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Abstract

Current safety factors used in structural design do not accurately account for uncertainties in

material properties and required loads. These factors usually lead to overly designed structures

but can also lead to under-designed structures because they are poor estimates of uncertainty. To

correctly quantify the uncertainty in a structure we use reliability-based methods to analyze a 2D

truss.

This study first explores various types of methods used to calculate the reliability of an element

to develop an automated analysis program. After finding the best methods needed for an accurate

calculation of reliability, we define a set of random variables which affect the reliability of a

structure. By developing a computationally automated framework to calculate the reliability of a

2D truss and its bar elements, we can gauge the efficiency and effectiveness of current design

factors used. Additionally, we can also quantify the sensitivity of our analysis to its parameters to

better understand the impact a single random variable can have in the overall calculation of

reliability. Lastly, this reliability analysis framework can be used to conduct the reliability-based

design of a steel bar member and a 2D truss system to optimize their probability of failure for

various failure criteria.
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1. Introduction

1..Motivation

In the field of structural design, various safety factors are used to safely design structural

systems. Methods include LRFD Factors and partial safety factors. Though these methods

account for the probabilistic nature of material and load characteristics to develop safety factors,

these factors are only used in deterministic analyses which don't take into account uncertainty.

To develop a better understanding of the probabilistic nature of structural design we develop a

framework to analyze the reliability of a 2D truss.

1.2.Scope

This thesis aims to computationally apply structural reliability methods on a 2D truss system in

order to show its probability of failure for various cases at a component and system-wide level.

This analysis can then be used to study the efficiency of current safety factors used in the design

of trusses and also to see the sensitivity of the reliability of a truss to uncertainties in its

geometry, material properties, and expected loads. With further development, the analysis can

then be used to conduct a reliability-based design methodology for an element or truss.

13
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2. Definition of Failure

To define the reliability of an element, we must first define failure. However, there are many

definitions of failure because there are many ways to assess failure for an element. Each failure

mode can have its own limit state function or performance based function which will have its

own probability of failure. Overall, the failure of an element is subjective to the limit state to

which it is evaluated against. Next we will talk about the most common types of limit state

functions applicable to structural elements and introduce the mathematical meaning of failure.

2.1.Performance functions

2.1.1. Based on limit states

A performance function based on limit states, in the context of a structural member, can be seen

as the strength or the resistance of the elements evaluated. It is basically an assessment of the

capacity of the element to resist the loads acting on it. Performance functions for an element

typically include the tensile strength when in tension or the buckling capacity when in

compression.

2.1.2. Performance functions based on serviceability limit state

On the other hand, performance functions can be based on a serviceability limit state for a

structure. This type of limit state function is basically dependent on the usage of the structure. As

an example, the deflection of a certain element may not exceed a certain value (usually a

coefficient multiplied by the span length). This a very difficult limit to impose since its

formulation is very subjective to the users of the structures and not necessarily to the health of

the structure.

15



2.2.Probability of Failure

2.2.1. General concept of probability of failure

To mathematically define failure, we first look at a random variable Xi following a probability

density function (PDF) noted as fx (x) as shown in Figure 21.

f (x)
X

F -i

0

Figure 2.1-Probability density function

The mean or expected value of X can be calculated as follows:

Mx = f xfx(x)dx (2.1)

Another important property of the PDF is its variance, which is a measure of the variability of X.

It can be calculated as:

U2 = (x - IIx) 2 fx(x)dx (2.2)

where ax is the standard deviation.

Of interest is also finding the probability when X< x, calculated as:

P(X < x) = F(x) = (2.3)fx(x)dx

Where F(x) is called the cumulative density function (CDF).

16



2.2.2. Concept of Probability of Failure

We can now apply the definition of a random variable to calculate the reliability of a structural

element. Focusing on a single structural element, we define its resistance R, or corresponding

capacity, as a function of random variables:

R (X1,,X2, X3, .. ,Xn)

On the other hand, its stress or solicitation S, is defined as:

S (X1, X2, X3, .- ,Xn)

Now, the limit state function G is formulated as:

G(X 1 , X 2 , X 3 , ... , Xn) = R (X, X2, X3, Xn) - S.(X1, X2, X3, Xn) (2.4)

since both R and S are in terms of random variables and consequently G is also in terms of those

random variables.

We can then define the limit state equation which separates the acceptable region from the

failure region as:

G (X1, X2, X 3, ... , Xn) = 0

And failure is defined as:

G (X1, X2, X3, ... , Xn) < 0

or when

R (X1, X2, X3, ---, Xn) > S (X1, X2, X3, ... , Xn)

Failure can be seen as when the limit state equation is negative; meaning the value of the stress S

is greater than the resistance R of the element. Therefore the probability of failure of the element

can be calculated as:

Pf = P(G < 0) (2.5)

Methods to calculate Pf for various types of limit state functions will be discussed in Section 2.3.

17



2.3.Calculating the probability of failure

We can assume that both the resistance R and stress S follow arbitrary probability distributions

such as the ones discussed in Section 2.2.1. We can define a particular value of the stress S at a

given coordinate xi as:

Si = S(xi)

Therefore, failure occurs when si > R and the probability of failure can be calculated as the sum

of the probabilities when S = Si and R < si and can be noted as:

Pf => P(S = si n R < si) (2.6)

According to Bayes' Theorem

P(S = si n R < s) = P(R < S|S = si) x P(S = si)

Therefore

P = LP(R < SIS = si) x P(S = si)

Or expressed as an integral

Pf = FR(x) x fs(x) dx (2.7)

Equation (2.7) is known as the convolution integral and can only be solved in a closed form for

certain rudimentary cases. Numerical integration methods can be applied to solve the integral for

various types of distributions. Pf can also be seen graphically in Figure 2.2.

18
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f (x)
r, s, x

Figure 2.2-Overlapping resistance and stress distributions

2.4.Reliability Index

In the previous section we showed how to calculate the probability of failure, however, this value

can be better shown by calculating the corresponding reliability index instead. The reliability

index is a better way to quantify the safety of an element and can then be used to calculate the

probability. We will now go through a basic example to show the use of the reliability index.

We first assume that the resistance of an element is just composed of the random variable R,

where

R = N(pR, UR)

Where N(PR, oR) means R is normally distributed with a mean resistance value of pR and

standard deviation 0R.

We then assume the stress S is deterministic and has a constant value of si and no standard

deviation. Therefore the probability of failure for the element can be denoted as:

Pf = P((G = R - si) < 0) = P(R < si) = (DR (Si) (2.8)

19
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Where Dx (x) is the cumulative distribution function (CDF) of the Gaussian Distribution Fx (x)

and can be seen graphically on Figure 2.3 below.

FX(x)

x

0 x

Figure 2.3-CDF of Gaussian Distribution

However, we can re-express the probability of failure of a random variable by transforming the

random variable into the standard space. In the standard space, the random variable will have a

mean of 0 and a standard deviation of 1. To achieve this, we apply the following transformation

on a random variable X which can be seen in Figure 2.4:

1 X -Yx (2.9)
Ux

Where X' = N(0,1)

O x

Xi X x i tx

Figure 2.4-Graphical representation of transformation
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Applying Equation 2.9 for a realization xi of X , we obtain

, Xi - Mx
ax

And define the probability of failure as

Pf = P(X' < X') = (xi - px)

From Figure 2.4 we can see that the distance between the realization and the mean of X can be

expressed as a factor of the standard deviation as such:

I'x - Xi = flux

Or

px - Xi (2.10)

Where fl is the reliability index and fl = -Xi'. Therefore the probability of failure can now be

expressed as:

Pf= O,-f) (2.11)

Applying Equations 2.10 and 2.11 to the element yields

MR -Si

Pf = (Rf (f) = (R,( MR Si

21



In this context, we can see the reliability index fl as the factored distance between the mean

resistance and mean stress. We have to be aware that this is just a very simplified way to

calculate the reliability index and will dramatically vary based on the limit state functions used

and the type of distributions of the random variables used. In the next sections we will cover

methods for evaluating the reliability index for more complicated limit state functions.
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3. Methods of Structural Reliability

3.1.Normally Distributed Margin

In the previous section we calculated the reliability index for a single variable. We will now

calculate the reliability index for an element which has a limit state function composed of two

random variables. We first assume that the resistance of the element is just composed of the

random variable R, where

R = N(MR,R)

On the other hand the stress on the element is also defined as the random variable S, where:

S = N(yts,as)

We can now define the limit function as the safety margin M, where:

M = G = R - S (3.1)

Where

MM = MR - MS

orM 2 SU(R~a

(3.2)

(3.3)

Assuming R and S are mutually independent.

24
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Mt M

Figure 3.1-Limit State Equation Distribution

We can now calculate the index of reliability of the margin as

YM +R (TS

Pf = cP(-fl) (3.5)

Of special interest are the weighting factors ai which represent how much weight the standard

deviation of each random variable has in the value of the probability of failure. These factors will

have a geometric importance in later sections as we discuss the calculation of the reliability

index. For R and S, the factors are as follows

O'R US
aR = 2=(3.6)

Where

a2 + aS = 1

25



We can now use these weighting factors to develop a design condition for the element with the

requirement ft flo, where ,0 can be seen as the safety level. From Equation 3.4, we obtain:

MR M Is fOcM

2 ++US
MR - M R + fosc s

YR -Is flaRUR + fl0aUSS

Reordering by similar terms

MR ~ flOaRR Ms + fto asdos (3.

We can abbreviate this inequality as

r* > s* (3.

Where r* and s* are the design values and are the coordinates of the design point which satisfy

the safety requirement of 80.

7)

8)
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3.2.First Order Second Method (FOSM)

We now look to calculate the reliability index for a linear limit state function composed of n

number of random variables and is expressed below:

G(X 1,X2 , X 3 , ... , Xn)= ao + a1X 1 + a 2 X 2 + a3 X 3 + .+ anX

The reliability index can now be calculated as

o= + E2=j ait
(3.9)

assuming all of the random variables are uncorrelated.

However, this method of calculating the reliability index only works for limit state functions

which are linear which is not always the case. To get around this, we can look to linearize a non-

linear limit state function by

n

G(X 1,X 2 ,X 3 , ...,Xn) = G(x) + Z(X, - xi* ) IG
i=1j

(3.10)

Where x* are the design points at which the Taylor Series is developed around and aG
axj

corresponds to the derivative evaluated at the design point. This approximation can be

graphically seen in Figure 3.2.

27
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5) 100 150

Figure 3.2-Taylor approximation of limit state equation

Once G is linearized, it will have the same form as Equation 3.10 and the reliability index can

then be easily calculated using the mean values of X as design points.

In general, the FOSM method is a robust method for calculating the reliability index and will

give inaccurate results for nonlinear margin functions since higher orders of the Taylor series are

ignored. The major problem with this method is also its reliance on the form of the limit state

function. For example, using the FOSM method yields different reliability indexes if the limit

state function R - E < 0 is expressed as R/E < 1 instead. This problem of invariance in

addressed and fixed in methods discussed in Section 3.3.

3.3. Hasofer-Lind Reliability Index

To solve the problem of invariance, we must first look at the reliability index from a geometrical

standpoint. In Figure 3.3, we represent R and S as a two-dimensional joint probability density

with a volume of 1. We then plot the linear limit state equation G = R - S = 0. We can see that

the equation separates the density into a safe region, where R > S, and an unsafe region, where

R 5 S and failure occurs. Since failure begins at any point on the straight line, the design points

r*and s* is where failure is most likely to occur because that's where the volume of the failure

region is the greatest.

28
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S)
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-- 7 - -7' - S
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Figure 3.3-Bivariate distribution of resistance and stress variables

To account for the invariance problem discussed in the previous section, random variables R and

S are standardized into variables U1 and U2 using Equation 2.9.

R = MR + UlUR (3.11)

S = Ps + U2cs (3.12)

Now, as seen in Figure 3.4, the joint probability function is now centered and axially symmetric.

The reliability index, can now be seen as the magnitude of the vector starting from the origin to

the new design point U* and U* because it is the shortest distance between the origin and limit

state surface yielding the greatest volume of the unsafe region and therefore the greatest

probability of failure.

t = V(U*) T (U*) (3.13)

And the weight factors discussed in Section 3.1, can now be geometrically seen as the directional

cosines of the vector 0 where

ai = cos , = (3.14)

29



And the value of the design point as

Ui = -fl cos %u, = -fai (3.15)

Consequently, the problem of invariance is solved since the calculation of fl is independent of

the way the limit sate function is expressed and only relies on the geometry of the distribution

which is constant.

J.L1

U2

Figure 3.4-Standardized bivariate distribution

However, if the limit state function isn't linear, we must first standardize it and linearize it

around the design points in order to calculate ft. By doing so, we obtain the following formulas:

n! * a G

ft= (3.16)

aG

ai = * (3.17)
n ai IG

i= U

30



Where -| is the partial derivate of the standardized margin function evaluated at the design

point u* .

Additionally, the value of the original design point can be expressed as follows

xi= Yx + u*Uxi (3.18)

Where

u= - aft (3.19)

xi = yx, - aftax. (3.20)

As seen from the equations, calculating the reliability index is an iterative process. To find the

reliability index we follow the algorithm below:

Step 1-Define a limit state function

Step 2-Make an initial guess for the design points u* . Good estimate are the means of the

random variables.

Step 3-Standardize random variables by using Equation

Step 4- Calculate - * as well as the directional cosines a1auj

Step 5- Find u* in terms of ft by using calculated value of a and Equation 3.19

Step 6- Insert u' in terms of ft into the limit state function and solve for ft. Keep in mind

that the limit state function evaluated at u* is equal to zero.

Step 7- Use the new value of ft from the previous step to calculate a new u

Step 8- With the new value of u, calculate Steps 4 to 7 again until ft converges.

Once ft is calculated, we find the probability of failure as such

Pf = 4D(-fl)
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4. Reliability Analysis of a bar element

D

P

T L

Figure 4.1-Steel bar subjected to axial load

Now that we have covered appropriate methods for evaluating structural reliability, we will

apply them to a steel bar element. We first look to define four limit state functions for the bar

element. Go is based on a buckling limit, G1 is based on a yielding force limit, G2 is based on a

yielding stress limit, and G3 is based on a deflection limit.

EI(D)wz w3 ED4

Go(D, P) = Fcrit(D) - P = L2 ~ 64Lz - P = aD - P

G1 (D,P) = Fy(D) - P = Ab(D)ay - P = 4- P = a1 Dz - P

P 4P P
Gz(D, P) = cy- =- uy- D2= uy- a2

L PL L 4PL L P
G(D, P) = max -Ubar ~ = - aG3(YP)=Uax Ubr~p 300 EAb(D) 300 EwTD 2

0 aD

(4.1)

(4.2)

(4.3)

(4.4)

A

P
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Where

7T 3 E
ao = 64L2

a, =

4
a 2 = -

4L
a 3 = -

And

P - Applied Axial Force D - diameter of bar E - Young's Modulus

Ab - cross sectional area of bar L - length of bar ay - steel yielding stress

In the limit state functions, the random variables are the bar's diameter D and the applied axial

load P since, in practice, the length L has negligible variability and can be taken as deterministic.

The variables are normally distributed as follows

P = N(Ip, -p)

D = N(YD, 0D)

Notice that Equations 4.2 and 4.3 are the same limit state equation just expressed differently.

Additionally, the first 3 limit state equations are derived from physical limit states and are

objective to material or geometry properties whereas the last limit state equation is based on

serviceability and is very subjective to the allowable deflection umax .
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4.1.Applying FOSM and Hasofer-Lind

We now use the FOSM method discussed in Section 3.2 for the following parameters

YI= 2 in u= 0.01 in

yp = 100 kips -p = 10 kips

E = 29,000 ksi L = 47 in oy = 36 ksi

These values were calculated to provide adequate resistance R against the solicitation or stress S

of each limit equation. The calculations using the FOSM method are explained in detail in

Appendix 11.1.

Using FOSM, the following reliabilities and probability of failures are

Limit State Equation G(UD, up) aD ap Pf

Buckling 1.76 kips 0.898 -0.441 0.078 46.90%

Yielding-Force 13.10 kips 0.749 -0.662 0.868 19.28%

Yielding-Stress 4.17 ksi 0.707 -0.707 0.926 17.72%

Axial Deflection 0.079 in 0.749 -0.662 10.824 0.00%

Table 4.1-Reliabilities for different limit state equations using FOSM

Where G(UD, Up) represents the current safety margin and is positive, showing that there is no

failure if the variables weren't random. aD and ap are the weight factors showing the sensitivity

of Pf to each value. Notice that a different Pf is calculated for the force and stress yielding

equations even though they represent the same limit state but are just different algebraically. This

invariance shows the robustness of the FOSM method and its high reliance on the way the limit

state equation is expressed.

To get rid of the invariance problem and acquire a better approximation of the reliability index

and Pf we now apply the Hasofer-Lind method.
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Limit State Equation D*(in) P*(kips) aD ap f Pf

Buckling 1.99 100.3473 0.896 -0.445 0.078 46.89%

Yielding-Force 1.94 105.9056 0.738 -0.675 0.876 19.07%

Yielding-Stress 1.94 105.9045 0.738 -0.674 0.876 19.07%

Axial Deflection 1.44 130.889 0.876 -0.482 6.410 0.00%

Table 4.2-Reliabilities for different limit state equations using Hasofer-Lind Method

We can now see the percentage of error as

Limit State Equation IFOSM fH,LIND % error

Buckling 0.078 0.078 0.43%

Yielding-Force 0.868 0.876 0.91%

Yielding-Stress 0.926 0.876 5.78%

Axial Deflection 10.824 6.410 68.86%

Table 4.3-Difference in reliabilities using different calculation methods
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5. Reliability Based Design of a Bar Element

Now that we have calculated the reliability indexes, we can analyze their values for varying

parameters of PD, aD, IP, up, and L. By doing this, we can gauge the sensitivity of the reliability

to various factors which are not always certain. However, we can also apply this analysis to

design the geometry of the steel bar to meet a given reliability index for a given axial load and

limit state. In Section 5.1 and 5.2 we develop design methodologies for the buckling and yielding

limit states. We ignore the deflection limit state since its calculation is very subjective to the

allowable deflection.

5..Buckling Limit State

We can design the steel bar's diameter pD and length L to meet a certain probability of failure for

a given probabilistic load. Assuming the following parameters for the analysis:

U- = 0.10 * MD

pp = 100 kips -p = 10 kips

E = 29,000 ksi u, = 36 ksi

Using the Hasofer-Lind method from Section 4.2 and the MATLAB code from the Appendix

7.2, we generate a 3D-plot, shown in Figure 5.1, of the probability of failure Pf according to the

buckling limit state (Equation 4.1) as a function of the diameter yD and length L.
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Figure 5.1-Buckling Probability of Failure, P=100 kips

The plot in Figure 5.1 resembles a CDF with varying parameters according to the length. From

this plot, we notice that a bar with diameter of 1 in and length of 5 in has a Pf of less than 5%.

However, since a longer length decreases the critical load needed for buckling, we see that a bar

with the same diameter but a length of 25 in has a Pf of more than 90% as expected. Therefore,

for any given probability of failure and load we can find a function outlining the relationship

between D and L as seen in Figures 5.2 and 5.3.
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Figure 5.2-Cross Section Reference of Figure 5.1

Desired bar dimensions for a P=5% and y =100 kips
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Figure 5.3-Desired bar dimensions for a Pf=95% and P=100 kips
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From the cross-section in Figure 5.3, we see that the relationship between D and L can be

approximated as linear relationship with the following equations:

L ~8.30pi (5.2)

L

Therefore, we can use this result to design the geometry of a bar to have a Pf = 5% for

pp = 100 kips. For example, if we want the bar to have a length of 40 in then it will need to

have a diameter of 4.26 in, according to Equation 4.6, to meet the desired Pf.

As you can see, this design methodology is extremely robust and can only be applied for a given

load, probability of failure, and limit state. In Section 4.3 we will develop an easier methodology

for reliability-based design for the bar element.

5.2.Yielding Limit State

Just as in Section 5.1, we derive a similar design methodology but for the yielding limit state

(Equation 4.2) and Iup = 100 kips. Since the bar's yielding is independent of the bar's length,we

can generate a 2D plot to show the Yielding Probability of Failure as seen in Figure 4.5.
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Figure 5.4-Yielding Probability of Failure

We can then fit this relationship with a polynomial to approximate Pf as a function of the

diameter YD as shown in Equation

Pf = -1.0105pD + 8.2041M2 - 2 2 .0 7 6 D + 19.713 (5.3)

Using Equation 5.3, we can design a bar's diameter for a desired yielding probability of failure.

For example, if we want a bar with Pf = 5%, Equation 5.3 yields a diameter YD = 1.9 in with

pp = 100 kips.

5.3.Relationships between Probability of Failures

As seen in Section 4.1, different types of limit state functions yield different probability of

failures for the same probabilistic geometry and loads of a bar. In Table 4.2, we see that the

buckling probability of failure is 46% while the yielding probability of failure is 18% for a

specific rod. This discrepancy is of interest because it shows that the governing failure mode for
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the given bar is currently in buckling. However, in practice, it is favorable for a structural

element to yield before buckling. To understand how different limit state functions behave for

different probabilistic inputs, we plot the limit state equations in the same design space.

First, we express the Yielding Probability of Failure (Figure 5.4), in a 3D design space with pDin

the x-axis and L in the y-axis as seen in Figure 5.5.

Yielding Probability of Failure
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0
50

L

L
40
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20

10 0 . 1.5 2
2.5 3

gD(in)

Figure 5.5-Yielding Probability of Failure

We then superimpose the Yielding Probability of Failure surface shown in Figure 5.5 on the
same graph as the Buckling Probability of Failure shown in Figure 5.1. The result can be
appreciated in Figures 5.6 and 5.7.
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Keeping in mind that Figures 5.6 and 5.7 were generated for pP = 100 kips, we notice that Pf

Yielding is higher or governs above Pf buckling for relatively short lengths (L < 40 in) as

expected. However after L > 43 in we see that Pf buckling begins to govern because of the long

length of the bar.

If we look at the intersections between the two failure surfaces, we can find the boundary where

one failure mode overtakes the over and focus on the relationship the length L and bar diameter

1D have at this boundary. Though the intersection varies between 40 in to 43 in, it can be

approximated as the 2D Yielding Probability of Failure shown in Figure 5.4.

Since this analysis was only done for an axial load with Jp = 100 k, we repeat the boundary

analysis for different values of 4Up ranging from 25 kips to 200 kips and with up = .lOpp.

By doing so, we create the graph shown in Figure 5.8.

Yielding and Buckling Probability of Failure

-- p.=25k,
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40.5 in < L < 43 in

49.7 in < L < 52.5 in

57.6 in < L < 60.8 in

1.5 2 2.5

pi (in)

3 3.5 4 4.5 5

Figure 5.8-Boundaries between Buckling and Yielding limit states
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Since the MATLAB code (Appendix 7) used to calculate Pf , takes about 15 minutes to solve per

given axial load, we only sampled a group of 5 loads.

Yielding and Buckling Probability of Failure
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Figure 5.9-Extruded boundaries between Buckling and Yielding limit states
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6. Introduction to System Reliability

Now that we have developed a clear understanding on how to analyze and evaluate the reliability

of a single element, we will explore evaluating the reliability of a system composed of many

elements. This calculation is of special interest, since the reliability of system is usually

completely different than that of its elements. Sections 6.1 and 6.2 will introduce different

methods used for evaluating the reliability of a system.

6.1.Failure Path

The failure path methodology defines system failure as a sequence of failure of its elements,

where each set of failed elements can be defined as a cut-set event. We can demonstrate this

methodology through a failure tree seen in Figure 6.1. In our tree, So is the state where all of the

elements have yet to fail and the system is fully functional.

If the system is damaged, its state can be shown as Si] , where elements i andj have failed.

Consequently, E is defined as the event where element k fails next if elements i andj have

failed.

In general, each node of the failure tree can be seen as the current state of the system with each

branch being an event. At the first node of the tree, or undamaged state, various failure events

can happen for elements of the system, with each failure event being a branch starting from the

first node. At the end of each new branch there is a node and, if it's not a failure state, then more

branches will emit to new nodes that might lead to a failure state or continue linking to new

nodes. All of the branches move out to new nodes until they all eventually reach failure states

which are called terminal nodes.

In Figure 6.1, we can see that the system has different failure sequences which can be seen as the

paths from the initial node to the terminal nodes. Each of these failure sequences is a cut-set

event, and the failure of the overall system can be defines as occurrence of any of the cut-sets.

This is expressed mathematically in Equation 6.1.
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P(any cut set event n) = n EU 'n2-ni- (6.1)

El

S1
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E E
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E 3s3

Figure 6.1-Failure Tree

6.2.P-unzipping method

The -unzipping method is used to calculate the reliability of a system by using the reliability

indices of each of the elements of the system. Using this method, a system is modeled as a series

system, with the elements of the series system consisting of parallel systems. However, there are

many levels of evaluation in the 1-unzipping method which yield more defined calculations for

the reliability of system. We will cover the first two levels of this method in the following

subsections.
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6.2.3. Level 0

To calculate our system reliability at level 0, we first calculate the reliability indices for all of the

elements in the system. We then assume the system reliability is equal to the reliability of the

element with the lowest reliability index as noted by Equation 6.1.

#f= min /3i (6.2)
i=1,2,...,n

Therefore, the system has a probability of failure equal to the highest probability of failure of one

of its elements. As expected, this calculation is extremely robust and gives a highly conservative

estimation of the system reliability index.

6.2.4. Level 1

At level 1, we assume that the failure of a single element can cause the failure of the whole

system. In Figure 6.2, the whole system is modelled as a series system of n elements.

Figure 6.2-Series System

In this level, it's not required to use all n elements to estimate the system reliability. The system

reliability can still be calculated with sufficient accuracy by including select failure elements.

The elements can be used if they follow within the range [ /min, fimin + Afl],where Aft is an

arbitrarily chosen positive number (the bigger Aft is, the more accurate the result).

Now, to calculate the probability of failure for the series system, we first let X be a vector

containing n random variables which are normally distributed.

X = (X1, X2, ... -, Xn)

Then the probability of failure of our system can be approximated as the following linear

combination,

Pf = P(a1 X1 + a 2 X2 + -- + anXn ; -fl) = D(-f) (6.3)
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Where d = fa, a 2 , ..., aj is a vector containing the corresponding directional cosines discussed

in the Hasofer-Lind method in Section 4. Therefore, our linearized safety margin in the

standardized normal space can be expressed as,

n

GA(X) = A + >LaiXj (6.4)
j=1

Where, i refers to the ith element andj to thejh random input variable.

Now, we can calculate the probability of failure of our series system Pfsystem as

. k k k

Psystem = P ( GI(X) = P (faiX -fl = 1-P ( -ajX <jlj = 1- (Dk(t,h) (6.5)

Where k is the total number of linearized limit states and A, = IN,/2, f-k} is a vector

containing k number of reliability indices. Lastly, P is a vector containing the correlation matrix

pij which is calculated as

pi1 = ccTfa for all i *j (6.6)

Because Equation 6.6 cannot be evaluated directly, we can use upper and lower bounds of the

equation to calculate Pfsystem. The upper and lower bounds are called Ditlevsen Bounds and are

shown in Equation 6.6 below.

n

max (c(-fi)) Pf 1 - P = (p) (6.7)

We use the lower bound for a series system if their elements are either fully correlated, meaning

values of pij are closer to 1, and we use the upper bound if the elements are uncorrelated,

meaning values of pij are closer to 0.
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7. Reliability analysis of a 2D Truss

Now that we have developed a methodology for evaluating the reliability of a system, we look to

apply the -unzipping method to a 2D truss system composed of bar elements analyzed in

Section 4. First we look at the following 2D truss shown in Figure 7.1

(ptp, Tp) - *

8
9

1 1

6 7 7

11

10

2

6

12

3

8

a a
2

5

13

4 5

3

60 in

Figure 7.1-2D Pratt Truss

There is a probabilistic load P applied horizontally on node 6 of the truss, where

pp = 100 kips and up = 10 kips.

The truss' steel bars have similar geometrical and probabilistic properties as those in Section 4,

and have the following values,

Di = N(YD, UD

PD = 2 U D = 0.02 i

L 60.0 in,
184.5 in,

i # 5,8,10,12
i = 5,8,10,12

where i, is the number of the corresponding steel bar member.

Di is the diameter of the steel bar following a normal distribution and has the same values for all

of the steel bars in the truss. Li is the length of the steel bar,
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The axial force at each bar element is noted as

Fi1 = NCF, UFij)

PF, can be calculated for each bar element using the MATLAB code from [2] which uses a

matrix stiffness method and, therefore, relies on Dij to calculate the forces for indeterminate

trusses.

Since our truss behaves linearly we know thatFij C lp and UFij OC up , therefore, using the

basic properties of a normal distribution, we can calculate qFij once we obtain yFijfrom our

MATLAB code as follows;

GF ~~P

By doing so, we generate the local normally-distributed axial forces of the truss which are shown

in Figure 7.2.

6

1 F12=N(75 k,7.5 k)

A

67=N(-50 k,5 k)

F23=N(75 k,7.5 k)

2

7 8

F78=N(-50k,5 k)

34=N(25 k,2.5 k) F34=N(25 k,5 k) 5

4
U

3

Figure 7.2-Local probabilistic axial loads on 2D truss

The MATLAB code used to generate the axial forces also calculates the local displacements and

the deformation profile of the truss as seen in Figure 7.3.
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Figure 7.3-Deformation of 2D truss

Now that we have the local axial forces and their probabilistic properties, we can calculate the

reliability of each member using the Hasofer-Lind Method applied in Section 4 for a yielding

limit state. Our calculated local reliabilities are shown in Table 7.1.
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Member 0 Pf

1 1.72 4.242%

2 1.72 4.242%

3 5.17 0.000%

4 5.17 0.000%

5 4.25 0.001%

6 3.19 0.072%

7 3.19 0.072%

8 4.25 0.001%

9 - -

10 4.25 0.001%

11 - -

12 4.25 0.001%

13 - -

Table 7.1-Reliabillities of 2D truss' bar members

7.1.Analysis at Level 0

Using the methodology in Section 6.2.3 we can find the probability of failure of the truss by

applying Equation 6.2. This yields

ftruss = 1.72

ftruss = - 0 fltruss) = 4.24%

In this case, Pftrussis equal to Pf of members 1 and 2 since they have the highest percentage of

failure out of all the elements. This value of P is a robust estimate and is certainly not

accurate. To get a more reliable answer, we must go into higher levels in the P-unzipping

method.
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7.2.Analysis at Level 1

We use the methodology developed in Section 6.2.4 to find Pftruss at Level 1 of the -unzipping

method. We first set A# = 2 to narrow down the number of elements analyzed, giving us a range

for fl of [1.72, 3.72]. By doing so, our series system is now composed of the following members:

Member 0 Pf

1 1.72 4.242%

2 1.72 4.242%

6 3.19 0.072%

7 3.19 0.072%

Table 7.2-Filtered bar members' reliabilities

We now calculate our correlation matrix p using Equation 6.6 and acquire the following result:

P 0.998
.0.998

1 0.998 1]
1 0.998 1

0.998 1 1
0.998 1 1.

Since it is clear that p shows a high correlation between members, we use the lower bound of the

Ditlevsen Bounds (Equation 6.7), which yields a truss probability of failure of

Pfruss = .max (CD(-fl)) = 4.24%l=1, 2,...,Tn

In this case we obtain the same Pftruss since our members are highly correlated which lead to a

lower bound of Equation 6.5.
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8. Reliability-based design of a 2D Truss

After developing a basic understanding on how to evaluate the reliability of a 2D truss system in

Section 7, we can use this analysis combined with the design methodology of a steel bar

member, developed in Section 5, to design the geometry of 2D truss to meet a certain system

reliability.

First, we begin by listing the current local probabilistic loads for our 2D truss shown in Figure

7.2 alongside the local reliability indices listed in Table 7.1.

Member up (kips) up (kips) P Pf

1 75.0 7.5 1.72 4.242%

2 75.0 7.5 1.72 4.242%

3 25.0 2.5 5.17 0.000%
4 25.0 2.5 5.17 0.000%

5 -35.4 -3.5 4.25 0.001%

6 -50.0 -5.0 3.19 0.072%

7 -50.0 -5.0 3.19 0.072%

8 35.4 3.5 4.25 0.001%

9 0.0 0.0 - -

10 -35.4 -3.5 4.25 0.001%

11 0.0 0.0 - -

12 35.4 3.5 4.25 0.001%

13 0.0 0.0 - -

Table 8.1-Local probabilistic loads for 2D truss

Utilizing Figures 5.8 and 5.9 used to design a steel bar, we aim to design the members of our 2D

truss to have the same probability of failure for a yielding limit state. This is a favorable goal

because it will make Pftuss equal to that of a single bar element for both Levels 0 and 1 of the 1-

unzipping methodology. By changing PD for all members to meet a Pf = 5% using Figures 5.8

and 5.9, we obtain the following values:

57



Member yp (kips) op (kips) YD (in) UD (in) ApD Pf

1 75.0 7.5 1.95 0.20 2.5% 5.0%
2 75.0 7.5 1.95 0.20 2.5% 5.0%
3 25.0 2.5 1.40 0.14 30.0% 5.0%
4 25.0 2.5 1.40 0.14 30.0% 5.0%
5 -35.4 -3.5 1.36 0.14 32.0% 5.0%
6 -50.0 -5.0 1.60 0.16 20.0% 5.0%
7 -50.0 -5.0 1.60 0.16 20.0% 5.0%
8 35.4 3.5 1.36 0.14 32.0% 5.0%
9 0.0 0.0 1.35 0.14 32.5% 5.0%

10 -35.4 -3.5 1.36 0.14 32.0% 5.0%
11 0.0 0.0 1.36 0.14 32.0% 5.0%
12 35.4 3.5 1.40 0.14 30.0% 5.0%
13 0.0 0.0 1.36 0.14 32.0% 5.0%

Table 8.2-Design values for bar members of a 2D truss

58



9. Conclusion

After analyzing the reliability of a bar and a truss, we clearly see the heavy dependence of the

probability of failure on the limit state equation used. Since failure is subjective to the definition

of the limit state, even though the same probabilistic variables and values are used for all

equations, the reliability indexes vary widely depending on the limit imposed. Focusing on the

sensitivity of each reliability index, we also see that each random variable does not contribute

equally to the calculation of failure, with the most significant variable having a higher order in

the respective limit state equation.

Having built a program for reliability analysis, we notice that we can design the geometry of the

elements to match desired levels of reliability for a limit state function. At times, we can also

design the elements to have the same reliability for various limit state functions if there exists

design values for the element.
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11. Appendix

11.1. FOSM Calculations

We define the limit state equations as

EI(D)wz w3 ED4

Go(D, P) = Fcrit(D) - P = L2 (D ~7= 64 3
L2 P 3L

G1 (D, P) = Fy(D) - P =Ab(D)ay - P =

P 4P
G2 (D,P) = ry A1, = - wD2

wDz
4

- P = a0D4 - P

P = a1D2 _ p

P
=ay - a2

G3 (D, P) = Umax - Ubar(P) =
L PL

36- EAb(D)

L 4PL

360 EiD 2
L P

- 6- a

W3E
a0 = 64L2

a, = -

4a2

4L
a3 = Em

We now linearize the limit state functions by using the following formula

G(X 1, X2, X3 , ..., Xn) = G(x*) +

n

1=1G

Now linearized, the functions take the following forms

Go(D, P) = aOpD liP +4aO L(D - PD) (P P)

G1 (D, P) = allD 2 _IP + 2alpD(D - PD) - (P - YP)
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a 2YD) 2 ,(P - fp)
YD

G3(D,P) =
L

360 MD
2a 3 P- (D-PD)

PD
-- a(P -tp)

YD

With means of

Mo = Go(PD, P)= ao D4 - tp

Mi = G1(PD,MP) = ajPD2 _tp

M2 = G2(MD, PP) = Cry - a2 I
MD

Y3 = G3(MD, YP) = - a

And standard deviations of

Co = (4aot 3 D )2 +U2

Cr1 = (2 aipD1 D )2 - Ur2

2

Cr2  2a=ipU
MD

Cr3 = (2a 3

(2
MD /

2 2
PD / Y\D

Now the reliability indexes are as follows

aoPD 4tp

(4aOjti3CD) 2 + Cr2

/3 alltD 2 P

( 2 a1pDUD)2
- Cr2
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I'p- a2 -2ID

J(2a2LL D)2 - 2 ( )2

L - p
36-0 -a3 -2

2=

/33=

( 2a3

LL)2
YD)

2

(PDI
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11.2. Hasofer-Lind Method Application

To apply the Hasofer-Lind method we first standardize the margin functions by applying the following
formula

P = pp + UpP'

D= YD + DD'

The limit functions are now expressed as

Go(D', P') = ao(PD + aDD') 4 - (Mp + apP')

G1 (D', P') = a1(YD + aDD')2 _ (p + UpP')

, , pp + apP'
G2 (D', P') = a, - a. (D + aD,

(YD + orDDI)2

L Itp + apP'G3 (D', P') = a3 (MD + )360 (p GD + uDD')

Taking the partial derivatives

a-= 4 aoaD (4 D + UDD') , = -o-U

aG1 aG1

,= 2aaD(oD + aDD') =-p

aG2 (YD~o-DP' aG2
= 2aY- + UPP' -a UP

DD' (YD + oDD') I pt 2 (D+DD')2

OG3  PP_+_ app' _G3 _ 7p

aDf= 2 a3a = -YDp+P aG3 apDD "(MD + aDD)3 OP =- 3 (MD + DD')2
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11.3. Hasofer-Lind Method for Buckling Limit State MATLAB Code

-thesis

clear all

E=29000; %ksi
sig y= 36; %ksi
L= 47; %lin

A=(pi^3)*E/(64*L^2);

uD=2; 'in INPUT
sdD=.l; %in INPUT

uP=100; skip INPUT
sdP=10; %kip INPUT

%temp variable

u Di=uD;

uPi=uP;

alphaD=O;
alphaP=O;

initial design point
initial design point

<initializing sensitivity
%initializing sensitivity

factor for D
factor for P

n=O; %number of iterations

btemp=O;

k=true;

while k

alphaD:
.5;

(4*A*sdD*(uD+sdD*uDi)^3)/((4*A*sdD*(uD+sd D*uDi)^3)^2+sd P^2)^

alphaP=-sdP/((4*A*sdD*(uD+sdD*uDi)^3)^2+sd_P^2)^.5;

syms b

[b]=vpasolve(((A*(uD+sdD*(-alphaD*b))^4-(uP+sdP*(-alphaP*b))))==O,

bl=double (b);

b i=double(b(l));
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u Di=-alphaD*b i;
uPi=-alphaP*b i;

if abs(btemp-bi)<0.0001

k=false;

end

btemp=b i;
n=n+1;

end

m=(A*(u D+sdD*uDi)^4)-(uP+sdP*uPi)

D_design=u_D+sdD*u Di
P design=uP+sdP*uPi
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11.4. Hasofer-Lind Method for Yielding Limit State MATLAB code

%Hasofer-Lind, Yielding Limit State

clear all

E=29000; 'ksi
sigy= 36; %ksi
L= 47; %in

A=sigy*pi/4; %temp variable

u D=2; %in INPUT

sd D=.l; %in INPUT

uP=100; %kip INPUT

sdP=10; 'kip INPUT

u Di=u D; ,initial design point

uPi=uP; %initial design point

alphaD=O; initializing sensitivity factor for D

alphaP=O; %initializing sensitivity factor for P

n=O; %number of iterations

btemp=Q;

k=true;

while k

alphaD=2*A*(uD+uDi*sdD)*sdD/((2*A*(uD+uDi*sdD)*sdD)^2+sd_P^2)^.5;
alphaP=-sdP/((2*A*(uD+uDi*sd D)*sdD)^2+sdP^2)^.5;

syms b

[b]=vpasolve(A*(u_D-alphaD*b*sdD)^2-(uP-alphaP*b*sdP)==O,b);

b i=double (b(1));

u_Di=-alphaD*b i;
uPi=-alphaP*b i;

if abs(btemp-b-i)<0.001

k=false;
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end

btemp=b i;
n=n+1;

end

syms b
%solve ( (A* (iiD^2-alpha D*sdD*b) ^2- (u P*alpha P*sdP*b) )==O, b);

m=A*(uD+uDi*sdD)^2-(uP+uPi*sdP);

D_design=uD+sdD*u Di
P design=u P+sdP*uPi
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11.5. Hasofer-Lind Method for Deflection Limit State MATLAB code
%Hasofer-Lind, Deflection Limit State

clear all

E=29000; %ksi

sigy= 36; ksi
L= 47; %in

A=4*L/(E*pi); 'temp variable
uomax=L/360;

u D=2; ,in INPUT
sdD=.1; %in INPUT

u P=100; %kip INPUT
sdP=10; %kip INPUT

u Di=u D; %initial design point
u Pi=u P; 'initial design point

alpha D=O; %initializing sensitivity factor for D

alphaP=O; %initializing sensitivity factor for P

n=O; %number of iterations

btemp=O;

k=true;

while k

alpha D=(2*A*sd D*(uP+sdP*uPi)/(uD+sdD*uDi)^3)/((2*A*sdD*(u_P+sdP*u_P
i)/(uD+sdD*uDi)^3)^2+(-A*sdP/(uD+sdD*uDi)^2)^2)^.5;

alphaP=(-
A*sdP/(uD+sd D*u Di)^2)/((2*A*sd D*(uP+sdP*uPi)/(uD+sdD*uDi)^3)^2+(-

A*sdP/(uD+sdD*u Di)^2)^2)^.5;

syms b

[b]=vpasolve((umax-A*(u P+sdP*(-alphaP*b))/(uD+sdD*(-

alphaD*b))^A2)==Q, b);

bl=double (b);

bi=double(b(l));
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u Di=-alphaD*b i;

uPi=-alphaP*b i;

if abs(btemp-bi)<0.0001

k=false;

end

btemp=b i;
n=n+l;

end

m=umax-A*(u_P+sdP*uPi)/(uD+sdD*u Di)^2

D design=uD+sdD*u Di
P design=u P+sdP*u Pi
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11.6. Calculation of Probability of Failure Surfaces using MATLAB

%Calculation for Buckling and Yielding Limit States surfaces

clear all

E=29000; -ksi
sig-y= 36; %ksi

for q=1:1:100

Ll(q)= .35*q; %in47

L=Ll(q);

a 1=sig y*pi/
a_O=(pi^3)*E/

for w=1:1:60

uDl(q,w)=.03*w;

u D=uD1(q,w);

sdD=.1*uD; %in

4; (temp variable
(64*L^2); %temp variable

in INPUT

INPUT

u P=25; %kip INPUT

sdP=2.5; %kip INPUT

u Di=uD; -initial design point
uPi=uP; -initial design point

alphaD=O; %initializing sensitivity factor for D

alphaP=O; %initializing sensitivity factor for P

n=O; %number of iterations

btemp=O;

k=true;
while k

alphaD=2*al*(uD+uDi*sdD)*sdD/((2*al*(uD+uDi*sdD)*sdD)^2+sdP^2)^.5

73



alphaP=-sdP/((2*al*(uD+uDi*sdD)*sdD)^2+sd_P^2)^.5;

syms b

[b]=vpasolve(al*(u D-alphaD*b*sdD)^2-(uP-alphaP*b*sd P)==O,b);

b i=double(b(l));

u Di=-alphaD*b i;
uPi=-alphaP*b-i;

if abs(btemp-bi)<0.001

k=false;

end

btemp=b i;

n=n+l;

end

betaforce(q,w)=bi;

btemp=O;

j=true;

while j

alpha D=(4*aO*sdD*(uD+sd D*uDi)^3)/((4*aO*sdD*(uD+sdD*uDi)A3)^2+sdP
^2)^.5;

alphaP=-sdP/((4*aO*sd D*(uD+sdD*uDi)A3)A2+sdP^2)A.5;

syms b

[b]=vpasolve(((a 0*(u D+sd D*(-alphaD*b))^4-(u P+sd P*(-
alphaP*b))))==O, b);

bl=double (b);

b i=double(b(l));
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uDi=-alphaD*b i;
uPi=-alpha P*b i;

if abs(btemp-b-i)<0.0001

j=false;

end

btemp=bi;

n=n+l;

end

betabuckling(q,w)=bi;

syms b
solve ((A* (u D^2-alphaD*sdD*b)^2-(uP*alphaP*sd P*b))==O,b);

,m(w)=a l*(u D(w)+uDi*sd_D)'2-(u_P+uPi*sd P);

end

end

p f buckling=normcdf (-betabuckling);

surf(u_D1,L1,p_f_buckling,'FaceColor','

'EdgeColor','none', ...
'FaceLighting','phong')

title('Buckling Probability of Failure'

xlabel('Diameter (in)','FontSize',15)

ylabel('Length (in)','FontSize',15)

zlabel('P f','FontSize',15)

interp',...

,'FontSize',15)

hold on

surf (u_Dl,Ll,normcdf(-betaforce),'FaceColor','interp',...
'EdgeColor','none',...
'FaceLighting','phong')

[row,col]=find(p f buckling>.94 & p-f-buckling<.95);

for i=l:length(row)
subpf(i)=p f buckling(row(i),col(i));
sub_L(i)=L1(row(i));

subD(i)=uDl(row(i),col(i));

end
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11.7. Plotting of Probability of Failure Surfaces using MATLAB
colormap summer

pl=surf(u_Dl,L1,p f buckling,'FaceColor','interp',...
'EdgeColor','none'...
'FaceLighting','phong');

alpha (0.8)

title('Probability of Failure', 'FontSize',15)
xlabel('\mu D (in)', 'FontSize',15)
ylabel('L (in)','FontSize',15)
zlabel('Pf','FontSize',15)

hold on
camlight('right')

p_f_force=normcdf(-betaforce);

p2=surf(u_Dl,Ll,normcdf(-betaforce),'FaceColor','interp',...
'EdgeColor','none',...

'FaceLighting','phong');

set(p2,'FaceColor',[0 0 l],'FaceAlpha',l);

title('Yielding Probability of Failure', 'FontSize',15)
xlabel('Diameter (in)','FontSize',15)

% %ylabel ( 'Length (in) ', 'FontSi ze ' ,15)
ylabel('P _f','FontSize',15)
camlight('right')

legend('P f Buckling','P f Yielding')

[row,col]=find(p_f_buckling>.05 & p f_buckling<.06);

for i=l:length(row)
sub pf(i)=p_f buckling(row(i),col(i));
subL(i)=L1(row(i));
sub D(i)=uDl(row(i),col(i));
end

plot(sub_ L,sub D)
title('Yielding Probability of Failure', 'FontSize',15)
ylabel('Diameter (in)','FontSize',15)
xlabel ( 'Length (in) ', 'FontSize', 15)
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clear intx inty p3 int_pf int_L int_D i j k Lmax L_min

for j=l:size(p f buckling,l)
for k=l:size(p_f_buckling,2)

if ((p_f_buckling(j,k)>=p f_force(j,k))&&
(p f buckling(j,k)<(p f_force(j,k)+.01)) && (p_f_buckling(j,k)<.97)&&
(p-f-buckling(j,k)>.1))

intx(n)=j;
inty(n)=k;
n=n+l;

end
end

end

for i=1:length(intx)
int_pf(i)=p_f_buckling(intx(i),inty(i));
int_L(i)=L1(intx(i));
int_D(i)=u_Dl(intx(i),inty(i));
end

L_max=max(intL);
L min=min(intL);

p3=plot3(intD,int L,intpf);
set(p3,'Color', [1 0 0]);

pf 200k=p f force(l,:);
D 200=u_Dl(l,:);
L-max200=L-max;

% L min200=L-min;

figure
plot(D_25,pf_25k,D_50,pf_50k,D_100,pf_100k,D_150,pf_150k,D_200,pf_200k, 'LineW
idth',3)
title('Yielding and Buckling Probability of Failure', 'FontSize',15)
xlabel('\muD (in)','FontSize',15)
ylabel('P f','FontSize',15)
legend(['\muP=25k , ' num2str(Lmin25,3) ' in < L < ' num2str(Lmax25,3) '
in'],...

['\mu P=50k , ' num2str(L min50,3) ' in < L < ' num2str(Lmax50,3)

in'],...
['\muP=100k , ' num2str(LminlOO,3) ' in < L < ' num2str(LmaxlOO,3) '

in'],...
['\mu_P=150k , ' num2str(Lminl5O,3) ' in < L < ' num2str(Lmax150,3) '

in'],...
['\muP=200k , ' num2str(L min200,3) ' in < L < ' num2str(Lmax200,3) '

in'])
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L_bound=[L min25 L max25 L_min50 L_max50 LminiO Lmax10 Lminl5O Lmax150
L_min200 Lmax200];

for i=1:60
L_bound2(:,i)=[25 25 50 50 100 100 150 150 200 200];

end

D bound(1,:)=D_25;D bound(2,:)=D_25;D-bound(3,:)=D_50;D-bound(4,:)=D_50;
D_bound(5,:)=D_100;Dbound(6,:)=D_100;D bound(7,:)=D_150;Dbound(8,:)=D_150;
D_bound(9,:)=D_200;Dbound(10,:)=D_200;

pfbound(1,:)=pf_25k;pfbound(2,:)=pf _25k;pfbound(3,:)=pf_50k;pfbound(4,:)=
pf_50k;
pfbound(5,:)=pf l00k;pfbound(6,:)=pf_100k;pf-bound(7, :)=pf 150k; pfbound(8,
:)=pf_150k;
pfbound(9,:)=pf_200k;pfbound(10,:)=pf_200k;

figure
colormap jet
surf(Dbound,Lbound,pf bound,Lbound2,'FaceColor','interp',...

'EdgeColor', 'none', ...
'FaceLighting','phong')

title('Yielding and Buckling Probability of Failure', 'FontSize',15)
xlabel('\mu D (in)','FontSize',15)
ylabel('L (in)','FontSize',15)
zlabel('P_f','FontSize',15)

camlight('right')

c=colorbar('YTickLabel',{'5 kips', '10 kips','25 kips', '50 kips', '75
kips','100 kips','125 kips', '150 kips','200 kips',})

xlabel(c,'\mu_P','FontSize',15)

figure
plot(subD,subL,'LineWidth',4,'Color',[0 .8 01)
title('Desired bar dimensions for a P f=5% and \muP=100 kips', 'FontSize',15)
xlabel('\muD (in)','FontSize',15)
ylabel('L (in)','FontSize',15)

figure
plot(u_Dl(1,:),p_f_force(1,:),'LineWidth',4,'Color', [0 0 .8])
title('Yielding Probability of Failure','FontSize',15)
xlabel('\muD (in)','FontSize',15)
ylabel('P f','FontSize',15)
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11.8. Supplementary code from MA TLAB Codesfor Finite Element Analysis

MATLAB codes for Finite Element Analysis
problem5.m

antonio ferreira 2008

clear memory

clear all

E; modulus of elasticity

A: area of cross section

L: length of bar
E=70000; A=300; EA=E*A;

generation of coordinates and connectivities

elementNodes=[ 1 2;l 3;2 3;2 4;1 4;4 7;3 4;3 6;4 5;4 6;3 5;5 6;6 7];
nodeCoordinates=[ 0 0;0 3000;3000 0;3000 3000;6000 0;6000 3000;3500 4000];
numberElements=size (elementNodes,1);
numberNodes=size(nodeCoordinates,1);
xx=nodeCoordinates(:,1);

yy=nodeCoordinates(:,2);

for structure:
displacements: displacement vector

force : force vector

stiffness: stiffness matrix

GDof=2*numberNodes;
U=zeros (GDof, 1);
force=zeros(GDof,1);
% applied load at node 2
force (4)=-20000;

force(8)=-80000;
force(12)=-50000;

computation of the system stiffness matrix

[stiffness]=...
formStiffness2Dtruss(GDof,numberElements,
elementNodes,numberNodes,nodeCoordinates,xx,yy,EA);

boundary conditions and solution
prescribedDof=[l 2 10]';

solution

displacements=solution(GDof,prescribedDof,stiffness,force);
us=l:2:2*numberNodes-1;

vs=2:2:2*numberNodes;

k drawing displacements

figure

L=xx(2)-xx(1);
-L=node (2,1)-node (1,1);
XX=displacements (us) ;YY=displacements (vs);
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dispNorm=max(sqrt(XX.^A2+YY.^A2));

scaleFact=2 *dispNorm;
clf
hold on
drawingMesh(nodeCoordinates+scaleFact*[XX YY],...

elementNodes,'L2','k.-');
drawingMesh(nodeCoordinates,elementNodes,'L2','k.--');

output displacements/reactions

outputDisplacementsReactions(displacements,stiffness,...
GDof,prescribedDof)

stresses at elements

stresses2Dtruss(numberElements,elementNodes,...

xx,yy,displacements,E)
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11.9. System reliability calculation of a 2D Truss using MATLAB

clear memory
clear all

% E; modulus of elasticity, ksi
A: area of cross section, in^2
L: length of bar, in

E=29000;

generation of coordinates and connectivities
elementNodes=[ 1 2;1 6;2 3;2 6;3 4;3 6;3 7;3 8; 4 5; 4 8;5 8;6 7;7 8];
nodeCoordinates=[ 0 0;80 0;160 0;240 0;320 0;80 80; 160 80; 240 80];

numberElements=size(elementNodes,1);
numberNodes=size(nodeCoordinates,1);
xx=nodeCoordinates(:,l);
yy=nodeCoordinates(:,2);

for structure:
displacements: displacement vector
force : force vector
stiffness: stiffness matrix

GDof=2*numberNodes;
U=zeros (GDof, 1);
force=zeros(GDof,1);
sdforce=zeros(GDof,1);

applied load at node 2
force(11)=100;

sdforce(11)=10;

4diameters
diameter=zeros(numberElements);
sddiameter=zeros(numberElements);

diameter(:)=1.36; %in
diameter(l)=1.95;
diameter (3) =1.95;
diameter(5)=1.4;
diameter(8)=1.4;
diameter(9)=1.4;
diameter(12)=1.6;
diameter(13)=1.6;

sddiameter(:)=.l*diameter(:); %in

A=(pi/4)*(diameter.^2);

% computation of the system stiffness matrix
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[stiffness]=...
formStiffness2Dtruss2(GDof,numberElements,...
elementNodes,numberNodes,nodeCoordinates,xx,yy,E,A);

boundary conditions and solution

prescribedDof=[l 2 10]';

j=find(force-=0);

coeff=zeros(size(force,1),numberElements);

for n=l:size(force,1)
forcetemp=zeros(size(force));

if (force (n) -=0)
forcetemp(n)=force (n);

solution
displacements=solution(GDof,prescribedDof,stiffness,forcetemp);

% stresses at elements
sigma=stresses2Dtruss(numberElements,elementNodes,...

xx,yy,displacements,E);

coeff(n,:)=(A(round(n/2))/force(n))*sigma;

end
end

drawing displacements

displacements=solution(GDof,prescribedDof,stiffness,force);

stresses at elements
sigma=stresses2Dtruss(numberElements,elementNodes,...

xx,yy,displacements,E);

us=1:2:2*numberNodes-1;
vs=2:2:2*numberNodes;

figure
L=xx(2)-xx(1)
IL=node (2, 1) -node (1, 1)

XX=displacements(us);YY=displacements (vs);
dispNorm=max(sqrt(XX.^2+YY.^2));
scaleFact=200*dispNorm;
clf
hold on
drawingMesh(nodeCoordinates+scaleFact*[XX YY],...

elementNodes, 'L2','k.-');
drawingMesh(nodeCoordinates,elementNodes,'L2','k.--');

output displacements/reactions

82



outputDisplacementsReactions(displacements,stiffness,...
GDof,prescribedDof)

%reliability of each element

%[beta,rowij,m i]=bucklingReliability(numberElements,elementNodes,...

%xx, yyE, sigma, sdforce, coeff, 2, .1)

[beta,rowij,m i]=forceReliability2(numberElements,sigma,...
sdforce, coeff, diameter, sddiameter, 36)

--- Level 0----

levelO=normcdf(-min(beta))

'-,---Level I---

deltaB=l;

k=find(beta>(min(beta)+deltaB));

betal=beta;
betal(k)=[];

rowij2=rowij;

rowij 2 (:,k)=[];
rowij2 (k,:)

temp=reshape (triu(rowij2,+1),1,[]);

temprowl=temp(find(temp-=O));

temp2=reshape(tril(rowij2,-1),, 1[);
temprow2=temp2(find(temp2-=0));

failure=normcdf(-beta)'

if (mean(temprowl)+mean(temprow2))/
2 > .8

levell=max(normcdf(-betal))

else

levell=l-sum(normcdf(betal))

end
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Accompanying function forceReliability.m

function
[bi,rowij,mr i]=forceReliability2(numberElements,stresses,forcesd,coeff,diame
ter,sddiameter,sig_y )

SD=(forcesd.^2)'*(coeff.^2);
A=sigy*pi/4; %temp variable

for e=l:numberElements

u_D=diameter(e);
sdD=sddiameter(e);

u_P=abs(stresses(e))*pi*(u_D^2)/4; 'kip INPUT

sdP= (SD(e))^.5;

%sdTP*uP/uTP kip INPUT

u_Di=uD; %initial design point
u_Pi=u P; %initial design point

alpha D=O; %initializing sensitivity factor for D
alphaP=O; %initializing sensitivity factor for P

n=O; -number of iterations

btemp=O;

b i(e)=O;

k=true;

if (uP==O)
k=false;
b i(e)=50;
end

while k

alphaD=2*A*(u -D+u Di*sd D)*sd D/((2*A*(u D+u Di*sd D)*sdD)^2+sdP^2)^.5
alphaP=-sdP/((2*A*(uD+u Di*sdD)*sdD)A2+sd_P^2)A.5

syms b

[burrl=vpasolve(A*(uD-alphaD*b*sd D)^2-(uP-alphaP*b*sd P)==O,b);

bl=double(burr)
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b i(e)=bl(1);

u_Di=-alphaD*b i(e)
uPi=-alphaP*b-i(e)

if abs(btemp-b i(e))<0.001

k=false;

end

btemp=b_i(e);

n=n+1;

end

alpha(1,e)=alpha D;
alpha(2,e)=alphaP;

m_i (e)=A* (u_D+uDi*sdD) ^2- (uP+uPi*sdP);

end

rowij=alpha'*alpha;
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