, Av are then optimized

and a total weight is found. "Fine" refers to the assumption that all members are a different

size Adi, Ati, Abi, Avi where i = 1 to n bays. Each area is then optimized and a total weight is

calculated. This produces the lightest cantilever.

The percentage differences in weight for each of the three options are shown in

Table 1. It can be seen that the degree of precision to which a designer optimizes the truss

does affect the structure's weight. Though this is only computed for a specific truss of

dimensions shown in the table, the differences between crude, medium and fine will still be

on the same order of magnitude. For designers who wish to cut down on self-weight and

thus reduce deflection, being more precise with the member sizes could be enough of a gain

to justify the extra effort in customizing individual member areas.

The optimization is done for different spans (the number of bays n increases) but

each design satisfies its corresponding L/360 deflection limit by adjusting the value of a. As

span increases, the L/360 deflection limit becomes harder to satisfy causing a to increase

parabolically. The Cost plot also increases as span is increased, even when optimized areas

are used.

L 20ft
H 26ft

Q 20 Kip
n 2 to 8 spans of length L = 20 ft
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Weight
Weight crude medium vs. Weight crude
vs. medium fine vs. fine

n % % %
2 21.2% 14.3% 32.4%
3 13.4% 8.7% 21.0%
4 9.5% 10.8% 19.3%
5 8.1% 9.6% 16.9%
6 9.0% 24.7% 31.4%
7 9.2% 21.8% 29.0%
8 17.5% 13.5% 28.7%
Table 1: Weight comparisons between optimization schemes

Crude Optimization Truss has one optimized area A

Medium All diagonal members has an optimized area Ad
Optimization All top members has an optimized area At

All bottom members has an optimized area Ab

All vertical members has an optimized area Av

Fine Optimization Every single member has a different optimized area

Weight vs. Number of bays
250000

200000

150000
1

0000

0
2 3 4 5 6 7

Number of Bays (n)

--- Weight crude

-U-Weight medium

--- -*-Weight fine

8

Figure 15: Weight vs. number of bays with optimized area
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Cost vs. Number of bays

-

2 3 4 5 6 7 8

Number of Bays (n)

-U-Costcrude

-+-Cost_medium

-*- Costfine

Figure 16: Cost vs. number of bays with optimized area

Alpha vs. Number of bays

-U'-Alpha-crude

-+-Alpha medium

Alpha fine

2 3 4 5 6 7 8
Number of Bays (n)

Figure 17: Alpha vs. span
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1.3.2 Strength Criteria Check

ForceDiagonal member, =
nQs _ 8 x 20 x 32.8

H202 Kips

ForceTopmembern =
(n2 -n)QL

2H

(82 -8)x 1 x 20 x 20

2 x 26
= 430 Kips

-(n2 + n)QL. (82 +I 8)~ x 20 x 20
ForceBottom membern = = = -554 Kips

2H 2 x26

ForceVertical membern = -(n - 1)Q = -(8 - 1) x 20 = -140 Kips

AD=47 - UD= 4.3 Ksi

AT = 73.35 in 2

AB = 98.7 in 2

Ay = 98.7 in 2

-+ F= 5.9 Ksi

_* cT =5.6 Ksi

_ ar=1.4 Ksi

Thus the strength criteria of members are met. Buckling is not considered.
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Category 2: Steel Vierendeel Truss

2.1 Case studies
The following case studies presented are built examples of a Vierendeel truss

structural system. The beams act in bending, so they are larger than the axial members of

the Steel Braced Truss. There are no diagonal members which offer more area for glazing.

Cantilever House

Architect Anderson Anderson
Architecture

Location Granite Falls,
Washington

Year Prototype

Cantilever Length Up to 32 ft

http://andersonanderson.com/ http://andersonanderson.com/
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Two Hulls House

Architect MacKay-Lyons
Sweetapple
Architects

Structural Engineer Campbell Comeau
Engineering
Limited

Location Nova Scotia,
Canada

Year 2011

Cantilever Length 32 ft

http://www.mlsarchitects.ca/

nttp://www.misarcnitects.ca/

nttp://www.misarcniEtects.ca/
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2.2 Model of Steel Vierendeel Truss
This structural system is another common strategy for cantilever design and has the

benefit of not having diagonal bracing, thereby freeing up the sides of the cantilever for

views with floor to ceiling windows. The vertical members can be hidden from view to

produce the thinnest cantilevers. The geometry of a Vierendeel truss can be simplified to

the following model (shown in Figure 18) with the variables used listed in the table below.

L

IA

IB

IA

4rQ 4rQ 4rQ 4V Q 4,Q

nth 3

4VQ 4VQ

2

Assume all members have the same E

Figure 18: Simplified model of a Vierendeel Truss

45

H

4rQ
1

Variables Description Units
H Height In
L Length of one bay In

n Number of bays

Q Applied nodal load (width of truss determines the Kips
magnitude but is kept to 1 Kip in examples)

A Cross sectional area In 2

I Moment of inertia in the strong axis - could also be I(x)

s Section modulus of bending members In 3

~y = 50 Ksi

nL
ulimit - 3



Modeling Assumptions

" Assume an I shape for bending members A and B

" Assume all members have the same Elastic Modulus

" Approximate the area that is acting in bending to be only the flanges of total area A.

For simplicity of calculations, the contribution from the web is assumed negligible.

Appendix A provides a worked example showing the percentage difference between

moment of inertia with and without the web.

1 is the distance from the centroid of top flange to centroid of bottom flange. The

moment of inertia equations are therefore:

A Ad 2  ABdB2

4 4

A/2

A/2

Figure 19: Cross section of bending member

2.2.1 Strength Criteria
Maximum Moment in members A at the support

n

M= >Lix xL

Moment of inertia

A 2 ~ d
IA = "4orA =

4 or A A

'B = AId 2
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Distance from top flange to neutral axis
dA

y-2

Section Modulus

z
y

Substitute in for I and y gives:
AAdA

z =2

2.2.2 Deflection Criteria
Derivation of Model 1

To find the deflection equation of one bay, assume infinitely stiff B elements. Thus,

vertical elements resist load but this model assumes no deformation of vertical elements.

There are two bending members that share load Q.

H

Figure 20: Deflected shape of model 1

Q/2

u?

L

Figure 21: Model of a single bending member
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Approximate the bending action of element A to be a cantilever with a rotation

constraint, as shown in Figure 21. One bay can be modeled as shown in Figure 21; however,

the parameter H (height of truss) is not present in the deflection equation. Slope deflection

equations (equivalent to the exterior column of a moment frame) are applied:

6EI
VL T3- (-2u0 - L 0O + 2 UL - LOD + vF

Boundary Conditions:
Q H

IL=- uO = UL U 00 OL 0

Substitute into slope deflection equations to get

Q 12EIgu

2 LV

24EI
k = 3

Q L3

UiBay = 2 4 EIA

The deflection of the entire truss is the summation of the deflection of each bay. The

bay closest to the support carries the most point loads and thus experiences the greatest

deflection.

UTotal n. QL3

U.'i 24EI4

Derivation of Model 2

Assume that both horizontal and vertical elements (A and B) act in bending, such

that the model acts as a moment frame. The inflection points occur at midpoint of members,

which can be represented as rollers supports. This model is does take into account of the

dimension H and is a better approximation to the behavior of the actual truss.
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Assumptions:

. Horizontal bending members have moment of inertia IA

* Assume all A elements have the same bending rigidity EIA

* Assume all B elements have the same bending rigidity EIB

* There is an infection point at the center of every A and B element

Figure 22: Deflected Shape of model 2

Apply slope deflection equations:

U = top displacement (from symmetry, central node displaces by 0.5u)

0 = rotation of central node

OB= rotation at center of B element

OA = rotation at center of A element

MB = bending moment acting on B elements at central node

MA = bending moment acting on A elements at central node

The slope deflection equation for the bending moment at the start of a beam is

2EI
MO = L3 ( 3LuO + 2L2YO - 3LUL + L2 O L) + MF
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L

IA

IB H

IA

IA IA

Figure 23: Simplified model of the Vierendeel truss

For the half element B to the left of the central node, the boundary conditions are:

H
MO = 0 1 = I= L = - UO = UL = 0 00 = UL O= 0

2

Substituting into the slope deflection equation and taking the sum of moments at the

central node to equal zero gives MB + 2MA = 0

Q= KEQXU

KEQ 12 EIA

L3(1 + /A)

For this Vierendeel truss, there are two bending members in each bay, thus

Ktotai = 2 x KEQ

KTotai = 
2 4 EIA

L3 (1+ )

QL3 (1+ I

Uisay = 2 4 EIA

Again, the deflection of the entire truss is the summation of the deflection of each

bay. The bay closest to the support carries the most point loads and thus experiences the

greatest deflection. Comparing this equation to the deflection equation for model 1 shows

so



that they are similar except for this term:

1 + HIA
LIB

This is a ratio of the stiffness of the horizontal members to that of the vertical members.

2.2.3 Cost Analysis
The cost analysis will use model 2's deflection equation since the height parameter

(H) is an important design criteria and infinite stiffness of vertical members cannot be

achieved in real life.

n

Urotal = I i (QL 3 (1 + I

2 4 EIA

The total weight of the truss is given by:

W = (Area of cross section x Length of each member) x p

W = (HAB+ 2LAA )xn x p

The total cost is given by the summation of weight and deflection.

Cost = W + (a x UTotal)

Again, a is a control factor for deflection.

To optimize cost, differentiate with respect to the moment of inertia of the horizontal and

vertical members.

dC
IA= 0

dC
dIB 0

2 (Eni)aQL2dA
-A optimal = 192pEn

2 (li)aQL2 dB
IBoptimal 96pEn
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2.3 Analysis

2.3.1 Design Example
An optimization procedure is done to illustrate an optimization scheme with

different lengths of each bay. The following dimensions are chosen:

L = (10:30) * 12 Length of each bay (in)
H = 26*12 Height of beam (in)
a =11 Weighing constant in Cost

function

Deflection limit = 2.0 in
n = 6 number of bays
E = 29000 Ksi
Q = 10 Nodal Load (Kips)

The range of feasible lengths for a truss of this size (see category 2 for general

dimensions) was L = 10 ft to 30 ft. The total height of this truss was 26 ft with 6 bays. For

each value of L (analyzed in 1 ft increments), an optimum moment of inertia for both the

horizontal and vertical members was found and plotted. This graph shows that

IAoptimal cC L

Boptimal

which reflects the relationship found in. Figure 24: Optimal moment of inertia vs. Height

'A optimal = 742.6 in 4

IB-Optimai = 1050.2 in4

The next relationship is how deflection changes with an increasing moment of inertia. From

the deflection equation, taking the other parameters as constants give

1 1
U 0C -+ -

IA IB

which is seen in the plots in Figure 25.

Weight oc A oc I

53



thus the relationship is a linear one, where increasing the area of the cross sections

increases its bending capacity but also the self-weight of the truss. This relationship can be

seen in Figure 26.

The total cost curve is shown in Figure 27 is the sum of weight and deflection. Since

a is small in this example, the contribution of deflection to cost is much smaller than weight,

so the Cost curve looks very similar to the weight plots in Figure 26 and is therefore linear.

When larger a values are used the contribution to the cost curve is more pronounced.

Moment of inertia of A .s. L
2400

2200*

2000 -

1800-

1600 *

1400 4

1200

1000 -

800-

600 C
iC 1 200 2 300

L (in)
30 400

Moment of inertia of B vs. L

3500

414

3 000-
E4

04

.1500- k

00 150 200 250
L (in)

Figure 24: Optimal moment of inertia vs. Height

Deflection vs. Moment of inertia of A
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Figure 25: Moment of inertia vs. Truss Deflection
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x 10
5  Weight vs. Moment of inertia of A
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Figure 26: Moment of inertia vs. Weight
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Figure 27: Moment of inertia vs. Cost

55

0

4-,

r r r r

0 i i i i t a L L

x 105 Weight vs. Moment of inertia of B

1 6



2.3.2 Category 2 Optimization comparison
The following example is shown to indicate the differences between precision in

optimization of member areas and its impact on self-weight. The first analysis is referred to

as "crude" because it is the simplest optimization scheme. Crude refers to the assumption

that all horizontal members have the same optimized moment of inertia and all verticals

also have the same optimized moment of inertia. This scheme produces the heavier

cantilever. Next, "medium" refers to the assumption that each horizontal member has an

optimized moment of inertia 'Ai, and each vertical member has an optimized moment of

inertia, IBi. As the span increases, Ai, and IBi increase. This makes sense to have greater

bending capacity closer to the support. This produces the lighter cantilever.

The percentage differences in weight for these two options are shown in Table 2. It

shows that the degree of precision to which a designer optimizes the truss does affect the

structure's weight. For designers who wish to cut down on self-weight and thus reduce

deflection, being more precise with the member sizes could be enough of a gain to justify

the extra effort in customizing member areas.

The optimization is done for different spans (the number of bays n increases) but each

design satisfies its corresponding L/360 deflection limit. Figure 29 shows that the Cost

plot increases as span is increased, even when optimized areas are used.

L 20ft
H 26ft
Q/2 10 Kip

Weight crude vs. medium Cost crude vs. medium
n % %
2 2.0% 1.9%
3 4.4% 4.2%
4 5.6% 5.3%
5 6.6% 6.3%
6 6.4% 5.9%
7 7.4% 6.8%
8 7.5% 6.9%

Table 2: percentage differences
in alternative optimization
schemes
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Weight vs. Number of bays
300000

-4-Weight medium

-- Weight crude

250000

S200000

S150000

E 100000

50000

0
2 3 4 5 6 7 8

Number of Bays (n)

Figure 28: Weight vs. number of bays

Cost vs. Number of bays

2 3 4 5 6 7 8

Number of Bays (n)

Figure 29: Cost vs. number of bays

Strength Criteria check
QL 10 Kip x 20 ft

M= - = - - 100 Kip - ft
2 2

Compare with ay = 50 Ksi

Moment couple = F x dA

100 Kip - ft
F= =100 Kips

12 in

-> Y = F= 1= 1.4 Ksi
AA 71.5
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Category 3: Deep Beam

3.1 Case Studies
The following case studies presented are built examples of a deep beam structural

system. The beams almost always vary in depth, with the deeper section greater at the

support where it takes more loads. This variation in bending capacity along the beam is

taken into account in the structural model in the next section. The structure is entirely

below the floor slab allowing the designer freedom to do as they please with the interior

and exterior.

Utriai Residence

Architect Natkevicius &
Partners

Structural Engineer V.P.Ciras

Location Klaipeda County,
Lithuania

Year 2006

Cantilever Length 50 ft

http://www.archdaily.com/
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http://www.archdaily.com/78438/utriai-residence-architectural-bureau-g-natkevicius-partners/
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House in Yatsugatake
Note: with the supporting struts, this is
not a true cantilever. If the struts were
removed then it could be modeled as a
deep beam.
Architect Kidosaki Architects

Studio
Structural Toyohito Shibamura
Engineer Structure Design,

Takashi Manda,
Mitsuru Kobayashi

Location Yatsugatake, Japan

Year 2012

http://www.kidosaki.com/

" - " i N.,, i j

http://www.kidosaki.com/
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MPO9 Headquarters

Architect GS Architects

Structural Engineer Wendl

Location Graz, Austria

Year 2007-2009

Cantilever Length Approx. 57 ft

http://www.gsarchitects.at/

http://www.gsarchitects.at/
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3.2 Model of Deep Beam
This structural system is a common strategy for Reinforced Concrete. The depth of

the concrete generally increases as it gets closer to the support so this model takes into

account of a linearly varying height H(x). This system allows the cantilever space above to

be free of structure, giving the designer more freedom to design the interior space (and

thus allows unobstructed views). Compared to categories 1 and 2 this structural system

weighs more because there is continuous material throughout rather than material where

it is needed. The geometry of a deep beam structural system can be simplified to the

following model (shown in Figure 30) with the variables used listed in the table below.

w (kips/ft)

H(x)
ho{

x
L

Figure 30: Model of Deep beam

Variables Description Units

H(x) Height of Beam (can vary with x) In
L Length of one bay In

b Width of beam
w Applied distributed load on beam Kips/ft

A Cross sectional area In 2

I(x) Moment of inertia of the beam (can vary with x)

s Section modulus of bending members In 3

ho Greatest depth of beam at the support
-y = 50 Ksi

Note: Ignore slab thickness hL in calculations to simplify the model, but the depth of the

beam cannot be zero at the tip.
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Modeling Assumptions

h(x)

b

Figure 31: Cross Section of Beam

Assume a rectangular cross section of concrete where the top acts in tension (steel

reinforcement is required) and the bottom of the cross section acts in compression. The

area in compression needs to be checked that the concrete will not crush and fail.

3.2.1 Deflection Criteria
Height of the beam's cross section as it varies along the span can be written as:

H(x) = -(L -x)
L

Substituting this into the moment of inertia equation
bh3

I=-

Gives I(x) = (L - X) 3

120

Using the method of virtual forces to find the displacement at the tip of the beam:

L
CM(x) x SM(x)

SP XU= E(X) dx
f EI (x)0

Apply a 6P force at the tip of the beam where maximum deflection occurs and find the

corresponding moment equations under the real load and the virtual load.

w(L - x) 2

2

SM(x) = SP( L - x)
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6wL 4

Utotal = Ebh3

Deflection Limit
L

ulimit 360

Design criteria

u Ulimit

Cost = Weight + a X utotal

Volume = bLhO
2

lbs
Weight = Volume x 0.26-

a6wL4

Cost = 0.13bLho + Ebh3

To optimize the cost with respect to the maximum depth needed in the beam:

dC 80awL3

d = 0  ho = Eb 2

To optimize the cost with respect to the span of the beam L:

dC 3 -0.13Eh 0
4b2

-- = 0 -+ L =4
dL 24aw

This procedure can be used where a site constraint has a maximum depth the concrete can

reach and the designer wants to find the longest span that still meets deflection criteria.
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3.3 Analysis
Design Example

The following parameters are chosen to illustrate the optimization process:

w 1 Kip/ft
L 120 to 360 in
E 29000 Ksi
b 120 in
a 11000000
u max 1 in
Table 3

For every length L ranging from 10 ft to 30 ft, an optimal depth ho is found. This

relationship was plotted (see Figure 32). The graph indicates that the relationship is

nonlinear, and this is proven by the equation:

4 80awL3  3
ho = E 2  ho oc L4

Next, for each optimal beam depth, the deflection is found. Since each optimal depth

increases with increasing span, the deflection grows faster than a linear relationship. The

graph looks to be a polynomial relationship and is proven by the equation:

6wL4

Utotal = Oa 00b~

Weight of the concrete structure is Area x Length. As the span increases, the optimal

beam depth increases, thereby increasing the cross sectional area. The width of the beam

stays constant. Since both length and Area are increasing, the Weight increases at a faster

rate than a linear function. The graph looks to be a polynomial, and is proven in the

equation below.

3

Weight = pbLho -- From the previous equation ho oc L4

7
W oc ho0

Total Cost is a function of weight and a x deflection. Since weight and deflection

increase in a polynomial manner, the Cost also looks like a parabolic relationship.
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cz6wL4
Cost = 0.13bLho + EbhL

Ebho

7

C4 c h 3
0

Another strategy to achieving longer spans in addition to optimizing dimensions is

to Pre/Post tension (PT) the beam. This method uses tensioned steel rods (which are

larger than the steel reinforcement typically used in beams or slabs) that put the concrete

into compression. The tensioned rods increase the slab stiffness, which means it has

greater bending capacity and thus spans longer distances. The use of PT slabs can also be

done to control deflections; this is often done to camber the beam/slab under dead load.

The tensioned steel rods need to be placed above the center of gravity of the concrete, such

that the resultant is a force pulling it upwards. 2

C

I

32.-

30-

28

26

24

22

20

18-

16-

14-

1
100

Length vs. Beam depth
L

41

150 200 250
L (in)

300 350 400

Figure 32: Length vs. Beam depth

2 O'Brien, Eugene J, and Andrew S Dixon. ReinforcedAndPrestressed Concrete Design. 1st ed. Harlow, England: Longman Scientific &
Technical, 1995. Print.
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Beam depth vs. Deflection

*

7k*
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Figure 33: Deflection vs. Beam depth
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Figure 34: Weight vs. Beam depth
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Beam depth vs. Cost
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Figure 35: Cost vs. Beam depth
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Category 4: Bending Tube

4.1 Case studies
The following case studies presented are built examples of a bending tube structural

system. Using a tube as a structural system envelopes the interior space and can be sized to

function as the side walls and floor slab. The example below incorporates a variation in

beam depth, which results in a hybrid of categories 3 and 4.

Off-Grid Stamp House

Architect Charles Wright
Architects

Structural Engineer G&A Consultants
Pty Ltd

Location Queensland,
Australia

Year 2013

Cantilever Length Approx. 44 ft

http://www.wrightarchitects.com.au/

http://www.wrightarchitects.com.auf

71



o C G~ix W ~ (D (DO O 0

111OO~ IV LL~JT-'~ Aff j~

(ELA PWE/
-V-

http://www.wrightarchitects.com.au/

Academie Music Word and Dance

Architect Carlos Arroyo

Structural Engineer Norbert Provoost,
Ghent

Location Dilbeek, Brussels,
Belgium

Year 2007-2012

Cantilever Length 60 ft

http://www.carlosarroyo.net/eng/proyectos/Dilbeek/00.htm

http://www.carlosarroyo.net/eng/proyectos/Dilbeek/00.htm
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http://www.carlosarroyo.net/eng/proyectos/Dilbeek/00.htm
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Dwelling Etura

Architect Roberto Ercilla
Arquitectura

Structural Engineer Amaia Vasallo

Location Etura - Alava, Spain

Year 2011

Cantilever Length 49 ft http://www.robertoercilla.com/index.php?idioma=en

II6
I U

http://www.robertoercilla.com/index.php?idioma=en
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Coronet Grove

Architect Maddison
Architects

Structural Engineer Ainley
Engineering

Location Melbourne,
Australia

Year 2007

Cantilever Length Approx. 20 ft

http://www

http://www.maddisonarchitects.com.au/projects/coronet-grove

j7TT., hr~F

T -

http://www.maddisonarchitects.com.au/projects/coronet-grove
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Library & Learning Centre - University of
Economics Vienna

Architect Zaha Hadid Architects

Structural Engineer Arup Berlin

Location Vienna, Austria

Year 2013

http://www.zaha-hadid.com/

NI5 
.11

http://buildipedia.com/aec-pros/featured-architecture/zaha-hadids-library-and-learning-center

nttp://www.zaha-hadid.com/

76



4.2 Model of a Bending Tube
This type of structural system is popular for residential use and both the inside and the top

of the tube can be inhabitable spaces, as seen in the Roberto Ercilla project. The dimensions

of this system can be chosen by the designer, however, scaling up this system can cause

local effects to govern the bahavior, rather than function as an entity. Local steel

reinforcing and stiffening can be done to ensure that this bending tube does behave in a

cohesive manner. The geometry of the tube structural system can be simplified to the

following model (shown in Figure 36) with the variables used listed in the table below.

L 40-
q

------N .A -------

4*.

q

b

Figure 36: Model of the bending tube
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h

Variables Description Units
h Height of tube In
L Length of tube In
b Width of tube In
t Thickness of top and bottom flanges In
q Thickness of side walls In
w Applied distributed load on tube Kips/ft
A Cross sectional area In2

I Moment of inertia of the beam In4

s Section modulus of bending members In 3

G Shear modulus Ksi
ay = 50 Ksi



The analytical solutions below assume the Neutral Axis (N.A) to be halfway between the

top and bottom surface of the tube (the amount of steel rebars in the tension zone can be

sized such that the location of the neutral axis is halfway).

w (kips/ft)

h

L

Figure 37: Distributed loading along the bending tube

4.2.1 Strength Criteria
Maximum moment

wL2

2

Maximum shear

wL

Force in top or bottom flange

FT = Fc =
bL 2

20h

4.2.2 Deflection Criteria
Area of cross section

A = 2bt + 2q(h - 2t)

Itotal is the moment of inertia of the entire cross section.

iflange is the moment of inertia of only the flanges (neglect the web's contribution to

bending.

A comparison between Itotal and Iflange shows that the latter is a good approximation (see

Appendix 1 for a numerical comparison). All calculations will use iflange
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Itotal = 2
h

+ bt(-
2

- h t \ 3
t 21 +) q
2 12

q h t
2 22

2bt3 bth2

iflanges = 3 2 -bht 2

For a cantilever with a uniform moment of inertia, I acting in Bending, the deflection

equation is:

wL 4

UBending = 8E1
wL4

8E (2bt3 + bth2
bht2)

For a cantilever acting in Shear, the deflection equation is:

awL2

Usear =2GA

Where cc is a variable called the form factor, with which the average shear stress Tav must

be multiplied in order to obtain the maximum shearing stress Tmax at the centroid of the

cross section.

For this geometry:

A
a (bh 2 -bd 2 + 2qd2 )

16(Iq)

Shear deformation cannot be ignored in the deflection equation because the side walls of

the tube contribute to the overall behavior of the tube.

w L2

ushear = 32 (bh 2 - b(h - 2t) 2 + 2q(h - 2t)2 )
32aqG

UTotai -Ushear + UBending

wL 2 (bh 2 - b(h - 2t)2 + 2q(h - 2t)2 )

3 2b+t+ bthz232qG 3 +2 -bhtz

wL 4

+
8E( 2 b t 3 + bth2

E 3 +2
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Cost = L[2bt + 2q(h - 2

0.bL2(bh 2 - b(h - 2t) 2 + 2q(h - 2t) 2 )

32qG t 3 + bth- bht2)

0.lbL4

8E (2 + bt - bht2
OL 3 + 2 -h 2 )
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4.3 Analysis
To optimize the thickness of the flanges of this bending tube, choose dimensions for the

variables L (length), h ((height of tube), q (thickness of side walls), b (width of tube).

dC L
- = 0 -> Find the optimal thickness such that deflection is satisfied (u < )
dt 360

Numerical methods are used to find hoptimal for the design example.

Also of interest to designers is to optimize the height of the beam: Choose dimensions for

the variables L (length), t ((thickness of flanges), q (thickness of side walls), b (width of

tube).

dC L
= 0 -' Find the optimal height of the tube such that deflection is satisfied (u < 360

Numerical methods are used to find hOptimal for the design example.
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4.3.1 Design example
Choose to range over a span of L = 40 ft to 160 ft in 20 ft increments.

Procedure: For every length L shown in Table 4, a corresponding optimal flange thickness

is found. A value for the thickness of the side walls (q) is also chosen but it is taken as a

ratio of the thickness of the flange (or a minimum of 2 inches is assumed). Other

parameters used are:

b 120 in
h 312 in
E 29000 Ksi
G 11154 Ksi

L (in) Area (in2) Weight (lbs-f) Cost (lbs-f)
480 1390 58026 2.72E+05
720 1642 102880 1.13E+06
960 2716 226807 3.30E+06

1200 4064 424282 7.72E+06
1440 6228 780244 1.46E+07
1680 8840 1292054 2.54E+07
1920 11226 1875191 3.79E+07

Table 4: design example results

As length of the structural system increases (maintaining the same height of truss) a

greater area is required to achieve the target deflection criteria of L/360. Both the

thickness of the web and the flange increase, (with the flange area contributing more to

resisting deflection) and the net effect is combined into the cross sectional area, shown in

Table 4. Figure 38 shows that as length increases, the required area needed increases in a

polynomial fashion. Similarly, as length increases, the weight of the bending tube also

increases in a polynomial relationship (see Figure 39). Since

W = (Area of cross section x Length of each member) x p

Both area and length are increasing so

W oc L3
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Overall deflection and length are linearly related (since we designed for a desired

deflection of L/360).

W oc L , so C oc ?

This can be seen in Figure 40.

C

PD~

12000 -

10000-

8000-

6000-

4000-

2000 -

01
400

Length of Tube vs. Area

600 800 1000 1200 1400 1600 1800 2000
Length (in)

Figure 38: Length of tube vs. area for optimized flange thickness
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L_ Legt of Tub vs Wegh

A-

r r r r r r r

600 800 1000 1200 1400 1600 1800 2000
Length (in)

Figure 39: Length of tube vs. Weight for optimized flange thickness

Length of Tube vs. Cost

600 800 1000 1200 1400 1600 1800 2000
Length (in)

Figure 40: Length of tube vs. Cost for optimized flange thickness
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4.3.2 Design example
Choose spans to range over L = 40 ft to 160 ft in 20 feet increments.

Procedure: For every length L shown in Table 5, a corresponding optimal height is found.

Other parameters used are:

b 120 in
t 3 in
q 3 in
E 29000 Ksi
G 11153.85 Ksi

L (in) h-optimal (in) Area (in2) Weight (lbs-f) Cost (lbs-f)
480 120 1404 58631 2.52E+05
720 228 2052 128537 7.04E+05
960 348 2772 231517 1.44E+06

1200 492 3636 379598 2.59E+06
1440 648 4572 572780 4.18E+06
1680 840 5724 836620 6.54E+06
1920 1044 6948 1160594 9.60E+06

Table 5: L and Optimal height

As length increases , the optimal height required also increases in a non linear

relationship. The deflection criteria of L/360 still governs. The thickness of the web and

the flange are chosen to be 3 inches, which is not much cross sectional area but the key

relationship derived is the impact of optimal height on the bending tube. Note that this

assumes the tube will function as a cohesive system without local effects taking over its

behavior. Figure 41 below shows that as length increases, the optimal height needed to

acheive the deflection criteria increases in a polynomial fashion.
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Length of Tube vs. Optimal Height
11007 L L L

1000

900-

800

700-

600-

500-

400-

300-

200

10 r r r r r r r
00 600 800 1000 1200 1400 1600 1800 2000

Length (in)

Figure 41: Length of tube vs. Optimal Height

The cross sectional area is plotted against length in Figure 42 because the change in

height of the tube is essentially an increase in area since the top/bottom and sides stay the

same thickness. The area equation is

A = 2bt+ 2q(h-2t)

Aoch - Loc A2

Weight = (Area of cross section x Length of each member) x p

Since both Area and Length are increasing,

W oc L3

This can be seen in Figure 43.

Lastly, of concern to the designer is the balance of self-weight of the structure and

the sensitivity to deflection. Since deflection and length of bending tube are linearly related

(this was the deflection criteria):

W oc L3, thus C oc V2.
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This relationship can be seen in Figure 44.

Length of Tube vs. Area
7AAA.

C
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3000-
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Figure 42: Length of tube vs. Area for optimized height
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Figure 43: Length of tube vs. Weight for optimized height
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Figure 44: Length of tube vs. Cost for optimized height

The sensitivity of deflection on the overall cost does increase nonlinearly with span,

and this polynomial relaionship between span and a is shown below. This is because as

span increases, the bending tube needs to provide greater bending capacity and a needs to

be much greater to achieve the same L/360 deflection criteria.

Length of Tube vs. Alpha

600 800 1000 1200 1400
Length (in)

1600 1800 2000

Figure 45: Length of tube vs. alpha for optimized height
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Category 5: Suspended Beam

5.1 Case Studies
The following case studies presented are built examples of a suspended beam

structural system. This scheme provides column free interiors, though the beam is tilted at

an angle. The examples below illustrate the variety of programmatic use inside these

structures.

Fuel Station + McDonalds

Architect Giorgi Khmaladze

Structural Engineer Capiteli

Location Batumi, Georgia

Year 2013

Cantilever Length 600 square meter
(6458 sq. ft) green
roof system

http://giorgikhmaladze.com/#projects-view

nttp://giorglKnmalaaze.Com/ wprojectsview
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http://giorgikhmaladze.com/#projects-view

nap://giorgiKnmalauze.com/fwprojects-view

http://giorgikhmaladze.com/#projects-view
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Voestalpine Stahl GmbH Sales & Financial
Headquarters
Architect Feichtinger

Architectes
Structural Engineer Schindelar

ZT GmbH
Location Linz, Austria

Year 2009

Cantilever Length 140 ft

http://www.feichtingerarchitectes.com/
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Denver Art Museum

Architect Studio Daniel
Libeskind

Structural Engineer Arup

Location Denver, Colorado

Year 2006

Daniel-libeskind.com
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5.2 Model of Suspended Beam
This structural system is fairly uncommon but can be a good strategy for auditoriums,
which have a shorter span and tiered seating. This system could be replicated as many
times as needed in width, allowing a structure free interior. The element A shown in Figure
46 acts as a beam column so it is less efficient than a pure bending member or a purely
axial member.

Figure 46: Model of a suspended beam with vertical loads

Variables Description Units
h Height of Beam In
LA Length of Beam A In
b Width of beam (not taken into account in In

the calculations because the analysis is
done in 2D)

q Applied distributed vertical load Kips/ft
w Applied distributed transverse load on Kips/ft

beam assume lKip/ft
AA Cross sectional area of bending member In 2

AB Cross sectional area of tension member In 2

IA Moment of inertia of the beam A In 4

F Tension in member B
a-y = 50 Ksi
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5.2.1 Strength Criteria
Loads: q is the self-weight of applied vertical forces e.g. from people, auditorium

seating etc. w is the transverse load that the beam feels once the load q is resolved using

the angle P. Assume a rectangular cross section of concrete where the top acts in tension

(steel reinforcement is required) and the bottom of the cross section acts in compression,

alternatively, a steel beam can be used.

The total vertical load acting on Beam B is q x L. To convert this into a transverse load w

that acts along the length of Beam B, multiply it by cos p. This gives a distributed load over

beam

B = w = q x cos s

hB

Figure 47: Model of suspended beam with transverse loads

Assuming an I shape for the bending member A such as the one shown in Figure 48.
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A/2

d/2.

A/2I .1

Figure 48: Cross section of member A

Moment of inertia:

bh 3

12

Force components:

F = Fsina

F, = Fcosa

Sum the moments about the bottom left of the beam:

F q L2 cosfl
2(Lsinacos3 + hcosa)

For the tension member:

F
A

Area of the cable (element B) in Figure 47 can be sized according to this minimum area:

qL2 cosf3
"min"mu =2(Lsinacosfl + hcosa)uy
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5.2.2 Deflection Criteria
The method of virtual forces is used to find the displacement at the tip of the beam.

Moment of inertia is assumed to be constant, but I(x) could also be used if the moment of

inertia of element A decreases as it gets closer to the tip.
L L

M(x) x SM(x) f F(x) x SF(x) dxsP xu=f dx+ d
EI(x) J EA

0 0

Apply a SP force at the tip of the beam where maximum deflection occurs and find the

corresponding moment and axial force equations under the real load and the virtual load.

= wx(L - x)

2

SM(x) = 0

F(x) = qL 2cosfl
2(Lsinacosf3 + hcosa)

sP
SF(x) =

tanfi

qL3 cosi?
Utotal = 2EAAtanfl(Lsinacos3 + hcosa)

Deflection Limit
nL

uuimit = 3

Design criteria

u ! uuimit

To optimize the cost with respect to the maximum depth needed:
Cost = Weight + a x Utotai

Volume= AA x L2 - h 2 + A, X L

Weight = Volume x p

x(AA x L2 - h2 + AB x L) + aqL'cos3Cost = p x 2EAAtanfl(Lsinacos3 + hcosa)
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To optimize the area of the beam A with respect to Cost:

dC
dAA

0 -+ AA = IaqL 3cos#
2pEtan(LsinacosP + hcosa)(VL2 - h2 )

5.3 Analysis

5.3.1 Design Example
For a range of lengths (30 to 150 ft) in 10 feet increments, an optimal area of

element A is found. The value a is estimated and checked against the deflection until a

suitable value is found that meets the deflection criteria. Once the optimal area is found, the

weight and cost can then be computed.

L (in) alpha A optimal (in2) Weight (lbs-f) Cost (lbs-ft)
360 52 1.1 398 449
480 135 1.9 909 1089
600 230 2.9 1724 2107
720 340 4.0 2898 3577
840 460 5.3 4459 5535
960 600 6.8 6504 8103

1080 750 8.4 9029 11276
1200 910 10.1 12073 15104
1320 1080 11.9 15671 19630
1440 1260 13.8 19857 24897
1560 1450 15.8 24663 30946
1680 1650 17.9 30122 37818
1800 1860 20.1 36263 45549

Table 6: design example

The graph (Figure 49) shows that as the length of element

area required increases at a parabolic rate. The equation

A =

A increases, the optimal

aqL3 cosfl

2pEtan(Lsinacosfl + hcosa)( L2 - h2)

proves this relationship as well, and can be simplified to

L oc A?
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With the optimal area, a total weight of the system can then be found. Since Weight = Area

x Length, the above relationship gives

W oc L1-5

which is reflected in Figure 50.

Since Utotat oc L2 , Cost is also a parabolic relationship to the length of the system:

Cost oc L2

The deflection weighting of a is less than those for other structural systems, which means

that weight has a greater impact on the optimization than deflection. However, this design

example was done for shorter spans (L) because the application of beam columns makes

this system behave differently than the other deflection governed structural systems.

00 400 600 800

Length vs. Optimal Area

1000 1200 1400
Length (in)

Figure 49: Length of beam vs. Optimal Area
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x 104 Length vs. Weight
4 L L L L
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Figure 50: Length of beam vs. Weight

x10 4  Length vs. Cost
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Figure 51: Length of beam vs. Cost

Though deflection is the governing issue in most cantilevers, this structural system

relies on beam columns, which can be governed by a number of local issues such as

buckling and deflection mid-span of the member itself. To prevent buckling of beam

columns, stiffeners may need to be provided along the beam in the plane into the page of

Figure 47. Strength calculations of beam columns will not be included since they are
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specific to dimensions, but the interaction equation of beams in compression and bending

would be the next step in sizing members:

(a) For - > 0.2
PC

Pr 1 8 Mrx Mr <
-+- +<1.0

P(I Mex MX -

(b) For Pr < 0.2

Pr /Mr Mr 0
-+ -- +-- < 1.0
2P, M., + M -

where

Pr= required axial comlpressive strenoth. kips (N)
Pt= available axial compressive strength. kips (N)
Mr = required flexural strength. kip-in. (N-mmii) 3

Having the repeating units close enough to each other with bracing in between can

reduce the unbraced length of the beam column and thus reduce the loss of efficiency by

using a beam column compared to a member in pure compression or pure bending. See the

Giorgi Khmaladze for cantilever project for how bracing was added in this structural

system and strengthen it laterally.

The optimal areas that the design example produces, for example, when L = 1200

inches, Aoptimal = 10.1 in2

In the AISC manual, a wide flange size that has this area could be a W18 x 35,

however, it is slender for compression of Fy =50 Ksi. The next biggest size that is not

slender would be an area almost double of the optimal. The same applies to the majority of

optimal areas, leading to the conclusion that the beam column in this structural system is

strength governed rather than deflection governed.

Similarly, the structural system can be optimized for height for a given span. This would

have to be done numerically, and the same results for optimal area, weight and cost can be

found. This optimization could be used where a site constraint has a maximum span the

3 Steel Construction Manual Chicago, IL: American Institute of Steel Construction, 2005. Print. Chapter H,
page1550
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beam can reach and the designer wants to find the depth needed that optimizes the cross

sectional area of the beam column.

dC

dh - 0
AAhp +

-L2
-h2

L3q(cosa x cosp)
EAAtanP(2hcosa + Lcosp x sina)2
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Weight Comparison between Structural Systems
A comparison of weight can be done between Categories 1, 2, 3, and 4. (Category 5 is

not included since it is a strength governed design process and thus not comparable on the

same terms as the rest). This data comes from the design examples produced in the

respective categories; however they are for the following parameters:

H 26.00 ft
n 5
L 20 ft
Total span 100 ft
Live load 100 psf
u max 3.33 in
Q( 20 Kips

The weights are normalized for ease of comparison between the structural systems.

Overall, Category 1 (steel truss) which carries loads axially produces the lightest truss. The

Vierendeel truss which takes loads in bending and is thus less efficient is heavier. In this

specific example is almost twice the weight of the lightest steel truss. The degree of

optimization is noted as "crude", "med" and "fine", and the greater the number of optimized

member areas, the less the truss weighs overall. This is true for both Category 1 and 2.

Normalized Weight vs. Structural Systems
2.50 --------

2.00

1.50 -- -- - - -- ----

1.00-

0.50 - --

0.00
Clcrude Clmed Clfine C2_med C2_fine

Type of Structural System

Figure 52: Normalized weight vs. Categories 1: Steel Braced Truss and Category 2: Steel Vierendeel
Truss
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The same comparison can be done for the concrete structural systems. Overall, they weigh
more than the steel ones. Category 3: Deep Beam has the following chosen parameters:

b 120 in
H opt 44.72 in
L 100 ft
u max 3.33 in
Live load 100 psf
w 0.0833 Kip/in

Category 4: Bending Tube parameters:

b 120 in
H 312.00 in
L 100 ft
u max 3.33 in
Live load 100 psf
w 0.0833 Kip/in

Normalized Weight vs. Concrete Structural
Systems

4A.

1.10

1.00

0.90

0.80

0.70

0.60
C3_beam C4_tube

Type of Structural System

Figure 53: Normalized weight vs. Categories 3: Deep Beam and 4: Bending Tube

Categories 3 and 4 do not have exactly the same constraints, since for the deep beam

the depth optimized hopt is a different height to the one chosen for Category 4 (floor to
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ceiling). Nevertheless, they do provide a good approximation for the weights of the

different systems.

Normalized Weight vs. Structural Systems
16.00 -_- -

14.00

12.00 __-- - - -

L 10.00 ----- -

it 8.00 +- - -- ---

6.00- - - - - - - - --

4.00 -

2.00 -- -

Clcrude Clmed Clfine C2_med C2_fine C3_beam C4_tube
Type of Structural System

Figure 54: Normalized weight vs. Structural systems

For this design example, categories 3 and 4 after optimization turned out to weigh at

least 10 times heavier than the steel trusses. Though this result is not applicable for all

trusses of each structural system, a similar procedure can be done by the designer as a way

to compare the efficiency of the systems.
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Appendix
Category 4: Bending tube

This is a numerical comparison of Itotaivs iflanges to find the percentage difference between

the two approximations.

2
Itotal= 2 12 + t2 2

(h t\3

+4 12
q h_
2 2

t )2

2

2bt 3  bth2

'flanges = 3 2

Choosing the following dimensions which are similar to those in a one story, 30 ft wide
space:

b 360 in
h 120 in
t 6 in
q 3 in

Itotal = 25472880 in4

Iflanges = 25297920 in 4

Percentage difference = 0.7 % which is a small enough error for the approximation of

iflanges to be a good substitute for Itotal.
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