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Abstract

The study of dynamic processes that take place on heterogeneous networks is essen-

tial to better understand, forecast, and manage human activities in an increasingly

connected world. In this Thesis, we elucidate the role of the network topology as

well as the nature of the underlying processes in a variety of phenomena rooted on

highly connected network systems. We use real world applications as the motivation

to address three distinct questions.
The first question is: how is the spread of infectious diseases at the global scale

mediated by long-range human travel? We show that network topology, geography,
traffic structure and individual mobility patterns are all essential for accurate predic-

tions of disease spreading. Specifically, we study contagion dynamics through the air

transportation network by means of a stochastic agent-tracking model that accounts

for the spatial distribution of airports, detailed air traffic and the correlated nature of

mobility patterns and waiting-time distributions of individual agents. We formulate

a metric of influential spreading-the geographic spreading centrality-which provides

an accurate measure of the early-time spreading power of individual nodes.

The second question is: what is the effect of human behavioral changes in their

mobility patterns on the dynamics of contagion through transportation networks?

We address this question by developing a model of awareness coupled to disease

spreading through mobility networks, where we implement two kinds of behavioral

changes: selfish and policy-driven. In analogy with the concept of price of anarchy in

transportation networks subject to congestion, we show that maximizing individual

utility leads to a loss of welfare for the social group, measured here by the size of the

outbreak.
The third question is: what are the mechanisms behind the formation of cell

assemblies in neural activity networks? From a neuroscience perspective: How can

one explain functional compartmentalization in a globally-connected brain? Here

we show that simple mechanisms of neural interaction allow for the emergence of

robust cell assemblies through self-organization. We demonstrate the properties of

such neural network processes with a minimal-ingredients model of excitation and

inhibition between neurons that leads to self-organization of neural activity into local

quantized states, even though the underlying network system is globally connected.

Thesis Supervisor: Ruben Juanes
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

We live in the age of an increasingly connected world (Lazer et al., 2009). The Inter-

net, the world wide web, and social media are networks that we navigate and explore

on a daily basis (Albert et al., 1999; Faloutsos et al., 1999). Mobility, ecological, and

epidemiological models rely on networks that consist of entire populations interlinked

by the exchange of individuals (Montoya et al., 2006; Gonzilez et al., 2008; Brock-

mann et al., 2006; Hancock et al., 2009). Life is based on biological networks like

the "connectome" of neural interactions in the brain (Bullmore and Sporns, 2009;

Sporns, 2011) and the network of molecular interactions in the body (Jeong et al.,

2000; Guimera and Amaral, 2005; Barabaisi et al., 2007). Network science, therefore,

is where we can expect answers to many problems and challenges of our modern

world, from controlling traffic flow and flu pandemics to unlocking the mysteries of

the human mind (Barabisi, 2009).

Over the last decade, the study of complex systems has dramatically expanded

across diverse scientific fields, ranging from social sciences and physics to biology and

medicine (Albert and Barabisi, 2002; Barabisi, 2009; Girvan and Newman, 2002;

Eagle et al., 2009). This expansion reflects modern trends and currents that have

changed the way scientific questions are formulated and research is carried out. In

our days science is increasingly concerned with the structure, behavior, and evolution

of complex systems from the micro scale-like cells and brains-to the macro scale such

as ecosystems, societies or the global economy. To understand these systems, we
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require not only knowledge of the elementary system components but also knowledge

of the ways in which these components interact and the emergent properties of they

interactions. The recent evolution in big data availability and computing power makes

it easier than ever before, to record, analyze and model the behavior of complex

systems composed of thousands or millions of interacting element components (Lohr,

2012).

All such complex systems display characteristic diverse and organized patters.

These patterns emerge as a manifestation of collective behavior between the individ-

ual elements, achieved through an intricate web of connectivity. Connectivity comes

in many forms-for example, molecular interactions, metabolic pathways, synaptic

connections, semantic associations, ecological and food webs, social networks, web

hyperlinks, human mobility and transportation, economic exchanges between coun-

tries or citation pattern (Jeong et al., 2000; Spirin and Mirny, 2003; Sporns, 2011;

Steyvers and Tenenbaum, 2005; DallAsta et al., 2006; Montoya et al., 2006; Dune

et al., 2002; Gonzilez et al., 2007; Apicella et al., 2012; Rutherford et al., 2013; Aral

and Walker, 2012; Schweitzer et al., 2009; Wang et al., 2013). In all of these cases,

the quantitative analysis of connectivity and other structural properties requires so-

phisticated mathematical and statistical tools (Albert and Barabisi, 2002).

The study of complex systems began with the effort to identify their structure

and develop models that can reproduce their statistical properties. The first model

was proposed by Erdos and Renyi at the end of the 1950s (Erdos and Renyi, 1960)

and was at the basis of most studies until recently. They assumed that nodes in

complex systems are wired randomly together, a hypothesis that was adopted by

sociology, biology, and computer science at the second half of the 20th century. It

had considerable predictive power, explaining for example why everybody is only

six handshakes from anybody else , a phenomenon observed as early as 1929 and

is well known as 'the six degrees of separation' (Milgram, 1967) . However, this

model failed to explain a common property of social networks where cliques form,

representing circles of friends or acquaintances in which every member knows every

other member (Jin et al., 2001). This latter property is characteristic of ordered
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regular lattices.

In 1998, the interest in networks was however renewed when Watts and Strogatz

extracted stylized facts about the properties of real-world networks. They show that

a large variety of socio-technical and biological networks exhibit the so-called small-

world property of being both highly clustered and having a short path-length and they

proposed a new model of random networks that is a simple interpolation between an

ordered finite-dimensional lattice and a random graph (Watts and Strogatz, 1999).

In the above models, the number of nodes a node is connected with (degree or

connectivity) is similar for all the nodes. In detail, the degree distribution of a random

graph follows a a Bionomial distribution for small system sizes and Poisson distribu-

tion in the large system limit (Newman et al., 2001). One of the most interesting

developments in our understanding of complex networks was the recent discovery

that for most large real-world networks the degree distribution significantly deviates

from a Poisson distribution. In particular, for a large number of networks, including

the World Wide Web (Albert et al., 1999), the Internet (Faloutsos et al., 1999), or

metabolic networks (Jeong et al., 2000), the degree distribution has a power-law tail,

P(k) ~ k-. (1.1)

indicate the lack of scale. Such systems are usually called scale free networks (Barabisi

and Albert, 1999). While some networks display an exponential tail, often the func-

tional form of P(k) still deviates significantly from the Poisson distribution expected

for a random graph.

The origin of the power-law degree distribution observed in networks was first

addressed by Barabaisi and Albert (1999) (Barabasi and Albert, 1999), who argued

that the scale-free nature of real networks is rooted in two generic mechanisms shared

by many real networks: Growth and Preferential Attachment: (i) Growth. Starting

with a small number of nodes, at every time step, a new node with open edges is

introduced in the system . (ii) Preferential Attachment. The probability that the

recently introduced node is connected with an already existing node is proportional
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to the the degree of the latter. Numerical simulations indicate that this network

evolves into a scale-invariant state with the degree of a node following a scale-free

distribution with power law exponent close to 3 (Barabisi and Albert, 1999).

While the initial research interest focus on characterizing the structure of real

complex systems, shortly came the realization that the complexity in structure af-

fects a variety of real-world phenomena. A prototypical example is that of contagion

processes. Epidemiologists, computer scientists and social scientists share a common

interest in studying contagion phenomena and rely on very similar spreading mod-

els for the description of the diffusion of viruses, knowledge and innovations (Lloyd

and May, 2001; Goffman and Newill, 1964). Questions concerning how pathogens

spread in population networks, how blackouts can spread on a nationwide scale, or

how efficiently we can search and retrieve data on large information structures are

generally related to the dynamics of spreading and diffusion processes on underlying

heterogeneous topologies.

Recent work has shed light in our understanding of how dynamical systems be-

have on complex systems. The adoption of ideas through social networks (Toole

et al., 2012; Centola, 2010), the spreading of diseases through structured popula-

tions via human mobility (Balcan and Vespignani, 2011; Belik et al., 2011; Nicolaides

et al., 2012), the diffusion of viruses through computer systems (Pastor-Satorras and

Vespignani, 2001, 2002) and the neuronal activity that leads to perception in human

brain (Belykh et al., 2005; Bullmore and Sporns, 2009; Sporns, 2011) are only a small

number of dynamical models that have been studying extensively on network topolo-

gies. These models offer a number of interesting and sometimes unexpected insights,

whose theoretical understanding represents a new challenge that has considerably

transformed the mathematical and conceptual framework for the study of dynamical

processes in complex systems (Vespignani, 2012).

In this thesis, we present dynamic models on heterogeneous network topologies

in the context of mobility driven epidemic spreading and neuronal activity in human

brain networks. We develop analytical, semi-analytical and numerical solutions to the

models in several limiting cases and we use these solutions to get insights into real
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world processes. We then support our results using data driven simulations. Finally,

we discuss the applicability and the limitations of the models and we draw future

research directions.

1.1 Influential Spreading During Contagion Dy-

namics Through the Air Transportation Net-

work

Public health crises of the past decade - such as the 2003 SARS outbreak, which

spread to almost forty countries and caused about a thousand deaths (Consortium

et al., 2004; Anderson et al., 2004), and the 2009 HIN flu pandemic that killed about

300,000 people worldwide (Fraser et al., 2009; Hancock et al., 2009) - have height-

ened awareness that new viruses or bacteria could spread quickly across the globe,

aided by long range travel through the global transportation network (Guimera and

Amaral, 2005; Colizza et al., 2006). While epidemiologists and scientists who study

complex network systems - such as contagion patterns and information spread in

social networks - are working to create mathematical models that describe the world-

wide spread of disease, to date these models reflect an emphasis on the asymptotic

late-time behavior of contagion processes, typically characterized by infection thresh-

olds and the number of infected cases (Colizza et al., 2007; Meloni et al., 2009; Balcan

and Vespignani, 2011; Belik et al., 2011), but leave open the question of what the

early-time behavior of an outbreak is (Balcan et al., 2009).

In the second chapter of this thesis, we study contagion dynamics through the air

transportation network by means of a stochastic agent-tracking model that accounts

for the spatial distribution of airports, detailed air traffic and the correlated nature of

mobility patterns and waiting-time distributions of individual agents. From the sim-

ulation results and the empirical air-travel data, we formulate a metric of influential

spreading-the geographic spreading centrality-which accounts for spatial organiza-

tion and the hierarchical structure of the network traffic, and provides an accurate
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measure of the early-time spreading power of individual nodes [Fig 1-3]. We finally

study intervention scenario during an outbreak emergency and we discuss potential

policy implications.

Figure 1-1: The map shows flight the U.S. - centric air transportation network.
The size of the airport indicates how influential the airport is to globally spread a
contagious disease shortly after the outbreak starts (Nicolaides et al., 2012). New
York's JFK airport taking the top spot, followed closely by Los Angeles' LAX and
Honolulu airport.
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1.2 The Price of Anarchy in Mobility Driven Con-

tagion Dynamics

In an epidemic or a bioterrorist attack, the response of government officials could

range from a drastic restriction of mobility imposed isolation or total lockdown

of a city to moderate travel restrictions in some areas or simple suggestions that

people remain at home. Deciding to institute any measure would require officials to

weigh the costs and benefits of action, but at present theres little data to guide them

on the question of how disease spreads through transportation networks (Ferguson

et al., 2006; Hollingsworth et al., 2006; Epstein et al., 2007). However, official policy

recommendations by themselves, cannot determine the patterns of human mobility

through transportation networks during epidemics. Instead, individual incentives

catalyze the behavioral changes of individuals.

In the event of a health emergency, the pursuit of maximum social or individual

utility may lead to conflicting objectives in the routing strategies of network users.

Individuals tend to avoid exposure so as to minimize the risk of contagion, whereas

policymakers aim at coordinated behavior that maximizes the social welfare. In

the third chapter of this thesis, we study agent-driven contagion dynamics through

transportation networks, coupled to the adoption of either selfish- or policy-driven

rerouting strategies. In analogy with the concept of price of anarchy in transporta-

tion networks subject to congestion (Youn et al., 2008), we show that maximizing

individual utility leads to a loss of welfare for the social group, measured here by the

total population infected after an epidemic outbreak (Nicolaides et al., 2013). We

test our hypothesis, and discuss its policy implications, through mean-field theories

and Monte Carlo simulations on synthetic and data-driven network models [Fig 1-21.
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Figure 1-2: The price of anarchy during an epidemic spreading scenario through the

US commuting network, calculated two weeks after the outbreak starts from each
county in the eastern contiguous US calculated as the difference of the size of the
outbreak in the presence of selfish and coordinated awareness.

1.3 Self-Organization and Quantized States in Neu-

ral Activity

The functional activity of neurons in human brain is often organized in finite areas

of the cerebral cortex. Recent experiments have shown that distinct concepts and

memories are mapped into a small fraction out of the billions of neurons that form

the medial temporal lobe of a normal brain (Quiroga et al., 2005). However, what are

the mechanisms that allow quantized and localized pattern formation in a globally

connected network are still poorly understood (Bear, 1996; Buzsiki, 2010).

Strong nonlinear feedbacks in dynamical systems out of equilibrium lead to the

emergence of complex spatiotemporal patterns. Reaction-diffusion systems exhibit

a rich variety of self-organized patterns, from stationary dissipative structures and

traveling waves, to rotating spirals and chemical turbulence (Smoller, 1983; Cross

and Hohenberg, 1993; Vanag and Epstein, 2001; Kim et al., 2001; Kondo and Miura,

2010). In network-organized systems, pattern formation often appears in the form
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of synchronization and Turing patterns (Turing, 1952; Nakao and Mikhailov, 2010).

However, the mechanisms that allow for the formation of localized patterns of activity

in globally interconnected systems is still unknown.

In the fourth chapter of this thesis, we propose a minimal ingredients model of

neuron dynamics and synaptic interaction that reproduces both global and local self-

organized patterns of activation observed in the brain's functional activity. We relate

the characteristics of the pattern formation to both the topological properties of

the network and to the nonlinear structure of the underlying process. We finally

discuss the implications of our findings in learning, perception and brain computation

theories (Nicolaides et al., 2014).

Figure 1-3: The sight of a familiar concept triggers a cascade of brain processes that

creates a representation leading to the recognition of the concept through the firing

of a finite number of neurons in the temporal lobe of the brain. The big question

is: what are the mechanisms that can lead to these kind of localized patterns (cell

assemblies) in a globally connected network? In the third chapter of this thesis, we

propose a minimal ingredients model of firing in neuronal networks which is able to

trigger self-organized "quantized" patterns of activity.
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Chapter 2

A metric of influential spreading

during a contagion dynamics

through the air transportation

network

In this chapter, we present a new metric to identify and rank influential spreaders of

infectious diseases in human transportation networks. Our metapopulation model of

contagion dynamics is based on a time-resolved stochastic description of individual

agent mobility through the air transportation system. The model is traffic-driven,

and agents traverse the network following empirical stochastic rules that reflect the

patterns of individual human mobility (Gonzilez et al., 2008; Song et al., 2010). These

rules include exploration and preferential visit (Song et al., 2010), and distributions

of waiting times between successive flights that depend on demography. We show

that the late-time spreading, as measured by the global attack, depends strongly on

traffic and heterogeneity of transition times. We are interested in characterizing, a

priori, the early-time spreading potential of individual nodes, as measured by the

total square displacement of infected agents. We find that existing metrics of influ-

ential spreading-including connectivity (Barabaisi and Albert, 1999), betweenness
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centrality (Guimeri et al., 2005) and k-shell rank (Kitsak et al., 2010; Kempe et al.,

2005)-do not successfully capture the spreading ability of individual nodes, as re-

vealed by Monte Carlo simulations. We show that the origin of this disparity lies on

the role of geography and traffic on the network (Onnela et al., 2011), and we propose

a new metric-the geographic spreading centrality-tailored to early-time spreading

in complex networks with spatial imbedding and heterogeneous traffic structure. The

results are published in PLoS ONE (Nicolaides et al., 2012).

2.1 Motivation

The spreading of infectious diseases is an important example that illustrates the

societal impact of global connectivity in man-made transportation systems (Hufnagel

et al., 2004; Balcan et al., 2009). Outbreaks expose the vulnerability of current

human mobility systems, and challenge our ability to predict the likelihood of a

global pandemic, and to mitigate its consequences (Bajardi et al., 2011).

Network models of epidemic spreading have rationalized our understanding of

how diseases propagate through a mobile interactome like the human population.

"Fermionic" models regard each node as an individual, or a perfectly homogeneous

community. In these models, the epidemic threshold for disease spreading vanishes

in (infinite-size) scale-free networks, owing to the broad degree distribution (Pastor-

Satorras and Vespignani, 2001; Castellano and Pastor-Satorras, 2010). "Bosonic", or

metapopulation, models conceptualize nodes as subpopulations that can be occupied

by a collection of individuals (Colizza et al., 2007; Colizza and Vespignani, 2007).

Metapopulation network models thus recognize that spreading of a disease within

a node is not instantaneous. Here we adopt a metapopulation-network approach,

precisely because of the interacting timescales for traffic-driven transport between

nodes and contagion kinetics within nodes.

It has been shown recently that advection-driven transport, or bias, in complex

networks exerts a fundamental control on agent spreading (Nicolaides et al., 2010),

leading to anomalous growth of the mean square displacement, in contrast with purely
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diffusive processes. The crucial role of traffic-driven transport has also been pointed

out in the context of epidemic spreading (Meloni et al., 2009), where it has been

shown to directly affect epidemic thresholds.

Given that epidemic spreading is mediated by human travel, and that individual

human mobility is far from being random (Brockmann et al., 2006; Gonzalez et al.,

2008; Song et al., 2010), it is natural to ask how the non-Markovian nature of indi-

vidual mobility affects contagion dynamics. A model of recurrent mobility patterns

characterized by a return rate to the individual's origin has recently been incorporated

into an otherwise diffusive random-walk metapopulation network model (Balcan and

Vespignani, 2011; Belik et al., 2011). A mean-field approximation, as well as Monte

Carlo agent-based simulations of the process, reveal a transition separating global

invasion from extinction, and show that this transition is heavily influenced by the

exponent of the network's degree distribution (Balcan and Vespignani, 2011).

The impact of behavioral changes on the invasion threshold and global attack have

recently been analyzed in the context of an SIR infection model (Meloni et al., 2011).

In that study it is shown how individual re-routing strategies, where individuals

modify their travel paths to avoid infected nodes, influence the invasion threshold

and global levels of infection. It is found that selfish individual behavior can have

a detrimental effect on society as a whole by inducing a larger fraction of infected

nodes, suggesting that the concept of price of anarchy in transportation networks

(Youn et al., 2008) operates also during disease spreading at the system level.

Taken together, these previous results reflect an emphasis on the asymptotic late-

time behavior of contagion processes, typically characterized by infection thresholds

and the fraction of infected nodes for both "fermionic" (Meloni et al., 2009; G6mez

et al., 2010) and "bosonic" networks (Colizza et al., 2007; Colizza and Vespignani,

2007; Balcan and Vespignani, 2011; Meloni et al., 2011), but leave open the question

of what the early-time behavior is (Balcan et al., 2009). Here, we address this question

by developing a framework for contagion dynamics on a metapopulation network that

incorporates geographic and traffic information, as well as the time-resolved collective

transport behavior of individual stochastic agents that carry the disease. Resolving
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the temporal dynamics is critical to capture the nontrivial interplay between the

transport and reaction timescales.

2.2 Stochastic model of agent mobility

2.2.1 Air transportation data

We develop a stochastic model of human mobility through a US-centric air trans-

portation network. We use air-travel data provided by the Federal Aviation Admin-

istration (www.faa.gov) that includes all flights from all domestic and international

airlines with at least one origin or destination inside the US (including Alaska and

Hawaii), for the period between January 2007 and July 2010. Note that we do not

have traffic information about flights whose origin and destination is outside the US.

The air transportation network is a space-embedded network with 1833 airports, or

nodes, and approximately 50,000 connections, or directed links (Fig. 2-1a). It is a

highly heterogeneous network with respect to the degree k (or connectivity) of each

node, the population associated with each node, as well as the traffic volume through

the links of the network (Guimeri et al., 2005; Meloni et al., 2009). The traffic

data is organized in two datasets: "Market" and "Segment". The Market dataset

counts trips as origin-to-final-destination, independently of the number of interme-

diate connecting fights. The Segment dataset counts passengers between pairs of

airports, without consideration of the origin and final destination of the whole trip.

For example, a passenger that travels from Boston (BOS) to Anchorage (ANC), with

connecting flight at Seattle (SEA), would be counted only once in the Market dataset

as a passenger from BOS to ANC. In the Segment dataset, however, the passenger

would be counted both in the segment BOS-SEA, and in the segment SEA-ANC.

From these datasets we extract two weighted matrices that characterize the network

traffic: a traffic flux matrix Wf = [w{,] where wf is the yearly passenger traffic from

origin i to destination j; and a traffic transport matrix Wt [<] where w' is the

yearly passenger traffic in the segment from airport i to airport j.
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In addition to the aggregate traffic data, we use information of individual itineraries,

provided by a major US airline for domestic trips (Barnhart et al., 2010). This dataset

extends over a period of four months in 2004 and includes 3.2 million tickets. We

use it to extract the waiting time distribution at final destinations and at connecting

airports (Fig. 2-1b).
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Figure 2-1: Pictorial view of the key elements of our empirical model of
human mobility through the air transportation network. (a) World map
with the location of the 1833 airports in the US database from the Federal Avi-
ation Administration (www.faa.gov). (b) Waiting time distributions at connecting

and destination airports (from (Barnhart et al., 2010)), and at the "home" airport.
(c) Illustration of a 1-year travel history of an individual with "home" at San Fran-

cisco International Airport (SF0). (d) Graphical representation of the probabilities
for exploration and preferential visit of the same individual, after the 1-year "training
period." During exploration the agent visits a new airport while during preferential
visit the agent visits a previously-visited place with probability proportional to the
frequency of previous visits to that location.

2.2.2 Empirical model

We use the data to build an empirical model of human mobility through the air

transportation network. To each airport i, we assign a population P by an empirical

relation (Colizza et al., 2006), P( ~Grp which reflects a correlation between popu-
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lation and yearly total outgoing traffic at that airport, T = Ej wf. Therefore, each

individual agent in the model has a "home airport" (Balcan and Vespignani, 2011;

Meloni et al., 2011).

Individual agents traverse the network following empirical stochastic rules. Ini-

tially, before individuals build up a travel history, each individual positioned at their

"home airport" chooses a destination airport with probability proportional to the

traffic flux (Meloni et al., 2009, 2011), HI ~ w. Since the flux matrix accounts for

trips in which the individual remains under the same flight number, we allow for an

agent choosing some other destination with a small probability, rlik~ min w23.

The agent then establishes an itinerary, or space-time trajectory, to reach the

destination. We make the ansatz that the route chosen minimizes a cost function,

which generally increases with the cumulative time-in-transit and the monetary cost

of the ticket. Given that the trip elapsed time correlates well with the number of

connections and the physical travelled distance, and that ticket price decreases with

route traffic, we use the following empirical cost function associated with origin i and

destination j:
c d6

Cij = k (2.1)
all segments

where dkl is the physical distance of the segment k -- 1 (accounting for the sphericity

of the Earth), and the exponents 6 and E lie on the value ranges 0.1 < 6 < 0.3 and

0.1 < E < 0.5. Which trip route is selected depends on the particular values of 6 and

F. The ranges of values for these two parameters are chosen on the basis of producing

itineraries that closely match those from real itinerary data (Barnhart et al., 2010).

To incorporate in our model the uniqueness of each passenger's needs, we choose

a unique combination of these two exponents for each individual. This reflects the

current endemic heterogeneity in route selection from the wide range of connections,

airline and price choices.

When an agent is off ground, we assume he moves between airports with a con-

stant velocity of 650 km/h. When not flying, an agent can be at one of three distinct

places: at their home node, at a connecting airport, or at a destination. The wait-
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ing times of an individual at each of these locations is clearly very different. We

obtain waiting time distributions for connecting airports and final destinations from

the individual mobility dataset (Barnhart et al., 2010), which indeed reflect a very

different mean waiting time: in the order of a few hours at connecting airports, and

a few days at destinations (Fig. 2-1b). Since the dataset lacks individual travel his-

tory, we cannot extract waiting times at the home airport, and we assume they are

normally distributed (Colizza et al., 2007; Balcan and Vespignani, 2011) with mean

-r ~ Pi / T ~ T 1/2 and standard deviation orT -rFh, which recognizes that the

average person in densely populated areas travels more often. This is based on the

empirical relation between total traffic and population of an area (Colizza et al.,

2006). For simplicity, we truncate the home waiting time distribution from below at

Th = 1 day.

An important aspect of our empirical model is the stochastic pattern of individual

mobility that we implement. Initially, during a "training period" of -1 year, we let

all agents choose destinations according to a traffic-weighted probability, as explained

earlier (Fig. 2-1c). However, it is by now well established that individual mobility

patterns are far from random (Gonzalez et al., 2008) and that their statistics can

be reproduced with two rules, exploration and preferential visit (Song et al., 2010),

which we introduce after the training period, once individuals have built some travel

history (Fig. 2-1d). During exploration, an agent visits a new airport with probability

HE = pS ', where S is the number of airports an agent has visited in the past. We

use y = 0.21 ± 0.02 and p (p > 0) from a Gaussian distribution with mean P = 0.6

and standard deviation up = 0.09, values that fit human mobility patterns from

real mobile phone data (Song et al., 2010). In the absence of comprehensive data

for individual long-range travel history, we make the assumption that the parameters

used to reproduce local human mobility can be applied for long range travel. The new

airport is chosen according to traffic from node i. During preferential visit, the agent

selects a previously-visited airport with complementary probability HR = 1 - HE.

For an agent with home at airport i, the probability Hij of visiting an airport j is

proportional to the frequency fj of previous visits to that location, Hij ~ f3 . Because
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the travel history built by individuals is mediated by traffic, the mobility model with

exploration and preferential visit honors the initial traffic flux matrix.

2.2.3 Monte Carlo simulations of disease spreading

For a single 'mobility' realization, we run our empirical model of human mobility

through the air transportation network with 5 x 105 agents that are initially dis-

tributed in different "home" subpopulations. During an initial period of one year

(training period), the agents are forced to choose destinations according to the traf-

fic flux matrix. During this training period each individual develops a history of

mobility patterns. Collectively, the mobility patterns honor the aggregate traffic

structure from the dataset. During the second year, we incorporate the exploration

and preferential-visit rules to assign destinations to individual agents. We use a time

step of 0.5 hours, which we have confirmed is sufficient to resolve the temporal dy-

namics of the traffic-driven contagion process. For a given 'mobility' realization, we

simulate the 'reaction' process as follows: we apply the SIR compartmental model

at a randomly chosen time during the first half of the second year by infecting 10

individuals. In the study of late-time global attack, those 10 individuals are selected

randomly across the entire network. For the study of early-time spreading, they are

selected from the same subpopulation. For the Monte Carlo study, we average the

results (global attack and TSD) over 20 mobility and 200 reaction realizations.

2.2.4 Reference models

Our empirical model of human mobility through the air transportation network incor-

porates a number of dependencies that reflect the complex spatiotemporal structure

of collective human dynamics. To understand which of these dependencies are essen-

tial, and which affect the modeling results to a lesser degree, we consider four different

models of increasing complexity.

In Model 1, we consider the US air transportation network but retain only infor-

mation about the topology of the network. We model mobility as a simplified diffusion
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process, in which all individuals perform a synchronous random walk, moving from

one node to another, all at the same rate (Colizza and Vespignani, 2007; Colizza

et al., 2007). We choose this rate to be the average rate at which individuals travel

in our empirical model. Under these assumptions, all nodes with the same degree k

have the same behavior. We assign to each node a population corresponding to the

stationary state, predicted by the mean-field theory (Colizza and Vespignani, 2007):

for a node of degree k, Nk Nk/(k), where (k) denotes the mean of the degree

distribution Pk(k), and 1 = ik NkPk(k) is the average nodal population.

In Model 2, we extend Model 1 by incorporating heterogeneity in the transition

rates, as evidenced by the traffic data. To each node i we assign a transition rate

Or ~ T 1 /2, but individuals still select a destination randomly, with probability 1/ki.

In Model 3, we extend Model 2 by enforcing that destination selection by individ-

uals is done according to traffic: the probability of an individual at node i selecting

destination j is proportional to wf

In Model 4, we extend Model 3 by considering a simplified model of recurrent

mobility patterns (Balcan and Vespignani, 2011; Meloni et al., 2011). Each individual

is initially assigned to a "home" node. Individuals perform a random walk through

the network of quenched transition rates and heterogeneous traffic, but return to

their original subpopulation with a single recurrent rate -1 (Balcan and Vespignani,

2011). We select T = 7 days, corresponding to the mean waiting time at destination

airports obtained from actual data (Barnhart et al., 2010).

Several important differences exist between the reference models described above

and our empirical model of human mobility. For instance, the reference models all

discard geographic information. They also all assume that agent displacements are

instantaneous and synchronous, taking place at discrete time integers (e.g. one day),

and neglect the large heterogeneity in waiting times. We will see that resolving

these spatio-temporal processes, while not critical for late-time measures of disease

spreading, is essential in the early-time contagion dynamics.
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2.3 Global attack

To study the dynamics of disease spreading through the air transportation network,

we use the Susceptible-Infected-Recovered (SIR) contagion model. This model di-

vides each subpopulation into a number of healthy (or susceptible, S), infected (I)

and recovered (R) individuals, and it is characterized by a contagion reaction,

S + I - 21, (2.2)

and a recovery reaction,

I14 R, (2.3)

where / and p are the infection and recovery reaction rates, respectively, defined as the

number of newly infected (resp. recovered) individuals per unit time for each initial

infectious individual in a fully-susceptible subpopulation. Let (Si(t), Ii(t), Ri(t)) be

the number of individuals in each class in node i at time t, which satisfy

Si(t)+ Ii(t)+ Ri(t) = Ni (2.4)

at all times. Under the assumption of homogeneous mixing within a city, the proba-

bilities for a susceptible individual to become infected is Hs+1 = 1 - (1 - /At/Ni)',/

and for an infected individual to recover is HIR = pAt, which reflect the dependence

on the time step At. According to these rules, the expected increment in the infected

and recovered populations at time t + At are

Ali = /AtIi(t)Sj(t)/Nj (2.5)

and

AR = pAtIj(t), (2.6)

respectively, assuming that during the reaction step At the subpopulation does not

experience inflow or outflow of individuals. In our model, however, we track the state
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of each individual in the network. The reproductive number RO = 3/P determines

the ratio of newly infected to newly recovered individuals in a homogeneous, well-

mixed and fully-susceptible population. From this observation follows the classic

result on the epidemic threshold in a single population, Ro > 1. Much work has been

devoted to the study of epidemic thresholds in metapopulation networks (Colizza and

Vespignani, 2007; Colizza et al., 2007; Balcan and Vespignani, 2011), which generally

shows that the reproductive number must be greater than 1 for global spreading of

an outbreak.

We apply the SIR contagion model to the four reference models described above

and to our empirical mobility model. We employ the global attack, defined as the

asymptotic (late-time) fraction of the population affected by the outbreak, as our

measure of the incidence of the epidemic. We initialize the disease with a small

number of infected individuals randomly chosen from the whole population. We

obtain representative statistics by performing a Monte Carlo study and averaging

over many realizations.

We find that the global attack is quite sensitive to the degree of fidelity of the

metapopulation mobility model, especially in the range of low reproductive numbers

(Fig. 2-2). Naturally, the global attack increases with Ro for all models. There is

a dramatic difference in the global attack between Models 1 and 2, highlighting the

critical influence of quenched disorder in the transition rates or out of individual sub-

populations. The global attack increases also from Model 2 to Model 3, reflecting the

super-diffusive anomalous nature of spreading when agent displacements are driven

by traffic, as opposed to a diffusive random walk (Nicolaides et al., 2010; Meloni

et al., 2009). In comparison with these two effects-quenched disorder in transition

rates and traffic-driven spreading-recurrent individual mobility patterns (Balcan and

Vespignani, 2011; Meloni et al., 2011) have a relatively mild influence on the global

attack, as evidenced by the differences between Models 3 and 4. We observe that

the additional complexity included in our empirical model-geographic information,

high-fidelity individual mobility, and time-resolved agent displacements-induces a

slight delay in the epidemic threshold with respect to Models 3 and 4, indicating the
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Figure 2-2: Monte Carlo study of the global attack of an epidemic as a

function of the reproductive number R 0 , for the different models explained

in the text. We used a value of the recovery rate p- 1 = 4 days. We initialized the

epidemic with 10 infected individuals chosen randomly across the network. We used a

population of 5 x 105 individuals, and average our results over 200 realizations. (Inset)

The global attack for larger values of Ro exhibits smaller differences among models,

except for those between annealed and quenched transition rates at the nodes, as

evidenced by the simulation results of Model 1 vs. the other models.

nontrivial dependence of contagion dynamics on human mobility.

2.4 Influential spreaders

Finding measures of power and centrality of individuals has been a primary interest of

network science (Freeman, 1979; Bonacich, 1987). The very mechanism of preferential

attachment shapes the growth and topology of real-world networks (Barabisi and

Albert, 1999), indicating that the degree of a node is a natural measure of its influence

on the network dynamics. Another traditional measure of a node's influence is the

betweenness centrality, defined as the number of shortest paths that cross through

this node (Freeman, 1979). Betweenness centrality does not always correlate strongly

with the degree, the air transportation network being precisely an example of poor

correlation between the two (Guimera. et al., 2005). It has been shown, however, that

certain dynamic processes such as SIS or SIR epidemic spreading in complex networks
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appear to be controlled by a subset of nodes that do not necessarily have the highest

degree or the largest betweenness (Kitsak et al., 2010).

Here we revisit what is meant by spreading, and make a crucial distinction between

the asymptotic late-time behavior-which has been studied more extensively-and

the early-time dynamics, for which much less is known. We show that the two behav-

iors are controlled by different mechanisms and, as a result, require different measures

of spreading.

2.4.1 Influential spreaders at late times

We perform numerical simulations of epidemic spreading in our model by initializing

the SIR compartmental model with infectious individuals at one single subpopulation.

We compare the asymptotic, late-time spreading ability of different subpopulations

by means of the global attack of the SIR epidemic (Fig. 2-3a). We study low values

of the reproductive number RO, between 1 and 1.5, because the relative differences

among different sources of infection are largest in this limit. Recent outbreaks of

influenza A are estimated to lie within this range (Fraser et al., 2009). We rank the

40 major airports in the United States in terms of their asymptotic global attack, after

aggregating the ranking over the range of reproductive numbers studied (Fig. 3b). The

ability of a node to spread an epidemic depends on fast dispersal of agents to many

other nodes, thereby increasing the probability of infectious individuals contacting

a large population before they recover. Thus, intuitively, the asymptotic spreading

ability of a node increases with its traffic and connectivity. In fact, we find that both

degree and traffic provide fair rankings of influential late-time spreaders because in the

air transportation network both quantities are strongly correlated (Fig. 2-3b, inset).

2.4.2 Influential spreaders at early times

Late-time measures of spreading, such as the asymptotic global attack, cannot capture

the details of early-time contagion dynamics. The vigor of initial spreading, however,

is likely the crucial aspect in the assessment and implementation of remedial action
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Figure 2-3: Late-time spreading ability of different airports, measured by
the global attack of an SIR epidemic that originates at each airport.
(a) Global attack as a function of reproductive number, for five different airports
(see inset). We initialize the disease by infecting 10 randomly chosen individuals

inside the subpopulation of consideration. We use p-I= 4 days. Each point is the
result of a Monte Carlo study averaging over 200 reaction and 20 mobility realiza-
tions and using 5 x i0a individuals. (b) Ranking of the 40 major airports in US in
terms of their spreading ability measured by the normalized global attack. We com-
pare the normalized global-attack ranking curve (black diamonds) to the ones that
result from considering the airport's normalized degree (magenta squares) and the air-
port's normalized traffic (brown triangles). Also shown is the ranking of the airports
shown in (a). Both degree and traffic provide effective rankings of influential late-
time spreaders, which in this case can be understood from the good cross-correlation
between the two (inset).
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for highly contagious diseases (Bajardi et al., 2011), when the reaction and transport

timescales are comparable.

The natural measure of physical spreading is the total square displacement (TSD)

of the infected agents,
N 1

TSD = (xJ - (x))2 (2.7)
j=1

where N, is the total number of infected individuals at time t, xj is the position

of the infected individual j, and (x) denotes the position of the center of mass of

infected individuals. The TSD increases with time as the infected agents, initially

all in the same node, spread through the air transportation network by traffic and

contact individuals at the connecting and destination nodes.

We compare the TSD for 40 major airports in the US, 10 days after the infection

starts at each of those airports, and a reproductive number Ro = 1.5. The random

walk described by the infected agents is asynchronous (heterogeneous travel times

and waiting times), traffic-driven (quenched disorder in the network fluxes), non-

Markovian (recurrent individual mobility patterns) and non-conservative (appearance

and disappearance of infected agents due to infection and recovery). This complexity

requires that the transport and contagion processes be time-resolved, an essential

feature of our model.

We rank all 40 airports according to their TSD at early times. The curve of ordinal

ranking vs. normalized TSD is markedly concave, indicating that only a handful of

airports are very good spreaders (Fig. 2-4). The list of early-time super-spreaders is

led by J. F. Kennedy (JFK) , Los Angeles International (LAX), Honolulu (HNL), San

Francisco (SFO) , Newark Liberty (EWR), Chicago O'Hare (ORD) and Washington

Dulles (IAD).

We perform a sensitivity analysis with respect to the reproductive number, R0 ,

and the number of days after which the TSD is measured (Fig. 2-5). Clearly, a

higher reproductive number leads to a more aggressive spread of the disease, and

therefore larger values of the total square displacement at the same time. From its

definition, it is also clear that the TSD increases with time, at least until saturation.
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Figure 2-4: Ranking of influential spreaders by the normalized early-time
mean square displacement of infectious individuals. We initialize the disease
by infecting 10 individuals from each specific airport (see inset), and use p- = 4 days.
Each point is the result of a Monte Carlo study averaging over 100 reaction and 20
mobility realizations and using 5 x 105 individuals. (Inset) Graphical representation
of the mean position of infected individuals, 10 days after the outbreak from three
different locations. The circle radius denotes the geographic extension of the infectious
cloud (as measured by the square root of the Mean Square Displacement (Nicolaides
et al., 2010) of infected individuals) while their color represents the number of infected
at the same time (dark colors denote large number of infected).
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Importantly, while the absolute value of TSD depends strongly on the RO and the

time of calculation, the ranking of influential spreaders according to TSD appears to

be rather insensitive to these parameters, at least for times in the order t 5 - 20

days (Fig. 2-5b).
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Figure 2-5: Ranking of influential spreaders by the normalized early-time Total Square
Displacement (a) for different reproductive numbers, 10 days after the disease is

initiated. (b) Ranking of influential spreaders by the normalized early-time Total

Square Displacement at different times from the initiation of the disease. We use

T0 = 1.5 and p-I' 4 days. Each point in the above plots is the result of a Monte

Carlo study averaging over 100 reaction and 20 mobility realizations and using 5 x i05

individuals.

It is instructive to compare the TSD-ranking curve with the rankings provided

by existing metrics of centrality and influential spreading, including the normalized

degree (Barabisi and Albert, 1999) (Fig. 2-6a), traffic (Fig. 2-6b), betweenness cen-

trality (Guimer~i et al., 2005) (Fig. 2-6c) and k-shell centrality (Kitsak et al., 2010)

(Fig. 2-6d). Similar results to those from total traffic are obtained with the eigen-

vector centrality of the weighted mobility matrix (not shown). All of these metrics

deviate significantly from the empirical simulations. For instance, HNL causes large

physical spreading, even though it is the airport with the second lowest number of

connections, and its traffic is only ~20% of that of Atlanta International (ATL).

Equally surprising is that ATL has both the largest degree and the largest traffic, yet

it comes in 8th place, with an early-time spreading power as low as ~~-30% that of the

best spreader (Fig. 2-6 a, b). Betweenness centrality is able to identify the poor spread-
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Figure 2-6: Ranking of influential early-time spreaders by existing metrics.
Shown are the results from the model simulations (black triangles), and
comparison with the ranking provided by existing metrics of centrality
Shown are the results from the model simulations (black triangles), and comparison
with the ranking provided by existing metrics of centrality and late-time influential
spreading. (a) Normalized degree. (b) Normalized traffic. (c) Normalized between-

ness centrality. (d) Normalized k-shell centrality.

ers, but does not provide accurate ranking or spreading power among the good ones

(Fig. 2-6 c). For example, Anchorage International (ANC) has the largest betweenness

centrality, yet it ranks low as an early-time spreader. The k-shell centrality, which

has recently been proposed as an effective metric for identifying influential spreaders

at late-time (Kitsak et al., 2010), gives no information about early-time spreading

(Fig. 2-Gd).

2.4.3 Geographic spreading centrality

It is clear that existing metrics of influential spreading do not properly capture the

early-time spreading behavior. We hypothesize that the main reason for this dispar-

ity is that they do not account for geographic information and the network's traffic
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spatial organization. To test this hypothesis we develop two null networks. As op-

posed to the reference models presented earlier, which were introduced to incorporate

an increasing degree of realism and identify key factors affecting the late-time global

attack, the null networks employ the same empirical model, but modify specific as-

pects of the network to test whether they have an important bearing on early-time

spreading. Null network 1 has the same degree and traffic distributions as the original

air transportation network, but changes the geographical information by randomizing

the identity of the nodes. In null network 2, we eliminate the traffic quenched dis-

order by homogenizing outgoing probabilities across the nodes' links, but preserving

the position of the nodes. We apply the same mobility and epidemic models and we

rank the same airports according to TSD. We find that these rankings are always,

for each realization of the null networks, profoundly dissimilar to that of the orig-

inal network (Fig. 2-7a). This confirms the importance of the geographic location

of airports, which affects spreading directionality, and the importance of traffic het-

erogeneity, which affects the routing dynamics, suggesting that both spatial relations

and traffic structure are critical elements in early-time spreading.

We also performed a comparison between the detailed empirical model and a model

that is identical in all aspects except in that it employs a simpler mobility model. In

the simplified model, all agents behave statistically in the same way, with no travel

history and with a single return rate (equal to the inverse of the mean waiting time

at destinations). The choice of destination from a given origin is random, weighted

by traffic from the origin-destination database. A constant time step At = 1 day

is used, therefore removing the detailed mobility dynamics. We find that, while the

evolution of the TSD does depend on the details of the mobility model, the ranking

of spreading power exhibits little dependence (Fig. 2-7b), suggesting that individual

mobility patterns can be neglected in the construction of a simple metric of influential

spreading.

In the light of these observations, we propose a new metric to characterize the

ability of an airport to spread an infection spatially at early times, the geographic

spreading centrality (GSC). We express the vector of airport spreading centralities
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Figure 2-7: Role of spatial organization, traffic quenched disorder, and mo-
bility patterns, on early-time spreading. (a) Shown is the TSD-ranking for
individual realizations of two null networks testing the influence of (1) geographic
locations of the nodes, and (2) heterogeneity in the traffic of the links. The dissim-
ilarity between those rankings and that from the original network model strongly
suggests that any effective measure of influential early-time spreaders must incorpo-
rate geography and traffic quenched disorder. (b) TSD-ranking for a simplified model
of human mobility. Removing the detailed patterns of mobility affects the evolution
of the predicted TSD (see inset for HNL airport) but does not affect the early-time
spreading ranking significantly.
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CG = {cG,i} as

CG = 2(2.8)
2m 2 22

where Q = [wij] is the normalized traffic flux matrix, with wij = w{f/T, and where

S = {s3 } is the vector of airport spreading strengths (Barrat et al., 2005), defined as

ks T=kJ i (2.9)

The spreading strength is a local measure that accounts for the node's traffic, degree,

and spatial scale of influence. The overall spreading ability of a node, however, must

reflect the spreading strength of its neighbors, its neighbors' neighbors, and so on.

This notion has led to the classical understanding of the centrality of a node as a

generalized eigenvalue problem (Bonacich, 1987), from which our definition of GSC

in Eq. 2.8 follows naturally.

We compare the airport rankings predicted by GSC with those obtained from the

model simulations, and find excellent quantitative agreement (Fig. 2-8), suggesting

that GSC is a reliable a priori metric of influential early-time spreaders.

To quantify the correlation between the ranking provided by the TSD and the

centrality measures, we use the Kendall tau (T) rank coefficient (Kendall, 1938). This

correlation coefficient indicates how rankings from two quantities are qualitatively

correlated and takes a value of -1 if the two rankings are negatively correlated, 0

if the two rankings are independent, and +1 if they are positively correlated. The

correlation coefficient of the rankings by TSD and connectivity (Fig. 2-6a) is equal

to 0.53, by TSD and Traffic (Fig. 2-6b) is equal to 0.57, by TSD and betweenness

centrality (Fig. 2-6) is 0.48 and by TSD and k-shell centrality (Fig. 2-6d) is -0.02.

The ranking by the proposed centrality (GSC) and by TSD (Fig. 2-8) are correlated

with a Kendall tau of 0.87.

It is worth discussing the spreading power of specific airports in the light of the

GSC ranking. Classical measures of centrality, such as total traffic or connectiv-
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Figure 2-8: Ranking of influential spreaders at early times from the geo-
graphic spreading centrality (GSC). The GSC metric predictions are in quan-
titative agreement with the results from the Monte Carlo study on the empirical
model.

ity, would suggest that Atlanta International airport (ATL) would have the largest

spreading ability. This is clearly not the case, as it ranks 8th in terms of spreading

power. The reason is that much of that traffic is of regional nature, within North

America, and that many of the connected airports are not, themselves, strong spread-

ers. The GSC metric allows for a rationalization of the surprising fact that an airport

like Honolulu (HNL) ranks third in early-time spreading, very close to JFK and LAX.

Despite having a relatively low connectivity (Fig. 2-6a) and total traffic (Fig. 2-6b),

HNL combines three important features that catalyze contagion spreading: (1) it is

dominated by long-range travel; (2) it is well connected to other massive hubs, which

are themselves powerful spreaders; and (3) it is geographically located such that East-

West travel is balanced, thereby maximizing TSD growth. Importantly, these aspects

are all captured in the definition of the geographic spreading centrality (Fig. 2-8).
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2.5 Discussion

Characterizing the early-time behavior of epidemic spreading is critical to inform

decisions during public-health emergencies, and to design regulations aimed at mit-

igating global pandemics. Here, we show that subpopulations that act as powerful

spreaders of infectious diseases at early times-identified by the TSD during the first

10 days of the contagion- differ significantly from the central spreaders in terms of

the late-time global attack.

Simulating the infectious dynamics during the initial stages of spreading requires

a modeling framework in which transport and contagion processes are time-resolved.

We develop a stochastic-agent mobility model through the air transportation network

that relies on 3 years of US-centric air travel data and four months of individual

travel itineraries. We use this database to build empirical distributions of waiting

times at connecting airports and final destinations, and train the model to reproduce

the recurrent mobility patterns of individuals. Our analysis demonstrates that the

detailed spatiotemporal signatures of individual mobility patterns collectively impact

epidemic spreading, especially in the range of low reproductive numbers.

Existing metrics of influential spreaders in networks were not designed to char-

acterize the early-time spreading behavior. Here we propose a new metric, the ge-

ographic spreading centrality, which accounts for the local strength in terms of the

node's traffic, degree and spatial scale of influence, as well as its global role within the

network by incorporating the strength of its neighbors. This metric is able to success-

fully rank influential spreaders at early times, as evidenced by the agreement between

the metric's prediction and detailed Monte Carlo simulations. The geographic spread-

ing centrality opens the door to the quantitative understanding of spreading dynamics

on other networks embedded in space, in which topology alone is insufficient to fully

characterize the system (Barthelemy, 2011).

In the next Chapter, we incorporate behavioral changes in an effort to close the

feedback loop of epidemic spreading and human mobility. We introduce changes in

mobility behavior due to awareness of the epidemic, that we model as an additional
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contagion process in the system. We predict the behavior of the disease spreading

through a mean field approximation on a heterogeneous network topology and we

explore the behavior of our model in the data driven scenario of disease spreading

through the US commuting network. Our results open new doors to better understand

public policy actions during emergencies and could serve as a good indicator to future

health authorities policy.
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Chapter 3

The price of anarchy in

mobility-driven contagion

dynamics

In this chapter, we study agent-driven contagion dynamics through transportation

networks, coupled to the adoption of either selfish or policy-driven rerouting strate-

gies. In analogy with the concept of price of anarchy in transportation networks

subject to congestion, we show that maximizing individual utility leads to a loss of

welfare for the social group, measured here by the total population infected after an

epidemic outbreak. The results are published in the Journal of the Royal Society

Interface (Nicolaides et al., 2013).

3.1 Motivation

Users of transportation networks adapt their routing strategies in response to pub-

lic health emergencies. Changes in the patterns of individual mobility (Brockmann

et al., 2006; Gonzilez et al., 2008; Schneider et al., 2013) are elicited by awareness

of the presence of the disease in nearby areas, or imposed by the decisions of pol-

icymakers. In an abstract sense, rational travelers adjust their paths to maximize

an individual utility function, which depends on travel time and perceived exposure
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to contagion risk. In contrast, policymakers attempt to enforce coordinated routing

strategies that maximize the social welfare. Policy-driven routing, which is part of the

so-called non-pharmaceutical interventions, may significantly reduce the frequency of

infectious contacts, containing the transmission of diseases such as influenza (Hatch-

ett et al., 2007). Among other factors, the societal utility function includes measures

of the total number of affected individuals, the spatial footprint of the infection, the

costs of profilaxis, vaccination and treatment, and the public perception of risk and

comfort. The spread of the disease, and the adoption of self-initiated or coordinated

rerouting strategies, are strongly coupled. Intuitively, the patterns of balcanvespig-

nanil1 through commuting networks modify the dynamics of the contagion process

(Belik et al., 2011). Conversely, the dynamics of the disease affect the public percep-

tion of the emergency, and determine both the difficulties of implementing the policy

and the individual incentives to reduce the risk of being exposed to the disease.

Research on the efficiency of transportation networks subject to congestion demon-

strates that routing strategies aimed at maximizing individual utility often lead to a

loss of welfare for the social group as a whole (Roughgarden, 2005; Youn et al., 2008;

Roughgarden, 2003). Humans tend to follow shortest-path routes that formally mini-

mize their travel times, but these selfish strategies may not yield the social optimum,

in the sense that the average travel time increases (Pigou's example (Roughgarden,

2005)). Selfish routing also leads to the counterintuitive effect that network improve-

ments may degrade network performance (Braess' paradox (Roughgarden, 2005)).

These and other paradoxical scenarios raise a social dilemma between the pursuit

of maximum individual utility and the search for social welfare. Within the frame-

work of game theory, the best options for individual users yield a Nash equilibrium,

not necessarily a social optimum (Nash, 1950; Koutsoupias and Papadimitriou, 1999;

Youn et al., 2008). The ratio of the total cost of the Nash equilibrium to the total

cost of the social optimum is commonly referred to as the the price of anarchy (Kout-

soupias and Papadimitriou, 1999; Papadimitriou and Valiant, 2010), indicating the

inefficiency of decentralization (Roughgarden, 2005; Youn et al., 2008), and the loss

of social welfare due to the selfish behavior of agents in the system.
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Here we extend the concept of price of anarchy to mobility-driven contagion dy-

namics. We study the influence of rerouting, elicited by individual awareness or

imposed by public policy, on the dynamics of contagion through transportation net-

works. We assume that, when individuals are aware of the outbreak and allowed

to choose their route from origin to destination, they tend to avoid traversing areas

where the disease has been detected. Policymakers, in contrast, strive to enforce coor-

dinated mobility patterns where individuals are segregated according to their health

state, thus minimizing the number of infectious contacts. We measure social welfare

through the density of infected populations, and define the price of anarchy as the

loss of welfare due to selfish rerouting, compared to the policy-driven coordination.

The spread of individual awareness, and the adoption of policy, emerge as central

drivers of behavioral change. The role of awareness, understood as knowledge that

individuals are willing to act upon (Funk et al., 2010), has been previously studied in

the context of network science, both as a mechanism that reduces susceptibility, and

therefore infection rates (Bauch and Earn, 2004; Epstein et al., 2008; Funk et al., 2009,

2010; Perra et al., 2011), and as the trigger of self-initiated behavioral changes (Meloni

et al., 2011). Meloni et al. (Meloni et al., 2011) analyzed the impact of selfish rerouting

on mobility-driven epidemic spreading. In their model, individuals, with a certain

probability, avoid traversing infected areas rather than following the shortest path

to their destination. Their numerical simulations suggest that individual behavioral

changes aimed at slowing down and containing the epidemic may give rise to the

opposite effect. In particular, they show simulations where the invasion threshold

does not seem to change in spite of rerouting, and the size of the outbreak depends

non-monotonically on the traffic through the system; for low traffic, rerouting has a

positive effect on the global outbreak, while for high traffic it increases the number

of affected nodes.

An open problem is whether the propagation of awareness or policy adoption may

enhance or mitigate the impact of an epidemic, in the context of mobility-driven con-

tagion, and considering different rerouting strategies. At the origin of our study is the

hypothesis that state-dependent routing behavior, elicited by propagating awareness,
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exerts a powerful feedback on the contagion process, potentially impacting the inva-

sion threshold and controlling the density of infected populations at long times. The

policy question we want to address is whether the authorities should act to strictly

enforce coordinated mobility strategies in the event of an outbreak, or individuals

may be allowed to reroute freely without significant losses in social welfare. We test

our hypothesis, and discuss its policy implications, through mean-field theories and

Monte-Carlo simulations on synthetic and data-driven network models.

3.2 Infection Models

We assume that disease spreading and the propagation of behavioral changes share

a common substrate-a commuting or mobility network- which we model as a het-

erogeneous, uncorrelated network (Albert and Barabisi, 2002; Barabaisi, 2009). The

nodes of the network represent populated areas, and the links indicate mobility be-

tween populations. The spread of the infection is driven by the mobility of individuals

along the links connecting nodes. Individuals travel from an origin node towards a

destination node, choosing their path according to a certain routing strategy (Fig. 3-

1).

The mathematical epidemiology usually lies on the most simplistic compartmen-

tal models of SIR (Susceptible-Infected-Recovered) and SIS (Susceptible-Infected-

Susceptible). The SIR model framework is appropriate for infectious diseases that

confer lifelong immunity, such as measles or whooping cough (Anderson et al., 1992;

Rohani et al., 2000), influenza-like illness or the severe acute respiratory syndrome (Fraser

et al., 2009; Balcan et al., 2009; Colizza et al., 2007). The SIS model is predominantly

used for sexually transmitted diseases (STDs), such as chlamydia or gonorrhoea,

where repeat infections are common (Garnett and Anderson, 1996) as well as for

rotaviruses and many bacterial diseases (Parashar et al., 2003).

Here, we are interested in the mechanisms that allow for the spread of the disease,

irrespective of the long-term dynamics; that is, whether it will reach an equilibrium

endemic state (SIS) or die out after an acute infection peak (SIR). We want to study
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Figure 3-1: Pictorial illustration of the network model. (a) The three routing
strategies studied in the model. An individual who is not aware of the disease trav-
els to the destination through the shortest path (black). An aware individual that
follows the coordinated routing and is located at an infected node is banned from
visiting healthy nodes, and follows an "infected path" (yellow). An aware individ-
ual that adopts a selfish routing travels to its final destination following a "healthy
path" (blue). (b) The two contagion processes in the network -disease spreading and
adoption of rerouting behavior. The disease propagates via individual exchanges be-
tween the nodes (curved red arrows), while awareness is adopted by non-aware nodes
through topological diffusion (black arrows).

the conditions by which the disease spreads through the network. In that sense,

we are only interested in the early-time onset dynamics. From the perspective of the

early time behavior, the time and spatial scales of the SIS and SIR models are similar.

We are interested in the mechanisms that allow for the spread of the disease in

the first place, rather than on the long-term equilibrium. In particular, we emphasize

how the spreading process is influenced-enhanced or abated-by mobility and be-

havioral factors. From a long-term, or equilibrium, perspective, some diseases reach

an equilibrium endemic state within the population, while other infectious processes

die out after an acute infection peak. The former are better modeled by the SIS

model, whereas the latter are better described by the SIR. If one adopts the goal of

understanding the early process of disease spreading, either to reach an endemic state

or to decay, we believe that it is less important to assume a specific late-time fate of

the disease. Hence, we choose to work the minimalistic SIS model which allows for a

more detailed analytical study of the epidemic thresholds, but we also show that our

conclusions are relevant for diseases better described by the SIR model.
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3.2.1 Classical metapopulation models

The traditional approach to model disease spreading coupled to human mobility relies

on metapopulation-or bosonic-models (Colizza et al., 2007; Colizza and Vespignani,

2007; Meloni et al., 2011; Vespignani, 2012; Nicolaides et al., 2012). In metapopula-

tion networks, each node has an associated subpopulation of individuals. Infections,

modeled as reaction processes, take place as a result of the interaction between in-

dividuals inside the subpopulations. For simplicity, it is customary to neglect the

influence of internal heterogeneities, assuming full mixing, that is, that all individu-

als can become in contact with all other individuals. The infection spreads through

the network driven by the mobility of individuals, which travel to other subpopula-

tions in the network. In metapopulation networks, the modeler can incorporate a

high level of detail in the specification of both the patterns of individual mobility,

and the type of infection/reaction process. It is also possible to include behavioral

changes elicited by feedbacks (Meloni et al., 2011). The main disadvantage of these

sophisticated models is that, when they are coupled to other processes that share the

same substrate, such as the spread of awareness about the disease, it is very difficult

to develop analytical results to quantify and rationalize the results observed through

numerical simulation.

We use a conceptual model of traffic-driven epidemics, originally proposed by

Meloni et al. (Meloni et al., 2009). As we show later, the model captures the relevant

features of mobility-driven disease spreading, coupled to awareness and behavioral

changes, in the sense that the results are statistically equivalent to those obtained with

a detailed metapopulation model. The advantage is that the simplicity of our model

allows us to derive analytical predictions, with reinforce and justify the conclusions

derived from simulation.

3.2.2 A conceptual, simplified model

In our model, the nodes can be in the different compartments of the infection model,

and the infection spreads from node to node in the system through the exchange
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of individuals. The model is fermionic, in the sense that the state of the node is an

aggregate variable representing the state of its population. The mobility of individuals

aims at representing the traffic heterogeneity in the system, but individuals do not

have a particular state. Instead, they adopt the compartmental state of the nodes they

traverse. While this description is not aimed at reproducing the detailed dynamics

of human travel and recovery from infection, it is designed to capture the statistical

signature of the coupled mobility-infection system. Furthermore, it allows us to make

progress in the analytical description of the awareness-infection dynamics through

the heterogeneous mean field theory.

The compartmental dynamics of the contagion process is given by the susceptible-

infected-susceptible (SIS) model, where nodes in the network, at any given time, may

be either infected or susceptible to the infection. A susceptible node becomes infected

with rate 0--the infection rate-when it receives an individual from an infected node.

Thus, the larger the number of individuals a healthy node receives from infected nodes,

the higher the probability for that node to become infected. An infected node recovers

from the infection, becoming susceptible again, with rate p-the recovery rate. We

assume that individuals adopt the health state of the nodes they visit, regardless of

their state at the origin or previous legs of their trip. The total number of individuals

in the system is AN, where N is the total number of nodes in the network and A

parametrizes the intensity of traffic through the system (Meloni et al., 2009) (see

Methods). The SIS model leads to a stationary endemic state in the limit of long

times and system size (Castellano and Pastor-Satorras, 2012); we use the density of

infected nodes at steady state as a measure of the intensity of the outbreak.

The role of network topology on epidemic spreading has attracted much atten-

tion (Pastor-Satorras and Vespignani, 2001; Colizza and Vespignani, 2007; Meloni

et al., 2009; Vespignani, 2012). Various studies have demonstrated the impact of con-

nectivity, through the statistics of the nodal degree-number of links of a node, k-

and various measures of betweenness and centrality (Freeman, 1977; Barrat et al.,

2004; Kitsak et al., 2010; Castellano and Pastor-Satorras, 2012; Nicolaides et al.,

2012). We jointly quantify the impact of network topology and routing strate-
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gies on the structure of traffic using the concept of algorithmic betweenness of a

node i, big, which is the fraction of individual trajectories that traverse that node,

big = Baig/ Ej B g, where B'ig is the number of individuals node i receives (Meloni

et al., 2009; Balcan and Vespignani, 2011; Meloni et al., 2011). This quantity is to

be understood as a time average.

3.3 Behavioral changes: awareness, rerouting, and

policy

In addition to health state, we assign a state of awareness to each node. Aware-

ness spreads through the network as a simple diffusive process (Pastor-Satorras and

Vespignani, 2001) and, similar to the infection process, individuals adopt the aware-

ness state of the nodes they traverse. Commuters leaving a non-aware node follow

the shortest path between their origin and destination nodes, thus minimizing the

number of steps along their path. Commuters leaving aware nodes change their rout-

ing strategy; we consider a self-initiated routing behavior, and a policy-driven, or

coordinated, strategy. In the selfish rerouting strategy, aware individuals favor routes

that avoid infected nodes, irrespective of their own state. In the policy-driven strat-

egy, individuals coordinate their mobility patterns to minimize the global impact of

the outbreak. A natural strategy to reach the social optimum is the segregation

of travelers according to their health state. Thus, healthy individuals follow routes

along which they have minimal exposure to the disease, while infected individuals are

banned from visiting healthy nodes.

It is important to emphasize the limits of policy-driven strategies. Because there

are costs associated to implementing the policy, it may not be feasible to enforce it,

in spite of its potential benefits. Those costs are both material, due to the resources

that need to be deployed for the policy to be successful, and in the form of loss

of freedom for the individuals. We assume a canonical, perhaps unrealistic policy,

where the coordinated action is a nearly-optimal strategy. The role of this idealized
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coordinated action is to use is as a reference to define the price of anarchy, even if

this strategy may be too costly in practice.

We implement the different routing strategies through a cost-function approach.

At a given time, individuals move from the node they are located at to a neighbor

node, in such a way that a certain cost function is minimized. In the selfish case, we

adopt the cost function proposed in (Meloni et al., 2011),

C3 = -Xj + h63, (3.1)

where Xj is either -1 if node j is infected, or +1 if it is susceptible. The term h5

is introduced to enforce the choice of shortest-path routes when two destinations are

possible according to health state. Hence, h < 1 is a small positive number, and 6j

is equal to -1 if j is one step closer to the destination, 0 if the node j is at the

same distance to the destination as node i is, and +1 otherwise. In the coordinated

strategy, we propose the following cost function:

{ X 3 + h63  if i is Infected

-Xj + h6j if i is Susceptible

In the case of an SIR type of infection, in both strategies, individuals located at

recovered nodes move through the shortest path to their destination.

In our model, rerouting is a stochastic process: we define the degree of awareness

of an aware node i, w(t), as the probability that an individual inside that node

abandons the shortest path and adopts either the selfish or coordinated strategies.

3.4 Mean-field Theory

In the heterogeneous mean-field (HMF) approach (Pastor-Satorras and Vespignani,

2001; Meloni et al., 2009; Balcan and Vespignani, 2011; Vespignani, 2012), nodes with

the same number of links-or degree k- are deemed statistically identical. Hence,

we may replace nodal variables by degree-aggregates, and seek balance laws for the
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evolution of the density of nodes of a given degree that are, e.g. infected or aware.

This modeling framework has been successfully applied to describe a wide variety of

dynamical processes in complex networks, from epidemic spreading (Pastor-Satorras

and Vespignani, 2001) and activator-inhibitor systems (Nakao and Mikhailov, 2010),

to coupled oscillators (Arenas et al., 2008) and voter models (Baronchelli et al., 2011).

Assuming that there are no topological or dynamic correlations in our system, the

HMF approach offers a clear framework to derive analytical expressions for the epi-

demic threshold in network models of contagion (Pastor-Satorras and Vespignani,

2001; Meloni et al., 2009; Vespignani, 2012; Castellano and Pastor-Satorras, 2012).

Consider the evolution of the relative density of infected nodes, Pk(t), as well as

the relative density of aware nodes, paw(t), with degree k. The mean-field evolution

equations for the two spreading processes are:

ONk(t) - -Pk(t) + #ANbiIg (1 - pk(t)) Mt), (3.2)ata

apaw (tat - " - paw (t) + O3w k (1 - paw(t)) '1 (t). (3.3)

The first terms on the right hand side represent recovery from infection and loss of

awareness, respectively, while the second terms model activation. The activation term

of the infection process reflects the probability that a node of degree k belongs to the

healthy class, (1 - Pk), and is infected with rate / when it receives an individual from

an infected node, hence the factor !3ANb21g. The probability that an individual travels

through a link that points to an infected node, 1, has contributions from the aware

individuals, as well as from the non-aware ones. The activation term for the awareness

process quantifies the probability that non-aware nodes, (1 - paw), become aware via

a neighbor node. The probability of this event is proportional to the adoption rate

SaW , the number of neighbors, k, and the probability that a given link points to an

infected node, T. The structure of the probabilities P and IF is key for the dynamics of

the coupled system (3.2)-(3.3), and determines the critical parameter values beyond

which an outbreak propagates through the network: the invasion thresholds. The

above mean field representation assumes that the time scales of the epidemic process,
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the mobility of individuals, and the spread of awareness, are the same. More precisely,

we assume that the characteristic time scale for all these processes is one day.

3.4.1 Invasion thresholds

We assume that the awareness process (Eq. 3.3) is independent from the infection

process, so the classical results for diffusive processes in networks apply (Pastor-

Satorras and Vespignani, 2001). For an uncorrelated network, T takes the form

W 2 k'P(k')p"w) / (k), (3.4)
k'

and the invasion threshold is simply (Pastor-Satorras and Vespignani, 2001):

Caw = (k)/(k 2 ), (3.5)

where (-) denotes averaging over all the nodes in the network. When the adoption

rate, 3 aw, is larger than this critical value, the spreading of awareness causes an

endemic state in the system, with a nonzero fraction of aware nodes at steady state.

Topological heterogeneities reduce the critical value of the awareness activation rate;

in particular, it has been shown that the threshold vanishes for infinite size, scale-free

networks with degree exponent 2 < -y < 3 (Pastor-Satorras and Vespignani, 2002;

Castellano and Pastor-Satorras, 2012).

One of the central contributions of this study is the derivation of the invasion

threshold for the infection process, which is subject to strong feedback from the

spread of awareness. In the case of selfish rerouting, the probability D can be written

as

1~ S P(k')b kgPk' (1 - p"aw) + (1 - w)p" +w . (3.6)
(baig) L 1 - Ik'I

The first term inside the brackets models the influence of individuals that travel

from the non-aware nodes, while the second models the non-rerouting individuals

that travel from aware nodes, and the third one the rerouting individuals. Imposing
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stationarity in Eq. (3.2), we arrive at the epidemic threshold condition,

13 > Ou = (baig) i, (3.7)
/3>/null - (bi) N 37(blg) AN'

Remarkably, the critical infection rate does not depend on the dynamics of the adop-

tion process; more precisely, the threshold is independent from the degree of aware-

ness, W, and from the density of aware nodes in the system, pa".

Coordinated rerouting changes the structure of P. Our numerical simulations

suggest that, in the policy-driven case, the contribution from the aware individuals

is much smaller than that from non-aware ones. Intuitively, infected individuals that

adopt the policy travel along paths of infected nodes, vastly reducing the frequency

of infectious contacts. Hence, considering only the contribution of the non-aware

individuals, the probability 1 reads

(baig) D P(k')b gPk [(1 - p"') + (1 - w)p"7 ]. (3.8)

This form of D, leads to the invasion threshold

> - I(3.9)
(baig) - W(baig)w AN'(

where (blig) = FP(k')(b w)2py' denotes the second moment of the algorithmic

betweenness over the aware nodes in the system.

The above thresholds reveal a fundamental difference between the selfish and

policy-driven routing strategies: with coordinated routing, awareness plays a central

role in the onset of the outbreak, while self-initiated changes do not alter the threshold.

The rich phase diagram of conceptual outcomes for the system yields further intuition

of the relevance of policy action (Fig. 3-2). In the region where both policy and the

disease itself are able to spread through the network, a more effective enforcement of

the coordinated routing policy increases the invasion threshold, rendering a system

that is more resistant against epidemic outbreaks (Fig. 3-2a). In contrast, even a

broad-based adoption of self-initiated rerouting is unable to increase the invasion
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threshold, implying that decreasing individual contagion risk may not decrease the

societal risk (Fig. 3-2b). In the following sections we provide quantitative measures

of these differences, through simulations on synthetic and realistic mobility networks.

0
(a)

C

POW

(b)

Pow

0

4OO

C

IPaK

PC;PnullI-ul

Figure 3-2: Phase diagram of the coupled contagion processes at steady
state. The phase diagram for the prevalence of the two spreading processes in the
case of coordinated (a) and selfish (b) awareness. The diagram is divided in four
regions: (N) Neither disease spreading, nor awareness adoption, cause an outbreak
in the system. (D) The prevalence of the disease causes an endemic state, while
awareness dies out exponentially fast. (A) There is an endemic state of awareness in
the system at equilibrium, while the disease dies out exponentially fast. (A-D) Both
awareness and disease spread through the system and reach endemic states. The
mean field assumption predicts that the invasion threshold changes in the presence of
coordinated awareness in the system, but it remains unchanged in the case of selfish
awareness. With black we denote the absorbing phase and with red the active phase
for the disease spreading. The boundary curve between the region A and A-D in (a)
represents the epidemic threshold condition. For a given network topology and a set
of parameters, it is given by Eq. (2.6).
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3.5 Numerical simulations

3.5.1 Monte Carlo simulations of conceptual model on syn-

thetic networks

To investigate the intensity of the epidemic as a function of network topology and

model parameters, and to discuss the price of anarchy when selfish routing is allowed,

we perform Monte-Carlo simulations on synthetic uncorrelated, scale-free networks

of N=5000 nodes.

We consider scale-free graphs generated by the uncorrelated configuration model

(Catanzaro et al., 2005) with power law degree distribution P(k) ~ k- and 2 < k <

\/N. A number of AN individuals are initially placed in the system randomly and

uniformly. Individuals move through shortest paths to randomly chosen destinations

with velocity of one node-to-node jump per time step. Once the mobility process

reaches equilibrium, we infect randomly 1% of the nodes. We assume that these ini-

tially selected nodes are also aware of the disease. Individuals inside aware nodes are

forced to travel through the system according to the coordinated or selfish routine

strategies by minimizing the corresponding cost functions, taking into account the

value of the degree of awareness w. We implement both the SIS and SIR compart-

mental models. In the SIS model, a node can be either susceptible to the disease or

infected. An infected node becomes healthy with a recovery rate P. For simplicity

and without loss of generality, we set ft = 1. A susceptible node becomes infected

with probability

Pinf 1 -- (1 - 06t)vI, (3.10)

where / is the infection rate and v, is the number of individuals the node receives

from an infected node in the time interval (t, t+6t). In the SIR model, a node can be

in three discrete states: susceptible to the disease, infected, or recovered/immune. An

infected node recovers and becomes immunized with a recovery rate P. At the same

time, a susceptible node becomes infected with probability Pinf, as described above.

Synchronously, we model the diffusion of awareness as an additional contagion process
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in the system. An aware subpopulation forgets about the information with rate P",

which we set equal to 1. On the other hand, a non-aware node adopts the information

with probability

Pa"IV =1 - (1 - 3aw6t)kaw (3.11)

where 3 aw is the rate of spreading of awareness, and kaw is the number of aware

neighbors. When the system reaches equilibrium, we compute the density of infected

nodes, p.

We measure the density of infected nodes at equilibrium, averaged over 100 real-

izations, both for the case of coordinated action and selfish rerouting. We consider

networks with two different levels of node-degree heterogeneity, y = 2 and Y = 3.3.

We illustrate the importance of the spread of policy adoption by first considering

that all nodes in the network are aware, and the degree of awareness w is constant.

In this particular case, the invasion threshold (3.9) becomes

(baig) P (3.12)
(b2g) (1 - w)/AN(

This prediction agrees nicely with our numerical simulations (Fig. 3-3), which show

a mild dependence on network topology.

Figure 3-4 summarizes the main theoretical contributions of this study. We com-

pare the analytical results derived using the HMF approach with Monte-Carlo sim-

ulations of the full coupled model, with either policy-driven (Fig. 3-4a) or selfish

(Fig. 3-4b) rerouting. Our HMF theory accurately predicts the different transitions

observed in the numerical simulations, confirming the conceptual phase diagram de-

picted in Fig. 3-2. These numerical simulations allow us to quantify the price of

anarchy as the difference between the density of infected nodes at equilibrium for the

coordinated and selfish strategies (Fig. 3-4c). The salient features of the behavior

of this system arise from the strong nonlinearities induced by the coupling: while

the selfish rerouting seems to reduce the intensity of the infection for mild diseases,

it has a negative effect for more aggressive diseases, causing a larger fraction of in-

fected subpopulations. The loss of welfare due to selfish rerouting, compared to the
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Figure 3-3: Monte-Carlo simulations with global policy adoption. We show
the density of infected nodes at the steady state, as a function of the degree of
awareness, W, and the product of the infection rate by the traffic parameter OA, for
two scale-free networks with different level of heterogeneity. We use networks of size
N=5000 nodes, and average the results over 100 realizations. The white dashed lines
show the theoretical invasion threshold, calculated with Eq. 3.12.

policy-driven action, denotes the price of anarchy during disease spreading in mobility

networks (Fig. 3-4c). The price of anarchy increases for more heterogeneous network

substrates (smaller -y), and as the enforcement of policy increases (larger /aW). It is

also higher for more aggressive diseases (larger /).

To test our hypothesis about the use of the SIS contagion model, and the generality

of the conclusions, we present Monte-Carlo simulations using the SIR compartmental

model (Figure 3-5). The SIR model is more appropriate to describe Influenza-like

diseases (eg. HINI (Fraser et al., 2009; Balcan et al., 2009)), and the severe acute

respiratory syndrome (SARS) (Colizza et al., 2007). We first explore the early-time

onset dynamics for both SIR and SIS models (Fig. 3-5a), and we conclude that at early

times, time and spatial scales of both models are similar. Furthermore, in (Fig. 3-

5b) we present the global attack of an SIR outbreak (density of subpopulations that

experienced the infection) in a policy driven scenario as a function of the disease

reaction rate and the adoption of awareness rate. It is clear that similar conclusions

for the effect of a policy driven action can also be drawn in the case of an SIR infection

model (see (Fig. 3-4a)).
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Figure 3-4: Monte-Carlo simulations with spreading policy/awareness. (a)

Density of infected nodes the steady state, p, as a function of the product OA and the

adoption of awareness rate / 3 " that initiates policy made rerouting behavior, for two

synthetic scale free networks with different degree exponents. (b) Density of infected

nodes at steady state as a function of the infection rate and the adoption of awareness

rate that initiates selfish rerouting behavior, for the same synthetic networks. Shown

with dashed lines are the predictions of the mean field assumption for the phase

diagram separation thresholds. (c) The price of anarchy as a function of the two

reaction rates for the two synthetic networks. We use recovery rates, P=Paa=1 and

we set the degree of awareness w = 0.8 for both the coordinated and selfish rerouting

strategies. The results are averaged over 100 realizations.
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Figure 3-5: Policy driven behavioral changes on an SIR epidemic model
(a) Time evolution of the density of infected subpopulations, under a policy driven
behavior, for the SIS and SIR infection models. The infection rate is 3 = 2.25, the
awareness adoption rate has value f2a = 0.25, and we set the traffic parameter to

A = 5. The degree of awareness is equal to w = 0.8 and the recovery rates are

equal to p = 1/4 and paw = 1. (b) The global attack (r(t = oc)) as a function of

the product OA and the adoption of awareness rate /3" that initiates policy driven

rerouting behavior. In both settings, the substrate network is uncorrelated, scale-free

with degree exponent equal to -y = 3.2 and of size N=5000 nodes (subpopulations).
The degree of awareness is equal to w = 0.8 and we use unit recovery rates. The

results are averaged over 50 realizations.

66



3.5.2 Comparison between our conceptual model and a clas-

sical metapopulation model.

Using numerical simulations and simple theoretical arguments, we compare the pre-

dictions of our conceptual model with those of a more detailed metapopulation model,

where we introduce behavioral changes. Since the parameters used by these two

models are different, so it is not obvious in principle how these calculations should

be compared. We put forward a rescaling argument that allows to quantify whether

the two models yield the same behavior under equivalent infection rates and traffic

density.

We consider a metapopulation network of size N and degree distribution P(k),

where each node i represents a subpopulation with Vi individuals. We set the pop-

ulation size proportional to the topological betweenness. We assume the mobility

process in which each individual in a node i, with a probability p, travels to a desti-

nation node j that is randomly selected with probability proportional to its size V.

Travelers reach their destinations following the shortest path. A convenient represen-

tation of the system is provided through quantities defined in terms of the degree k.

Lets assume that a small set of initially infected subpopulations of degree k, {D0}, is

experiencing an outbreak with RO =3m/pm > 1, where fm and pm are the infection

and recovery rates respectively. In the early stage of the process, the number of sub-

populations experiencing an outbreak is small and the disease spreading at the level

of metapopulation system can be described as a branching process, using a tree-like

approximation relating the infected subpopulations D' at generation n to the infected

subpopulations D'- 1 at generation n - 1 (Colizza and Vespignani, 2007; Balcan and

Vespignani, 2011). The average number of infected individuals at equilibrium in a

subpopulation k of population Vk is aVk, where oz is a disease dependent parameter

equal to a = (Ro - 1)/Ro (Barthelemy et al., 2010). Each infected individual stays

in the infectious state for an average period p-'. Thus, the total number of infected
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individuals circulating through the network at the n - 1 generation is

= (pa/pm)E D,-I-1. (3.13)

Those individuals can trigger the start of the epidemic in a susceptible subpopulation

i with probability [1 - R ], where _y7' is the number of infectious individuals

in generation n - 1 that have visited the subpopulation. The number of infected

individuals that will pass through a subpopulation of degree k will be proportional

to the algorithmic betweenness _,~-I = bk W"n-. For the nrh-generation we have:

D n n-1Nkn-[

=Nk(1 - D /Nk)[1 - (Rk ) (3.14)

where the second term on the right hand side is the probability that the subpopulation

is not already seeded by infected individuals and the last term is the probability that

the new seeded population will experience an outbreak. At the early times of the

process and for RO ~ 1, equation ( 3.14) can be approximated by

(fRo - 1)(pa//pm)Nkb k 1gD n1,. (3.15)
k'

Considering at equilibrium Vk = Vba1g/(baig), where V is the average population size

and by defining O" = Dnb 1 g, we have that:

E" (Ro - 1)(pa/pm)VN((b j)/(bag))0" . (3.16)

The above self-consistent equation defines the global invasion threshold:

(At - 1)2 (baig) PIm (3.17)
Ro (b( 1) pVN

This threshold condition unveils the influence of the model parameters, as well as the

mobility patterns, on the spreading dynamics. The invasion threshold decreases with

total traffic, and the condition RO > 1 for the global invasion is recovered for high
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mobility rates. Furthermore, the threshold condition depends on the routing protocol,

through the first and second moments of the algorithmic betweenness. Equations

(3.17) and (3.7) suggest that the conceptual and metapopulation models should be

compared by considering the traffic-weighted infection rates 0*=OA and 0* =(RO -

1) 2 /RopV, respectively.

We take this scaling relationship one step further, and use it to investigate whether

the theoretical results derived for our conceptual model are also representative in the

case of coordinated, policy driven behavior in a metapopulation model. Using the

expression for the invasion threshold in the conceptual model, Eq. 3.9, and introducing

the effective infection rate of the metapopulation model, we arrive at the invasion

threshold:

(R - 1)2 (baig) Pm (3.18)
Ro (big) - W (baig) pVN

To test this theory, we plot the intensity of the infection computed using the con-

ceptual and metapopulation models for various parameter values, and rescale the

axes according to the above effective infection rates (Fig. 3-6). Qualitatively, the two

models seem to be equivalent in their predictions of the role of coordinated action on

disease spreading. Their quantitative match is also remarkable, in particular the fact

that, under the suggested rescaling, the invasion threshold derived for our concep-

tual model seems to capture the transition in the metapopulation model as well. We

conclude that the two models are basically equivalent from a statistical viewpoint.

3.5.3 Data-driven simulations

We apply our methodology to a more realistic scenario where the substrate for the

spreading processes is the commuting network of the United States. The nodes in the

network represent the counties in the contiguous US, and the links between nodes rep-

resent daily commuting fluxes. We perform Monte-Carlo simulations, with commuters

distributed among the different counties according to traffic. Epidemic spreading in

the US commuting network is mainly driven by high traffic disorder, which leads to

very heterogeneous spreading patterns. In Fig. 3-7 (inset), we show a sample re-
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Figure 3-6: Comparison between the conceptual and metapopulation mod-

els: Monte-Carlo simulations with spreading policy/awareness. (a) Con-

ceptual model. Density of infected nodes at the steady state, p, as a function of

the product 3A and the adoption of awareness rate O3w that initiates policy driven

rerouting behavior. Shown with dashed lines are the predictions of the mean field

assumption for the phase diagram separation thresholds. (b) Metapopulation model.

Density of infected subpopulations (subpopulations with Ij/V > 1%) at steady state

as a function of the quantity pV(3m - 1)2/3m and the adoption of awareness rate f3a

that initiates policy driven rerouting behavior. The green dashed line is the threshold

of the awareness spreading #c"" the white line represents the threshold in Eq. 3.17,
and the grey line is the a priori prediction of the invasion threshold in the presence

of policy driven awareness in the metapopulation model (Eq. 3.18). The substrate

network is uncorrelated, scale-free with degree exponent equal to -y = 2 and of size

N=5000 nodes (subpopulations). The degree of awareness in the both cases is equal

to w = 0.8 and all recovery rates are set equal to unit. For the metapopulation model

we use a total number of V = 3 x 106 individuals. The results are averaged over 50

realizations.
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alization of our model, where we visualize the spreading patterns of infection and

awareness, respectively, for both the selfish and coordinated rerouting strategies, two

weeks after an outbreak at NYC county.

o Selfish Awareness

0.48

POA

0M Coordinated Awareness

Figure 3-7: Coupled information and epidemics in the US commuting net-
work. The price of anarchy, two weeks after an epidemic starts from each county in
the East Coast of the United States. The results are averaged over 50 realizations.
(Inset) A snapshot of the epidemic two weeks after it is initiated at the New York City
county, in the presence of selfish and coordinated awareness. Dark red colors denote
high densities of infection, (p). We average over 100 mobility and disease realizations.
We use total traffic parameter A = 5, reproductive numbers, RO=2, Rw=1.25, and
recovery rates, t=paw =1 day-'. We further assume that individuals spend 1/3 days
(eight working hours) at the final destination before returning back home, and 1/24
days (one hour) at each of the intermediate counties. We set the degree of awareness
to w = 0.8 for both the coordinated and selfish rerouting strategies.

The propagation of a disease depends strongly on the position of the initial seeding,

due to traffic and topology heterogeneities (Nicolaides et al., 2012; Kitsak et al.,

2010). The different system responses to an outbreak suggests that policy decisions

need to account for the properties of the network as a whole, but also about the

specific local transmission mechanisms and mobility patterns. We compute the price

of anarchy for an infection starting at each one of the 2654 counties in the Eastern

part of the contiguous US (Fig. 3-7). Due to traffic disorder we observe strong spatial

heterogeneity in the price of anarchy values, depending on the origin of the outbreak.
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Individuals living near the major interstate highways of the East Coast (1-80 from

New York City to San Francisco, CA; 1-85 from Petersburg, VA to Montgomery,

AL; and 1-95 from the Canadian Border to Miami, FL) have the incentive of a fast

commute to neighboring counties. As a consequence, counties surrounding those

commuting corridors have, in general, a larger proportion of commuters compared to

other regions in the US. In contrast, the POA for epidemic spreading in areas of low

commute flux is small, and therefore imposing policy-initiated action does not render

substantial benefits for the containment of the epidemic.

Implementation. Data on commuting trips between counties in the United States

is available online 1. The files were compiled from Census 2000 responses to the long-

form questions on where individuals worked. The files provide data at the county

level for residents of the 50 states and the District of Columbia (DC). The data

contain information on 34000 commuters in N=3141 counties. We build the non-

symmetric traffic matrix F where its entry Fij denotes the number of individuals

traveling from county i to county j and, by considering only commuting flow up to

25 miles outside the borders of each county, we construct the immediate neighbor

flux matrix Fi". We initialize the system by randomly placing 5N individuals in

the system. The destination of an individual located at county i is chosen randomly

among the set neighbor counties {j} (i.e. Fij > 0), with probability proportional

to the flux Fij. Individuals travel through the system following a "shortest path" to

their destinations by maximizing the total traffic of the route segments, E Fi. After

this training period reaches equilibrium, we assign "home counties" to individuals,

and we add the additional mobility rule of recurrent patterns. We make sure that

the distribution of the population assigned after this initial training period correlates

well with the actual populations from the census dataset. We then infect the county

of consideration. We assume that this initially selected county is also aware of the

disease. With probability w, individuals inside aware nodes reroute from the "shortest

path" to their destinations and follow either a policy-driven or a selfish path (Fig. 3-

8). We implement the epidemic and awareness spreading models as described for the

1http://www.census.gov/population/www/cen2000/commuting/index.html
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synthetic network simulations. We average our results over 50 model realizations.

Figure 3-8: The social dilemma for choosing the path to the destination in
the US commuting network during an event of epidemic spreading. An
aware individual reroute from the "shortest path" to their destinations and follow
either a policy-driven (green) or a selfish path (brown).

3.6 Discussion

Feedbacks between human behavior, policy action and the dynamics of contagion

through mobility networks shape the footprint of infectious outbreaks, alter the dis-

ease transmission mechanisms, and determine the suitability of policies aimed at

abating the epidemic by reducing the frequency of infectious contacts. In this study,

we test the hypothesis that rerouting behavior, elicited by propagating awareness, can

fundamentally change the patterns of disease spreading through mobility networks,

both in terms of the invasion threshold and the total intensity of the outbreak. Our

theoretical and simulation results support this hypothesis, and reveal a rich phase

diagram of potential outcomes depending on the rerouting strategy and the dynamics

of contagion and awareness.
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Consistent with previous simulation studies on self-initiated behavioral responses

in mobility-driven contagion, we find that selfish rerouting does not change the in-

vasion threshold. As we report here, this is true even when the epidemic process is

coupled to the spreading of awareness. From a policy perspective, this result suggests

that individual efforts to avoid infectious contacts may not help the social welfare; in

fact, the density of infected populations at steady state is higher in the case of selfish

rerouting than in the base scenario of shortest-path routing. In contrast, policy-driven

coordination, which strives to mitigate the epidemic at the societal level, increases the

invasion threshold and decreases the intensity of the infection. The price of anarchy,

which we quantify through numerical simulations, reveals the essential differences be-

tween the selfish and coordinated strategies in terms of their impact on the spreading

of the epidemics.

These results pose a social dilemma, where policymakers and social agents need to

find a balance between the pursuit of individual utility and the preservation of social

welfare. In this study we show that the price of anarchy is related to the nature of the

disease, the topology of the network substrate, and the resources deployed to enforce

adoption of coordinated action. Such a quantitative analysis should provide valuable

predictions to inform policy decisions about whether coordinated rerouting should

be strongly enforced, or self-initiated behavior is allowed. Our map of the price of

anarchy in the Eastern part of the United States illustrates this dilemma and suggests

strategies for the deployment of measures intended to contain an outbreak. The price

of anarchy to epidemic spreading exhibits strong heterogeneity, controlled by the

proximity to major commuting corridors like the interstate highways. This categorical

identification of population centers, ranked by their price of anarchy, may provide

disease-control authorities with a priori information of the benefits of implementing

mobility restrictions in the event of an outbreak.

In the next Chapter, we introduce and study extensively a fresh dynamical sys-

tems on a heterogeneous network topology that is able to self-organize input signals

into localized and quantized patterns. We relate the characteristics of the pattern

formation to both the topological properties of the network and to the nonlinear
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structure of the underlying process, and discuss the implications of our findings in

modeling cell assemblies of memories in brain activity.
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Chapter 4

Self-organization and quantized

states in neural activity

In this chapter, we introduce a simple model of excitation and inhibition on hetero-

geneous neural networks that can potentially explain the formation of cell assemblies

in brain activity through self-organization. We demonstrate the properties of such

neural network processes with a minimal-ingredients model of neuron activation and

interaction within a complex network. The requirements are minimal and general:

simple local dynamics based on typical activation potentials, and interactions between

neurons that induce short-range anti correlation and long-range correlation in activ-

ity. The simplicity of our assumptions make our results very powerful. The formation

of localized, robust neuron assemblies can be explained by simple neuron interaction

without differential strengthening of the connections between neurons, the so called

synaptic plasticity. We relate the characteristics of the model to both the topological

properties of the network and the nonlinear structure of the underlying local process

and we discuss applications in brain activity functional modeling.

4.1 Motivation

The mapping human brain function has emerged as one of the most fascinating chal-

lenges of the 21st century (Insel et al., 2013). Network theory is becoming a vitally
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important ingredient in this endeavor (Bullmore and Sporns, 2009, 2012; Chavez et al.,

2010; Sporns, 2011). The human brain' s capacity to process and store information

arises from the collective behavior of 1011 neurons that form a highly heterogeneous

interconnected network. Transmission of information between neurons occurs via the

diffusion of electrical pulses along the wiring connecting different neurons. Therefore,

understanding the topology and the dynamics of the brain from a network perspective,

is a crucial step towards understanding the function of the human' s most complex

organ.

The increasing amount of brain data has push forward our understanding of brain

structure from two mainly points of views: structural and functional networks. Struc-

tural brain network, also known as "connectome" can be derived through diffusion

tensor imaging (DTI) (Iturria-Medina et al., 2008) or diffusion spectrum imaging

(DSI) (Hagmann et al., 2007) that both are based on diffusion of water through

myelinated nerve fibers in the brain. On the other hand there is a plenty of meth-

ods through which neuroscientists derive functional network structure that based on

the signal correlation between neurons or areas in brain. An important distinction

must be made between these two kind of networks in terms of edge definition (Sporns

et al., 2004; Bullmore and Sporns, 2009; Sporns, 2013). Edges in structural networks

refer to aspects of the physical infrastructure of brain connectivity, that is, synap-

tic connections jointly comprising the wiring diagram, whereas edges in functional

networks reflect aspects of statistical dependencies among neuronal time series cor-

responding to simple correlation's or covariance or more sophisticated measures of

nonlinear coupling or casual dependence. These differences in edge definition entails

clear differences in the way structural and functional networks should be analyzed,

interpreted and used. For example information communication processes, govern-

ing the propagation of information along the connections do not occur in functional

networks. Instead functional networks are manifestation of these processes as they

unfold in the structural connectome. Therefore studies aiming to identify important

features of communication processes in brain are more appropriately carry out on

structural than on functional networks (Sporns, 2013).
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The sight or the sound of a familiar concept triggers a cascade of brain processes

that creates a representation leading to the recognition of the concept, the recollection

of details related to it and the generation of new memories. For decades neurosci-

entists have debated how memories are stored. This debate continues today with

two extreme theories. The first one suggests that single neurons hold the recollec-

tion, say, of the grandmother or of a famous movie star. The second and dominant

until recently view suggests that the perception of any specific individual or object

is accomplished by the collective activity of many millions if not billions of nerve

cells, what Nobel laureate Charles Sherrington use to call "a millionfold democracy".

However, recent experiments suggests that the reality lies somewhere between these

two theories (Quiroga et al., 2005). That is, a particular concept triggers the firing

of no more than a million and some times some thousands of neurons out of about

more than a billion in the medial temporal lobe (MTL) of the brain, known as cell

assemblies (Quiroga et al., 2005; Quiroga, 2012; Quiroga et al., 2008) (Fig. 4-lA).

4.2 Cell Assemblies

Cell assemblies, or small subsets of neurons that fire synchronously, are the functional

unit of the cerebral cortex in the Hebbian theory of mental representation (Palm, 1981;

Kelso et al., 1986; Lansner et al., 2002; Dudai, 2004; Buzsiki, 2010). The connection

between localized activation patterns and specific memories or perceptions is well

documented (Quiroga et al., 2005; Quiroga, 2012), and associative learning forms the

basis of our current understanding of the brain's structure and function (Reijmers

et al., 2007; Neves et al., 2008; Lansner, 2009). The role of localized neuron assem-

blies as functional building blocks for mental process such as memory, learning and

perception, raises the key question of how these groups of neurons become associated.

Conceptually, cell assemblies are attractors, in the sense that the activation of some

of these neurons triggers a cascade that results in the persistent firing of the whole

group (Lansner et al., 2002; Tsodyks, 2005).

Finding the underlying mechanisms behind the creation of these attracting lo-
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cal structures is a long-standing problem in neuroscience (Kelso et al., 1986; Fuster,

2000; Han et al., 2007; Silva et al., 2009). Hebb proposed synaptic plasticity as the

basic mechanism for neural assembly formation: the repeated, contingent, activation

of a group of neurons would strengthen their neural connections, making them more

sensitive to each other's activation and increasing the likelihood of synchronous fir-

ing (Kelso et al., 1986). Hence, in the Hebbian framework learning is mainly the

physiological process of strengthening synaptic connections among groups of neu-

rons (Fuster, 2000; Martin and Morris, 2002). A weaknesses of synaptic plasticity as

a general mechanism for neural assembly is that the time scales for neural association

and learning must be related to the time needed for the strengthening of synaptic

connections. In fact, the times are often much faster, indicating that in some cases

association may be a consequence of self-organization rather than synaptic plasticity.

Another conceptual difficulty of the Hebbian postulate of synaptic plasticity is that it

does not provide a basis for encoding and computation in the brain. The fundamen-

tal mechanisms for information processing-the basic elements of the brain's internal

language-remain unknown (Gallistel and Matzel, 2013).

Here we show that simple mechanisms of neural interaction allow for robust cell

assembly creation through self-organization, without the need for reinforcement and

synaptic plasticity. We demonstrate the properties of such neural network processes

with a minimal-ingredients model of neuron activation and interaction within a com-

plex network. The requirements are minimal and general: simple local dynamics

based on typical activation potentials, and interactions between neurons that induce

short-range anti correlation and long-range correlation in activity. The simplicity of

our assumptions make our results very powerful. The formation of localized, robust

neuron assemblies can be explained by simple neuron interaction without differential

strengthening of the connections between neurons. Our model is compatible with

Hebbian learning as well. Selective strengthening of certain synaptic connections

through synaptic plasticity would also lead to the association of certain groups of

neurons.

Our results suggest a new mechanisms for the formation of cell assemblies in neural
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networks, and point to two mechanisms for learning and representation in the brain:

Hebbian synaptic plasticity, and self-organization. We conceptualize these correla-

tions as the interaction of neurons with first and second neighbors in the network.

The proposed mechanism is compatible with Hebbian learning. In fact, the robustness

of the localized activation patterns provides a powerful feedback reinforcing the action

of synaptic plasticity. Our model also indicates a mechanism for learning based on

self-organization. The conceptual advantage of self-organization in the brain is that

the formation of cell assemblies is much faster that when synaptic plasticity is needed

as an explanation.

An important question that will be addressed in the future is whether localized,

self-organized network structures can provide better algorithms for machine learning

and artificial intelligence. Because of their robustness and localization, self-organized

structures may provide an encoding mechanism for information processing and com-

putation in the brain. They may form the basic elements of the brain's internal

language.

4.3 Mathematical Model

The complex neuron dynamics, and the interactions between neurons, are often con-

ceptualized as dynamical process in network theory (Bullmore and Sporns, 2009;

Chialvo, 2010; Bullmore and Sporns, 2012). The objective is to identify minimal-

ingredients computational models of the functional and structural organization of the

brain. The ultimate goal is to simulate the processes that enable the human brain

to perform its tasks related to perception, memory and computation. Such mini-

mal models of neural activity comprise a series of neuron compartments, with local

dynamics and interactions between neurons. Computational models can be highly

detailed, mimicking the various neuron functional types and the brain's structural

and physiological organization (Izhikevich and Edelman*, 2008). Here we propose

a minimal-ingredients, phenomenological model of neural excitation, inhibition and

interaction a network with heterogeneous connectivity. Our goal is not to provide
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a physiologically detailed representation of the human brain, but rather to demon-

strate that a simple combination of local excitation and relaxation of individual units,

and generic excitatory/inhibitory interactions between connected units, leads to self-

organization, and explains the spontaneous formation of cell assemblies without the

need for synaptic plasticity or reinforcement.

We conceptualize our neural networks as large sets of interconnected relaxation

oscillators. A neuron's membrane potential is driven by local excitation-relaxation

dynamics, in the spirit of the Hodgkin or FitzHugh-Nagumo models (Hodgkin and

Huxley, 1952; FitzHugh, 1961), and by the interaction with other neurons in the

network via exchanges through the links, or synapses, connecting them. Neuron acti-

vation is thus a consequence of ionic fluxes that cause changes in chemical potential

across the neuron membrane-neuron spiking (Hodgkin and Huxley, 1952). In di-

mensionless quantities, the proposed excitation-inhibition model for the evolution of

membrane potential, ui, and resting variable wi, in each neuron i = 1, ..., N is given

by:

du - f (ui, p) - wi + 1, (4.1)
dt

dw = C(u2 -wi) 
(4.2)

dt

where potentials, ui, are referred to the resting potential, which becomes the zero-

level in our model. Locally, the membrane potential behaves as a relaxation oscillator,

where

f(ui, /1) =-(1 + p)ui + 1.5u2 - U1 (4.3)

is a dynamic forcing term (Fig. 4-1 B), C is a decay coefficient, and p acts as a

bifurcation parameter. Synaptic currents are represented by the interactions with

other neurons in the network. The topology of the network, with N nodes, is defined

by the adjacency matrix, A, whose elements, Aij, take values of 1, if nodes i and j

(i, J 1,..., N) are connected, and 0 otherwise. The degree-or connectivity-of a

node i is therefore given by ki = EN Aij.
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The structure of the interactions between neurons is one of the key ingredients

of our model. Rather than a simple, diffusive type process, that induces short-range

correlation, we propose a two-level interaction structure that induces anti correlation

in the short range (nearest-neighbors, or first-order connectivity), and long-range cor-

relation (second-nearest neighbors, or second-order connectivity) (Fig. 4-1 C). These

interactions can be simply achieved by assuming that neurons interact in a dual net-

work. Neurons interact with first neighbors in one of the networks. In the second

network, their networks are the second-order neighbors in the first networks. Mathe-

matically, we express the integration of synaptic contributions as

N N

I, = -2E L)uj - (L)L. (4.4)
j=1 j=1

The simplest form for the interaction matrices representing these correlation/anti-

correlation effects while ensuring conservation of charge is based on network represen-

tation of laplacian and bilaplacian operators. The network-laplacian matrix is (Nakao

and Mikhailov, 2010)

L 2  = Ai - ki6i, (4.5)

while we adopt the network-bilaplacian matrix

N

L = ( )ij - (ki + kj)Aij + kg ~3 Lil)Lli (4.6)
l=1

where the (A 2)j matrix has information about second order nodal connectivity and

takes nonzero values if node i is two jumps away from node j. The eigenvalues A,

and eigenvectors <bV = (# <, .. , # 4 ) of the Laplacian matrix L are determined by

N

( = A_#O3, (4.7)
j=1

with a 1, .., N. The bilaplacian, L has the same eigenvectors as L ) (i.e. <D)
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and its eigenvalues are the square of those of L( , A 2k7 a

4.4 Connection to the Swift-Hohenberg equation

Equations (4.1)-(4.4), modeling the evolution of neuron membrane potential, can be

interpreted as a network representation of the Swift-Hohenberg equation (Swift and

Hohenberg, 1977),

9tu f (u, P) - a..u - axxxxU. (4.8)

This equation is a prototype model for pattern formation in numerous natural sys-

tems. Its fascinating properties have been extensively studied recently (Cross and

Hohenberg, 1993; Tlidi et al., 1994; Burke and Knobloch, 2006; Lloyd et al., 2010;

Gomez and Nogueira, 2012). One the most intriguing features of solutions to the

Swift-Hohenberg equation is the possibility of localized steady-state patterns (Fig. 4-

ID). In two dimensions, solutions display characteristic hexagonal patterns (Burke

and Knobloch, 2006; Lloyd et al., 2010). Our network model is more complex than

the continuum Swift-Hohenberg model, due to the heterogeneity in network topology

and connectivity, with is absent in the continuum case. Furthermore, our model has

a decay term, implying that any activation patterns return to the resting potential.

The question still remains of whether some of the properties of the Swift-Hohenberg

properties are still inherited by our model.

4.5 Stability Analysis

To understand the properties of our neural network model, we begin with an inves-

tigation of the stability of the resting potential state, that is, the case in which all

neurons are at the zero-level potential. The physiological and functional relevance of

this analysis stems from the fact that, if the resting state is an unstable one, small

random perturbations could trigger a large-scale, cascade of spontaneous firing of

neurons in the brain. Under healthy operating conditions, the resting potential must

be stable. Since neuron activation relaxes towards the resting potential in the absence
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(A)
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S.

(D)
J1D

Figure 4-1: Motivation and pictorial illustration of our dynamical model in
neural networks. (A) The sight of a familiar concept triggers a cascade of brain pro-
cesses that creates a representation leading to the recognition of the concept through
the firing of a finite number of neurons in the brain (cell assemblies). (B) Pictorial
view of the local dynamics that neurons undergo. Locally, the membrane potential
behaves as a relaxation oscillator, where f(u, p) is a dynamic forcing term. In the
inset we show the energy landscape, that behaves as a single well (at u = 0) with an
inflection point, necessary condition for localized pattern formation. (C) Neurons in-
teract with each other in the systems through diffusively transported species via the
links (synapses) connecting them. The network-laplacian operator L(') represents
short range diffusion of the species in the system (top). The network-bilaplacian
operator L(4) induces short range anti correlation with the nearest-neighbors, and
long-range correlation with the second-nearest neighbors (bottom). (D) Typical lo-
calized patterns in ID, 2D and in network topology. Quantized states are localized
in the sense that they do not span the whole domain. In ID the localized patterns is
in the form of packets of waves restricted in a small area of the domain, where in 2D
the localized patterns have hexagonal configuration. In network topology localized
patterns usually span a neighborhood, or a community.
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of input signals, our analysis refers to the short-time patterns of activation driven by

the equation for the potential (4.1):

N N

=t f (Ui, I ) - 2 :Li I: Li Zs 1, ... , N. (4.9)
j=1 j=1

Flat, stationary solutions to this equation satisfy f(ut) = 0, where the membrane

potential is equal for all nodes, ai = t, Vi = 1, ... , N. For f(ui, P) = -(1 p)i +

1.5u2 - U there are three uniform solution branches given by

uO = 0 and u± = [1.5 ± /1.52 - 4(fu + 1)]/2. (4.10)

In a linear stability analysis, the stability of these flat stationary solutions to small

perturbations is determined by the eigenvalues of the laplacian and bilaplacian ma-

trices.

4.5.1 Linear stability analysis of flat solutions in time

In a linear stability analysis, the stability of these flat stationary solutions to small

perturbations is determined by the eigenvalues of the laplacian and bilaplacian ma-

trices. Introducing small perturbations, 6ui, to the uniform state u, a, = u + ui, the

linearized version of Eq. 4.9 takes the form

N N

doui/dt = fu (U)au - 2Z L () - L()6Uj. (4.11)
j=1 j=1

By expanding the perturbation 6ui over the set of the laplacian eigenvectors,

N

6Uj qae" , (4.12)
a=1
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the linearized equation is transformed into a set of N independent linear equations

for the different normal modes:

A0 = f(U) - 2A, - A2, a = 1, ... , N, (4.13)

where Ac are the eigenvalues of the laplacian matrix. The a-mode is unstable when

Re A, is positive. Instability occurs when one of the modes (the critical mode) begins

to grow. At the instability threshold, Re A, = 0 for some a, and Re A < 0 for all

other modes. In Fig. 4-2 we summarize the linear stability analysis of the flat states

of our model on a scale-free network that we construct using the Barabisi-Albert

model (BA) (Barabaisi and Albert, 1999).

4.6 Localization: quantized response and robust-

ness

4.6.1 Stability analysis of resting state in network topology

Localized activation patterns are possible due to the particular structure of the model,

with short- and long-range interactions. Mathematically, the localized states are ho-

moclinic orbits around the base resting state, u- = no = 0. The existence of these

homoclinic orbits can be studied using the technology developed for the linear sta-

bility analysis. Since homoclinic orbits leave the flat state as we approach a small

neighborhood (cluster) of the network, the fixed point must have both stable and

unstable eigenvalues. We linearize Eq. 4.9 around uO = 0, and expand the perturba-

qa(a)' , ,arvntions over the set of the laplacian eigenvectors 6ui = 1 qN/i , q0 <K 1, arriving

at the relation fs(0) - 2A, - A2 = 0. Since the laplacian eigenvalues A0 , are real

and non-positive, we can write them in the form A, = -kg. If p > 0, the topological

eigenvalues at nO = 0 form a complex quartet, k0 = ±i ± L + O(p). For y = 0

they collide pairwise on the imaginary axis, and for p < 0 they split and remain on

the imaginary axis, k, = i(±1 ± =") + O(p). For p = -1, two of the topological
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Figure 4-2: Linear stability analysis of the flat stationary solutions of our
model. (A) maximum value of the growth rate A as a function of the bifurcation
parameter p for the two flat stationary states u+ (yellow) and u_ (blue) on a B-A
network model with mean degree (k) = 3 and size N = 2000. When the maximum
value of A is negative, the state is stable with respect to small non uniform perturba-

tion. (Inset) The growth rate A as a function of the Laplacian eigenvalue A (Eq. 4.13)

for three different values of the bifurcation parameter p as they indicated in the main

diagram for the flat stationary solution u_. (B) The flat stationary solutions uo and

u± as a function of p on the same network. Solid (dotted) lines represent stability (in-

stability) with respect to small non-uniform perturbations. The labelled bifurcation

points are po = 0, , = -0.44 and p+ = -0.62 and p_ = -1.82. The pink shaded

region is where we observe localized self-organization patterns with respect to the

trivial solution uO. For values of p outside that region we get either global activation
patterns (for p < po) or any perturbation relaxes back to the flat stationary solution

(for p > p*).
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eigenvalues collide at the origin, while for p < -1 they move onto the real axis.

These results are summarized in the Figure 4-4A. The topological eigenvalues in the

neighborhood of p = 0 is an indication for a variety of topologically localized states

for p non-negative and close to zero (Burke and Knobloch, 2006)

4.6.2 Localized patterns by direct simulations

The existence of localized structures has important implications for the response of

the network to a stimulus. When a neuron or group of neurons in the network receive

an input stimulus, the activation will propagate within a certain neighborhood around

the stimulated neurons, while the rest of the network will remain at the resting state.

A neuron assembly will thus be spontaneously generated. The pattern of activation

decays over time due to the relaxation term, but the short-term response is dominated

by the localized firing pattern. To understand the onset of localized patterns for

different model parameters and input stimuli, we construct the snaking bifurcation

diagram of the resting state, as a function of the total potential energy of the stimulus

and bifurcation parameter 1u, in the vicinity of ft ~_ 0. An initial stimulus is applied

at the most central neighborhood in the network, defined as the most central node

(using eigenvalue centrality) along with its first- and second-step neighbors.

In more details, we are interested in identifying a localized, steady state pattern of

the dynamical system described by Eq. 4.9. We first choose a value for the bifurcation

parameter ft0 in the phase space where localized patterns are possible, i.e. pE(0, 0.6).

We then initialize the activation potential profile on the network. In more details,

we set ui = 0 everywhere except at a small number of nodes in a randomly chosen

neighborhood of the network, where we set i = ft > 0. Starting with this initial

condition, we then advance the dynamical system in time, using implicit Runge-

Kutta method. After a short time that depends on the time integration scheme and

time step used, the dynamical model relaxes to a steady state u0 that is localized in

nature, i.e. the activation area spans a small only fraction of the network (Fig. 4-3C).

By computing the energy of that state 11U 0HjL2 = (1/N E' 1 uO)1/ 2 we are able to

draw a single point ( U0 IIL2, p0 ) on the bifurcation diagram (Fig. 4-3B).
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4.6.3 Numerical continuation

The full bifurcation diagram cannot be obtained by time-marching procedures. In-

stead, we use a pseudo-arclength continuation method to find a single branch of

localized steady states in the bifurcation diagram.

In more details, we are interested in finding branches of localized states at the

bifurcation diagram. These states are solutions of the time independent version of

the system of equations (Eq. 4.9):

N N

0 f (ui, p) - 2 L (2 - L (4, i = 1..N. (4.14)
j=1 j=1

We can rewrite the above equation of interest in vector form:

G(u, P) = -(1 + p)u + 1.5(u o u) - (u o u o u) - 2L(2) - L -4)U = 0, (4.15)

where u = {ui} is the vector of the main variable, [ is the bifurcation parameter,

L(2) and L(4) are the laplacian and bilaplacian operators respectively. With -o-, we

denote the element-wise product. Lets assume that initially a solution (u0 , p0 ) of the

above equation and an initial guess of the tangent vector (io, 40) of the bifurcation

branch at that point in the bifurcation space are given. Starting from that initial

point and direction in the bifurcation diagram, we are interested in finding a branch

of solutions using a numerical continuation algorithm. In order to allow for the

solution branch to past a fold we use the Keller' s pseudo-arclength continuation of

the initial solution (Keller, 1977). The main idea in pseudo-arclength continuation

is to drop the natural parametrization by 1 and use some other parameterization.

Pseudo-arcrength continuation solves the following equations for (ul, p'):

G(u', P1) = 0 (4.16)

(uI - uO)Tn + (P - p) 0 - S = 0,

where the second equation is the plane, which is perpendicular to the tangent (no 0)
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at a distance 6s from (uO, pj0 ) (see Fig. 4-3).

Using Newton' s method this leads to the linear system:

Gu(ui"), p/1 I) GP(U (P), I 1-tI ) (Aul)(P)

(no) T O (Aftp))(P)

G(u'(P), yld")) (.7
((U1 - U0)TfjI0+(PI(P) - (4.17)

(U')(p+l) (ul)(p) + (Aul)(p)

(pl)(P+l) - ()(P) + (A pl)(P), (4.18)

for p=0,1,2,..., where Gu = -(1 + p)I + 2 x 1.5u - 3(u o u) - 2L(2 ) - L(4. The new

tangent direction vector is then computed by solving:

G1 G1 nil 0
( 7k (4.19)

(n")T /V ) 1 ( 1

Note that in practice the system of Eq. 4.19, can be computed with one extra back-

substitution and the orientation of the branch is preserved if the arclength 6s is

sufficiently small. The direction vector must be rescaled, so that indeed 1 112 +

(f 1)2 1.

Using this continuation method we are able to construct single snaking branches

of localized states like the one shown in(Fig.4-4B). These branches show a character-

istic "snaking" structure of localized states with varying activation energy ||UOJL2 =

(1/EN - IaO)1/ 2 (Fig. 4-4B). As the system jumps from one steady state branch to

the next one, a new neighborhood in the network is being activated. Figure 4-4C

visualizes the different steady localized states of the six different branches as they are

spotted in the diagram of Figure 4-4B.
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Figure 4-4: Localized self-organized quantized patterns. (A) Stability of the
trivial flat stationary state of our model with respect to the values of the bifurca-
tion parameter, p. For positive values of p the trivial stationary solution is stable
with respect to uniform small random perturbations (solid line) while for negative
values of p this state becomes unstable (dotted line). Also shown in the insets are the
topological eigenvalues of the trivial state as we tune the bifurcation parameter. The
behavior eigenvalues in the neighborhood of p = 0 indicates the possibility for local-
ized patterns in the neighborhood of small positive values of A (pink shaded region).
(B) A single branch of the bifurcation diagram in a Barabisi-Albert network model
of size N = 200 with mean degree equal to (k) = 3 and minimum degree equal to 1.
Solid (dotted) lines represent stable (unstable) localized solutions. (C) Visualization
of the localized patterns corresponding to the states indicated on the bifurcation di-
agram (B). Gray-colored nodes are non-active (u = 0), red-colored nodes are active
with u > 0 and blue-colored nodes are active with u < 0. The size of the node is
proportional to its eigenvalue centrality.
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4.6.4 Robustness of the localized states

The response of the system is quantized: the transition from one pattern of activation

to another one is discontinuous as we vary the activation energy I|u"|1, or the param-

eter p (Fig. 4-4B). These jumps in activation energy correspond to the addition of

neighbor nodes to the cluster (Fig. 4-4C). The discontinuous-quantized-nature of

the neural network response leads to robustness in the local patterns.

To gain insight into the robustness of the obtained localized patterns of activation,

we performed a synthetic test where we initially stimulate a specific neighborhood

in the network, where we set ui = it > 0 (i.e. a step-like function signal in network

topology) and let the system evolve to equilibrium without decay. We then increase

gradually the amplitude fi of the initial signal, and record the final energy values

of the equilibrium, localized states. In Figure 4-5 we show the resulting energy of

the quantized state with respect to the amplitude of the initial input signal. For

small amplitudes the perturbation relaxes back to the resting state, and no activation

pattern is elicited. There is a threshold in the energy of the input stimulus beyond

which robust quantized states are form. The states are robust in the sense that further

increments in the input signal amplitude do not change the final equilibrium pattern.

The self-organized local structures are also robust in the sense of invariance with

respect to random noise in the initial stimulus. To check if this property of the brain

activity is also property of the proposed model we use Monte Carlo simulations. By

increasing the ratio of the noise amplitude to the signal amplitude, we record the

energy of the quantized state over many realizations (see Figure 4-6.). Note that

the starting input signal (without noise) is the same step-like function on the same

neighborhood as before with large amplitude that cause the formation of the robust

quantized state of Figure 4-5. Random noise of small amplitude has no effect on the

final states. When the signal-to-noise ratio decreases, we do observe a departure from

the energy of the base equilibrium state (see Figure 4-6.).
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Figure 4-5: Robustness of quantized patterns with respect to the input sig-
nal amplitude. (A) Energy of the resulting quantized state with respect to the
input signal amplitude ft at the nearest and next-nearest neighbors of the best con-
nected node in the system. When the amplitude is very small, the initial perturbation
relaxes back to the trivial solution and no quantized state is formed (i). As the am-
plitude of the input signal is increased, fragile quantized states are formed (ii). When
the amplitude of the input signal is larger than a threshold value, a very robust quan-
tized state is formed (iii). Further increases in the input signal amplitude lead to the
same quantized state. (B) Visualization of the input signal in our network topology.
The amplitude increases from left to right. With the metaphor example of Jennifer
Aniston, we illustrate the robustness with respect to the amplitude of the input sig-
nal that cell assemblies experienced in neural network activity. When we look at a
picture with a small signal amplitude our brain usually ends up to wrong conclusions.
When the amplitude of the signal we receive is large enough, that leads to the right
conclusion about the concept that represents. Further increases in the input signal
amplitude lead to the same conclusions (i.e. same cell assembly is getting fired).
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Figure 4-6: Robustness of quantized patterns with respect to the noise over

the signal amplitude of the input. The energy of the resulting quantized state

with respect to the ratio between the signal amplitude and the noise amplitude.

Starting from the step-like input signal that gives the robust quantized state (" Jen-

nifer Aniston"), we add random noise at the already perturbed neighborhood and we

compute the energy of the resulting quantized state over 100 realizations. We use a

Barabisi-Albert, scale-free network of size N=200 and mean degree 4.

96

.... .... .. .... ....................................



4.7 Global patterns and mean-field approximation

Our model predicts a range of parameter values where localized states disappear, re-

placed by global activation patterns. Physiologically, these may be related to patho-

logical functional disorders that cause a transition from a normal brain activity to a

synchronous, large scale activation of neurons-seizures (Penfield and Jasper, 1954;

Fisher et al., 2005; Chavez et al., 2010). Mathematically, global patterns are pos-

sible when the non-active stationary solution is perturbed outside the parameter

region of localized patterns (ft < 0). These-global-Turing patterns can be un-

derstood and modeled using the mean-field approximation, a method that has been

successfully used to describe a wide variety of dynamical processes in heterogeneous

networks, from epidemic spreading (Pastor-Satorras and Vespignani, 2001; Nicolaides

et al., 2013) and activator-inhibitor models (Nakao and Mikhailov, 2010; Kouvaris

and Mikhailov, 2012), to coupled oscillators (Arenas et al., 2008) and voter mod-

els (Baronchelli et al., 2011).

4.7.1 Direct Simulations

We are interested in identifying a global activation, steady state pattern of the dynam-

ical system described by Eq. 4.9. We first choose a value for the bifurcation parameter

P0 in the phase space where global activity patterns are possible, i.e. Po < 0. We then

initialize the activation potential profile on the network by setting ui = 0 everywhere.

By introducing a small, uniform distributed perturbation in the network, we advance

the dynamical system in time, using implicit Runge-Kutta method. Since the trivial

state for At < 0 is unstable with respect to small uniform noise, the initial exponential

growth of the perturbation is followed by a nonlinear process leading to the formation

of stationary Turing patterns (Nakao and Mikhailov, 2010; Turing, 1952) (Fig. 4-7).

4.7.2 Mean Field Approximation

Since in our model both the degree and two-jump degree play important in the for-

mation of patterns we use a mean field approximation where we assume that all the
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Figure 4-7: The formation of global activation Turing patterns in a scale-
free network. The time evolution of the proposed model of Eq. 4.9 with bifurcation
parameter equal to p = -0.25 on a scale-free network of size N = 1,000 nodes and
mean degree (k) = 4. The initial exponential growth of the perturbation is followed
by a nonlinear process leading to the formation of stationary Turing patterns. We
sort node index in increasing degree k. Nodes with the same degree are sorted with
increasing two-jump connectivity k(2 ) (see inset at the very left figure).

nodes with the same degree and two-jump degree behave in the same way. We start

by writing Eq. 4.9 in the form

du= f(u ) - 2(hi - kinu) - (1i - gi - kihi + ku),dt
(4.20)

where the local fields felt by each node, hi = Au A i = Zt1 (A2) iju and gi =

EN A 3 (kjuj) are introduced. These local fields are then approximated as hi ~ kiHu,

1i ~ k( 2 H and gi ~ k(2 Hu, where ki = EL Aij is the degree and k(2 ) = N 2

is the number of secondary connections of node i (two-jump degree). The global mean

fields are defined by Hu = (11N) Ek NkHk where Hu = (1/(kNk)) Eik E Aijuj

and Huu = (1/N) Ek(2) Nk(2) H ,jI where HJ = (1/(k(2 N(2) Zi,2>Ej (A2

Here, Nk is the number of nodes with degree k, N(2) is the number of nodes with

k(2 ) number of two-jump neighbors and N = Zk Nk = 1Z02> Nk(2) is the size of the

network.

With this approximation, the individual model equation on each node interacts
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only with the global mean fields H, and H,, and its dynamics is described by :

d =u(t) f(u) -2a(H -u) - (4.21)
dt

- [3Hu. - a 2 HU - /HU + a2 U]

We have dropped the index i, as all nodes obey the same equations and we introduced

the parameters a(i) = ki and 0(i) = ki . If the global mean fields Hu and H ,2, are

given (can be calculated from the global Turing pattern), as well as the parameters

a and / for each node, the time independent version of above mean field equation

can be written as a third degree algebraic equation that we solve N times. For each

node i, we get three solutions u, lI = .. 3 that can be stable or unstable depending

on the sign (negative or positive) of the operator f'K' + 2a - a 2. In the Figure 4-8

(for the small "toy" network used in Fig. 4-3) ) as well as in Figure 4-9 for larger

networks we plot the Turing patterns from direct simulations as well as the solution

of the mean field equation. The mean field approximation fits very well the Turing

global activation profile.

4.8 Discussion

Our results suggest a new mechanisms for the formation of cell assemblies in neural

networks. Rather than relying on synaptic plasticity, we show that localized, ro-

bust cell assemblies are possible due to self-organization. The spontaneous creation

of localized activation patterns is potentially ubiquitous due to the simple and gen-

eral functional structure of the proposed conceptual model: local dynamics based

on activation potentials, and interactions between neurons that induce short-range

anti correlation and long-range correlation in activity. The proposed mechanism is

compatible with Hebbian learning. In fact, the robustness of the localized activation

patterns provides a powerful feedback reinforcing the action of synaptic plasticity.

Our model also provides a mechanism for learning based on self-organization. The

conceptual advantage of self-organization in the brain is that the formation of cell
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Figure 4-8: Global self-organization patterns for our toy network model.
Global patterns are possible when the non-active stationary solution is perturbed
outside the parameter region of localized patterns (p < 0). The initial exponential
growth of the perturbation is followed by a nonlinear process leading to the formation
of stationary Turing patterns. (A) The activation profile as a function of the node
index i of a global stationary Turing pattern from direct simulation (blue crosses)
is compared with the mean-field bifurcation diagram. Black curves indicate stable
branches while grey curves correspond to unstable branches of a single activator-
inhibitor system coupled to the computed global mean fields. We sort the node index
in increasing connectivity k. Nodes with the same degree are sorted with increasing
two-jump connectivity k(2 ) (see Inset). We use the same network model as in Fig. 2
and we set the bifurcation parameter equal to p = -1/4. (B) Visualization of the
global activity pattern on the network topology.
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Figure 4-9: Global self-organization patterns for large networks. (A) The
activation profile as a function of the node index i of global stationary Turing patterns
from direct simulation for bifurcation parameters (A) p = -0.25 and (B) p = -1.5
are compared with the mean-field solution. The bifurcation parameter Black curves
indicate stable branches while grey curves correspond to unstable branches of a single
activatorinhibitor system coupled to the computed global mean fields, (A) Hu = 0.119
and Huu = 0.110, (B) Hu = 0.400 and Huu = 0.389. We sort the node index in
increasing connectivity k. Nodes with the same degree are sorted with increasing
two-jump connectivity k(. The model is solved on a scale-free network with size
N = 1000 and mean degree (k) = 4.
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assemblies is much faster that when synaptic plasticity is needed as an explanation.

Because of their robustness and localization, self-organized structures may indeed

provide an encoding mechanism for information processing and computation in the

brain. They may form the basic elements of the brain's internal language. An impor-

tant question that will be addressed in the future is whether localized, self-organized

network structures can provide better algorithms for machine learning and artificial

intelligence.
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Chapter 5

Conclusions & Future Directions

We have study several dynamical processes in complex network topologies with em-

phasis on the real world applications that may represent, from global scale epidemic

spreading to better understand cell assemblies formation in neural activity networks.

The results presented in the previous chapters clearly show that in order to under-

stand the dynamics of complex networks it is essential to take into account the spatial

and topological features of the substrate systems as well as the the "traffic" disorder

they experience.

In Chapter 2, we developed a new metric for influential spreaders in reaction-

diffusion processes through space embedded heterogeneous networks using as case

study the spreading of an infectious disease through the air transportation network.

We showed with detailed in modeling and resolved in time numerical simulations that

the spreading influence of individual nodes in a space embedded network with traffic

disorder is not only a function of the total outgoing traffic or the connectivity. How-

ever, a combination of properties is vital to understand and quantify the spreading

influence of individual nodes. We showed that total traffic, connectivity, space em-

bedding and traffic bias are all important ingredients in order to describe influential

spreaders in contagion processes through realistic heterogeneous mobility networks.

Future work includes the study of mitigation strategies during a disease spreading

scenario through the world air transportation network. Up to this point, we have only

studied the influence of an airport when a disease initiated there, without consider-
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ing any intervention scenarios. Many questions arise about the effects of mitigation

strategies, particularly when these interventions are associated with a cost. For ex-

ample, during a scenario of public health emergency, health authorities must take

some measures in order to decrease the effect of a virus prevalence. However, these

mitigation actions have to reflect an optimum scenario that maximizes the social wel-

fare on the one hand but also minimizes the cost of intervention. In other words, we

need to study the advantages in terms of the disease containment, of closing each one

of the significant airports during an emergency as well as the associated cost. A data

driven integrated study like this will better inform authorities about efficient and and

low cost mitigation strategies during a health emergency event.

In Chapter 3, we incorporated behavioral changes in human mobility during a

public health emergency, driven by a level of awareness of individuals in the system.

We modeled the propagation of awareness as an additional contagion process in the

system and we studied the effect of two kind of behavioral changes: a policy driven

and a selfish behavior both in a metapopulation model and a simplified conceptual

model of human mobility. Using results from high quality numerical simulations

on heterogeneous artificial and data driven mobility networks, we define the price of

anarchy in mobility driven epidemic spreading. Our results suggest that the structure

of the underlying mobility network and its traffic properties have to be significantly

considered before authorities impose policy initiated action for the containment of an

epidemic.

Future work includes the study of the hypothesis we drew here in a realistic

scenario of disease spreading, like the H1N1 case in 2009. This can incorporates

human mobility data with a multiscale nature (air travel, commuting etc) as well as

the dataset about cases of infected individuals around the world as a function of time.

This will allow us to develop a model that can simulate what happened during that

emergency scenario with up to a level of precision. Furthermore, having a model like

this will help us implement and quantify the effect of hypothetical behavioral changes

imposed by the authorities as well as understanding the price of anarchy in such a

realistic scenario. This will give us confidence in notifying public policy authorities
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about the effectiveness of intervention in mobility behavior of individuals during a

infectious disease spreading event.

In Chapter 4, we introduced and studied a minimal-ingredients model of activation

and interaction within a heterogeneous neural network that is able to self-organize

input signals in globally connected network into localized and quantized patterns.

The requirements are minimal and general: simple local dynamics based on typical

activation potentials, and interactions between neurons that induce short-range anti

correlation and long-range correlation in activity. This model can serve as a potential

alternative to the theory of plasticity for the formation of cell assemblies (memory

units) in a mammalian brains. Our results suggested that these self-organized, local

patterns of activity can provide an encoding mechanism for information processing

and neural computation.

Future work include the development of a neural classifier based on our proposed

model of self-organization in network topology. This model will require encoding

training of the cell assemblies (quantized patterns) based on the theory of synaptic

plasticity. This can serve as can be the base for a classifier that can provide better

algorithms for machine learning and artificial intelligence.
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